blob: f5d095b9781b3b43ab1de028c7d1d2e7bd95d743 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000062#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
John Criswella1156432005-10-27 15:54:34 +000066#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000067#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Assembly/Writer.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000073#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Operator.h"
Chris Lattner95255282006-06-28 23:17:24 +000081#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000083#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000084#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000086#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000087#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000088#include "llvm/Support/raw_ostream.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000089#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000090#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000091using namespace llvm;
92
Chris Lattner3b27d682006-12-19 22:30:33 +000093STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
Dan Gohman844731a2008-05-13 00:00:25 +0000102static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000105 "symbolically execute a constant "
106 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000107 cl::init(100));
108
Benjamin Kramerff183102012-10-26 17:31:32 +0000109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
Owen Anderson2ab36d32010-10-12 19:48:12 +0000114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000120 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000121char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000130
Manman Ren286c4dc2012-09-12 05:06:18 +0000131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattner53e677a2004-04-02 20:23:17 +0000132void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000133 print(dbgs());
134 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000135}
Manman Rencc77eec2012-09-06 19:55:56 +0000136#endif
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000137
Dan Gohman4ce32db2010-11-17 22:27:42 +0000138void SCEV::print(raw_ostream &OS) const {
139 switch (getSCEVType()) {
140 case scConstant:
141 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000170 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000171 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000172 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000173 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000186 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
197 if (llvm::next(I) != E)
198 OS << OpStr;
199 }
200 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000218 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
Andrew Trick635f7182011-03-09 17:23:39 +0000227
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000228 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
232 WriteAsOperand(OS, FieldNo, false);
233 OS << ")";
234 return;
235 }
Andrew Trick635f7182011-03-09 17:23:39 +0000236
Dan Gohman4ce32db2010-11-17 22:27:42 +0000237 // Otherwise just print it normally.
238 WriteAsOperand(OS, U->getValue(), false);
239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
244 default: break;
245 }
246 llvm_unreachable("Unknown SCEV kind!");
247}
248
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000249Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000250 switch (getSCEVType()) {
251 case scConstant:
252 return cast<SCEVConstant>(this)->getType();
253 case scTruncate:
254 case scZeroExtend:
255 case scSignExtend:
256 return cast<SCEVCastExpr>(this)->getType();
257 case scAddRecExpr:
258 case scMulExpr:
259 case scUMaxExpr:
260 case scSMaxExpr:
261 return cast<SCEVNAryExpr>(this)->getType();
262 case scAddExpr:
263 return cast<SCEVAddExpr>(this)->getType();
264 case scUDivExpr:
265 return cast<SCEVUDivExpr>(this)->getType();
266 case scUnknown:
267 return cast<SCEVUnknown>(this)->getType();
268 case scCouldNotCompute:
269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000270 default:
271 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000272 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000273}
274
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000275bool SCEV::isZero() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isZero();
278 return false;
279}
280
Dan Gohman70a1fe72009-05-18 15:22:39 +0000281bool SCEV::isOne() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isOne();
284 return false;
285}
Chris Lattner53e677a2004-04-02 20:23:17 +0000286
Dan Gohman4d289bf2009-06-24 00:30:26 +0000287bool SCEV::isAllOnesValue() const {
288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289 return SC->getValue()->isAllOnesValue();
290 return false;
291}
292
Andrew Trickf8fd8412012-01-07 00:27:31 +0000293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297 if (!Mul) return false;
298
299 // If there is a constant factor, it will be first.
300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301 if (!SC) return false;
302
303 // Return true if the value is negative, this matches things like (-42 * V).
304 return SC->getValue()->getValue().isNegative();
305}
306
Owen Anderson753ad612009-06-22 21:57:23 +0000307SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000309
Chris Lattner53e677a2004-04-02 20:23:17 +0000310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311 return S->getSCEVType() == scCouldNotCompute;
312}
313
Dan Gohman0bba49c2009-07-07 17:06:11 +0000314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000315 FoldingSetNodeID ID;
316 ID.AddInteger(scConstant);
317 ID.AddPointer(V);
318 void *IP = 0;
319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000321 UniqueSCEVs.InsertNode(S, IP);
322 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
Chris Lattner53e677a2004-04-02 20:23:17 +0000324
Dan Gohman0bba49c2009-07-07 17:06:11 +0000325const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000326 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000327}
328
Dan Gohman0bba49c2009-07-07 17:06:11 +0000329const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000332 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000333}
334
Dan Gohman3bf63762010-06-18 19:54:20 +0000335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000336 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000338
Dan Gohman3bf63762010-06-18 19:54:20 +0000339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
Chris Lattner53e677a2004-04-02 20:23:17 +0000346
Dan Gohman3bf63762010-06-18 19:54:20 +0000347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000352 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000353}
354
Dan Gohman3bf63762010-06-18 19:54:20 +0000355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000356 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000357 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000360 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000361}
362
Dan Gohmanab37f502010-08-02 23:49:30 +0000363void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000364 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000365 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000366
367 // Remove this SCEVUnknown from the uniquing map.
368 SE->UniqueSCEVs.RemoveNode(this);
369
370 // Release the value.
371 setValPtr(0);
372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000375 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000376 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000377
378 // Remove this SCEVUnknown from the uniquing map.
379 SE->UniqueSCEVs.RemoveNode(this);
380
381 // Update this SCEVUnknown to point to the new value. This is needed
382 // because there may still be outstanding SCEVs which still point to
383 // this SCEVUnknown.
384 setValPtr(New);
385}
386
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000389 if (VCE->getOpcode() == Instruction::PtrToInt)
390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000391 if (CE->getOpcode() == Instruction::GetElementPtr &&
392 CE->getOperand(0)->isNullValue() &&
393 CE->getNumOperands() == 2)
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395 if (CI->isOne()) {
396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397 ->getElementType();
398 return true;
399 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000400
401 return false;
402}
403
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000406 if (VCE->getOpcode() == Instruction::PtrToInt)
407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000408 if (CE->getOpcode() == Instruction::GetElementPtr &&
409 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000410 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000412 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000413 if (!STy->isPacked() &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(1)->isNullValue()) {
416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417 if (CI->isOne() &&
418 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000419 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000420 AllocTy = STy->getElementType(1);
421 return true;
422 }
423 }
424 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000425
426 return false;
427}
428
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getNumOperands() == 3 &&
435 CE->getOperand(0)->isNullValue() &&
436 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000437 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439 // Ignore vector types here so that ScalarEvolutionExpander doesn't
440 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000441 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000442 CTy = Ty;
443 FieldNo = CE->getOperand(2);
444 return true;
445 }
446 }
447
448 return false;
449}
450
Chris Lattner8d741b82004-06-20 06:23:15 +0000451//===----------------------------------------------------------------------===//
452// SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457 /// than the complexity of the RHS. This comparator is used to canonicalize
458 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000459 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000460 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000461 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000463
Dan Gohman67ef74e2010-08-27 15:26:01 +0000464 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000465 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return compare(LHS, RHS) < 0;
467 }
468
469 // Return negative, zero, or positive, if LHS is less than, equal to, or
470 // greater than RHS, respectively. A three-way result allows recursive
471 // comparisons to be more efficient.
472 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000473 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000475 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000476
Dan Gohman72861302009-05-07 14:39:04 +0000477 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000480 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000481
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 // Aside from the getSCEVType() ordering, the particular ordering
483 // isn't very important except that it's beneficial to be consistent,
484 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000485 switch (LType) {
486 case scUnknown: {
487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000489
490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000492 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000493
494 // Order pointer values after integer values. This helps SCEVExpander
495 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000496 bool LIsPointer = LV->getType()->isPointerTy(),
497 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000498 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500
501 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000502 unsigned LID = LV->getValueID(),
503 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000504 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506
507 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 if (const Argument *LA = dyn_cast<Argument>(LV)) {
509 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000512 }
513
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 // For instructions, compare their loop depth, and their operand
515 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000518
519 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000520 const BasicBlock *LParent = LInst->getParent(),
521 *RParent = RInst->getParent();
522 if (LParent != RParent) {
523 unsigned LDepth = LI->getLoopDepth(LParent),
524 RDepth = LI->getLoopDepth(RParent);
525 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000527 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000528
529 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000530 unsigned LNumOps = LInst->getNumOperands(),
531 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000532 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000533 }
534
Dan Gohman67ef74e2010-08-27 15:26:01 +0000535 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000536 }
537
Dan Gohman67ef74e2010-08-27 15:26:01 +0000538 case scConstant: {
539 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000540 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541
542 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000543 const APInt &LA = LC->getValue()->getValue();
544 const APInt &RA = RC->getValue()->getValue();
545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000546 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000547 return (int)LBitWidth - (int)RBitWidth;
548 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000549 }
550
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551 case scAddRecExpr: {
552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000554
555 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557 if (LLoop != RLoop) {
558 unsigned LDepth = LLoop->getLoopDepth(),
559 RDepth = RLoop->getLoopDepth();
560 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000561 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000562 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000563
564 // Addrec complexity grows with operand count.
565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566 if (LNumOps != RNumOps)
567 return (int)LNumOps - (int)RNumOps;
568
569 // Lexicographically compare.
570 for (unsigned i = 0; i != LNumOps; ++i) {
571 long X = compare(LA->getOperand(i), RA->getOperand(i));
572 if (X != 0)
573 return X;
574 }
575
576 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000577 }
578
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579 case scAddExpr:
580 case scMulExpr:
581 case scSMaxExpr:
582 case scUMaxExpr: {
583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000585
586 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickd832d322013-07-31 02:43:40 +0000588 if (LNumOps != RNumOps)
589 return (int)LNumOps - (int)RNumOps;
590
Dan Gohman304a7a62010-07-23 21:20:52 +0000591 for (unsigned i = 0; i != LNumOps; ++i) {
592 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000593 return 1;
594 long X = compare(LC->getOperand(i), RC->getOperand(i));
595 if (X != 0)
596 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000597 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000598 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 }
600
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601 case scUDivExpr: {
602 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000603 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000604
605 // Lexicographically compare udiv expressions.
606 long X = compare(LC->getLHS(), RC->getLHS());
607 if (X != 0)
608 return X;
609 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000610 }
611
Dan Gohman67ef74e2010-08-27 15:26:01 +0000612 case scTruncate:
613 case scZeroExtend:
614 case scSignExtend: {
615 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000616 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000617
618 // Compare cast expressions by operand.
619 return compare(LC->getOperand(), RC->getOperand());
620 }
621
622 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000623 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000624 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000625 }
626 };
627}
628
629/// GroupByComplexity - Given a list of SCEV objects, order them by their
630/// complexity, and group objects of the same complexity together by value.
631/// When this routine is finished, we know that any duplicates in the vector are
632/// consecutive and that complexity is monotonically increasing.
633///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000634/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000635/// results from this routine. In other words, we don't want the results of
636/// this to depend on where the addresses of various SCEV objects happened to
637/// land in memory.
638///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000639static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000640 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000641 if (Ops.size() < 2) return; // Noop
642 if (Ops.size() == 2) {
643 // This is the common case, which also happens to be trivially simple.
644 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000645 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
646 if (SCEVComplexityCompare(LI)(RHS, LHS))
647 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000648 return;
649 }
650
Dan Gohman3bf63762010-06-18 19:54:20 +0000651 // Do the rough sort by complexity.
652 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
653
654 // Now that we are sorted by complexity, group elements of the same
655 // complexity. Note that this is, at worst, N^2, but the vector is likely to
656 // be extremely short in practice. Note that we take this approach because we
657 // do not want to depend on the addresses of the objects we are grouping.
658 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
659 const SCEV *S = Ops[i];
660 unsigned Complexity = S->getSCEVType();
661
662 // If there are any objects of the same complexity and same value as this
663 // one, group them.
664 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
665 if (Ops[j] == S) { // Found a duplicate.
666 // Move it to immediately after i'th element.
667 std::swap(Ops[i+1], Ops[j]);
668 ++i; // no need to rescan it.
669 if (i == e-2) return; // Done!
670 }
671 }
672 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000673}
674
Chris Lattner53e677a2004-04-02 20:23:17 +0000675
Chris Lattner53e677a2004-04-02 20:23:17 +0000676
677//===----------------------------------------------------------------------===//
678// Simple SCEV method implementations
679//===----------------------------------------------------------------------===//
680
Eli Friedmanb42a6262008-08-04 23:49:06 +0000681/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000682/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000683static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000684 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000685 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // Handle the simplest case efficiently.
687 if (K == 1)
688 return SE.getTruncateOrZeroExtend(It, ResultTy);
689
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000690 // We are using the following formula for BC(It, K):
691 //
692 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
693 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000694 // Suppose, W is the bitwidth of the return value. We must be prepared for
695 // overflow. Hence, we must assure that the result of our computation is
696 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
697 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000698 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000699 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000700 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000701 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
702 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000703 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000704 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // This formula is trivially equivalent to the previous formula. However,
707 // this formula can be implemented much more efficiently. The trick is that
708 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
709 // arithmetic. To do exact division in modular arithmetic, all we have
710 // to do is multiply by the inverse. Therefore, this step can be done at
711 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000712 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // The next issue is how to safely do the division by 2^T. The way this
714 // is done is by doing the multiplication step at a width of at least W + T
715 // bits. This way, the bottom W+T bits of the product are accurate. Then,
716 // when we perform the division by 2^T (which is equivalent to a right shift
717 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
718 // truncated out after the division by 2^T.
719 //
720 // In comparison to just directly using the first formula, this technique
721 // is much more efficient; using the first formula requires W * K bits,
722 // but this formula less than W + K bits. Also, the first formula requires
723 // a division step, whereas this formula only requires multiplies and shifts.
724 //
725 // It doesn't matter whether the subtraction step is done in the calculation
726 // width or the input iteration count's width; if the subtraction overflows,
727 // the result must be zero anyway. We prefer here to do it in the width of
728 // the induction variable because it helps a lot for certain cases; CodeGen
729 // isn't smart enough to ignore the overflow, which leads to much less
730 // efficient code if the width of the subtraction is wider than the native
731 // register width.
732 //
733 // (It's possible to not widen at all by pulling out factors of 2 before
734 // the multiplication; for example, K=2 can be calculated as
735 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
736 // extra arithmetic, so it's not an obvious win, and it gets
737 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000738
Eli Friedmanb42a6262008-08-04 23:49:06 +0000739 // Protection from insane SCEVs; this bound is conservative,
740 // but it probably doesn't matter.
741 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000742 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000743
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000744 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000745
Eli Friedmanb42a6262008-08-04 23:49:06 +0000746 // Calculate K! / 2^T and T; we divide out the factors of two before
747 // multiplying for calculating K! / 2^T to avoid overflow.
748 // Other overflow doesn't matter because we only care about the bottom
749 // W bits of the result.
750 APInt OddFactorial(W, 1);
751 unsigned T = 1;
752 for (unsigned i = 3; i <= K; ++i) {
753 APInt Mult(W, i);
754 unsigned TwoFactors = Mult.countTrailingZeros();
755 T += TwoFactors;
756 Mult = Mult.lshr(TwoFactors);
757 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000758 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000759
Eli Friedmanb42a6262008-08-04 23:49:06 +0000760 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000761 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000762
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000763 // Calculate 2^T, at width T+W.
Benjamin Kramer0a230e02013-07-11 16:05:50 +0000764 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765
766 // Calculate the multiplicative inverse of K! / 2^T;
767 // this multiplication factor will perform the exact division by
768 // K! / 2^T.
