blob: d338e427c8d7c1ecf7307d0fd03e5eed8821c3d8 [file] [log] [blame]
Douglas Gregord2baafd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregorbb461502008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregor10f3c502008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregor3d4492e2008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregorddfd9d52008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregore819caf2009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorfcb19192009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregore819caf2009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorfcb19192009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregore819caf2009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregord2baafd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregore819caf2009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregord2baafd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregore819caf2009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregord2baafd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorfcb19192009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregord2baafd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Sebastian Redl9bc16ad2009-03-29 22:46:24 +0000119 RRefBinding = false;
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000120 CopyConstructor = 0;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000121}
122
Douglas Gregord2baafd2008-10-21 16:13:35 +0000123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127 ImplicitConversionRank Rank = ICR_Exact_Match;
128 if (GetConversionRank(First) > Rank)
129 Rank = GetConversionRank(First);
130 if (GetConversionRank(Second) > Rank)
131 Rank = GetConversionRank(Second);
132 if (GetConversionRank(Third) > Rank)
133 Rank = GetConversionRank(Third);
134 return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146 // Note that FromType has not necessarily been transformed by the
147 // array-to-pointer or function-to-pointer implicit conversions, so
148 // check for their presence as well as checking whether FromType is
149 // a pointer.
150 if (ToType->isBooleanType() &&
Douglas Gregor80402cf2008-12-23 00:53:59 +0000151 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000152 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153 return true;
154
155 return false;
156}
157
Douglas Gregor14046502008-10-23 00:40:37 +0000158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
174
175 if (Second == ICK_Pointer_Conversion)
Ted Kremenekd00cd9e2009-07-29 21:53:49 +0000176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
Douglas Gregor14046502008-10-23 00:40:37 +0000177 return ToPtrType->getPointeeType()->isVoidType();
178
179 return false;
180}
181
Douglas Gregord2baafd2008-10-21 16:13:35 +0000182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185 bool PrintedSomething = false;
186 if (First != ICK_Identity) {
187 fprintf(stderr, "%s", GetImplicitConversionName(First));
188 PrintedSomething = true;
189 }
190
191 if (Second != ICK_Identity) {
192 if (PrintedSomething) {
193 fprintf(stderr, " -> ");
194 }
195 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000196
197 if (CopyConstructor) {
198 fprintf(stderr, " (by copy constructor)");
199 } else if (DirectBinding) {
200 fprintf(stderr, " (direct reference binding)");
201 } else if (ReferenceBinding) {
202 fprintf(stderr, " (reference binding)");
203 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000204 PrintedSomething = true;
205 }
206
207 if (Third != ICK_Identity) {
208 if (PrintedSomething) {
209 fprintf(stderr, " -> ");
210 }
211 fprintf(stderr, "%s", GetImplicitConversionName(Third));
212 PrintedSomething = true;
213 }
214
215 if (!PrintedSomething) {
216 fprintf(stderr, "No conversions required");
217 }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223 if (Before.First || Before.Second || Before.Third) {
224 Before.DebugPrint();
225 fprintf(stderr, " -> ");
226 }
Chris Lattner271d4c22008-11-24 05:29:24 +0000227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregord2baafd2008-10-21 16:13:35 +0000228 if (After.First || After.Second || After.Third) {
229 fprintf(stderr, " -> ");
230 After.DebugPrint();
231 }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237 switch (ConversionKind) {
238 case StandardConversion:
239 fprintf(stderr, "Standard conversion: ");
240 Standard.DebugPrint();
241 break;
242 case UserDefinedConversion:
243 fprintf(stderr, "User-defined conversion: ");
244 UserDefined.DebugPrint();
245 break;
246 case EllipsisConversion:
247 fprintf(stderr, "Ellipsis conversion");
248 break;
249 case BadConversion:
250 fprintf(stderr, "Bad conversion");
251 break;
252 }
253
254 fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267// void f(int, float); // #1
268// void f(int, int); // #2
269// int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1. By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290 // Is this new function an overload of every function in the
291 // overload set?
292 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293 FuncEnd = Ovl->function_end();
294 for (; Func != FuncEnd; ++Func) {
295 if (!IsOverload(New, *Func, MatchedDecl)) {
296 MatchedDecl = Func;
297 return false;
298 }
299 }
300
301 // This function overloads every function in the overload set.
302 return true;
Douglas Gregorb60eb752009-06-25 22:08:12 +0000303 } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304 return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305 else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
Douglas Gregorbf6bc302009-06-24 16:50:40 +0000306 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
308
309 // C++ [temp.fct]p2:
310 // A function template can be overloaded with other function templates
311 // and with normal (non-template) functions.
312 if ((OldTemplate == 0) != (NewTemplate == 0))
313 return true;
314
Douglas Gregord2baafd2008-10-21 16:13:35 +0000315 // Is the function New an overload of the function Old?
316 QualType OldQType = Context.getCanonicalType(Old->getType());
317 QualType NewQType = Context.getCanonicalType(New->getType());
318
319 // Compare the signatures (C++ 1.3.10) of the two functions to
320 // determine whether they are overloads. If we find any mismatch
321 // in the signature, they are overloads.
322
323 // If either of these functions is a K&R-style function (no
324 // prototype), then we consider them to have matching signatures.
Douglas Gregor4fa58902009-02-26 23:50:07 +0000325 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregord2baafd2008-10-21 16:13:35 +0000327 return false;
328
Douglas Gregorbf6bc302009-06-24 16:50:40 +0000329 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000331
332 // The signature of a function includes the types of its
333 // parameters (C++ 1.3.10), which includes the presence or absence
334 // of the ellipsis; see C++ DR 357).
335 if (OldQType != NewQType &&
336 (OldType->getNumArgs() != NewType->getNumArgs() ||
337 OldType->isVariadic() != NewType->isVariadic() ||
338 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339 NewType->arg_type_begin())))
340 return true;
341
Douglas Gregorbf6bc302009-06-24 16:50:40 +0000342 // C++ [temp.over.link]p4:
343 // The signature of a function template consists of its function
344 // signature, its return type and its template parameter list. The names
345 // of the template parameters are significant only for establishing the
346 // relationship between the template parameters and the rest of the
347 // signature.
348 //
349 // We check the return type and template parameter lists for function
350 // templates first; the remaining checks follow.
351 if (NewTemplate &&
352 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353 OldTemplate->getTemplateParameters(),
354 false, false, SourceLocation()) ||
355 OldType->getResultType() != NewType->getResultType()))
356 return true;
357
Douglas Gregord2baafd2008-10-21 16:13:35 +0000358 // If the function is a class member, its signature includes the
359 // cv-qualifiers (if any) on the function itself.
360 //
361 // As part of this, also check whether one of the member functions
362 // is static, in which case they are not overloads (C++
363 // 13.1p2). While not part of the definition of the signature,
364 // this check is important to determine whether these functions
365 // can be overloaded.
366 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368 if (OldMethod && NewMethod &&
369 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregora7b56a32008-11-21 15:36:28 +0000370 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregord2baafd2008-10-21 16:13:35 +0000371 return true;
372
373 // The signatures match; this is not an overload.
374 return false;
375 } else {
376 // (C++ 13p1):
377 // Only function declarations can be overloaded; object and type
378 // declarations cannot be overloaded.
379 return false;
380 }
381}
382
Douglas Gregor81c29152008-10-29 00:13:59 +0000383/// TryImplicitConversion - Attempt to perform an implicit conversion
384/// from the given expression (Expr) to the given type (ToType). This
385/// function returns an implicit conversion sequence that can be used
386/// to perform the initialization. Given
Douglas Gregord2baafd2008-10-21 16:13:35 +0000387///
388/// void f(float f);
389/// void g(int i) { f(i); }
390///
391/// this routine would produce an implicit conversion sequence to
392/// describe the initialization of f from i, which will be a standard
393/// conversion sequence containing an lvalue-to-rvalue conversion (C++
394/// 4.1) followed by a floating-integral conversion (C++ 4.9).
395//
396/// Note that this routine only determines how the conversion can be
397/// performed; it does not actually perform the conversion. As such,
398/// it will not produce any diagnostics if no conversion is available,
399/// but will instead return an implicit conversion sequence of kind
400/// "BadConversion".
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000401///
402/// If @p SuppressUserConversions, then user-defined conversions are
403/// not permitted.
Douglas Gregor6214d8a2009-01-14 15:45:31 +0000404/// If @p AllowExplicit, then explicit user-defined conversions are
405/// permitted.
Sebastian Redla55834a2009-04-12 17:16:29 +0000406/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407/// no matter its actual lvalueness.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000408ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000409Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor6214d8a2009-01-14 15:45:31 +0000410 bool SuppressUserConversions,
Sebastian Redla55834a2009-04-12 17:16:29 +0000411 bool AllowExplicit, bool ForceRValue)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000412{
413 ImplicitConversionSequence ICS;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000414 if (IsStandardConversion(From, ToType, ICS.Standard))
415 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000416 else if (getLangOptions().CPlusPlus &&
417 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Sebastian Redla55834a2009-04-12 17:16:29 +0000418 !SuppressUserConversions, AllowExplicit,
419 ForceRValue)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000420 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000421 // C++ [over.ics.user]p4:
422 // A conversion of an expression of class type to the same class
423 // type is given Exact Match rank, and a conversion of an
424 // expression of class type to a base class of that type is
425 // given Conversion rank, in spite of the fact that a copy
426 // constructor (i.e., a user-defined conversion function) is
427 // called for those cases.
428 if (CXXConstructorDecl *Constructor
429 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregord9176392009-02-02 22:11:10 +0000430 QualType FromCanon
431 = Context.getCanonicalType(From->getType().getUnqualifiedType());
432 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000434 // Turn this into a "standard" conversion sequence, so that it
435 // gets ranked with standard conversion sequences.
Douglas Gregore640ab62008-11-03 17:51:48 +0000436 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437 ICS.Standard.setAsIdentityConversion();
438 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000440 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregord9176392009-02-02 22:11:10 +0000441 if (ToCanon != FromCanon)
Douglas Gregore640ab62008-11-03 17:51:48 +0000442 ICS.Standard.Second = ICK_Derived_To_Base;
443 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000444 }
Douglas Gregorb206cc42009-01-30 23:27:23 +0000445
446 // C++ [over.best.ics]p4:
447 // However, when considering the argument of a user-defined
448 // conversion function that is a candidate by 13.3.1.3 when
449 // invoked for the copying of the temporary in the second step
450 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451 // 13.3.1.6 in all cases, only standard conversion sequences and
452 // ellipsis conversion sequences are allowed.
453 if (SuppressUserConversions &&
454 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000456 } else
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000457 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000458
459 return ICS;
460}
461
462/// IsStandardConversion - Determines whether there is a standard
463/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464/// expression From to the type ToType. Standard conversion sequences
465/// only consider non-class types; for conversions that involve class
466/// types, use TryImplicitConversion. If a conversion exists, SCS will
467/// contain the standard conversion sequence required to perform this
468/// conversion and this routine will return true. Otherwise, this
469/// routine will return false and the value of SCS is unspecified.
470bool
471Sema::IsStandardConversion(Expr* From, QualType ToType,
472 StandardConversionSequence &SCS)
473{
Douglas Gregord2baafd2008-10-21 16:13:35 +0000474 QualType FromType = From->getType();
475
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000476 // Standard conversions (C++ [conv])
Douglas Gregor70d26122008-11-12 17:17:38 +0000477 SCS.setAsIdentityConversion();
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000478 SCS.Deprecated = false;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000479 SCS.IncompatibleObjC = false;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000480 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000481 SCS.CopyConstructor = 0;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000482
Douglas Gregorfcb19192009-02-11 23:02:49 +0000483 // There are no standard conversions for class types in C++, so
484 // abort early. When overloading in C, however, we do permit
485 if (FromType->isRecordType() || ToType->isRecordType()) {
486 if (getLangOptions().CPlusPlus)
487 return false;
488
489 // When we're overloading in C, we allow, as standard conversions,
490 }
491
Douglas Gregord2baafd2008-10-21 16:13:35 +0000492 // The first conversion can be an lvalue-to-rvalue conversion,
493 // array-to-pointer conversion, or function-to-pointer conversion
494 // (C++ 4p1).
495
496 // Lvalue-to-rvalue conversion (C++ 4.1):
497 // An lvalue (3.10) of a non-function, non-array type T can be
498 // converted to an rvalue.
499 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor45014fd2008-11-10 20:40:00 +0000501 !FromType->isFunctionType() && !FromType->isArrayType() &&
Douglas Gregor00fe3f62009-03-13 18:40:31 +0000502 Context.getCanonicalType(FromType) != Context.OverloadTy) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000503 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000504
505 // If T is a non-class type, the type of the rvalue is the
506 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorfcb19192009-02-11 23:02:49 +0000507 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508 // just strip the qualifiers because they don't matter.
509
510 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000511 FromType = FromType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000512 } else if (FromType->isArrayType()) {
513 // Array-to-pointer conversion (C++ 4.2)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000514 SCS.First = ICK_Array_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000515
516 // An lvalue or rvalue of type "array of N T" or "array of unknown
517 // bound of T" can be converted to an rvalue of type "pointer to
518 // T" (C++ 4.2p1).
519 FromType = Context.getArrayDecayedType(FromType);
520
521 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
522 // This conversion is deprecated. (C++ D.4).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000523 SCS.Deprecated = true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000524
525 // For the purpose of ranking in overload resolution
526 // (13.3.3.1.1), this conversion is considered an
527 // array-to-pointer conversion followed by a qualification
528 // conversion (4.4). (C++ 4.2p2)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000529 SCS.Second = ICK_Identity;
530 SCS.Third = ICK_Qualification;
531 SCS.ToTypePtr = ToType.getAsOpaquePtr();
532 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000533 }
Mike Stump90fc78e2009-08-04 21:02:39 +0000534 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
535 // Function-to-pointer conversion (C++ 4.3).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000536 SCS.First = ICK_Function_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000537
538 // An lvalue of function type T can be converted to an rvalue of
539 // type "pointer to T." The result is a pointer to the
540 // function. (C++ 4.3p1).
541 FromType = Context.getPointerType(FromType);
Mike Stump90fc78e2009-08-04 21:02:39 +0000542 } else if (FunctionDecl *Fn
Douglas Gregor45014fd2008-11-10 20:40:00 +0000543 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
Mike Stump90fc78e2009-08-04 21:02:39 +0000544 // Address of overloaded function (C++ [over.over]).
Douglas Gregor45014fd2008-11-10 20:40:00 +0000545 SCS.First = ICK_Function_To_Pointer;
546
547 // We were able to resolve the address of the overloaded function,
548 // so we can convert to the type of that function.
549 FromType = Fn->getType();
Sebastian Redlce6fff02009-03-16 23:22:08 +0000550 if (ToType->isLValueReferenceType())
551 FromType = Context.getLValueReferenceType(FromType);
552 else if (ToType->isRValueReferenceType())
553 FromType = Context.getRValueReferenceType(FromType);
Sebastian Redl7434fc32009-02-04 21:23:32 +0000554 else if (ToType->isMemberPointerType()) {
555 // Resolve address only succeeds if both sides are member pointers,
556 // but it doesn't have to be the same class. See DR 247.
557 // Note that this means that the type of &Derived::fn can be
558 // Ret (Base::*)(Args) if the fn overload actually found is from the
559 // base class, even if it was brought into the derived class via a
560 // using declaration. The standard isn't clear on this issue at all.
561 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
562 FromType = Context.getMemberPointerType(FromType,
563 Context.getTypeDeclType(M->getParent()).getTypePtr());
564 } else
Douglas Gregor45014fd2008-11-10 20:40:00 +0000565 FromType = Context.getPointerType(FromType);
Mike Stump90fc78e2009-08-04 21:02:39 +0000566 } else {
567 // We don't require any conversions for the first step.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000568 SCS.First = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000569 }
570
571 // The second conversion can be an integral promotion, floating
572 // point promotion, integral conversion, floating point conversion,
573 // floating-integral conversion, pointer conversion,
574 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorfcb19192009-02-11 23:02:49 +0000575 // For overloading in C, this can also be a "compatible-type"
576 // conversion.
Douglas Gregor6fd35572008-12-19 17:40:08 +0000577 bool IncompatibleObjC = false;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000578 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000579 // The unqualified versions of the types are the same: there's no
580 // conversion to do.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000581 SCS.Second = ICK_Identity;
Mike Stump90fc78e2009-08-04 21:02:39 +0000582 } else if (IsIntegralPromotion(From, FromType, ToType)) {
583 // Integral promotion (C++ 4.5).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000584 SCS.Second = ICK_Integral_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000585 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000586 } else if (IsFloatingPointPromotion(FromType, ToType)) {
587 // Floating point promotion (C++ 4.6).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000588 SCS.Second = ICK_Floating_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000589 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000590 } else if (IsComplexPromotion(FromType, ToType)) {
591 // Complex promotion (Clang extension)
Douglas Gregore819caf2009-02-12 00:15:05 +0000592 SCS.Second = ICK_Complex_Promotion;
593 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000594 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000595 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Mike Stump90fc78e2009-08-04 21:02:39 +0000596 // Integral conversions (C++ 4.7).
597 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000598 SCS.Second = ICK_Integral_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000599 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000600 } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
601 // Floating point conversions (C++ 4.8).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000602 SCS.Second = ICK_Floating_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000603 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000604 } else if (FromType->isComplexType() && ToType->isComplexType()) {
605 // Complex conversions (C99 6.3.1.6)
Douglas Gregore819caf2009-02-12 00:15:05 +0000606 SCS.Second = ICK_Complex_Conversion;
607 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000608 } else if ((FromType->isFloatingType() &&
609 ToType->isIntegralType() && (!ToType->isBooleanType() &&
610 !ToType->isEnumeralType())) ||
611 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
612 ToType->isFloatingType())) {
613 // Floating-integral conversions (C++ 4.9).
614 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000615 SCS.Second = ICK_Floating_Integral;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000616 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000617 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
618 (ToType->isComplexType() && FromType->isArithmeticType())) {
619 // Complex-real conversions (C99 6.3.1.7)
Douglas Gregore819caf2009-02-12 00:15:05 +0000620 SCS.Second = ICK_Complex_Real;
621 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000622 } else if (IsPointerConversion(From, FromType, ToType, FromType,
623 IncompatibleObjC)) {
624 // Pointer conversions (C++ 4.10).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000625 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000626 SCS.IncompatibleObjC = IncompatibleObjC;
Mike Stump90fc78e2009-08-04 21:02:39 +0000627 } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
628 // Pointer to member conversions (4.11).
Sebastian Redlba387562009-01-25 19:43:20 +0000629 SCS.Second = ICK_Pointer_Member;
Mike Stump90fc78e2009-08-04 21:02:39 +0000630 } else if (ToType->isBooleanType() &&
631 (FromType->isArithmeticType() ||
632 FromType->isEnumeralType() ||
633 FromType->isPointerType() ||
634 FromType->isBlockPointerType() ||
635 FromType->isMemberPointerType() ||
636 FromType->isNullPtrType())) {
637 // Boolean conversions (C++ 4.12).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000638 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000639 FromType = Context.BoolTy;
Mike Stump90fc78e2009-08-04 21:02:39 +0000640 } else if (!getLangOptions().CPlusPlus &&
641 Context.typesAreCompatible(ToType, FromType)) {
642 // Compatible conversions (Clang extension for C function overloading)
Douglas Gregorfcb19192009-02-11 23:02:49 +0000643 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000644 } else {
645 // No second conversion required.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000646 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000647 }
648
Douglas Gregor81c29152008-10-29 00:13:59 +0000649 QualType CanonFrom;
650 QualType CanonTo;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000651 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000652 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000653 SCS.Third = ICK_Qualification;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000654 FromType = ToType;
Douglas Gregor81c29152008-10-29 00:13:59 +0000655 CanonFrom = Context.getCanonicalType(FromType);
656 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000657 } else {
658 // No conversion required
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000659 SCS.Third = ICK_Identity;
660
661 // C++ [over.best.ics]p6:
662 // [...] Any difference in top-level cv-qualification is
663 // subsumed by the initialization itself and does not constitute
664 // a conversion. [...]
Douglas Gregor81c29152008-10-29 00:13:59 +0000665 CanonFrom = Context.getCanonicalType(FromType);
666 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000667 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor81c29152008-10-29 00:13:59 +0000668 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
669 FromType = ToType;
670 CanonFrom = CanonTo;
671 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000672 }
673
674 // If we have not converted the argument type to the parameter type,
675 // this is a bad conversion sequence.
Douglas Gregor81c29152008-10-29 00:13:59 +0000676 if (CanonFrom != CanonTo)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000677 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000678
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000679 SCS.ToTypePtr = FromType.getAsOpaquePtr();
680 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000681}
682
683/// IsIntegralPromotion - Determines whether the conversion from the
684/// expression From (whose potentially-adjusted type is FromType) to
685/// ToType is an integral promotion (C++ 4.5). If so, returns true and
686/// sets PromotedType to the promoted type.
687bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
688{
689 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redl12aee862008-11-04 15:59:10 +0000690 // All integers are built-in.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000691 if (!To) {
692 return false;
693 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000694
695 // An rvalue of type char, signed char, unsigned char, short int, or
696 // unsigned short int can be converted to an rvalue of type int if
697 // int can represent all the values of the source type; otherwise,
698 // the source rvalue can be converted to an rvalue of type unsigned
699 // int (C++ 4.5p1).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000700 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000701 if (// We can promote any signed, promotable integer type to an int
702 (FromType->isSignedIntegerType() ||
703 // We can promote any unsigned integer type whose size is
704 // less than int to an int.
705 (!FromType->isSignedIntegerType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000706 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000707 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000708 }
709
Douglas Gregord2baafd2008-10-21 16:13:35 +0000710 return To->getKind() == BuiltinType::UInt;
711 }
712
713 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
714 // can be converted to an rvalue of the first of the following types
715 // that can represent all the values of its underlying type: int,
716 // unsigned int, long, or unsigned long (C++ 4.5p2).
717 if ((FromType->isEnumeralType() || FromType->isWideCharType())
718 && ToType->isIntegerType()) {
719 // Determine whether the type we're converting from is signed or
720 // unsigned.
721 bool FromIsSigned;
722 uint64_t FromSize = Context.getTypeSize(FromType);
723 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
724 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
725 FromIsSigned = UnderlyingType->isSignedIntegerType();
726 } else {
727 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
728 FromIsSigned = true;
729 }
730
731 // The types we'll try to promote to, in the appropriate
732 // order. Try each of these types.
