blob: af5051650ee2274143ad0451ff019f03dee5b8b2 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000062#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
John Criswella1156432005-10-27 15:54:34 +000066#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000067#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Assembly/Writer.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000073#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Operator.h"
Chris Lattner95255282006-06-28 23:17:24 +000081#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000083#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000084#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000086#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000087#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000088#include "llvm/Support/raw_ostream.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000089#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000090#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000091using namespace llvm;
92
Chris Lattner3b27d682006-12-19 22:30:33 +000093STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
Dan Gohman844731a2008-05-13 00:00:25 +0000102static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000105 "symbolically execute a constant "
106 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000107 cl::init(100));
108
Benjamin Kramerff183102012-10-26 17:31:32 +0000109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
Owen Anderson2ab36d32010-10-12 19:48:12 +0000114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000120 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000121char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000130
Manman Ren286c4dc2012-09-12 05:06:18 +0000131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattner53e677a2004-04-02 20:23:17 +0000132void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000133 print(dbgs());
134 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000135}
Manman Rencc77eec2012-09-06 19:55:56 +0000136#endif
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000137
Dan Gohman4ce32db2010-11-17 22:27:42 +0000138void SCEV::print(raw_ostream &OS) const {
139 switch (getSCEVType()) {
140 case scConstant:
141 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000170 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000171 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000172 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000173 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000186 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
197 if (llvm::next(I) != E)
198 OS << OpStr;
199 }
200 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000218 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
Andrew Trick635f7182011-03-09 17:23:39 +0000227
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000228 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
232 WriteAsOperand(OS, FieldNo, false);
233 OS << ")";
234 return;
235 }
Andrew Trick635f7182011-03-09 17:23:39 +0000236
Dan Gohman4ce32db2010-11-17 22:27:42 +0000237 // Otherwise just print it normally.
238 WriteAsOperand(OS, U->getValue(), false);
239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
244 default: break;
245 }
246 llvm_unreachable("Unknown SCEV kind!");
247}
248
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000249Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000250 switch (getSCEVType()) {
251 case scConstant:
252 return cast<SCEVConstant>(this)->getType();
253 case scTruncate:
254 case scZeroExtend:
255 case scSignExtend:
256 return cast<SCEVCastExpr>(this)->getType();
257 case scAddRecExpr:
258 case scMulExpr:
259 case scUMaxExpr:
260 case scSMaxExpr:
261 return cast<SCEVNAryExpr>(this)->getType();
262 case scAddExpr:
263 return cast<SCEVAddExpr>(this)->getType();
264 case scUDivExpr:
265 return cast<SCEVUDivExpr>(this)->getType();
266 case scUnknown:
267 return cast<SCEVUnknown>(this)->getType();
268 case scCouldNotCompute:
269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000270 default:
271 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000272 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000273}
274
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000275bool SCEV::isZero() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isZero();
278 return false;
279}
280
Dan Gohman70a1fe72009-05-18 15:22:39 +0000281bool SCEV::isOne() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isOne();
284 return false;
285}
Chris Lattner53e677a2004-04-02 20:23:17 +0000286
Dan Gohman4d289bf2009-06-24 00:30:26 +0000287bool SCEV::isAllOnesValue() const {
288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289 return SC->getValue()->isAllOnesValue();
290 return false;
291}
292
Andrew Trickf8fd8412012-01-07 00:27:31 +0000293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297 if (!Mul) return false;
298
299 // If there is a constant factor, it will be first.
300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301 if (!SC) return false;
302
303 // Return true if the value is negative, this matches things like (-42 * V).
304 return SC->getValue()->getValue().isNegative();
305}
306
Owen Anderson753ad612009-06-22 21:57:23 +0000307SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000309
Chris Lattner53e677a2004-04-02 20:23:17 +0000310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311 return S->getSCEVType() == scCouldNotCompute;
312}
313
Dan Gohman0bba49c2009-07-07 17:06:11 +0000314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000315 FoldingSetNodeID ID;
316 ID.AddInteger(scConstant);
317 ID.AddPointer(V);
318 void *IP = 0;
319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000321 UniqueSCEVs.InsertNode(S, IP);
322 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
Chris Lattner53e677a2004-04-02 20:23:17 +0000324
Dan Gohman0bba49c2009-07-07 17:06:11 +0000325const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000326 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000327}
328
Dan Gohman0bba49c2009-07-07 17:06:11 +0000329const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000332 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000333}
334
Dan Gohman3bf63762010-06-18 19:54:20 +0000335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000336 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000338
Dan Gohman3bf63762010-06-18 19:54:20 +0000339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
Chris Lattner53e677a2004-04-02 20:23:17 +0000346
Dan Gohman3bf63762010-06-18 19:54:20 +0000347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000352 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000353}
354
Dan Gohman3bf63762010-06-18 19:54:20 +0000355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000356 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000357 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000360 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000361}
362
Dan Gohmanab37f502010-08-02 23:49:30 +0000363void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000364 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000365 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000366
367 // Remove this SCEVUnknown from the uniquing map.
368 SE->UniqueSCEVs.RemoveNode(this);
369
370 // Release the value.
371 setValPtr(0);
372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000375 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000376 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000377
378 // Remove this SCEVUnknown from the uniquing map.
379 SE->UniqueSCEVs.RemoveNode(this);
380
381 // Update this SCEVUnknown to point to the new value. This is needed
382 // because there may still be outstanding SCEVs which still point to
383 // this SCEVUnknown.
384 setValPtr(New);
385}
386
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000389 if (VCE->getOpcode() == Instruction::PtrToInt)
390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000391 if (CE->getOpcode() == Instruction::GetElementPtr &&
392 CE->getOperand(0)->isNullValue() &&
393 CE->getNumOperands() == 2)
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395 if (CI->isOne()) {
396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397 ->getElementType();
398 return true;
399 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000400
401 return false;
402}
403
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000406 if (VCE->getOpcode() == Instruction::PtrToInt)
407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000408 if (CE->getOpcode() == Instruction::GetElementPtr &&
409 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000410 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000412 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000413 if (!STy->isPacked() &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(1)->isNullValue()) {
416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417 if (CI->isOne() &&
418 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000419 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000420 AllocTy = STy->getElementType(1);
421 return true;
422 }
423 }
424 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000425
426 return false;
427}
428
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getNumOperands() == 3 &&
435 CE->getOperand(0)->isNullValue() &&
436 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000437 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439 // Ignore vector types here so that ScalarEvolutionExpander doesn't
440 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000441 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000442 CTy = Ty;
443 FieldNo = CE->getOperand(2);
444 return true;
445 }
446 }
447
448 return false;
449}
450
Chris Lattner8d741b82004-06-20 06:23:15 +0000451//===----------------------------------------------------------------------===//
452// SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457 /// than the complexity of the RHS. This comparator is used to canonicalize
458 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000459 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000460 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000461 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000463
Dan Gohman67ef74e2010-08-27 15:26:01 +0000464 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000465 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return compare(LHS, RHS) < 0;
467 }
468
469 // Return negative, zero, or positive, if LHS is less than, equal to, or
470 // greater than RHS, respectively. A three-way result allows recursive
471 // comparisons to be more efficient.
472 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000473 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000475 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000476
Dan Gohman72861302009-05-07 14:39:04 +0000477 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000480 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000481
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 // Aside from the getSCEVType() ordering, the particular ordering
483 // isn't very important except that it's beneficial to be consistent,
484 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000485 switch (LType) {
486 case scUnknown: {
487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000489
490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000492 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000493
494 // Order pointer values after integer values. This helps SCEVExpander
495 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000496 bool LIsPointer = LV->getType()->isPointerTy(),
497 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000498 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500
501 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000502 unsigned LID = LV->getValueID(),
503 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000504 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506
507 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 if (const Argument *LA = dyn_cast<Argument>(LV)) {
509 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000512 }
513
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 // For instructions, compare their loop depth, and their operand
515 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000518
519 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000520 const BasicBlock *LParent = LInst->getParent(),
521 *RParent = RInst->getParent();
522 if (LParent != RParent) {
523 unsigned LDepth = LI->getLoopDepth(LParent),
524 RDepth = LI->getLoopDepth(RParent);
525 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000527 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000528
529 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000530 unsigned LNumOps = LInst->getNumOperands(),
531 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000532 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000533 }
534
Dan Gohman67ef74e2010-08-27 15:26:01 +0000535 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000536 }
537
Dan Gohman67ef74e2010-08-27 15:26:01 +0000538 case scConstant: {
539 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000540 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541
542 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000543 const APInt &LA = LC->getValue()->getValue();
544 const APInt &RA = RC->getValue()->getValue();
545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000546 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000547 return (int)LBitWidth - (int)RBitWidth;
548 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000549 }
550
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551 case scAddRecExpr: {
552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000554
555 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557 if (LLoop != RLoop) {
558 unsigned LDepth = LLoop->getLoopDepth(),
559 RDepth = RLoop->getLoopDepth();
560 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000561 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000562 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000563
564 // Addrec complexity grows with operand count.
565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566 if (LNumOps != RNumOps)
567 return (int)LNumOps - (int)RNumOps;
568
569 // Lexicographically compare.
570 for (unsigned i = 0; i != LNumOps; ++i) {
571 long X = compare(LA->getOperand(i), RA->getOperand(i));
572 if (X != 0)
573 return X;
574 }
575
576 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000577 }
578
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579 case scAddExpr:
580 case scMulExpr:
581 case scSMaxExpr:
582 case scUMaxExpr: {
583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000585
586 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
588 for (unsigned i = 0; i != LNumOps; ++i) {
589 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000590 return 1;
591 long X = compare(LC->getOperand(i), RC->getOperand(i));
592 if (X != 0)
593 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000594 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000595 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000596 }
597
Dan Gohman67ef74e2010-08-27 15:26:01 +0000598 case scUDivExpr: {
599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601
602 // Lexicographically compare udiv expressions.
603 long X = compare(LC->getLHS(), RC->getLHS());
604 if (X != 0)
605 return X;
606 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000607 }
608
Dan Gohman67ef74e2010-08-27 15:26:01 +0000609 case scTruncate:
610 case scZeroExtend:
611 case scSignExtend: {
612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000614
615 // Compare cast expressions by operand.
616 return compare(LC->getOperand(), RC->getOperand());
617 }
618
619 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000620 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000621 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000622 }
623 };
624}
625
626/// GroupByComplexity - Given a list of SCEV objects, order them by their
627/// complexity, and group objects of the same complexity together by value.
628/// When this routine is finished, we know that any duplicates in the vector are
629/// consecutive and that complexity is monotonically increasing.
630///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000631/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000632/// results from this routine. In other words, we don't want the results of
633/// this to depend on where the addresses of various SCEV objects happened to
634/// land in memory.
635///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000636static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000637 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000638 if (Ops.size() < 2) return; // Noop
639 if (Ops.size() == 2) {
640 // This is the common case, which also happens to be trivially simple.
641 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000642 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
643 if (SCEVComplexityCompare(LI)(RHS, LHS))
644 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000645 return;
646 }
647
Dan Gohman3bf63762010-06-18 19:54:20 +0000648 // Do the rough sort by complexity.
649 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
650
651 // Now that we are sorted by complexity, group elements of the same
652 // complexity. Note that this is, at worst, N^2, but the vector is likely to
653 // be extremely short in practice. Note that we take this approach because we
654 // do not want to depend on the addresses of the objects we are grouping.
655 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
656 const SCEV *S = Ops[i];
657 unsigned Complexity = S->getSCEVType();
658
659 // If there are any objects of the same complexity and same value as this
660 // one, group them.
661 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
662 if (Ops[j] == S) { // Found a duplicate.
663 // Move it to immediately after i'th element.
664 std::swap(Ops[i+1], Ops[j]);
665 ++i; // no need to rescan it.
666 if (i == e-2) return; // Done!
667 }
668 }
669 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000670}
671
Chris Lattner53e677a2004-04-02 20:23:17 +0000672
Chris Lattner53e677a2004-04-02 20:23:17 +0000673
674//===----------------------------------------------------------------------===//
675// Simple SCEV method implementations
676//===----------------------------------------------------------------------===//
677
Eli Friedmanb42a6262008-08-04 23:49:06 +0000678/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000679/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000680static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000681 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000682 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // Handle the simplest case efficiently.
684 if (K == 1)
685 return SE.getTruncateOrZeroExtend(It, ResultTy);
686
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000687 // We are using the following formula for BC(It, K):
688 //
689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
690 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000691 // Suppose, W is the bitwidth of the return value. We must be prepared for
692 // overflow. Hence, we must assure that the result of our computation is
693 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
694 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000695 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000696 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000697 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
699 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000700 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000701 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000702 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000703 // This formula is trivially equivalent to the previous formula. However,
704 // this formula can be implemented much more efficiently. The trick is that
705 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
706 // arithmetic. To do exact division in modular arithmetic, all we have
707 // to do is multiply by the inverse. Therefore, this step can be done at
708 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000709 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000710 // The next issue is how to safely do the division by 2^T. The way this
711 // is done is by doing the multiplication step at a width of at least W + T
712 // bits. This way, the bottom W+T bits of the product are accurate. Then,
713 // when we perform the division by 2^T (which is equivalent to a right shift
714 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
715 // truncated out after the division by 2^T.
716 //
717 // In comparison to just directly using the first formula, this technique
718 // is much more efficient; using the first formula requires W * K bits,
719 // but this formula less than W + K bits. Also, the first formula requires
720 // a division step, whereas this formula only requires multiplies and shifts.
721 //
722 // It doesn't matter whether the subtraction step is done in the calculation
723 // width or the input iteration count's width; if the subtraction overflows,
724 // the result must be zero anyway. We prefer here to do it in the width of
725 // the induction variable because it helps a lot for certain cases; CodeGen
726 // isn't smart enough to ignore the overflow, which leads to much less
727 // efficient code if the width of the subtraction is wider than the native
728 // register width.
729 //
730 // (It's possible to not widen at all by pulling out factors of 2 before
731 // the multiplication; for example, K=2 can be calculated as
732 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
733 // extra arithmetic, so it's not an obvious win, and it gets
734 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000735
Eli Friedmanb42a6262008-08-04 23:49:06 +0000736 // Protection from insane SCEVs; this bound is conservative,
737 // but it probably doesn't matter.
738 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000739 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000740
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000741 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000742
Eli Friedmanb42a6262008-08-04 23:49:06 +0000743 // Calculate K! / 2^T and T; we divide out the factors of two before
744 // multiplying for calculating K! / 2^T to avoid overflow.
745 // Other overflow doesn't matter because we only care about the bottom
746 // W bits of the result.
747 APInt OddFactorial(W, 1);
748 unsigned T = 1;
749 for (unsigned i = 3; i <= K; ++i) {
750 APInt Mult(W, i);
751 unsigned TwoFactors = Mult.countTrailingZeros();
752 T += TwoFactors;
753 Mult = Mult.lshr(TwoFactors);
754 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000755 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000756
Eli Friedmanb42a6262008-08-04 23:49:06 +0000757 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000758 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000759
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000760 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000761 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
762
763 // Calculate the multiplicative inverse of K! / 2^T;
764 // this multiplication factor will perform the exact division by
765 // K! / 2^T.
766 APInt Mod = APInt::getSignedMinValue(W+1);
767 APInt MultiplyFactor = OddFactorial.zext(W+1);
768 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
769 MultiplyFactor = MultiplyFactor.trunc(W);
770
771 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000772 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000773 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000776 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000777 Dividend = SE.getMulExpr(Dividend,
778 SE.getTruncateOrZeroExtend(S, CalculationTy));
779 }
780
781 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000782 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000783
784 // Truncate the result, and divide by K! / 2^T.
785
786 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
787 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000788}
789
Chris Lattner53e677a2004-04-02 20:23:17 +0000790/// evaluateAtIteration - Return the value of this chain of recurrences at
791/// the specified iteration number. We can evaluate this recurrence by
792/// multiplying each element in the chain by the binomial coefficient
793/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
794///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000795/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000796///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000797/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000798///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000799const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000800 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000801 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000802 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000803 // The computation is correct in the face of overflow provided that the
804 // multiplication is performed _after_ the evaluation of the binomial
805 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000806 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000807 if (isa<SCEVCouldNotCompute>(Coeff))
808 return Coeff;
809
810 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000811 }
812 return Result;
813}
814
Chris Lattner53e677a2004-04-02 20:23:17 +0000815//===----------------------------------------------------------------------===//
816// SCEV Expression folder implementations
817//===----------------------------------------------------------------------===//
818
Dan Gohman0bba49c2009-07-07 17:06:11 +0000819const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000820 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000821 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000822 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000823 assert(isSCEVable(Ty) &&
824 "This is not a conversion to a SCEVable type!");
825 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000826
Dan Gohmanc050fd92009-07-13 20:50:19 +0000827 FoldingSetNodeID ID;
828 ID.AddInteger(scTruncate);
829 ID.AddPointer(Op);
830 ID.AddPointer(Ty);
831 void *IP = 0;
832 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
833
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000834 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000835 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000836 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000837 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000838
Dan Gohman20900ca2009-04-22 16:20:48 +0000839 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000840 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000841 return getTruncateExpr(ST->getOperand(), Ty);
842
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000843 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000844 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000845 return getTruncateOrSignExtend(SS->getOperand(), Ty);
846
847 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000848 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000849 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
850
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000851 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
852 // eliminate all the truncates.
853 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
854 SmallVector<const SCEV *, 4> Operands;
855 bool hasTrunc = false;
856 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
857 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
858 hasTrunc = isa<SCEVTruncateExpr>(S);
859 Operands.push_back(S);
860 }
861 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000862 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000863 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000864 }
865
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000866 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
867 // eliminate all the truncates.
868 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
869 SmallVector<const SCEV *, 4> Operands;
870 bool hasTrunc = false;
871 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
872 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
873 hasTrunc = isa<SCEVTruncateExpr>(S);
874 Operands.push_back(S);
875 }
876 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000877 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000878 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000879 }
880
Dan Gohman6864db62009-06-18 16:24:47 +0000881 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000882 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000883 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000884 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000885 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000886 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000887 }
888
Dan Gohman420ab912010-06-25 18:47:08 +0000889 // The cast wasn't folded; create an explicit cast node. We can reuse
890 // the existing insert position since if we get here, we won't have
891 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000892 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
893 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000894 UniqueSCEVs.InsertNode(S, IP);
895 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000896}
897
Dan Gohman0bba49c2009-07-07 17:06:11 +0000898const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000899 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000900 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000901 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000902 assert(isSCEVable(Ty) &&
903 "This is not a conversion to a SCEVable type!");
904 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000905
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000906 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
908 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000909 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000910
Dan Gohman20900ca2009-04-22 16:20:48 +0000911 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000912 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000913 return getZeroExtendExpr(SZ->getOperand(), Ty);
914
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000915 // Before doing any expensive analysis, check to see if we've already
916 // computed a SCEV for this Op and Ty.
917 FoldingSetNodeID ID;
918 ID.AddInteger(scZeroExtend);
919 ID.AddPointer(Op);
920 ID.AddPointer(Ty);
921 void *IP = 0;
922 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
923
Nick Lewycky630d85a2011-01-23 06:20:19 +0000924 // zext(trunc(x)) --> zext(x) or x or trunc(x)
925 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
926 // It's possible the bits taken off by the truncate were all zero bits. If
927 // so, we should be able to simplify this further.
928 const SCEV *X = ST->getOperand();
929 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000930 unsigned TruncBits = getTypeSizeInBits(ST->getType());
931 unsigned NewBits = getTypeSizeInBits(Ty);
932 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000933 CR.zextOrTrunc(NewBits)))
934 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000935 }
936
Dan Gohman01ecca22009-04-27 20:16:15 +0000937 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000938 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000939 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000940 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000941 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000942 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000943 const SCEV *Start = AR->getStart();
944 const SCEV *Step = AR->getStepRecurrence(*this);
945 unsigned BitWidth = getTypeSizeInBits(AR->getType());
946 const Loop *L = AR->getLoop();
947
Dan Gohmaneb490a72009-07-25 01:22:26 +0000948 // If we have special knowledge that this addrec won't overflow,
949 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000950 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000951 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
952 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000953 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000954
Dan Gohman01ecca22009-04-27 20:16:15 +0000955 // Check whether the backedge-taken count is SCEVCouldNotCompute.
956 // Note that this serves two purposes: It filters out loops that are
957 // simply not analyzable, and it covers the case where this code is
958 // being called from within backedge-taken count analysis, such that
959 // attempting to ask for the backedge-taken count would likely result
960 // in infinite recursion. In the later case, the analysis code will
961 // cope with a conservative value, and it will take care to purge
962 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000963 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000964 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000965 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000966 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000967
968 // Check whether the backedge-taken count can be losslessly casted to
969 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000970 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000971 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000972 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000973 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
974 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000975 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000976 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000977 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000978 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
979 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
980 const SCEV *WideMaxBECount =
981 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000982 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000983 getAddExpr(WideStart,
984 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000985 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000986 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000987 // Cache knowledge of AR NUW, which is propagated to this AddRec.
988 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000989 // Return the expression with the addrec on the outside.
990 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
991 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000992 L, AR->getNoWrapFlags());
993 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000994 // Similar to above, only this time treat the step value as signed.
995 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000996 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000997 getAddExpr(WideStart,
998 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000999 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001000 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001001 // Cache knowledge of AR NW, which is propagated to this AddRec.
1002 // Negative step causes unsigned wrap, but it still can't self-wrap.
1003 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001004 // Return the expression with the addrec on the outside.
1005 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1006 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001007 L, AR->getNoWrapFlags());
1008 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001009 }
1010
1011 // If the backedge is guarded by a comparison with the pre-inc value
1012 // the addrec is safe. Also, if the entry is guarded by a comparison
1013 // with the start value and the backedge is guarded by a comparison
1014 // with the post-inc value, the addrec is safe.
1015 if (isKnownPositive(Step)) {
1016 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1017 getUnsignedRange(Step).getUnsignedMax());
1018 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001019 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001020 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001021 AR->getPostIncExpr(*this), N))) {
1022 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1023 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001024 // Return the expression with the addrec on the outside.
1025 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1026 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001027 L, AR->getNoWrapFlags());
1028 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001029 } else if (isKnownNegative(Step)) {
1030 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1031 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001032 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1033 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001034 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001035 AR->getPostIncExpr(*this), N))) {
1036 // Cache knowledge of AR NW, which is propagated to this AddRec.
1037 // Negative step causes unsigned wrap, but it still can't self-wrap.
1038 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1039 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001040 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1041 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001042 L, AR->getNoWrapFlags());
1043 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001044 }
1045 }
1046 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001047
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001048 // The cast wasn't folded; create an explicit cast node.
1049 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001050 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001051 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1052 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001053 UniqueSCEVs.InsertNode(S, IP);
1054 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001055}
1056
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001057// Get the limit of a recurrence such that incrementing by Step cannot cause
1058// signed overflow as long as the value of the recurrence within the loop does
1059// not exceed this limit before incrementing.
1060static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1061 ICmpInst::Predicate *Pred,
1062 ScalarEvolution *SE) {
1063 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1064 if (SE->isKnownPositive(Step)) {
1065 *Pred = ICmpInst::ICMP_SLT;
1066 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1067 SE->getSignedRange(Step).getSignedMax());
1068 }
1069 if (SE->isKnownNegative(Step)) {
1070 *Pred = ICmpInst::ICMP_SGT;
1071 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1072 SE->getSignedRange(Step).getSignedMin());
1073 }
1074 return 0;
1075}
1076
1077// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1078// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1079// or postincrement sibling. This allows normalizing a sign extended AddRec as
1080// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1081// result, the expression "Step + sext(PreIncAR)" is congruent with
1082// "sext(PostIncAR)"
1083static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001084 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001085 ScalarEvolution *SE) {
1086 const Loop *L = AR->getLoop();
1087 const SCEV *Start = AR->getStart();
1088 const SCEV *Step = AR->getStepRecurrence(*SE);
1089
1090 // Check for a simple looking step prior to loop entry.
1091 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001092 if (!SA)
1093 return 0;
1094
1095 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1096 // subtraction is expensive. For this purpose, perform a quick and dirty
1097 // difference, by checking for Step in the operand list.