769 APInt Mod = APInt::getSignedMinValue(W+1);
770 APInt MultiplyFactor = OddFactorial.zext(W+1);
771 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
772 MultiplyFactor = MultiplyFactor.trunc(W);
773
774 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000775 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000776 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000777 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000778 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000779 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000780 Dividend = SE.getMulExpr(Dividend,
781 SE.getTruncateOrZeroExtend(S, CalculationTy));
782 }
783
784 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000785 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000786
787 // Truncate the result, and divide by K! / 2^T.
788
789 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
790 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000791}
792
Chris Lattner53e677a2004-04-02 20:23:17 +0000793/// evaluateAtIteration - Return the value of this chain of recurrences at
794/// the specified iteration number. We can evaluate this recurrence by
795/// multiplying each element in the chain by the binomial coefficient
796/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
797///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000798/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000799///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000800/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000801///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000802const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000803 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000804 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000805 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000806 // The computation is correct in the face of overflow provided that the
807 // multiplication is performed _after_ the evaluation of the binomial
808 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000809 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000810 if (isa<SCEVCouldNotCompute>(Coeff))
811 return Coeff;
812
813 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000814 }
815 return Result;
816}
817
Chris Lattner53e677a2004-04-02 20:23:17 +0000818//===----------------------------------------------------------------------===//
819// SCEV Expression folder implementations
820//===----------------------------------------------------------------------===//
821
Dan Gohman0bba49c2009-07-07 17:06:11 +0000822const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000823 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000824 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000825 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000826 assert(isSCEVable(Ty) &&
827 "This is not a conversion to a SCEVable type!");
828 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000829
Dan Gohmanc050fd92009-07-13 20:50:19 +0000830 FoldingSetNodeID ID;
831 ID.AddInteger(scTruncate);
832 ID.AddPointer(Op);
833 ID.AddPointer(Ty);
834 void *IP = 0;
835 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
836
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000837 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000838 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000839 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000840 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000841
Dan Gohman20900ca2009-04-22 16:20:48 +0000842 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000843 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000844 return getTruncateExpr(ST->getOperand(), Ty);
845
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000846 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000847 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000848 return getTruncateOrSignExtend(SS->getOperand(), Ty);
849
850 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000851 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000852 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
853
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000854 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
855 // eliminate all the truncates.
856 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
857 SmallVector<const SCEV *, 4> Operands;
858 bool hasTrunc = false;
859 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
860 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
861 hasTrunc = isa<SCEVTruncateExpr>(S);
862 Operands.push_back(S);
863 }
864 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000865 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000866 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000867 }
868
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000869 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
870 // eliminate all the truncates.
871 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
872 SmallVector<const SCEV *, 4> Operands;
873 bool hasTrunc = false;
874 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
875 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
876 hasTrunc = isa<SCEVTruncateExpr>(S);
877 Operands.push_back(S);
878 }
879 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000880 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000881 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000882 }
883
Dan Gohman6864db62009-06-18 16:24:47 +0000884 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000885 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000886 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000887 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000888 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000889 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000890 }
891
Dan Gohman420ab912010-06-25 18:47:08 +0000892 // The cast wasn't folded; create an explicit cast node. We can reuse
893 // the existing insert position since if we get here, we won't have
894 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000895 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
896 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000897 UniqueSCEVs.InsertNode(S, IP);
898 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000899}
900
Dan Gohman0bba49c2009-07-07 17:06:11 +0000901const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000902 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000903 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000904 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000905 assert(isSCEVable(Ty) &&
906 "This is not a conversion to a SCEVable type!");
907 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000908
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000909 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000910 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
911 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000912 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000913
Dan Gohman20900ca2009-04-22 16:20:48 +0000914 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000915 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000916 return getZeroExtendExpr(SZ->getOperand(), Ty);
917
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000918 // Before doing any expensive analysis, check to see if we've already
919 // computed a SCEV for this Op and Ty.
920 FoldingSetNodeID ID;
921 ID.AddInteger(scZeroExtend);
922 ID.AddPointer(Op);
923 ID.AddPointer(Ty);
924 void *IP = 0;
925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
926
Nick Lewycky630d85a2011-01-23 06:20:19 +0000927 // zext(trunc(x)) --> zext(x) or x or trunc(x)
928 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
929 // It's possible the bits taken off by the truncate were all zero bits. If
930 // so, we should be able to simplify this further.
931 const SCEV *X = ST->getOperand();
932 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000933 unsigned TruncBits = getTypeSizeInBits(ST->getType());
934 unsigned NewBits = getTypeSizeInBits(Ty);
935 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000936 CR.zextOrTrunc(NewBits)))
937 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000938 }
939
Dan Gohman01ecca22009-04-27 20:16:15 +0000940 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000941 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000942 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000943 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000944 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000945 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000946 const SCEV *Start = AR->getStart();
947 const SCEV *Step = AR->getStepRecurrence(*this);
948 unsigned BitWidth = getTypeSizeInBits(AR->getType());
949 const Loop *L = AR->getLoop();
950
Dan Gohmaneb490a72009-07-25 01:22:26 +0000951 // If we have special knowledge that this addrec won't overflow,
952 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000953 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000954 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
955 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000956 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000957
Dan Gohman01ecca22009-04-27 20:16:15 +0000958 // Check whether the backedge-taken count is SCEVCouldNotCompute.
959 // Note that this serves two purposes: It filters out loops that are
960 // simply not analyzable, and it covers the case where this code is
961 // being called from within backedge-taken count analysis, such that
962 // attempting to ask for the backedge-taken count would likely result
963 // in infinite recursion. In the later case, the analysis code will
964 // cope with a conservative value, and it will take care to purge
965 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000966 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000967 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000968 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000969 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000970
971 // Check whether the backedge-taken count can be losslessly casted to
972 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000973 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000974 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000975 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000976 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
977 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000978 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000979 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000980 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000981 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
982 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
983 const SCEV *WideMaxBECount =
984 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000985 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000986 getAddExpr(WideStart,
987 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000988 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000989 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000990 // Cache knowledge of AR NUW, which is propagated to this AddRec.
991 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000992 // Return the expression with the addrec on the outside.
993 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
994 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000995 L, AR->getNoWrapFlags());
996 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000997 // Similar to above, only this time treat the step value as signed.
998 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000999 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001000 getAddExpr(WideStart,
1001 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001002 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001003 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001004 // Cache knowledge of AR NW, which is propagated to this AddRec.
1005 // Negative step causes unsigned wrap, but it still can't self-wrap.
1006 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001007 // Return the expression with the addrec on the outside.
1008 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1009 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001010 L, AR->getNoWrapFlags());
1011 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001012 }
1013
1014 // If the backedge is guarded by a comparison with the pre-inc value
1015 // the addrec is safe. Also, if the entry is guarded by a comparison
1016 // with the start value and the backedge is guarded by a comparison
1017 // with the post-inc value, the addrec is safe.
1018 if (isKnownPositive(Step)) {
1019 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1020 getUnsignedRange(Step).getUnsignedMax());
1021 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001022 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001024 AR->getPostIncExpr(*this), N))) {
1025 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1026 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001027 // Return the expression with the addrec on the outside.
1028 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1029 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001030 L, AR->getNoWrapFlags());
1031 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001032 } else if (isKnownNegative(Step)) {
1033 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1034 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001035 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1036 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001037 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001038 AR->getPostIncExpr(*this), N))) {
1039 // Cache knowledge of AR NW, which is propagated to this AddRec.
1040 // Negative step causes unsigned wrap, but it still can't self-wrap.
1041 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1042 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001043 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1044 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001045 L, AR->getNoWrapFlags());
1046 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001047 }
1048 }
1049 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001050
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001051 // The cast wasn't folded; create an explicit cast node.
1052 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001053 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001054 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1055 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001056 UniqueSCEVs.InsertNode(S, IP);
1057 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001058}
1059
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001060// Get the limit of a recurrence such that incrementing by Step cannot cause
1061// signed overflow as long as the value of the recurrence within the loop does
1062// not exceed this limit before incrementing.
1063static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1064 ICmpInst::Predicate *Pred,
1065 ScalarEvolution *SE) {
1066 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1067 if (SE->isKnownPositive(Step)) {
1068 *Pred = ICmpInst::ICMP_SLT;
1069 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1070 SE->getSignedRange(Step).getSignedMax());
1071 }
1072 if (SE->isKnownNegative(Step)) {
1073 *Pred = ICmpInst::ICMP_SGT;
1074 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1075 SE->getSignedRange(Step).getSignedMin());
1076 }
1077 return 0;
1078}
1079
1080// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1081// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1082// or postincrement sibling. This allows normalizing a sign extended AddRec as
1083// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1084// result, the expression "Step + sext(PreIncAR)" is congruent with
1085// "sext(PostIncAR)"
1086static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001087 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001088 ScalarEvolution *SE) {
1089 const Loop *L = AR->getLoop();
1090 const SCEV *Start = AR->getStart();
1091 const SCEV *Step = AR->getStepRecurrence(*SE);
1092
1093 // Check for a simple looking step prior to loop entry.
1094 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001095 if (!SA)
1096 return 0;
1097
1098 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1099 // subtraction is expensive. For this purpose, perform a quick and dirty
1100 // difference, by checking for Step in the operand list.
1101 SmallVector<const SCEV *, 4> DiffOps;
1102 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1103 I != E; ++I) {
1104 if (*I != Step)
1105 DiffOps.push_back(*I);
1106 }
1107 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001108 return 0;
1109
1110 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1111 // same three conditions that getSignExtendedExpr checks.
1112
1113 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001114 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001115 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1116 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1117
Andrew Trickcf31f912011-06-01 19:14:56 +00001118 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001119 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001120
1121 // 2. Direct overflow check on the step operation's expression.
1122 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001123 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001124 const SCEV *OperandExtendedStart =
1125 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1126 SE->getSignExtendExpr(Step, WideTy));
1127 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1128 // Cache knowledge of PreAR NSW.
1129 if (PreAR)
1130 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1131 // FIXME: this optimization needs a unit test
1132 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1133 return PreStart;
1134 }
1135
1136 // 3. Loop precondition.
1137 ICmpInst::Predicate Pred;
1138 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1139
Andrew Trickcf31f912011-06-01 19:14:56 +00001140 if (OverflowLimit &&
1141 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001142 return PreStart;
1143 }
1144 return 0;
1145}
1146
1147// Get the normalized sign-extended expression for this AddRec's Start.
1148static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001149 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001150 ScalarEvolution *SE) {
1151 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1152 if (!PreStart)
1153 return SE->getSignExtendExpr(AR->getStart(), Ty);
1154
1155 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1156 SE->getSignExtendExpr(PreStart, Ty));
1157}
1158
Dan Gohman0bba49c2009-07-07 17:06:11 +00001159const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001160 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001161 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001162 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001163 assert(isSCEVable(Ty) &&
1164 "This is not a conversion to a SCEVable type!");
1165 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001166
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001167 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001168 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1169 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001170 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001171
Dan Gohman20900ca2009-04-22 16:20:48 +00001172 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001173 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001174 return getSignExtendExpr(SS->getOperand(), Ty);
1175
Nick Lewycky73f565e2011-01-19 15:56:12 +00001176 // sext(zext(x)) --> zext(x)
1177 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1178 return getZeroExtendExpr(SZ->getOperand(), Ty);
1179
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001180 // Before doing any expensive analysis, check to see if we've already
1181 // computed a SCEV for this Op and Ty.
1182 FoldingSetNodeID ID;
1183 ID.AddInteger(scSignExtend);
1184 ID.AddPointer(Op);
1185 ID.AddPointer(Ty);
1186 void *IP = 0;
1187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1188
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001189 // If the input value is provably positive, build a zext instead.
1190 if (isKnownNonNegative(Op))
1191 return getZeroExtendExpr(Op, Ty);
1192
Nick Lewycky630d85a2011-01-23 06:20:19 +00001193 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1194 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1195 // It's possible the bits taken off by the truncate were all sign bits. If
1196 // so, we should be able to simplify this further.
1197 const SCEV *X = ST->getOperand();
1198 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001199 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1200 unsigned NewBits = getTypeSizeInBits(Ty);
1201 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001202 CR.sextOrTrunc(NewBits)))
1203 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001204 }
1205
Dan Gohman01ecca22009-04-27 20:16:15 +00001206 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001207 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001208 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001209 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001210 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001211 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001212 const SCEV *Start = AR->getStart();
1213 const SCEV *Step = AR->getStepRecurrence(*this);
1214 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1215 const Loop *L = AR->getLoop();
1216
Dan Gohmaneb490a72009-07-25 01:22:26 +00001217 // If we have special knowledge that this addrec won't overflow,
1218 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001219 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001220 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001221 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001222 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001223
Dan Gohman01ecca22009-04-27 20:16:15 +00001224 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1225 // Note that this serves two purposes: It filters out loops that are
1226 // simply not analyzable, and it covers the case where this code is
1227 // being called from within backedge-taken count analysis, such that
1228 // attempting to ask for the backedge-taken count would likely result
1229 // in infinite recursion. In the later case, the analysis code will
1230 // cope with a conservative value, and it will take care to purge
1231 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001232 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001233 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001234 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001235 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001236
1237 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001238 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001239 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001240 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001241 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001242 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1243 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001244 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001245 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001246 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001247 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1248 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1249 const SCEV *WideMaxBECount =
1250 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001251 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001252 getAddExpr(WideStart,
1253 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001254 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001255 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001256 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001258 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001259 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001260 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001261 L, AR->getNoWrapFlags());
1262 }
Dan Gohman850f7912009-07-16 17:34:36 +00001263 // Similar to above, only this time treat the step value as unsigned.
1264 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001265 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001266 getAddExpr(WideStart,
1267 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001268 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001269 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001270 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1271 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001272 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001273 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001274 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001275 L, AR->getNoWrapFlags());
1276 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001277 }
1278
1279 // If the backedge is guarded by a comparison with the pre-inc value
1280 // the addrec is safe. Also, if the entry is guarded by a comparison
1281 // with the start value and the backedge is guarded by a comparison
1282 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001283 ICmpInst::Predicate Pred;
1284 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1285 if (OverflowLimit &&
1286 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1287 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1288 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1289 OverflowLimit)))) {
1290 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1292 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1293 getSignExtendExpr(Step, Ty),
1294 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001295 }
1296 }
1297 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001298
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001299 // The cast wasn't folded; create an explicit cast node.
1300 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001301 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001302 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1303 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001304 UniqueSCEVs.InsertNode(S, IP);
1305 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001306}
1307
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001308/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1309/// unspecified bits out to the given type.
1310///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001311const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001312 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001313 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1314 "This is not an extending conversion!");
1315 assert(isSCEVable(Ty) &&
1316 "This is not a conversion to a SCEVable type!");
1317 Ty = getEffectiveSCEVType(Ty);
1318
1319 // Sign-extend negative constants.
1320 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1321 if (SC->getValue()->getValue().isNegative())
1322 return getSignExtendExpr(Op, Ty);
1323
1324 // Peel off a truncate cast.
1325 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001326 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001327 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1328 return getAnyExtendExpr(NewOp, Ty);
1329 return getTruncateOrNoop(NewOp, Ty);
1330 }
1331
1332 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001333 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001334 if (!isa<SCEVZeroExtendExpr>(ZExt))
1335 return ZExt;
1336
1337 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001338 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001339 if (!isa<SCEVSignExtendExpr>(SExt))
1340 return SExt;
1341
Dan Gohmana10756e2010-01-21 02:09:26 +00001342 // Force the cast to be folded into the operands of an addrec.