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000733 QualType PromoteTypes[6] = {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000734 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000735 Context.LongTy, Context.UnsignedLongTy ,
736 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregord2baafd2008-10-21 16:13:35 +0000737 };
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000738 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000739 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
740 if (FromSize < ToSize ||
741 (FromSize == ToSize &&
742 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
743 // We found the type that we can promote to. If this is the
744 // type we wanted, we have a promotion. Otherwise, no
745 // promotion.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000746 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregord2baafd2008-10-21 16:13:35 +0000747 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
748 }
749 }
750 }
751
752 // An rvalue for an integral bit-field (9.6) can be converted to an
753 // rvalue of type int if int can represent all the values of the
754 // bit-field; otherwise, it can be converted to unsigned int if
755 // unsigned int can represent all the values of the bit-field. If
756 // the bit-field is larger yet, no integral promotion applies to
757 // it. If the bit-field has an enumerated type, it is treated as any
758 // other value of that type for promotion purposes (C++ 4.5p3).
Mike Stumpe127ae32009-05-16 07:39:55 +0000759 // FIXME: We should delay checking of bit-fields until we actually perform the
760 // conversion.
Douglas Gregor531434b2009-05-02 02:18:30 +0000761 using llvm::APSInt;
762 if (From)
763 if (FieldDecl *MemberDecl = From->getBitField()) {
Douglas Gregor82d44772008-12-20 23:49:58 +0000764 APSInt BitWidth;
Douglas Gregor531434b2009-05-02 02:18:30 +0000765 if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
766 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
767 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
768 ToSize = Context.getTypeSize(ToType);
Douglas Gregor82d44772008-12-20 23:49:58 +0000769
770 // Are we promoting to an int from a bitfield that fits in an int?
771 if (BitWidth < ToSize ||
772 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
773 return To->getKind() == BuiltinType::Int;
774 }
775
776 // Are we promoting to an unsigned int from an unsigned bitfield
777 // that fits into an unsigned int?
778 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
779 return To->getKind() == BuiltinType::UInt;
780 }
781
782 return false;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000783 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000784 }
Douglas Gregor531434b2009-05-02 02:18:30 +0000785
Douglas Gregord2baafd2008-10-21 16:13:35 +0000786 // An rvalue of type bool can be converted to an rvalue of type int,
787 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000788 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000789 return true;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000790 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000791
792 return false;
793}
794
795/// IsFloatingPointPromotion - Determines whether the conversion from
796/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
797/// returns true and sets PromotedType to the promoted type.
798bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
799{
800 /// An rvalue of type float can be converted to an rvalue of type
801 /// double. (C++ 4.6p1).
802 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregore819caf2009-02-12 00:15:05 +0000803 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000804 if (FromBuiltin->getKind() == BuiltinType::Float &&
805 ToBuiltin->getKind() == BuiltinType::Double)
806 return true;
807
Douglas Gregore819caf2009-02-12 00:15:05 +0000808 // C99 6.3.1.5p1:
809 // When a float is promoted to double or long double, or a
810 // double is promoted to long double [...].
811 if (!getLangOptions().CPlusPlus &&
812 (FromBuiltin->getKind() == BuiltinType::Float ||
813 FromBuiltin->getKind() == BuiltinType::Double) &&
814 (ToBuiltin->getKind() == BuiltinType::LongDouble))
815 return true;
816 }
817
Douglas Gregord2baafd2008-10-21 16:13:35 +0000818 return false;
819}
820
Douglas Gregore819caf2009-02-12 00:15:05 +0000821/// \brief Determine if a conversion is a complex promotion.
822///
823/// A complex promotion is defined as a complex -> complex conversion
824/// where the conversion between the underlying real types is a
Douglas Gregor4ff48512009-02-12 00:26:06 +0000825/// floating-point or integral promotion.
Douglas Gregore819caf2009-02-12 00:15:05 +0000826bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
827 const ComplexType *FromComplex = FromType->getAsComplexType();
828 if (!FromComplex)
829 return false;
830
831 const ComplexType *ToComplex = ToType->getAsComplexType();
832 if (!ToComplex)
833 return false;
834
835 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregor4ff48512009-02-12 00:26:06 +0000836 ToComplex->getElementType()) ||
837 IsIntegralPromotion(0, FromComplex->getElementType(),
838 ToComplex->getElementType());
Douglas Gregore819caf2009-02-12 00:15:05 +0000839}
840
Douglas Gregor24a90a52008-11-26 23:31:11 +0000841/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
842/// the pointer type FromPtr to a pointer to type ToPointee, with the
843/// same type qualifiers as FromPtr has on its pointee type. ToType,
844/// if non-empty, will be a pointer to ToType that may or may not have
845/// the right set of qualifiers on its pointee.
846static QualType
847BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
848 QualType ToPointee, QualType ToType,
849 ASTContext &Context) {
850 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
851 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
852 unsigned Quals = CanonFromPointee.getCVRQualifiers();
853
854 // Exact qualifier match -> return the pointer type we're converting to.
855 if (CanonToPointee.getCVRQualifiers() == Quals) {
856 // ToType is exactly what we need. Return it.
857 if (ToType.getTypePtr())
858 return ToType;
859
860 // Build a pointer to ToPointee. It has the right qualifiers
861 // already.
862 return Context.getPointerType(ToPointee);
863 }
864
865 // Just build a canonical type that has the right qualifiers.
866 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
867}
868
Douglas Gregord2baafd2008-10-21 16:13:35 +0000869/// IsPointerConversion - Determines whether the conversion of the
870/// expression From, which has the (possibly adjusted) type FromType,
871/// can be converted to the type ToType via a pointer conversion (C++
872/// 4.10). If so, returns true and places the converted type (that
873/// might differ from ToType in its cv-qualifiers at some level) into
874/// ConvertedType.
Douglas Gregor9036ef72008-11-27 00:15:41 +0000875///
Douglas Gregor3f5a00c2008-11-27 01:19:21 +0000876/// This routine also supports conversions to and from block pointers
877/// and conversions with Objective-C's 'id', 'id<protocols...>', and
878/// pointers to interfaces. FIXME: Once we've determined the
879/// appropriate overloading rules for Objective-C, we may want to
880/// split the Objective-C checks into a different routine; however,
881/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor6fd35572008-12-19 17:40:08 +0000882/// conversions, so for now they live here. IncompatibleObjC will be
883/// set if the conversion is an allowed Objective-C conversion that
884/// should result in a warning.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000885bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor6fd35572008-12-19 17:40:08 +0000886 QualType& ConvertedType,
887 bool &IncompatibleObjC)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000888{
Douglas Gregor6fd35572008-12-19 17:40:08 +0000889 IncompatibleObjC = false;
Douglas Gregor932778b2008-12-19 19:13:09 +0000890 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
891 return true;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000892
Douglas Gregorf1d75712008-12-22 20:51:52 +0000893 // Conversion from a null pointer constant to any Objective-C pointer type.
Steve Naroffad75bd22009-07-16 15:41:00 +0000894 if (ToType->isObjCObjectPointerType() &&
Douglas Gregorf1d75712008-12-22 20:51:52 +0000895 From->isNullPointerConstant(Context)) {
896 ConvertedType = ToType;
897 return true;
898 }
899
Douglas Gregor9036ef72008-11-27 00:15:41 +0000900 // Blocks: Block pointers can be converted to void*.
901 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
Ted Kremenekd00cd9e2009-07-29 21:53:49 +0000902 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
Douglas Gregor9036ef72008-11-27 00:15:41 +0000903 ConvertedType = ToType;
904 return true;
905 }
906 // Blocks: A null pointer constant can be converted to a block
907 // pointer type.
908 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
909 ConvertedType = ToType;
910 return true;
911 }
912
Sebastian Redl5d0ead72009-05-10 18:38:11 +0000913 // If the left-hand-side is nullptr_t, the right side can be a null
914 // pointer constant.
915 if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
916 ConvertedType = ToType;
917 return true;
918 }
919
Ted Kremenekd00cd9e2009-07-29 21:53:49 +0000920 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
Douglas Gregord2baafd2008-10-21 16:13:35 +0000921 if (!ToTypePtr)
922 return false;
923
924 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
925 if (From->isNullPointerConstant(Context)) {
926 ConvertedType = ToType;
927 return true;
928 }
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000929
Douglas Gregor24a90a52008-11-26 23:31:11 +0000930 // Beyond this point, both types need to be pointers.
Ted Kremenekd00cd9e2009-07-29 21:53:49 +0000931 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
Douglas Gregor24a90a52008-11-26 23:31:11 +0000932 if (!FromTypePtr)
933 return false;
934
935 QualType FromPointeeType = FromTypePtr->getPointeeType();
936 QualType ToPointeeType = ToTypePtr->getPointeeType();
937
Douglas Gregord2baafd2008-10-21 16:13:35 +0000938 // An rvalue of type "pointer to cv T," where T is an object type,
939 // can be converted to an rvalue of type "pointer to cv void" (C++
940 // 4.10p2).
Douglas Gregor26ea1222009-03-24 20:32:41 +0000941 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000942 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
943 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000944 ToType, Context);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000945 return true;
946 }
947
Douglas Gregorfcb19192009-02-11 23:02:49 +0000948 // When we're overloading in C, we allow a special kind of pointer
949 // conversion for compatible-but-not-identical pointee types.
950 if (!getLangOptions().CPlusPlus &&
951 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
952 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
953 ToPointeeType,
954 ToType, Context);
955 return true;
956 }
957
Douglas Gregor14046502008-10-23 00:40:37 +0000958 // C++ [conv.ptr]p3:
959 //
960 // An rvalue of type "pointer to cv D," where D is a class type,
961 // can be converted to an rvalue of type "pointer to cv B," where
962 // B is a base class (clause 10) of D. If B is an inaccessible
963 // (clause 11) or ambiguous (10.2) base class of D, a program that
964 // necessitates this conversion is ill-formed. The result of the
965 // conversion is a pointer to the base class sub-object of the
966 // derived class object. The null pointer value is converted to
967 // the null pointer value of the destination type.
968 //
Douglas Gregorbb461502008-10-24 04:54:22 +0000969 // Note that we do not check for ambiguity or inaccessibility
970 // here. That is handled by CheckPointerConversion.
Douglas Gregorfcb19192009-02-11 23:02:49 +0000971 if (getLangOptions().CPlusPlus &&
972 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregor24a90a52008-11-26 23:31:11 +0000973 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000974 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
975 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000976 ToType, Context);
977 return true;
978 }
Douglas Gregor14046502008-10-23 00:40:37 +0000979
Douglas Gregor932778b2008-12-19 19:13:09 +0000980 return false;
981}
982
983/// isObjCPointerConversion - Determines whether this is an
984/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
985/// with the same arguments and return values.
986bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
987 QualType& ConvertedType,
988 bool &IncompatibleObjC) {
989 if (!getLangOptions().ObjC1)
990 return false;
991
Steve Naroff329ec222009-07-10 23:34:53 +0000992 // First, we handle all conversions on ObjC object pointer types.
993 const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
994 const ObjCObjectPointerType *FromObjCPtr =
995 FromType->getAsObjCObjectPointerType();
Douglas Gregor932778b2008-12-19 19:13:09 +0000996
Steve Naroff329ec222009-07-10 23:34:53 +0000997 if (ToObjCPtr && FromObjCPtr) {
Steve Naroff7bffd372009-07-15 18:40:39 +0000998 // Objective C++: We're able to convert between "id" or "Class" and a
Steve Naroff329ec222009-07-10 23:34:53 +0000999 // pointer to any interface (in both directions).
Steve Naroff7bffd372009-07-15 18:40:39 +00001000 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
Steve Naroff329ec222009-07-10 23:34:53 +00001001 ConvertedType = ToType;
1002 return true;
1003 }
1004 // Conversions with Objective-C's id<...>.
1005 if ((FromObjCPtr->isObjCQualifiedIdType() ||
1006 ToObjCPtr->isObjCQualifiedIdType()) &&
Steve Naroff99eb86b2009-07-23 01:01:38 +00001007 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1008 /*compare=*/false)) {
Steve Naroff329ec222009-07-10 23:34:53 +00001009 ConvertedType = ToType;
1010 return true;
1011 }
1012 // Objective C++: We're able to convert from a pointer to an
1013 // interface to a pointer to a different interface.
1014 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1015 ConvertedType = ToType;
1016 return true;
1017 }
1018
1019 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1020 // Okay: this is some kind of implicit downcast of Objective-C
1021 // interfaces, which is permitted. However, we're going to
1022 // complain about it.
1023 IncompatibleObjC = true;
1024 ConvertedType = FromType;
1025 return true;
1026 }
1027 }
1028 // Beyond this point, both types need to be C pointers or block pointers.
Douglas Gregor80402cf2008-12-23 00:53:59 +00001029 QualType ToPointeeType;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001030 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
Steve Naroff329ec222009-07-10 23:34:53 +00001031 ToPointeeType = ToCPtr->getPointeeType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001032 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
Douglas Gregor80402cf2008-12-23 00:53:59 +00001033 ToPointeeType = ToBlockPtr->getPointeeType();
1034 else
Douglas Gregor932778b2008-12-19 19:13:09 +00001035 return false;
1036
Douglas Gregor80402cf2008-12-23 00:53:59 +00001037 QualType FromPointeeType;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001038 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
Steve Naroff329ec222009-07-10 23:34:53 +00001039 FromPointeeType = FromCPtr->getPointeeType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001040 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
Douglas Gregor80402cf2008-12-23 00:53:59 +00001041 FromPointeeType = FromBlockPtr->getPointeeType();
1042 else
Douglas Gregor932778b2008-12-19 19:13:09 +00001043 return false;
1044
Douglas Gregor932778b2008-12-19 19:13:09 +00001045 // If we have pointers to pointers, recursively check whether this
1046 // is an Objective-C conversion.
1047 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1048 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1049 IncompatibleObjC)) {
1050 // We always complain about this conversion.
1051 IncompatibleObjC = true;
1052 ConvertedType = ToType;
1053 return true;
1054 }
Douglas Gregor80402cf2008-12-23 00:53:59 +00001055 // If we have pointers to functions or blocks, check whether the only
Douglas Gregor932778b2008-12-19 19:13:09 +00001056 // differences in the argument and result types are in Objective-C
1057 // pointer conversions. If so, we permit the conversion (but
1058 // complain about it).
Douglas Gregor4fa58902009-02-26 23:50:07 +00001059 const FunctionProtoType *FromFunctionType
1060 = FromPointeeType->getAsFunctionProtoType();
1061 const FunctionProtoType *ToFunctionType
1062 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregor932778b2008-12-19 19:13:09 +00001063 if (FromFunctionType && ToFunctionType) {
1064 // If the function types are exactly the same, this isn't an
1065 // Objective-C pointer conversion.
1066 if (Context.getCanonicalType(FromPointeeType)
1067 == Context.getCanonicalType(ToPointeeType))
1068 return false;
1069
1070 // Perform the quick checks that will tell us whether these
1071 // function types are obviously different.
1072 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1073 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1074 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1075 return false;
1076
1077 bool HasObjCConversion = false;
1078 if (Context.getCanonicalType(FromFunctionType->getResultType())
1079 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1080 // Okay, the types match exactly. Nothing to do.
1081 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1082 ToFunctionType->getResultType(),
1083 ConvertedType, IncompatibleObjC)) {
1084 // Okay, we have an Objective-C pointer conversion.
1085 HasObjCConversion = true;
1086 } else {
1087 // Function types are too different. Abort.
1088 return false;
1089 }
1090
1091 // Check argument types.
1092 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1093 ArgIdx != NumArgs; ++ArgIdx) {
1094 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1095 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1096 if (Context.getCanonicalType(FromArgType)
1097 == Context.getCanonicalType(ToArgType)) {
1098 // Okay, the types match exactly. Nothing to do.
1099 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1100 ConvertedType, IncompatibleObjC)) {
1101 // Okay, we have an Objective-C pointer conversion.
1102 HasObjCConversion = true;
1103 } else {
1104 // Argument types are too different. Abort.
1105 return false;
1106 }
1107 }
1108
1109 if (HasObjCConversion) {
1110 // We had an Objective-C conversion. Allow this pointer
1111 // conversion, but complain about it.
1112 ConvertedType = ToType;
1113 IncompatibleObjC = true;
1114 return true;
1115 }
1116 }
1117
Sebastian Redlba387562009-01-25 19:43:20 +00001118 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001119}
1120
Douglas Gregorbb461502008-10-24 04:54:22 +00001121/// CheckPointerConversion - Check the pointer conversion from the
1122/// expression From to the type ToType. This routine checks for
Sebastian Redl0e35d042009-07-25 15:41:38 +00001123/// ambiguous or inaccessible derived-to-base pointer
Douglas Gregorbb461502008-10-24 04:54:22 +00001124/// conversions for which IsPointerConversion has already returned
1125/// true. It returns true and produces a diagnostic if there was an
1126/// error, or returns false otherwise.
1127bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1128 QualType FromType = From->getType();
1129
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001130 if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1131 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
Douglas Gregorbb461502008-10-24 04:54:22 +00001132 QualType FromPointeeType = FromPtrType->getPointeeType(),
1133 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregord0c653a2008-12-18 23:43:31 +00001134
Douglas Gregorbb461502008-10-24 04:54:22 +00001135 if (FromPointeeType->isRecordType() &&
1136 ToPointeeType->isRecordType()) {
1137 // We must have a derived-to-base conversion. Check an
1138 // ambiguous or inaccessible conversion.
Douglas Gregor651d1cc2008-10-24 16:17:19 +00001139 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1140 From->getExprLoc(),
1141 From->getSourceRange());
Douglas Gregorbb461502008-10-24 04:54:22 +00001142 }
1143 }
Steve Naroff329ec222009-07-10 23:34:53 +00001144 if (const ObjCObjectPointerType *FromPtrType =
1145 FromType->getAsObjCObjectPointerType())
1146 if (const ObjCObjectPointerType *ToPtrType =
1147 ToType->getAsObjCObjectPointerType()) {
1148 // Objective-C++ conversions are always okay.
1149 // FIXME: We should have a different class of conversions for the
1150 // Objective-C++ implicit conversions.
Steve Naroff7bffd372009-07-15 18:40:39 +00001151 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
Steve Naroff329ec222009-07-10 23:34:53 +00001152 return false;
Douglas Gregorbb461502008-10-24 04:54:22 +00001153
Steve Naroff329ec222009-07-10 23:34:53 +00001154 }
Douglas Gregorbb461502008-10-24 04:54:22 +00001155 return false;
1156}
1157
Sebastian Redlba387562009-01-25 19:43:20 +00001158/// IsMemberPointerConversion - Determines whether the conversion of the
1159/// expression From, which has the (possibly adjusted) type FromType, can be
1160/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1161/// If so, returns true and places the converted type (that might differ from
1162/// ToType in its cv-qualifiers at some level) into ConvertedType.
1163bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1164 QualType ToType, QualType &ConvertedType)
1165{
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001166 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
Sebastian Redlba387562009-01-25 19:43:20 +00001167 if (!ToTypePtr)
1168 return false;
1169
1170 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1171 if (From->isNullPointerConstant(Context)) {
1172 ConvertedType = ToType;
1173 return true;
1174 }
1175
1176 // Otherwise, both types have to be member pointers.
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001177 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
Sebastian Redlba387562009-01-25 19:43:20 +00001178 if (!FromTypePtr)
1179 return false;
1180
1181 // A pointer to member of B can be converted to a pointer to member of D,
1182 // where D is derived from B (C++ 4.11p2).
1183 QualType FromClass(FromTypePtr->getClass(), 0);
1184 QualType ToClass(ToTypePtr->getClass(), 0);
1185 // FIXME: What happens when these are dependent? Is this function even called?
1186
1187 if (IsDerivedFrom(ToClass, FromClass)) {
1188 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1189 ToClass.getTypePtr());
1190 return true;
1191 }
1192
1193 return false;
1194}
1195
1196/// CheckMemberPointerConversion - Check the member pointer conversion from the
1197/// expression From to the type ToType. This routine checks for ambiguous or
1198/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1199/// for which IsMemberPointerConversion has already returned true. It returns
1200/// true and produces a diagnostic if there was an error, or returns false
1201/// otherwise.
1202bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1203 QualType FromType = From->getType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001204 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001205 if (!FromPtrType)
1206 return false;
Sebastian Redlba387562009-01-25 19:43:20 +00001207
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001208 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001209 assert(ToPtrType && "No member pointer cast has a target type "
1210 "that is not a member pointer.");
Sebastian Redlba387562009-01-25 19:43:20 +00001211
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001212 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1213 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redlba387562009-01-25 19:43:20 +00001214
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001215 // FIXME: What about dependent types?
1216 assert(FromClass->isRecordType() && "Pointer into non-class.");
1217 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redlba387562009-01-25 19:43:20 +00001218
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001219 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1220 /*DetectVirtual=*/true);
1221 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1222 assert(DerivationOkay &&
1223 "Should not have been called if derivation isn't OK.");
1224 (void)DerivationOkay;
Sebastian Redlba387562009-01-25 19:43:20 +00001225
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001226 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1227 getUnqualifiedType())) {
1228 // Derivation is ambiguous. Redo the check to find the exact paths.
1229 Paths.clear();
1230 Paths.setRecordingPaths(true);
1231 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1232 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1233 (void)StillOkay;
Sebastian Redlba387562009-01-25 19:43:20 +00001234
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001235 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1236 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1237 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1238 return true;
Sebastian Redlba387562009-01-25 19:43:20 +00001239 }
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001240
Douglas Gregor2e047592009-02-28 01:32:25 +00001241 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001242 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1243 << FromClass << ToClass << QualType(VBase, 0)
1244 << From->getSourceRange();
1245 return true;
1246 }
1247
Sebastian Redlba387562009-01-25 19:43:20 +00001248 return false;
1249}
1250
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001251/// IsQualificationConversion - Determines whether the conversion from
1252/// an rvalue of type FromType to ToType is a qualification conversion
1253/// (C++ 4.4).
1254bool
1255Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1256{
1257 FromType = Context.getCanonicalType(FromType);
1258 ToType = Context.getCanonicalType(ToType);
1259
1260 // If FromType and ToType are the same type, this is not a
1261 // qualification conversion.
1262 if (FromType == ToType)
1263 return false;
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001264
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001265 // (C++ 4.4p4):
1266 // A conversion can add cv-qualifiers at levels other than the first
1267 // in multi-level pointers, subject to the following rules: [...]
1268 bool PreviousToQualsIncludeConst = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001269 bool UnwrappedAnyPointer = false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001270 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001271 // Within each iteration of the loop, we check the qualifiers to
1272 // determine if this still looks like a qualification
1273 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001274 // pointers or pointers-to-members and do it all again
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001275 // until there are no more pointers or pointers-to-members left to
1276 // unwrap.
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001277 UnwrappedAnyPointer = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001278
1279 // -- for every j > 0, if const is in cv 1,j then const is in cv
1280 // 2,j, and similarly for volatile.
Douglas Gregore5db4f72008-10-22 00:38:21 +00001281 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001282 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001283
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001284 // -- if the cv 1,j and cv 2,j are different, then const is in
1285 // every cv for 0 < k < j.