1098 SmallVector<const SCEV *, 4> DiffOps;
1099 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1100 I != E; ++I) {
1101 if (*I != Step)
1102 DiffOps.push_back(*I);
1103 }
1104 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001105 return 0;
1106
1107 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1108 // same three conditions that getSignExtendedExpr checks.
1109
1110 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001111 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001112 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1113 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1114
Andrew Trickcf31f912011-06-01 19:14:56 +00001115 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001116 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001117
1118 // 2. Direct overflow check on the step operation's expression.
1119 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001120 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001121 const SCEV *OperandExtendedStart =
1122 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1123 SE->getSignExtendExpr(Step, WideTy));
1124 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1125 // Cache knowledge of PreAR NSW.
1126 if (PreAR)
1127 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1128 // FIXME: this optimization needs a unit test
1129 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1130 return PreStart;
1131 }
1132
1133 // 3. Loop precondition.
1134 ICmpInst::Predicate Pred;
1135 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1136
Andrew Trickcf31f912011-06-01 19:14:56 +00001137 if (OverflowLimit &&
1138 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001139 return PreStart;
1140 }
1141 return 0;
1142}
1143
1144// Get the normalized sign-extended expression for this AddRec's Start.
1145static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001146 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001147 ScalarEvolution *SE) {
1148 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1149 if (!PreStart)
1150 return SE->getSignExtendExpr(AR->getStart(), Ty);
1151
1152 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1153 SE->getSignExtendExpr(PreStart, Ty));
1154}
1155
Dan Gohman0bba49c2009-07-07 17:06:11 +00001156const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001157 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001158 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001159 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001160 assert(isSCEVable(Ty) &&
1161 "This is not a conversion to a SCEVable type!");
1162 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001163
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001164 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001165 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1166 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001167 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001168
Dan Gohman20900ca2009-04-22 16:20:48 +00001169 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001170 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001171 return getSignExtendExpr(SS->getOperand(), Ty);
1172
Nick Lewycky73f565e2011-01-19 15:56:12 +00001173 // sext(zext(x)) --> zext(x)
1174 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1175 return getZeroExtendExpr(SZ->getOperand(), Ty);
1176
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001177 // Before doing any expensive analysis, check to see if we've already
1178 // computed a SCEV for this Op and Ty.
1179 FoldingSetNodeID ID;
1180 ID.AddInteger(scSignExtend);
1181 ID.AddPointer(Op);
1182 ID.AddPointer(Ty);
1183 void *IP = 0;
1184 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1185
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001186 // If the input value is provably positive, build a zext instead.
1187 if (isKnownNonNegative(Op))
1188 return getZeroExtendExpr(Op, Ty);
1189
Nick Lewycky630d85a2011-01-23 06:20:19 +00001190 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1191 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1192 // It's possible the bits taken off by the truncate were all sign bits. If
1193 // so, we should be able to simplify this further.
1194 const SCEV *X = ST->getOperand();
1195 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001196 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1197 unsigned NewBits = getTypeSizeInBits(Ty);
1198 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001199 CR.sextOrTrunc(NewBits)))
1200 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001201 }
1202
Dan Gohman01ecca22009-04-27 20:16:15 +00001203 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001204 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001205 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001206 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001207 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001208 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001209 const SCEV *Start = AR->getStart();
1210 const SCEV *Step = AR->getStepRecurrence(*this);
1211 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1212 const Loop *L = AR->getLoop();
1213
Dan Gohmaneb490a72009-07-25 01:22:26 +00001214 // If we have special knowledge that this addrec won't overflow,
1215 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001216 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001217 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001218 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001219 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001220
Dan Gohman01ecca22009-04-27 20:16:15 +00001221 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1222 // Note that this serves two purposes: It filters out loops that are
1223 // simply not analyzable, and it covers the case where this code is
1224 // being called from within backedge-taken count analysis, such that
1225 // attempting to ask for the backedge-taken count would likely result
1226 // in infinite recursion. In the later case, the analysis code will
1227 // cope with a conservative value, and it will take care to purge
1228 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001229 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001230 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001231 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001232 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001233
1234 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001235 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001236 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001237 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001238 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001239 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1240 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001241 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001242 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001243 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001244 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1245 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1246 const SCEV *WideMaxBECount =
1247 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001248 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001249 getAddExpr(WideStart,
1250 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001251 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001252 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001253 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1254 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001255 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001256 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001257 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001258 L, AR->getNoWrapFlags());
1259 }
Dan Gohman850f7912009-07-16 17:34:36 +00001260 // Similar to above, only this time treat the step value as unsigned.
1261 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001262 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001263 getAddExpr(WideStart,
1264 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001265 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001266 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001267 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1268 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001269 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001270 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001271 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001272 L, AR->getNoWrapFlags());
1273 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001274 }
1275
1276 // If the backedge is guarded by a comparison with the pre-inc value
1277 // the addrec is safe. Also, if the entry is guarded by a comparison
1278 // with the start value and the backedge is guarded by a comparison
1279 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001280 ICmpInst::Predicate Pred;
1281 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1282 if (OverflowLimit &&
1283 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1284 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1285 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1286 OverflowLimit)))) {
1287 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1288 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1289 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1290 getSignExtendExpr(Step, Ty),
1291 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001292 }
1293 }
1294 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001295
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001296 // The cast wasn't folded; create an explicit cast node.
1297 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001298 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001299 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1300 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001301 UniqueSCEVs.InsertNode(S, IP);
1302 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001303}
1304
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001305/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1306/// unspecified bits out to the given type.
1307///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001308const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001309 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001310 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1311 "This is not an extending conversion!");
1312 assert(isSCEVable(Ty) &&
1313 "This is not a conversion to a SCEVable type!");
1314 Ty = getEffectiveSCEVType(Ty);
1315
1316 // Sign-extend negative constants.
1317 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1318 if (SC->getValue()->getValue().isNegative())
1319 return getSignExtendExpr(Op, Ty);
1320
1321 // Peel off a truncate cast.
1322 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001323 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001324 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1325 return getAnyExtendExpr(NewOp, Ty);
1326 return getTruncateOrNoop(NewOp, Ty);
1327 }
1328
1329 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001330 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001331 if (!isa<SCEVZeroExtendExpr>(ZExt))
1332 return ZExt;
1333
1334 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001335 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001336 if (!isa<SCEVSignExtendExpr>(SExt))
1337 return SExt;
1338
Dan Gohmana10756e2010-01-21 02:09:26 +00001339 // Force the cast to be folded into the operands of an addrec.
1340 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1341 SmallVector<const SCEV *, 4> Ops;
1342 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1343 I != E; ++I)
1344 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001345 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001346 }
1347
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001348 // If the expression is obviously signed, use the sext cast value.
1349 if (isa<SCEVSMaxExpr>(Op))
1350 return SExt;
1351
1352 // Absent any other information, use the zext cast value.
1353 return ZExt;
1354}
1355
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001356/// CollectAddOperandsWithScales - Process the given Ops list, which is
1357/// a list of operands to be added under the given scale, update the given
1358/// map. This is a helper function for getAddRecExpr. As an example of
1359/// what it does, given a sequence of operands that would form an add
1360/// expression like this:
1361///
1362/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1363///
1364/// where A and B are constants, update the map with these values:
1365///
1366/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1367///
1368/// and add 13 + A*B*29 to AccumulatedConstant.
1369/// This will allow getAddRecExpr to produce this:
1370///
1371/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1372///
1373/// This form often exposes folding opportunities that are hidden in
1374/// the original operand list.
1375///
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001376/// Return true iff it appears that any interesting folding opportunities
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001377/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1378/// the common case where no interesting opportunities are present, and
1379/// is also used as a check to avoid infinite recursion.
1380///
1381static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001382CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1383 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001384 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001385 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001386 const APInt &Scale,
1387 ScalarEvolution &SE) {
1388 bool Interesting = false;
1389
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001390 // Iterate over the add operands. They are sorted, with constants first.
1391 unsigned i = 0;
1392 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1393 ++i;
1394 // Pull a buried constant out to the outside.
1395 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1396 Interesting = true;
1397 AccumulatedConstant += Scale * C->getValue()->getValue();
1398 }
1399
1400 // Next comes everything else. We're especially interested in multiplies
1401 // here, but they're in the middle, so just visit the rest with one loop.
1402 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001403 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1404 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1405 APInt NewScale =
1406 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1407 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1408 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001409 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001410 Interesting |=
1411 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001412 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001413 NewScale, SE);
1414 } else {
1415 // A multiplication of a constant with some other value. Update
1416 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001417 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1418 const SCEV *Key = SE.getMulExpr(MulOps);
1419 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001420 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001421 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001422 NewOps.push_back(Pair.first->first);
1423 } else {
1424 Pair.first->second += NewScale;
1425 // The map already had an entry for this value, which may indicate
1426 // a folding opportunity.
1427 Interesting = true;
1428 }
1429 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001430 } else {
1431 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001432 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001433 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001434 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001435 NewOps.push_back(Pair.first->first);
1436 } else {
1437 Pair.first->second += Scale;
1438 // The map already had an entry for this value, which may indicate
1439 // a folding opportunity.
1440 Interesting = true;
1441 }
1442 }
1443 }
1444
1445 return Interesting;
1446}
1447
1448namespace {
1449 struct APIntCompare {
1450 bool operator()(const APInt &LHS, const APInt &RHS) const {
1451 return LHS.ult(RHS);
1452 }
1453 };
1454}
1455
Dan Gohman6c0866c2009-05-24 23:45:28 +00001456/// getAddExpr - Get a canonical add expression, or something simpler if
1457/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001458const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001459 SCEV::NoWrapFlags Flags) {
1460 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1461 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001463 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001464#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001465 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001466 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001467 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001468 "SCEVAddExpr operand types don't match!");
1469#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001470
Andrew Trick3228cc22011-03-14 16:50:06 +00001471 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001472 // And vice-versa.
1473 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1474 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1475 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001476 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001477 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1478 E = Ops.end(); I != E; ++I)
1479 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001480 All = false;
1481 break;
1482 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001483 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001484 }
1485
Chris Lattner53e677a2004-04-02 20:23:17 +00001486 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001487 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001488
1489 // If there are any constants, fold them together.
1490 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001491 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001492 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001493 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001494 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001495 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001496 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1497 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001498 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001499 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001500 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 }
1502
1503 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001504 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 Ops.erase(Ops.begin());
1506 --Idx;
1507 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001508
Dan Gohmanbca091d2010-04-12 23:08:18 +00001509 if (Ops.size() == 1) return Ops[0];
1510 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001511
Dan Gohman68ff7762010-08-27 21:39:59 +00001512 // Okay, check to see if the same value occurs in the operand list more than
1513 // once. If so, merge them together into an multiply expression. Since we
1514 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001515 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001516 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001519 // Scan ahead to count how many equal operands there are.
1520 unsigned Count = 2;
1521 while (i+Count != e && Ops[i+Count] == Ops[i])
1522 ++Count;
1523 // Merge the values into a multiply.
1524 const SCEV *Scale = getConstant(Ty, Count);
1525 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1526 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001527 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001528 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001530 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001531 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001532 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001533 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001534 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001535
Dan Gohman728c7f32009-05-08 21:03:19 +00001536 // Check for truncates. If all the operands are truncated from the same
1537 // type, see if factoring out the truncate would permit the result to be
1538 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1539 // if the contents of the resulting outer trunc fold to something simple.
1540 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1541 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001542 Type *DstType = Trunc->getType();
1543 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001544 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001545 bool Ok = true;
1546 // Check all the operands to see if they can be represented in the
1547 // source type of the truncate.
1548 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1549 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1550 if (T->getOperand()->getType() != SrcType) {
1551 Ok = false;
1552 break;
1553 }
1554 LargeOps.push_back(T->getOperand());
1555 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001556 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001557 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001558 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001559 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1560 if (const SCEVTruncateExpr *T =
1561 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1562 if (T->getOperand()->getType() != SrcType) {
1563 Ok = false;
1564 break;
1565 }
1566 LargeMulOps.push_back(T->getOperand());
1567 } else if (const SCEVConstant *C =
1568 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001569 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001570 } else {
1571 Ok = false;
1572 break;
1573 }
1574 }
1575 if (Ok)
1576 LargeOps.push_back(getMulExpr(LargeMulOps));
1577 } else {
1578 Ok = false;
1579 break;
1580 }
1581 }
1582 if (Ok) {
1583 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001584 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001585 // If it folds to something simple, use it. Otherwise, don't.
1586 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1587 return getTruncateExpr(Fold, DstType);
1588 }
1589 }
1590
1591 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001592 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1593 ++Idx;
1594
1595 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 if (Idx < Ops.size()) {
1597 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001598 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001599 // If we have an add, expand the add operands onto the end of the operands
1600 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001602 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001603 DeletedAdd = true;
1604 }
1605
1606 // If we deleted at least one add, we added operands to the end of the list,
1607 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001608 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001609 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001610 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001611 }
1612
1613 // Skip over the add expression until we get to a multiply.
1614 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1615 ++Idx;
1616
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001617 // Check to see if there are any folding opportunities present with
1618 // operands multiplied by constant values.
1619 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1620 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001621 DenseMap<const SCEV *, APInt> M;
1622 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001623 APInt AccumulatedConstant(BitWidth, 0);
1624 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001625 Ops.data(), Ops.size(),
1626 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001627 // Some interesting folding opportunity is present, so its worthwhile to
1628 // re-generate the operands list. Group the operands by constant scale,
1629 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001630 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper365ef0b2013-07-03 15:07:05 +00001631 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001632 E = NewOps.end(); I != E; ++I)
1633 MulOpLists[M.find(*I)->second].push_back(*I);
1634 // Re-generate the operands list.
1635 Ops.clear();
1636 if (AccumulatedConstant != 0)
1637 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001638 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1639 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001640 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001641 Ops.push_back(getMulExpr(getConstant(I->first),
1642 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001643 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001644 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001645 if (Ops.size() == 1)
1646 return Ops[0];
1647 return getAddExpr(Ops);
1648 }
1649 }
1650
Chris Lattner53e677a2004-04-02 20:23:17 +00001651 // If we are adding something to a multiply expression, make sure the
1652 // something is not already an operand of the multiply. If so, merge it into
1653 // the multiply.
1654 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001655 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001656 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001657 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001658 if (isa<SCEVConstant>(MulOpSCEV))
1659 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001660 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001661 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001662 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001663 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001664 if (Mul->getNumOperands() != 2) {
1665 // If the multiply has more than two operands, we must get the
1666 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001667 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1668 Mul->op_begin()+MulOp);
1669 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001670 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001672 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001673 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001674 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 if (Ops.size() == 2) return OuterMul;
1676 if (AddOp < Idx) {
1677 Ops.erase(Ops.begin()+AddOp);
1678 Ops.erase(Ops.begin()+Idx-1);
1679 } else {
1680 Ops.erase(Ops.begin()+Idx);
1681 Ops.erase(Ops.begin()+AddOp-1);
1682 }
1683 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001684 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001685 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001686
Chris Lattner53e677a2004-04-02 20:23:17 +00001687 // Check this multiply against other multiplies being added together.
1688 for (unsigned OtherMulIdx = Idx+1;
1689 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1690 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001691 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001692 // If MulOp occurs in OtherMul, we can fold the two multiplies
1693 // together.
1694 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1695 OMulOp != e; ++OMulOp)
1696 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1697 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001698 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001699 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001701 Mul->op_begin()+MulOp);
1702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001703 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001704 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001705 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001706 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001707 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001708 OtherMul->op_begin()+OMulOp);
1709 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001710 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001711 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001712 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1713 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001714 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001715 Ops.erase(Ops.begin()+Idx);
1716 Ops.erase(Ops.begin()+OtherMulIdx-1);
1717 Ops.push_back(OuterMul);
1718 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001719 }
1720 }
1721 }
1722 }
1723
1724 // If there are any add recurrences in the operands list, see if any other
1725 // added values are loop invariant. If so, we can fold them into the
1726 // recurrence.
1727 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1728 ++Idx;
1729
1730 // Scan over all recurrences, trying to fold loop invariants into them.
1731 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1732 // Scan all of the other operands to this add and add them to the vector if
1733 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001734 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001735 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001736 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001737 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001738 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 LIOps.push_back(Ops[i]);
1740 Ops.erase(Ops.begin()+i);
1741 --i; --e;
1742 }
1743
1744 // If we found some loop invariants, fold them into the recurrence.
1745 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001746 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001747 LIOps.push_back(AddRec->getStart());
1748
Dan Gohman0bba49c2009-07-07 17:06:11 +00001749 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001750 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001751 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001752
Dan Gohmanb9f96512010-06-30 07:16:37 +00001753 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001754 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001755 // Always propagate NW.
1756 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001757 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001758
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 // If all of the other operands were loop invariant, we are done.
1760 if (Ops.size() == 1) return NewRec;
1761
Nick Lewycky980e9f32011-09-06 05:08:09 +00001762 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001763 for (unsigned i = 0;; ++i)
1764 if (Ops[i] == AddRec) {
1765 Ops[i] = NewRec;
1766 break;
1767 }
Dan Gohman246b2562007-10-22 18:31:58 +00001768 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001769 }
1770
1771 // Okay, if there weren't any loop invariants to be folded, check to see if
1772 // there are multiple AddRec's with the same loop induction variable being
1773 // added together. If so, we can fold them.
1774 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001775 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1776 ++OtherIdx)
1777 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1778 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1779 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1780 AddRec->op_end());
1781 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1782 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001783 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001784 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001785 if (OtherAddRec->getLoop() == AddRecLoop) {
1786 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1787 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001788 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001789 AddRecOps.append(OtherAddRec->op_begin()+i,
1790 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001791 break;
1792 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001793 AddRecOps[i] = getAddExpr(AddRecOps[i],
1794 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001795 }
1796 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001797 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001798 // Step size has changed, so we cannot guarantee no self-wraparound.
1799 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001800 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001801 }
1802
1803 // Otherwise couldn't fold anything into this recurrence. Move onto the
1804 // next one.
1805 }
1806
1807 // Okay, it looks like we really DO need an add expr. Check to see if we
1808 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001809 FoldingSetNodeID ID;
1810 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001811 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1812 ID.AddPointer(Ops[i]);
1813 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001814 SCEVAddExpr *S =
1815 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1816 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001817 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1818 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001819 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1820 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001821 UniqueSCEVs.InsertNode(S, IP);
1822 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001823 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001824 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001825}
1826
Nick Lewyckye97728e2011-10-04 06:51:26 +00001827static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1828 uint64_t k = i*j;
1829 if (j > 1 && k / j != i) Overflow = true;
1830 return k;
1831}
1832
1833/// Compute the result of "n choose k", the binomial coefficient. If an
1834/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001835/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewyckye97728e2011-10-04 06:51:26 +00001836static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1837 // We use the multiplicative formula:
1838 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1839 // At each iteration, we take the n-th term of the numeral and divide by the
1840 // (k-n)th term of the denominator. This division will always produce an
1841 // integral result, and helps reduce the chance of overflow in the
1842 // intermediate computations. However, we can still overflow even when the
1843 // final result would fit.
1844
1845 if (n == 0 || n == k) return 1;
1846 if (k > n) return 0;
1847
1848 if (k > n/2)
1849 k = n-k;
1850
1851 uint64_t r = 1;
1852 for (uint64_t i = 1; i <= k; ++i) {
1853 r = umul_ov(r, n-(i-1), Overflow);
1854 r /= i;
1855 }
1856 return r;
1857}
1858
Dan Gohman6c0866c2009-05-24 23:45:28 +00001859/// getMulExpr - Get a canonical multiply expression, or something simpler if
1860/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001861const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001862 SCEV::NoWrapFlags Flags) {
1863 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1864 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001865 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001866 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001867#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001868 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001869 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001870 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001871 "SCEVMulExpr operand types don't match!");
1872#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001873
Andrew Trick3228cc22011-03-14 16:50:06 +00001874 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001875 // And vice-versa.
1876 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1877 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1878 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001879 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001880 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1881 E = Ops.end(); I != E; ++I)
1882 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001883 All = false;
1884 break;
1885 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001886 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001887 }
1888
Chris Lattner53e677a2004-04-02 20:23:17 +00001889 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001890 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001891
1892 // If there are any constants, fold them together.
1893 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001894 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001895
1896 // C1*(C2+V) -> C1*C2 + C1*V
1897 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001898 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001899 if (Add->getNumOperands() == 2 &&
1900 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001901 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1902 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001903
Chris Lattner53e677a2004-04-02 20:23:17 +00001904 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001905 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001906 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001907 ConstantInt *Fold = ConstantInt::get(getContext(),
1908 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001909 RHSC->getValue()->getValue());
1910 Ops[0] = getConstant(Fold);
1911 Ops.erase(Ops.begin()+1); // Erase the folded element
1912 if (Ops.size() == 1) return Ops[0];
1913 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001914 }
1915
1916 // If we are left with a constant one being multiplied, strip it off.
1917 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1918 Ops.erase(Ops.begin());
1919 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001920 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001921 // If we have a multiply of zero, it will always be zero.
1922 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001923 } else if (Ops[0]->isAllOnesValue()) {
1924 // If we have a mul by -1 of an add, try distributing the -1 among the
1925 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001926 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001927 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1928 SmallVector<const SCEV *, 4> NewOps;
1929 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001930 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1931 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001932 const SCEV *Mul = getMulExpr(Ops[0], *I);
1933 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1934 NewOps.push_back(Mul);
1935 }
1936 if (AnyFolded)
1937 return getAddExpr(NewOps);
1938 }
Andrew Tricka053b212011-03-14 17:38:54 +00001939 else if (const SCEVAddRecExpr *
1940 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1941 // Negation preserves a recurrence's no self-wrap property.
1942 SmallVector<const SCEV *, 4> Operands;
1943 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1944 E = AddRec->op_end(); I != E; ++I) {
1945 Operands.push_back(getMulExpr(Ops[0], *I));
1946 }
1947 return getAddRecExpr(Operands, AddRec->getLoop(),
1948 AddRec->getNoWrapFlags(SCEV::FlagNW));
1949 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001950 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001951 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001952
1953 if (Ops.size() == 1)
1954 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001955 }
1956
1957 // Skip over the add expression until we get to a multiply.
1958 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1959 ++Idx;
1960
Chris Lattner53e677a2004-04-02 20:23:17 +00001961 // If there are mul operands inline them all into this expression.
1962 if (Idx < Ops.size()) {
1963 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001964 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001965 // If we have an mul, expand the mul operands onto the end of the operands
1966 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001967 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001968 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001969 DeletedMul = true;
1970 }
1971
1972 // If we deleted at least one mul, we added operands to the end of the list,
1973 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001974 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001975 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001976 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001977 }
1978
1979 // If there are any add recurrences in the operands list, see if any other
1980 // added values are loop invariant. If so, we can fold them into the
1981 // recurrence.
1982 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1983 ++Idx;
1984
1985 // Scan over all recurrences, trying to fold loop invariants into them.
1986 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1987 // Scan all of the other operands to this mul and add them to the vector if
1988 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001989 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001990 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001991 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001992 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001993 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001994 LIOps.push_back(Ops[i]);
1995 Ops.erase(Ops.begin()+i);
1996 --i; --e;
1997 }
1998
1999 // If we found some loop invariants, fold them into the recurrence.
2000 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002001 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002002 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002003 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002004 const SCEV *Scale = getMulExpr(LIOps);
2005 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2006 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002007
Dan Gohmanb9f96512010-06-30 07:16:37 +00002008 // Build the new addrec. Propagate the NUW and NSW flags if both the
2009 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002010 //
2011 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002012 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002013 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2014 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002015
2016 // If all of the other operands were loop invariant, we are done.
2017 if (Ops.size() == 1) return NewRec;
2018
Nick Lewycky980e9f32011-09-06 05:08:09 +00002019 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002020 for (unsigned i = 0;; ++i)
2021 if (Ops[i] == AddRec) {
2022 Ops[i] = NewRec;
2023 break;
2024 }
Dan Gohman246b2562007-10-22 18:31:58 +00002025 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002026 }
2027
2028 // Okay, if there weren't any loop invariants to be folded, check to see if
2029 // there are multiple AddRec's with the same loop induction variable being
2030 // multiplied together. If so, we can fold them.