1343 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1344 SmallVector<const SCEV *, 4> Ops;
1345 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1346 I != E; ++I)
1347 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001348 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001349 }
1350
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001351 // If the expression is obviously signed, use the sext cast value.
1352 if (isa<SCEVSMaxExpr>(Op))
1353 return SExt;
1354
1355 // Absent any other information, use the zext cast value.
1356 return ZExt;
1357}
1358
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001359/// CollectAddOperandsWithScales - Process the given Ops list, which is
1360/// a list of operands to be added under the given scale, update the given
1361/// map. This is a helper function for getAddRecExpr. As an example of
1362/// what it does, given a sequence of operands that would form an add
1363/// expression like this:
1364///
1365/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1366///
1367/// where A and B are constants, update the map with these values:
1368///
1369/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1370///
1371/// and add 13 + A*B*29 to AccumulatedConstant.
1372/// This will allow getAddRecExpr to produce this:
1373///
1374/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1375///
1376/// This form often exposes folding opportunities that are hidden in
1377/// the original operand list.
1378///
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001379/// Return true iff it appears that any interesting folding opportunities
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001380/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1381/// the common case where no interesting opportunities are present, and
1382/// is also used as a check to avoid infinite recursion.
1383///
1384static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001385CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper9e639e82013-07-11 16:22:38 +00001386 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001387 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001388 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001389 const APInt &Scale,
1390 ScalarEvolution &SE) {
1391 bool Interesting = false;
1392
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001393 // Iterate over the add operands. They are sorted, with constants first.
1394 unsigned i = 0;
1395 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1396 ++i;
1397 // Pull a buried constant out to the outside.
1398 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1399 Interesting = true;
1400 AccumulatedConstant += Scale * C->getValue()->getValue();
1401 }
1402
1403 // Next comes everything else. We're especially interested in multiplies
1404 // here, but they're in the middle, so just visit the rest with one loop.
1405 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001406 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1407 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1408 APInt NewScale =
1409 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1410 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1411 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001412 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001413 Interesting |=
1414 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001415 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001416 NewScale, SE);
1417 } else {
1418 // A multiplication of a constant with some other value. Update
1419 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001420 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1421 const SCEV *Key = SE.getMulExpr(MulOps);
1422 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001423 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001424 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001425 NewOps.push_back(Pair.first->first);
1426 } else {
1427 Pair.first->second += NewScale;
1428 // The map already had an entry for this value, which may indicate
1429 // a folding opportunity.
1430 Interesting = true;
1431 }
1432 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001433 } else {
1434 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001435 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001436 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001437 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001438 NewOps.push_back(Pair.first->first);
1439 } else {
1440 Pair.first->second += Scale;
1441 // The map already had an entry for this value, which may indicate
1442 // a folding opportunity.
1443 Interesting = true;
1444 }
1445 }
1446 }
1447
1448 return Interesting;
1449}
1450
1451namespace {
1452 struct APIntCompare {
1453 bool operator()(const APInt &LHS, const APInt &RHS) const {
1454 return LHS.ult(RHS);
1455 }
1456 };
1457}
1458
Dan Gohman6c0866c2009-05-24 23:45:28 +00001459/// getAddExpr - Get a canonical add expression, or something simpler if
1460/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001461const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001462 SCEV::NoWrapFlags Flags) {
1463 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1464 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001466 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001467#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001468 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001469 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001470 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001471 "SCEVAddExpr operand types don't match!");
1472#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001473
Andrew Trick3228cc22011-03-14 16:50:06 +00001474 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001475 // And vice-versa.
1476 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1477 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1478 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001479 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001480 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1481 E = Ops.end(); I != E; ++I)
1482 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001483 All = false;
1484 break;
1485 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001486 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001487 }
1488
Chris Lattner53e677a2004-04-02 20:23:17 +00001489 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001490 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001491
1492 // If there are any constants, fold them together.
1493 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001494 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001495 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001496 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001497 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001499 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1500 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001501 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001502 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001503 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 }
1505
1506 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001507 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 Ops.erase(Ops.begin());
1509 --Idx;
1510 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001511
Dan Gohmanbca091d2010-04-12 23:08:18 +00001512 if (Ops.size() == 1) return Ops[0];
1513 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001514
Dan Gohman68ff7762010-08-27 21:39:59 +00001515 // Okay, check to see if the same value occurs in the operand list more than
1516 // once. If so, merge them together into an multiply expression. Since we
1517 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001518 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001519 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001520 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001522 // Scan ahead to count how many equal operands there are.
1523 unsigned Count = 2;
1524 while (i+Count != e && Ops[i+Count] == Ops[i])
1525 ++Count;
1526 // Merge the values into a multiply.
1527 const SCEV *Scale = getConstant(Ty, Count);
1528 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1529 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001530 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001531 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001532 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001533 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001534 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001535 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001536 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001537 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001538
Dan Gohman728c7f32009-05-08 21:03:19 +00001539 // Check for truncates. If all the operands are truncated from the same
1540 // type, see if factoring out the truncate would permit the result to be
1541 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1542 // if the contents of the resulting outer trunc fold to something simple.
1543 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1544 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001545 Type *DstType = Trunc->getType();
1546 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001547 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001548 bool Ok = true;
1549 // Check all the operands to see if they can be represented in the
1550 // source type of the truncate.
1551 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1552 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1553 if (T->getOperand()->getType() != SrcType) {
1554 Ok = false;
1555 break;
1556 }
1557 LargeOps.push_back(T->getOperand());
1558 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001559 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001560 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001561 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001562 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1563 if (const SCEVTruncateExpr *T =
1564 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1565 if (T->getOperand()->getType() != SrcType) {
1566 Ok = false;
1567 break;
1568 }
1569 LargeMulOps.push_back(T->getOperand());
1570 } else if (const SCEVConstant *C =
1571 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001572 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001573 } else {
1574 Ok = false;
1575 break;
1576 }
1577 }
1578 if (Ok)
1579 LargeOps.push_back(getMulExpr(LargeMulOps));
1580 } else {
1581 Ok = false;
1582 break;
1583 }
1584 }
1585 if (Ok) {
1586 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001587 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001588 // If it folds to something simple, use it. Otherwise, don't.
1589 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1590 return getTruncateExpr(Fold, DstType);
1591 }
1592 }
1593
1594 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001595 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1596 ++Idx;
1597
1598 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001599 if (Idx < Ops.size()) {
1600 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001601 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001602 // If we have an add, expand the add operands onto the end of the operands
1603 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001604 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001605 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001606 DeletedAdd = true;
1607 }
1608
1609 // If we deleted at least one add, we added operands to the end of the list,
1610 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001611 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001612 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001613 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001614 }
1615
1616 // Skip over the add expression until we get to a multiply.
1617 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1618 ++Idx;
1619
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001620 // Check to see if there are any folding opportunities present with
1621 // operands multiplied by constant values.
1622 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1623 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001624 DenseMap<const SCEV *, APInt> M;
1625 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001626 APInt AccumulatedConstant(BitWidth, 0);
1627 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001628 Ops.data(), Ops.size(),
1629 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001630 // Some interesting folding opportunity is present, so its worthwhile to
1631 // re-generate the operands list. Group the operands by constant scale,
1632 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001633 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper365ef0b2013-07-03 15:07:05 +00001634 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001635 E = NewOps.end(); I != E; ++I)
1636 MulOpLists[M.find(*I)->second].push_back(*I);
1637 // Re-generate the operands list.
1638 Ops.clear();
1639 if (AccumulatedConstant != 0)
1640 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001641 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1642 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001643 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001644 Ops.push_back(getMulExpr(getConstant(I->first),
1645 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001646 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001647 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001648 if (Ops.size() == 1)
1649 return Ops[0];
1650 return getAddExpr(Ops);
1651 }
1652 }
1653
Chris Lattner53e677a2004-04-02 20:23:17 +00001654 // If we are adding something to a multiply expression, make sure the
1655 // something is not already an operand of the multiply. If so, merge it into
1656 // the multiply.
1657 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001658 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001659 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001660 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001661 if (isa<SCEVConstant>(MulOpSCEV))
1662 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001664 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001666 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001667 if (Mul->getNumOperands() != 2) {
1668 // If the multiply has more than two operands, we must get the
1669 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001670 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1671 Mul->op_begin()+MulOp);
1672 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001673 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001674 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001675 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001676 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001677 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001678 if (Ops.size() == 2) return OuterMul;
1679 if (AddOp < Idx) {
1680 Ops.erase(Ops.begin()+AddOp);
1681 Ops.erase(Ops.begin()+Idx-1);
1682 } else {
1683 Ops.erase(Ops.begin()+Idx);
1684 Ops.erase(Ops.begin()+AddOp-1);
1685 }
1686 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001687 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001688 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001689
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 // Check this multiply against other multiplies being added together.
1691 for (unsigned OtherMulIdx = Idx+1;
1692 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1693 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001694 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001695 // If MulOp occurs in OtherMul, we can fold the two multiplies
1696 // together.
1697 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1698 OMulOp != e; ++OMulOp)
1699 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1700 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001701 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001703 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001704 Mul->op_begin()+MulOp);
1705 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001706 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001707 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001708 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001709 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001710 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001711 OtherMul->op_begin()+OMulOp);
1712 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001713 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001714 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001715 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1716 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001718 Ops.erase(Ops.begin()+Idx);
1719 Ops.erase(Ops.begin()+OtherMulIdx-1);
1720 Ops.push_back(OuterMul);
1721 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001722 }
1723 }
1724 }
1725 }
1726
1727 // If there are any add recurrences in the operands list, see if any other
1728 // added values are loop invariant. If so, we can fold them into the
1729 // recurrence.
1730 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1731 ++Idx;
1732
1733 // Scan over all recurrences, trying to fold loop invariants into them.
1734 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1735 // Scan all of the other operands to this add and add them to the vector if
1736 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001737 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001738 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001739 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001740 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001741 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001742 LIOps.push_back(Ops[i]);
1743 Ops.erase(Ops.begin()+i);
1744 --i; --e;
1745 }
1746
1747 // If we found some loop invariants, fold them into the recurrence.
1748 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001749 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001750 LIOps.push_back(AddRec->getStart());
1751
Dan Gohman0bba49c2009-07-07 17:06:11 +00001752 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001753 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001754 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001755
Dan Gohmanb9f96512010-06-30 07:16:37 +00001756 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001757 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001758 // Always propagate NW.
1759 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001760 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001761
Chris Lattner53e677a2004-04-02 20:23:17 +00001762 // If all of the other operands were loop invariant, we are done.
1763 if (Ops.size() == 1) return NewRec;
1764
Nick Lewycky980e9f32011-09-06 05:08:09 +00001765 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001766 for (unsigned i = 0;; ++i)
1767 if (Ops[i] == AddRec) {
1768 Ops[i] = NewRec;
1769 break;
1770 }
Dan Gohman246b2562007-10-22 18:31:58 +00001771 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001772 }
1773
1774 // Okay, if there weren't any loop invariants to be folded, check to see if
1775 // there are multiple AddRec's with the same loop induction variable being
1776 // added together. If so, we can fold them.
1777 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001778 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1779 ++OtherIdx)
1780 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1781 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1783 AddRec->op_end());
1784 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1785 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001786 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001787 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001788 if (OtherAddRec->getLoop() == AddRecLoop) {
1789 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1790 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001791 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001792 AddRecOps.append(OtherAddRec->op_begin()+i,
1793 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001794 break;
1795 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001796 AddRecOps[i] = getAddExpr(AddRecOps[i],
1797 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001798 }
1799 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001800 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001801 // Step size has changed, so we cannot guarantee no self-wraparound.
1802 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001803 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001804 }
1805
1806 // Otherwise couldn't fold anything into this recurrence. Move onto the
1807 // next one.
1808 }
1809
1810 // Okay, it looks like we really DO need an add expr. Check to see if we
1811 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001812 FoldingSetNodeID ID;
1813 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001814 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1815 ID.AddPointer(Ops[i]);
1816 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001817 SCEVAddExpr *S =
1818 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1819 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001820 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1821 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001822 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1823 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001824 UniqueSCEVs.InsertNode(S, IP);
1825 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001826 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001827 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001828}
1829
Nick Lewyckye97728e2011-10-04 06:51:26 +00001830static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1831 uint64_t k = i*j;
1832 if (j > 1 && k / j != i) Overflow = true;
1833 return k;
1834}
1835
1836/// Compute the result of "n choose k", the binomial coefficient. If an
1837/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001838/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewyckye97728e2011-10-04 06:51:26 +00001839static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1840 // We use the multiplicative formula:
1841 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1842 // At each iteration, we take the n-th term of the numeral and divide by the
1843 // (k-n)th term of the denominator. This division will always produce an
1844 // integral result, and helps reduce the chance of overflow in the
1845 // intermediate computations. However, we can still overflow even when the
1846 // final result would fit.
1847
1848 if (n == 0 || n == k) return 1;
1849 if (k > n) return 0;
1850
1851 if (k > n/2)
1852 k = n-k;
1853
1854 uint64_t r = 1;
1855 for (uint64_t i = 1; i <= k; ++i) {
1856 r = umul_ov(r, n-(i-1), Overflow);
1857 r /= i;
1858 }
1859 return r;
1860}
1861
Dan Gohman6c0866c2009-05-24 23:45:28 +00001862/// getMulExpr - Get a canonical multiply expression, or something simpler if
1863/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001864const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001865 SCEV::NoWrapFlags Flags) {
1866 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1867 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001868 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001869 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001870#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001871 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001872 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001873 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001874 "SCEVMulExpr operand types don't match!");
1875#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001876
Andrew Trick3228cc22011-03-14 16:50:06 +00001877 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001878 // And vice-versa.
1879 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1880 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1881 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001882 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001883 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1884 E = Ops.end(); I != E; ++I)
1885 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001886 All = false;
1887 break;
1888 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001889 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001890 }
1891
Chris Lattner53e677a2004-04-02 20:23:17 +00001892 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001893 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001894
1895 // If there are any constants, fold them together.
1896 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001897 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001898
1899 // C1*(C2+V) -> C1*C2 + C1*V
1900 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001901 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001902 if (Add->getNumOperands() == 2 &&
1903 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001904 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1905 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001906
Chris Lattner53e677a2004-04-02 20:23:17 +00001907 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001908 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001909 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001910 ConstantInt *Fold = ConstantInt::get(getContext(),
1911 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001912 RHSC->getValue()->getValue());
1913 Ops[0] = getConstant(Fold);
1914 Ops.erase(Ops.begin()+1); // Erase the folded element
1915 if (Ops.size() == 1) return Ops[0];
1916 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 }
1918
1919 // If we are left with a constant one being multiplied, strip it off.
1920 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1921 Ops.erase(Ops.begin());
1922 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001923 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001924 // If we have a multiply of zero, it will always be zero.
1925 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001926 } else if (Ops[0]->isAllOnesValue()) {
1927 // If we have a mul by -1 of an add, try distributing the -1 among the
1928 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001929 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001930 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1931 SmallVector<const SCEV *, 4> NewOps;
1932 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001933 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1934 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001935 const SCEV *Mul = getMulExpr(Ops[0], *I);
1936 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1937 NewOps.push_back(Mul);
1938 }
1939 if (AnyFolded)
1940 return getAddExpr(NewOps);
1941 }
Andrew Tricka053b212011-03-14 17:38:54 +00001942 else if (const SCEVAddRecExpr *
1943 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1944 // Negation preserves a recurrence's no self-wrap property.