1286 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001287 && !PreviousToQualsIncludeConst)
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001288 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001289
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001290 // Keep track of whether all prior cv-qualifiers in the "to" type
1291 // include const.
1292 PreviousToQualsIncludeConst
1293 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001294 }
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001295
1296 // We are left with FromType and ToType being the pointee types
1297 // after unwrapping the original FromType and ToType the same number
1298 // of types. If we unwrapped any pointers, and if FromType and
1299 // ToType have the same unqualified type (since we checked
1300 // qualifiers above), then this is a qualification conversion.
1301 return UnwrappedAnyPointer &&
1302 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1303}
1304
Douglas Gregorb206cc42009-01-30 23:27:23 +00001305/// Determines whether there is a user-defined conversion sequence
1306/// (C++ [over.ics.user]) that converts expression From to the type
1307/// ToType. If such a conversion exists, User will contain the
1308/// user-defined conversion sequence that performs such a conversion
1309/// and this routine will return true. Otherwise, this routine returns
1310/// false and User is unspecified.
1311///
1312/// \param AllowConversionFunctions true if the conversion should
1313/// consider conversion functions at all. If false, only constructors
1314/// will be considered.
1315///
1316/// \param AllowExplicit true if the conversion should consider C++0x
1317/// "explicit" conversion functions as well as non-explicit conversion
1318/// functions (C++0x [class.conv.fct]p2).
Sebastian Redla55834a2009-04-12 17:16:29 +00001319///
1320/// \param ForceRValue true if the expression should be treated as an rvalue
1321/// for overload resolution.
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001322bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00001323 UserDefinedConversionSequence& User,
Douglas Gregorb206cc42009-01-30 23:27:23 +00001324 bool AllowConversionFunctions,
Sebastian Redla55834a2009-04-12 17:16:29 +00001325 bool AllowExplicit, bool ForceRValue)
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001326{
1327 OverloadCandidateSet CandidateSet;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001328 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
Douglas Gregor2e047592009-02-28 01:32:25 +00001329 if (CXXRecordDecl *ToRecordDecl
1330 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1331 // C++ [over.match.ctor]p1:
1332 // When objects of class type are direct-initialized (8.5), or
1333 // copy-initialized from an expression of the same or a
1334 // derived class type (8.5), overload resolution selects the
1335 // constructor. [...] For copy-initialization, the candidate
1336 // functions are all the converting constructors (12.3.1) of
1337 // that class. The argument list is the expression-list within
1338 // the parentheses of the initializer.
1339 DeclarationName ConstructorName
1340 = Context.DeclarationNames.getCXXConstructorName(
1341 Context.getCanonicalType(ToType).getUnqualifiedType());
1342 DeclContext::lookup_iterator Con, ConEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00001343 for (llvm::tie(Con, ConEnd)
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00001344 = ToRecordDecl->lookup(ConstructorName);
Douglas Gregor2e047592009-02-28 01:32:25 +00001345 Con != ConEnd; ++Con) {
1346 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
Fariborz Jahanian625fb9d2009-08-06 17:22:51 +00001347 if (!Constructor->isInvalidDecl() &&
1348 Constructor->isConvertingConstructor())
Douglas Gregor2e047592009-02-28 01:32:25 +00001349 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00001350 /*SuppressUserConversions=*/true, ForceRValue);
Douglas Gregor2e047592009-02-28 01:32:25 +00001351 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001352 }
1353 }
1354
Douglas Gregorb206cc42009-01-30 23:27:23 +00001355 if (!AllowConversionFunctions) {
1356 // Don't allow any conversion functions to enter the overload set.
Douglas Gregor2e047592009-02-28 01:32:25 +00001357 } else if (const RecordType *FromRecordType
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001358 = From->getType()->getAs<RecordType>()) {
Douglas Gregor2e047592009-02-28 01:32:25 +00001359 if (CXXRecordDecl *FromRecordDecl
1360 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1361 // Add all of the conversion functions as candidates.
1362 // FIXME: Look for conversions in base classes!
1363 OverloadedFunctionDecl *Conversions
1364 = FromRecordDecl->getConversionFunctions();
1365 for (OverloadedFunctionDecl::function_iterator Func
1366 = Conversions->function_begin();
1367 Func != Conversions->function_end(); ++Func) {
1368 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1369 if (AllowExplicit || !Conv->isExplicit())
1370 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1371 }
Douglas Gregor60714f92008-11-07 22:36:19 +00001372 }
1373 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001374
1375 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00001376 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001377 case OR_Success:
1378 // Record the standard conversion we used and the conversion function.
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001379 if (CXXConstructorDecl *Constructor
1380 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1381 // C++ [over.ics.user]p1:
1382 // If the user-defined conversion is specified by a
1383 // constructor (12.3.1), the initial standard conversion
1384 // sequence converts the source type to the type required by
1385 // the argument of the constructor.
1386 //
1387 // FIXME: What about ellipsis conversions?
1388 QualType ThisType = Constructor->getThisType(Context);
1389 User.Before = Best->Conversions[0].Standard;
1390 User.ConversionFunction = Constructor;
1391 User.After.setAsIdentityConversion();
1392 User.After.FromTypePtr
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001393 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001394 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1395 return true;
Douglas Gregor60714f92008-11-07 22:36:19 +00001396 } else if (CXXConversionDecl *Conversion
1397 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1398 // C++ [over.ics.user]p1:
1399 //
1400 // [...] If the user-defined conversion is specified by a
1401 // conversion function (12.3.2), the initial standard
1402 // conversion sequence converts the source type to the
1403 // implicit object parameter of the conversion function.
1404 User.Before = Best->Conversions[0].Standard;
1405 User.ConversionFunction = Conversion;
1406
1407 // C++ [over.ics.user]p2:
1408 // The second standard conversion sequence converts the
1409 // result of the user-defined conversion to the target type
1410 // for the sequence. Since an implicit conversion sequence
1411 // is an initialization, the special rules for
1412 // initialization by user-defined conversion apply when
1413 // selecting the best user-defined conversion for a
1414 // user-defined conversion sequence (see 13.3.3 and
1415 // 13.3.3.1).
1416 User.After = Best->FinalConversion;
1417 return true;
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001418 } else {
Douglas Gregor60714f92008-11-07 22:36:19 +00001419 assert(false && "Not a constructor or conversion function?");
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001420 return false;
1421 }
1422
1423 case OR_No_Viable_Function:
Douglas Gregoraa57e862009-02-18 21:56:37 +00001424 case OR_Deleted:
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001425 // No conversion here! We're done.
1426 return false;
1427
1428 case OR_Ambiguous:
1429 // FIXME: See C++ [over.best.ics]p10 for the handling of
1430 // ambiguous conversion sequences.
1431 return false;
1432 }
1433
1434 return false;
1435}
1436
Douglas Gregord2baafd2008-10-21 16:13:35 +00001437/// CompareImplicitConversionSequences - Compare two implicit
1438/// conversion sequences to determine whether one is better than the
1439/// other or if they are indistinguishable (C++ 13.3.3.2).
1440ImplicitConversionSequence::CompareKind
1441Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1442 const ImplicitConversionSequence& ICS2)
1443{
1444 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1445 // conversion sequences (as defined in 13.3.3.1)
1446 // -- a standard conversion sequence (13.3.3.1.1) is a better
1447 // conversion sequence than a user-defined conversion sequence or
1448 // an ellipsis conversion sequence, and
1449 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1450 // conversion sequence than an ellipsis conversion sequence
1451 // (13.3.3.1.3).
1452 //
1453 if (ICS1.ConversionKind < ICS2.ConversionKind)
1454 return ImplicitConversionSequence::Better;
1455 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1456 return ImplicitConversionSequence::Worse;
1457
1458 // Two implicit conversion sequences of the same form are
1459 // indistinguishable conversion sequences unless one of the
1460 // following rules apply: (C++ 13.3.3.2p3):
1461 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1462 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1463 else if (ICS1.ConversionKind ==
1464 ImplicitConversionSequence::UserDefinedConversion) {
1465 // User-defined conversion sequence U1 is a better conversion
1466 // sequence than another user-defined conversion sequence U2 if
1467 // they contain the same user-defined conversion function or
1468 // constructor and if the second standard conversion sequence of
1469 // U1 is better than the second standard conversion sequence of
1470 // U2 (C++ 13.3.3.2p3).
1471 if (ICS1.UserDefined.ConversionFunction ==
1472 ICS2.UserDefined.ConversionFunction)
1473 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1474 ICS2.UserDefined.After);
1475 }
1476
1477 return ImplicitConversionSequence::Indistinguishable;
1478}
1479
1480/// CompareStandardConversionSequences - Compare two standard
1481/// conversion sequences to determine whether one is better than the
1482/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1483ImplicitConversionSequence::CompareKind
1484Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1485 const StandardConversionSequence& SCS2)
1486{
1487 // Standard conversion sequence S1 is a better conversion sequence
1488 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1489
1490 // -- S1 is a proper subsequence of S2 (comparing the conversion
1491 // sequences in the canonical form defined by 13.3.3.1.1,
1492 // excluding any Lvalue Transformation; the identity conversion
1493 // sequence is considered to be a subsequence of any
1494 // non-identity conversion sequence) or, if not that,
1495 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1496 // Neither is a proper subsequence of the other. Do nothing.
1497 ;
1498 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1499 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1500 (SCS1.Second == ICK_Identity &&
1501 SCS1.Third == ICK_Identity))
1502 // SCS1 is a proper subsequence of SCS2.
1503 return ImplicitConversionSequence::Better;
1504 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1505 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1506 (SCS2.Second == ICK_Identity &&
1507 SCS2.Third == ICK_Identity))
1508 // SCS2 is a proper subsequence of SCS1.
1509 return ImplicitConversionSequence::Worse;
1510
1511 // -- the rank of S1 is better than the rank of S2 (by the rules
1512 // defined below), or, if not that,
1513 ImplicitConversionRank Rank1 = SCS1.getRank();
1514 ImplicitConversionRank Rank2 = SCS2.getRank();
1515 if (Rank1 < Rank2)
1516 return ImplicitConversionSequence::Better;
1517 else if (Rank2 < Rank1)
1518 return ImplicitConversionSequence::Worse;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001519
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001520 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1521 // are indistinguishable unless one of the following rules
1522 // applies:
1523
1524 // A conversion that is not a conversion of a pointer, or
1525 // pointer to member, to bool is better than another conversion
1526 // that is such a conversion.
1527 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1528 return SCS2.isPointerConversionToBool()
1529 ? ImplicitConversionSequence::Better
1530 : ImplicitConversionSequence::Worse;
1531
Douglas Gregor14046502008-10-23 00:40:37 +00001532 // C++ [over.ics.rank]p4b2:
1533 //
1534 // If class B is derived directly or indirectly from class A,
Douglas Gregor0e343382008-10-29 14:50:44 +00001535 // conversion of B* to A* is better than conversion of B* to
1536 // void*, and conversion of A* to void* is better than conversion
1537 // of B* to void*.
Douglas Gregor14046502008-10-23 00:40:37 +00001538 bool SCS1ConvertsToVoid
1539 = SCS1.isPointerConversionToVoidPointer(Context);
1540 bool SCS2ConvertsToVoid
1541 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregor0e343382008-10-29 14:50:44 +00001542 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1543 // Exactly one of the conversion sequences is a conversion to
1544 // a void pointer; it's the worse conversion.
Douglas Gregor14046502008-10-23 00:40:37 +00001545 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1546 : ImplicitConversionSequence::Worse;
Douglas Gregor0e343382008-10-29 14:50:44 +00001547 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1548 // Neither conversion sequence converts to a void pointer; compare
1549 // their derived-to-base conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001550 if (ImplicitConversionSequence::CompareKind DerivedCK
1551 = CompareDerivedToBaseConversions(SCS1, SCS2))
1552 return DerivedCK;
Douglas Gregor0e343382008-10-29 14:50:44 +00001553 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1554 // Both conversion sequences are conversions to void
1555 // pointers. Compare the source types to determine if there's an
1556 // inheritance relationship in their sources.
1557 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1558 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1559
1560 // Adjust the types we're converting from via the array-to-pointer
1561 // conversion, if we need to.
1562 if (SCS1.First == ICK_Array_To_Pointer)
1563 FromType1 = Context.getArrayDecayedType(FromType1);
1564 if (SCS2.First == ICK_Array_To_Pointer)
1565 FromType2 = Context.getArrayDecayedType(FromType2);
1566
1567 QualType FromPointee1
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001568 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor0e343382008-10-29 14:50:44 +00001569 QualType FromPointee2
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001570 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor0e343382008-10-29 14:50:44 +00001571
1572 if (IsDerivedFrom(FromPointee2, FromPointee1))
1573 return ImplicitConversionSequence::Better;
1574 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1575 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001576
1577 // Objective-C++: If one interface is more specific than the
1578 // other, it is the better one.
1579 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1580 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1581 if (FromIface1 && FromIface1) {
1582 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1583 return ImplicitConversionSequence::Better;
1584 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1585 return ImplicitConversionSequence::Worse;
1586 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001587 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001588
1589 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1590 // bullet 3).
Douglas Gregor14046502008-10-23 00:40:37 +00001591 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001592 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregor14046502008-10-23 00:40:37 +00001593 return QualCK;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001594
Douglas Gregor0e343382008-10-29 14:50:44 +00001595 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
Sebastian Redl8a8b3512009-03-22 23:49:27 +00001596 // C++0x [over.ics.rank]p3b4:
1597 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1598 // implicit object parameter of a non-static member function declared
1599 // without a ref-qualifier, and S1 binds an rvalue reference to an
1600 // rvalue and S2 binds an lvalue reference.
Sebastian Redldfc30332009-03-29 15:27:50 +00001601 // FIXME: We don't know if we're dealing with the implicit object parameter,
1602 // or if the member function in this case has a ref qualifier.
1603 // (Of course, we don't have ref qualifiers yet.)
1604 if (SCS1.RRefBinding != SCS2.RRefBinding)
1605 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1606 : ImplicitConversionSequence::Worse;
Sebastian Redl8a8b3512009-03-22 23:49:27 +00001607
1608 // C++ [over.ics.rank]p3b4:
1609 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1610 // which the references refer are the same type except for
1611 // top-level cv-qualifiers, and the type to which the reference
1612 // initialized by S2 refers is more cv-qualified than the type
1613 // to which the reference initialized by S1 refers.
Sebastian Redldfc30332009-03-29 15:27:50 +00001614 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1615 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
Douglas Gregor0e343382008-10-29 14:50:44 +00001616 T1 = Context.getCanonicalType(T1);
1617 T2 = Context.getCanonicalType(T2);
1618 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1619 if (T2.isMoreQualifiedThan(T1))
1620 return ImplicitConversionSequence::Better;
1621 else if (T1.isMoreQualifiedThan(T2))
1622 return ImplicitConversionSequence::Worse;
1623 }
1624 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001625
1626 return ImplicitConversionSequence::Indistinguishable;
1627}
1628
1629/// CompareQualificationConversions - Compares two standard conversion
1630/// sequences to determine whether they can be ranked based on their
1631/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1632ImplicitConversionSequence::CompareKind
1633Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1634 const StandardConversionSequence& SCS2)
1635{
Douglas Gregor4459bbe2008-10-22 15:04:37 +00001636 // C++ 13.3.3.2p3:
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001637 // -- S1 and S2 differ only in their qualification conversion and
1638 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1639 // cv-qualification signature of type T1 is a proper subset of
1640 // the cv-qualification signature of type T2, and S1 is not the
1641 // deprecated string literal array-to-pointer conversion (4.2).
1642 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1643 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1644 return ImplicitConversionSequence::Indistinguishable;
1645
1646 // FIXME: the example in the standard doesn't use a qualification
1647 // conversion (!)
1648 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1649 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1650 T1 = Context.getCanonicalType(T1);
1651 T2 = Context.getCanonicalType(T2);
1652
1653 // If the types are the same, we won't learn anything by unwrapped
1654 // them.
1655 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1656 return ImplicitConversionSequence::Indistinguishable;
1657
1658 ImplicitConversionSequence::CompareKind Result
1659 = ImplicitConversionSequence::Indistinguishable;
1660 while (UnwrapSimilarPointerTypes(T1, T2)) {
1661 // Within each iteration of the loop, we check the qualifiers to
1662 // determine if this still looks like a qualification
1663 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001664 // pointers or pointers-to-members and do it all again
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001665 // until there are no more pointers or pointers-to-members left
1666 // to unwrap. This essentially mimics what
1667 // IsQualificationConversion does, but here we're checking for a
1668 // strict subset of qualifiers.
1669 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1670 // The qualifiers are the same, so this doesn't tell us anything
1671 // about how the sequences rank.
1672 ;
1673 else if (T2.isMoreQualifiedThan(T1)) {
1674 // T1 has fewer qualifiers, so it could be the better sequence.
1675 if (Result == ImplicitConversionSequence::Worse)
1676 // Neither has qualifiers that are a subset of the other's
1677 // qualifiers.
1678 return ImplicitConversionSequence::Indistinguishable;
1679
1680 Result = ImplicitConversionSequence::Better;
1681 } else if (T1.isMoreQualifiedThan(T2)) {
1682 // T2 has fewer qualifiers, so it could be the better sequence.
1683 if (Result == ImplicitConversionSequence::Better)
1684 // Neither has qualifiers that are a subset of the other's
1685 // qualifiers.
1686 return ImplicitConversionSequence::Indistinguishable;
1687
1688 Result = ImplicitConversionSequence::Worse;
1689 } else {
1690 // Qualifiers are disjoint.
1691 return ImplicitConversionSequence::Indistinguishable;
1692 }
1693
1694 // If the types after this point are equivalent, we're done.
1695 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1696 break;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001697 }
1698
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001699 // Check that the winning standard conversion sequence isn't using
1700 // the deprecated string literal array to pointer conversion.
1701 switch (Result) {
1702 case ImplicitConversionSequence::Better:
1703 if (SCS1.Deprecated)
1704 Result = ImplicitConversionSequence::Indistinguishable;
1705 break;
1706
1707 case ImplicitConversionSequence::Indistinguishable:
1708 break;
1709
1710 case ImplicitConversionSequence::Worse:
1711 if (SCS2.Deprecated)
1712 Result = ImplicitConversionSequence::Indistinguishable;
1713 break;
1714 }
1715
1716 return Result;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001717}
1718
Douglas Gregor14046502008-10-23 00:40:37 +00001719/// CompareDerivedToBaseConversions - Compares two standard conversion
1720/// sequences to determine whether they can be ranked based on their
Douglas Gregor24a90a52008-11-26 23:31:11 +00001721/// various kinds of derived-to-base conversions (C++
1722/// [over.ics.rank]p4b3). As part of these checks, we also look at
1723/// conversions between Objective-C interface types.
Douglas Gregor14046502008-10-23 00:40:37 +00001724ImplicitConversionSequence::CompareKind
1725Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1726 const StandardConversionSequence& SCS2) {
1727 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1728 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1729 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1730 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1731
1732 // Adjust the types we're converting from via the array-to-pointer
1733 // conversion, if we need to.
1734 if (SCS1.First == ICK_Array_To_Pointer)
1735 FromType1 = Context.getArrayDecayedType(FromType1);
1736 if (SCS2.First == ICK_Array_To_Pointer)
1737 FromType2 = Context.getArrayDecayedType(FromType2);
1738
1739 // Canonicalize all of the types.
1740 FromType1 = Context.getCanonicalType(FromType1);
1741 ToType1 = Context.getCanonicalType(ToType1);
1742 FromType2 = Context.getCanonicalType(FromType2);
1743 ToType2 = Context.getCanonicalType(ToType2);
1744
Douglas Gregor0e343382008-10-29 14:50:44 +00001745 // C++ [over.ics.rank]p4b3:
Douglas Gregor14046502008-10-23 00:40:37 +00001746 //
1747 // If class B is derived directly or indirectly from class A and
1748 // class C is derived directly or indirectly from B,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001749 //
1750 // For Objective-C, we let A, B, and C also be Objective-C
1751 // interfaces.
Douglas Gregor0e343382008-10-29 14:50:44 +00001752
1753 // Compare based on pointer conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001754 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor3f5a00c2008-11-27 01:19:21 +00001755 SCS2.Second == ICK_Pointer_Conversion &&
1756 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1757 FromType1->isPointerType() && FromType2->isPointerType() &&
1758 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregor14046502008-10-23 00:40:37 +00001759 QualType FromPointee1
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001760 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor14046502008-10-23 00:40:37 +00001761 QualType ToPointee1
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001762 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor14046502008-10-23 00:40:37 +00001763 QualType FromPointee2
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001764 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor14046502008-10-23 00:40:37 +00001765 QualType ToPointee2
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001766 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor24a90a52008-11-26 23:31:11 +00001767
1768 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1769 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1770 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1771 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1772
Douglas Gregor0e343382008-10-29 14:50:44 +00001773 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregor14046502008-10-23 00:40:37 +00001774 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1775 if (IsDerivedFrom(ToPointee1, ToPointee2))
1776 return ImplicitConversionSequence::Better;
1777 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1778 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001779
1780 if (ToIface1 && ToIface2) {
1781 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1782 return ImplicitConversionSequence::Better;
1783 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1784 return ImplicitConversionSequence::Worse;
1785 }
Douglas Gregor14046502008-10-23 00:40:37 +00001786 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001787
1788 // -- conversion of B* to A* is better than conversion of C* to A*,
1789 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1790 if (IsDerivedFrom(FromPointee2, FromPointee1))
1791 return ImplicitConversionSequence::Better;
1792 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1793 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001794
1795 if (FromIface1 && FromIface2) {
1796 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1797 return ImplicitConversionSequence::Better;
1798 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1799 return ImplicitConversionSequence::Worse;
1800 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001801 }
Douglas Gregor14046502008-10-23 00:40:37 +00001802 }
1803
Douglas Gregor0e343382008-10-29 14:50:44 +00001804 // Compare based on reference bindings.
1805 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1806 SCS1.Second == ICK_Derived_To_Base) {
1807 // -- binding of an expression of type C to a reference of type
1808 // B& is better than binding an expression of type C to a
1809 // reference of type A&,
1810 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1811 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1812 if (IsDerivedFrom(ToType1, ToType2))
1813 return ImplicitConversionSequence::Better;
1814 else if (IsDerivedFrom(ToType2, ToType1))
1815 return ImplicitConversionSequence::Worse;
1816 }
1817
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001818 // -- binding of an expression of type B to a reference of type
1819 // A& is better than binding an expression of type C to a
1820 // reference of type A&,
Douglas Gregor0e343382008-10-29 14:50:44 +00001821 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1822 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1823 if (IsDerivedFrom(FromType2, FromType1))
1824 return ImplicitConversionSequence::Better;
1825 else if (IsDerivedFrom(FromType1, FromType2))
1826 return ImplicitConversionSequence::Worse;
1827 }
1828 }
1829
1830
1831 // FIXME: conversion of A::* to B::* is better than conversion of
1832 // A::* to C::*,
1833
1834 // FIXME: conversion of B::* to C::* is better than conversion of
1835 // A::* to C::*, and
1836
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001837 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1838 SCS1.Second == ICK_Derived_To_Base) {
1839 // -- conversion of C to B is better than conversion of C to A,
1840 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1841 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1842 if (IsDerivedFrom(ToType1, ToType2))
1843 return ImplicitConversionSequence::Better;
1844 else if (IsDerivedFrom(ToType2, ToType1))
1845 return ImplicitConversionSequence::Worse;
1846 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001847
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001848 // -- conversion of B to A is better than conversion of C to A.