2031 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002032 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002033 ++OtherIdx) {
Andrew Trick97178ae2012-05-30 03:35:17 +00002034 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2035 continue;
2036
2037 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2038 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2039 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2040 // ]]],+,...up to x=2n}.
2041 // Note that the arguments to choose() are always integers with values
2042 // known at compile time, never SCEV objects.
2043 //
2044 // The implementation avoids pointless extra computations when the two
2045 // addrec's are of different length (mathematically, it's equivalent to
2046 // an infinite stream of zeros on the right).
2047 bool OpsModified = false;
2048 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2049 ++OtherIdx) {
2050 const SCEVAddRecExpr *OtherAddRec =
2051 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2052 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2053 continue;
2054
2055 bool Overflow = false;
2056 Type *Ty = AddRec->getType();
2057 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2058 SmallVector<const SCEV*, 7> AddRecOps;
2059 for (int x = 0, xe = AddRec->getNumOperands() +
2060 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2061 const SCEV *Term = getConstant(Ty, 0);
2062 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2063 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2064 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2065 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2066 z < ze && !Overflow; ++z) {
2067 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2068 uint64_t Coeff;
2069 if (LargerThan64Bits)
2070 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2071 else
2072 Coeff = Coeff1*Coeff2;
2073 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2074 const SCEV *Term1 = AddRec->getOperand(y-z);
2075 const SCEV *Term2 = OtherAddRec->getOperand(z);
2076 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohman6a0c1252010-08-31 22:52:12 +00002077 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002078 }
2079 AddRecOps.push_back(Term);
2080 }
2081 if (!Overflow) {
2082 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2083 SCEV::FlagAnyWrap);
2084 if (Ops.size() == 2) return NewAddRec;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002085 Ops[Idx] = NewAddRec;
Andrew Trick97178ae2012-05-30 03:35:17 +00002086 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2087 OpsModified = true;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002088 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2089 if (!AddRec)
2090 break;
Andrew Trick97178ae2012-05-30 03:35:17 +00002091 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002092 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002093 if (OpsModified)
2094 return getMulExpr(Ops);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002095 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002096
2097 // Otherwise couldn't fold anything into this recurrence. Move onto the
2098 // next one.
2099 }
2100
2101 // Okay, it looks like we really DO need an mul expr. Check to see if we
2102 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002103 FoldingSetNodeID ID;
2104 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002105 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2106 ID.AddPointer(Ops[i]);
2107 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002108 SCEVMulExpr *S =
2109 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2110 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002111 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2112 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002113 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2114 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002115 UniqueSCEVs.InsertNode(S, IP);
2116 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002117 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002118 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002119}
2120
Andreas Bolka8a11c982009-08-07 22:55:26 +00002121/// getUDivExpr - Get a canonical unsigned division expression, or something
2122/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002123const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2124 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002125 assert(getEffectiveSCEVType(LHS->getType()) ==
2126 getEffectiveSCEVType(RHS->getType()) &&
2127 "SCEVUDivExpr operand types don't match!");
2128
Dan Gohman622ed672009-05-04 22:02:23 +00002129 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002130 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002131 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002132 // If the denominator is zero, the result of the udiv is undefined. Don't
2133 // try to analyze it, because the resolution chosen here may differ from
2134 // the resolution chosen in other parts of the compiler.
2135 if (!RHSC->getValue()->isZero()) {
2136 // Determine if the division can be folded into the operands of
2137 // its operands.
2138 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002139 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002140 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002141 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002142 // For non-power-of-two values, effectively round the value up to the
2143 // nearest power of two.
2144 if (!RHSC->getValue()->getValue().isPowerOf2())
2145 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002146 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002147 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002148 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2149 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002150 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2151 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2152 const APInt &StepInt = Step->getValue()->getValue();
2153 const APInt &DivInt = RHSC->getValue()->getValue();
2154 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002155 getZeroExtendExpr(AR, ExtTy) ==
2156 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2157 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002158 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002159 SmallVector<const SCEV *, 4> Operands;
2160 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2161 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002162 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002163 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002164 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002165 /// Get a canonical UDivExpr for a recurrence.
2166 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2167 // We can currently only fold X%N if X is constant.
2168 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2169 if (StartC && !DivInt.urem(StepInt) &&
2170 getZeroExtendExpr(AR, ExtTy) ==
2171 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2172 getZeroExtendExpr(Step, ExtTy),
2173 AR->getLoop(), SCEV::FlagAnyWrap)) {
2174 const APInt &StartInt = StartC->getValue()->getValue();
2175 const APInt &StartRem = StartInt.urem(StepInt);
2176 if (StartRem != 0)
2177 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2178 AR->getLoop(), SCEV::FlagNW);
2179 }
2180 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002181 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2182 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2183 SmallVector<const SCEV *, 4> Operands;
2184 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2185 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2186 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2187 // Find an operand that's safely divisible.
2188 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2189 const SCEV *Op = M->getOperand(i);
2190 const SCEV *Div = getUDivExpr(Op, RHSC);
2191 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2192 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2193 M->op_end());
2194 Operands[i] = Div;
2195 return getMulExpr(Operands);
2196 }
2197 }
Dan Gohman185cf032009-05-08 20:18:49 +00002198 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002199 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002200 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002201 SmallVector<const SCEV *, 4> Operands;
2202 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2203 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2204 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2205 Operands.clear();
2206 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2207 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2208 if (isa<SCEVUDivExpr>(Op) ||
2209 getMulExpr(Op, RHS) != A->getOperand(i))
2210 break;
2211 Operands.push_back(Op);
2212 }
2213 if (Operands.size() == A->getNumOperands())
2214 return getAddExpr(Operands);
2215 }
2216 }
Dan Gohman185cf032009-05-08 20:18:49 +00002217
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002218 // Fold if both operands are constant.
2219 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2220 Constant *LHSCV = LHSC->getValue();
2221 Constant *RHSCV = RHSC->getValue();
2222 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2223 RHSCV)));
2224 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002225 }
2226 }
2227
Dan Gohman1c343752009-06-27 21:21:31 +00002228 FoldingSetNodeID ID;
2229 ID.AddInteger(scUDivExpr);
2230 ID.AddPointer(LHS);
2231 ID.AddPointer(RHS);
2232 void *IP = 0;
2233 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002234 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2235 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002236 UniqueSCEVs.InsertNode(S, IP);
2237 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002238}
2239
2240
Dan Gohman6c0866c2009-05-24 23:45:28 +00002241/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2242/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002243const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2244 const Loop *L,
2245 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002246 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002247 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002248 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002249 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002250 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002251 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002252 }
2253
2254 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002255 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002256}
2257
Dan Gohman6c0866c2009-05-24 23:45:28 +00002258/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2259/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002260const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002261ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002262 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002263 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002264#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002265 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002266 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002267 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002268 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002269 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002270 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002271 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002272#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002273
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002274 if (Operands.back()->isZero()) {
2275 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002276 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002277 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002278
Dan Gohmanbc028532010-02-19 18:49:22 +00002279 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2280 // use that information to infer NUW and NSW flags. However, computing a
2281 // BE count requires calling getAddRecExpr, so we may not yet have a
2282 // meaningful BE count at this point (and if we don't, we'd be stuck
2283 // with a SCEVCouldNotCompute as the cached BE count).
2284
Andrew Trick3228cc22011-03-14 16:50:06 +00002285 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002286 // And vice-versa.
2287 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2288 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2289 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002290 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002291 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2292 E = Operands.end(); I != E; ++I)
2293 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002294 All = false;
2295 break;
2296 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002297 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002298 }
2299
Dan Gohmand9cc7492008-08-08 18:33:12 +00002300 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002301 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002302 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002303 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002304 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002305 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002306 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002307 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002308 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002309 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002310 // AddRecs require their operands be loop-invariant with respect to their
2311 // loops. Don't perform this transformation if it would break this
2312 // requirement.
2313 bool AllInvariant = true;
2314 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002315 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002316 AllInvariant = false;
2317 break;
2318 }
2319 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002320 // Create a recurrence for the outer loop with the same step size.
2321 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002322 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2323 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002324 SCEV::NoWrapFlags OuterFlags =
2325 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002326
2327 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002328 AllInvariant = true;
2329 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002330 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002331 AllInvariant = false;
2332 break;
2333 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002334 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002335 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002336 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002337 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2338 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002339 SCEV::NoWrapFlags InnerFlags =
2340 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002341 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2342 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002343 }
2344 // Reset Operands to its original state.
2345 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002346 }
2347 }
2348
Dan Gohman67847532010-01-19 22:27:22 +00002349 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2350 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002351 FoldingSetNodeID ID;
2352 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002353 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2354 ID.AddPointer(Operands[i]);
2355 ID.AddPointer(L);
2356 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002357 SCEVAddRecExpr *S =
2358 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2359 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002360 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2361 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002362 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2363 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002364 UniqueSCEVs.InsertNode(S, IP);
2365 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002366 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002367 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002368}
2369
Dan Gohman9311ef62009-06-24 14:49:00 +00002370const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2371 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002372 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002373 Ops.push_back(LHS);
2374 Ops.push_back(RHS);
2375 return getSMaxExpr(Ops);
2376}
2377
Dan Gohman0bba49c2009-07-07 17:06:11 +00002378const SCEV *
2379ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002380 assert(!Ops.empty() && "Cannot get empty smax!");
2381 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002382#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002383 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002384 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002385 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002386 "SCEVSMaxExpr operand types don't match!");
2387#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002388
2389 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002390 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002391
2392 // If there are any constants, fold them together.
2393 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002394 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002395 ++Idx;
2396 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002397 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002398 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002399 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002400 APIntOps::smax(LHSC->getValue()->getValue(),
2401 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002402 Ops[0] = getConstant(Fold);
2403 Ops.erase(Ops.begin()+1); // Erase the folded element
2404 if (Ops.size() == 1) return Ops[0];
2405 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002406 }
2407
Dan Gohmane5aceed2009-06-24 14:46:22 +00002408 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002409 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2410 Ops.erase(Ops.begin());
2411 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002412 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2413 // If we have an smax with a constant maximum-int, it will always be
2414 // maximum-int.
2415 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002416 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002417
Dan Gohman3ab13122010-04-13 16:49:23 +00002418 if (Ops.size() == 1) return Ops[0];
2419 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002420
2421 // Find the first SMax
2422 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2423 ++Idx;
2424
2425 // Check to see if one of the operands is an SMax. If so, expand its operands
2426 // onto our operand list, and recurse to simplify.
2427 if (Idx < Ops.size()) {
2428 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002429 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002430 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002431 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002432 DeletedSMax = true;
2433 }
2434
2435 if (DeletedSMax)
2436 return getSMaxExpr(Ops);
2437 }
2438
2439 // Okay, check to see if the same value occurs in the operand list twice. If
2440 // so, delete one. Since we sorted the list, these values are required to
2441 // be adjacent.
2442 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002443 // X smax Y smax Y --> X smax Y
2444 // X smax Y --> X, if X is always greater than Y
2445 if (Ops[i] == Ops[i+1] ||
2446 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2447 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2448 --i; --e;
2449 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002450 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2451 --i; --e;
2452 }
2453
2454 if (Ops.size() == 1) return Ops[0];
2455
2456 assert(!Ops.empty() && "Reduced smax down to nothing!");
2457
Nick Lewycky3e630762008-02-20 06:48:22 +00002458 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002459 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002460 FoldingSetNodeID ID;
2461 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002462 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2463 ID.AddPointer(Ops[i]);
2464 void *IP = 0;
2465 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002466 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2467 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002468 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2469 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002470 UniqueSCEVs.InsertNode(S, IP);
2471 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002472}
2473
Dan Gohman9311ef62009-06-24 14:49:00 +00002474const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2475 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002476 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002477 Ops.push_back(LHS);
2478 Ops.push_back(RHS);
2479 return getUMaxExpr(Ops);
2480}
2481
Dan Gohman0bba49c2009-07-07 17:06:11 +00002482const SCEV *
2483ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002484 assert(!Ops.empty() && "Cannot get empty umax!");
2485 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002486#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002487 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002488 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002489 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002490 "SCEVUMaxExpr operand types don't match!");
2491#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002492
2493 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002494 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002495
2496 // If there are any constants, fold them together.
2497 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002498 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002499 ++Idx;
2500 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002501 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002502 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002503 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002504 APIntOps::umax(LHSC->getValue()->getValue(),
2505 RHSC->getValue()->getValue()));
2506 Ops[0] = getConstant(Fold);
2507 Ops.erase(Ops.begin()+1); // Erase the folded element
2508 if (Ops.size() == 1) return Ops[0];
2509 LHSC = cast<SCEVConstant>(Ops[0]);
2510 }
2511
Dan Gohmane5aceed2009-06-24 14:46:22 +00002512 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002513 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2514 Ops.erase(Ops.begin());
2515 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002516 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2517 // If we have an umax with a constant maximum-int, it will always be
2518 // maximum-int.
2519 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002520 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002521
Dan Gohman3ab13122010-04-13 16:49:23 +00002522 if (Ops.size() == 1) return Ops[0];
2523 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002524
2525 // Find the first UMax
2526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2527 ++Idx;
2528
2529 // Check to see if one of the operands is a UMax. If so, expand its operands
2530 // onto our operand list, and recurse to simplify.
2531 if (Idx < Ops.size()) {
2532 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002533 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002534 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002535 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002536 DeletedUMax = true;
2537 }
2538
2539 if (DeletedUMax)
2540 return getUMaxExpr(Ops);
2541 }
2542
2543 // Okay, check to see if the same value occurs in the operand list twice. If
2544 // so, delete one. Since we sorted the list, these values are required to
2545 // be adjacent.
2546 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002547 // X umax Y umax Y --> X umax Y
2548 // X umax Y --> X, if X is always greater than Y
2549 if (Ops[i] == Ops[i+1] ||
2550 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2551 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2552 --i; --e;
2553 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002554 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2555 --i; --e;
2556 }
2557
2558 if (Ops.size() == 1) return Ops[0];
2559
2560 assert(!Ops.empty() && "Reduced umax down to nothing!");
2561
2562 // Okay, it looks like we really DO need a umax expr. Check to see if we
2563 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002564 FoldingSetNodeID ID;
2565 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002566 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2567 ID.AddPointer(Ops[i]);
2568 void *IP = 0;
2569 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002570 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2571 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002572 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2573 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002574 UniqueSCEVs.InsertNode(S, IP);
2575 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002576}
2577
Dan Gohman9311ef62009-06-24 14:49:00 +00002578const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2579 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002580 // ~smax(~x, ~y) == smin(x, y).
2581 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2582}
2583
Dan Gohman9311ef62009-06-24 14:49:00 +00002584const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2585 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002586 // ~umax(~x, ~y) == umin(x, y)
2587 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2588}
2589
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002590const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002591 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002592 // constant expression and then folding it back into a ConstantInt.
2593 // This is just a compile-time optimization.
2594 if (TD)
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002595 return getConstant(TD->getIntPtrType(getContext()),
2596 TD->getTypeAllocSize(AllocTy));
Dan Gohman6ab10f62010-04-12 23:03:26 +00002597
Dan Gohman4f8eea82010-02-01 18:27:38 +00002598 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2599 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002600 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002601 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002602 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002603 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2604}
2605
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002606const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002607 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2608 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002609 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002610 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002611 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002612 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2613}
2614
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002615const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002616 unsigned FieldNo) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002617 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002618 // constant expression and then folding it back into a ConstantInt.
2619 // This is just a compile-time optimization.
2620 if (TD)
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002621 return getConstant(TD->getIntPtrType(getContext()),
Dan Gohman6ab10f62010-04-12 23:03:26 +00002622 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2623
Dan Gohman0f5efe52010-01-28 02:15:55 +00002624 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2625 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002626 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002627 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002628 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002629 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002630}
2631
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002632const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002633 Constant *FieldNo) {
2634 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002636 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002637 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002638 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002639 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002640}
2641
Dan Gohman0bba49c2009-07-07 17:06:11 +00002642const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002643 // Don't attempt to do anything other than create a SCEVUnknown object
2644 // here. createSCEV only calls getUnknown after checking for all other
2645 // interesting possibilities, and any other code that calls getUnknown
2646 // is doing so in order to hide a value from SCEV canonicalization.
2647
Dan Gohman1c343752009-06-27 21:21:31 +00002648 FoldingSetNodeID ID;
2649 ID.AddInteger(scUnknown);
2650 ID.AddPointer(V);
2651 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002652 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2653 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2654 "Stale SCEVUnknown in uniquing map!");
2655 return S;
2656 }
2657 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2658 FirstUnknown);
2659 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002660 UniqueSCEVs.InsertNode(S, IP);
2661 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002662}
2663
Chris Lattner53e677a2004-04-02 20:23:17 +00002664//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002665// Basic SCEV Analysis and PHI Idiom Recognition Code
2666//
2667
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002668/// isSCEVable - Test if values of the given type are analyzable within
2669/// the SCEV framework. This primarily includes integer types, and it
2670/// can optionally include pointer types if the ScalarEvolution class
2671/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002672bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002673 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002674 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002675}
2676
2677/// getTypeSizeInBits - Return the size in bits of the specified type,
2678/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002679uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002680 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2681
Micah Villmow3574eca2012-10-08 16:38:25 +00002682 // If we have a DataLayout, use it!
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002683 if (TD)
2684 return TD->getTypeSizeInBits(Ty);
2685
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002686 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002687 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002688 return Ty->getPrimitiveSizeInBits();
2689
Micah Villmow3574eca2012-10-08 16:38:25 +00002690 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002691 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002692 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002693 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002694}
2695
2696/// getEffectiveSCEVType - Return a type with the same bitwidth as
2697/// the given type and which represents how SCEV will treat the given
2698/// type, for which isSCEVable must return true. For pointer types,
2699/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002700Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002701 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2702
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002703 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002704 return Ty;
2705
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002706 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002707 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002708 if (TD) return TD->getIntPtrType(getContext());
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002709
Micah Villmow3574eca2012-10-08 16:38:25 +00002710 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002711 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002712}
Chris Lattner53e677a2004-04-02 20:23:17 +00002713
Dan Gohman0bba49c2009-07-07 17:06:11 +00002714const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002715 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002716}
2717
Shuxin Yang5e915e62013-07-08 17:33:13 +00002718namespace {
2719 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2720 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2721 // is set iff if find such SCEVUnknown.
2722 //
2723 struct FindInvalidSCEVUnknown {
2724 bool FindOne;
2725 FindInvalidSCEVUnknown() { FindOne = false; }
2726 bool follow(const SCEV *S) {
2727 switch (S->getSCEVType()) {
2728 case scConstant:
2729 return false;
2730 case scUnknown:
2731 if(!cast<SCEVUnknown>(S)->getValue())
2732 FindOne = true;
2733 return false;
2734 default:
2735 return true;
2736 }
2737 }
2738 bool isDone() const { return FindOne; }
2739 };
2740}
2741
2742bool ScalarEvolution::checkValidity(const SCEV *S) const {
2743 FindInvalidSCEVUnknown F;
2744 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2745 ST.visitAll(S);
2746
2747 return !F.FindOne;
2748}
2749
Chris Lattner53e677a2004-04-02 20:23:17 +00002750/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2751/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002752const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002753 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002754
Shuxin Yang5e915e62013-07-08 17:33:13 +00002755 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2756 if (I != ValueExprMap.end()) {
2757 const SCEV *S = I->second;
2758 if(checkValidity(S))
2759 return S;
2760 else
2761 ValueExprMap.erase(I);
2762 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00002763 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002764
2765 // The process of creating a SCEV for V may have caused other SCEVs
2766 // to have been created, so it's necessary to insert the new entry
2767 // from scratch, rather than trying to remember the insert position
2768 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002769 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002770 return S;
2771}
2772
Dan Gohman2d1be872009-04-16 03:18:22 +00002773/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2774///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002775const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002776 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002777 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002778 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002779
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002780 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002781 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002782 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002783 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002784}
2785
2786/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002787const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002788 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002789 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002790 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002791
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002792 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002793 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002794 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002795 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002796 return getMinusSCEV(AllOnes, V);
2797}
2798
Andrew Trick3228cc22011-03-14 16:50:06 +00002799/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002800const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002801 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002802 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2803
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002804 // Fast path: X - X --> 0.
2805 if (LHS == RHS)
2806 return getConstant(LHS->getType(), 0);
2807
Dan Gohman2d1be872009-04-16 03:18:22 +00002808 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002809 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002810}
2811
2812/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2813/// input value to the specified type. If the type must be extended, it is zero
2814/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002815const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002816ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2817 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002818 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2819 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002820 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002821 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002822 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002823 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002824 return getTruncateExpr(V, Ty);
2825 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002826}
2827
2828/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2829/// input value to the specified type. If the type must be extended, it is sign
2830/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002831const SCEV *
2832ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002833 Type *Ty) {
2834 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002835 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2836 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002837 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002838 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002839 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002840 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002841 return getTruncateExpr(V, Ty);
2842 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002843}
2844
Dan Gohman467c4302009-05-13 03:46:30 +00002845/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2846/// input value to the specified type. If the type must be extended, it is zero
2847/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002848const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002849ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2850 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002851 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2852 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002853 "Cannot noop or zero extend with non-integer arguments!");
2854 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2855 "getNoopOrZeroExtend cannot truncate!");
2856 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2857 return V; // No conversion
2858 return getZeroExtendExpr(V, Ty);
2859}
2860
2861/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2862/// input value to the specified type. If the type must be extended, it is sign
2863/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002864const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002865ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2866 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002867 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2868 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002869 "Cannot noop or sign extend with non-integer arguments!");
2870 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2871 "getNoopOrSignExtend cannot truncate!");
2872 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2873 return V; // No conversion
2874 return getSignExtendExpr(V, Ty);
2875}
2876
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002877/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2878/// the input value to the specified type. If the type must be extended,
2879/// it is extended with unspecified bits. The conversion must not be
2880/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002881const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002882ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2883 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002884 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2885 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002886 "Cannot noop or any extend with non-integer arguments!");
2887 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2888 "getNoopOrAnyExtend cannot truncate!");
2889 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2890 return V; // No conversion
2891 return getAnyExtendExpr(V, Ty);
2892}
2893
Dan Gohman467c4302009-05-13 03:46:30 +00002894/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2895/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002896const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002897ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2898 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002899 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2900 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002901 "Cannot truncate or noop with non-integer arguments!");
2902 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2903 "getTruncateOrNoop cannot extend!");
2904 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2905 return V; // No conversion
2906 return getTruncateExpr(V, Ty);
2907}
2908
Dan Gohmana334aa72009-06-22 00:31:57 +00002909/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2910/// the types using zero-extension, and then perform a umax operation
2911/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002912const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2913 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002914 const SCEV *PromotedLHS = LHS;
2915 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002916
2917 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2918 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2919 else
2920 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2921
2922 return getUMaxExpr(PromotedLHS, PromotedRHS);
2923}
2924
Dan Gohmanc9759e82009-06-22 15:03:27 +00002925/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2926/// the types using zero-extension, and then perform a umin operation
2927/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002928const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2929 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002930 const SCEV *PromotedLHS = LHS;
2931 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002932
2933 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2934 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2935 else
2936 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2937
2938 return getUMinExpr(PromotedLHS, PromotedRHS);
2939}
2940
Andrew Trickb12a7542011-03-17 23:51:11 +00002941/// getPointerBase - Transitively follow the chain of pointer-type operands
2942/// until reaching a SCEV that does not have a single pointer operand. This
2943/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2944/// but corner cases do exist.
2945const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2946 // A pointer operand may evaluate to a nonpointer expression, such as null.
2947 if (!V->getType()->isPointerTy())
2948 return V;
2949
2950 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2951 return getPointerBase(Cast->getOperand());
2952 }
2953 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2954 const SCEV *PtrOp = 0;
2955 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2956 I != E; ++I) {
2957 if ((*I)->getType()->isPointerTy()) {
2958 // Cannot find the base of an expression with multiple pointer operands.