1945 SmallVector<const SCEV *, 4> Operands;
1946 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1947 E = AddRec->op_end(); I != E; ++I) {
1948 Operands.push_back(getMulExpr(Ops[0], *I));
1949 }
1950 return getAddRecExpr(Operands, AddRec->getLoop(),
1951 AddRec->getNoWrapFlags(SCEV::FlagNW));
1952 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001953 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001954 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001955
1956 if (Ops.size() == 1)
1957 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001958 }
1959
1960 // Skip over the add expression until we get to a multiply.
1961 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1962 ++Idx;
1963
Chris Lattner53e677a2004-04-02 20:23:17 +00001964 // If there are mul operands inline them all into this expression.
1965 if (Idx < Ops.size()) {
1966 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001967 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001968 // If we have an mul, expand the mul operands onto the end of the operands
1969 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001970 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001971 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001972 DeletedMul = true;
1973 }
1974
1975 // If we deleted at least one mul, we added operands to the end of the list,
1976 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001977 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001978 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001979 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001980 }
1981
1982 // If there are any add recurrences in the operands list, see if any other
1983 // added values are loop invariant. If so, we can fold them into the
1984 // recurrence.
1985 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1986 ++Idx;
1987
1988 // Scan over all recurrences, trying to fold loop invariants into them.
1989 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1990 // Scan all of the other operands to this mul and add them to the vector if
1991 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001992 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001993 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001994 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001995 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001996 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001997 LIOps.push_back(Ops[i]);
1998 Ops.erase(Ops.begin()+i);
1999 --i; --e;
2000 }
2001
2002 // If we found some loop invariants, fold them into the recurrence.
2003 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002004 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002005 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002006 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002007 const SCEV *Scale = getMulExpr(LIOps);
2008 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2009 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002010
Dan Gohmanb9f96512010-06-30 07:16:37 +00002011 // Build the new addrec. Propagate the NUW and NSW flags if both the
2012 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002013 //
2014 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002015 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002016 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2017 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002018
2019 // If all of the other operands were loop invariant, we are done.
2020 if (Ops.size() == 1) return NewRec;
2021
Nick Lewycky980e9f32011-09-06 05:08:09 +00002022 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002023 for (unsigned i = 0;; ++i)
2024 if (Ops[i] == AddRec) {
2025 Ops[i] = NewRec;
2026 break;
2027 }
Dan Gohman246b2562007-10-22 18:31:58 +00002028 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002029 }
2030
2031 // Okay, if there weren't any loop invariants to be folded, check to see if
2032 // there are multiple AddRec's with the same loop induction variable being
2033 // multiplied together. If so, we can fold them.
2034 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002035 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002036 ++OtherIdx) {
Andrew Trick97178ae2012-05-30 03:35:17 +00002037 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2038 continue;
2039
2040 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2041 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2042 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2043 // ]]],+,...up to x=2n}.
2044 // Note that the arguments to choose() are always integers with values
2045 // known at compile time, never SCEV objects.
2046 //
2047 // The implementation avoids pointless extra computations when the two
2048 // addrec's are of different length (mathematically, it's equivalent to
2049 // an infinite stream of zeros on the right).
2050 bool OpsModified = false;
2051 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2052 ++OtherIdx) {
2053 const SCEVAddRecExpr *OtherAddRec =
2054 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2055 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2056 continue;
2057
2058 bool Overflow = false;
2059 Type *Ty = AddRec->getType();
2060 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2061 SmallVector<const SCEV*, 7> AddRecOps;
2062 for (int x = 0, xe = AddRec->getNumOperands() +
2063 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2064 const SCEV *Term = getConstant(Ty, 0);
2065 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2066 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2067 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2068 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2069 z < ze && !Overflow; ++z) {
2070 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2071 uint64_t Coeff;
2072 if (LargerThan64Bits)
2073 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2074 else
2075 Coeff = Coeff1*Coeff2;
2076 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2077 const SCEV *Term1 = AddRec->getOperand(y-z);
2078 const SCEV *Term2 = OtherAddRec->getOperand(z);
2079 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohman6a0c1252010-08-31 22:52:12 +00002080 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002081 }
2082 AddRecOps.push_back(Term);
2083 }
2084 if (!Overflow) {
2085 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2086 SCEV::FlagAnyWrap);
2087 if (Ops.size() == 2) return NewAddRec;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002088 Ops[Idx] = NewAddRec;
Andrew Trick97178ae2012-05-30 03:35:17 +00002089 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2090 OpsModified = true;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002091 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2092 if (!AddRec)
2093 break;
Andrew Trick97178ae2012-05-30 03:35:17 +00002094 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002095 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002096 if (OpsModified)
2097 return getMulExpr(Ops);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002098 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002099
2100 // Otherwise couldn't fold anything into this recurrence. Move onto the
2101 // next one.
2102 }
2103
2104 // Okay, it looks like we really DO need an mul expr. Check to see if we
2105 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002106 FoldingSetNodeID ID;
2107 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002108 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2109 ID.AddPointer(Ops[i]);
2110 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002111 SCEVMulExpr *S =
2112 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2113 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002114 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2115 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002116 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2117 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002118 UniqueSCEVs.InsertNode(S, IP);
2119 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002120 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002121 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002122}
2123
Andreas Bolka8a11c982009-08-07 22:55:26 +00002124/// getUDivExpr - Get a canonical unsigned division expression, or something
2125/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002126const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2127 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002128 assert(getEffectiveSCEVType(LHS->getType()) ==
2129 getEffectiveSCEVType(RHS->getType()) &&
2130 "SCEVUDivExpr operand types don't match!");
2131
Dan Gohman622ed672009-05-04 22:02:23 +00002132 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002133 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002134 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002135 // If the denominator is zero, the result of the udiv is undefined. Don't
2136 // try to analyze it, because the resolution chosen here may differ from
2137 // the resolution chosen in other parts of the compiler.
2138 if (!RHSC->getValue()->isZero()) {
2139 // Determine if the division can be folded into the operands of
2140 // its operands.
2141 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002142 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002143 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002144 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002145 // For non-power-of-two values, effectively round the value up to the
2146 // nearest power of two.
2147 if (!RHSC->getValue()->getValue().isPowerOf2())
2148 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002149 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002150 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002151 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2152 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002153 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2154 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2155 const APInt &StepInt = Step->getValue()->getValue();
2156 const APInt &DivInt = RHSC->getValue()->getValue();
2157 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002158 getZeroExtendExpr(AR, ExtTy) ==
2159 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2160 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002161 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002162 SmallVector<const SCEV *, 4> Operands;
2163 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2164 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002165 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002166 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002167 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002168 /// Get a canonical UDivExpr for a recurrence.
2169 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2170 // We can currently only fold X%N if X is constant.
2171 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2172 if (StartC && !DivInt.urem(StepInt) &&
2173 getZeroExtendExpr(AR, ExtTy) ==
2174 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2175 getZeroExtendExpr(Step, ExtTy),
2176 AR->getLoop(), SCEV::FlagAnyWrap)) {
2177 const APInt &StartInt = StartC->getValue()->getValue();
2178 const APInt &StartRem = StartInt.urem(StepInt);
2179 if (StartRem != 0)
2180 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2181 AR->getLoop(), SCEV::FlagNW);
2182 }
2183 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002184 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2185 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2186 SmallVector<const SCEV *, 4> Operands;
2187 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2188 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2189 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2190 // Find an operand that's safely divisible.
2191 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2192 const SCEV *Op = M->getOperand(i);
2193 const SCEV *Div = getUDivExpr(Op, RHSC);
2194 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2195 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2196 M->op_end());
2197 Operands[i] = Div;
2198 return getMulExpr(Operands);
2199 }
2200 }
Dan Gohman185cf032009-05-08 20:18:49 +00002201 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002202 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002203 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002204 SmallVector<const SCEV *, 4> Operands;
2205 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2206 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2207 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2208 Operands.clear();
2209 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2210 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2211 if (isa<SCEVUDivExpr>(Op) ||
2212 getMulExpr(Op, RHS) != A->getOperand(i))
2213 break;
2214 Operands.push_back(Op);
2215 }
2216 if (Operands.size() == A->getNumOperands())
2217 return getAddExpr(Operands);
2218 }
2219 }
Dan Gohman185cf032009-05-08 20:18:49 +00002220
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002221 // Fold if both operands are constant.
2222 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2223 Constant *LHSCV = LHSC->getValue();
2224 Constant *RHSCV = RHSC->getValue();
2225 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2226 RHSCV)));
2227 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002228 }
2229 }
2230
Dan Gohman1c343752009-06-27 21:21:31 +00002231 FoldingSetNodeID ID;
2232 ID.AddInteger(scUDivExpr);
2233 ID.AddPointer(LHS);
2234 ID.AddPointer(RHS);
2235 void *IP = 0;
2236 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002237 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2238 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002239 UniqueSCEVs.InsertNode(S, IP);
2240 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002241}
2242
2243
Dan Gohman6c0866c2009-05-24 23:45:28 +00002244/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2245/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002246const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2247 const Loop *L,
2248 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002249 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002250 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002251 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002252 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002253 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002254 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002255 }
2256
2257 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002258 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002259}
2260
Dan Gohman6c0866c2009-05-24 23:45:28 +00002261/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2262/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002263const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002264ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002265 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002266 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002267#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002268 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002269 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002270 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002271 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002272 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002273 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002274 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002275#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002276
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002277 if (Operands.back()->isZero()) {
2278 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002279 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002280 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002281
Dan Gohmanbc028532010-02-19 18:49:22 +00002282 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2283 // use that information to infer NUW and NSW flags. However, computing a
2284 // BE count requires calling getAddRecExpr, so we may not yet have a
2285 // meaningful BE count at this point (and if we don't, we'd be stuck
2286 // with a SCEVCouldNotCompute as the cached BE count).
2287
Andrew Trick3228cc22011-03-14 16:50:06 +00002288 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002289 // And vice-versa.
2290 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2291 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2292 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002293 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002294 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2295 E = Operands.end(); I != E; ++I)
2296 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002297 All = false;
2298 break;
2299 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002300 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002301 }
2302
Dan Gohmand9cc7492008-08-08 18:33:12 +00002303 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002304 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002305 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002306 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002307 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002308 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002309 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002310 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002311 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002312 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002313 // AddRecs require their operands be loop-invariant with respect to their
2314 // loops. Don't perform this transformation if it would break this
2315 // requirement.
2316 bool AllInvariant = true;
2317 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002318 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002319 AllInvariant = false;
2320 break;
2321 }
2322 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002323 // Create a recurrence for the outer loop with the same step size.
2324 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002325 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2326 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002327 SCEV::NoWrapFlags OuterFlags =
2328 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002329
2330 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002331 AllInvariant = true;
2332 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002333 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002334 AllInvariant = false;
2335 break;
2336 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002337 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002338 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002339 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002340 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2341 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002342 SCEV::NoWrapFlags InnerFlags =
2343 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002344 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2345 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002346 }
2347 // Reset Operands to its original state.
2348 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002349 }
2350 }
2351
Dan Gohman67847532010-01-19 22:27:22 +00002352 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2353 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002354 FoldingSetNodeID ID;
2355 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002356 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2357 ID.AddPointer(Operands[i]);
2358 ID.AddPointer(L);
2359 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002360 SCEVAddRecExpr *S =
2361 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2362 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002363 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2364 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002365 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2366 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002367 UniqueSCEVs.InsertNode(S, IP);
2368 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002369 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002370 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002371}
2372
Dan Gohman9311ef62009-06-24 14:49:00 +00002373const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2374 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002375 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002376 Ops.push_back(LHS);
2377 Ops.push_back(RHS);
2378 return getSMaxExpr(Ops);
2379}
2380
Dan Gohman0bba49c2009-07-07 17:06:11 +00002381const SCEV *
2382ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002383 assert(!Ops.empty() && "Cannot get empty smax!");
2384 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002385#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002386 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002387 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002388 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002389 "SCEVSMaxExpr operand types don't match!");
2390#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002391
2392 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002393 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394
2395 // If there are any constants, fold them together.
2396 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002397 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002398 ++Idx;
2399 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002400 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002401 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002402 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002403 APIntOps::smax(LHSC->getValue()->getValue(),
2404 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002405 Ops[0] = getConstant(Fold);
2406 Ops.erase(Ops.begin()+1); // Erase the folded element
2407 if (Ops.size() == 1) return Ops[0];
2408 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002409 }
2410
Dan Gohmane5aceed2009-06-24 14:46:22 +00002411 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002412 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2413 Ops.erase(Ops.begin());
2414 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002415 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2416 // If we have an smax with a constant maximum-int, it will always be
2417 // maximum-int.
2418 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002419 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002420
Dan Gohman3ab13122010-04-13 16:49:23 +00002421 if (Ops.size() == 1) return Ops[0];
2422 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002423
2424 // Find the first SMax
2425 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2426 ++Idx;
2427
2428 // Check to see if one of the operands is an SMax. If so, expand its operands
2429 // onto our operand list, and recurse to simplify.
2430 if (Idx < Ops.size()) {
2431 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002432 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002433 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002434 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002435 DeletedSMax = true;
2436 }
2437
2438 if (DeletedSMax)
2439 return getSMaxExpr(Ops);
2440 }
2441
2442 // Okay, check to see if the same value occurs in the operand list twice. If
2443 // so, delete one. Since we sorted the list, these values are required to
2444 // be adjacent.
2445 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002446 // X smax Y smax Y --> X smax Y
2447 // X smax Y --> X, if X is always greater than Y
2448 if (Ops[i] == Ops[i+1] ||
2449 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2450 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2451 --i; --e;
2452 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002453 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2454 --i; --e;
2455 }
2456
2457 if (Ops.size() == 1) return Ops[0];
2458
2459 assert(!Ops.empty() && "Reduced smax down to nothing!");
2460
Nick Lewycky3e630762008-02-20 06:48:22 +00002461 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002462 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002463 FoldingSetNodeID ID;
2464 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002465 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2466 ID.AddPointer(Ops[i]);
2467 void *IP = 0;
2468 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002469 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2470 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002471 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2472 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002473 UniqueSCEVs.InsertNode(S, IP);
2474 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002475}
2476
Dan Gohman9311ef62009-06-24 14:49:00 +00002477const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2478 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002479 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002480 Ops.push_back(LHS);
2481 Ops.push_back(RHS);
2482 return getUMaxExpr(Ops);
2483}
2484
Dan Gohman0bba49c2009-07-07 17:06:11 +00002485const SCEV *
2486ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002487 assert(!Ops.empty() && "Cannot get empty umax!");
2488 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002489#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002490 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002491 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002492 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002493 "SCEVUMaxExpr operand types don't match!");
2494#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002495
2496 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002497 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002498
2499 // If there are any constants, fold them together.
2500 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002501 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002502 ++Idx;
2503 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002504 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002505 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002506 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002507 APIntOps::umax(LHSC->getValue()->getValue(),
2508 RHSC->getValue()->getValue()));
2509 Ops[0] = getConstant(Fold);
2510 Ops.erase(Ops.begin()+1); // Erase the folded element
2511 if (Ops.size() == 1) return Ops[0];
2512 LHSC = cast<SCEVConstant>(Ops[0]);
2513 }
2514
Dan Gohmane5aceed2009-06-24 14:46:22 +00002515 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002516 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2517 Ops.erase(Ops.begin());
2518 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002519 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2520 // If we have an umax with a constant maximum-int, it will always be
2521 // maximum-int.