1849 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1850 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1851 if (IsDerivedFrom(FromType2, FromType1))
1852 return ImplicitConversionSequence::Better;
1853 else if (IsDerivedFrom(FromType1, FromType2))
1854 return ImplicitConversionSequence::Worse;
1855 }
1856 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001857
Douglas Gregor14046502008-10-23 00:40:37 +00001858 return ImplicitConversionSequence::Indistinguishable;
1859}
1860
Douglas Gregor81c29152008-10-29 00:13:59 +00001861/// TryCopyInitialization - Try to copy-initialize a value of type
1862/// ToType from the expression From. Return the implicit conversion
1863/// sequence required to pass this argument, which may be a bad
1864/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001865/// a parameter of this type). If @p SuppressUserConversions, then we
Sebastian Redla55834a2009-04-12 17:16:29 +00001866/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1867/// then we treat @p From as an rvalue, even if it is an lvalue.
Douglas Gregor81c29152008-10-29 00:13:59 +00001868ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001869Sema::TryCopyInitialization(Expr *From, QualType ToType,
Sebastian Redla55834a2009-04-12 17:16:29 +00001870 bool SuppressUserConversions, bool ForceRValue) {
Douglas Gregorfcb19192009-02-11 23:02:49 +00001871 if (ToType->isReferenceType()) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001872 ImplicitConversionSequence ICS;
Sebastian Redla55834a2009-04-12 17:16:29 +00001873 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1874 /*AllowExplicit=*/false, ForceRValue);
Douglas Gregor81c29152008-10-29 00:13:59 +00001875 return ICS;
1876 } else {
Sebastian Redla55834a2009-04-12 17:16:29 +00001877 return TryImplicitConversion(From, ToType, SuppressUserConversions,
1878 ForceRValue);
Douglas Gregor81c29152008-10-29 00:13:59 +00001879 }
1880}
1881
Sebastian Redla55834a2009-04-12 17:16:29 +00001882/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1883/// the expression @p From. Returns true (and emits a diagnostic) if there was
1884/// an error, returns false if the initialization succeeded. Elidable should
1885/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1886/// differently in C++0x for this case.
Douglas Gregor81c29152008-10-29 00:13:59 +00001887bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
Sebastian Redla55834a2009-04-12 17:16:29 +00001888 const char* Flavor, bool Elidable) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001889 if (!getLangOptions().CPlusPlus) {
1890 // In C, argument passing is the same as performing an assignment.
1891 QualType FromType = From->getType();
Douglas Gregor144b06c2009-04-29 22:16:16 +00001892
Douglas Gregor81c29152008-10-29 00:13:59 +00001893 AssignConvertType ConvTy =
1894 CheckSingleAssignmentConstraints(ToType, From);
Douglas Gregor144b06c2009-04-29 22:16:16 +00001895 if (ConvTy != Compatible &&
1896 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1897 ConvTy = Compatible;
1898
Douglas Gregor81c29152008-10-29 00:13:59 +00001899 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1900 FromType, From, Flavor);
Douglas Gregor81c29152008-10-29 00:13:59 +00001901 }
Sebastian Redla55834a2009-04-12 17:16:29 +00001902
Chris Lattner271d4c22008-11-24 05:29:24 +00001903 if (ToType->isReferenceType())
1904 return CheckReferenceInit(From, ToType);
1905
Sebastian Redla55834a2009-04-12 17:16:29 +00001906 if (!PerformImplicitConversion(From, ToType, Flavor,
1907 /*AllowExplicit=*/false, Elidable))
Chris Lattner271d4c22008-11-24 05:29:24 +00001908 return false;
Sebastian Redla55834a2009-04-12 17:16:29 +00001909
Chris Lattner271d4c22008-11-24 05:29:24 +00001910 return Diag(From->getSourceRange().getBegin(),
1911 diag::err_typecheck_convert_incompatible)
1912 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor81c29152008-10-29 00:13:59 +00001913}
1914
Douglas Gregor5ed15042008-11-18 23:14:02 +00001915/// TryObjectArgumentInitialization - Try to initialize the object
1916/// parameter of the given member function (@c Method) from the
1917/// expression @p From.
1918ImplicitConversionSequence
1919Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1920 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1921 unsigned MethodQuals = Method->getTypeQualifiers();
1922 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1923
1924 // Set up the conversion sequence as a "bad" conversion, to allow us
1925 // to exit early.
1926 ImplicitConversionSequence ICS;
1927 ICS.Standard.setAsIdentityConversion();
1928 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1929
1930 // We need to have an object of class type.
1931 QualType FromType = From->getType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001932 if (const PointerType *PT = FromType->getAs<PointerType>())
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001933 FromType = PT->getPointeeType();
1934
1935 assert(FromType->isRecordType());
Douglas Gregor5ed15042008-11-18 23:14:02 +00001936
1937 // The implicit object parmeter is has the type "reference to cv X",
1938 // where X is the class of which the function is a member
1939 // (C++ [over.match.funcs]p4). However, when finding an implicit
1940 // conversion sequence for the argument, we are not allowed to
1941 // create temporaries or perform user-defined conversions
1942 // (C++ [over.match.funcs]p5). We perform a simplified version of
1943 // reference binding here, that allows class rvalues to bind to
1944 // non-constant references.
1945
1946 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1947 // with the implicit object parameter (C++ [over.match.funcs]p5).
1948 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1949 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1950 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1951 return ICS;
1952
1953 // Check that we have either the same type or a derived type. It
1954 // affects the conversion rank.
1955 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1956 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1957 ICS.Standard.Second = ICK_Identity;
1958 else if (IsDerivedFrom(FromType, ClassType))
1959 ICS.Standard.Second = ICK_Derived_To_Base;
1960 else
1961 return ICS;
1962
1963 // Success. Mark this as a reference binding.
1964 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1965 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1966 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1967 ICS.Standard.ReferenceBinding = true;
1968 ICS.Standard.DirectBinding = true;
Sebastian Redl9bc16ad2009-03-29 22:46:24 +00001969 ICS.Standard.RRefBinding = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00001970 return ICS;
1971}
1972
1973/// PerformObjectArgumentInitialization - Perform initialization of
1974/// the implicit object parameter for the given Method with the given
1975/// expression.
1976bool
1977Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001978 QualType FromRecordType, DestType;
1979 QualType ImplicitParamRecordType =
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001980 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001981
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001982 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001983 FromRecordType = PT->getPointeeType();
1984 DestType = Method->getThisType(Context);
1985 } else {
1986 FromRecordType = From->getType();
1987 DestType = ImplicitParamRecordType;
1988 }
1989
Douglas Gregor5ed15042008-11-18 23:14:02 +00001990 ImplicitConversionSequence ICS
1991 = TryObjectArgumentInitialization(From, Method);
1992 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1993 return Diag(From->getSourceRange().getBegin(),
Chris Lattner8ba580c2008-11-19 05:08:23 +00001994 diag::err_implicit_object_parameter_init)
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001995 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
1996
Douglas Gregor5ed15042008-11-18 23:14:02 +00001997 if (ICS.Standard.Second == ICK_Derived_To_Base &&
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001998 CheckDerivedToBaseConversion(FromRecordType,
1999 ImplicitParamRecordType,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002000 From->getSourceRange().getBegin(),
2001 From->getSourceRange()))
2002 return true;
2003
Anders Carlssone25b6cd2009-08-07 18:45:49 +00002004 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2005 /*isLvalue=*/true);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002006 return false;
2007}
2008
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002009/// TryContextuallyConvertToBool - Attempt to contextually convert the
2010/// expression From to bool (C++0x [conv]p3).
2011ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2012 return TryImplicitConversion(From, Context.BoolTy, false, true);
2013}
2014
2015/// PerformContextuallyConvertToBool - Perform a contextual conversion
2016/// of the expression From to bool (C++0x [conv]p3).
2017bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2018 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2019 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2020 return false;
2021
2022 return Diag(From->getSourceRange().getBegin(),
2023 diag::err_typecheck_bool_condition)
2024 << From->getType() << From->getSourceRange();
2025}
2026
Douglas Gregord2baafd2008-10-21 16:13:35 +00002027/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002028/// candidate functions, using the given function call arguments. If
2029/// @p SuppressUserConversions, then don't allow user-defined
2030/// conversions via constructors or conversion operators.
Sebastian Redla55834a2009-04-12 17:16:29 +00002031/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2032/// hacky way to implement the overloading rules for elidable copy
2033/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregord2baafd2008-10-21 16:13:35 +00002034void
2035Sema::AddOverloadCandidate(FunctionDecl *Function,
2036 Expr **Args, unsigned NumArgs,
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002037 OverloadCandidateSet& CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002038 bool SuppressUserConversions,
2039 bool ForceRValue)
Douglas Gregord2baafd2008-10-21 16:13:35 +00002040{
Douglas Gregor4fa58902009-02-26 23:50:07 +00002041 const FunctionProtoType* Proto
2042 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregord2baafd2008-10-21 16:13:35 +00002043 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregor60714f92008-11-07 22:36:19 +00002044 assert(!isa<CXXConversionDecl>(Function) &&
2045 "Use AddConversionCandidate for conversion functions");
Douglas Gregorb60eb752009-06-25 22:08:12 +00002046 assert(!Function->getDescribedFunctionTemplate() &&
2047 "Use AddTemplateOverloadCandidate for function templates");
2048
Douglas Gregor3257fb52008-12-22 05:46:06 +00002049 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
Sebastian Redlbd261962009-04-16 17:51:27 +00002050 if (!isa<CXXConstructorDecl>(Method)) {
2051 // If we get here, it's because we're calling a member function
2052 // that is named without a member access expression (e.g.,
2053 // "this->f") that was either written explicitly or created
2054 // implicitly. This can happen with a qualified call to a member
2055 // function, e.g., X::f(). We use a NULL object as the implied
2056 // object argument (C++ [over.call.func]p3).
2057 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2058 SuppressUserConversions, ForceRValue);
2059 return;
2060 }
2061 // We treat a constructor like a non-member function, since its object
2062 // argument doesn't participate in overload resolution.
Douglas Gregor3257fb52008-12-22 05:46:06 +00002063 }
2064
2065
Douglas Gregord2baafd2008-10-21 16:13:35 +00002066 // Add this candidate
2067 CandidateSet.push_back(OverloadCandidate());
2068 OverloadCandidate& Candidate = CandidateSet.back();
2069 Candidate.Function = Function;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002070 Candidate.Viable = true;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002071 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002072 Candidate.IgnoreObjectArgument = false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00002073
2074 unsigned NumArgsInProto = Proto->getNumArgs();
2075
2076 // (C++ 13.3.2p2): A candidate function having fewer than m
2077 // parameters is viable only if it has an ellipsis in its parameter
2078 // list (8.3.5).
2079 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2080 Candidate.Viable = false;
2081 return;
2082 }
2083
2084 // (C++ 13.3.2p2): A candidate function having more than m parameters
2085 // is viable only if the (m+1)st parameter has a default argument
2086 // (8.3.6). For the purposes of overload resolution, the
2087 // parameter list is truncated on the right, so that there are
2088 // exactly m parameters.
2089 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2090 if (NumArgs < MinRequiredArgs) {
2091 // Not enough arguments.
2092 Candidate.Viable = false;
2093 return;
2094 }
2095
2096 // Determine the implicit conversion sequences for each of the
2097 // arguments.
Douglas Gregord2baafd2008-10-21 16:13:35 +00002098 Candidate.Conversions.resize(NumArgs);
2099 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2100 if (ArgIdx < NumArgsInProto) {
2101 // (C++ 13.3.2p3): for F to be a viable function, there shall
2102 // exist for each argument an implicit conversion sequence
2103 // (13.3.3.1) that converts that argument to the corresponding
2104 // parameter of F.
2105 QualType ParamType = Proto->getArgType(ArgIdx);
2106 Candidate.Conversions[ArgIdx]
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002107 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redla55834a2009-04-12 17:16:29 +00002108 SuppressUserConversions, ForceRValue);
Douglas Gregord2baafd2008-10-21 16:13:35 +00002109 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002110 == ImplicitConversionSequence::BadConversion) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00002111 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002112 break;
2113 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00002114 } else {
2115 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2116 // argument for which there is no corresponding parameter is
2117 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2118 Candidate.Conversions[ArgIdx].ConversionKind
2119 = ImplicitConversionSequence::EllipsisConversion;
2120 }
2121 }
2122}
2123
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002124/// \brief Add all of the function declarations in the given function set to
2125/// the overload canddiate set.
2126void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2127 Expr **Args, unsigned NumArgs,
2128 OverloadCandidateSet& CandidateSet,
2129 bool SuppressUserConversions) {
2130 for (FunctionSet::const_iterator F = Functions.begin(),
2131 FEnd = Functions.end();
Douglas Gregor993a0602009-06-27 21:05:07 +00002132 F != FEnd; ++F) {
2133 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2134 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2135 SuppressUserConversions);
2136 else
Douglas Gregorc9a03b72009-06-30 23:57:56 +00002137 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2138 /*FIXME: explicit args */false, 0, 0,
2139 Args, NumArgs, CandidateSet,
Douglas Gregor993a0602009-06-27 21:05:07 +00002140 SuppressUserConversions);
2141 }
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002142}
2143
Douglas Gregor5ed15042008-11-18 23:14:02 +00002144/// AddMethodCandidate - Adds the given C++ member function to the set
2145/// of candidate functions, using the given function call arguments
2146/// and the object argument (@c Object). For example, in a call
2147/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2148/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2149/// allow user-defined conversions via constructors or conversion
Sebastian Redla55834a2009-04-12 17:16:29 +00002150/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2151/// a slightly hacky way to implement the overloading rules for elidable copy
2152/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor5ed15042008-11-18 23:14:02 +00002153void
2154Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2155 Expr **Args, unsigned NumArgs,
2156 OverloadCandidateSet& CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002157 bool SuppressUserConversions, bool ForceRValue)
Douglas Gregor5ed15042008-11-18 23:14:02 +00002158{
Douglas Gregor4fa58902009-02-26 23:50:07 +00002159 const FunctionProtoType* Proto
2160 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor5ed15042008-11-18 23:14:02 +00002161 assert(Proto && "Methods without a prototype cannot be overloaded");
Sebastian Redlbd261962009-04-16 17:51:27 +00002162 assert(!isa<CXXConversionDecl>(Method) &&
Douglas Gregor5ed15042008-11-18 23:14:02 +00002163 "Use AddConversionCandidate for conversion functions");
Sebastian Redlbd261962009-04-16 17:51:27 +00002164 assert(!isa<CXXConstructorDecl>(Method) &&
2165 "Use AddOverloadCandidate for constructors");
Douglas Gregor5ed15042008-11-18 23:14:02 +00002166
2167 // Add this candidate
2168 CandidateSet.push_back(OverloadCandidate());
2169 OverloadCandidate& Candidate = CandidateSet.back();
2170 Candidate.Function = Method;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002171 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002172 Candidate.IgnoreObjectArgument = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002173
2174 unsigned NumArgsInProto = Proto->getNumArgs();
2175
2176 // (C++ 13.3.2p2): A candidate function having fewer than m
2177 // parameters is viable only if it has an ellipsis in its parameter
2178 // list (8.3.5).
2179 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2180 Candidate.Viable = false;
2181 return;
2182 }
2183
2184 // (C++ 13.3.2p2): A candidate function having more than m parameters
2185 // is viable only if the (m+1)st parameter has a default argument
2186 // (8.3.6). For the purposes of overload resolution, the
2187 // parameter list is truncated on the right, so that there are
2188 // exactly m parameters.
2189 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2190 if (NumArgs < MinRequiredArgs) {
2191 // Not enough arguments.
2192 Candidate.Viable = false;
2193 return;
2194 }
2195
2196 Candidate.Viable = true;
2197 Candidate.Conversions.resize(NumArgs + 1);
2198
Douglas Gregor3257fb52008-12-22 05:46:06 +00002199 if (Method->isStatic() || !Object)
2200 // The implicit object argument is ignored.
2201 Candidate.IgnoreObjectArgument = true;
2202 else {
2203 // Determine the implicit conversion sequence for the object
2204 // parameter.
2205 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2206 if (Candidate.Conversions[0].ConversionKind
2207 == ImplicitConversionSequence::BadConversion) {
2208 Candidate.Viable = false;
2209 return;
2210 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002211 }
2212
2213 // Determine the implicit conversion sequences for each of the
2214 // arguments.
2215 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2216 if (ArgIdx < NumArgsInProto) {
2217 // (C++ 13.3.2p3): for F to be a viable function, there shall
2218 // exist for each argument an implicit conversion sequence
2219 // (13.3.3.1) that converts that argument to the corresponding
2220 // parameter of F.
2221 QualType ParamType = Proto->getArgType(ArgIdx);
2222 Candidate.Conversions[ArgIdx + 1]
2223 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redla55834a2009-04-12 17:16:29 +00002224 SuppressUserConversions, ForceRValue);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002225 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2226 == ImplicitConversionSequence::BadConversion) {
2227 Candidate.Viable = false;
2228 break;
2229 }
2230 } else {
2231 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2232 // argument for which there is no corresponding parameter is
2233 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2234 Candidate.Conversions[ArgIdx + 1].ConversionKind
2235 = ImplicitConversionSequence::EllipsisConversion;
2236 }
2237 }
2238}
2239
Douglas Gregorb60eb752009-06-25 22:08:12 +00002240/// \brief Add a C++ function template as a candidate in the candidate set,
2241/// using template argument deduction to produce an appropriate function
2242/// template specialization.
2243void
2244Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
Douglas Gregorc9a03b72009-06-30 23:57:56 +00002245 bool HasExplicitTemplateArgs,
2246 const TemplateArgument *ExplicitTemplateArgs,
2247 unsigned NumExplicitTemplateArgs,
Douglas Gregorb60eb752009-06-25 22:08:12 +00002248 Expr **Args, unsigned NumArgs,
2249 OverloadCandidateSet& CandidateSet,
2250 bool SuppressUserConversions,
2251 bool ForceRValue) {
2252 // C++ [over.match.funcs]p7:
2253 // In each case where a candidate is a function template, candidate
2254 // function template specializations are generated using template argument
2255 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
2256 // candidate functions in the usual way.113) A given name can refer to one
2257 // or more function templates and also to a set of overloaded non-template
2258 // functions. In such a case, the candidate functions generated from each
2259 // function template are combined with the set of non-template candidate
2260 // functions.
2261 TemplateDeductionInfo Info(Context);
2262 FunctionDecl *Specialization = 0;
2263 if (TemplateDeductionResult Result
Douglas Gregorc9a03b72009-06-30 23:57:56 +00002264 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2265 ExplicitTemplateArgs, NumExplicitTemplateArgs,
2266 Args, NumArgs, Specialization, Info)) {
Douglas Gregorb60eb752009-06-25 22:08:12 +00002267 // FIXME: Record what happened with template argument deduction, so
2268 // that we can give the user a beautiful diagnostic.
2269 (void)Result;
2270 return;
2271 }
2272
2273 // Add the function template specialization produced by template argument
2274 // deduction as a candidate.
2275 assert(Specialization && "Missing function template specialization?");
2276 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2277 SuppressUserConversions, ForceRValue);
2278}
2279
Douglas Gregor60714f92008-11-07 22:36:19 +00002280/// AddConversionCandidate - Add a C++ conversion function as a
2281/// candidate in the candidate set (C++ [over.match.conv],
2282/// C++ [over.match.copy]). From is the expression we're converting from,
2283/// and ToType is the type that we're eventually trying to convert to
2284/// (which may or may not be the same type as the type that the
2285/// conversion function produces).
2286void
2287Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2288 Expr *From, QualType ToType,
2289 OverloadCandidateSet& CandidateSet) {
2290 // Add this candidate
2291 CandidateSet.push_back(OverloadCandidate());
2292 OverloadCandidate& Candidate = CandidateSet.back();
2293 Candidate.Function = Conversion;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002294 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002295 Candidate.IgnoreObjectArgument = false;
Douglas Gregor60714f92008-11-07 22:36:19 +00002296 Candidate.FinalConversion.setAsIdentityConversion();
2297 Candidate.FinalConversion.FromTypePtr
2298 = Conversion->getConversionType().getAsOpaquePtr();
2299 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2300
Douglas Gregor5ed15042008-11-18 23:14:02 +00002301 // Determine the implicit conversion sequence for the implicit
2302 // object parameter.
Douglas Gregor60714f92008-11-07 22:36:19 +00002303 Candidate.Viable = true;
2304 Candidate.Conversions.resize(1);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002305 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregor60714f92008-11-07 22:36:19 +00002306
Douglas Gregor60714f92008-11-07 22:36:19 +00002307 if (Candidate.Conversions[0].ConversionKind
2308 == ImplicitConversionSequence::BadConversion) {
2309 Candidate.Viable = false;
2310 return;
2311 }
2312
2313 // To determine what the conversion from the result of calling the
2314 // conversion function to the type we're eventually trying to
2315 // convert to (ToType), we need to synthesize a call to the
2316 // conversion function and attempt copy initialization from it. This
2317 // makes sure that we get the right semantics with respect to
2318 // lvalues/rvalues and the type. Fortunately, we can allocate this
2319 // call on the stack and we don't need its arguments to be
2320 // well-formed.
2321 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2322 SourceLocation());
2323 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Anders Carlsson7ef181c2009-07-31 00:48:10 +00002324 CastExpr::CK_Unknown,
Douglas Gregor70d26122008-11-12 17:17:38 +00002325 &ConversionRef, false);
Ted Kremenek362abcd2009-02-09 20:51:47 +00002326
2327 // Note that it is safe to allocate CallExpr on the stack here because
2328 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2329 // allocator).
2330 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregor60714f92008-11-07 22:36:19 +00002331 Conversion->getConversionType().getNonReferenceType(),
2332 SourceLocation());
2333 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2334 switch (ICS.ConversionKind) {
2335 case ImplicitConversionSequence::StandardConversion:
2336 Candidate.FinalConversion = ICS.Standard;
2337 break;
2338
2339 case ImplicitConversionSequence::BadConversion:
2340 Candidate.Viable = false;
2341 break;
2342
2343 default:
2344 assert(false &&
2345 "Can only end up with a standard conversion sequence or failure");
2346 }
2347}
2348
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002349/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2350/// converts the given @c Object to a function pointer via the
2351/// conversion function @c Conversion, and then attempts to call it
2352/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2353/// the type of function that we'll eventually be calling.