2959 if (PtrOp)
2960 return V;
2961 PtrOp = *I;
2962 }
2963 }
2964 if (!PtrOp)
2965 return V;
2966 return getPointerBase(PtrOp);
2967 }
2968 return V;
2969}
2970
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002971/// PushDefUseChildren - Push users of the given Instruction
2972/// onto the given Worklist.
2973static void
2974PushDefUseChildren(Instruction *I,
2975 SmallVectorImpl<Instruction *> &Worklist) {
2976 // Push the def-use children onto the Worklist stack.
2977 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2978 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002979 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002980}
2981
2982/// ForgetSymbolicValue - This looks up computed SCEV values for all
2983/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002984/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002985/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002986void
Dan Gohman85669632010-02-25 06:57:05 +00002987ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002988 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002989 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002990
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002991 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002992 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002993 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002994 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002995 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002996
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002997 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002998 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002999 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003000 const SCEV *Old = It->second;
3001
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003002 // Short-circuit the def-use traversal if the symbolic name
3003 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00003004 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003005 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00003006
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003007 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00003008 // structure, it's a PHI that's in the progress of being computed
3009 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3010 // additional loop trip count information isn't going to change anything.
3011 // In the second case, createNodeForPHI will perform the necessary
3012 // updates on its own when it gets to that point. In the third, we do
3013 // want to forget the SCEVUnknown.
3014 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00003015 !isa<SCEVUnknown>(Old) ||
3016 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00003017 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003018 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003019 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003020 }
3021
3022 PushDefUseChildren(I, Worklist);
3023 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00003024}
Chris Lattner53e677a2004-04-02 20:23:17 +00003025
3026/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3027/// a loop header, making it a potential recurrence, or it doesn't.
3028///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003029const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00003030 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3031 if (L->getHeader() == PN->getParent()) {
3032 // The loop may have multiple entrances or multiple exits; we can analyze
3033 // this phi as an addrec if it has a unique entry value and a unique
3034 // backedge value.
3035 Value *BEValueV = 0, *StartValueV = 0;
3036 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3037 Value *V = PN->getIncomingValue(i);
3038 if (L->contains(PN->getIncomingBlock(i))) {
3039 if (!BEValueV) {
3040 BEValueV = V;
3041 } else if (BEValueV != V) {
3042 BEValueV = 0;
3043 break;
3044 }
3045 } else if (!StartValueV) {
3046 StartValueV = V;
3047 } else if (StartValueV != V) {
3048 StartValueV = 0;
3049 break;
3050 }
3051 }
3052 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003053 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003054 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003055 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003056 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003057 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003058
3059 // Using this symbolic name for the PHI, analyze the value coming around
3060 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003061 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003062
3063 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3064 // has a special value for the first iteration of the loop.
3065
3066 // If the value coming around the backedge is an add with the symbolic
3067 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003068 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003069 // If there is a single occurrence of the symbolic value, replace it
3070 // with a recurrence.
3071 unsigned FoundIndex = Add->getNumOperands();
3072 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3073 if (Add->getOperand(i) == SymbolicName)
3074 if (FoundIndex == e) {
3075 FoundIndex = i;
3076 break;
3077 }
3078
3079 if (FoundIndex != Add->getNumOperands()) {
3080 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003081 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003082 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3083 if (i != FoundIndex)
3084 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003085 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003086
3087 // This is not a valid addrec if the step amount is varying each
3088 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003089 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003090 (isa<SCEVAddRecExpr>(Accum) &&
3091 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003092 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003093
3094 // If the increment doesn't overflow, then neither the addrec nor
3095 // the post-increment will overflow.
3096 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3097 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003098 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003099 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003100 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003101 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003102 dyn_cast<GEPOperator>(BEValueV)) {
3103 // If the increment is an inbounds GEP, then we know the address
3104 // space cannot be wrapped around. We cannot make any guarantee
3105 // about signed or unsigned overflow because pointers are
3106 // unsigned but we may have a negative index from the base
3107 // pointer.
3108 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003109 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003110 }
3111
Dan Gohman27dead42010-04-12 07:49:36 +00003112 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003113 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003114
Dan Gohmana10756e2010-01-21 02:09:26 +00003115 // Since the no-wrap flags are on the increment, they apply to the
3116 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003117 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003118 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003119 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003120
3121 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003122 // to be symbolic. We now need to go back and purge all of the
3123 // entries for the scalars that use the symbolic expression.
3124 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003125 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003126 return PHISCEV;
3127 }
3128 }
Dan Gohman622ed672009-05-04 22:02:23 +00003129 } else if (const SCEVAddRecExpr *AddRec =
3130 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003131 // Otherwise, this could be a loop like this:
3132 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3133 // In this case, j = {1,+,1} and BEValue is j.
3134 // Because the other in-value of i (0) fits the evolution of BEValue
3135 // i really is an addrec evolution.
3136 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003137 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003138
3139 // If StartVal = j.start - j.stride, we can use StartVal as the
3140 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003141 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003142 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003143 // FIXME: For constant StartVal, we should be able to infer
3144 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003145 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003146 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3147 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003148
3149 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003150 // to be symbolic. We now need to go back and purge all of the
3151 // entries for the scalars that use the symbolic expression.
3152 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003153 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003154 return PHISCEV;
3155 }
3156 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003157 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003158 }
Dan Gohman27dead42010-04-12 07:49:36 +00003159 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003160
Dan Gohman85669632010-02-25 06:57:05 +00003161 // If the PHI has a single incoming value, follow that value, unless the
3162 // PHI's incoming blocks are in a different loop, in which case doing so
3163 // risks breaking LCSSA form. Instcombine would normally zap these, but
3164 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003165 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003166 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003167 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003168
Chris Lattner53e677a2004-04-02 20:23:17 +00003169 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003170 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003171}
3172
Dan Gohman26466c02009-05-08 20:26:55 +00003173/// createNodeForGEP - Expand GEP instructions into add and multiply
3174/// operations. This allows them to be analyzed by regular SCEV code.
3175///
Dan Gohmand281ed22009-12-18 02:09:29 +00003176const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003177
Dan Gohmanb9f96512010-06-30 07:16:37 +00003178 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3179 // Add expression, because the Instruction may be guarded by control flow
3180 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003181 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003182 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003183
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003184 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003185 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003186 // Don't attempt to analyze GEPs over unsized objects.
3187 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3188 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003189 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003190 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003191 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003192 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003193 I != E; ++I) {
3194 Value *Index = *I;
3195 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003196 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003197 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003198 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Chandler Carruthece6c6b2012-11-01 08:07:29 +00003199 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003200
Dan Gohmanb9f96512010-06-30 07:16:37 +00003201 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003202 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003203 } else {
3204 // For an array, add the element offset, explicitly scaled.
Chandler Carruthece6c6b2012-11-01 08:07:29 +00003205 const SCEV *ElementSize = getSizeOfExpr(*GTI);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003206 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003207 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003208 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3209
Dan Gohmanb9f96512010-06-30 07:16:37 +00003210 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003211 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3212 isInBounds ? SCEV::FlagNSW :
3213 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003214
3215 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003216 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003217 }
3218 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003219
3220 // Get the SCEV for the GEP base.
3221 const SCEV *BaseS = getSCEV(Base);
3222
Dan Gohmanb9f96512010-06-30 07:16:37 +00003223 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003224 return getAddExpr(BaseS, TotalOffset,
Benjamin Kramer86df0622012-04-17 06:33:57 +00003225 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003226}
3227
Nick Lewycky83bb0052007-11-22 07:59:40 +00003228/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3229/// guaranteed to end in (at every loop iteration). It is, at the same time,
3230/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3231/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003232uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003233ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003234 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003235 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003236
Dan Gohman622ed672009-05-04 22:02:23 +00003237 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003238 return std::min(GetMinTrailingZeros(T->getOperand()),
3239 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003240
Dan Gohman622ed672009-05-04 22:02:23 +00003241 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003242 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3243 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3244 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003245 }
3246
Dan Gohman622ed672009-05-04 22:02:23 +00003247 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003248 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3249 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3250 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003251 }
3252
Dan Gohman622ed672009-05-04 22:02:23 +00003253 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003254 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003255 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003256 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003257 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003258 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003259 }
3260
Dan Gohman622ed672009-05-04 22:02:23 +00003261 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003262 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003263 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3264 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003265 for (unsigned i = 1, e = M->getNumOperands();
3266 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003267 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003268 BitWidth);
3269 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003270 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003271
Dan Gohman622ed672009-05-04 22:02:23 +00003272 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003273 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003274 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003275 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003276 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003277 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003278 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003279
Dan Gohman622ed672009-05-04 22:02:23 +00003280 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003281 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003282 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003283 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003284 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003285 return MinOpRes;
3286 }
3287
Dan Gohman622ed672009-05-04 22:02:23 +00003288 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003289 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003290 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003291 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003292 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003293 return MinOpRes;
3294 }
3295
Dan Gohman2c364ad2009-06-19 23:29:04 +00003296 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3297 // For a SCEVUnknown, ask ValueTracking.
3298 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003299 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003300 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003301 return Zeros.countTrailingOnes();
3302 }
3303
3304 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003305 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003306}
Chris Lattner53e677a2004-04-02 20:23:17 +00003307
Dan Gohman85b05a22009-07-13 21:35:55 +00003308/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3309///
3310ConstantRange
3311ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003312 // See if we've computed this range already.
3313 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3314 if (I != UnsignedRanges.end())
3315 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003316
3317 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003318 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003319
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003320 unsigned BitWidth = getTypeSizeInBits(S->getType());
3321 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3322
3323 // If the value has known zeros, the maximum unsigned value will have those
3324 // known zeros as well.
3325 uint32_t TZ = GetMinTrailingZeros(S);
3326 if (TZ != 0)
3327 ConservativeResult =
3328 ConstantRange(APInt::getMinValue(BitWidth),
3329 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3330
Dan Gohman85b05a22009-07-13 21:35:55 +00003331 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3332 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3333 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3334 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003335 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003336 }
3337
3338 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3339 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3340 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3341 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003342 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003343 }
3344
3345 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3346 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3347 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3348 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003349 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003350 }
3351
3352 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3353 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3354 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3355 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003356 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003357 }
3358
3359 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3360 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3361 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003362 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003363 }
3364
3365 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3366 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003367 return setUnsignedRange(ZExt,
3368 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003369 }
3370
3371 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3372 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003373 return setUnsignedRange(SExt,
3374 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003375 }
3376
3377 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3378 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003379 return setUnsignedRange(Trunc,
3380 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003381 }
3382
Dan Gohman85b05a22009-07-13 21:35:55 +00003383 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003384 // If there's no unsigned wrap, the value will never be less than its
3385 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003386 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003387 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003388 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003389 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003390 ConservativeResult.intersectWith(
3391 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003392
3393 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003394 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003395 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003396 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003397 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3398 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003399 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3400
3401 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003402 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003403
3404 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003405 ConstantRange StepRange = getSignedRange(Step);
3406 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3407 ConstantRange EndRange =
3408 StartRange.add(MaxBECountRange.multiply(StepRange));
3409
3410 // Check for overflow. This must be done with ConstantRange arithmetic
3411 // because we could be called from within the ScalarEvolution overflow
3412 // checking code.
3413 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3414 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3415 ConstantRange ExtMaxBECountRange =
3416 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3417 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3418 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3419 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003420 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003421
Dan Gohman85b05a22009-07-13 21:35:55 +00003422 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3423 EndRange.getUnsignedMin());
3424 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3425 EndRange.getUnsignedMax());
3426 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003427 return setUnsignedRange(AddRec, ConservativeResult);
3428 return setUnsignedRange(AddRec,
3429 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003430 }
3431 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003432
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003433 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003434 }
3435
3436 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3437 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003438 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003439 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003440 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003441 return setUnsignedRange(U, ConservativeResult);
3442 return setUnsignedRange(U,
3443 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003444 }
3445
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003446 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003447}
3448
Dan Gohman85b05a22009-07-13 21:35:55 +00003449/// getSignedRange - Determine the signed range for a particular SCEV.
3450///
3451ConstantRange
3452ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003453 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003454 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3455 if (I != SignedRanges.end())
3456 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003457
Dan Gohman85b05a22009-07-13 21:35:55 +00003458 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003459 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003460
Dan Gohman52fddd32010-01-26 04:40:18 +00003461 unsigned BitWidth = getTypeSizeInBits(S->getType());
3462 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3463
3464 // If the value has known zeros, the maximum signed value will have those
3465 // known zeros as well.
3466 uint32_t TZ = GetMinTrailingZeros(S);
3467 if (TZ != 0)
3468 ConservativeResult =
3469 ConstantRange(APInt::getSignedMinValue(BitWidth),
3470 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3471
Dan Gohman85b05a22009-07-13 21:35:55 +00003472 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3473 ConstantRange X = getSignedRange(Add->getOperand(0));
3474 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3475 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003476 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003477 }
3478
Dan Gohman85b05a22009-07-13 21:35:55 +00003479 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3480 ConstantRange X = getSignedRange(Mul->getOperand(0));
3481 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3482 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003483 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003484 }
3485
Dan Gohman85b05a22009-07-13 21:35:55 +00003486 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3487 ConstantRange X = getSignedRange(SMax->getOperand(0));
3488 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3489 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003490 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003491 }
Dan Gohman62849c02009-06-24 01:05:09 +00003492
Dan Gohman85b05a22009-07-13 21:35:55 +00003493 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3494 ConstantRange X = getSignedRange(UMax->getOperand(0));
3495 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3496 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003497 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003498 }
Dan Gohman62849c02009-06-24 01:05:09 +00003499
Dan Gohman85b05a22009-07-13 21:35:55 +00003500 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3501 ConstantRange X = getSignedRange(UDiv->getLHS());
3502 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003503 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003504 }
Dan Gohman62849c02009-06-24 01:05:09 +00003505
Dan Gohman85b05a22009-07-13 21:35:55 +00003506 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3507 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003508 return setSignedRange(ZExt,
3509 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003510 }
3511
3512 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3513 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003514 return setSignedRange(SExt,
3515 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003516 }
3517
3518 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3519 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003520 return setSignedRange(Trunc,
3521 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003522 }
3523
Dan Gohman85b05a22009-07-13 21:35:55 +00003524 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003525 // If there's no signed wrap, and all the operands have the same sign or
3526 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003527 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003528 bool AllNonNeg = true;
3529 bool AllNonPos = true;
3530 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3531 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3532 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3533 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003534 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003535 ConservativeResult = ConservativeResult.intersectWith(
3536 ConstantRange(APInt(BitWidth, 0),
3537 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003538 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003539 ConservativeResult = ConservativeResult.intersectWith(
3540 ConstantRange(APInt::getSignedMinValue(BitWidth),
3541 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003542 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003543
3544 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003545 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003546 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003547 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003548 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3549 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003550 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3551
3552 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003553 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003554
3555 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003556 ConstantRange StepRange = getSignedRange(Step);
3557 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3558 ConstantRange EndRange =
3559 StartRange.add(MaxBECountRange.multiply(StepRange));
3560
3561 // Check for overflow. This must be done with ConstantRange arithmetic
3562 // because we could be called from within the ScalarEvolution overflow
3563 // checking code.
3564 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3565 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3566 ConstantRange ExtMaxBECountRange =
3567 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3568 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3569 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3570 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003571 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003572
Dan Gohman85b05a22009-07-13 21:35:55 +00003573 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3574 EndRange.getSignedMin());
3575 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3576 EndRange.getSignedMax());
3577 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003578 return setSignedRange(AddRec, ConservativeResult);
3579 return setSignedRange(AddRec,
3580 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003581 }
Dan Gohman62849c02009-06-24 01:05:09 +00003582 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003583
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003584 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003585 }
3586
Dan Gohman2c364ad2009-06-19 23:29:04 +00003587 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3588 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003589 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003590 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003591 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
Hal Finkel033e0a92013-07-09 18:16:16 +00003592 if (NS <= 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003593 return setSignedRange(U, ConservativeResult);
3594 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003595 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003596 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003597 }
3598
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003599 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003600}
3601
Chris Lattner53e677a2004-04-02 20:23:17 +00003602/// createSCEV - We know that there is no SCEV for the specified value.
3603/// Analyze the expression.
3604///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003605const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003606 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003607 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003608
Dan Gohman6c459a22008-06-22 19:56:46 +00003609 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003610 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003611 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003612
3613 // Don't attempt to analyze instructions in blocks that aren't
3614 // reachable. Such instructions don't matter, and they aren't required
3615 // to obey basic rules for definitions dominating uses which this
3616 // analysis depends on.
3617 if (!DT->isReachableFromEntry(I->getParent()))
3618 return getUnknown(V);
3619 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003620 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003621 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3622 return getConstant(CI);
3623 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003624 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003625 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3626 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003627 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003628 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003629
Dan Gohmanca178902009-07-17 20:47:02 +00003630 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003631 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003632 case Instruction::Add: {
3633 // The simple thing to do would be to just call getSCEV on both operands
3634 // and call getAddExpr with the result. However if we're looking at a
3635 // bunch of things all added together, this can be quite inefficient,
3636 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3637 // Instead, gather up all the operands and make a single getAddExpr call.
3638 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003639 //
3640 // Don't apply this instruction's NSW or NUW flags to the new
3641 // expression. The instruction may be guarded by control flow that the
3642 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3643 // mapped to the same SCEV expression, and it would be incorrect to transfer
3644 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003645 SmallVector<const SCEV *, 4> AddOps;
3646 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003647 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3648 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3649 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3650 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003651 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003652 const SCEV *Op1 = getSCEV(U->getOperand(1));
3653 if (Opcode == Instruction::Sub)
3654 AddOps.push_back(getNegativeSCEV(Op1));
3655 else
3656 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003657 }
3658 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003659 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003660 }
3661 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003662 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003663 SmallVector<const SCEV *, 4> MulOps;
3664 MulOps.push_back(getSCEV(U->getOperand(1)));
3665 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003666 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003667 Op = U->getOperand(0)) {
3668 U = cast<Operator>(Op);
3669 MulOps.push_back(getSCEV(U->getOperand(1)));
3670 }
3671 MulOps.push_back(getSCEV(U->getOperand(0)));
3672 return getMulExpr(MulOps);
3673 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003674 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003675 return getUDivExpr(getSCEV(U->getOperand(0)),
3676 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003677 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003678 return getMinusSCEV(getSCEV(U->getOperand(0)),
3679 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003680 case Instruction::And:
3681 // For an expression like x&255 that merely masks off the high bits,
3682 // use zext(trunc(x)) as the SCEV expression.
3683 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003684 if (CI->isNullValue())
3685 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003686 if (CI->isAllOnesValue())
3687 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003688 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003689
3690 // Instcombine's ShrinkDemandedConstant may strip bits out of
3691 // constants, obscuring what would otherwise be a low-bits mask.
3692 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3693 // knew about to reconstruct a low-bits mask value.
3694 unsigned LZ = A.countLeadingZeros();
3695 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003696 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003697 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003698
3699 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3700
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003701 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003702 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003703 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003704 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003705 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003706 }
3707 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003708
Dan Gohman6c459a22008-06-22 19:56:46 +00003709 case Instruction::Or:
3710 // If the RHS of the Or is a constant, we may have something like:
3711 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3712 // optimizations will transparently handle this case.
3713 //
3714 // In order for this transformation to be safe, the LHS must be of the
3715 // form X*(2^n) and the Or constant must be less than 2^n.
3716 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003717 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003718 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003719 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003720 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3721 // Build a plain add SCEV.
3722 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3723 // If the LHS of the add was an addrec and it has no-wrap flags,
3724 // transfer the no-wrap flags, since an or won't introduce a wrap.
3725 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3726 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003727 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3728 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003729 }
3730 return S;
3731 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003732 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003733 break;
3734 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003735 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003736 // If the RHS of the xor is a signbit, then this is just an add.
3737 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003738 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003739 return getAddExpr(getSCEV(U->getOperand(0)),
3740 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003741
3742 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003743 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003744 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003745
3746 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3747 // This is a variant of the check for xor with -1, and it handles
3748 // the case where instcombine has trimmed non-demanded bits out
3749 // of an xor with -1.
3750 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3751 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3752 if (BO->getOpcode() == Instruction::And &&
3753 LCI->getValue() == CI->getValue())
3754 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003755 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003756 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003757 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003758 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003759 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3760
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003761 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003762 // mask off the high bits. Complement the operand and
3763 // re-apply the zext.
3764 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3765 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3766
3767 // If C is a single bit, it may be in the sign-bit position
3768 // before the zero-extend. In this case, represent the xor
3769 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003770 APInt Trunc = CI->getValue().trunc(Z0TySize);
3771 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003772 Trunc.isSignBit())
3773 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3774 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003775 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003776 }
3777 break;
3778
3779 case Instruction::Shl:
3780 // Turn shift left of a constant amount into a multiply.
3781 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003782 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003783
3784 // If the shift count is not less than the bitwidth, the result of
3785 // the shift is undefined. Don't try to analyze it, because the
3786 // resolution chosen here may differ from the resolution chosen in
3787 // other parts of the compiler.
3788 if (SA->getValue().uge(BitWidth))
3789 break;
3790
Owen Andersoneed707b2009-07-24 23:12:02 +00003791 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003792 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003793 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003794 }
3795 break;
3796
Nick Lewycky01eaf802008-07-07 06:15:49 +00003797 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003798 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003799 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003800 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003801
3802 // If the shift count is not less than the bitwidth, the result of
3803 // the shift is undefined. Don't try to analyze it, because the
3804 // resolution chosen here may differ from the resolution chosen in
3805 // other parts of the compiler.
3806 if (SA->getValue().uge(BitWidth))
3807 break;
3808
Owen Andersoneed707b2009-07-24 23:12:02 +00003809 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003810 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003811 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003812 }
3813 break;
3814
Dan Gohman4ee29af2009-04-21 02:26:00 +00003815 case Instruction::AShr:
3816 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3817 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003818 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003819 if (L->getOpcode() == Instruction::Shl &&
3820 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003821 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3822
3823 // If the shift count is not less than the bitwidth, the result of
3824 // the shift is undefined. Don't try to analyze it, because the
3825 // resolution chosen here may differ from the resolution chosen in
3826 // other parts of the compiler.
3827 if (CI->getValue().uge(BitWidth))
3828 break;
3829
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003830 uint64_t Amt = BitWidth - CI->getZExtValue();
3831 if (Amt == BitWidth)
3832 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003833 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003834 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003835 IntegerType::get(getContext(),
3836 Amt)),
3837 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003838 }
3839 break;
3840
Dan Gohman6c459a22008-06-22 19:56:46 +00003841 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003842 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003843
3844 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003845 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003846
3847 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003848 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003849
3850 case Instruction::BitCast:
3851 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003852 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003853 return getSCEV(U->getOperand(0));
3854 break;
3855
Dan Gohman4f8eea82010-02-01 18:27:38 +00003856 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3857 // lead to pointer expressions which cannot safely be expanded to GEPs,
3858 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3859 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003860
Dan Gohman26466c02009-05-08 20:26:55 +00003861 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003862 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003863
Dan Gohman6c459a22008-06-22 19:56:46 +00003864 case Instruction::PHI:
3865 return createNodeForPHI(cast<PHINode>(U));
3866
3867 case Instruction::Select:
3868 // This could be a smax or umax that was lowered earlier.
3869 // Try to recover it.