2522 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002523 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002524
Dan Gohman3ab13122010-04-13 16:49:23 +00002525 if (Ops.size() == 1) return Ops[0];
2526 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002527
2528 // Find the first UMax
2529 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2530 ++Idx;
2531
2532 // Check to see if one of the operands is a UMax. If so, expand its operands
2533 // onto our operand list, and recurse to simplify.
2534 if (Idx < Ops.size()) {
2535 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002536 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002537 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002538 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002539 DeletedUMax = true;
2540 }
2541
2542 if (DeletedUMax)
2543 return getUMaxExpr(Ops);
2544 }
2545
2546 // Okay, check to see if the same value occurs in the operand list twice. If
2547 // so, delete one. Since we sorted the list, these values are required to
2548 // be adjacent.
2549 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002550 // X umax Y umax Y --> X umax Y
2551 // X umax Y --> X, if X is always greater than Y
2552 if (Ops[i] == Ops[i+1] ||
2553 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2554 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2555 --i; --e;
2556 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002557 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2558 --i; --e;
2559 }
2560
2561 if (Ops.size() == 1) return Ops[0];
2562
2563 assert(!Ops.empty() && "Reduced umax down to nothing!");
2564
2565 // Okay, it looks like we really DO need a umax expr. Check to see if we
2566 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002567 FoldingSetNodeID ID;
2568 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002569 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2570 ID.AddPointer(Ops[i]);
2571 void *IP = 0;
2572 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002573 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2574 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002575 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2576 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002577 UniqueSCEVs.InsertNode(S, IP);
2578 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002579}
2580
Dan Gohman9311ef62009-06-24 14:49:00 +00002581const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2582 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002583 // ~smax(~x, ~y) == smin(x, y).
2584 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2585}
2586
Dan Gohman9311ef62009-06-24 14:49:00 +00002587const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2588 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002589 // ~umax(~x, ~y) == umin(x, y)
2590 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2591}
2592
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002593const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002594 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002595 // constant expression and then folding it back into a ConstantInt.
2596 // This is just a compile-time optimization.
2597 if (TD)
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002598 return getConstant(TD->getIntPtrType(getContext()),
2599 TD->getTypeAllocSize(AllocTy));
Dan Gohman6ab10f62010-04-12 23:03:26 +00002600
Dan Gohman4f8eea82010-02-01 18:27:38 +00002601 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2602 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002603 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002604 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002605 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002606 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2607}
2608
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002609const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002610 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2611 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002612 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002613 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002614 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002615 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2616}
2617
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002618const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002619 unsigned FieldNo) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002620 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002621 // constant expression and then folding it back into a ConstantInt.
2622 // This is just a compile-time optimization.
2623 if (TD)
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002624 return getConstant(TD->getIntPtrType(getContext()),
Dan Gohman6ab10f62010-04-12 23:03:26 +00002625 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2626
Dan Gohman0f5efe52010-01-28 02:15:55 +00002627 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2628 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002629 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002630 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002631 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002632 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002633}
2634
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002635const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002636 Constant *FieldNo) {
2637 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002638 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002639 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002640 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002641 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002642 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002643}
2644
Dan Gohman0bba49c2009-07-07 17:06:11 +00002645const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002646 // Don't attempt to do anything other than create a SCEVUnknown object
2647 // here. createSCEV only calls getUnknown after checking for all other
2648 // interesting possibilities, and any other code that calls getUnknown
2649 // is doing so in order to hide a value from SCEV canonicalization.
2650
Dan Gohman1c343752009-06-27 21:21:31 +00002651 FoldingSetNodeID ID;
2652 ID.AddInteger(scUnknown);
2653 ID.AddPointer(V);
2654 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002655 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2656 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2657 "Stale SCEVUnknown in uniquing map!");
2658 return S;
2659 }
2660 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2661 FirstUnknown);
2662 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002663 UniqueSCEVs.InsertNode(S, IP);
2664 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002665}
2666
Chris Lattner53e677a2004-04-02 20:23:17 +00002667//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002668// Basic SCEV Analysis and PHI Idiom Recognition Code
2669//
2670
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002671/// isSCEVable - Test if values of the given type are analyzable within
2672/// the SCEV framework. This primarily includes integer types, and it
2673/// can optionally include pointer types if the ScalarEvolution class
2674/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002675bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002676 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002677 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002678}
2679
2680/// getTypeSizeInBits - Return the size in bits of the specified type,
2681/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002682uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002683 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2684
Micah Villmow3574eca2012-10-08 16:38:25 +00002685 // If we have a DataLayout, use it!
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002686 if (TD)
2687 return TD->getTypeSizeInBits(Ty);
2688
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002689 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002690 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002691 return Ty->getPrimitiveSizeInBits();
2692
Micah Villmow3574eca2012-10-08 16:38:25 +00002693 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002694 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002695 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002696 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002697}
2698
2699/// getEffectiveSCEVType - Return a type with the same bitwidth as
2700/// the given type and which represents how SCEV will treat the given
2701/// type, for which isSCEVable must return true. For pointer types,
2702/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002703Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002704 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2705
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002706 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002707 return Ty;
2708
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002709 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002710 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002711 if (TD) return TD->getIntPtrType(getContext());
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002712
Micah Villmow3574eca2012-10-08 16:38:25 +00002713 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002714 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002715}
Chris Lattner53e677a2004-04-02 20:23:17 +00002716
Dan Gohman0bba49c2009-07-07 17:06:11 +00002717const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002718 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002719}
2720
Shuxin Yang5e915e62013-07-08 17:33:13 +00002721namespace {
2722 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2723 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2724 // is set iff if find such SCEVUnknown.
2725 //
2726 struct FindInvalidSCEVUnknown {
2727 bool FindOne;
2728 FindInvalidSCEVUnknown() { FindOne = false; }
2729 bool follow(const SCEV *S) {
2730 switch (S->getSCEVType()) {
2731 case scConstant:
2732 return false;
2733 case scUnknown:
Shuxin Yanga1036992013-07-12 07:25:38 +00002734 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yang5e915e62013-07-08 17:33:13 +00002735 FindOne = true;
2736 return false;
2737 default:
2738 return true;
2739 }
2740 }
2741 bool isDone() const { return FindOne; }
2742 };
2743}
2744
2745bool ScalarEvolution::checkValidity(const SCEV *S) const {
2746 FindInvalidSCEVUnknown F;
2747 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2748 ST.visitAll(S);
2749
2750 return !F.FindOne;
2751}
2752
Chris Lattner53e677a2004-04-02 20:23:17 +00002753/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2754/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002755const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002756 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002757
Shuxin Yang5e915e62013-07-08 17:33:13 +00002758 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2759 if (I != ValueExprMap.end()) {
2760 const SCEV *S = I->second;
Shuxin Yanga1036992013-07-12 07:25:38 +00002761 if (checkValidity(S))
Shuxin Yang5e915e62013-07-08 17:33:13 +00002762 return S;
2763 else
2764 ValueExprMap.erase(I);
2765 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00002766 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002767
2768 // The process of creating a SCEV for V may have caused other SCEVs
2769 // to have been created, so it's necessary to insert the new entry
2770 // from scratch, rather than trying to remember the insert position
2771 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002772 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002773 return S;
2774}
2775
Dan Gohman2d1be872009-04-16 03:18:22 +00002776/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2777///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002778const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002779 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002780 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002781 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002782
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002783 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002784 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002785 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002786 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002787}
2788
2789/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002790const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002791 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002792 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002793 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002794
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002795 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002796 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002797 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002798 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002799 return getMinusSCEV(AllOnes, V);
2800}
2801
Andrew Trick3228cc22011-03-14 16:50:06 +00002802/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002803const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002804 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002805 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2806
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002807 // Fast path: X - X --> 0.
2808 if (LHS == RHS)
2809 return getConstant(LHS->getType(), 0);
2810
Dan Gohman2d1be872009-04-16 03:18:22 +00002811 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002812 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002813}
2814
2815/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2816/// input value to the specified type. If the type must be extended, it is zero
2817/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002818const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002819ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2820 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002821 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2822 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002823 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002824 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002825 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002826 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002827 return getTruncateExpr(V, Ty);
2828 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002829}
2830
2831/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2832/// input value to the specified type. If the type must be extended, it is sign
2833/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002834const SCEV *
2835ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002836 Type *Ty) {
2837 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002838 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2839 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002840 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002841 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002842 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002843 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002844 return getTruncateExpr(V, Ty);
2845 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002846}
2847
Dan Gohman467c4302009-05-13 03:46:30 +00002848/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2849/// input value to the specified type. If the type must be extended, it is zero
2850/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002851const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002852ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2853 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002854 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2855 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002856 "Cannot noop or zero extend with non-integer arguments!");
2857 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2858 "getNoopOrZeroExtend cannot truncate!");
2859 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2860 return V; // No conversion
2861 return getZeroExtendExpr(V, Ty);
2862}
2863
2864/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2865/// input value to the specified type. If the type must be extended, it is sign
2866/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002867const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002868ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2869 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002870 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2871 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002872 "Cannot noop or sign extend with non-integer arguments!");
2873 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2874 "getNoopOrSignExtend cannot truncate!");
2875 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2876 return V; // No conversion
2877 return getSignExtendExpr(V, Ty);
2878}
2879
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002880/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2881/// the input value to the specified type. If the type must be extended,
2882/// it is extended with unspecified bits. The conversion must not be
2883/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002884const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002885ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2886 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002887 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2888 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002889 "Cannot noop or any extend with non-integer arguments!");
2890 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2891 "getNoopOrAnyExtend cannot truncate!");
2892 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2893 return V; // No conversion
2894 return getAnyExtendExpr(V, Ty);
2895}
2896
Dan Gohman467c4302009-05-13 03:46:30 +00002897/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2898/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002899const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002900ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2901 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002902 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2903 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002904 "Cannot truncate or noop with non-integer arguments!");
2905 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2906 "getTruncateOrNoop cannot extend!");
2907 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2908 return V; // No conversion
2909 return getTruncateExpr(V, Ty);
2910}
2911
Dan Gohmana334aa72009-06-22 00:31:57 +00002912/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2913/// the types using zero-extension, and then perform a umax operation
2914/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002915const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2916 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002917 const SCEV *PromotedLHS = LHS;
2918 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002919
2920 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2921 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2922 else
2923 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2924
2925 return getUMaxExpr(PromotedLHS, PromotedRHS);
2926}
2927
Dan Gohmanc9759e82009-06-22 15:03:27 +00002928/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2929/// the types using zero-extension, and then perform a umin operation
2930/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002931const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2932 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002933 const SCEV *PromotedLHS = LHS;
2934 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002935
2936 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2937 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2938 else
2939 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2940
2941 return getUMinExpr(PromotedLHS, PromotedRHS);
2942}
2943
Andrew Trickb12a7542011-03-17 23:51:11 +00002944/// getPointerBase - Transitively follow the chain of pointer-type operands
2945/// until reaching a SCEV that does not have a single pointer operand. This
2946/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2947/// but corner cases do exist.
2948const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2949 // A pointer operand may evaluate to a nonpointer expression, such as null.
2950 if (!V->getType()->isPointerTy())
2951 return V;
2952
2953 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2954 return getPointerBase(Cast->getOperand());
2955 }
2956 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2957 const SCEV *PtrOp = 0;
2958 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2959 I != E; ++I) {
2960 if ((*I)->getType()->isPointerTy()) {
2961 // Cannot find the base of an expression with multiple pointer operands.
2962 if (PtrOp)
2963 return V;
2964 PtrOp = *I;
2965 }
2966 }
2967 if (!PtrOp)
2968 return V;
2969 return getPointerBase(PtrOp);
2970 }
2971 return V;
2972}
2973
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002974/// PushDefUseChildren - Push users of the given Instruction
2975/// onto the given Worklist.
2976static void
2977PushDefUseChildren(Instruction *I,
2978 SmallVectorImpl<Instruction *> &Worklist) {
2979 // Push the def-use children onto the Worklist stack.
2980 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2981 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002982 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002983}
2984
2985/// ForgetSymbolicValue - This looks up computed SCEV values for all
2986/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002987/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002988/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002989void
Dan Gohman85669632010-02-25 06:57:05 +00002990ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002991 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002992 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002993
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002994 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002995 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002996 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002997 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002998 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002999
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003000 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003001 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003002 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003003 const SCEV *Old = It->second;
3004
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003005 // Short-circuit the def-use traversal if the symbolic name
3006 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00003007 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003008 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00003009
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003010 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00003011 // structure, it's a PHI that's in the progress of being computed
3012 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3013 // additional loop trip count information isn't going to change anything.
3014 // In the second case, createNodeForPHI will perform the necessary
3015 // updates on its own when it gets to that point. In the third, we do
3016 // want to forget the SCEVUnknown.
3017 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00003018 !isa<SCEVUnknown>(Old) ||
3019 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00003020 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003021 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003022 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003023 }
3024
3025 PushDefUseChildren(I, Worklist);
3026 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00003027}
Chris Lattner53e677a2004-04-02 20:23:17 +00003028
3029/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3030/// a loop header, making it a potential recurrence, or it doesn't.
3031///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003032const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00003033 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3034 if (L->getHeader() == PN->getParent()) {
3035 // The loop may have multiple entrances or multiple exits; we can analyze
3036 // this phi as an addrec if it has a unique entry value and a unique
3037 // backedge value.
3038 Value *BEValueV = 0, *StartValueV = 0;
3039 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3040 Value *V = PN->getIncomingValue(i);
3041 if (L->contains(PN->getIncomingBlock(i))) {
3042 if (!BEValueV) {
3043 BEValueV = V;
3044 } else if (BEValueV != V) {
3045 BEValueV = 0;
3046 break;
3047 }
3048 } else if (!StartValueV) {
3049 StartValueV = V;
3050 } else if (StartValueV != V) {
3051 StartValueV = 0;
3052 break;
3053 }
3054 }
3055 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003056 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003057 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003058 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003059 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003060 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003061
3062 // Using this symbolic name for the PHI, analyze the value coming around
3063 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003064 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003065
3066 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3067 // has a special value for the first iteration of the loop.
3068
3069 // If the value coming around the backedge is an add with the symbolic
3070 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003071 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003072 // If there is a single occurrence of the symbolic value, replace it
3073 // with a recurrence.
3074 unsigned FoundIndex = Add->getNumOperands();
3075 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3076 if (Add->getOperand(i) == SymbolicName)
3077 if (FoundIndex == e) {
3078 FoundIndex = i;
3079 break;
3080 }
3081
3082 if (FoundIndex != Add->getNumOperands()) {
3083 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003084 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003085 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3086 if (i != FoundIndex)
3087 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003088 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003089
3090 // This is not a valid addrec if the step amount is varying each
3091 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003092 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003093 (isa<SCEVAddRecExpr>(Accum) &&
3094 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003095 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003096
3097 // If the increment doesn't overflow, then neither the addrec nor
3098 // the post-increment will overflow.
3099 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3100 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003101 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003102 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003103 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003104 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003105 dyn_cast<GEPOperator>(BEValueV)) {
3106 // If the increment is an inbounds GEP, then we know the address
3107 // space cannot be wrapped around. We cannot make any guarantee
3108 // about signed or unsigned overflow because pointers are
3109 // unsigned but we may have a negative index from the base
3110 // pointer.