2354void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor4fa58902009-02-26 23:50:07 +00002355 const FunctionProtoType *Proto,
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002356 Expr *Object, Expr **Args, unsigned NumArgs,
2357 OverloadCandidateSet& CandidateSet) {
2358 CandidateSet.push_back(OverloadCandidate());
2359 OverloadCandidate& Candidate = CandidateSet.back();
2360 Candidate.Function = 0;
2361 Candidate.Surrogate = Conversion;
2362 Candidate.Viable = true;
2363 Candidate.IsSurrogate = true;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002364 Candidate.IgnoreObjectArgument = false;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002365 Candidate.Conversions.resize(NumArgs + 1);
2366
2367 // Determine the implicit conversion sequence for the implicit
2368 // object parameter.
2369 ImplicitConversionSequence ObjectInit
2370 = TryObjectArgumentInitialization(Object, Conversion);
2371 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2372 Candidate.Viable = false;
2373 return;
2374 }
2375
2376 // The first conversion is actually a user-defined conversion whose
2377 // first conversion is ObjectInit's standard conversion (which is
2378 // effectively a reference binding). Record it as such.
2379 Candidate.Conversions[0].ConversionKind
2380 = ImplicitConversionSequence::UserDefinedConversion;
2381 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2382 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2383 Candidate.Conversions[0].UserDefined.After
2384 = Candidate.Conversions[0].UserDefined.Before;
2385 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2386
2387 // Find the
2388 unsigned NumArgsInProto = Proto->getNumArgs();
2389
2390 // (C++ 13.3.2p2): A candidate function having fewer than m
2391 // parameters is viable only if it has an ellipsis in its parameter
2392 // list (8.3.5).
2393 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2394 Candidate.Viable = false;
2395 return;
2396 }
2397
2398 // Function types don't have any default arguments, so just check if
2399 // we have enough arguments.
2400 if (NumArgs < NumArgsInProto) {
2401 // Not enough arguments.
2402 Candidate.Viable = false;
2403 return;
2404 }
2405
2406 // Determine the implicit conversion sequences for each of the
2407 // arguments.
2408 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2409 if (ArgIdx < NumArgsInProto) {
2410 // (C++ 13.3.2p3): for F to be a viable function, there shall
2411 // exist for each argument an implicit conversion sequence
2412 // (13.3.3.1) that converts that argument to the corresponding
2413 // parameter of F.
2414 QualType ParamType = Proto->getArgType(ArgIdx);
2415 Candidate.Conversions[ArgIdx + 1]
2416 = TryCopyInitialization(Args[ArgIdx], ParamType,
2417 /*SuppressUserConversions=*/false);
2418 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2419 == ImplicitConversionSequence::BadConversion) {
2420 Candidate.Viable = false;
2421 break;
2422 }
2423 } else {
2424 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2425 // argument for which there is no corresponding parameter is
2426 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2427 Candidate.Conversions[ArgIdx + 1].ConversionKind
2428 = ImplicitConversionSequence::EllipsisConversion;
2429 }
2430 }
2431}
2432
Mike Stumpe127ae32009-05-16 07:39:55 +00002433// FIXME: This will eventually be removed, once we've migrated all of the
2434// operator overloading logic over to the scheme used by binary operators, which
2435// works for template instantiation.
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002436void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
Douglas Gregor48a87322009-02-04 16:44:47 +00002437 SourceLocation OpLoc,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002438 Expr **Args, unsigned NumArgs,
Douglas Gregor48a87322009-02-04 16:44:47 +00002439 OverloadCandidateSet& CandidateSet,
2440 SourceRange OpRange) {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002441
2442 FunctionSet Functions;
2443
2444 QualType T1 = Args[0]->getType();
2445 QualType T2;
2446 if (NumArgs > 1)
2447 T2 = Args[1]->getType();
2448
2449 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
Douglas Gregorde72f3e2009-05-19 00:01:19 +00002450 if (S)
2451 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002452 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2453 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2454 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2455 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2456}
2457
2458/// \brief Add overload candidates for overloaded operators that are
2459/// member functions.
2460///
2461/// Add the overloaded operator candidates that are member functions
2462/// for the operator Op that was used in an operator expression such
2463/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2464/// CandidateSet will store the added overload candidates. (C++
2465/// [over.match.oper]).
2466void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2467 SourceLocation OpLoc,
2468 Expr **Args, unsigned NumArgs,
2469 OverloadCandidateSet& CandidateSet,
2470 SourceRange OpRange) {
Douglas Gregor5ed15042008-11-18 23:14:02 +00002471 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2472
2473 // C++ [over.match.oper]p3:
2474 // For a unary operator @ with an operand of a type whose
2475 // cv-unqualified version is T1, and for a binary operator @ with
2476 // a left operand of a type whose cv-unqualified version is T1 and
2477 // a right operand of a type whose cv-unqualified version is T2,
2478 // three sets of candidate functions, designated member
2479 // candidates, non-member candidates and built-in candidates, are
2480 // constructed as follows:
2481 QualType T1 = Args[0]->getType();
2482 QualType T2;
2483 if (NumArgs > 1)
2484 T2 = Args[1]->getType();
2485
2486 // -- If T1 is a class type, the set of member candidates is the
2487 // result of the qualified lookup of T1::operator@
2488 // (13.3.1.1.1); otherwise, the set of member candidates is
2489 // empty.
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002490 // FIXME: Lookup in base classes, too!
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002491 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
Douglas Gregorddfd9d52008-12-23 00:26:44 +00002492 DeclContext::lookup_const_iterator Oper, OperEnd;
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00002493 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00002494 Oper != OperEnd; ++Oper)
2495 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2496 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002497 /*SuppressUserConversions=*/false);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002498 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002499}
2500
Douglas Gregor70d26122008-11-12 17:17:38 +00002501/// AddBuiltinCandidate - Add a candidate for a built-in
2502/// operator. ResultTy and ParamTys are the result and parameter types
2503/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregorab141112009-01-13 00:52:54 +00002504/// arguments being passed to the candidate. IsAssignmentOperator
2505/// should be true when this built-in candidate is an assignment
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002506/// operator. NumContextualBoolArguments is the number of arguments
2507/// (at the beginning of the argument list) that will be contextually
2508/// converted to bool.
Douglas Gregor70d26122008-11-12 17:17:38 +00002509void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2510 Expr **Args, unsigned NumArgs,
Douglas Gregorab141112009-01-13 00:52:54 +00002511 OverloadCandidateSet& CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002512 bool IsAssignmentOperator,
2513 unsigned NumContextualBoolArguments) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002514 // Add this candidate
2515 CandidateSet.push_back(OverloadCandidate());
2516 OverloadCandidate& Candidate = CandidateSet.back();
2517 Candidate.Function = 0;
Douglas Gregor6b5e34f2008-12-12 02:00:36 +00002518 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002519 Candidate.IgnoreObjectArgument = false;
Douglas Gregor70d26122008-11-12 17:17:38 +00002520 Candidate.BuiltinTypes.ResultTy = ResultTy;
2521 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2522 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2523
2524 // Determine the implicit conversion sequences for each of the
2525 // arguments.
2526 Candidate.Viable = true;
2527 Candidate.Conversions.resize(NumArgs);
2528 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregorab141112009-01-13 00:52:54 +00002529 // C++ [over.match.oper]p4:
2530 // For the built-in assignment operators, conversions of the
2531 // left operand are restricted as follows:
2532 // -- no temporaries are introduced to hold the left operand, and
2533 // -- no user-defined conversions are applied to the left
2534 // operand to achieve a type match with the left-most
2535 // parameter of a built-in candidate.
2536 //
2537 // We block these conversions by turning off user-defined
2538 // conversions, since that is the only way that initialization of
2539 // a reference to a non-class type can occur from something that
2540 // is not of the same type.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002541 if (ArgIdx < NumContextualBoolArguments) {
2542 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2543 "Contextual conversion to bool requires bool type");
2544 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2545 } else {
2546 Candidate.Conversions[ArgIdx]
2547 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2548 ArgIdx == 0 && IsAssignmentOperator);
2549 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002550 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002551 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002552 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002553 break;
2554 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002555 }
2556}
2557
2558/// BuiltinCandidateTypeSet - A set of types that will be used for the
2559/// candidate operator functions for built-in operators (C++
2560/// [over.built]). The types are separated into pointer types and
2561/// enumeration types.
2562class BuiltinCandidateTypeSet {
2563 /// TypeSet - A set of types.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002564 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
Douglas Gregor70d26122008-11-12 17:17:38 +00002565
2566 /// PointerTypes - The set of pointer types that will be used in the
2567 /// built-in candidates.
2568 TypeSet PointerTypes;
2569
Sebastian Redl674d1b72009-04-19 21:53:20 +00002570 /// MemberPointerTypes - The set of member pointer types that will be
2571 /// used in the built-in candidates.
2572 TypeSet MemberPointerTypes;
2573
Douglas Gregor70d26122008-11-12 17:17:38 +00002574 /// EnumerationTypes - The set of enumeration types that will be
2575 /// used in the built-in candidates.
2576 TypeSet EnumerationTypes;
2577
2578 /// Context - The AST context in which we will build the type sets.
2579 ASTContext &Context;
2580
Sebastian Redl674d1b72009-04-19 21:53:20 +00002581 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2582 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
Douglas Gregor70d26122008-11-12 17:17:38 +00002583
2584public:
2585 /// iterator - Iterates through the types that are part of the set.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002586 typedef TypeSet::iterator iterator;
Douglas Gregor70d26122008-11-12 17:17:38 +00002587
2588 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2589
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002590 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2591 bool AllowExplicitConversions);
Douglas Gregor70d26122008-11-12 17:17:38 +00002592
2593 /// pointer_begin - First pointer type found;
2594 iterator pointer_begin() { return PointerTypes.begin(); }
2595
Sebastian Redl674d1b72009-04-19 21:53:20 +00002596 /// pointer_end - Past the last pointer type found;
Douglas Gregor70d26122008-11-12 17:17:38 +00002597 iterator pointer_end() { return PointerTypes.end(); }
2598
Sebastian Redl674d1b72009-04-19 21:53:20 +00002599 /// member_pointer_begin - First member pointer type found;
2600 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2601
2602 /// member_pointer_end - Past the last member pointer type found;
2603 iterator member_pointer_end() { return MemberPointerTypes.end(); }
2604
Douglas Gregor70d26122008-11-12 17:17:38 +00002605 /// enumeration_begin - First enumeration type found;
2606 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2607
Sebastian Redl674d1b72009-04-19 21:53:20 +00002608 /// enumeration_end - Past the last enumeration type found;
Douglas Gregor70d26122008-11-12 17:17:38 +00002609 iterator enumeration_end() { return EnumerationTypes.end(); }
2610};
2611
Sebastian Redl674d1b72009-04-19 21:53:20 +00002612/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
Douglas Gregor70d26122008-11-12 17:17:38 +00002613/// the set of pointer types along with any more-qualified variants of
2614/// that type. For example, if @p Ty is "int const *", this routine
2615/// will add "int const *", "int const volatile *", "int const
2616/// restrict *", and "int const volatile restrict *" to the set of
2617/// pointer types. Returns true if the add of @p Ty itself succeeded,
2618/// false otherwise.
Sebastian Redl674d1b72009-04-19 21:53:20 +00002619bool
2620BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002621 // Insert this type.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002622 if (!PointerTypes.insert(Ty))
Douglas Gregor70d26122008-11-12 17:17:38 +00002623 return false;
2624
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002625 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002626 QualType PointeeTy = PointerTy->getPointeeType();
2627 // FIXME: Optimize this so that we don't keep trying to add the same types.
2628
Mike Stumpe127ae32009-05-16 07:39:55 +00002629 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2630 // pointer conversions that don't cast away constness?
Douglas Gregor70d26122008-11-12 17:17:38 +00002631 if (!PointeeTy.isConstQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002632 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002633 (Context.getPointerType(PointeeTy.withConst()));
2634 if (!PointeeTy.isVolatileQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002635 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002636 (Context.getPointerType(PointeeTy.withVolatile()));
2637 if (!PointeeTy.isRestrictQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002638 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002639 (Context.getPointerType(PointeeTy.withRestrict()));
2640 }
2641
2642 return true;
2643}
2644
Sebastian Redl674d1b72009-04-19 21:53:20 +00002645/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2646/// to the set of pointer types along with any more-qualified variants of
2647/// that type. For example, if @p Ty is "int const *", this routine
2648/// will add "int const *", "int const volatile *", "int const
2649/// restrict *", and "int const volatile restrict *" to the set of
2650/// pointer types. Returns true if the add of @p Ty itself succeeded,
2651/// false otherwise.
2652bool
2653BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2654 QualType Ty) {
2655 // Insert this type.
2656 if (!MemberPointerTypes.insert(Ty))
2657 return false;
2658
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002659 if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
Sebastian Redl674d1b72009-04-19 21:53:20 +00002660 QualType PointeeTy = PointerTy->getPointeeType();
2661 const Type *ClassTy = PointerTy->getClass();
2662 // FIXME: Optimize this so that we don't keep trying to add the same types.
2663
2664 if (!PointeeTy.isConstQualified())
2665 AddMemberPointerWithMoreQualifiedTypeVariants
2666 (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2667 if (!PointeeTy.isVolatileQualified())
2668 AddMemberPointerWithMoreQualifiedTypeVariants
2669 (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2670 if (!PointeeTy.isRestrictQualified())
2671 AddMemberPointerWithMoreQualifiedTypeVariants
2672 (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2673 }
2674
2675 return true;
2676}
2677
Douglas Gregor70d26122008-11-12 17:17:38 +00002678/// AddTypesConvertedFrom - Add each of the types to which the type @p
2679/// Ty can be implicit converted to the given set of @p Types. We're
Sebastian Redl674d1b72009-04-19 21:53:20 +00002680/// primarily interested in pointer types and enumeration types. We also
2681/// take member pointer types, for the conditional operator.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002682/// AllowUserConversions is true if we should look at the conversion
2683/// functions of a class type, and AllowExplicitConversions if we
2684/// should also include the explicit conversion functions of a class
2685/// type.
2686void
2687BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2688 bool AllowUserConversions,
2689 bool AllowExplicitConversions) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002690 // Only deal with canonical types.
2691 Ty = Context.getCanonicalType(Ty);
2692
2693 // Look through reference types; they aren't part of the type of an
2694 // expression for the purposes of conversions.
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002695 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
Douglas Gregor70d26122008-11-12 17:17:38 +00002696 Ty = RefTy->getPointeeType();
2697
2698 // We don't care about qualifiers on the type.
2699 Ty = Ty.getUnqualifiedType();
2700
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002701 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002702 QualType PointeeTy = PointerTy->getPointeeType();
2703
2704 // Insert our type, and its more-qualified variants, into the set
2705 // of types.
Sebastian Redl674d1b72009-04-19 21:53:20 +00002706 if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
Douglas Gregor70d26122008-11-12 17:17:38 +00002707 return;
2708
2709 // Add 'cv void*' to our set of types.
2710 if (!Ty->isVoidType()) {
2711 QualType QualVoid
2712 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
Sebastian Redl674d1b72009-04-19 21:53:20 +00002713 AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
Douglas Gregor70d26122008-11-12 17:17:38 +00002714 }
2715
2716 // If this is a pointer to a class type, add pointers to its bases
2717 // (with the same level of cv-qualification as the original
2718 // derived class, of course).
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002719 if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002720 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2721 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2722 Base != ClassDecl->bases_end(); ++Base) {
2723 QualType BaseTy = Context.getCanonicalType(Base->getType());
2724 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2725
2726 // Add the pointer type, recursively, so that we get all of
2727 // the indirect base classes, too.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002728 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregor70d26122008-11-12 17:17:38 +00002729 }
2730 }
Sebastian Redl674d1b72009-04-19 21:53:20 +00002731 } else if (Ty->isMemberPointerType()) {
2732 // Member pointers are far easier, since the pointee can't be converted.
2733 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2734 return;
Douglas Gregor70d26122008-11-12 17:17:38 +00002735 } else if (Ty->isEnumeralType()) {
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002736 EnumerationTypes.insert(Ty);
Douglas Gregor70d26122008-11-12 17:17:38 +00002737 } else if (AllowUserConversions) {
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002738 if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002739 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2740 // FIXME: Visit conversion functions in the base classes, too.
2741 OverloadedFunctionDecl *Conversions
2742 = ClassDecl->getConversionFunctions();
2743 for (OverloadedFunctionDecl::function_iterator Func
2744 = Conversions->function_begin();
2745 Func != Conversions->function_end(); ++Func) {
2746 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002747 if (AllowExplicitConversions || !Conv->isExplicit())
2748 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregor70d26122008-11-12 17:17:38 +00002749 }
2750 }
2751 }
2752}
2753
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002754/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2755/// operator overloads to the candidate set (C++ [over.built]), based
2756/// on the operator @p Op and the arguments given. For example, if the
2757/// operator is a binary '+', this routine might add "int
2758/// operator+(int, int)" to cover integer addition.
Douglas Gregor70d26122008-11-12 17:17:38 +00002759void
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002760Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2761 Expr **Args, unsigned NumArgs,
2762 OverloadCandidateSet& CandidateSet) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002763 // The set of "promoted arithmetic types", which are the arithmetic
2764 // types are that preserved by promotion (C++ [over.built]p2). Note
2765 // that the first few of these types are the promoted integral
2766 // types; these types need to be first.
2767 // FIXME: What about complex?
2768 const unsigned FirstIntegralType = 0;
2769 const unsigned LastIntegralType = 13;
2770 const unsigned FirstPromotedIntegralType = 7,
2771 LastPromotedIntegralType = 13;
2772 const unsigned FirstPromotedArithmeticType = 7,
2773 LastPromotedArithmeticType = 16;
2774 const unsigned NumArithmeticTypes = 16;
2775 QualType ArithmeticTypes[NumArithmeticTypes] = {
Alisdair Meredith2bcacb62009-07-14 06:30:34 +00002776 Context.BoolTy, Context.CharTy, Context.WCharTy,
2777// Context.Char16Ty, Context.Char32Ty,
Douglas Gregor70d26122008-11-12 17:17:38 +00002778 Context.SignedCharTy, Context.ShortTy,
2779 Context.UnsignedCharTy, Context.UnsignedShortTy,
2780 Context.IntTy, Context.LongTy, Context.LongLongTy,
2781 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2782 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2783 };
2784
2785 // Find all of the types that the arguments can convert to, but only
2786 // if the operator we're looking at has built-in operator candidates
2787 // that make use of these types.
2788 BuiltinCandidateTypeSet CandidateTypes(Context);
2789 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2790 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002791 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregor70d26122008-11-12 17:17:38 +00002792 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002793 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
Sebastian Redlbd261962009-04-16 17:51:27 +00002794 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002795 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002796 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2797 true,
2798 (Op == OO_Exclaim ||
2799 Op == OO_AmpAmp ||
2800 Op == OO_PipePipe));
Douglas Gregor70d26122008-11-12 17:17:38 +00002801 }
2802
2803 bool isComparison = false;
2804 switch (Op) {
2805 case OO_None:
2806 case NUM_OVERLOADED_OPERATORS:
2807 assert(false && "Expected an overloaded operator");
2808 break;
2809
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002810 case OO_Star: // '*' is either unary or binary
2811 if (NumArgs == 1)
2812 goto UnaryStar;
2813 else
2814 goto BinaryStar;
2815 break;
2816
2817 case OO_Plus: // '+' is either unary or binary
2818 if (NumArgs == 1)
2819 goto UnaryPlus;
2820 else
2821 goto BinaryPlus;
2822 break;
2823
2824 case OO_Minus: // '-' is either unary or binary
2825 if (NumArgs == 1)
2826 goto UnaryMinus;
2827 else
2828 goto BinaryMinus;
2829 break;
2830
2831 case OO_Amp: // '&' is either unary or binary
2832 if (NumArgs == 1)
2833 goto UnaryAmp;
2834 else
2835 goto BinaryAmp;
2836
2837 case OO_PlusPlus:
2838 case OO_MinusMinus:
2839 // C++ [over.built]p3:
2840 //
2841 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2842 // is either volatile or empty, there exist candidate operator
2843 // functions of the form
2844 //
2845 // VQ T& operator++(VQ T&);
2846 // T operator++(VQ T&, int);
2847 //
2848 // C++ [over.built]p4:
2849 //
2850 // For every pair (T, VQ), where T is an arithmetic type other
2851 // than bool, and VQ is either volatile or empty, there exist
2852 // candidate operator functions of the form
2853 //
2854 // VQ T& operator--(VQ T&);
2855 // T operator--(VQ T&, int);
2856 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2857 Arith < NumArithmeticTypes; ++Arith) {
2858 QualType ArithTy = ArithmeticTypes[Arith];
2859 QualType ParamTypes[2]
Sebastian Redlce6fff02009-03-16 23:22:08 +00002860 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002861
2862 // Non-volatile version.
2863 if (NumArgs == 1)
2864 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2865 else
2866 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2867
2868 // Volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00002869 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002870 if (NumArgs == 1)
2871 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2872 else
2873 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2874 }
2875
2876 // C++ [over.built]p5:
2877 //
2878 // For every pair (T, VQ), where T is a cv-qualified or
2879 // cv-unqualified object type, and VQ is either volatile or
2880 // empty, there exist candidate operator functions of the form
2881 //
2882 // T*VQ& operator++(T*VQ&);
2883 // T*VQ& operator--(T*VQ&);
2884 // T* operator++(T*VQ&, int);
2885 // T* operator--(T*VQ&, int);
2886 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2887 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2888 // Skip pointer types that aren't pointers to object types.