3870 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3871 Value *LHS = ICI->getOperand(0);
3872 Value *RHS = ICI->getOperand(1);
3873 switch (ICI->getPredicate()) {
3874 case ICmpInst::ICMP_SLT:
3875 case ICmpInst::ICMP_SLE:
3876 std::swap(LHS, RHS);
3877 // fall through
3878 case ICmpInst::ICMP_SGT:
3879 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003880 // a >s b ? a+x : b+x -> smax(a, b)+x
3881 // a >s b ? b+x : a+x -> smin(a, b)+x
3882 if (LHS->getType() == U->getType()) {
3883 const SCEV *LS = getSCEV(LHS);
3884 const SCEV *RS = getSCEV(RHS);
3885 const SCEV *LA = getSCEV(U->getOperand(1));
3886 const SCEV *RA = getSCEV(U->getOperand(2));
3887 const SCEV *LDiff = getMinusSCEV(LA, LS);
3888 const SCEV *RDiff = getMinusSCEV(RA, RS);
3889 if (LDiff == RDiff)
3890 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3891 LDiff = getMinusSCEV(LA, RS);
3892 RDiff = getMinusSCEV(RA, LS);
3893 if (LDiff == RDiff)
3894 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3895 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003896 break;
3897 case ICmpInst::ICMP_ULT:
3898 case ICmpInst::ICMP_ULE:
3899 std::swap(LHS, RHS);
3900 // fall through
3901 case ICmpInst::ICMP_UGT:
3902 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003903 // a >u b ? a+x : b+x -> umax(a, b)+x
3904 // a >u b ? b+x : a+x -> umin(a, b)+x
3905 if (LHS->getType() == U->getType()) {
3906 const SCEV *LS = getSCEV(LHS);
3907 const SCEV *RS = getSCEV(RHS);
3908 const SCEV *LA = getSCEV(U->getOperand(1));
3909 const SCEV *RA = getSCEV(U->getOperand(2));
3910 const SCEV *LDiff = getMinusSCEV(LA, LS);
3911 const SCEV *RDiff = getMinusSCEV(RA, RS);
3912 if (LDiff == RDiff)
3913 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3914 LDiff = getMinusSCEV(LA, RS);
3915 RDiff = getMinusSCEV(RA, LS);
3916 if (LDiff == RDiff)
3917 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3918 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003919 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003920 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003921 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3922 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003923 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003924 cast<ConstantInt>(RHS)->isZero()) {
3925 const SCEV *One = getConstant(LHS->getType(), 1);
3926 const SCEV *LS = getSCEV(LHS);
3927 const SCEV *LA = getSCEV(U->getOperand(1));
3928 const SCEV *RA = getSCEV(U->getOperand(2));
3929 const SCEV *LDiff = getMinusSCEV(LA, LS);
3930 const SCEV *RDiff = getMinusSCEV(RA, One);
3931 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003932 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003933 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003934 break;
3935 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003936 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3937 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003938 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003939 cast<ConstantInt>(RHS)->isZero()) {
3940 const SCEV *One = getConstant(LHS->getType(), 1);
3941 const SCEV *LS = getSCEV(LHS);
3942 const SCEV *LA = getSCEV(U->getOperand(1));
3943 const SCEV *RA = getSCEV(U->getOperand(2));
3944 const SCEV *LDiff = getMinusSCEV(LA, One);
3945 const SCEV *RDiff = getMinusSCEV(RA, LS);
3946 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003947 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003948 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003949 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003950 default:
3951 break;
3952 }
3953 }
3954
3955 default: // We cannot analyze this expression.
3956 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003957 }
3958
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003959 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003960}
3961
3962
3963
3964//===----------------------------------------------------------------------===//
3965// Iteration Count Computation Code
3966//
3967
Andrew Trickb1831c62011-08-11 23:36:16 +00003968/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003969/// normal unsigned value. Returns 0 if the trip count is unknown or not
3970/// constant. Will also return 0 if the maximum trip count is very large (>=
3971/// 2^32).
3972///
3973/// This "trip count" assumes that control exits via ExitingBlock. More
3974/// precisely, it is the number of times that control may reach ExitingBlock
3975/// before taking the branch. For loops with multiple exits, it may not be the
3976/// number times that the loop header executes because the loop may exit
3977/// prematurely via another branch.
Andrew Trickcd8e3c42013-05-31 23:34:46 +00003978///
3979/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
3980/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
3981/// loop exits. getExitCount() may return an exact count for this branch
3982/// assuming no-signed-wrap. The number of well-defined iterations may actually
3983/// be higher than this trip count if this exit test is skipped and the loop
3984/// exits via a different branch. Ideally, getExitCount() would know whether it
3985/// depends on a NSW assumption, and we would only fall back to a conservative
3986/// trip count in that case.
Andrew Trick3eada312012-01-11 06:52:55 +00003987unsigned ScalarEvolution::
Aaron Ballmanf56a6de2013-06-04 01:01:56 +00003988getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003989 const SCEVConstant *ExitCount =
Andrew Trickcd8e3c42013-05-31 23:34:46 +00003990 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
Andrew Trickb1831c62011-08-11 23:36:16 +00003991 if (!ExitCount)
3992 return 0;
3993
3994 ConstantInt *ExitConst = ExitCount->getValue();
3995
3996 // Guard against huge trip counts.
3997 if (ExitConst->getValue().getActiveBits() > 32)
3998 return 0;
3999
4000 // In case of integer overflow, this returns 0, which is correct.
4001 return ((unsigned)ExitConst->getZExtValue()) + 1;
4002}
4003
4004/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4005/// trip count of this loop as a normal unsigned value, if possible. This
4006/// means that the actual trip count is always a multiple of the returned
4007/// value (don't forget the trip count could very well be zero as well!).
4008///
4009/// Returns 1 if the trip count is unknown or not guaranteed to be the
4010/// multiple of a constant (which is also the case if the trip count is simply
4011/// constant, use getSmallConstantTripCount for that case), Will also return 1
4012/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00004013///
4014/// As explained in the comments for getSmallConstantTripCount, this assumes
4015/// that control exits the loop via ExitingBlock.
4016unsigned ScalarEvolution::
Aaron Ballmanf56a6de2013-06-04 01:01:56 +00004017getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickcd8e3c42013-05-31 23:34:46 +00004018 const SCEV *ExitCount = getBackedgeTakenCount(L);
Andrew Trickb1831c62011-08-11 23:36:16 +00004019 if (ExitCount == getCouldNotCompute())
4020 return 1;
4021
4022 // Get the trip count from the BE count by adding 1.
4023 const SCEV *TCMul = getAddExpr(ExitCount,
4024 getConstant(ExitCount->getType(), 1));
4025 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4026 // to factor simple cases.
4027 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4028 TCMul = Mul->getOperand(0);
4029
4030 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4031 if (!MulC)
4032 return 1;
4033
4034 ConstantInt *Result = MulC->getValue();
4035
Hal Finkel8c655492012-10-24 19:46:44 +00004036 // Guard against huge trip counts (this requires checking
4037 // for zero to handle the case where the trip count == -1 and the
4038 // addition wraps).
4039 if (!Result || Result->getValue().getActiveBits() > 32 ||
4040 Result->getValue().getActiveBits() == 0)
Andrew Trickb1831c62011-08-11 23:36:16 +00004041 return 1;
4042
4043 return (unsigned)Result->getZExtValue();
4044}
4045
Andrew Trick5116ff62011-07-26 17:19:55 +00004046// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickcd8e3c42013-05-31 23:34:46 +00004047// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00004048// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00004049const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4050 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004051}
4052
Dan Gohman46bdfb02009-02-24 18:55:53 +00004053/// getBackedgeTakenCount - If the specified loop has a predictable
4054/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4055/// object. The backedge-taken count is the number of times the loop header
4056/// will be branched to from within the loop. This is one less than the
4057/// trip count of the loop, since it doesn't count the first iteration,
4058/// when the header is branched to from outside the loop.
4059///
4060/// Note that it is not valid to call this method on a loop without a
4061/// loop-invariant backedge-taken count (see
4062/// hasLoopInvariantBackedgeTakenCount).
4063///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004064const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004065 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004066}
4067
4068/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4069/// return the least SCEV value that is known never to be less than the
4070/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004071const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004072 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004073}
4074
Dan Gohman59ae6b92009-07-08 19:23:34 +00004075/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4076/// onto the given Worklist.
4077static void
4078PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4079 BasicBlock *Header = L->getHeader();
4080
4081 // Push all Loop-header PHIs onto the Worklist stack.
4082 for (BasicBlock::iterator I = Header->begin();
4083 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4084 Worklist.push_back(PN);
4085}
4086
Dan Gohmana1af7572009-04-30 20:47:05 +00004087const ScalarEvolution::BackedgeTakenInfo &
4088ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004089 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004090 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004091 // update the value. The temporary CouldNotCompute value tells SCEV
4092 // code elsewhere that it shouldn't attempt to request a new
4093 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004094 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004095 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004096 if (!Pair.second)
4097 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004098
Andrew Trick5116ff62011-07-26 17:19:55 +00004099 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4100 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4101 // must be cleared in this scope.
4102 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4103
4104 if (Result.getExact(this) != getCouldNotCompute()) {
4105 assert(isLoopInvariant(Result.getExact(this), L) &&
4106 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004107 "Computed backedge-taken count isn't loop invariant for loop!");
4108 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004109 }
4110 else if (Result.getMax(this) == getCouldNotCompute() &&
4111 isa<PHINode>(L->getHeader()->begin())) {
4112 // Only count loops that have phi nodes as not being computable.
4113 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004114 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004115
Chris Lattnerf1859892011-01-09 02:16:18 +00004116 // Now that we know more about the trip count for this loop, forget any
4117 // existing SCEV values for PHI nodes in this loop since they are only
4118 // conservative estimates made without the benefit of trip count
4119 // information. This is similar to the code in forgetLoop, except that
4120 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004121 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004122 SmallVector<Instruction *, 16> Worklist;
4123 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004124
Chris Lattnerf1859892011-01-09 02:16:18 +00004125 SmallPtrSet<Instruction *, 8> Visited;
4126 while (!Worklist.empty()) {
4127 Instruction *I = Worklist.pop_back_val();
4128 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004129
Chris Lattnerf1859892011-01-09 02:16:18 +00004130 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004131 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnerf1859892011-01-09 02:16:18 +00004132 if (It != ValueExprMap.end()) {
4133 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004134
Chris Lattnerf1859892011-01-09 02:16:18 +00004135 // SCEVUnknown for a PHI either means that it has an unrecognized
4136 // structure, or it's a PHI that's in the progress of being computed
4137 // by createNodeForPHI. In the former case, additional loop trip
4138 // count information isn't going to change anything. In the later
4139 // case, createNodeForPHI will perform the necessary updates on its
4140 // own when it gets to that point.
4141 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4142 forgetMemoizedResults(Old);
4143 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004144 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004145 if (PHINode *PN = dyn_cast<PHINode>(I))
4146 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004147 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004148
4149 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004150 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004151 }
Dan Gohman308bec32011-04-25 22:48:29 +00004152
4153 // Re-lookup the insert position, since the call to
4154 // ComputeBackedgeTakenCount above could result in a
4155 // recusive call to getBackedgeTakenInfo (on a different
4156 // loop), which would invalidate the iterator computed
4157 // earlier.
4158 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004159}
4160
Dan Gohman4c7279a2009-10-31 15:04:55 +00004161/// forgetLoop - This method should be called by the client when it has
4162/// changed a loop in a way that may effect ScalarEvolution's ability to
4163/// compute a trip count, or if the loop is deleted.
4164void ScalarEvolution::forgetLoop(const Loop *L) {
4165 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004166 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4167 BackedgeTakenCounts.find(L);
4168 if (BTCPos != BackedgeTakenCounts.end()) {
4169 BTCPos->second.clear();
4170 BackedgeTakenCounts.erase(BTCPos);
4171 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004172
Dan Gohman4c7279a2009-10-31 15:04:55 +00004173 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004174 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004175 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004176
Dan Gohman59ae6b92009-07-08 19:23:34 +00004177 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004178 while (!Worklist.empty()) {
4179 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004180 if (!Visited.insert(I)) continue;
4181
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004182 ValueExprMapType::iterator It =
4183 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004184 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004185 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004186 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004187 if (PHINode *PN = dyn_cast<PHINode>(I))
4188 ConstantEvolutionLoopExitValue.erase(PN);
4189 }
4190
4191 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004192 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004193
4194 // Forget all contained loops too, to avoid dangling entries in the
4195 // ValuesAtScopes map.
4196 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4197 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004198}
4199
Eric Christophere6cbfa62010-07-29 01:25:38 +00004200/// forgetValue - This method should be called by the client when it has
4201/// changed a value in a way that may effect its value, or which may
4202/// disconnect it from a def-use chain linking it to a loop.
4203void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004204 Instruction *I = dyn_cast<Instruction>(V);
4205 if (!I) return;
4206
4207 // Drop information about expressions based on loop-header PHIs.
4208 SmallVector<Instruction *, 16> Worklist;
4209 Worklist.push_back(I);
4210
4211 SmallPtrSet<Instruction *, 8> Visited;
4212 while (!Worklist.empty()) {
4213 I = Worklist.pop_back_val();
4214 if (!Visited.insert(I)) continue;
4215
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004216 ValueExprMapType::iterator It =
4217 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004218 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004219 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004220 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004221 if (PHINode *PN = dyn_cast<PHINode>(I))
4222 ConstantEvolutionLoopExitValue.erase(PN);
4223 }
4224
4225 PushDefUseChildren(I, Worklist);
4226 }
4227}
4228
Andrew Trick5116ff62011-07-26 17:19:55 +00004229/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004230/// exits. A computable result can only be return for loops with a single exit.
4231/// Returning the minimum taken count among all exits is incorrect because one
4232/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4233/// the limit of each loop test is never skipped. This is a valid assumption as
4234/// long as the loop exits via that test. For precise results, it is the
4235/// caller's responsibility to specify the relevant loop exit using
4236/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004237const SCEV *
4238ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4239 // If any exits were not computable, the loop is not computable.
4240 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4241
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004242 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004243 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004244 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4245
4246 const SCEV *BECount = 0;
4247 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4248 ENT != 0; ENT = ENT->getNextExit()) {
4249
4250 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4251
4252 if (!BECount)
4253 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004254 else if (BECount != ENT->ExactNotTaken)
4255 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004256 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004257 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004258 return BECount;
4259}
4260
4261/// getExact - Get the exact not taken count for this loop exit.
4262const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004263ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004264 ScalarEvolution *SE) const {
4265 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4266 ENT != 0; ENT = ENT->getNextExit()) {
4267
Andrew Trickfcb43562011-08-02 04:23:35 +00004268 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004269 return ENT->ExactNotTaken;
4270 }
4271 return SE->getCouldNotCompute();
4272}
4273
4274/// getMax - Get the max backedge taken count for the loop.
4275const SCEV *
4276ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4277 return Max ? Max : SE->getCouldNotCompute();
4278}
4279
Andrew Tricke74c2e82013-03-26 03:14:53 +00004280bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4281 ScalarEvolution *SE) const {
4282 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4283 return true;
4284
4285 if (!ExitNotTaken.ExitingBlock)
4286 return false;
4287
4288 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4289 ENT != 0; ENT = ENT->getNextExit()) {
4290
4291 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4292 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4293 return true;
4294 }
4295 }
4296 return false;
4297}
4298
Andrew Trick5116ff62011-07-26 17:19:55 +00004299/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4300/// computable exit into a persistent ExitNotTakenInfo array.
4301ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4302 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4303 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4304
4305 if (!Complete)
4306 ExitNotTaken.setIncomplete();
4307
4308 unsigned NumExits = ExitCounts.size();
4309 if (NumExits == 0) return;
4310
Andrew Trickfcb43562011-08-02 04:23:35 +00004311 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004312 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4313 if (NumExits == 1) return;
4314
4315 // Handle the rare case of multiple computable exits.
4316 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4317
4318 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4319 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4320 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004321 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004322 ENT->ExactNotTaken = ExitCounts[i].second;
4323 }
4324}
4325
4326/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4327void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004328 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004329 ExitNotTaken.ExactNotTaken = 0;
4330 delete[] ExitNotTaken.getNextExit();
4331}
4332
Dan Gohman46bdfb02009-02-24 18:55:53 +00004333/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4334/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004335ScalarEvolution::BackedgeTakenInfo
4336ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004337 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004338 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004339
Dan Gohmana334aa72009-06-22 00:31:57 +00004340 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004341 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004342 bool CouldComputeBECount = true;
4343 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004344 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004345 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4346 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004347 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004348 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004349 CouldComputeBECount = false;
4350 else
4351 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4352
Dan Gohman1c343752009-06-27 21:21:31 +00004353 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004354 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004355 else if (EL.Max != getCouldNotCompute()) {
4356 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4357 // skip some loop tests. Taking the max over the exits is sufficiently
4358 // conservative. TODO: We could do better taking into consideration
4359 // that (1) the loop has unit stride (2) the last loop test is
4360 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4361 // falls-through some constant times less then the other tests.
4362 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4363 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004364 }
4365
Andrew Trick5116ff62011-07-26 17:19:55 +00004366 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004367}
4368
Andrew Trick5116ff62011-07-26 17:19:55 +00004369/// ComputeExitLimit - Compute the number of times the backedge of the specified
4370/// loop will execute if it exits via the specified block.
4371ScalarEvolution::ExitLimit
4372ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004373
4374 // Okay, we've chosen an exiting block. See what condition causes us to
4375 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004376 //
4377 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004378 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004379 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004380 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004381
Chris Lattner8b0e3602007-01-07 02:24:26 +00004382 // At this point, we know we have a conditional branch that determines whether
4383 // the loop is exited. However, we don't know if the branch is executed each
4384 // time through the loop. If not, then the execution count of the branch will
4385 // not be equal to the trip count of the loop.
4386 //
4387 // Currently we check for this by checking to see if the Exit branch goes to
4388 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004389 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004390 // loop header. This is common for un-rotated loops.
4391 //
4392 // If both of those tests fail, walk up the unique predecessor chain to the
4393 // header, stopping if there is an edge that doesn't exit the loop. If the
4394 // header is reached, the execution count of the branch will be equal to the
4395 // trip count of the loop.
4396 //
4397 // More extensive analysis could be done to handle more cases here.
4398 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004399 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004400 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004401 ExitBr->getParent() != L->getHeader()) {
4402 // The simple checks failed, try climbing the unique predecessor chain
4403 // up to the header.
4404 bool Ok = false;
4405 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4406 BasicBlock *Pred = BB->getUniquePredecessor();
4407 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004408 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004409 TerminatorInst *PredTerm = Pred->getTerminator();
4410 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4411 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4412 if (PredSucc == BB)
4413 continue;
4414 // If the predecessor has a successor that isn't BB and isn't
4415 // outside the loop, assume the worst.
4416 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004417 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004418 }
4419 if (Pred == L->getHeader()) {
4420 Ok = true;
4421 break;
4422 }
4423 BB = Pred;
4424 }
4425 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004426 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004427 }
4428
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004429 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004430 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4431 ExitBr->getSuccessor(0),
Andrew Trick61601142013-05-31 06:43:25 +00004432 ExitBr->getSuccessor(1),
4433 /*IsSubExpr=*/false);
Dan Gohmana334aa72009-06-22 00:31:57 +00004434}
4435
Andrew Trick5116ff62011-07-26 17:19:55 +00004436/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004437/// backedge of the specified loop will execute if its exit condition
4438/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick61601142013-05-31 06:43:25 +00004439///
4440/// @param IsSubExpr is true if ExitCond does not directly control the exit
4441/// branch. In this case, we cannot assume that the loop only exits when the
4442/// condition is true and cannot infer that failing to meet the condition prior
4443/// to integer wraparound results in undefined behavior.
Andrew Trick5116ff62011-07-26 17:19:55 +00004444ScalarEvolution::ExitLimit
4445ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4446 Value *ExitCond,
4447 BasicBlock *TBB,
Andrew Trick61601142013-05-31 06:43:25 +00004448 BasicBlock *FBB,
4449 bool IsSubExpr) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004450 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004451 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4452 if (BO->getOpcode() == Instruction::And) {
4453 // Recurse on the operands of the and.
Andrew Trick61601142013-05-31 06:43:25 +00004454 bool EitherMayExit = L->contains(TBB);
4455 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4456 IsSubExpr || EitherMayExit);
4457 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4458 IsSubExpr || EitherMayExit);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004459 const SCEV *BECount = getCouldNotCompute();
4460 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick61601142013-05-31 06:43:25 +00004461 if (EitherMayExit) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004462 // Both conditions must be true for the loop to continue executing.
4463 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004464 if (EL0.Exact == getCouldNotCompute() ||
4465 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004466 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004467 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004468 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4469 if (EL0.Max == getCouldNotCompute())
4470 MaxBECount = EL1.Max;
4471 else if (EL1.Max == getCouldNotCompute())
4472 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004473 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004474 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004475 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004476 // Both conditions must be true at the same time for the loop to exit.
4477 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004478 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004479 if (EL0.Max == EL1.Max)
4480 MaxBECount = EL0.Max;
4481 if (EL0.Exact == EL1.Exact)
4482 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004483 }
4484
Andrew Trick5116ff62011-07-26 17:19:55 +00004485 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004486 }
4487 if (BO->getOpcode() == Instruction::Or) {
4488 // Recurse on the operands of the or.
Andrew Trick61601142013-05-31 06:43:25 +00004489 bool EitherMayExit = L->contains(FBB);
4490 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4491 IsSubExpr || EitherMayExit);
4492 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4493 IsSubExpr || EitherMayExit);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004494 const SCEV *BECount = getCouldNotCompute();
4495 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick61601142013-05-31 06:43:25 +00004496 if (EitherMayExit) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004497 // Both conditions must be false for the loop to continue executing.
4498 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004499 if (EL0.Exact == getCouldNotCompute() ||
4500 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004501 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004502 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004503 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4504 if (EL0.Max == getCouldNotCompute())
4505 MaxBECount = EL1.Max;
4506 else if (EL1.Max == getCouldNotCompute())
4507 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004508 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004509 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004510 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004511 // Both conditions must be false at the same time for the loop to exit.
4512 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004513 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004514 if (EL0.Max == EL1.Max)
4515 MaxBECount = EL0.Max;
4516 if (EL0.Exact == EL1.Exact)
4517 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004518 }
4519
Andrew Trick5116ff62011-07-26 17:19:55 +00004520 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004521 }
4522 }
4523
4524 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004525 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004526 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick61601142013-05-31 06:43:25 +00004527 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004528
Dan Gohman00cb5b72010-02-19 18:12:07 +00004529 // Check for a constant condition. These are normally stripped out by
4530 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4531 // preserve the CFG and is temporarily leaving constant conditions
4532 // in place.
4533 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4534 if (L->contains(FBB) == !CI->getZExtValue())
4535 // The backedge is always taken.
4536 return getCouldNotCompute();
4537 else
4538 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004539 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004540 }
4541
Eli Friedman361e54d2009-05-09 12:32:42 +00004542 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004543 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004544}
4545
Andrew Trick5116ff62011-07-26 17:19:55 +00004546/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004547/// backedge of the specified loop will execute if its exit condition
4548/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004549ScalarEvolution::ExitLimit
4550ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4551 ICmpInst *ExitCond,
4552 BasicBlock *TBB,
Andrew Trick61601142013-05-31 06:43:25 +00004553 BasicBlock *FBB,
4554 bool IsSubExpr) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004555
Reid Spencere4d87aa2006-12-23 06:05:41 +00004556 // If the condition was exit on true, convert the condition to exit on false
4557 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004558 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004559 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004560 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004561 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004562
4563 // Handle common loops like: for (X = "string"; *X; ++X)
4564 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4565 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004566 ExitLimit ItCnt =
4567 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004568 if (ItCnt.hasAnyInfo())
4569 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004570 }
4571
Dan Gohman0bba49c2009-07-07 17:06:11 +00004572 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4573 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004574
4575 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004576 LHS = getSCEVAtScope(LHS, L);
4577 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004578
Dan Gohman64a845e2009-06-24 04:48:43 +00004579 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004580 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004581 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004582 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004583 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004584 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004585 }
4586
Dan Gohman03557dc2010-05-03 16:35:17 +00004587 // Simplify the operands before analyzing them.
4588 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4589
Chris Lattner53e677a2004-04-02 20:23:17 +00004590 // If we have a comparison of a chrec against a constant, try to use value
4591 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004592 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4593 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004594 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004595 // Form the constant range.