3111 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003112 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003113 }
3114
Dan Gohman27dead42010-04-12 07:49:36 +00003115 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003116 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003117
Dan Gohmana10756e2010-01-21 02:09:26 +00003118 // Since the no-wrap flags are on the increment, they apply to the
3119 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003120 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003121 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003122 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003123
3124 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003125 // to be symbolic. We now need to go back and purge all of the
3126 // entries for the scalars that use the symbolic expression.
3127 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003128 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003129 return PHISCEV;
3130 }
3131 }
Dan Gohman622ed672009-05-04 22:02:23 +00003132 } else if (const SCEVAddRecExpr *AddRec =
3133 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003134 // Otherwise, this could be a loop like this:
3135 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3136 // In this case, j = {1,+,1} and BEValue is j.
3137 // Because the other in-value of i (0) fits the evolution of BEValue
3138 // i really is an addrec evolution.
3139 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003140 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003141
3142 // If StartVal = j.start - j.stride, we can use StartVal as the
3143 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003144 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003145 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003146 // FIXME: For constant StartVal, we should be able to infer
3147 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003148 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003149 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3150 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003151
3152 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003153 // to be symbolic. We now need to go back and purge all of the
3154 // entries for the scalars that use the symbolic expression.
3155 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003156 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003157 return PHISCEV;
3158 }
3159 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003160 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003161 }
Dan Gohman27dead42010-04-12 07:49:36 +00003162 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003163
Dan Gohman85669632010-02-25 06:57:05 +00003164 // If the PHI has a single incoming value, follow that value, unless the
3165 // PHI's incoming blocks are in a different loop, in which case doing so
3166 // risks breaking LCSSA form. Instcombine would normally zap these, but
3167 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003168 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003169 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003170 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003171
Chris Lattner53e677a2004-04-02 20:23:17 +00003172 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003173 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003174}
3175
Dan Gohman26466c02009-05-08 20:26:55 +00003176/// createNodeForGEP - Expand GEP instructions into add and multiply
3177/// operations. This allows them to be analyzed by regular SCEV code.
3178///
Dan Gohmand281ed22009-12-18 02:09:29 +00003179const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003180
Dan Gohmanb9f96512010-06-30 07:16:37 +00003181 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3182 // Add expression, because the Instruction may be guarded by control flow
3183 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003184 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003185 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003186
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003187 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003188 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003189 // Don't attempt to analyze GEPs over unsized objects.
3190 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3191 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003192 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003193 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003194 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003195 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003196 I != E; ++I) {
3197 Value *Index = *I;
3198 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003199 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003200 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003201 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Chandler Carruthece6c6b2012-11-01 08:07:29 +00003202 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003203
Dan Gohmanb9f96512010-06-30 07:16:37 +00003204 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003205 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003206 } else {
3207 // For an array, add the element offset, explicitly scaled.
Chandler Carruthece6c6b2012-11-01 08:07:29 +00003208 const SCEV *ElementSize = getSizeOfExpr(*GTI);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003209 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003210 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003211 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3212
Dan Gohmanb9f96512010-06-30 07:16:37 +00003213 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003214 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3215 isInBounds ? SCEV::FlagNSW :
3216 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003217
3218 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003219 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003220 }
3221 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003222
3223 // Get the SCEV for the GEP base.
3224 const SCEV *BaseS = getSCEV(Base);
3225
Dan Gohmanb9f96512010-06-30 07:16:37 +00003226 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003227 return getAddExpr(BaseS, TotalOffset,
Benjamin Kramer86df0622012-04-17 06:33:57 +00003228 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003229}
3230
Nick Lewycky83bb0052007-11-22 07:59:40 +00003231/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3232/// guaranteed to end in (at every loop iteration). It is, at the same time,
3233/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3234/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003235uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003236ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003237 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003238 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003239
Dan Gohman622ed672009-05-04 22:02:23 +00003240 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003241 return std::min(GetMinTrailingZeros(T->getOperand()),
3242 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003243
Dan Gohman622ed672009-05-04 22:02:23 +00003244 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003245 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3246 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3247 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003248 }
3249
Dan Gohman622ed672009-05-04 22:02:23 +00003250 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003251 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3252 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3253 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003254 }
3255
Dan Gohman622ed672009-05-04 22:02:23 +00003256 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003257 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003258 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003259 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003260 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003261 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003262 }
3263
Dan Gohman622ed672009-05-04 22:02:23 +00003264 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003265 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003266 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3267 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003268 for (unsigned i = 1, e = M->getNumOperands();
3269 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003270 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003271 BitWidth);
3272 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003273 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003274
Dan Gohman622ed672009-05-04 22:02:23 +00003275 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003276 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003277 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003278 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003279 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003280 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003281 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003282
Dan Gohman622ed672009-05-04 22:02:23 +00003283 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003284 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003285 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003286 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003287 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003288 return MinOpRes;
3289 }
3290
Dan Gohman622ed672009-05-04 22:02:23 +00003291 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003292 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003293 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003294 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003295 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003296 return MinOpRes;
3297 }
3298
Dan Gohman2c364ad2009-06-19 23:29:04 +00003299 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3300 // For a SCEVUnknown, ask ValueTracking.
3301 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003302 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003303 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003304 return Zeros.countTrailingOnes();
3305 }
3306
3307 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003308 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003309}
Chris Lattner53e677a2004-04-02 20:23:17 +00003310
Dan Gohman85b05a22009-07-13 21:35:55 +00003311/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3312///
3313ConstantRange
3314ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003315 // See if we've computed this range already.
3316 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3317 if (I != UnsignedRanges.end())
3318 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003319
3320 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003321 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003322
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003323 unsigned BitWidth = getTypeSizeInBits(S->getType());
3324 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3325
3326 // If the value has known zeros, the maximum unsigned value will have those
3327 // known zeros as well.
3328 uint32_t TZ = GetMinTrailingZeros(S);
3329 if (TZ != 0)
3330 ConservativeResult =
3331 ConstantRange(APInt::getMinValue(BitWidth),
3332 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3333
Dan Gohman85b05a22009-07-13 21:35:55 +00003334 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3335 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3336 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3337 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003338 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003339 }
3340
3341 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3342 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3343 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3344 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003345 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003346 }
3347
3348 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3349 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3350 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3351 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003352 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003353 }
3354
3355 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3356 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3357 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3358 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003359 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003360 }
3361
3362 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3363 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3364 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003365 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003366 }
3367
3368 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3369 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003370 return setUnsignedRange(ZExt,
3371 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003372 }
3373
3374 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3375 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003376 return setUnsignedRange(SExt,
3377 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003378 }
3379
3380 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3381 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003382 return setUnsignedRange(Trunc,
3383 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003384 }
3385
Dan Gohman85b05a22009-07-13 21:35:55 +00003386 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003387 // If there's no unsigned wrap, the value will never be less than its
3388 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003389 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003390 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003391 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003392 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003393 ConservativeResult.intersectWith(
3394 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003395
3396 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003397 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003398 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003399 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003400 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3401 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003402 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3403
3404 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003405 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003406
3407 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003408 ConstantRange StepRange = getSignedRange(Step);
3409 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3410 ConstantRange EndRange =
3411 StartRange.add(MaxBECountRange.multiply(StepRange));
3412
3413 // Check for overflow. This must be done with ConstantRange arithmetic
3414 // because we could be called from within the ScalarEvolution overflow
3415 // checking code.
3416 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3417 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3418 ConstantRange ExtMaxBECountRange =
3419 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3420 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3421 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3422 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003423 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003424
Dan Gohman85b05a22009-07-13 21:35:55 +00003425 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3426 EndRange.getUnsignedMin());
3427 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3428 EndRange.getUnsignedMax());
3429 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003430 return setUnsignedRange(AddRec, ConservativeResult);
3431 return setUnsignedRange(AddRec,
3432 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003433 }
3434 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003435
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003436 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003437 }
3438
3439 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3440 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003441 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003442 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003443 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003444 return setUnsignedRange(U, ConservativeResult);
3445 return setUnsignedRange(U,
3446 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003447 }
3448
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003449 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003450}
3451
Dan Gohman85b05a22009-07-13 21:35:55 +00003452/// getSignedRange - Determine the signed range for a particular SCEV.
3453///
3454ConstantRange
3455ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003456 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003457 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3458 if (I != SignedRanges.end())
3459 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003460
Dan Gohman85b05a22009-07-13 21:35:55 +00003461 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003462 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003463
Dan Gohman52fddd32010-01-26 04:40:18 +00003464 unsigned BitWidth = getTypeSizeInBits(S->getType());
3465 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3466
3467 // If the value has known zeros, the maximum signed value will have those
3468 // known zeros as well.
3469 uint32_t TZ = GetMinTrailingZeros(S);
3470 if (TZ != 0)
3471 ConservativeResult =
3472 ConstantRange(APInt::getSignedMinValue(BitWidth),
3473 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3474
Dan Gohman85b05a22009-07-13 21:35:55 +00003475 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3476 ConstantRange X = getSignedRange(Add->getOperand(0));
3477 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3478 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003479 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003480 }
3481
Dan Gohman85b05a22009-07-13 21:35:55 +00003482 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3483 ConstantRange X = getSignedRange(Mul->getOperand(0));
3484 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3485 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003486 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003487 }
3488
Dan Gohman85b05a22009-07-13 21:35:55 +00003489 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3490 ConstantRange X = getSignedRange(SMax->getOperand(0));
3491 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3492 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003493 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003494 }
Dan Gohman62849c02009-06-24 01:05:09 +00003495
Dan Gohman85b05a22009-07-13 21:35:55 +00003496 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3497 ConstantRange X = getSignedRange(UMax->getOperand(0));
3498 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3499 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003500 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003501 }
Dan Gohman62849c02009-06-24 01:05:09 +00003502
Dan Gohman85b05a22009-07-13 21:35:55 +00003503 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3504 ConstantRange X = getSignedRange(UDiv->getLHS());
3505 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003506 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003507 }
Dan Gohman62849c02009-06-24 01:05:09 +00003508
Dan Gohman85b05a22009-07-13 21:35:55 +00003509 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3510 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003511 return setSignedRange(ZExt,
3512 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003513 }
3514
3515 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3516 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003517 return setSignedRange(SExt,
3518 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003519 }
3520
3521 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3522 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003523 return setSignedRange(Trunc,
3524 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003525 }
3526
Dan Gohman85b05a22009-07-13 21:35:55 +00003527 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003528 // If there's no signed wrap, and all the operands have the same sign or
3529 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003530 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003531 bool AllNonNeg = true;
3532 bool AllNonPos = true;
3533 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3534 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3535 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3536 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003537 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003538 ConservativeResult = ConservativeResult.intersectWith(
3539 ConstantRange(APInt(BitWidth, 0),
3540 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003541 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003542 ConservativeResult = ConservativeResult.intersectWith(
3543 ConstantRange(APInt::getSignedMinValue(BitWidth),
3544 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003545 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003546
3547 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003548 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003549 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003550 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003551 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3552 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003553 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3554
3555 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003556 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003557
3558 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003559 ConstantRange StepRange = getSignedRange(Step);
3560 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3561 ConstantRange EndRange =
3562 StartRange.add(MaxBECountRange.multiply(StepRange));
3563
3564 // Check for overflow. This must be done with ConstantRange arithmetic
3565 // because we could be called from within the ScalarEvolution overflow
3566 // checking code.
3567 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3568 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3569 ConstantRange ExtMaxBECountRange =
3570 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3571 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3572 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3573 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003574 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003575
Dan Gohman85b05a22009-07-13 21:35:55 +00003576 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3577 EndRange.getSignedMin());
3578 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3579 EndRange.getSignedMax());
3580 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003581 return setSignedRange(AddRec, ConservativeResult);
3582 return setSignedRange(AddRec,
3583 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003584 }
Dan Gohman62849c02009-06-24 01:05:09 +00003585 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003586
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003587 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003588 }
3589
Dan Gohman2c364ad2009-06-19 23:29:04 +00003590 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3591 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003592 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003593 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003594 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
Hal Finkel033e0a92013-07-09 18:16:16 +00003595 if (NS <= 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003596 return setSignedRange(U, ConservativeResult);
3597 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003598 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003599 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003600 }
3601
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003602 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003603}
3604
Chris Lattner53e677a2004-04-02 20:23:17 +00003605/// createSCEV - We know that there is no SCEV for the specified value.
3606/// Analyze the expression.
3607///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003608const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003609 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003610 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003611
Dan Gohman6c459a22008-06-22 19:56:46 +00003612 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003613 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003614 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003615
3616 // Don't attempt to analyze instructions in blocks that aren't
3617 // reachable. Such instructions don't matter, and they aren't required
3618 // to obey basic rules for definitions dominating uses which this
3619 // analysis depends on.
3620 if (!DT->isReachableFromEntry(I->getParent()))
3621 return getUnknown(V);
3622 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003623 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003624 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3625 return getConstant(CI);
3626 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003627 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003628 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3629 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003630 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003631 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003632
Dan Gohmanca178902009-07-17 20:47:02 +00003633 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003634 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003635 case Instruction::Add: {
3636 // The simple thing to do would be to just call getSCEV on both operands
3637 // and call getAddExpr with the result. However if we're looking at a
3638 // bunch of things all added together, this can be quite inefficient,
3639 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3640 // Instead, gather up all the operands and make a single getAddExpr call.
3641 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003642 //
3643 // Don't apply this instruction's NSW or NUW flags to the new
3644 // expression. The instruction may be guarded by control flow that the
3645 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3646 // mapped to the same SCEV expression, and it would be incorrect to transfer
3647 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003648 SmallVector<const SCEV *, 4> AddOps;
3649 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003650 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3651 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3652 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3653 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003654 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003655 const SCEV *Op1 = getSCEV(U->getOperand(1));
3656 if (Opcode == Instruction::Sub)
3657 AddOps.push_back(getNegativeSCEV(Op1));
3658 else
3659 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003660 }
3661 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003662 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003663 }
3664 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003665 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003666 SmallVector<const SCEV *, 4> MulOps;
3667 MulOps.push_back(getSCEV(U->getOperand(1)));
3668 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003669 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003670 Op = U->getOperand(0)) {
3671 U = cast<Operator>(Op);
3672 MulOps.push_back(getSCEV(U->getOperand(1)));
3673 }
3674 MulOps.push_back(getSCEV(U->getOperand(0)));
3675 return getMulExpr(MulOps);
3676 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003677 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003678 return getUDivExpr(getSCEV(U->getOperand(0)),
3679 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003680 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003681 return getMinusSCEV(getSCEV(U->getOperand(0)),
3682 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003683 case Instruction::And:
3684 // For an expression like x&255 that merely masks off the high bits,
3685 // use zext(trunc(x)) as the SCEV expression.
3686 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003687 if (CI->isNullValue())
3688 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003689 if (CI->isAllOnesValue())
3690 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003691 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003692
3693 // Instcombine's ShrinkDemandedConstant may strip bits out of
3694 // constants, obscuring what would otherwise be a low-bits mask.
3695 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3696 // knew about to reconstruct a low-bits mask value.
3697 unsigned LZ = A.countLeadingZeros();
3698 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003699 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003700 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003701
3702 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3703
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003704 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003705 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003706 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003707 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003708 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003709 }
3710 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003711
Dan Gohman6c459a22008-06-22 19:56:46 +00003712 case Instruction::Or:
3713 // If the RHS of the Or is a constant, we may have something like:
3714 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3715 // optimizations will transparently handle this case.