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002889 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002890 continue;
2891
2892 QualType ParamTypes[2] = {
Sebastian Redlce6fff02009-03-16 23:22:08 +00002893 Context.getLValueReferenceType(*Ptr), Context.IntTy
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002894 };
2895
2896 // Without volatile
2897 if (NumArgs == 1)
2898 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2899 else
2900 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2901
2902 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2903 // With volatile
Sebastian Redlce6fff02009-03-16 23:22:08 +00002904 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002905 if (NumArgs == 1)
2906 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2907 else
2908 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2909 }
2910 }
2911 break;
2912
2913 UnaryStar:
2914 // C++ [over.built]p6:
2915 // For every cv-qualified or cv-unqualified object type T, there
2916 // exist candidate operator functions of the form
2917 //
2918 // T& operator*(T*);
2919 //
2920 // C++ [over.built]p7:
2921 // For every function type T, there exist candidate operator
2922 // functions of the form
2923 // T& operator*(T*);
2924 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2925 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2926 QualType ParamTy = *Ptr;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002927 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00002928 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002929 &ParamTy, Args, 1, CandidateSet);
2930 }
2931 break;
2932
2933 UnaryPlus:
2934 // C++ [over.built]p8:
2935 // For every type T, there exist candidate operator functions of
2936 // the form
2937 //
2938 // T* operator+(T*);
2939 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2940 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2941 QualType ParamTy = *Ptr;
2942 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2943 }
2944
2945 // Fall through
2946
2947 UnaryMinus:
2948 // C++ [over.built]p9:
2949 // For every promoted arithmetic type T, there exist candidate
2950 // operator functions of the form
2951 //
2952 // T operator+(T);
2953 // T operator-(T);
2954 for (unsigned Arith = FirstPromotedArithmeticType;
2955 Arith < LastPromotedArithmeticType; ++Arith) {
2956 QualType ArithTy = ArithmeticTypes[Arith];
2957 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2958 }
2959 break;
2960
2961 case OO_Tilde:
2962 // C++ [over.built]p10:
2963 // For every promoted integral type T, there exist candidate
2964 // operator functions of the form
2965 //
2966 // T operator~(T);
2967 for (unsigned Int = FirstPromotedIntegralType;
2968 Int < LastPromotedIntegralType; ++Int) {
2969 QualType IntTy = ArithmeticTypes[Int];
2970 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2971 }
2972 break;
2973
Douglas Gregor70d26122008-11-12 17:17:38 +00002974 case OO_New:
2975 case OO_Delete:
2976 case OO_Array_New:
2977 case OO_Array_Delete:
Douglas Gregor70d26122008-11-12 17:17:38 +00002978 case OO_Call:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002979 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregor70d26122008-11-12 17:17:38 +00002980 break;
2981
2982 case OO_Comma:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002983 UnaryAmp:
2984 case OO_Arrow:
Douglas Gregor70d26122008-11-12 17:17:38 +00002985 // C++ [over.match.oper]p3:
2986 // -- For the operator ',', the unary operator '&', or the
2987 // operator '->', the built-in candidates set is empty.
Douglas Gregor70d26122008-11-12 17:17:38 +00002988 break;
2989
2990 case OO_Less:
2991 case OO_Greater:
2992 case OO_LessEqual:
2993 case OO_GreaterEqual:
2994 case OO_EqualEqual:
2995 case OO_ExclaimEqual:
2996 // C++ [over.built]p15:
2997 //
2998 // For every pointer or enumeration type T, there exist
2999 // candidate operator functions of the form
3000 //
3001 // bool operator<(T, T);
3002 // bool operator>(T, T);
3003 // bool operator<=(T, T);
3004 // bool operator>=(T, T);
3005 // bool operator==(T, T);
3006 // bool operator!=(T, T);
3007 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3008 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3009 QualType ParamTypes[2] = { *Ptr, *Ptr };
3010 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3011 }
3012 for (BuiltinCandidateTypeSet::iterator Enum
3013 = CandidateTypes.enumeration_begin();
3014 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3015 QualType ParamTypes[2] = { *Enum, *Enum };
3016 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3017 }
3018
3019 // Fall through.
3020 isComparison = true;
3021
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003022 BinaryPlus:
3023 BinaryMinus:
Douglas Gregor70d26122008-11-12 17:17:38 +00003024 if (!isComparison) {
3025 // We didn't fall through, so we must have OO_Plus or OO_Minus.
3026
3027 // C++ [over.built]p13:
3028 //
3029 // For every cv-qualified or cv-unqualified object type T
3030 // there exist candidate operator functions of the form
3031 //
3032 // T* operator+(T*, ptrdiff_t);
3033 // T& operator[](T*, ptrdiff_t); [BELOW]
3034 // T* operator-(T*, ptrdiff_t);
3035 // T* operator+(ptrdiff_t, T*);
3036 // T& operator[](ptrdiff_t, T*); [BELOW]
3037 //
3038 // C++ [over.built]p14:
3039 //
3040 // For every T, where T is a pointer to object type, there
3041 // exist candidate operator functions of the form
3042 //
3043 // ptrdiff_t operator-(T, T);
3044 for (BuiltinCandidateTypeSet::iterator Ptr
3045 = CandidateTypes.pointer_begin();
3046 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3047 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3048
3049 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3050 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3051
3052 if (Op == OO_Plus) {
3053 // T* operator+(ptrdiff_t, T*);
3054 ParamTypes[0] = ParamTypes[1];
3055 ParamTypes[1] = *Ptr;
3056 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3057 } else {
3058 // ptrdiff_t operator-(T, T);
3059 ParamTypes[1] = *Ptr;
3060 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3061 Args, 2, CandidateSet);
3062 }
3063 }
3064 }
3065 // Fall through
3066
Douglas Gregor70d26122008-11-12 17:17:38 +00003067 case OO_Slash:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003068 BinaryStar:
Sebastian Redlbd261962009-04-16 17:51:27 +00003069 Conditional:
Douglas Gregor70d26122008-11-12 17:17:38 +00003070 // C++ [over.built]p12:
3071 //
3072 // For every pair of promoted arithmetic types L and R, there
3073 // exist candidate operator functions of the form
3074 //
3075 // LR operator*(L, R);
3076 // LR operator/(L, R);
3077 // LR operator+(L, R);
3078 // LR operator-(L, R);
3079 // bool operator<(L, R);
3080 // bool operator>(L, R);
3081 // bool operator<=(L, R);
3082 // bool operator>=(L, R);
3083 // bool operator==(L, R);
3084 // bool operator!=(L, R);
3085 //
3086 // where LR is the result of the usual arithmetic conversions
3087 // between types L and R.
Sebastian Redlbd261962009-04-16 17:51:27 +00003088 //
3089 // C++ [over.built]p24:
3090 //
3091 // For every pair of promoted arithmetic types L and R, there exist
3092 // candidate operator functions of the form
3093 //
3094 // LR operator?(bool, L, R);
3095 //
3096 // where LR is the result of the usual arithmetic conversions
3097 // between types L and R.
3098 // Our candidates ignore the first parameter.
Douglas Gregor70d26122008-11-12 17:17:38 +00003099 for (unsigned Left = FirstPromotedArithmeticType;
3100 Left < LastPromotedArithmeticType; ++Left) {
3101 for (unsigned Right = FirstPromotedArithmeticType;
3102 Right < LastPromotedArithmeticType; ++Right) {
3103 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
Eli Friedman6ae7d112009-08-19 07:44:53 +00003104 QualType Result
3105 = isComparison
3106 ? Context.BoolTy
3107 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003108 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3109 }
3110 }
3111 break;
3112
3113 case OO_Percent:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003114 BinaryAmp:
Douglas Gregor70d26122008-11-12 17:17:38 +00003115 case OO_Caret:
3116 case OO_Pipe:
3117 case OO_LessLess:
3118 case OO_GreaterGreater:
3119 // C++ [over.built]p17:
3120 //
3121 // For every pair of promoted integral types L and R, there
3122 // exist candidate operator functions of the form
3123 //
3124 // LR operator%(L, R);
3125 // LR operator&(L, R);
3126 // LR operator^(L, R);
3127 // LR operator|(L, R);
3128 // L operator<<(L, R);
3129 // L operator>>(L, R);
3130 //
3131 // where LR is the result of the usual arithmetic conversions
3132 // between types L and R.
3133 for (unsigned Left = FirstPromotedIntegralType;
3134 Left < LastPromotedIntegralType; ++Left) {
3135 for (unsigned Right = FirstPromotedIntegralType;
3136 Right < LastPromotedIntegralType; ++Right) {
3137 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3138 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3139 ? LandR[0]
Eli Friedman6ae7d112009-08-19 07:44:53 +00003140 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003141 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3142 }
3143 }
3144 break;
3145
3146 case OO_Equal:
3147 // C++ [over.built]p20:
3148 //
3149 // For every pair (T, VQ), where T is an enumeration or
3150 // (FIXME:) pointer to member type and VQ is either volatile or
3151 // empty, there exist candidate operator functions of the form
3152 //
3153 // VQ T& operator=(VQ T&, T);
3154 for (BuiltinCandidateTypeSet::iterator Enum
3155 = CandidateTypes.enumeration_begin();
3156 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3157 QualType ParamTypes[2];
3158
3159 // T& operator=(T&, T)
Sebastian Redlce6fff02009-03-16 23:22:08 +00003160 ParamTypes[0] = Context.getLValueReferenceType(*Enum);
Douglas Gregor70d26122008-11-12 17:17:38 +00003161 ParamTypes[1] = *Enum;
Douglas Gregorab141112009-01-13 00:52:54 +00003162 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003163 /*IsAssignmentOperator=*/false);
Douglas Gregor70d26122008-11-12 17:17:38 +00003164
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003165 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3166 // volatile T& operator=(volatile T&, T)
Sebastian Redlce6fff02009-03-16 23:22:08 +00003167 ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003168 ParamTypes[1] = *Enum;
Douglas Gregorab141112009-01-13 00:52:54 +00003169 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003170 /*IsAssignmentOperator=*/false);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003171 }
Douglas Gregor70d26122008-11-12 17:17:38 +00003172 }
3173 // Fall through.
3174
3175 case OO_PlusEqual:
3176 case OO_MinusEqual:
3177 // C++ [over.built]p19:
3178 //
3179 // For every pair (T, VQ), where T is any type and VQ is either
3180 // volatile or empty, there exist candidate operator functions
3181 // of the form
3182 //
3183 // T*VQ& operator=(T*VQ&, T*);
3184 //
3185 // C++ [over.built]p21:
3186 //
3187 // For every pair (T, VQ), where T is a cv-qualified or
3188 // cv-unqualified object type and VQ is either volatile or
3189 // empty, there exist candidate operator functions of the form
3190 //
3191 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3192 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3193 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3194 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3195 QualType ParamTypes[2];
3196 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3197
3198 // non-volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00003199 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
Douglas Gregorab141112009-01-13 00:52:54 +00003200 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3201 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003202
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003203 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3204 // volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00003205 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregorab141112009-01-13 00:52:54 +00003206 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3207 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003208 }
Douglas Gregor70d26122008-11-12 17:17:38 +00003209 }
3210 // Fall through.
3211
3212 case OO_StarEqual:
3213 case OO_SlashEqual:
3214 // C++ [over.built]p18:
3215 //
3216 // For every triple (L, VQ, R), where L is an arithmetic type,
3217 // VQ is either volatile or empty, and R is a promoted
3218 // arithmetic type, there exist candidate operator functions of
3219 // the form
3220 //
3221 // VQ L& operator=(VQ L&, R);
3222 // VQ L& operator*=(VQ L&, R);
3223 // VQ L& operator/=(VQ L&, R);
3224 // VQ L& operator+=(VQ L&, R);
3225 // VQ L& operator-=(VQ L&, R);
3226 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3227 for (unsigned Right = FirstPromotedArithmeticType;
3228 Right < LastPromotedArithmeticType; ++Right) {
3229 QualType ParamTypes[2];
3230 ParamTypes[1] = ArithmeticTypes[Right];
3231
3232 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redlce6fff02009-03-16 23:22:08 +00003233 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregorab141112009-01-13 00:52:54 +00003234 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3235 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003236
3237 // Add this built-in operator as a candidate (VQ is 'volatile').
3238 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003239 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregorab141112009-01-13 00:52:54 +00003240 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3241 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003242 }
3243 }
3244 break;
3245
3246 case OO_PercentEqual:
3247 case OO_LessLessEqual:
3248 case OO_GreaterGreaterEqual:
3249 case OO_AmpEqual:
3250 case OO_CaretEqual:
3251 case OO_PipeEqual:
3252 // C++ [over.built]p22:
3253 //
3254 // For every triple (L, VQ, R), where L is an integral type, VQ
3255 // is either volatile or empty, and R is a promoted integral
3256 // type, there exist candidate operator functions of the form
3257 //
3258 // VQ L& operator%=(VQ L&, R);
3259 // VQ L& operator<<=(VQ L&, R);
3260 // VQ L& operator>>=(VQ L&, R);
3261 // VQ L& operator&=(VQ L&, R);
3262 // VQ L& operator^=(VQ L&, R);
3263 // VQ L& operator|=(VQ L&, R);
3264 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3265 for (unsigned Right = FirstPromotedIntegralType;
3266 Right < LastPromotedIntegralType; ++Right) {
3267 QualType ParamTypes[2];
3268 ParamTypes[1] = ArithmeticTypes[Right];
3269
3270 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redlce6fff02009-03-16 23:22:08 +00003271 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003272 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3273
3274 // Add this built-in operator as a candidate (VQ is 'volatile').
3275 ParamTypes[0] = ArithmeticTypes[Left];
3276 ParamTypes[0].addVolatile();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003277 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003278 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3279 }
3280 }
3281 break;
3282
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003283 case OO_Exclaim: {
3284 // C++ [over.operator]p23:
3285 //
3286 // There also exist candidate operator functions of the form
3287 //
3288 // bool operator!(bool);
3289 // bool operator&&(bool, bool); [BELOW]
3290 // bool operator||(bool, bool); [BELOW]
3291 QualType ParamTy = Context.BoolTy;
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003292 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3293 /*IsAssignmentOperator=*/false,
3294 /*NumContextualBoolArguments=*/1);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003295 break;
3296 }
3297
Douglas Gregor70d26122008-11-12 17:17:38 +00003298 case OO_AmpAmp:
3299 case OO_PipePipe: {
3300 // C++ [over.operator]p23:
3301 //
3302 // There also exist candidate operator functions of the form
3303 //
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003304 // bool operator!(bool); [ABOVE]
Douglas Gregor70d26122008-11-12 17:17:38 +00003305 // bool operator&&(bool, bool);
3306 // bool operator||(bool, bool);
3307 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003308 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3309 /*IsAssignmentOperator=*/false,
3310 /*NumContextualBoolArguments=*/2);
Douglas Gregor70d26122008-11-12 17:17:38 +00003311 break;
3312 }
3313
3314 case OO_Subscript:
3315 // C++ [over.built]p13:
3316 //
3317 // For every cv-qualified or cv-unqualified object type T there
3318 // exist candidate operator functions of the form
3319 //
3320 // T* operator+(T*, ptrdiff_t); [ABOVE]
3321 // T& operator[](T*, ptrdiff_t);
3322 // T* operator-(T*, ptrdiff_t); [ABOVE]
3323 // T* operator+(ptrdiff_t, T*); [ABOVE]
3324 // T& operator[](ptrdiff_t, T*);
3325 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3326 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3327 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003328 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003329 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
Douglas Gregor70d26122008-11-12 17:17:38 +00003330
3331 // T& operator[](T*, ptrdiff_t)
3332 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3333
3334 // T& operator[](ptrdiff_t, T*);
3335 ParamTypes[0] = ParamTypes[1];
3336 ParamTypes[1] = *Ptr;
3337 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3338 }
3339 break;
3340
3341 case OO_ArrowStar:
3342 // FIXME: No support for pointer-to-members yet.
3343 break;
Sebastian Redlbd261962009-04-16 17:51:27 +00003344
3345 case OO_Conditional:
3346 // Note that we don't consider the first argument, since it has been
3347 // contextually converted to bool long ago. The candidates below are
3348 // therefore added as binary.
3349 //
3350 // C++ [over.built]p24:
3351 // For every type T, where T is a pointer or pointer-to-member type,
3352 // there exist candidate operator functions of the form
3353 //
3354 // T operator?(bool, T, T);
3355 //
Sebastian Redlbd261962009-04-16 17:51:27 +00003356 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3357 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3358 QualType ParamTypes[2] = { *Ptr, *Ptr };
3359 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3360 }
Sebastian Redl674d1b72009-04-19 21:53:20 +00003361 for (BuiltinCandidateTypeSet::iterator Ptr =
3362 CandidateTypes.member_pointer_begin(),
3363 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3364 QualType ParamTypes[2] = { *Ptr, *Ptr };
3365 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3366 }
Sebastian Redlbd261962009-04-16 17:51:27 +00003367 goto Conditional;
Douglas Gregor70d26122008-11-12 17:17:38 +00003368 }
3369}
3370
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003371/// \brief Add function candidates found via argument-dependent lookup
3372/// to the set of overloading candidates.
3373///
3374/// This routine performs argument-dependent name lookup based on the
3375/// given function name (which may also be an operator name) and adds
3376/// all of the overload candidates found by ADL to the overload
3377/// candidate set (C++ [basic.lookup.argdep]).
3378void
3379Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3380 Expr **Args, unsigned NumArgs,
3381 OverloadCandidateSet& CandidateSet) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003382 FunctionSet Functions;
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003383
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003384 // Record all of the function candidates that we've already
3385 // added to the overload set, so that we don't add those same
3386 // candidates a second time.
3387 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3388 CandEnd = CandidateSet.end();
3389 Cand != CandEnd; ++Cand)
Douglas Gregor993a0602009-06-27 21:05:07 +00003390 if (Cand->Function) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003391 Functions.insert(Cand->Function);
Douglas Gregor993a0602009-06-27 21:05:07 +00003392 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3393 Functions.insert(FunTmpl);
3394 }
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003395
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003396 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003397
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003398 // Erase all of the candidates we already knew about.
3399 // FIXME: This is suboptimal. Is there a better way?
3400 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3401 CandEnd = CandidateSet.end();
3402 Cand != CandEnd; ++Cand)
Douglas Gregor993a0602009-06-27 21:05:07 +00003403 if (Cand->Function) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003404 Functions.erase(Cand->Function);
Douglas Gregor993a0602009-06-27 21:05:07 +00003405 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3406 Functions.erase(FunTmpl);
3407 }
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003408
3409 // For each of the ADL candidates we found, add it to the overload
3410 // set.
3411 for (FunctionSet::iterator Func = Functions.begin(),
3412 FuncEnd = Functions.end();
Douglas Gregor993a0602009-06-27 21:05:07 +00003413 Func != FuncEnd; ++Func) {
3414 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3415 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3416 else
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003417 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3418 /*FIXME: explicit args */false, 0, 0,
3419 Args, NumArgs, CandidateSet);
Douglas Gregor993a0602009-06-27 21:05:07 +00003420 }
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003421}
3422
Douglas Gregord2baafd2008-10-21 16:13:35 +00003423/// isBetterOverloadCandidate - Determines whether the first overload
3424/// candidate is a better candidate than the second (C++ 13.3.3p1).
3425bool
3426Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3427 const OverloadCandidate& Cand2)
3428{
3429 // Define viable functions to be better candidates than non-viable
3430 // functions.
3431 if (!Cand2.Viable)
3432 return Cand1.Viable;
3433 else if (!Cand1.Viable)
3434 return false;
3435
Douglas Gregor3257fb52008-12-22 05:46:06 +00003436 // C++ [over.match.best]p1:
3437 //
3438 // -- if F is a static member function, ICS1(F) is defined such
3439 // that ICS1(F) is neither better nor worse than ICS1(G) for
3440 // any function G, and, symmetrically, ICS1(G) is neither
3441 // better nor worse than ICS1(F).
3442 unsigned StartArg = 0;
3443 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3444 StartArg = 1;
Douglas Gregord2baafd2008-10-21 16:13:35 +00003445
Douglas Gregor8aef85a2009-07-07 23:38:56 +00003446 // C++ [over.match.best]p1:
3447 // A viable function F1 is defined to be a better function than another
3448 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
3449 // conversion sequence than ICSi(F2), and then...
Douglas Gregord2baafd2008-10-21 16:13:35 +00003450 unsigned NumArgs = Cand1.Conversions.size();
3451 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3452 bool HasBetterConversion = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00003453 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00003454 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3455 Cand2.Conversions[ArgIdx])) {
3456 case ImplicitConversionSequence::Better:
3457 // Cand1 has a better conversion sequence.
3458 HasBetterConversion = true;
3459 break;
3460
3461 case ImplicitConversionSequence::Worse:
3462 // Cand1 can't be better than Cand2.
3463 return false;
3464
3465 case ImplicitConversionSequence::Indistinguishable:
3466 // Do nothing.
3467 break;
3468 }
3469 }
3470
Douglas Gregor8aef85a2009-07-07 23:38:56 +00003471 // -- for some argument j, ICSj(F1) is a better conversion sequence than
3472 // ICSj(F2), or, if not that,
Douglas Gregord2baafd2008-10-21 16:13:35 +00003473 if (HasBetterConversion)
3474 return true;
3475
Douglas Gregor8aef85a2009-07-07 23:38:56 +00003476 // - F1 is a non-template function and F2 is a function template
3477 // specialization, or, if not that,
3478 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3479 Cand2.Function && Cand2.Function->getPrimaryTemplate())
3480 return true;
3481
3482 // -- F1 and F2 are function template specializations, and the function
3483 // template for F1 is more specialized than the template for F2
3484 // according to the partial ordering rules described in 14.5.5.2, or,
3485 // if not that,
Douglas Gregorf8e51672009-08-02 23:46:29 +00003486 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3487 Cand2.Function && Cand2.Function->getPrimaryTemplate())
3488 // FIXME: Implement partial ordering of function templates.
3489 Diag(SourceLocation(), diag::unsup_function_template_partial_ordering);
Douglas Gregord2baafd2008-10-21 16:13:35 +00003490
Douglas Gregor60714f92008-11-07 22:36:19 +00003491 // -- the context is an initialization by user-defined conversion
3492 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3493 // from the return type of F1 to the destination type (i.e.,
3494 // the type of the entity being initialized) is a better
3495 // conversion sequence than the standard conversion sequence
3496 // from the return type of F2 to the destination type.
Douglas Gregor849ea9c2008-11-19 03:25:36 +00003497 if (Cand1.Function && Cand2.Function &&
3498 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregor60714f92008-11-07 22:36:19 +00003499 isa<CXXConversionDecl>(Cand2.Function)) {
3500 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3501 Cand2.FinalConversion)) {
3502 case ImplicitConversionSequence::Better:
3503 // Cand1 has a better conversion sequence.
3504 return true;
3505
3506 case ImplicitConversionSequence::Worse:
3507 // Cand1 can't be better than Cand2.
3508 return false;
3509
3510 case ImplicitConversionSequence::Indistinguishable:
3511 // Do nothing
3512 break;
3513 }
3514 }
3515
Douglas Gregord2baafd2008-10-21 16:13:35 +00003516 return false;
3517}
3518
Douglas Gregor98189262009-06-19 23:52:42 +00003519/// \brief Computes the best viable function (C++ 13.3.3)
3520/// within an overload candidate set.
3521///
3522/// \param CandidateSet the set of candidate functions.
3523///
3524/// \param Loc the location of the function name (or operator symbol) for
3525/// which overload resolution occurs.
3526///
3527/// \param Best f overload resolution was successful or found a deleted
3528/// function, Best points to the candidate function found.
3529///
3530/// \returns The result of overload resolution.
Douglas Gregord2baafd2008-10-21 16:13:35 +00003531Sema::OverloadingResult
3532Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
Douglas Gregor98189262009-06-19 23:52:42 +00003533 SourceLocation Loc,
Douglas Gregord2baafd2008-10-21 16:13:35 +00003534 OverloadCandidateSet::iterator& Best)
3535{
3536 // Find the best viable function.