4596 ConstantRange CompRange(
4597 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004598
Dan Gohman0bba49c2009-07-07 17:06:11 +00004599 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004600 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004601 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004602
Chris Lattner53e677a2004-04-02 20:23:17 +00004603 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004604 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004605 // Convert to: while (X-Y != 0)
Andrew Trick61601142013-05-31 06:43:25 +00004606 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004607 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004608 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004609 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004610 case ICmpInst::ICMP_EQ: { // while (X == Y)
4611 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004612 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4613 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004614 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004615 }
4616 case ICmpInst::ICMP_SLT: {
Andrew Trick61601142013-05-31 06:43:25 +00004617 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004618 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004619 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004620 }
4621 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004622 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Andrew Trick61601142013-05-31 06:43:25 +00004623 getNotSCEV(RHS), L, true, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004624 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004625 break;
4626 }
4627 case ICmpInst::ICMP_ULT: {
Andrew Trick61601142013-05-31 06:43:25 +00004628 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004629 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004630 break;
4631 }
4632 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004633 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Andrew Trick61601142013-05-31 06:43:25 +00004634 getNotSCEV(RHS), L, false, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004635 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004636 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004637 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004638 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004639#if 0
David Greene25e0e872009-12-23 22:18:14 +00004640 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004641 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004642 dbgs() << "[unsigned] ";
4643 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004644 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004645 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004646#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004647 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004648 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004649 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004650}
4651
Chris Lattner673e02b2004-10-12 01:49:27 +00004652static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004653EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4654 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004655 const SCEV *InVal = SE.getConstant(C);
4656 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004657 assert(isa<SCEVConstant>(Val) &&
4658 "Evaluation of SCEV at constant didn't fold correctly?");
4659 return cast<SCEVConstant>(Val)->getValue();
4660}
4661
Andrew Trick5116ff62011-07-26 17:19:55 +00004662/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004663/// 'icmp op load X, cst', try to see if we can compute the backedge
4664/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004665ScalarEvolution::ExitLimit
4666ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4667 LoadInst *LI,
4668 Constant *RHS,
4669 const Loop *L,
4670 ICmpInst::Predicate predicate) {
4671
Dan Gohman1c343752009-06-27 21:21:31 +00004672 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004673
4674 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004675 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004676 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004677 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004678
4679 // Make sure that it is really a constant global we are gepping, with an
4680 // initializer, and make sure the first IDX is really 0.
4681 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004682 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004683 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4684 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004685 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004686
4687 // Okay, we allow one non-constant index into the GEP instruction.
4688 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004689 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004690 unsigned VarIdxNum = 0;
4691 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4692 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4693 Indexes.push_back(CI);
4694 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004695 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004696 VarIdx = GEP->getOperand(i);
4697 VarIdxNum = i-2;
4698 Indexes.push_back(0);
4699 }
4700
Andrew Trickeb6dd232012-03-26 22:33:59 +00004701 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4702 if (!VarIdx)
4703 return getCouldNotCompute();
4704
Chris Lattner673e02b2004-10-12 01:49:27 +00004705 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4706 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004707 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004708 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004709
4710 // We can only recognize very limited forms of loop index expressions, in
4711 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004712 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004713 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004714 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4715 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004716 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004717
4718 unsigned MaxSteps = MaxBruteForceIterations;
4719 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004720 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004721 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004722 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004723
4724 // Form the GEP offset.
4725 Indexes[VarIdxNum] = Val;
4726
Chris Lattnerdada5862012-01-24 05:49:24 +00004727 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4728 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004729 if (Result == 0) break; // Cannot compute!
4730
4731 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004732 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004733 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004734 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004735#if 0
David Greene25e0e872009-12-23 22:18:14 +00004736 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004737 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4738 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004739#endif
4740 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004741 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004742 }
4743 }
Dan Gohman1c343752009-06-27 21:21:31 +00004744 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004745}
4746
4747
Chris Lattner3221ad02004-04-17 22:58:41 +00004748/// CanConstantFold - Return true if we can constant fold an instruction of the
4749/// specified type, assuming that all operands were constants.
4750static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004751 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004752 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4753 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004754 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004755
Chris Lattner3221ad02004-04-17 22:58:41 +00004756 if (const CallInst *CI = dyn_cast<CallInst>(I))
4757 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004758 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004759 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004760}
4761
Andrew Trick13d31e02011-10-05 03:25:31 +00004762/// Determine whether this instruction can constant evolve within this loop
4763/// assuming its operands can all constant evolve.
4764static bool canConstantEvolve(Instruction *I, const Loop *L) {
4765 // An instruction outside of the loop can't be derived from a loop PHI.
4766 if (!L->contains(I)) return false;
4767
4768 if (isa<PHINode>(I)) {
4769 if (L->getHeader() == I->getParent())
4770 return true;
4771 else
4772 // We don't currently keep track of the control flow needed to evaluate
4773 // PHIs, so we cannot handle PHIs inside of loops.
4774 return false;
4775 }
4776
4777 // If we won't be able to constant fold this expression even if the operands
4778 // are constants, bail early.
4779 return CanConstantFold(I);
4780}
4781
4782/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4783/// recursing through each instruction operand until reaching a loop header phi.
4784static PHINode *
4785getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004786 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004787
4788 // Otherwise, we can evaluate this instruction if all of its operands are
4789 // constant or derived from a PHI node themselves.
4790 PHINode *PHI = 0;
4791 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4792 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4793
4794 if (isa<Constant>(*OpI)) continue;
4795
4796 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4797 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4798
4799 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004800 if (!P)
4801 // If this operand is already visited, reuse the prior result.
4802 // We may have P != PHI if this is the deepest point at which the
4803 // inconsistent paths meet.
4804 P = PHIMap.lookup(OpInst);
4805 if (!P) {
4806 // Recurse and memoize the results, whether a phi is found or not.
4807 // This recursive call invalidates pointers into PHIMap.
4808 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4809 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004810 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004811 if (P == 0) return 0; // Not evolving from PHI
4812 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4813 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004814 }
4815 // This is a expression evolving from a constant PHI!
4816 return PHI;
4817}
4818
Chris Lattner3221ad02004-04-17 22:58:41 +00004819/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4820/// in the loop that V is derived from. We allow arbitrary operations along the
4821/// way, but the operands of an operation must either be constants or a value
4822/// derived from a constant PHI. If this expression does not fit with these
4823/// constraints, return null.
4824static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004825 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004826 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004827
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004828 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004829 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004830 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004831
Andrew Trick13d31e02011-10-05 03:25:31 +00004832 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004833 DenseMap<Instruction *, PHINode *> PHIMap;
4834 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004835}
4836
4837/// EvaluateExpression - Given an expression that passes the
4838/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4839/// in the loop has the value PHIVal. If we can't fold this expression for some
4840/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004841static Constant *EvaluateExpression(Value *V, const Loop *L,
4842 DenseMap<Instruction *, Constant *> &Vals,
Micah Villmow3574eca2012-10-08 16:38:25 +00004843 const DataLayout *TD,
Chad Rosier00737bd2011-12-01 21:29:16 +00004844 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004845 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004846 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004847 Instruction *I = dyn_cast<Instruction>(V);
4848 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004849
Andrew Trick13d31e02011-10-05 03:25:31 +00004850 if (Constant *C = Vals.lookup(I)) return C;
4851
Nick Lewycky614fef62011-10-22 19:58:20 +00004852 // An instruction inside the loop depends on a value outside the loop that we
4853 // weren't given a mapping for, or a value such as a call inside the loop.
4854 if (!canConstantEvolve(I, L)) return 0;
4855
4856 // An unmapped PHI can be due to a branch or another loop inside this loop,
4857 // or due to this not being the initial iteration through a loop where we
4858 // couldn't compute the evolution of this particular PHI last time.
4859 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004860
Dan Gohman9d4588f2010-06-22 13:15:46 +00004861 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004862
4863 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004864 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4865 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004866 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4867 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004868 continue;
4869 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004870 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004871 Vals[Operand] = C;
4872 if (!C) return 0;
4873 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004874 }
4875
Nick Lewycky614fef62011-10-22 19:58:20 +00004876 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004877 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004878 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004879 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4880 if (!LI->isVolatile())
4881 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4882 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004883 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4884 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004885}
4886
4887/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4888/// in the header of its containing loop, we know the loop executes a
4889/// constant number of times, and the PHI node is just a recurrence
4890/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004891Constant *
4892ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004893 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004894 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004895 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004896 ConstantEvolutionLoopExitValue.find(PN);
4897 if (I != ConstantEvolutionLoopExitValue.end())
4898 return I->second;
4899
Dan Gohmane0567812010-04-08 23:03:40 +00004900 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004901 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4902
4903 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4904
Andrew Trick13d31e02011-10-05 03:25:31 +00004905 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004906 BasicBlock *Header = L->getHeader();
4907 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004908
Chris Lattner3221ad02004-04-17 22:58:41 +00004909 // Since the loop is canonicalized, the PHI node must have two entries. One
4910 // entry must be a constant (coming in from outside of the loop), and the
4911 // second must be derived from the same PHI.
4912 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004913 PHINode *PHI = 0;
4914 for (BasicBlock::iterator I = Header->begin();
4915 (PHI = dyn_cast<PHINode>(I)); ++I) {
4916 Constant *StartCST =
4917 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4918 if (StartCST == 0) continue;
4919 CurrentIterVals[PHI] = StartCST;
4920 }
4921 if (!CurrentIterVals.count(PN))
4922 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004923
4924 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004925
4926 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004927 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004928 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004929
Dan Gohman46bdfb02009-02-24 18:55:53 +00004930 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004931 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004932 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004933 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004934 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004935
Nick Lewycky614fef62011-10-22 19:58:20 +00004936 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004937 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004938 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004939 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4940 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004941 if (NextPHI == 0)
4942 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004943 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004944
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004945 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4946
Nick Lewycky614fef62011-10-22 19:58:20 +00004947 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4948 // cease to be able to evaluate one of them or if they stop evolving,
4949 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004950 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004951 for (DenseMap<Instruction *, Constant *>::const_iterator
4952 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4953 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004954 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004955 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4956 }
4957 // We use two distinct loops because EvaluateExpression may invalidate any
4958 // iterators into CurrentIterVals.
4959 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4960 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4961 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004962 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004963 if (!NextPHI) { // Not already computed.
4964 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004965 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004966 }
4967 if (NextPHI != I->second)
4968 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004969 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004970
4971 // If all entries in CurrentIterVals == NextIterVals then we can stop
4972 // iterating, the loop can't continue to change.
4973 if (StoppedEvolving)
4974 return RetVal = CurrentIterVals[PN];
4975
Andrew Trick13d31e02011-10-05 03:25:31 +00004976 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004977 }
4978}
4979
Andrew Trick5116ff62011-07-26 17:19:55 +00004980/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004981/// constant number of times (the condition evolves only from constants),
4982/// try to evaluate a few iterations of the loop until we get the exit
4983/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004984/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004985const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4986 Value *Cond,
4987 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004988 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004989 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004990
Dan Gohmanb92654d2010-06-19 14:17:24 +00004991 // If the loop is canonicalized, the PHI will have exactly two entries.
4992 // That's the only form we support here.
4993 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4994
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004995 DenseMap<Instruction *, Constant *> CurrentIterVals;
4996 BasicBlock *Header = L->getHeader();
4997 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4998
Dan Gohmanb92654d2010-06-19 14:17:24 +00004999 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00005000 // second must be derived from the same PHI.
5001 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005002 PHINode *PHI = 0;
5003 for (BasicBlock::iterator I = Header->begin();
5004 (PHI = dyn_cast<PHINode>(I)); ++I) {
5005 Constant *StartCST =
5006 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5007 if (StartCST == 0) continue;
5008 CurrentIterVals[PHI] = StartCST;
5009 }
5010 if (!CurrentIterVals.count(PN))
5011 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00005012
5013 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5014 // the loop symbolically to determine when the condition gets a value of
5015 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005016
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005017 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005018 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005019 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00005020 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5021 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00005022
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005023 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00005024 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005025
Reid Spencere8019bb2007-03-01 07:25:48 +00005026 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00005027 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00005028 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00005029 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005030
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005031 // Update all the PHI nodes for the next iteration.
5032 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00005033
5034 // Create a list of which PHIs we need to compute. We want to do this before
5035 // calling EvaluateExpression on them because that may invalidate iterators
5036 // into CurrentIterVals.
5037 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005038 for (DenseMap<Instruction *, Constant *>::const_iterator
5039 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5040 PHINode *PHI = dyn_cast<PHINode>(I->first);
5041 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00005042 PHIsToCompute.push_back(PHI);
5043 }
5044 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5045 E = PHIsToCompute.end(); I != E; ++I) {
5046 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005047 Constant *&NextPHI = NextIterVals[PHI];
5048 if (NextPHI) continue; // Already computed!
5049
5050 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00005051 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005052 }
5053 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00005054 }
5055
5056 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00005057 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005058}
5059
Dan Gohmane7125f42009-09-03 15:00:26 +00005060/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00005061/// at the specified scope in the program. The L value specifies a loop
5062/// nest to evaluate the expression at, where null is the top-level or a
5063/// specified loop is immediately inside of the loop.
5064///
5065/// This method can be used to compute the exit value for a variable defined
5066/// in a loop by querying what the value will hold in the parent loop.
5067///
Dan Gohmand594e6f2009-05-24 23:25:42 +00005068/// In the case that a relevant loop exit value cannot be computed, the
5069/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005070const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00005071 // Check to see if we've folded this expression at this loop before.
5072 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5073 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5074 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5075 if (!Pair.second)
5076 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00005077
Dan Gohman42214892009-08-31 21:15:23 +00005078 // Otherwise compute it.
5079 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00005080 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005081 return C;
5082}
5083
Nick Lewycky614fef62011-10-22 19:58:20 +00005084/// This builds up a Constant using the ConstantExpr interface. That way, we
5085/// will return Constants for objects which aren't represented by a
5086/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5087/// Returns NULL if the SCEV isn't representable as a Constant.
5088static Constant *BuildConstantFromSCEV(const SCEV *V) {
5089 switch (V->getSCEVType()) {
5090 default: // TODO: smax, umax.
5091 case scCouldNotCompute:
5092 case scAddRecExpr:
5093 break;
5094 case scConstant:
5095 return cast<SCEVConstant>(V)->getValue();
5096 case scUnknown:
5097 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5098 case scSignExtend: {
5099 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5100 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5101 return ConstantExpr::getSExt(CastOp, SS->getType());
5102 break;
5103 }
5104 case scZeroExtend: {
5105 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5106 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5107 return ConstantExpr::getZExt(CastOp, SZ->getType());
5108 break;
5109 }
5110 case scTruncate: {
5111 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5112 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5113 return ConstantExpr::getTrunc(CastOp, ST->getType());
5114 break;
5115 }
5116 case scAddExpr: {
5117 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5118 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5119 if (C->getType()->isPointerTy())
5120 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5121 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5122 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5123 if (!C2) return 0;
5124
5125 // First pointer!
5126 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5127 std::swap(C, C2);
5128 // The offsets have been converted to bytes. We can add bytes to an
5129 // i8* by GEP with the byte count in the first index.
5130 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5131 }
5132
5133 // Don't bother trying to sum two pointers. We probably can't
5134 // statically compute a load that results from it anyway.
5135 if (C2->getType()->isPointerTy())
5136 return 0;
5137
5138 if (C->getType()->isPointerTy()) {
5139 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5140 C2 = ConstantExpr::getIntegerCast(
5141 C2, Type::getInt32Ty(C->getContext()), true);
5142 C = ConstantExpr::getGetElementPtr(C, C2);
5143 } else
5144 C = ConstantExpr::getAdd(C, C2);
5145 }
5146 return C;
5147 }
5148 break;
5149 }
5150 case scMulExpr: {
5151 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5152 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5153 // Don't bother with pointers at all.
5154 if (C->getType()->isPointerTy()) return 0;
5155 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5156 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5157 if (!C2 || C2->getType()->isPointerTy()) return 0;
5158 C = ConstantExpr::getMul(C, C2);
5159 }
5160 return C;
5161 }
5162 break;
5163 }
5164 case scUDivExpr: {
5165 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5166 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5167 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5168 if (LHS->getType() == RHS->getType())
5169 return ConstantExpr::getUDiv(LHS, RHS);
5170 break;
5171 }
5172 }
5173 return 0;
5174}
5175
Dan Gohman42214892009-08-31 21:15:23 +00005176const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005177 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005178
Nick Lewycky3e630762008-02-20 06:48:22 +00005179 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005180 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005181 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005182 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005183 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005184 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5185 if (PHINode *PN = dyn_cast<PHINode>(I))
5186 if (PN->getParent() == LI->getHeader()) {
5187 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005188 // to see if the loop that contains it has a known backedge-taken
5189 // count. If so, we may be able to force computation of the exit
5190 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005191 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005192 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005193 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005194 // Okay, we know how many times the containing loop executes. If
5195 // this is a constant evolving PHI node, get the final value at
5196 // the specified iteration number.
5197 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005198 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005199 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005200 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005201 }
5202 }
5203
Reid Spencer09906f32006-12-04 21:33:23 +00005204 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005205 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005206 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005207 // result. This is particularly useful for computing loop exit values.
5208 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005209 SmallVector<Constant *, 4> Operands;
5210 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005211 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5212 Value *Op = I->getOperand(i);
5213 if (Constant *C = dyn_cast<Constant>(Op)) {
5214 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005215 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005216 }
Dan Gohman11046452010-06-29 23:43:06 +00005217
5218 // If any of the operands is non-constant and if they are
5219 // non-integer and non-pointer, don't even try to analyze them
5220 // with scev techniques.
5221 if (!isSCEVable(Op->getType()))
5222 return V;
5223
5224 const SCEV *OrigV = getSCEV(Op);
5225 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5226 MadeImprovement |= OrigV != OpV;
5227
Nick Lewycky614fef62011-10-22 19:58:20 +00005228 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005229 if (!C) return V;
5230 if (C->getType() != Op->getType())
5231 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5232 Op->getType(),
5233 false),
5234 C, Op->getType());
5235 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005236 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005237
Dan Gohman11046452010-06-29 23:43:06 +00005238 // Check to see if getSCEVAtScope actually made an improvement.
5239 if (MadeImprovement) {
5240 Constant *C = 0;
5241 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5242 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005243 Operands[0], Operands[1], TD,
5244 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005245 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5246 if (!LI->isVolatile())
5247 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5248 } else
Dan Gohman11046452010-06-29 23:43:06 +00005249 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005250 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005251 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005252 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005253 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005254 }
5255 }
5256
5257 // This is some other type of SCEVUnknown, just return it.
5258 return V;
5259 }
5260
Dan Gohman622ed672009-05-04 22:02:23 +00005261 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005262 // Avoid performing the look-up in the common case where the specified
5263 // expression has no loop-variant portions.
5264 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005265 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005266 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005267 // Okay, at least one of these operands is loop variant but might be
5268 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005269 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5270 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005271 NewOps.push_back(OpAtScope);
5272
5273 for (++i; i != e; ++i) {
5274 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005275 NewOps.push_back(OpAtScope);
5276 }
5277 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005278 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005279 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005280 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005281 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005282 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005283 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005284 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005285 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005286 }
5287 }
5288 // If we got here, all operands are loop invariant.
5289 return Comm;
5290 }
5291
Dan Gohman622ed672009-05-04 22:02:23 +00005292 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005293 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5294 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005295 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5296 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005297 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005298 }
5299
5300 // If this is a loop recurrence for a loop that does not contain L, then we
5301 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005302 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005303 // First, attempt to evaluate each operand.
5304 // Avoid performing the look-up in the common case where the specified
5305 // expression has no loop-variant portions.
5306 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5307 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5308 if (OpAtScope == AddRec->getOperand(i))
5309 continue;
5310
5311 // Okay, at least one of these operands is loop variant but might be
5312 // foldable. Build a new instance of the folded commutative expression.
5313 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5314 AddRec->op_begin()+i);
5315 NewOps.push_back(OpAtScope);
5316 for (++i; i != e; ++i)
5317 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5318
Andrew Trick3f95c882011-04-27 01:21:25 +00005319 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005320 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005321 AddRec->getNoWrapFlags(SCEV::FlagNW));
5322 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005323 // The addrec may be folded to a nonrecurrence, for example, if the
5324 // induction variable is multiplied by zero after constant folding. Go
5325 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005326 if (!AddRec)
5327 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005328 break;
5329 }
5330
5331 // If the scope is outside the addrec's loop, evaluate it by using the
5332 // loop exit value of the addrec.
5333 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005334 // To evaluate this recurrence, we need to know how many times the AddRec
5335 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005336 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005337 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005338
Eli Friedmanb42a6262008-08-04 23:49:06 +00005339 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005340 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005341 }
Dan Gohman11046452010-06-29 23:43:06 +00005342
Dan Gohmand594e6f2009-05-24 23:25:42 +00005343 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005344 }
5345
Dan Gohman622ed672009-05-04 22:02:23 +00005346 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005347 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005348 if (Op == Cast->getOperand())
5349 return Cast; // must be loop invariant
5350 return getZeroExtendExpr(Op, Cast->getType());
5351 }
5352
Dan Gohman622ed672009-05-04 22:02:23 +00005353 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005354 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005355 if (Op == Cast->getOperand())
5356 return Cast; // must be loop invariant
5357 return getSignExtendExpr(Op, Cast->getType());
5358 }
5359
Dan Gohman622ed672009-05-04 22:02:23 +00005360 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005361 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005362 if (Op == Cast->getOperand())
5363 return Cast; // must be loop invariant
5364 return getTruncateExpr(Op, Cast->getType());
5365 }
5366
Torok Edwinc23197a2009-07-14 16:55:14 +00005367 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005368}
5369
Dan Gohman66a7e852009-05-08 20:38:54 +00005370/// getSCEVAtScope - This is a convenience function which does
5371/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005372const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005373 return getSCEVAtScope(getSCEV(V), L);
5374}
5375
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005376/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5377/// following equation:
5378///
5379/// A * X = B (mod N)
5380///
5381/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5382/// A and B isn't important.
5383///
5384/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005385static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005386 ScalarEvolution &SE) {
5387 uint32_t BW = A.getBitWidth();
5388 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5389 assert(A != 0 && "A must be non-zero.");
5390
5391 // 1. D = gcd(A, N)
5392 //
5393 // The gcd of A and N may have only one prime factor: 2. The number of
5394 // trailing zeros in A is its multiplicity
5395 uint32_t Mult2 = A.countTrailingZeros();
5396 // D = 2^Mult2
5397
5398 // 2. Check if B is divisible by D.
5399 //
5400 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5401 // is not less than multiplicity of this prime factor for D.
5402 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005403 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005404
5405 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5406 // modulo (N / D).
5407 //
5408 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5409 // bit width during computations.
5410 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5411 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005412 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005413 APInt I = AD.multiplicativeInverse(Mod);
5414
5415 // 4. Compute the minimum unsigned root of the equation:
5416 // I * (B / D) mod (N / D)
5417 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5418
5419 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5420 // bits.
5421 return SE.getConstant(Result.trunc(BW));
5422}
Chris Lattner53e677a2004-04-02 20:23:17 +00005423
5424/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5425/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5426/// might be the same) or two SCEVCouldNotCompute objects.
5427///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005428static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005429SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005430 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005431 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5432 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5433 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005434
Chris Lattner53e677a2004-04-02 20:23:17 +00005435 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005436 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005437 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005438 return std::make_pair(CNC, CNC);
5439 }
5440
Reid Spencere8019bb2007-03-01 07:25:48 +00005441 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005442 const APInt &L = LC->getValue()->getValue();
5443 const APInt &M = MC->getValue()->getValue();
5444 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005445 APInt Two(BitWidth, 2);
5446 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005447
Dan Gohman64a845e2009-06-24 04:48:43 +00005448 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005449 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005450 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005451 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5452 // The B coefficient is M-N/2
5453 APInt B(M);
5454 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005455
Reid Spencere8019bb2007-03-01 07:25:48 +00005456 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005457 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005458
Reid Spencere8019bb2007-03-01 07:25:48 +00005459 // Compute the B^2-4ac term.
5460 APInt SqrtTerm(B);
5461 SqrtTerm *= B;
5462 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005463
Nick Lewycky6ce24712012-08-01 09:14:36 +00005464 if (SqrtTerm.isNegative()) {
5465 // The loop is provably infinite.