3716 //
3717 // In order for this transformation to be safe, the LHS must be of the
3718 // form X*(2^n) and the Or constant must be less than 2^n.
3719 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003720 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003721 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003722 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003723 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3724 // Build a plain add SCEV.
3725 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3726 // If the LHS of the add was an addrec and it has no-wrap flags,
3727 // transfer the no-wrap flags, since an or won't introduce a wrap.
3728 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3729 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003730 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3731 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003732 }
3733 return S;
3734 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003735 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003736 break;
3737 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003738 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003739 // If the RHS of the xor is a signbit, then this is just an add.
3740 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003741 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003742 return getAddExpr(getSCEV(U->getOperand(0)),
3743 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003744
3745 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003746 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003747 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003748
3749 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3750 // This is a variant of the check for xor with -1, and it handles
3751 // the case where instcombine has trimmed non-demanded bits out
3752 // of an xor with -1.
3753 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3754 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3755 if (BO->getOpcode() == Instruction::And &&
3756 LCI->getValue() == CI->getValue())
3757 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003758 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003759 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003760 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003761 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003762 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3763
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003764 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003765 // mask off the high bits. Complement the operand and
3766 // re-apply the zext.
3767 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3768 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3769
3770 // If C is a single bit, it may be in the sign-bit position
3771 // before the zero-extend. In this case, represent the xor
3772 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003773 APInt Trunc = CI->getValue().trunc(Z0TySize);
3774 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003775 Trunc.isSignBit())
3776 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3777 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003778 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003779 }
3780 break;
3781
3782 case Instruction::Shl:
3783 // Turn shift left of a constant amount into a multiply.
3784 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003785 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003786
3787 // If the shift count is not less than the bitwidth, the result of
3788 // the shift is undefined. Don't try to analyze it, because the
3789 // resolution chosen here may differ from the resolution chosen in
3790 // other parts of the compiler.
3791 if (SA->getValue().uge(BitWidth))
3792 break;
3793
Owen Andersoneed707b2009-07-24 23:12:02 +00003794 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramer0a230e02013-07-11 16:05:50 +00003795 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003796 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003797 }
3798 break;
3799
Nick Lewycky01eaf802008-07-07 06:15:49 +00003800 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003801 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003802 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003803 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003804
3805 // If the shift count is not less than the bitwidth, the result of
3806 // the shift is undefined. Don't try to analyze it, because the
3807 // resolution chosen here may differ from the resolution chosen in
3808 // other parts of the compiler.
3809 if (SA->getValue().uge(BitWidth))
3810 break;
3811
Owen Andersoneed707b2009-07-24 23:12:02 +00003812 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramer0a230e02013-07-11 16:05:50 +00003813 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003814 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003815 }
3816 break;
3817
Dan Gohman4ee29af2009-04-21 02:26:00 +00003818 case Instruction::AShr:
3819 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3820 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003821 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003822 if (L->getOpcode() == Instruction::Shl &&
3823 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003824 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3825
3826 // If the shift count is not less than the bitwidth, the result of
3827 // the shift is undefined. Don't try to analyze it, because the
3828 // resolution chosen here may differ from the resolution chosen in
3829 // other parts of the compiler.
3830 if (CI->getValue().uge(BitWidth))
3831 break;
3832
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003833 uint64_t Amt = BitWidth - CI->getZExtValue();
3834 if (Amt == BitWidth)
3835 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003836 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003837 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003838 IntegerType::get(getContext(),
3839 Amt)),
3840 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003841 }
3842 break;
3843
Dan Gohman6c459a22008-06-22 19:56:46 +00003844 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003845 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003846
3847 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003848 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003849
3850 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003851 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003852
3853 case Instruction::BitCast:
3854 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003855 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003856 return getSCEV(U->getOperand(0));
3857 break;
3858
Dan Gohman4f8eea82010-02-01 18:27:38 +00003859 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3860 // lead to pointer expressions which cannot safely be expanded to GEPs,
3861 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3862 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003863
Dan Gohman26466c02009-05-08 20:26:55 +00003864 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003865 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003866
Dan Gohman6c459a22008-06-22 19:56:46 +00003867 case Instruction::PHI:
3868 return createNodeForPHI(cast<PHINode>(U));
3869
3870 case Instruction::Select:
3871 // This could be a smax or umax that was lowered earlier.
3872 // Try to recover it.
3873 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3874 Value *LHS = ICI->getOperand(0);
3875 Value *RHS = ICI->getOperand(1);
3876 switch (ICI->getPredicate()) {
3877 case ICmpInst::ICMP_SLT:
3878 case ICmpInst::ICMP_SLE:
3879 std::swap(LHS, RHS);
3880 // fall through
3881 case ICmpInst::ICMP_SGT:
3882 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003883 // a >s b ? a+x : b+x -> smax(a, b)+x
3884 // a >s b ? b+x : a+x -> smin(a, b)+x
3885 if (LHS->getType() == U->getType()) {
3886 const SCEV *LS = getSCEV(LHS);
3887 const SCEV *RS = getSCEV(RHS);
3888 const SCEV *LA = getSCEV(U->getOperand(1));
3889 const SCEV *RA = getSCEV(U->getOperand(2));
3890 const SCEV *LDiff = getMinusSCEV(LA, LS);
3891 const SCEV *RDiff = getMinusSCEV(RA, RS);
3892 if (LDiff == RDiff)
3893 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3894 LDiff = getMinusSCEV(LA, RS);
3895 RDiff = getMinusSCEV(RA, LS);
3896 if (LDiff == RDiff)
3897 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3898 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003899 break;
3900 case ICmpInst::ICMP_ULT:
3901 case ICmpInst::ICMP_ULE:
3902 std::swap(LHS, RHS);
3903 // fall through
3904 case ICmpInst::ICMP_UGT:
3905 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003906 // a >u b ? a+x : b+x -> umax(a, b)+x
3907 // a >u b ? b+x : a+x -> umin(a, b)+x
3908 if (LHS->getType() == U->getType()) {
3909 const SCEV *LS = getSCEV(LHS);
3910 const SCEV *RS = getSCEV(RHS);
3911 const SCEV *LA = getSCEV(U->getOperand(1));
3912 const SCEV *RA = getSCEV(U->getOperand(2));
3913 const SCEV *LDiff = getMinusSCEV(LA, LS);
3914 const SCEV *RDiff = getMinusSCEV(RA, RS);
3915 if (LDiff == RDiff)
3916 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3917 LDiff = getMinusSCEV(LA, RS);
3918 RDiff = getMinusSCEV(RA, LS);
3919 if (LDiff == RDiff)
3920 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3921 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003922 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003923 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003924 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3925 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003926 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003927 cast<ConstantInt>(RHS)->isZero()) {
3928 const SCEV *One = getConstant(LHS->getType(), 1);
3929 const SCEV *LS = getSCEV(LHS);
3930 const SCEV *LA = getSCEV(U->getOperand(1));
3931 const SCEV *RA = getSCEV(U->getOperand(2));
3932 const SCEV *LDiff = getMinusSCEV(LA, LS);
3933 const SCEV *RDiff = getMinusSCEV(RA, One);
3934 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003935 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003936 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003937 break;
3938 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003939 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3940 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003941 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003942 cast<ConstantInt>(RHS)->isZero()) {
3943 const SCEV *One = getConstant(LHS->getType(), 1);
3944 const SCEV *LS = getSCEV(LHS);
3945 const SCEV *LA = getSCEV(U->getOperand(1));
3946 const SCEV *RA = getSCEV(U->getOperand(2));
3947 const SCEV *LDiff = getMinusSCEV(LA, One);
3948 const SCEV *RDiff = getMinusSCEV(RA, LS);
3949 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003950 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003951 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003952 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003953 default:
3954 break;
3955 }
3956 }
3957
3958 default: // We cannot analyze this expression.
3959 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003960 }
3961
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003962 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003963}
3964
3965
3966
3967//===----------------------------------------------------------------------===//
3968// Iteration Count Computation Code
3969//
3970
Andrew Trickb1831c62011-08-11 23:36:16 +00003971/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003972/// normal unsigned value. Returns 0 if the trip count is unknown or not
3973/// constant. Will also return 0 if the maximum trip count is very large (>=
3974/// 2^32).
3975///
3976/// This "trip count" assumes that control exits via ExitingBlock. More
3977/// precisely, it is the number of times that control may reach ExitingBlock
3978/// before taking the branch. For loops with multiple exits, it may not be the
3979/// number times that the loop header executes because the loop may exit
3980/// prematurely via another branch.
Andrew Trickcd8e3c42013-05-31 23:34:46 +00003981///
3982/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
3983/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
3984/// loop exits. getExitCount() may return an exact count for this branch
3985/// assuming no-signed-wrap. The number of well-defined iterations may actually
3986/// be higher than this trip count if this exit test is skipped and the loop
3987/// exits via a different branch. Ideally, getExitCount() would know whether it
3988/// depends on a NSW assumption, and we would only fall back to a conservative
3989/// trip count in that case.
Andrew Trick3eada312012-01-11 06:52:55 +00003990unsigned ScalarEvolution::
Aaron Ballmanf56a6de2013-06-04 01:01:56 +00003991getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003992 const SCEVConstant *ExitCount =
Andrew Trickcd8e3c42013-05-31 23:34:46 +00003993 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
Andrew Trickb1831c62011-08-11 23:36:16 +00003994 if (!ExitCount)
3995 return 0;
3996
3997 ConstantInt *ExitConst = ExitCount->getValue();
3998
3999 // Guard against huge trip counts.
4000 if (ExitConst->getValue().getActiveBits() > 32)
4001 return 0;
4002
4003 // In case of integer overflow, this returns 0, which is correct.
4004 return ((unsigned)ExitConst->getZExtValue()) + 1;
4005}
4006
4007/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4008/// trip count of this loop as a normal unsigned value, if possible. This
4009/// means that the actual trip count is always a multiple of the returned
4010/// value (don't forget the trip count could very well be zero as well!).
4011///
4012/// Returns 1 if the trip count is unknown or not guaranteed to be the
4013/// multiple of a constant (which is also the case if the trip count is simply
4014/// constant, use getSmallConstantTripCount for that case), Will also return 1
4015/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00004016///
4017/// As explained in the comments for getSmallConstantTripCount, this assumes
4018/// that control exits the loop via ExitingBlock.
4019unsigned ScalarEvolution::
Aaron Ballmanf56a6de2013-06-04 01:01:56 +00004020getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickcd8e3c42013-05-31 23:34:46 +00004021 const SCEV *ExitCount = getBackedgeTakenCount(L);
Andrew Trickb1831c62011-08-11 23:36:16 +00004022 if (ExitCount == getCouldNotCompute())
4023 return 1;
4024
4025 // Get the trip count from the BE count by adding 1.
4026 const SCEV *TCMul = getAddExpr(ExitCount,
4027 getConstant(ExitCount->getType(), 1));
4028 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4029 // to factor simple cases.
4030 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4031 TCMul = Mul->getOperand(0);
4032
4033 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4034 if (!MulC)
4035 return 1;
4036
4037 ConstantInt *Result = MulC->getValue();
4038
Hal Finkel8c655492012-10-24 19:46:44 +00004039 // Guard against huge trip counts (this requires checking
4040 // for zero to handle the case where the trip count == -1 and the
4041 // addition wraps).
4042 if (!Result || Result->getValue().getActiveBits() > 32 ||
4043 Result->getValue().getActiveBits() == 0)
Andrew Trickb1831c62011-08-11 23:36:16 +00004044 return 1;
4045
4046 return (unsigned)Result->getZExtValue();
4047}
4048
Andrew Trick5116ff62011-07-26 17:19:55 +00004049// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickcd8e3c42013-05-31 23:34:46 +00004050// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00004051// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00004052const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4053 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004054}
4055
Dan Gohman46bdfb02009-02-24 18:55:53 +00004056/// getBackedgeTakenCount - If the specified loop has a predictable
4057/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4058/// object. The backedge-taken count is the number of times the loop header
4059/// will be branched to from within the loop. This is one less than the
4060/// trip count of the loop, since it doesn't count the first iteration,
4061/// when the header is branched to from outside the loop.
4062///
4063/// Note that it is not valid to call this method on a loop without a
4064/// loop-invariant backedge-taken count (see
4065/// hasLoopInvariantBackedgeTakenCount).
4066///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004067const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004068 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004069}
4070
4071/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4072/// return the least SCEV value that is known never to be less than the
4073/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004074const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004075 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004076}
4077
Dan Gohman59ae6b92009-07-08 19:23:34 +00004078/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4079/// onto the given Worklist.
4080static void
4081PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4082 BasicBlock *Header = L->getHeader();
4083
4084 // Push all Loop-header PHIs onto the Worklist stack.
4085 for (BasicBlock::iterator I = Header->begin();
4086 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4087 Worklist.push_back(PN);
4088}
4089
Dan Gohmana1af7572009-04-30 20:47:05 +00004090const ScalarEvolution::BackedgeTakenInfo &
4091ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004092 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004093 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004094 // update the value. The temporary CouldNotCompute value tells SCEV
4095 // code elsewhere that it shouldn't attempt to request a new
4096 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004097 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004098 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004099 if (!Pair.second)
4100 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004101
Andrew Trick5116ff62011-07-26 17:19:55 +00004102 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4103 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4104 // must be cleared in this scope.
4105 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4106
4107 if (Result.getExact(this) != getCouldNotCompute()) {
4108 assert(isLoopInvariant(Result.getExact(this), L) &&
4109 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004110 "Computed backedge-taken count isn't loop invariant for loop!");
4111 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004112 }
4113 else if (Result.getMax(this) == getCouldNotCompute() &&
4114 isa<PHINode>(L->getHeader()->begin())) {
4115 // Only count loops that have phi nodes as not being computable.
4116 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004117 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004118
Chris Lattnerf1859892011-01-09 02:16:18 +00004119 // Now that we know more about the trip count for this loop, forget any
4120 // existing SCEV values for PHI nodes in this loop since they are only
4121 // conservative estimates made without the benefit of trip count
4122 // information. This is similar to the code in forgetLoop, except that
4123 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004124 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004125 SmallVector<Instruction *, 16> Worklist;
4126 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004127
Chris Lattnerf1859892011-01-09 02:16:18 +00004128 SmallPtrSet<Instruction *, 8> Visited;
4129 while (!Worklist.empty()) {
4130 Instruction *I = Worklist.pop_back_val();
4131 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004132
Chris Lattnerf1859892011-01-09 02:16:18 +00004133 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004134 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnerf1859892011-01-09 02:16:18 +00004135 if (It != ValueExprMap.end()) {
4136 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004137
Chris Lattnerf1859892011-01-09 02:16:18 +00004138 // SCEVUnknown for a PHI either means that it has an unrecognized
4139 // structure, or it's a PHI that's in the progress of being computed
4140 // by createNodeForPHI. In the former case, additional loop trip
4141 // count information isn't going to change anything. In the later
4142 // case, createNodeForPHI will perform the necessary updates on its
4143 // own when it gets to that point.
4144 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4145 forgetMemoizedResults(Old);
4146 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004147 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004148 if (PHINode *PN = dyn_cast<PHINode>(I))
4149 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004150 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004151
4152 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004153 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004154 }
Dan Gohman308bec32011-04-25 22:48:29 +00004155
4156 // Re-lookup the insert position, since the call to
4157 // ComputeBackedgeTakenCount above could result in a
4158 // recusive call to getBackedgeTakenInfo (on a different
4159 // loop), which would invalidate the iterator computed
4160 // earlier.