3537 Best = CandidateSet.end();
3538 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3539 Cand != CandidateSet.end(); ++Cand) {
3540 if (Cand->Viable) {
3541 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3542 Best = Cand;
3543 }
3544 }
3545
3546 // If we didn't find any viable functions, abort.
3547 if (Best == CandidateSet.end())
3548 return OR_No_Viable_Function;
3549
3550 // Make sure that this function is better than every other viable
3551 // function. If not, we have an ambiguity.
3552 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3553 Cand != CandidateSet.end(); ++Cand) {
3554 if (Cand->Viable &&
3555 Cand != Best &&
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003556 !isBetterOverloadCandidate(*Best, *Cand)) {
3557 Best = CandidateSet.end();
Douglas Gregord2baafd2008-10-21 16:13:35 +00003558 return OR_Ambiguous;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003559 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00003560 }
3561
3562 // Best is the best viable function.
Douglas Gregoraa57e862009-02-18 21:56:37 +00003563 if (Best->Function &&
3564 (Best->Function->isDeleted() ||
Argiris Kirtzidisfe5f9732009-06-30 02:34:44 +00003565 Best->Function->getAttr<UnavailableAttr>()))
Douglas Gregoraa57e862009-02-18 21:56:37 +00003566 return OR_Deleted;
3567
Douglas Gregor98189262009-06-19 23:52:42 +00003568 // C++ [basic.def.odr]p2:
3569 // An overloaded function is used if it is selected by overload resolution
3570 // when referred to from a potentially-evaluated expression. [Note: this
3571 // covers calls to named functions (5.2.2), operator overloading
3572 // (clause 13), user-defined conversions (12.3.2), allocation function for
3573 // placement new (5.3.4), as well as non-default initialization (8.5).
3574 if (Best->Function)
3575 MarkDeclarationReferenced(Loc, Best->Function);
Douglas Gregord2baafd2008-10-21 16:13:35 +00003576 return OR_Success;
3577}
3578
3579/// PrintOverloadCandidates - When overload resolution fails, prints
3580/// diagnostic messages containing the candidates in the candidate
3581/// set. If OnlyViable is true, only viable candidates will be printed.
3582void
3583Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3584 bool OnlyViable)
3585{
3586 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3587 LastCand = CandidateSet.end();
3588 for (; Cand != LastCand; ++Cand) {
Douglas Gregor70d26122008-11-12 17:17:38 +00003589 if (Cand->Viable || !OnlyViable) {
3590 if (Cand->Function) {
Douglas Gregoraa57e862009-02-18 21:56:37 +00003591 if (Cand->Function->isDeleted() ||
Argiris Kirtzidisfe5f9732009-06-30 02:34:44 +00003592 Cand->Function->getAttr<UnavailableAttr>()) {
Douglas Gregoraa57e862009-02-18 21:56:37 +00003593 // Deleted or "unavailable" function.
3594 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3595 << Cand->Function->isDeleted();
3596 } else {
3597 // Normal function
3598 // FIXME: Give a better reason!
3599 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3600 }
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003601 } else if (Cand->IsSurrogate) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003602 // Desugar the type of the surrogate down to a function type,
3603 // retaining as many typedefs as possible while still showing
3604 // the function type (and, therefore, its parameter types).
3605 QualType FnType = Cand->Surrogate->getConversionType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003606 bool isLValueReference = false;
3607 bool isRValueReference = false;
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003608 bool isPointer = false;
Sebastian Redlce6fff02009-03-16 23:22:08 +00003609 if (const LValueReferenceType *FnTypeRef =
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003610 FnType->getAs<LValueReferenceType>()) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003611 FnType = FnTypeRef->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003612 isLValueReference = true;
3613 } else if (const RValueReferenceType *FnTypeRef =
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003614 FnType->getAs<RValueReferenceType>()) {
Sebastian Redlce6fff02009-03-16 23:22:08 +00003615 FnType = FnTypeRef->getPointeeType();
3616 isRValueReference = true;
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003617 }
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003618 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003619 FnType = FnTypePtr->getPointeeType();
3620 isPointer = true;
3621 }
3622 // Desugar down to a function type.
3623 FnType = QualType(FnType->getAsFunctionType(), 0);
3624 // Reconstruct the pointer/reference as appropriate.
3625 if (isPointer) FnType = Context.getPointerType(FnType);
Sebastian Redlce6fff02009-03-16 23:22:08 +00003626 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3627 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003628
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003629 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003630 << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00003631 } else {
3632 // FIXME: We need to get the identifier in here
Mike Stumpe127ae32009-05-16 07:39:55 +00003633 // FIXME: Do we want the error message to point at the operator?
3634 // (built-ins won't have a location)
Douglas Gregor70d26122008-11-12 17:17:38 +00003635 QualType FnType
3636 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3637 Cand->BuiltinTypes.ParamTypes,
3638 Cand->Conversions.size(),
3639 false, 0);
3640
Chris Lattner4bfd2232008-11-24 06:25:27 +00003641 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00003642 }
3643 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00003644 }
3645}
3646
Douglas Gregor45014fd2008-11-10 20:40:00 +00003647/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3648/// an overloaded function (C++ [over.over]), where @p From is an
3649/// expression with overloaded function type and @p ToType is the type
3650/// we're trying to resolve to. For example:
3651///
3652/// @code
3653/// int f(double);
3654/// int f(int);
3655///
3656/// int (*pfd)(double) = f; // selects f(double)
3657/// @endcode
3658///
3659/// This routine returns the resulting FunctionDecl if it could be
3660/// resolved, and NULL otherwise. When @p Complain is true, this
3661/// routine will emit diagnostics if there is an error.
3662FunctionDecl *
Sebastian Redl7434fc32009-02-04 21:23:32 +00003663Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor45014fd2008-11-10 20:40:00 +00003664 bool Complain) {
3665 QualType FunctionType = ToType;
Sebastian Redl7434fc32009-02-04 21:23:32 +00003666 bool IsMember = false;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003667 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
Douglas Gregor45014fd2008-11-10 20:40:00 +00003668 FunctionType = ToTypePtr->getPointeeType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003669 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
Daniel Dunbarf6c06ce2009-02-26 19:13:44 +00003670 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl7434fc32009-02-04 21:23:32 +00003671 else if (const MemberPointerType *MemTypePtr =
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003672 ToType->getAs<MemberPointerType>()) {
Sebastian Redl7434fc32009-02-04 21:23:32 +00003673 FunctionType = MemTypePtr->getPointeeType();
3674 IsMember = true;
3675 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003676
3677 // We only look at pointers or references to functions.
Douglas Gregor72bb4992009-07-09 17:16:51 +00003678 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
Douglas Gregor62f78762009-07-08 20:55:45 +00003679 if (!FunctionType->isFunctionType())
Douglas Gregor45014fd2008-11-10 20:40:00 +00003680 return 0;
3681
3682 // Find the actual overloaded function declaration.
3683 OverloadedFunctionDecl *Ovl = 0;
3684
3685 // C++ [over.over]p1:
3686 // [...] [Note: any redundant set of parentheses surrounding the
3687 // overloaded function name is ignored (5.1). ]
3688 Expr *OvlExpr = From->IgnoreParens();
3689
3690 // C++ [over.over]p1:
3691 // [...] The overloaded function name can be preceded by the &
3692 // operator.
3693 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3694 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3695 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3696 }
3697
3698 // Try to dig out the overloaded function.
Douglas Gregor62f78762009-07-08 20:55:45 +00003699 FunctionTemplateDecl *FunctionTemplate = 0;
3700 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
Douglas Gregor45014fd2008-11-10 20:40:00 +00003701 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
Douglas Gregor62f78762009-07-08 20:55:45 +00003702 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3703 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003704
Douglas Gregor62f78762009-07-08 20:55:45 +00003705 // If there's no overloaded function declaration or function template,
3706 // we're done.
3707 if (!Ovl && !FunctionTemplate)
Douglas Gregor45014fd2008-11-10 20:40:00 +00003708 return 0;
3709
Douglas Gregor62f78762009-07-08 20:55:45 +00003710 OverloadIterator Fun;
3711 if (Ovl)
3712 Fun = Ovl;
3713 else
3714 Fun = FunctionTemplate;
3715
Douglas Gregor45014fd2008-11-10 20:40:00 +00003716 // Look through all of the overloaded functions, searching for one
3717 // whose type matches exactly.
Douglas Gregora142a052009-07-08 23:33:52 +00003718 llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3719
3720 bool FoundNonTemplateFunction = false;
Douglas Gregor62f78762009-07-08 20:55:45 +00003721 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
Douglas Gregor45014fd2008-11-10 20:40:00 +00003722 // C++ [over.over]p3:
3723 // Non-member functions and static member functions match
Sebastian Redl3a75abf2009-02-05 12:33:33 +00003724 // targets of type "pointer-to-function" or "reference-to-function."
3725 // Nonstatic member functions match targets of
Sebastian Redl7434fc32009-02-04 21:23:32 +00003726 // type "pointer-to-member-function."
3727 // Note that according to DR 247, the containing class does not matter.
Douglas Gregor62f78762009-07-08 20:55:45 +00003728
3729 if (FunctionTemplateDecl *FunctionTemplate
3730 = dyn_cast<FunctionTemplateDecl>(*Fun)) {
Douglas Gregora142a052009-07-08 23:33:52 +00003731 if (CXXMethodDecl *Method
3732 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3733 // Skip non-static function templates when converting to pointer, and
3734 // static when converting to member pointer.
3735 if (Method->isStatic() == IsMember)
3736 continue;
3737 } else if (IsMember)
3738 continue;
3739
3740 // C++ [over.over]p2:
3741 // If the name is a function template, template argument deduction is
3742 // done (14.8.2.2), and if the argument deduction succeeds, the
3743 // resulting template argument list is used to generate a single
3744 // function template specialization, which is added to the set of
3745 // overloaded functions considered.
Douglas Gregor62f78762009-07-08 20:55:45 +00003746 FunctionDecl *Specialization = 0;
3747 TemplateDeductionInfo Info(Context);
3748 if (TemplateDeductionResult Result
3749 = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3750 /*FIXME:*/0, /*FIXME:*/0,
3751 FunctionType, Specialization, Info)) {
3752 // FIXME: make a note of the failed deduction for diagnostics.
3753 (void)Result;
3754 } else {
3755 assert(FunctionType
3756 == Context.getCanonicalType(Specialization->getType()));
Douglas Gregora142a052009-07-08 23:33:52 +00003757 Matches.insert(
Argiris Kirtzidis17c7cab2009-07-18 00:34:25 +00003758 cast<FunctionDecl>(Specialization->getCanonicalDecl()));
Douglas Gregor62f78762009-07-08 20:55:45 +00003759 }
3760 }
3761
Sebastian Redl7434fc32009-02-04 21:23:32 +00003762 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3763 // Skip non-static functions when converting to pointer, and static
3764 // when converting to member pointer.
3765 if (Method->isStatic() == IsMember)
Douglas Gregor45014fd2008-11-10 20:40:00 +00003766 continue;
Douglas Gregora142a052009-07-08 23:33:52 +00003767 } else if (IsMember)
Sebastian Redl7434fc32009-02-04 21:23:32 +00003768 continue;
Douglas Gregor45014fd2008-11-10 20:40:00 +00003769
Douglas Gregorb60eb752009-06-25 22:08:12 +00003770 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
Douglas Gregora142a052009-07-08 23:33:52 +00003771 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
Argiris Kirtzidis17c7cab2009-07-18 00:34:25 +00003772 Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
Douglas Gregora142a052009-07-08 23:33:52 +00003773 FoundNonTemplateFunction = true;
3774 }
Douglas Gregor62f78762009-07-08 20:55:45 +00003775 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003776 }
3777
Douglas Gregora142a052009-07-08 23:33:52 +00003778 // If there were 0 or 1 matches, we're done.
3779 if (Matches.empty())
3780 return 0;
3781 else if (Matches.size() == 1)
3782 return *Matches.begin();
3783
3784 // C++ [over.over]p4:
3785 // If more than one function is selected, [...]
3786 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
3787 if (FoundNonTemplateFunction) {
3788 // [...] any function template specializations in the set are eliminated
3789 // if the set also contains a non-template function, [...]
3790 for (llvm::SmallPtrSet<FunctionDecl *, 4>::iterator M = Matches.begin(),
3791 MEnd = Matches.end();
3792 M != MEnd; ++M)
3793 if ((*M)->getPrimaryTemplate() == 0)
3794 RemainingMatches.push_back(*M);
3795 } else {
3796 // [...] and any given function template specialization F1 is eliminated
3797 // if the set contains a second function template specialization whose
3798 // function template is more specialized than the function template of F1
3799 // according to the partial ordering rules of 14.5.5.2.
3800 // FIXME: Implement this!
3801 RemainingMatches.append(Matches.begin(), Matches.end());
3802 }
3803
3804 // [...] After such eliminations, if any, there shall remain exactly one
3805 // selected function.
3806 if (RemainingMatches.size() == 1)
3807 return RemainingMatches.front();
3808
3809 // FIXME: We should probably return the same thing that BestViableFunction
3810 // returns (even if we issue the diagnostics here).
3811 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
3812 << RemainingMatches[0]->getDeclName();
3813 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
3814 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
Douglas Gregor45014fd2008-11-10 20:40:00 +00003815 return 0;
3816}
3817
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003818/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003819/// (which eventually refers to the declaration Func) and the call
3820/// arguments Args/NumArgs, attempt to resolve the function call down
3821/// to a specific function. If overload resolution succeeds, returns
3822/// the function declaration produced by overload
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003823/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003824/// arguments and Fn, and returns NULL.
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003825FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003826 DeclarationName UnqualifiedName,
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003827 bool HasExplicitTemplateArgs,
3828 const TemplateArgument *ExplicitTemplateArgs,
3829 unsigned NumExplicitTemplateArgs,
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003830 SourceLocation LParenLoc,
3831 Expr **Args, unsigned NumArgs,
3832 SourceLocation *CommaLocs,
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003833 SourceLocation RParenLoc,
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003834 bool &ArgumentDependentLookup) {
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003835 OverloadCandidateSet CandidateSet;
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003836
3837 // Add the functions denoted by Callee to the set of candidate
3838 // functions. While we're doing so, track whether argument-dependent
3839 // lookup still applies, per:
3840 //
3841 // C++0x [basic.lookup.argdep]p3:
3842 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3843 // and let Y be the lookup set produced by argument dependent
3844 // lookup (defined as follows). If X contains
3845 //
3846 // -- a declaration of a class member, or
3847 //
3848 // -- a block-scope function declaration that is not a
3849 // using-declaration, or
3850 //
3851 // -- a declaration that is neither a function or a function
3852 // template
3853 //
3854 // then Y is empty.
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003855 if (OverloadedFunctionDecl *Ovl
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003856 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3857 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3858 FuncEnd = Ovl->function_end();
3859 Func != FuncEnd; ++Func) {
Douglas Gregorb60eb752009-06-25 22:08:12 +00003860 DeclContext *Ctx = 0;
3861 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003862 if (HasExplicitTemplateArgs)
3863 continue;
3864
Douglas Gregorb60eb752009-06-25 22:08:12 +00003865 AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3866 Ctx = FunDecl->getDeclContext();
3867 } else {
3868 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003869 AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
3870 ExplicitTemplateArgs,
3871 NumExplicitTemplateArgs,
3872 Args, NumArgs, CandidateSet);
Douglas Gregorb60eb752009-06-25 22:08:12 +00003873 Ctx = FunTmpl->getDeclContext();
3874 }
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003875
Douglas Gregorb60eb752009-06-25 22:08:12 +00003876
3877 if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003878 ArgumentDependentLookup = false;
3879 }
3880 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003881 assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003882 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3883
3884 if (Func->getDeclContext()->isRecord() ||
3885 Func->getDeclContext()->isFunctionOrMethod())
3886 ArgumentDependentLookup = false;
Douglas Gregorb60eb752009-06-25 22:08:12 +00003887 } else if (FunctionTemplateDecl *FuncTemplate
3888 = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003889 AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
3890 ExplicitTemplateArgs,
3891 NumExplicitTemplateArgs,
3892 Args, NumArgs, CandidateSet);
Douglas Gregorb60eb752009-06-25 22:08:12 +00003893
3894 if (FuncTemplate->getDeclContext()->isRecord())
3895 ArgumentDependentLookup = false;
3896 }
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003897
3898 if (Callee)
3899 UnqualifiedName = Callee->getDeclName();
3900
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003901 // FIXME: Pass explicit template arguments through for ADL
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003902 if (ArgumentDependentLookup)
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003903 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003904 CandidateSet);
3905
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003906 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00003907 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003908 case OR_Success:
3909 return Best->Function;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003910
3911 case OR_No_Viable_Function:
Chris Lattner4a526112009-02-17 07:29:20 +00003912 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003913 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4a526112009-02-17 07:29:20 +00003914 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003915 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3916 break;
3917
3918 case OR_Ambiguous:
3919 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003920 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003921 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3922 break;
Douglas Gregoraa57e862009-02-18 21:56:37 +00003923
3924 case OR_Deleted:
3925 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3926 << Best->Function->isDeleted()
3927 << UnqualifiedName
3928 << Fn->getSourceRange();
3929 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3930 break;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003931 }
3932
3933 // Overload resolution failed. Destroy all of the subexpressions and
3934 // return NULL.
3935 Fn->Destroy(Context);
3936 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3937 Args[Arg]->Destroy(Context);
3938 return 0;
3939}
3940
Douglas Gregorc78182d2009-03-13 23:49:33 +00003941/// \brief Create a unary operation that may resolve to an overloaded
3942/// operator.
3943///
3944/// \param OpLoc The location of the operator itself (e.g., '*').
3945///
3946/// \param OpcIn The UnaryOperator::Opcode that describes this
3947/// operator.
3948///
3949/// \param Functions The set of non-member functions that will be
3950/// considered by overload resolution. The caller needs to build this
3951/// set based on the context using, e.g.,
3952/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3953/// set should not contain any member functions; those will be added
3954/// by CreateOverloadedUnaryOp().
3955///
3956/// \param input The input argument.
3957Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3958 unsigned OpcIn,
3959 FunctionSet &Functions,
3960 ExprArg input) {
3961 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3962 Expr *Input = (Expr *)input.get();
3963
3964 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3965 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3966 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3967
3968 Expr *Args[2] = { Input, 0 };
3969 unsigned NumArgs = 1;
3970
3971 // For post-increment and post-decrement, add the implicit '0' as
3972 // the second argument, so that we know this is a post-increment or
3973 // post-decrement.
3974 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3975 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3976 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3977 SourceLocation());
3978 NumArgs = 2;
3979 }
3980
3981 if (Input->isTypeDependent()) {
3982 OverloadedFunctionDecl *Overloads
3983 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3984 for (FunctionSet::iterator Func = Functions.begin(),
3985 FuncEnd = Functions.end();
3986 Func != FuncEnd; ++Func)
3987 Overloads->addOverload(*Func);
3988
3989 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3990 OpLoc, false, false);
3991
3992 input.release();
3993 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3994 &Args[0], NumArgs,
3995 Context.DependentTy,
3996 OpLoc));
3997 }
3998
3999 // Build an empty overload set.
4000 OverloadCandidateSet CandidateSet;
4001
4002 // Add the candidates from the given function set.
4003 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4004
4005 // Add operator candidates that are member functions.
4006 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4007
4008 // Add builtin operator candidates.
4009 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4010
4011 // Perform overload resolution.
4012 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004013 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Douglas Gregorc78182d2009-03-13 23:49:33 +00004014 case OR_Success: {
4015 // We found a built-in operator or an overloaded operator.
4016 FunctionDecl *FnDecl = Best->Function;
4017
4018 if (FnDecl) {
4019 // We matched an overloaded operator. Build a call to that
4020 // operator.
4021
4022 // Convert the arguments.
4023 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4024 if (PerformObjectArgumentInitialization(Input, Method))
4025 return ExprError();
4026 } else {
4027 // Convert the arguments.
4028 if (PerformCopyInitialization(Input,
4029 FnDecl->getParamDecl(0)->getType(),
4030 "passing"))
4031 return ExprError();
4032 }
4033
4034 // Determine the result type
4035 QualType ResultTy
4036 = FnDecl->getType()->getAsFunctionType()->getResultType();
4037 ResultTy = ResultTy.getNonReferenceType();
4038
4039 // Build the actual expression node.
4040 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4041 SourceLocation());
4042 UsualUnaryConversions(FnExpr);
4043
4044 input.release();
Anders Carlsson16497742009-08-16 04:11:06 +00004045
4046 Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4047 &Input, 1, ResultTy, OpLoc);
4048 return MaybeBindToTemporary(CE);
Douglas Gregorc78182d2009-03-13 23:49:33 +00004049 } else {
4050 // We matched a built-in operator. Convert the arguments, then
4051 // break out so that we will build the appropriate built-in
4052 // operator node.
4053 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4054 Best->Conversions[0], "passing"))
4055 return ExprError();
4056
4057 break;
4058 }
4059 }
4060
4061 case OR_No_Viable_Function:
4062 // No viable function; fall through to handling this as a
4063 // built-in operator, which will produce an error message for us.
4064 break;
4065
4066 case OR_Ambiguous:
4067 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4068 << UnaryOperator::getOpcodeStr(Opc)
4069 << Input->getSourceRange();
4070 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4071 return ExprError();
4072
4073 case OR_Deleted:
4074 Diag(OpLoc, diag::err_ovl_deleted_oper)
4075 << Best->Function->isDeleted()
4076 << UnaryOperator::getOpcodeStr(Opc)
4077 << Input->getSourceRange();
4078 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4079 return ExprError();
4080 }
4081
4082 // Either we found no viable overloaded operator or we matched a
4083 // built-in operator. In either case, fall through to trying to
4084 // build a built-in operation.
4085 input.release();
4086 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4087}
4088
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004089/// \brief Create a binary operation that may resolve to an overloaded
4090/// operator.
4091///
4092/// \param OpLoc The location of the operator itself (e.g., '+').
4093///
4094/// \param OpcIn The BinaryOperator::Opcode that describes this
4095/// operator.
4096///
4097/// \param Functions The set of non-member functions that will be
4098/// considered by overload resolution. The caller needs to build this
4099/// set based on the context using, e.g.,
4100/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4101/// set should not contain any member functions; those will be added
4102/// by CreateOverloadedBinOp().
4103///
4104/// \param LHS Left-hand argument.
4105/// \param RHS Right-hand argument.
4106Sema::OwningExprResult
4107Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4108 unsigned OpcIn,
4109 FunctionSet &Functions,
4110 Expr *LHS, Expr *RHS) {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004111 Expr *Args[2] = { LHS, RHS };
4112
4113 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4114 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4115 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4116
4117 // If either side is type-dependent, create an appropriate dependent
4118 // expression.
4119 if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4120 // .* cannot be overloaded.