5466 const SCEV *CNC = SE.getCouldNotCompute();
5467 return std::make_pair(CNC, CNC);
5468 }
5469
Reid Spencere8019bb2007-03-01 07:25:48 +00005470 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5471 // integer value or else APInt::sqrt() will assert.
5472 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005473
Dan Gohman64a845e2009-06-24 04:48:43 +00005474 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005475 // The divisions must be performed as signed divisions.
5476 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005477 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005478 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005479 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005480 return std::make_pair(CNC, CNC);
5481 }
5482
Owen Andersone922c022009-07-22 00:24:57 +00005483 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005484
5485 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005486 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005487 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005488 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005489
Dan Gohman64a845e2009-06-24 04:48:43 +00005490 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005491 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005492 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005493}
5494
5495/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005496/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005497///
5498/// This is only used for loops with a "x != y" exit test. The exit condition is
5499/// now expressed as a single expression, V = x-y. So the exit test is
5500/// effectively V != 0. We know and take advantage of the fact that this
5501/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005502ScalarEvolution::ExitLimit
Andrew Trick61601142013-05-31 06:43:25 +00005503ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005504 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005505 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005506 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005507 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005508 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005509 }
5510
Dan Gohman35738ac2009-05-04 22:30:44 +00005511 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005512 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005513 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005514
Chris Lattner7975e3e2011-01-09 22:39:48 +00005515 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5516 // the quadratic equation to solve it.
5517 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5518 std::pair<const SCEV *,const SCEV *> Roots =
5519 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005520 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5521 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005522 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005523#if 0
David Greene25e0e872009-12-23 22:18:14 +00005524 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005525 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005526#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005527 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005528 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005529 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5530 R1->getValue(),
5531 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005532 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005533 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005534
Chris Lattner53e677a2004-04-02 20:23:17 +00005535 // We can only use this value if the chrec ends up with an exact zero
5536 // value at this index. When solving for "X*X != 5", for example, we
5537 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005538 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005539 if (Val->isZero())
5540 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005541 }
5542 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005543 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005544 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005545
Chris Lattner7975e3e2011-01-09 22:39:48 +00005546 // Otherwise we can only handle this if it is affine.
5547 if (!AddRec->isAffine())
5548 return getCouldNotCompute();
5549
5550 // If this is an affine expression, the execution count of this branch is
5551 // the minimum unsigned root of the following equation:
5552 //
5553 // Start + Step*N = 0 (mod 2^BW)
5554 //
5555 // equivalent to:
5556 //
5557 // Step*N = -Start (mod 2^BW)
5558 //
5559 // where BW is the common bit width of Start and Step.
5560
5561 // Get the initial value for the loop.
5562 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5563 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5564
5565 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005566 //
5567 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5568 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5569 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5570 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005571 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky4d3bba52012-06-28 23:44:57 +00005572 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattner7975e3e2011-01-09 22:39:48 +00005573 return getCouldNotCompute();
5574
Andrew Trick3228cc22011-03-14 16:50:06 +00005575 // For positive steps (counting up until unsigned overflow):
5576 // N = -Start/Step (as unsigned)
5577 // For negative steps (counting down to zero):
5578 // N = Start/-Step
5579 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005580 bool CountDown = StepC->getValue()->getValue().isNegative();
5581 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005582
5583 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005584 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5585 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005586 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5587 ConstantRange CR = getUnsignedRange(Start);
5588 const SCEV *MaxBECount;
5589 if (!CountDown && CR.getUnsignedMin().isMinValue())
5590 // When counting up, the worst starting value is 1, not 0.
5591 MaxBECount = CR.getUnsignedMax().isMinValue()
5592 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5593 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5594 else
5595 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5596 : -CR.getUnsignedMin());
5597 return ExitLimit(Distance, MaxBECount);
5598 }
Andrew Trick635f7182011-03-09 17:23:39 +00005599
Andrew Trickdcfd4042011-03-14 17:28:02 +00005600 // If the recurrence is known not to wraparound, unsigned divide computes the
Andrew Trick61601142013-05-31 06:43:25 +00005601 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5602 // that the value will either become zero (and thus the loop terminates), that
5603 // the loop will terminate through some other exit condition first, or that
5604 // the loop has undefined behavior. This means we can't "miss" the exit
5605 // value, even with nonunit stride.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005606 //
Andrew Trick61601142013-05-31 06:43:25 +00005607 // This is only valid for expressions that directly compute the loop exit. It
5608 // is invalid for subexpressions in which the loop may exit through this
5609 // branch even if this subexpression is false. In that case, the trip count
5610 // computed by this udiv could be smaller than the number of well-defined
5611 // iterations.
5612 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW))
Andrew Trickdcfd4042011-03-14 17:28:02 +00005613 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick61601142013-05-31 06:43:25 +00005614
Chris Lattner7975e3e2011-01-09 22:39:48 +00005615 // Then, try to solve the above equation provided that Start is constant.
5616 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5617 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5618 -StartC->getValue()->getValue(),
5619 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005620 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005621}
5622
5623/// HowFarToNonZero - Return the number of times a backedge checking the
5624/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005625/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005626ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005627ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005628 // Loops that look like: while (X == 0) are very strange indeed. We don't
5629 // handle them yet except for the trivial case. This could be expanded in the
5630 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005631
Chris Lattner53e677a2004-04-02 20:23:17 +00005632 // If the value is a constant, check to see if it is known to be non-zero
5633 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005634 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005635 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005636 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005637 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005638 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005639
Chris Lattner53e677a2004-04-02 20:23:17 +00005640 // We could implement others, but I really doubt anyone writes loops like
5641 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005642 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005643}
5644
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005645/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5646/// (which may not be an immediate predecessor) which has exactly one
5647/// successor from which BB is reachable, or null if no such block is
5648/// found.
5649///
Dan Gohman005752b2010-04-15 16:19:08 +00005650std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005651ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005652 // If the block has a unique predecessor, then there is no path from the
5653 // predecessor to the block that does not go through the direct edge
5654 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005655 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005656 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005657
5658 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005659 // If the header has a unique predecessor outside the loop, it must be
5660 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005661 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005662 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005663
Dan Gohman005752b2010-04-15 16:19:08 +00005664 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005665}
5666
Dan Gohman763bad12009-06-20 00:35:32 +00005667/// HasSameValue - SCEV structural equivalence is usually sufficient for
5668/// testing whether two expressions are equal, however for the purposes of
5669/// looking for a condition guarding a loop, it can be useful to be a little
5670/// more general, since a front-end may have replicated the controlling
5671/// expression.
5672///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005673static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005674 // Quick check to see if they are the same SCEV.
5675 if (A == B) return true;
5676
5677 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5678 // two different instructions with the same value. Check for this case.
5679 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5680 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5681 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5682 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005683 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005684 return true;
5685
5686 // Otherwise assume they may have a different value.
5687 return false;
5688}
5689
Dan Gohmane9796502010-04-24 01:28:42 +00005690/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru94c22712012-09-27 10:14:43 +00005691/// predicate Pred. Return true iff any changes were made.
Dan Gohmane9796502010-04-24 01:28:42 +00005692///
5693bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005694 const SCEV *&LHS, const SCEV *&RHS,
5695 unsigned Depth) {
Dan Gohmane9796502010-04-24 01:28:42 +00005696 bool Changed = false;
5697
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005698 // If we hit the max recursion limit bail out.
5699 if (Depth >= 3)
5700 return false;
5701
Dan Gohmane9796502010-04-24 01:28:42 +00005702 // Canonicalize a constant to the right side.
5703 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5704 // Check for both operands constant.
5705 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5706 if (ConstantExpr::getICmp(Pred,
5707 LHSC->getValue(),
5708 RHSC->getValue())->isNullValue())
5709 goto trivially_false;
5710 else
5711 goto trivially_true;
5712 }
5713 // Otherwise swap the operands to put the constant on the right.
5714 std::swap(LHS, RHS);
5715 Pred = ICmpInst::getSwappedPredicate(Pred);
5716 Changed = true;
5717 }
5718
5719 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005720 // addrec's loop, put the addrec on the left. Also make a dominance check,
5721 // as both operands could be addrecs loop-invariant in each other's loop.
5722 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5723 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005724 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005725 std::swap(LHS, RHS);
5726 Pred = ICmpInst::getSwappedPredicate(Pred);
5727 Changed = true;
5728 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005729 }
Dan Gohmane9796502010-04-24 01:28:42 +00005730
5731 // If there's a constant operand, canonicalize comparisons with boundary
5732 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5733 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5734 const APInt &RA = RC->getValue()->getValue();
5735 switch (Pred) {
5736 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5737 case ICmpInst::ICMP_EQ:
5738 case ICmpInst::ICMP_NE:
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005739 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5740 if (!RA)
5741 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5742 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer127563b2012-05-30 18:42:43 +00005743 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5744 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005745 RHS = AE->getOperand(1);
5746 LHS = ME->getOperand(1);
5747 Changed = true;
5748 }
Dan Gohmane9796502010-04-24 01:28:42 +00005749 break;
5750 case ICmpInst::ICMP_UGE:
5751 if ((RA - 1).isMinValue()) {
5752 Pred = ICmpInst::ICMP_NE;
5753 RHS = getConstant(RA - 1);
5754 Changed = true;
5755 break;
5756 }
5757 if (RA.isMaxValue()) {
5758 Pred = ICmpInst::ICMP_EQ;
5759 Changed = true;
5760 break;
5761 }
5762 if (RA.isMinValue()) goto trivially_true;
5763
5764 Pred = ICmpInst::ICMP_UGT;
5765 RHS = getConstant(RA - 1);
5766 Changed = true;
5767 break;
5768 case ICmpInst::ICMP_ULE:
5769 if ((RA + 1).isMaxValue()) {
5770 Pred = ICmpInst::ICMP_NE;
5771 RHS = getConstant(RA + 1);
5772 Changed = true;
5773 break;
5774 }
5775 if (RA.isMinValue()) {
5776 Pred = ICmpInst::ICMP_EQ;
5777 Changed = true;
5778 break;
5779 }
5780 if (RA.isMaxValue()) goto trivially_true;
5781
5782 Pred = ICmpInst::ICMP_ULT;
5783 RHS = getConstant(RA + 1);
5784 Changed = true;
5785 break;
5786 case ICmpInst::ICMP_SGE:
5787 if ((RA - 1).isMinSignedValue()) {
5788 Pred = ICmpInst::ICMP_NE;
5789 RHS = getConstant(RA - 1);
5790 Changed = true;
5791 break;
5792 }
5793 if (RA.isMaxSignedValue()) {
5794 Pred = ICmpInst::ICMP_EQ;
5795 Changed = true;
5796 break;
5797 }
5798 if (RA.isMinSignedValue()) goto trivially_true;
5799
5800 Pred = ICmpInst::ICMP_SGT;
5801 RHS = getConstant(RA - 1);
5802 Changed = true;
5803 break;
5804 case ICmpInst::ICMP_SLE:
5805 if ((RA + 1).isMaxSignedValue()) {
5806 Pred = ICmpInst::ICMP_NE;
5807 RHS = getConstant(RA + 1);
5808 Changed = true;
5809 break;
5810 }
5811 if (RA.isMinSignedValue()) {
5812 Pred = ICmpInst::ICMP_EQ;
5813 Changed = true;
5814 break;
5815 }
5816 if (RA.isMaxSignedValue()) goto trivially_true;
5817
5818 Pred = ICmpInst::ICMP_SLT;
5819 RHS = getConstant(RA + 1);
5820 Changed = true;
5821 break;
5822 case ICmpInst::ICMP_UGT:
5823 if (RA.isMinValue()) {
5824 Pred = ICmpInst::ICMP_NE;
5825 Changed = true;
5826 break;
5827 }
5828 if ((RA + 1).isMaxValue()) {
5829 Pred = ICmpInst::ICMP_EQ;
5830 RHS = getConstant(RA + 1);
5831 Changed = true;
5832 break;
5833 }
5834 if (RA.isMaxValue()) goto trivially_false;
5835 break;
5836 case ICmpInst::ICMP_ULT:
5837 if (RA.isMaxValue()) {
5838 Pred = ICmpInst::ICMP_NE;
5839 Changed = true;
5840 break;
5841 }
5842 if ((RA - 1).isMinValue()) {
5843 Pred = ICmpInst::ICMP_EQ;
5844 RHS = getConstant(RA - 1);
5845 Changed = true;
5846 break;
5847 }
5848 if (RA.isMinValue()) goto trivially_false;
5849 break;
5850 case ICmpInst::ICMP_SGT:
5851 if (RA.isMinSignedValue()) {
5852 Pred = ICmpInst::ICMP_NE;
5853 Changed = true;
5854 break;
5855 }
5856 if ((RA + 1).isMaxSignedValue()) {
5857 Pred = ICmpInst::ICMP_EQ;
5858 RHS = getConstant(RA + 1);
5859 Changed = true;
5860 break;
5861 }
5862 if (RA.isMaxSignedValue()) goto trivially_false;
5863 break;
5864 case ICmpInst::ICMP_SLT:
5865 if (RA.isMaxSignedValue()) {
5866 Pred = ICmpInst::ICMP_NE;
5867 Changed = true;
5868 break;
5869 }
5870 if ((RA - 1).isMinSignedValue()) {
5871 Pred = ICmpInst::ICMP_EQ;
5872 RHS = getConstant(RA - 1);
5873 Changed = true;
5874 break;
5875 }
5876 if (RA.isMinSignedValue()) goto trivially_false;
5877 break;
5878 }
5879 }
5880
5881 // Check for obvious equality.
5882 if (HasSameValue(LHS, RHS)) {
5883 if (ICmpInst::isTrueWhenEqual(Pred))
5884 goto trivially_true;
5885 if (ICmpInst::isFalseWhenEqual(Pred))
5886 goto trivially_false;
5887 }
5888
Dan Gohman03557dc2010-05-03 16:35:17 +00005889 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5890 // adding or subtracting 1 from one of the operands.
5891 switch (Pred) {
5892 case ICmpInst::ICMP_SLE:
5893 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5894 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005895 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005896 Pred = ICmpInst::ICMP_SLT;
5897 Changed = true;
5898 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005899 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005900 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005901 Pred = ICmpInst::ICMP_SLT;
5902 Changed = true;
5903 }
5904 break;
5905 case ICmpInst::ICMP_SGE:
5906 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005907 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005908 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005909 Pred = ICmpInst::ICMP_SGT;
5910 Changed = true;
5911 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5912 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005913 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005914 Pred = ICmpInst::ICMP_SGT;
5915 Changed = true;
5916 }
5917 break;
5918 case ICmpInst::ICMP_ULE:
5919 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005920 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005921 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005922 Pred = ICmpInst::ICMP_ULT;
5923 Changed = true;
5924 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005925 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005926 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005927 Pred = ICmpInst::ICMP_ULT;
5928 Changed = true;
5929 }
5930 break;
5931 case ICmpInst::ICMP_UGE:
5932 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005933 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005934 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005935 Pred = ICmpInst::ICMP_UGT;
5936 Changed = true;
5937 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005938 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005939 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005940 Pred = ICmpInst::ICMP_UGT;
5941 Changed = true;
5942 }
5943 break;
5944 default:
5945 break;
5946 }
5947
Dan Gohmane9796502010-04-24 01:28:42 +00005948 // TODO: More simplifications are possible here.
5949
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005950 // Recursively simplify until we either hit a recursion limit or nothing
5951 // changes.
5952 if (Changed)
5953 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5954
Dan Gohmane9796502010-04-24 01:28:42 +00005955 return Changed;
5956
5957trivially_true:
5958 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005959 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005960 Pred = ICmpInst::ICMP_EQ;
5961 return true;
5962
5963trivially_false:
5964 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005965 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005966 Pred = ICmpInst::ICMP_NE;
5967 return true;
5968}
5969
Dan Gohman85b05a22009-07-13 21:35:55 +00005970bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5971 return getSignedRange(S).getSignedMax().isNegative();
5972}
5973
5974bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5975 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5976}
5977
5978bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5979 return !getSignedRange(S).getSignedMin().isNegative();
5980}
5981
5982bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5983 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5984}
5985
5986bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5987 return isKnownNegative(S) || isKnownPositive(S);
5988}
5989
5990bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5991 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005992 // Canonicalize the inputs first.
5993 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5994
Dan Gohman53c66ea2010-04-11 22:16:48 +00005995 // If LHS or RHS is an addrec, check to see if the condition is true in
5996 // every iteration of the loop.
5997 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5998 if (isLoopEntryGuardedByCond(
5999 AR->getLoop(), Pred, AR->getStart(), RHS) &&
6000 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00006001 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00006002 return true;
6003 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
6004 if (isLoopEntryGuardedByCond(
6005 AR->getLoop(), Pred, LHS, AR->getStart()) &&
6006 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00006007 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00006008 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00006009
Dan Gohman53c66ea2010-04-11 22:16:48 +00006010 // Otherwise see what can be done with known constant ranges.
6011 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6012}
6013
6014bool
6015ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6016 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006017 if (HasSameValue(LHS, RHS))
6018 return ICmpInst::isTrueWhenEqual(Pred);
6019
Dan Gohman53c66ea2010-04-11 22:16:48 +00006020 // This code is split out from isKnownPredicate because it is called from
6021 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00006022 switch (Pred) {
6023 default:
Dan Gohman850f7912009-07-16 17:34:36 +00006024 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00006025 case ICmpInst::ICMP_SGT:
6026 Pred = ICmpInst::ICMP_SLT;
6027 std::swap(LHS, RHS);
6028 case ICmpInst::ICMP_SLT: {
6029 ConstantRange LHSRange = getSignedRange(LHS);
6030 ConstantRange RHSRange = getSignedRange(RHS);
6031 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6032 return true;
6033 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6034 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006035 break;
6036 }
6037 case ICmpInst::ICMP_SGE:
6038 Pred = ICmpInst::ICMP_SLE;
6039 std::swap(LHS, RHS);
6040 case ICmpInst::ICMP_SLE: {
6041 ConstantRange LHSRange = getSignedRange(LHS);
6042 ConstantRange RHSRange = getSignedRange(RHS);
6043 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6044 return true;
6045 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6046 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006047 break;
6048 }
6049 case ICmpInst::ICMP_UGT:
6050 Pred = ICmpInst::ICMP_ULT;
6051 std::swap(LHS, RHS);
6052 case ICmpInst::ICMP_ULT: {
6053 ConstantRange LHSRange = getUnsignedRange(LHS);
6054 ConstantRange RHSRange = getUnsignedRange(RHS);
6055 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6056 return true;
6057 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6058 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006059 break;
6060 }
6061 case ICmpInst::ICMP_UGE:
6062 Pred = ICmpInst::ICMP_ULE;
6063 std::swap(LHS, RHS);
6064 case ICmpInst::ICMP_ULE: {
6065 ConstantRange LHSRange = getUnsignedRange(LHS);
6066 ConstantRange RHSRange = getUnsignedRange(RHS);
6067 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6068 return true;
6069 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6070 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006071 break;
6072 }
6073 case ICmpInst::ICMP_NE: {
6074 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6075 return true;
6076 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6077 return true;
6078
6079 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6080 if (isKnownNonZero(Diff))
6081 return true;
6082 break;
6083 }
6084 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00006085 // The check at the top of the function catches the case where
6086 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00006087 break;
6088 }
6089 return false;
6090}
6091
6092/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6093/// protected by a conditional between LHS and RHS. This is used to
6094/// to eliminate casts.
6095bool
6096ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6097 ICmpInst::Predicate Pred,
6098 const SCEV *LHS, const SCEV *RHS) {
6099 // Interpret a null as meaning no loop, where there is obviously no guard
6100 // (interprocedural conditions notwithstanding).
6101 if (!L) return true;
6102
6103 BasicBlock *Latch = L->getLoopLatch();
6104 if (!Latch)
6105 return false;
6106
6107 BranchInst *LoopContinuePredicate =
6108 dyn_cast<BranchInst>(Latch->getTerminator());
6109 if (!LoopContinuePredicate ||
6110 LoopContinuePredicate->isUnconditional())
6111 return false;
6112
Dan Gohmanaf08a362010-08-10 23:46:30 +00006113 return isImpliedCond(Pred, LHS, RHS,
6114 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006115 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006116}
6117
Dan Gohman3948d0b2010-04-11 19:27:13 +00006118/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006119/// by a conditional between LHS and RHS. This is used to help avoid max
6120/// expressions in loop trip counts, and to eliminate casts.
6121bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006122ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6123 ICmpInst::Predicate Pred,
6124 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006125 // Interpret a null as meaning no loop, where there is obviously no guard
6126 // (interprocedural conditions notwithstanding).
6127 if (!L) return false;
6128
Dan Gohman859b4822009-05-18 15:36:09 +00006129 // Starting at the loop predecessor, climb up the predecessor chain, as long
6130 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006131 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006132 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006133 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006134 Pair.first;
6135 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006136
6137 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006138 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006139 if (!LoopEntryPredicate ||
6140 LoopEntryPredicate->isUnconditional())
6141 continue;
6142
Dan Gohmanaf08a362010-08-10 23:46:30 +00006143 if (isImpliedCond(Pred, LHS, RHS,
6144 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006145 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006146 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006147 }
6148
Dan Gohman38372182008-08-12 20:17:31 +00006149 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006150}
6151
Andrew Trick8aa22012012-05-19 00:48:25 +00006152/// RAII wrapper to prevent recursive application of isImpliedCond.
6153/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6154/// currently evaluating isImpliedCond.
6155struct MarkPendingLoopPredicate {
6156 Value *Cond;
6157 DenseSet<Value*> &LoopPreds;
6158 bool Pending;
6159
6160 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6161 : Cond(C), LoopPreds(LP) {
6162 Pending = !LoopPreds.insert(Cond).second;
6163 }
6164 ~MarkPendingLoopPredicate() {
6165 if (!Pending)
6166 LoopPreds.erase(Cond);
6167 }
6168};
6169
Dan Gohman0f4b2852009-07-21 23:03:19 +00006170/// isImpliedCond - Test whether the condition described by Pred, LHS,
6171/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006172bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006173 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006174 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006175 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006176 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6177 if (Mark.Pending)
6178 return false;
6179
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006180 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006181 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006182 if (BO->getOpcode() == Instruction::And) {
6183 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006184 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6185 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006186 } else if (BO->getOpcode() == Instruction::Or) {
6187 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006188 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6189 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006190 }
6191 }
6192
Dan Gohmanaf08a362010-08-10 23:46:30 +00006193 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006194 if (!ICI) return false;
6195
Dan Gohman85b05a22009-07-13 21:35:55 +00006196 // Bail if the ICmp's operands' types are wider than the needed type
6197 // before attempting to call getSCEV on them. This avoids infinite
6198 // recursion, since the analysis of widening casts can require loop
6199 // exit condition information for overflow checking, which would
6200 // lead back here.
6201 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006202 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006203 return false;
6204
Andrew Trickffc9ee42012-11-29 18:35:13 +00006205 // Now that we found a conditional branch that dominates the loop or controls
6206 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman0f4b2852009-07-21 23:03:19 +00006207 ICmpInst::Predicate FoundPred;
6208 if (Inverse)
6209 FoundPred = ICI->getInversePredicate();
6210 else
6211 FoundPred = ICI->getPredicate();
6212
6213 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6214 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006215
6216 // Balance the types. The case where FoundLHS' type is wider than
6217 // LHS' type is checked for above.
6218 if (getTypeSizeInBits(LHS->getType()) >
6219 getTypeSizeInBits(FoundLHS->getType())) {
6220 if (CmpInst::isSigned(Pred)) {
6221 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6222 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6223 } else {
6224 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6225 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6226 }
6227 }
6228
Dan Gohman0f4b2852009-07-21 23:03:19 +00006229 // Canonicalize the query to match the way instcombine will have
6230 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006231 if (SimplifyICmpOperands(Pred, LHS, RHS))
6232 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006233 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramer7d4253a2012-11-29 19:07:57 +00006234 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6235 if (FoundLHS == FoundRHS)
6236 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006237
6238 // Check to see if we can make the LHS or RHS match.