4121 if (Opc == BinaryOperator::PtrMemD)
4122 return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4123 Context.DependentTy, OpLoc));
4124
4125 OverloadedFunctionDecl *Overloads
4126 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4127 for (FunctionSet::iterator Func = Functions.begin(),
4128 FuncEnd = Functions.end();
4129 Func != FuncEnd; ++Func)
4130 Overloads->addOverload(*Func);
4131
4132 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4133 OpLoc, false, false);
4134
4135 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4136 Args, 2,
4137 Context.DependentTy,
4138 OpLoc));
4139 }
4140
4141 // If this is the .* operator, which is not overloadable, just
4142 // create a built-in binary operator.
4143 if (Opc == BinaryOperator::PtrMemD)
4144 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4145
4146 // If this is one of the assignment operators, we only perform
4147 // overload resolution if the left-hand side is a class or
4148 // enumeration type (C++ [expr.ass]p3).
4149 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4150 !LHS->getType()->isOverloadableType())
4151 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4152
Douglas Gregorc78182d2009-03-13 23:49:33 +00004153 // Build an empty overload set.
4154 OverloadCandidateSet CandidateSet;
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004155
4156 // Add the candidates from the given function set.
4157 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4158
4159 // Add operator candidates that are member functions.
4160 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4161
4162 // Add builtin operator candidates.
4163 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4164
4165 // Perform overload resolution.
4166 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004167 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Sebastian Redlbd261962009-04-16 17:51:27 +00004168 case OR_Success: {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004169 // We found a built-in operator or an overloaded operator.
4170 FunctionDecl *FnDecl = Best->Function;
4171
4172 if (FnDecl) {
4173 // We matched an overloaded operator. Build a call to that
4174 // operator.
4175
4176 // Convert the arguments.
4177 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4178 if (PerformObjectArgumentInitialization(LHS, Method) ||
4179 PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4180 "passing"))
4181 return ExprError();
4182 } else {
4183 // Convert the arguments.
4184 if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4185 "passing") ||
4186 PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4187 "passing"))
4188 return ExprError();
4189 }
4190
4191 // Determine the result type
4192 QualType ResultTy
4193 = FnDecl->getType()->getAsFunctionType()->getResultType();
4194 ResultTy = ResultTy.getNonReferenceType();
4195
4196 // Build the actual expression node.
4197 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
Argiris Kirtzidiscca21b82009-07-14 03:19:38 +00004198 OpLoc);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004199 UsualUnaryConversions(FnExpr);
4200
Anders Carlsson16497742009-08-16 04:11:06 +00004201 Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4202 Args, 2, ResultTy, OpLoc);
4203 return MaybeBindToTemporary(CE);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004204 } else {
4205 // We matched a built-in operator. Convert the arguments, then
4206 // break out so that we will build the appropriate built-in
4207 // operator node.
4208 if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4209 Best->Conversions[0], "passing") ||
4210 PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4211 Best->Conversions[1], "passing"))
4212 return ExprError();
4213
4214 break;
4215 }
4216 }
4217
4218 case OR_No_Viable_Function:
Sebastian Redl35196b42009-05-21 11:50:50 +00004219 // For class as left operand for assignment or compound assigment operator
4220 // do not fall through to handling in built-in, but report that no overloaded
4221 // assignment operator found
4222 if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4223 Diag(OpLoc, diag::err_ovl_no_viable_oper)
4224 << BinaryOperator::getOpcodeStr(Opc)
4225 << LHS->getSourceRange() << RHS->getSourceRange();
4226 return ExprError();
4227 }
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004228 // No viable function; fall through to handling this as a
4229 // built-in operator, which will produce an error message for us.
4230 break;
4231
4232 case OR_Ambiguous:
4233 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4234 << BinaryOperator::getOpcodeStr(Opc)
4235 << LHS->getSourceRange() << RHS->getSourceRange();
4236 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4237 return ExprError();
4238
4239 case OR_Deleted:
4240 Diag(OpLoc, diag::err_ovl_deleted_oper)
4241 << Best->Function->isDeleted()
4242 << BinaryOperator::getOpcodeStr(Opc)
4243 << LHS->getSourceRange() << RHS->getSourceRange();
4244 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4245 return ExprError();
4246 }
4247
4248 // Either we found no viable overloaded operator or we matched a
4249 // built-in operator. In either case, try to build a built-in
4250 // operation.
4251 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4252}
4253
Douglas Gregor3257fb52008-12-22 05:46:06 +00004254/// BuildCallToMemberFunction - Build a call to a member
4255/// function. MemExpr is the expression that refers to the member
4256/// function (and includes the object parameter), Args/NumArgs are the
4257/// arguments to the function call (not including the object
4258/// parameter). The caller needs to validate that the member
4259/// expression refers to a member function or an overloaded member
4260/// function.
4261Sema::ExprResult
4262Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4263 SourceLocation LParenLoc, Expr **Args,
4264 unsigned NumArgs, SourceLocation *CommaLocs,
4265 SourceLocation RParenLoc) {
4266 // Dig out the member expression. This holds both the object
4267 // argument and the member function we're referring to.
4268 MemberExpr *MemExpr = 0;
4269 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4270 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4271 else
4272 MemExpr = dyn_cast<MemberExpr>(MemExprE);
4273 assert(MemExpr && "Building member call without member expression");
4274
4275 // Extract the object argument.
4276 Expr *ObjectArg = MemExpr->getBase();
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00004277
Douglas Gregor3257fb52008-12-22 05:46:06 +00004278 CXXMethodDecl *Method = 0;
4279 if (OverloadedFunctionDecl *Ovl
4280 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4281 // Add overload candidates
4282 OverloadCandidateSet CandidateSet;
4283 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4284 FuncEnd = Ovl->function_end();
4285 Func != FuncEnd; ++Func) {
4286 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4287 Method = cast<CXXMethodDecl>(*Func);
4288 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4289 /*SuppressUserConversions=*/false);
4290 }
4291
4292 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004293 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
Douglas Gregor3257fb52008-12-22 05:46:06 +00004294 case OR_Success:
4295 Method = cast<CXXMethodDecl>(Best->Function);
4296 break;
4297
4298 case OR_No_Viable_Function:
4299 Diag(MemExpr->getSourceRange().getBegin(),
4300 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4a526112009-02-17 07:29:20 +00004301 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor3257fb52008-12-22 05:46:06 +00004302 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4303 // FIXME: Leaking incoming expressions!
4304 return true;
4305
4306 case OR_Ambiguous:
4307 Diag(MemExpr->getSourceRange().getBegin(),
4308 diag::err_ovl_ambiguous_member_call)
4309 << Ovl->getDeclName() << MemExprE->getSourceRange();
4310 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4311 // FIXME: Leaking incoming expressions!
4312 return true;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004313
4314 case OR_Deleted:
4315 Diag(MemExpr->getSourceRange().getBegin(),
4316 diag::err_ovl_deleted_member_call)
4317 << Best->Function->isDeleted()
4318 << Ovl->getDeclName() << MemExprE->getSourceRange();
4319 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4320 // FIXME: Leaking incoming expressions!
4321 return true;
Douglas Gregor3257fb52008-12-22 05:46:06 +00004322 }
4323
4324 FixOverloadedFunctionReference(MemExpr, Method);
4325 } else {
4326 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4327 }
4328
4329 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek0c97e042009-02-07 01:47:29 +00004330 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek362abcd2009-02-09 20:51:47 +00004331 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4332 NumArgs,
Douglas Gregor3257fb52008-12-22 05:46:06 +00004333 Method->getResultType().getNonReferenceType(),
4334 RParenLoc));
4335
4336 // Convert the object argument (for a non-static member function call).
4337 if (!Method->isStatic() &&
4338 PerformObjectArgumentInitialization(ObjectArg, Method))
4339 return true;
4340 MemExpr->setBase(ObjectArg);
4341
4342 // Convert the rest of the arguments
Douglas Gregor4fa58902009-02-26 23:50:07 +00004343 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor3257fb52008-12-22 05:46:06 +00004344 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4345 RParenLoc))
4346 return true;
4347
Anders Carlsson7fb13802009-08-16 01:56:34 +00004348 if (CheckFunctionCall(Method, TheCall.get()))
4349 return true;
Anders Carlssonb8ff3402009-08-16 03:42:12 +00004350
4351 return MaybeBindToTemporary(TheCall.release()).release();
Douglas Gregor3257fb52008-12-22 05:46:06 +00004352}
4353
Douglas Gregor10f3c502008-11-19 21:05:33 +00004354/// BuildCallToObjectOfClassType - Build a call to an object of class
4355/// type (C++ [over.call.object]), which can end up invoking an
4356/// overloaded function call operator (@c operator()) or performing a
4357/// user-defined conversion on the object argument.
Douglas Gregor3257fb52008-12-22 05:46:06 +00004358Sema::ExprResult
Douglas Gregora133e262008-12-06 00:22:45 +00004359Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4360 SourceLocation LParenLoc,
Douglas Gregor10f3c502008-11-19 21:05:33 +00004361 Expr **Args, unsigned NumArgs,
4362 SourceLocation *CommaLocs,
4363 SourceLocation RParenLoc) {
4364 assert(Object->getType()->isRecordType() && "Requires object type argument");
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00004365 const RecordType *Record = Object->getType()->getAs<RecordType>();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004366
4367 // C++ [over.call.object]p1:
4368 // If the primary-expression E in the function call syntax
Eli Friedmand5a72f02009-08-05 19:21:58 +00004369 // evaluates to a class object of type "cv T", then the set of
Douglas Gregor10f3c502008-11-19 21:05:33 +00004370 // candidate functions includes at least the function call
4371 // operators of T. The function call operators of T are obtained by
4372 // ordinary lookup of the name operator() in the context of
4373 // (E).operator().
4374 OverloadCandidateSet CandidateSet;
Douglas Gregor8acb7272008-12-11 16:49:14 +00004375 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004376 DeclContext::lookup_const_iterator Oper, OperEnd;
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00004377 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004378 Oper != OperEnd; ++Oper)
4379 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4380 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004381
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004382 // C++ [over.call.object]p2:
4383 // In addition, for each conversion function declared in T of the
4384 // form
4385 //
4386 // operator conversion-type-id () cv-qualifier;
4387 //
4388 // where cv-qualifier is the same cv-qualification as, or a
4389 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregor261afa72008-11-20 13:33:37 +00004390 // denotes the type "pointer to function of (P1,...,Pn) returning
4391 // R", or the type "reference to pointer to function of
4392 // (P1,...,Pn) returning R", or the type "reference to function
4393 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004394 // is also considered as a candidate function. Similarly,
4395 // surrogate call functions are added to the set of candidate
4396 // functions for each conversion function declared in an
4397 // accessible base class provided the function is not hidden
4398 // within T by another intervening declaration.
4399 //
4400 // FIXME: Look in base classes for more conversion operators!
4401 OverloadedFunctionDecl *Conversions
4402 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00004403 for (OverloadedFunctionDecl::function_iterator
4404 Func = Conversions->function_begin(),
4405 FuncEnd = Conversions->function_end();
4406 Func != FuncEnd; ++Func) {
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004407 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4408
4409 // Strip the reference type (if any) and then the pointer type (if
4410 // any) to get down to what might be a function type.
4411 QualType ConvType = Conv->getConversionType().getNonReferenceType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00004412 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004413 ConvType = ConvPtrType->getPointeeType();
4414
Douglas Gregor4fa58902009-02-26 23:50:07 +00004415 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004416 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4417 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00004418
4419 // Perform overload resolution.
4420 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004421 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004422 case OR_Success:
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004423 // Overload resolution succeeded; we'll build the appropriate call
4424 // below.
Douglas Gregor10f3c502008-11-19 21:05:33 +00004425 break;
4426
4427 case OR_No_Viable_Function:
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00004428 Diag(Object->getSourceRange().getBegin(),
4429 diag::err_ovl_no_viable_object_call)
Chris Lattner4a526112009-02-17 07:29:20 +00004430 << Object->getType() << Object->getSourceRange();
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00004431 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004432 break;
4433
4434 case OR_Ambiguous:
4435 Diag(Object->getSourceRange().getBegin(),
4436 diag::err_ovl_ambiguous_object_call)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004437 << Object->getType() << Object->getSourceRange();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004438 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4439 break;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004440
4441 case OR_Deleted:
4442 Diag(Object->getSourceRange().getBegin(),
4443 diag::err_ovl_deleted_object_call)
4444 << Best->Function->isDeleted()
4445 << Object->getType() << Object->getSourceRange();
4446 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4447 break;
Douglas Gregor10f3c502008-11-19 21:05:33 +00004448 }
4449
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004450 if (Best == CandidateSet.end()) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004451 // We had an error; delete all of the subexpressions and return
4452 // the error.
Ted Kremenek0c97e042009-02-07 01:47:29 +00004453 Object->Destroy(Context);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004454 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek0c97e042009-02-07 01:47:29 +00004455 Args[ArgIdx]->Destroy(Context);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004456 return true;
4457 }
4458
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004459 if (Best->Function == 0) {
4460 // Since there is no function declaration, this is one of the
4461 // surrogate candidates. Dig out the conversion function.
4462 CXXConversionDecl *Conv
4463 = cast<CXXConversionDecl>(
4464 Best->Conversions[0].UserDefined.ConversionFunction);
4465
4466 // We selected one of the surrogate functions that converts the
4467 // object parameter to a function pointer. Perform the conversion
4468 // on the object argument, then let ActOnCallExpr finish the job.
4469 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl8b769972009-01-19 00:08:26 +00004470 ImpCastExprToType(Object,
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004471 Conv->getConversionType().getNonReferenceType(),
Anders Carlsson85186942009-07-31 01:23:52 +00004472 CastExpr::CK_Unknown,
Sebastian Redlce6fff02009-03-16 23:22:08 +00004473 Conv->getConversionType()->isLValueReferenceType());
Sebastian Redl8b769972009-01-19 00:08:26 +00004474 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4475 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4476 CommaLocs, RParenLoc).release();
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004477 }
4478
4479 // We found an overloaded operator(). Build a CXXOperatorCallExpr
4480 // that calls this method, using Object for the implicit object
4481 // parameter and passing along the remaining arguments.
4482 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor4fa58902009-02-26 23:50:07 +00004483 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004484
4485 unsigned NumArgsInProto = Proto->getNumArgs();
4486 unsigned NumArgsToCheck = NumArgs;
4487
4488 // Build the full argument list for the method call (the
4489 // implicit object parameter is placed at the beginning of the
4490 // list).
4491 Expr **MethodArgs;
4492 if (NumArgs < NumArgsInProto) {
4493 NumArgsToCheck = NumArgsInProto;
4494 MethodArgs = new Expr*[NumArgsInProto + 1];
4495 } else {
4496 MethodArgs = new Expr*[NumArgs + 1];
4497 }
4498 MethodArgs[0] = Object;
4499 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4500 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4501
Ted Kremenek0c97e042009-02-07 01:47:29 +00004502 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4503 SourceLocation());
Douglas Gregor10f3c502008-11-19 21:05:33 +00004504 UsualUnaryConversions(NewFn);
4505
4506 // Once we've built TheCall, all of the expressions are properly
4507 // owned.
4508 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek0c97e042009-02-07 01:47:29 +00004509 ExprOwningPtr<CXXOperatorCallExpr>
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004510 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4511 MethodArgs, NumArgs + 1,
Ted Kremenek0c97e042009-02-07 01:47:29 +00004512 ResultTy, RParenLoc));
Douglas Gregor10f3c502008-11-19 21:05:33 +00004513 delete [] MethodArgs;
4514
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004515 // We may have default arguments. If so, we need to allocate more
4516 // slots in the call for them.
4517 if (NumArgs < NumArgsInProto)
Ted Kremenek0c97e042009-02-07 01:47:29 +00004518 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004519 else if (NumArgs > NumArgsInProto)
4520 NumArgsToCheck = NumArgsInProto;
4521
Chris Lattner81f00ed2009-04-12 08:11:20 +00004522 bool IsError = false;
4523
Douglas Gregor10f3c502008-11-19 21:05:33 +00004524 // Initialize the implicit object parameter.
Chris Lattner81f00ed2009-04-12 08:11:20 +00004525 IsError |= PerformObjectArgumentInitialization(Object, Method);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004526 TheCall->setArg(0, Object);
4527
Chris Lattner81f00ed2009-04-12 08:11:20 +00004528
Douglas Gregor10f3c502008-11-19 21:05:33 +00004529 // Check the argument types.
4530 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004531 Expr *Arg;
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004532 if (i < NumArgs) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004533 Arg = Args[i];
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004534
4535 // Pass the argument.
4536 QualType ProtoArgType = Proto->getArgType(i);
Chris Lattner81f00ed2009-04-12 08:11:20 +00004537 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004538 } else {
Anders Carlsson3d752db2009-08-14 18:30:22 +00004539 Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004540 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00004541
4542 TheCall->setArg(i + 1, Arg);
4543 }
4544
4545 // If this is a variadic call, handle args passed through "...".
4546 if (Proto->isVariadic()) {
4547 // Promote the arguments (C99 6.5.2.2p7).
4548 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4549 Expr *Arg = Args[i];
Chris Lattner81f00ed2009-04-12 08:11:20 +00004550 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004551 TheCall->setArg(i + 1, Arg);
4552 }
4553 }
4554
Chris Lattner81f00ed2009-04-12 08:11:20 +00004555 if (IsError) return true;
4556
Anders Carlsson7fb13802009-08-16 01:56:34 +00004557 if (CheckFunctionCall(Method, TheCall.get()))
4558 return true;
4559
Anders Carlsson422a5fe2009-08-16 03:53:54 +00004560 return MaybeBindToTemporary(TheCall.release()).release();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004561}
4562
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004563/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4564/// (if one exists), where @c Base is an expression of class type and
4565/// @c Member is the name of the member we're trying to find.
Douglas Gregorda61ad22009-08-06 03:17:00 +00004566Sema::OwningExprResult
4567Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
4568 Expr *Base = static_cast<Expr *>(BaseIn.get());
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004569 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4570
4571 // C++ [over.ref]p1:
4572 //
4573 // [...] An expression x->m is interpreted as (x.operator->())->m
4574 // for a class object x of type T if T::operator->() exists and if
4575 // the operator is selected as the best match function by the
4576 // overload resolution mechanism (13.3).
4577 // FIXME: look in base classes.
4578 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4579 OverloadCandidateSet CandidateSet;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00004580 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
Douglas Gregorda61ad22009-08-06 03:17:00 +00004581
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004582 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00004583 for (llvm::tie(Oper, OperEnd)
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00004584 = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004585 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004586 /*SuppressUserConversions=*/false);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004587
4588 // Perform overload resolution.
4589 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004590 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004591 case OR_Success:
4592 // Overload resolution succeeded; we'll build the call below.
4593 break;
4594
4595 case OR_No_Viable_Function:
4596 if (CandidateSet.empty())
4597 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Douglas Gregorda61ad22009-08-06 03:17:00 +00004598 << Base->getType() << Base->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004599 else
4600 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Douglas Gregorda61ad22009-08-06 03:17:00 +00004601 << "operator->" << Base->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004602 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorda61ad22009-08-06 03:17:00 +00004603 return ExprError();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004604
4605 case OR_Ambiguous:
4606 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Douglas Gregorda61ad22009-08-06 03:17:00 +00004607 << "operator->" << Base->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004608 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregorda61ad22009-08-06 03:17:00 +00004609 return ExprError();
Douglas Gregoraa57e862009-02-18 21:56:37 +00004610
4611 case OR_Deleted:
4612 Diag(OpLoc, diag::err_ovl_deleted_oper)
4613 << Best->Function->isDeleted()
Douglas Gregorda61ad22009-08-06 03:17:00 +00004614 << "operator->" << Base->getSourceRange();
Douglas Gregoraa57e862009-02-18 21:56:37 +00004615 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregorda61ad22009-08-06 03:17:00 +00004616 return ExprError();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004617 }
4618
4619 // Convert the object parameter.
4620 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor9c690e92008-11-21 03:04:22 +00004621 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregorda61ad22009-08-06 03:17:00 +00004622 return ExprError();
Douglas Gregor9c690e92008-11-21 03:04:22 +00004623
4624 // No concerns about early exits now.
Douglas Gregorda61ad22009-08-06 03:17:00 +00004625 BaseIn.release();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004626
4627 // Build the operator call.
Ted Kremenek0c97e042009-02-07 01:47:29 +00004628 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4629 SourceLocation());
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004630 UsualUnaryConversions(FnExpr);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004631 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004632 Method->getResultType().getNonReferenceType(),
4633 OpLoc);
Douglas Gregorda61ad22009-08-06 03:17:00 +00004634 return Owned(Base);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004635}
4636
Douglas Gregor45014fd2008-11-10 20:40:00 +00004637/// FixOverloadedFunctionReference - E is an expression that refers to
4638/// a C++ overloaded function (possibly with some parentheses and
4639/// perhaps a '&' around it). We have resolved the overloaded function
4640/// to the function declaration Fn, so patch up the expression E to
4641/// refer (possibly indirectly) to Fn.
4642void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4643 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4644 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4645 E->setType(PE->getSubExpr()->getType());
4646 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4647 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4648 "Can only take the address of an overloaded function");
Douglas Gregor3f411962009-02-11 01:18:59 +00004649 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4650 if (Method->isStatic()) {
4651 // Do nothing: static member functions aren't any different
4652 // from non-member functions.
Mike Stump90fc78e2009-08-04 21:02:39 +00004653 } else if (QualifiedDeclRefExpr *DRE
Douglas Gregor3f411962009-02-11 01:18:59 +00004654 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4655 // We have taken the address of a pointer to member
4656 // function. Perform the computation here so that we get the
4657 // appropriate pointer to member type.
4658 DRE->setDecl(Fn);
4659 DRE->setType(Fn->getType());
4660 QualType ClassType
4661 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4662 E->setType(Context.getMemberPointerType(Fn->getType(),
4663 ClassType.getTypePtr()));
4664 return;
4665 }
4666 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00004667 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregor2eedd992009-02-11 00:19:33 +00004668 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor45014fd2008-11-10 20:40:00 +00004669 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
Douglas Gregor62f78762009-07-08 20:55:45 +00004670 assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4671 isa<FunctionTemplateDecl>(DR->getDecl())) &&
4672 "Expected overloaded function or function template");
Douglas Gregor45014fd2008-11-10 20:40:00 +00004673 DR->setDecl(Fn);
4674 E->setType(Fn->getType());
Douglas Gregor3257fb52008-12-22 05:46:06 +00004675 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4676 MemExpr->setMemberDecl(Fn);
4677 E->setType(Fn->getType());
Douglas Gregor45014fd2008-11-10 20:40:00 +00004678 } else {
4679 assert(false && "Invalid reference to overloaded function");
4680 }
4681}
4682
Douglas Gregord2baafd2008-10-21 16:13:35 +00004683} // end namespace clang