6239 if (LHS == FoundRHS || RHS == FoundLHS) {
6240 if (isa<SCEVConstant>(RHS)) {
6241 std::swap(FoundLHS, FoundRHS);
6242 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6243 } else {
6244 std::swap(LHS, RHS);
6245 Pred = ICmpInst::getSwappedPredicate(Pred);
6246 }
6247 }
6248
6249 // Check whether the found predicate is the same as the desired predicate.
6250 if (FoundPred == Pred)
6251 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6252
6253 // Check whether swapping the found predicate makes it the same as the
6254 // desired predicate.
6255 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6256 if (isa<SCEVConstant>(RHS))
6257 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6258 else
6259 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6260 RHS, LHS, FoundLHS, FoundRHS);
6261 }
6262
6263 // Check whether the actual condition is beyond sufficient.
6264 if (FoundPred == ICmpInst::ICMP_EQ)
6265 if (ICmpInst::isTrueWhenEqual(Pred))
6266 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6267 return true;
6268 if (Pred == ICmpInst::ICMP_NE)
6269 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6270 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6271 return true;
6272
6273 // Otherwise assume the worst.
6274 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006275}
6276
Dan Gohman0f4b2852009-07-21 23:03:19 +00006277/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006278/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006279/// and FoundRHS is true.
6280bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6281 const SCEV *LHS, const SCEV *RHS,
6282 const SCEV *FoundLHS,
6283 const SCEV *FoundRHS) {
6284 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6285 FoundLHS, FoundRHS) ||
6286 // ~x < ~y --> x > y
6287 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6288 getNotSCEV(FoundRHS),
6289 getNotSCEV(FoundLHS));
6290}
6291
6292/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006293/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006294/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006295bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006296ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6297 const SCEV *LHS, const SCEV *RHS,
6298 const SCEV *FoundLHS,
6299 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006300 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006301 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6302 case ICmpInst::ICMP_EQ:
6303 case ICmpInst::ICMP_NE:
6304 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6305 return true;
6306 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006307 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006308 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006309 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6310 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006311 return true;
6312 break;
6313 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006314 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006315 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6316 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006317 return true;
6318 break;
6319 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006320 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006321 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6322 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006323 return true;
6324 break;
6325 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006326 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006327 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6328 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006329 return true;
6330 break;
6331 }
6332
6333 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006334}
6335
Dan Gohman51f53b72009-06-21 23:46:38 +00006336/// getBECount - Subtract the end and start values and divide by the step,
6337/// rounding up, to get the number of times the backedge is executed. Return
6338/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006339const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006340 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006341 const SCEV *Step,
6342 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006343 assert(!isKnownNegative(Step) &&
6344 "This code doesn't handle negative strides yet!");
6345
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006346 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006347
6348 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6349 // here because SCEV may not be able to determine that the unsigned division
6350 // after rounding is zero.
6351 if (Start == End)
6352 return getConstant(Ty, 0);
6353
Dan Gohmandeff6212010-05-03 22:09:21 +00006354 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006355 const SCEV *Diff = getMinusSCEV(End, Start);
6356 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006357
6358 // Add an adjustment to the difference between End and Start so that
6359 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006360 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006361
Dan Gohman1f96e672009-09-17 18:05:20 +00006362 if (!NoWrap) {
6363 // Check Add for unsigned overflow.
6364 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006365 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006366 getTypeSizeInBits(Ty) + 1);
6367 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6368 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6369 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6370 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6371 return getCouldNotCompute();
6372 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006373
6374 return getUDivExpr(Add, Step);
6375}
6376
Chris Lattnerdb25de42005-08-15 23:33:51 +00006377/// HowManyLessThans - Return the number of times a backedge containing the
6378/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006379/// CouldNotCompute.
Andrew Trick61601142013-05-31 06:43:25 +00006380///
6381/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6382/// control the branch. In this case, we can only compute an iteration count for
6383/// a subexpression that cannot overflow before evaluating true.
Andrew Trick5116ff62011-07-26 17:19:55 +00006384ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006385ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick61601142013-05-31 06:43:25 +00006386 const Loop *L, bool isSigned,
6387 bool IsSubExpr) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006388 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006389 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006390
Dan Gohman35738ac2009-05-04 22:30:44 +00006391 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006392 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006393 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006394
Dan Gohman1f96e672009-09-17 18:05:20 +00006395 // Check to see if we have a flag which makes analysis easy.
Andrew Trick61601142013-05-31 06:43:25 +00006396 bool NoWrap = false;
6397 if (!IsSubExpr) {
6398 NoWrap = AddRec->getNoWrapFlags(
6399 (SCEV::NoWrapFlags)(((isSigned ? SCEV::FlagNSW : SCEV::FlagNUW))
6400 | SCEV::FlagNW));
6401 }
Chris Lattnerdb25de42005-08-15 23:33:51 +00006402 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006403 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006404 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006405
Dan Gohman52fddd32010-01-26 04:40:18 +00006406 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006407 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006408 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006409 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006410 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006411 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006412 // value and past the maximum value for its type in a single step.
6413 // Note that it's not sufficient to check NoWrap here, because even
6414 // though the value after a wrap is undefined, it's not undefined
6415 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006416 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006417 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006418 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006419 if (isSigned) {
6420 APInt Max = APInt::getSignedMaxValue(BitWidth);
6421 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6422 .slt(getSignedRange(RHS).getSignedMax()))
6423 return getCouldNotCompute();
6424 } else {
6425 APInt Max = APInt::getMaxValue(BitWidth);
6426 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6427 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6428 return getCouldNotCompute();
6429 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006430 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006431 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006432 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006433
Dan Gohmana1af7572009-04-30 20:47:05 +00006434 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6435 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6436 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006437 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006438
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006439 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006440 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006441
Dan Gohmana1af7572009-04-30 20:47:05 +00006442 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006443 const SCEV *MinStart = getConstant(isSigned ?
6444 getSignedRange(Start).getSignedMin() :
6445 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006446
Dan Gohmana1af7572009-04-30 20:47:05 +00006447 // If we know that the condition is true in order to enter the loop,
6448 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006449 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6450 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006451 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006452 if (!isLoopEntryGuardedByCond(L,
6453 isSigned ? ICmpInst::ICMP_SLT :
6454 ICmpInst::ICMP_ULT,
6455 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006456 End = isSigned ? getSMaxExpr(RHS, Start)
6457 : getUMaxExpr(RHS, Start);
6458
6459 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006460 const SCEV *MaxEnd = getConstant(isSigned ?
6461 getSignedRange(End).getSignedMax() :
6462 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006463
Dan Gohman52fddd32010-01-26 04:40:18 +00006464 // If MaxEnd is within a step of the maximum integer value in its type,
6465 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006466 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006467 // compute the correct value.
6468 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006469 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006470 MaxEnd = isSigned ?
6471 getSMinExpr(MaxEnd,
6472 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6473 StepMinusOne)) :
6474 getUMinExpr(MaxEnd,
6475 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6476 StepMinusOne));
6477
Dan Gohmana1af7572009-04-30 20:47:05 +00006478 // Finally, we subtract these two values and divide, rounding up, to get
6479 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006480 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006481
6482 // The maximum backedge count is similar, except using the minimum start
6483 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006484 // If we already have an exact constant BECount, use it instead.
6485 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6486 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6487
6488 // If the stride is nonconstant, and NoWrap == true, then
6489 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6490 // exact BECount and invalid MaxBECount, which should be avoided to catch
6491 // more optimization opportunities.
6492 if (isa<SCEVCouldNotCompute>(MaxBECount))
6493 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006494
Andrew Trick5116ff62011-07-26 17:19:55 +00006495 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006496 }
6497
Dan Gohman1c343752009-06-27 21:21:31 +00006498 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006499}
6500
Chris Lattner53e677a2004-04-02 20:23:17 +00006501/// getNumIterationsInRange - Return the number of iterations of this loop that
6502/// produce values in the specified constant range. Another way of looking at
6503/// this is that it returns the first iteration number where the value is not in
6504/// the condition, thus computing the exit count. If the iteration count can't
6505/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006506const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006507 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006508 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006509 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006510
6511 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006512 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006513 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006514 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006515 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006516 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006517 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006518 if (const SCEVAddRecExpr *ShiftedAddRec =
6519 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006520 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006521 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006522 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006523 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006524 }
6525
6526 // The only time we can solve this is when we have all constant indices.
6527 // Otherwise, we cannot determine the overflow conditions.
6528 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6529 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006530 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006531
6532
6533 // Okay at this point we know that all elements of the chrec are constants and
6534 // that the start element is zero.
6535
6536 // First check to see if the range contains zero. If not, the first
6537 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006538 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006539 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006540 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006541
Chris Lattner53e677a2004-04-02 20:23:17 +00006542 if (isAffine()) {
6543 // If this is an affine expression then we have this situation:
6544 // Solve {0,+,A} in Range === Ax in Range
6545
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006546 // We know that zero is in the range. If A is positive then we know that
6547 // the upper value of the range must be the first possible exit value.
6548 // If A is negative then the lower of the range is the last possible loop
6549 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006550 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006551 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6552 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006553
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006554 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006555 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006556 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006557
6558 // Evaluate at the exit value. If we really did fall out of the valid
6559 // range, then we computed our trip count, otherwise wrap around or other
6560 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006561 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006562 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006563 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006564
6565 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006566 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006567 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006568 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006569 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006570 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006571 } else if (isQuadratic()) {
6572 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6573 // quadratic equation to solve it. To do this, we must frame our problem in
6574 // terms of figuring out when zero is crossed, instead of when
6575 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006576 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006577 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006578 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6579 // getNoWrapFlags(FlagNW)
6580 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006581
6582 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006583 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006584 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006585 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6586 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006587 if (R1) {
6588 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006589 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006590 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006591 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006592 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006593 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006594
Chris Lattner53e677a2004-04-02 20:23:17 +00006595 // Make sure the root is not off by one. The returned iteration should
6596 // not be in the range, but the previous one should be. When solving
6597 // for "X*X < 5", for example, we should not return a root of 2.
6598 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006599 R1->getValue(),
6600 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006601 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006602 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006603 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006604 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006605
Dan Gohman246b2562007-10-22 18:31:58 +00006606 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006607 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006608 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006609 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006610 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006611
Chris Lattner53e677a2004-04-02 20:23:17 +00006612 // If R1 was not in the range, then it is a good return value. Make
6613 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006614 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006615 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006616 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006617 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006618 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006619 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006620 }
6621 }
6622 }
6623
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006624 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006625}
6626
6627
6628
6629//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006630// SCEVCallbackVH Class Implementation
6631//===----------------------------------------------------------------------===//
6632
Dan Gohman1959b752009-05-19 19:22:47 +00006633void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006634 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006635 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6636 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006637 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006638 // this now dangles!
6639}
6640
Dan Gohman81f91212010-07-28 01:09:07 +00006641void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006642 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006643
Dan Gohman35738ac2009-05-04 22:30:44 +00006644 // Forget all the expressions associated with users of the old value,
6645 // so that future queries will recompute the expressions using the new
6646 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006647 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006648 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006649 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006650 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6651 UI != UE; ++UI)
6652 Worklist.push_back(*UI);
6653 while (!Worklist.empty()) {
6654 User *U = Worklist.pop_back_val();
6655 // Deleting the Old value will cause this to dangle. Postpone
6656 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006657 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006658 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006659 if (!Visited.insert(U))
6660 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006661 if (PHINode *PN = dyn_cast<PHINode>(U))
6662 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006663 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006664 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6665 UI != UE; ++UI)
6666 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006667 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006668 // Delete the Old value.
6669 if (PHINode *PN = dyn_cast<PHINode>(Old))
6670 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006671 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006672 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006673}
6674
Dan Gohman1959b752009-05-19 19:22:47 +00006675ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006676 : CallbackVH(V), SE(se) {}
6677
6678//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006679// ScalarEvolution Class Implementation
6680//===----------------------------------------------------------------------===//
6681
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006682ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006683 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006684 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006685}
6686
Chris Lattner53e677a2004-04-02 20:23:17 +00006687bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006688 this->F = &F;
6689 LI = &getAnalysis<LoopInfo>();
Micah Villmow3574eca2012-10-08 16:38:25 +00006690 TD = getAnalysisIfAvailable<DataLayout>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006691 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006692 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006693 return false;
6694}
6695
6696void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006697 // Iterate through all the SCEVUnknown instances and call their
6698 // destructors, so that they release their references to their values.
6699 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6700 U->~SCEVUnknown();
6701 FirstUnknown = 0;
6702
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006703 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006704
6705 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6706 // that a loop had multiple computable exits.
6707 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6708 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6709 I != E; ++I) {
6710 I->second.clear();
6711 }
6712
Andrew Trick8aa22012012-05-19 00:48:25 +00006713 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6714
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006715 BackedgeTakenCounts.clear();
6716 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006717 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006718 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006719 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006720 UnsignedRanges.clear();
6721 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006722 UniqueSCEVs.clear();
6723 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006724}
6725
6726void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6727 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006728 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006729 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006730 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006731}
6732
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006733bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006734 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006735}
6736
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006737static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006738 const Loop *L) {
6739 // Print all inner loops first
6740 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6741 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006742
Dan Gohman30733292010-01-09 18:17:45 +00006743 OS << "Loop ";
6744 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6745 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006746
Dan Gohman5d984912009-12-18 01:14:11 +00006747 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006748 L->getExitBlocks(ExitBlocks);
6749 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006750 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006751
Dan Gohman46bdfb02009-02-24 18:55:53 +00006752 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6753 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006754 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006755 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006756 }
6757
Dan Gohman30733292010-01-09 18:17:45 +00006758 OS << "\n"
6759 "Loop ";
6760 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6761 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006762
6763 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6764 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6765 } else {
6766 OS << "Unpredictable max backedge-taken count. ";
6767 }
6768
6769 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006770}
6771
Dan Gohman5d984912009-12-18 01:14:11 +00006772void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006773 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006774 // out SCEV values of all instructions that are interesting. Doing
6775 // this potentially causes it to create new SCEV objects though,
6776 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006777 // observable from outside the class though, so casting away the
6778 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006779 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006780
Dan Gohman30733292010-01-09 18:17:45 +00006781 OS << "Classifying expressions for: ";
6782 WriteAsOperand(OS, F, /*PrintType=*/false);
6783 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006784 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006785 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006786 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006787 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006788 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006789 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006790
Dan Gohman0c689c52009-06-19 17:49:54 +00006791 const Loop *L = LI->getLoopFor((*I).getParent());
6792
Dan Gohman0bba49c2009-07-07 17:06:11 +00006793 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006794 if (AtUse != SV) {
6795 OS << " --> ";
6796 AtUse->print(OS);
6797 }
6798
6799 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006800 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006801 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006802 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006803 OS << "<<Unknown>>";
6804 } else {
6805 OS << *ExitValue;
6806 }
6807 }
6808
Chris Lattner53e677a2004-04-02 20:23:17 +00006809 OS << "\n";
6810 }
6811
Dan Gohman30733292010-01-09 18:17:45 +00006812 OS << "Determining loop execution counts for: ";
6813 WriteAsOperand(OS, F, /*PrintType=*/false);
6814 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006815 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6816 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006817}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006818
Dan Gohman714b5292010-11-17 23:21:44 +00006819ScalarEvolution::LoopDisposition
6820ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6821 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6822 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6823 Values.insert(std::make_pair(L, LoopVariant));
6824 if (!Pair.second)
6825 return Pair.first->second;
6826
6827 LoopDisposition D = computeLoopDisposition(S, L);
6828 return LoopDispositions[S][L] = D;
6829}
6830
6831ScalarEvolution::LoopDisposition
6832ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006833 switch (S->getSCEVType()) {
6834 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006835 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006836 case scTruncate:
6837 case scZeroExtend:
6838 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006839 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006840 case scAddRecExpr: {
6841 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6842
Dan Gohman714b5292010-11-17 23:21:44 +00006843 // If L is the addrec's loop, it's computable.
6844 if (AR->getLoop() == L)
6845 return LoopComputable;
6846
Dan Gohman17ead4f2010-11-17 21:23:15 +00006847 // Add recurrences are never invariant in the function-body (null loop).
6848 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006849 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006850
6851 // This recurrence is variant w.r.t. L if L contains AR's loop.
6852 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006853 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006854
6855 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6856 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006857 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006858
6859 // This recurrence is variant w.r.t. L if any of its operands
6860 // are variant.
6861 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6862 I != E; ++I)
6863 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006864 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006865
6866 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006867 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006868 }
6869 case scAddExpr:
6870 case scMulExpr:
6871 case scUMaxExpr:
6872 case scSMaxExpr: {
6873 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006874 bool HasVarying = false;
6875 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6876 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006877 LoopDisposition D = getLoopDisposition(*I, L);
6878 if (D == LoopVariant)
6879 return LoopVariant;
6880 if (D == LoopComputable)
6881 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006882 }
Dan Gohman714b5292010-11-17 23:21:44 +00006883 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006884 }
6885 case scUDivExpr: {
6886 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006887 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6888 if (LD == LoopVariant)
6889 return LoopVariant;
6890 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6891 if (RD == LoopVariant)
6892 return LoopVariant;
6893 return (LD == LoopInvariant && RD == LoopInvariant) ?
6894 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006895 }
6896 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006897 // All non-instruction values are loop invariant. All instructions are loop
6898 // invariant if they are not contained in the specified loop.
6899 // Instructions are never considered invariant in the function body
6900 // (null loop) because they are defined within the "loop".
6901 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6902 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6903 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006904 case scCouldNotCompute:
6905 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006906 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006907 }
Dan Gohman714b5292010-11-17 23:21:44 +00006908}
6909
6910bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6911 return getLoopDisposition(S, L) == LoopInvariant;
6912}
6913
6914bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6915 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006916}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006917
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006918ScalarEvolution::BlockDisposition
6919ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6920 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6921 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6922 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6923 if (!Pair.second)
6924 return Pair.first->second;
6925
6926 BlockDisposition D = computeBlockDisposition(S, BB);
6927 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006928}
6929
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006930ScalarEvolution::BlockDisposition
6931ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006932 switch (S->getSCEVType()) {
6933 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006934 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006935 case scTruncate:
6936 case scZeroExtend:
6937 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006938 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006939 case scAddRecExpr: {
6940 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006941 // to test for proper dominance too, because the instruction which
6942 // produces the addrec's value is a PHI, and a PHI effectively properly
6943 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006944 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6945 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006946 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006947 }
6948 // FALL THROUGH into SCEVNAryExpr handling.
6949 case scAddExpr:
6950 case scMulExpr:
6951 case scUMaxExpr:
6952 case scSMaxExpr: {
6953 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006954 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006955 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006956 I != E; ++I) {
6957 BlockDisposition D = getBlockDisposition(*I, BB);
6958 if (D == DoesNotDominateBlock)
6959 return DoesNotDominateBlock;
6960 if (D == DominatesBlock)
6961 Proper = false;
6962 }
6963 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006964 }
6965 case scUDivExpr: {
6966 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006967 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6968 BlockDisposition LD = getBlockDisposition(LHS, BB);
6969 if (LD == DoesNotDominateBlock)
6970 return DoesNotDominateBlock;
6971 BlockDisposition RD = getBlockDisposition(RHS, BB);
6972 if (RD == DoesNotDominateBlock)
6973 return DoesNotDominateBlock;
6974 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6975 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006976 }
6977 case scUnknown:
6978 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006979 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6980 if (I->getParent() == BB)
6981 return DominatesBlock;
6982 if (DT->properlyDominates(I->getParent(), BB))
6983 return ProperlyDominatesBlock;
6984 return DoesNotDominateBlock;
6985 }
6986 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006987 case scCouldNotCompute:
6988 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006989 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006990 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006991 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006992}
6993
6994bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6995 return getBlockDisposition(S, BB) >= DominatesBlock;
6996}
6997
6998bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6999 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00007000}
Dan Gohman4ce32db2010-11-17 22:27:42 +00007001
Andrew Trick8b7036b2012-07-13 23:33:03 +00007002namespace {
7003// Search for a SCEV expression node within an expression tree.
7004// Implements SCEVTraversal::Visitor.
7005struct SCEVSearch {
7006 const SCEV *Node;
7007 bool IsFound;
7008
7009 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7010
7011 bool follow(const SCEV *S) {
7012 IsFound |= (S == Node);
7013 return !IsFound;
7014 }
7015 bool isDone() const { return IsFound; }
7016};
7017}
7018
Dan Gohman4ce32db2010-11-17 22:27:42 +00007019bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick8b7036b2012-07-13 23:33:03 +00007020 SCEVSearch Search(Op);
7021 visitAll(S, Search);
7022 return Search.IsFound;
Dan Gohman4ce32db2010-11-17 22:27:42 +00007023}
Dan Gohman56a75682010-11-17 23:28:48 +00007024
7025void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7026 ValuesAtScopes.erase(S);
7027 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00007028 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00007029 UnsignedRanges.erase(S);
7030 SignedRanges.erase(S);
Andrew Tricke74c2e82013-03-26 03:14:53 +00007031
7032 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7033 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7034 BackedgeTakenInfo &BEInfo = I->second;
7035 if (BEInfo.hasOperand(S, this)) {
7036 BEInfo.clear();
7037 BackedgeTakenCounts.erase(I++);
7038 }
7039 else
7040 ++I;
7041 }
Dan Gohman56a75682010-11-17 23:28:48 +00007042}
Benjamin Kramerff183102012-10-26 17:31:32 +00007043
7044typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00007045
7046/// replaceSubString - Replaces all occurences of From in Str with To.
7047static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7048 size_t Pos = 0;
7049 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7050 Str.replace(Pos, From.size(), To.data(), To.size());
7051 Pos += To.size();
7052 }
7053}
7054
Benjamin Kramerff183102012-10-26 17:31:32 +00007055/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7056static void
7057getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7058 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7059 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7060
7061 std::string &S = Map[L];
7062 if (S.empty()) {
7063 raw_string_ostream OS(S);
7064 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00007065
7066 // false and 0 are semantically equivalent. This can happen in dead loops.
7067 replaceSubString(OS.str(), "false", "0");
7068 // Remove wrap flags, their use in SCEV is highly fragile.
7069 // FIXME: Remove this when SCEV gets smarter about them.
7070 replaceSubString(OS.str(), "<nw>", "");
7071 replaceSubString(OS.str(), "<nsw>", "");
7072 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramerff183102012-10-26 17:31:32 +00007073 }
7074 }
7075}
7076
7077void ScalarEvolution::verifyAnalysis() const {
7078 if (!VerifySCEV)
7079 return;
7080
7081 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7082
7083 // Gather stringified backedge taken counts for all loops using SCEV's caches.
7084 // FIXME: It would be much better to store actual values instead of strings,
7085 // but SCEV pointers will change if we drop the caches.
7086 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7087 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7088 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7089
7090 // Gather stringified backedge taken counts for all loops without using
7091 // SCEV's caches.
7092 SE.releaseMemory();
7093 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7094 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7095
7096 // Now compare whether they're the same with and without caches. This allows
7097 // verifying that no pass changed the cache.
7098 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7099 "New loops suddenly appeared!");
7100
7101 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7102 OldE = BackedgeDumpsOld.end(),
7103 NewI = BackedgeDumpsNew.begin();
7104 OldI != OldE; ++OldI, ++NewI) {
7105 assert(OldI->first == NewI->first && "Loop order changed!");
7106
7107 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7108 // changes.
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007109 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramerff183102012-10-26 17:31:32 +00007110 // means that a pass is buggy or SCEV has to learn a new pattern but is
7111 // usually not harmful.
7112 if (OldI->second != NewI->second &&
7113 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007114 NewI->second.find("undef") == std::string::npos &&
7115 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramerff183102012-10-26 17:31:32 +00007116 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007117 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramerff183102012-10-26 17:31:32 +00007118 << OldI->first->getHeader()->getName()
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007119 << "' changed from '" << OldI->second
7120 << "' to '" << NewI->second << "'!\n";
Benjamin Kramerff183102012-10-26 17:31:32 +00007121 std::abort();
7122 }
7123 }
7124
7125 // TODO: Verify more things.
7126}