4161 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004162}
4163
Dan Gohman4c7279a2009-10-31 15:04:55 +00004164/// forgetLoop - This method should be called by the client when it has
4165/// changed a loop in a way that may effect ScalarEvolution's ability to
4166/// compute a trip count, or if the loop is deleted.
4167void ScalarEvolution::forgetLoop(const Loop *L) {
4168 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004169 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4170 BackedgeTakenCounts.find(L);
4171 if (BTCPos != BackedgeTakenCounts.end()) {
4172 BTCPos->second.clear();
4173 BackedgeTakenCounts.erase(BTCPos);
4174 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004175
Dan Gohman4c7279a2009-10-31 15:04:55 +00004176 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004177 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004178 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004179
Dan Gohman59ae6b92009-07-08 19:23:34 +00004180 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004181 while (!Worklist.empty()) {
4182 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004183 if (!Visited.insert(I)) continue;
4184
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004185 ValueExprMapType::iterator It =
4186 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004187 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004188 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004189 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004190 if (PHINode *PN = dyn_cast<PHINode>(I))
4191 ConstantEvolutionLoopExitValue.erase(PN);
4192 }
4193
4194 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004195 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004196
4197 // Forget all contained loops too, to avoid dangling entries in the
4198 // ValuesAtScopes map.
4199 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4200 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004201}
4202
Eric Christophere6cbfa62010-07-29 01:25:38 +00004203/// forgetValue - This method should be called by the client when it has
4204/// changed a value in a way that may effect its value, or which may
4205/// disconnect it from a def-use chain linking it to a loop.
4206void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004207 Instruction *I = dyn_cast<Instruction>(V);
4208 if (!I) return;
4209
4210 // Drop information about expressions based on loop-header PHIs.
4211 SmallVector<Instruction *, 16> Worklist;
4212 Worklist.push_back(I);
4213
4214 SmallPtrSet<Instruction *, 8> Visited;
4215 while (!Worklist.empty()) {
4216 I = Worklist.pop_back_val();
4217 if (!Visited.insert(I)) continue;
4218
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004219 ValueExprMapType::iterator It =
4220 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004221 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004222 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004223 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004224 if (PHINode *PN = dyn_cast<PHINode>(I))
4225 ConstantEvolutionLoopExitValue.erase(PN);
4226 }
4227
4228 PushDefUseChildren(I, Worklist);
4229 }
4230}
4231
Andrew Trick5116ff62011-07-26 17:19:55 +00004232/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004233/// exits. A computable result can only be return for loops with a single exit.
4234/// Returning the minimum taken count among all exits is incorrect because one
4235/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4236/// the limit of each loop test is never skipped. This is a valid assumption as
4237/// long as the loop exits via that test. For precise results, it is the
4238/// caller's responsibility to specify the relevant loop exit using
4239/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004240const SCEV *
4241ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4242 // If any exits were not computable, the loop is not computable.
4243 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4244
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004245 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004246 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004247 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4248
4249 const SCEV *BECount = 0;
4250 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4251 ENT != 0; ENT = ENT->getNextExit()) {
4252
4253 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4254
4255 if (!BECount)
4256 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004257 else if (BECount != ENT->ExactNotTaken)
4258 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004259 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004260 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004261 return BECount;
4262}
4263
4264/// getExact - Get the exact not taken count for this loop exit.
4265const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004266ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004267 ScalarEvolution *SE) const {
4268 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4269 ENT != 0; ENT = ENT->getNextExit()) {
4270
Andrew Trickfcb43562011-08-02 04:23:35 +00004271 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004272 return ENT->ExactNotTaken;
4273 }
4274 return SE->getCouldNotCompute();
4275}
4276
4277/// getMax - Get the max backedge taken count for the loop.
4278const SCEV *
4279ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4280 return Max ? Max : SE->getCouldNotCompute();
4281}
4282
Andrew Tricke74c2e82013-03-26 03:14:53 +00004283bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4284 ScalarEvolution *SE) const {
4285 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4286 return true;
4287
4288 if (!ExitNotTaken.ExitingBlock)
4289 return false;
4290
4291 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4292 ENT != 0; ENT = ENT->getNextExit()) {
4293
4294 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4295 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4296 return true;
4297 }
4298 }
4299 return false;
4300}
4301
Andrew Trick5116ff62011-07-26 17:19:55 +00004302/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4303/// computable exit into a persistent ExitNotTakenInfo array.
4304ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4305 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4306 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4307
4308 if (!Complete)
4309 ExitNotTaken.setIncomplete();
4310
4311 unsigned NumExits = ExitCounts.size();
4312 if (NumExits == 0) return;
4313
Andrew Trickfcb43562011-08-02 04:23:35 +00004314 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004315 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4316 if (NumExits == 1) return;
4317
4318 // Handle the rare case of multiple computable exits.
4319 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4320
4321 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4322 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4323 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004324 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004325 ENT->ExactNotTaken = ExitCounts[i].second;
4326 }
4327}
4328
4329/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4330void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004331 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004332 ExitNotTaken.ExactNotTaken = 0;
4333 delete[] ExitNotTaken.getNextExit();
4334}
4335
Dan Gohman46bdfb02009-02-24 18:55:53 +00004336/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4337/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004338ScalarEvolution::BackedgeTakenInfo
4339ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004340 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004341 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004342
Dan Gohmana334aa72009-06-22 00:31:57 +00004343 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004344 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004345 bool CouldComputeBECount = true;
4346 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004347 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004348 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4349 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004350 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004351 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004352 CouldComputeBECount = false;
4353 else
4354 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4355
Dan Gohman1c343752009-06-27 21:21:31 +00004356 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004357 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004358 else if (EL.Max != getCouldNotCompute()) {
4359 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4360 // skip some loop tests. Taking the max over the exits is sufficiently
4361 // conservative. TODO: We could do better taking into consideration
4362 // that (1) the loop has unit stride (2) the last loop test is
4363 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4364 // falls-through some constant times less then the other tests.
4365 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4366 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004367 }
4368
Andrew Trick5116ff62011-07-26 17:19:55 +00004369 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004370}
4371
Andrew Trick5116ff62011-07-26 17:19:55 +00004372/// ComputeExitLimit - Compute the number of times the backedge of the specified
4373/// loop will execute if it exits via the specified block.
4374ScalarEvolution::ExitLimit
4375ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004376
4377 // Okay, we've chosen an exiting block. See what condition causes us to
4378 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004379 //
4380 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004381 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004382 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004383 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004384
Chris Lattner8b0e3602007-01-07 02:24:26 +00004385 // At this point, we know we have a conditional branch that determines whether
4386 // the loop is exited. However, we don't know if the branch is executed each
4387 // time through the loop. If not, then the execution count of the branch will
4388 // not be equal to the trip count of the loop.
4389 //
4390 // Currently we check for this by checking to see if the Exit branch goes to
4391 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004392 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004393 // loop header. This is common for un-rotated loops.
4394 //
4395 // If both of those tests fail, walk up the unique predecessor chain to the
4396 // header, stopping if there is an edge that doesn't exit the loop. If the
4397 // header is reached, the execution count of the branch will be equal to the
4398 // trip count of the loop.
4399 //
4400 // More extensive analysis could be done to handle more cases here.
4401 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004402 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004403 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004404 ExitBr->getParent() != L->getHeader()) {
4405 // The simple checks failed, try climbing the unique predecessor chain
4406 // up to the header.
4407 bool Ok = false;
4408 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4409 BasicBlock *Pred = BB->getUniquePredecessor();
4410 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004411 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004412 TerminatorInst *PredTerm = Pred->getTerminator();
4413 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4414 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4415 if (PredSucc == BB)
4416 continue;
4417 // If the predecessor has a successor that isn't BB and isn't
4418 // outside the loop, assume the worst.
4419 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004420 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004421 }
4422 if (Pred == L->getHeader()) {
4423 Ok = true;
4424 break;
4425 }
4426 BB = Pred;
4427 }
4428 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004429 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004430 }
4431
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004432 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004433 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4434 ExitBr->getSuccessor(0),
Andrew Trick61601142013-05-31 06:43:25 +00004435 ExitBr->getSuccessor(1),
4436 /*IsSubExpr=*/false);
Dan Gohmana334aa72009-06-22 00:31:57 +00004437}
4438
Andrew Trick5116ff62011-07-26 17:19:55 +00004439/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004440/// backedge of the specified loop will execute if its exit condition
4441/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick61601142013-05-31 06:43:25 +00004442///
4443/// @param IsSubExpr is true if ExitCond does not directly control the exit
4444/// branch. In this case, we cannot assume that the loop only exits when the
4445/// condition is true and cannot infer that failing to meet the condition prior
4446/// to integer wraparound results in undefined behavior.
Andrew Trick5116ff62011-07-26 17:19:55 +00004447ScalarEvolution::ExitLimit
4448ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4449 Value *ExitCond,
4450 BasicBlock *TBB,
Andrew Trick61601142013-05-31 06:43:25 +00004451 BasicBlock *FBB,
4452 bool IsSubExpr) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004453 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004454 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4455 if (BO->getOpcode() == Instruction::And) {
4456 // Recurse on the operands of the and.
Andrew Trick61601142013-05-31 06:43:25 +00004457 bool EitherMayExit = L->contains(TBB);
4458 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4459 IsSubExpr || EitherMayExit);
4460 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4461 IsSubExpr || EitherMayExit);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004462 const SCEV *BECount = getCouldNotCompute();
4463 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick61601142013-05-31 06:43:25 +00004464 if (EitherMayExit) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004465 // Both conditions must be true for the loop to continue executing.
4466 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004467 if (EL0.Exact == getCouldNotCompute() ||
4468 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004469 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004470 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004471 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4472 if (EL0.Max == getCouldNotCompute())
4473 MaxBECount = EL1.Max;
4474 else if (EL1.Max == getCouldNotCompute())
4475 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004476 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004477 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004478 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004479 // Both conditions must be true at the same time for the loop to exit.
4480 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004481 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004482 if (EL0.Max == EL1.Max)
4483 MaxBECount = EL0.Max;
4484 if (EL0.Exact == EL1.Exact)
4485 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004486 }
4487
Andrew Trick5116ff62011-07-26 17:19:55 +00004488 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004489 }
4490 if (BO->getOpcode() == Instruction::Or) {
4491 // Recurse on the operands of the or.
Andrew Trick61601142013-05-31 06:43:25 +00004492 bool EitherMayExit = L->contains(FBB);
4493 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4494 IsSubExpr || EitherMayExit);
4495 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4496 IsSubExpr || EitherMayExit);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004497 const SCEV *BECount = getCouldNotCompute();
4498 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick61601142013-05-31 06:43:25 +00004499 if (EitherMayExit) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004500 // Both conditions must be false for the loop to continue executing.
4501 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004502 if (EL0.Exact == getCouldNotCompute() ||
4503 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004504 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004505 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004506 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4507 if (EL0.Max == getCouldNotCompute())
4508 MaxBECount = EL1.Max;
4509 else if (EL1.Max == getCouldNotCompute())
4510 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004511 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004512 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004513 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004514 // Both conditions must be false at the same time for the loop to exit.
4515 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004516 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004517 if (EL0.Max == EL1.Max)
4518 MaxBECount = EL0.Max;
4519 if (EL0.Exact == EL1.Exact)
4520 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004521 }
4522
Andrew Trick5116ff62011-07-26 17:19:55 +00004523 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004524 }
4525 }
4526
4527 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004528 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004529 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick61601142013-05-31 06:43:25 +00004530 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004531
Dan Gohman00cb5b72010-02-19 18:12:07 +00004532 // Check for a constant condition. These are normally stripped out by
4533 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4534 // preserve the CFG and is temporarily leaving constant conditions
4535 // in place.
4536 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4537 if (L->contains(FBB) == !CI->getZExtValue())
4538 // The backedge is always taken.
4539 return getCouldNotCompute();
4540 else
4541 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004542 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004543 }
4544
Eli Friedman361e54d2009-05-09 12:32:42 +00004545 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004546 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004547}
4548
Andrew Trick5116ff62011-07-26 17:19:55 +00004549/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004550/// backedge of the specified loop will execute if its exit condition
4551/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004552ScalarEvolution::ExitLimit
4553ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4554 ICmpInst *ExitCond,
4555 BasicBlock *TBB,
Andrew Trick61601142013-05-31 06:43:25 +00004556 BasicBlock *FBB,
4557 bool IsSubExpr) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004558
Reid Spencere4d87aa2006-12-23 06:05:41 +00004559 // If the condition was exit on true, convert the condition to exit on false
4560 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004561 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004562 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004563 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004564 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004565
4566 // Handle common loops like: for (X = "string"; *X; ++X)
4567 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4568 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004569 ExitLimit ItCnt =
4570 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004571 if (ItCnt.hasAnyInfo())
4572 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004573 }
4574
Dan Gohman0bba49c2009-07-07 17:06:11 +00004575 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4576 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004577
4578 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004579 LHS = getSCEVAtScope(LHS, L);
4580 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004581
Dan Gohman64a845e2009-06-24 04:48:43 +00004582 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004583 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004584 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004585 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004586 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004587 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004588 }
4589
Dan Gohman03557dc2010-05-03 16:35:17 +00004590 // Simplify the operands before analyzing them.
4591 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4592
Chris Lattner53e677a2004-04-02 20:23:17 +00004593 // If we have a comparison of a chrec against a constant, try to use value
4594 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004595 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4596 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004597 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004598 // Form the constant range.
4599 ConstantRange CompRange(
4600 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004601
Dan Gohman0bba49c2009-07-07 17:06:11 +00004602 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004603 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004604 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004605
Chris Lattner53e677a2004-04-02 20:23:17 +00004606 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004607 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004608 // Convert to: while (X-Y != 0)
Andrew Trick61601142013-05-31 06:43:25 +00004609 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004610 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004611 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004612 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004613 case ICmpInst::ICMP_EQ: { // while (X == Y)
4614 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004615 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4616 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004617 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004618 }
4619 case ICmpInst::ICMP_SLT: {
Andrew Trick61601142013-05-31 06:43:25 +00004620 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004621 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004622 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004623 }
4624 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004625 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Andrew Trick61601142013-05-31 06:43:25 +00004626 getNotSCEV(RHS), L, true, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004627 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004628 break;
4629 }
4630 case ICmpInst::ICMP_ULT: {
Andrew Trick61601142013-05-31 06:43:25 +00004631 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004632 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004633 break;
4634 }
4635 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004636 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Andrew Trick61601142013-05-31 06:43:25 +00004637 getNotSCEV(RHS), L, false, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004638 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004639 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004640 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004641 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004642#if 0
David Greene25e0e872009-12-23 22:18:14 +00004643 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004644 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004645 dbgs() << "[unsigned] ";
4646 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004647 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004648 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004649#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004650 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004651 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004652 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004653}
4654
Chris Lattner673e02b2004-10-12 01:49:27 +00004655static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004656EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4657 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004658 const SCEV *InVal = SE.getConstant(C);
4659 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004660 assert(isa<SCEVConstant>(Val) &&
4661 "Evaluation of SCEV at constant didn't fold correctly?");
4662 return cast<SCEVConstant>(Val)->getValue();
4663}
4664
Andrew Trick5116ff62011-07-26 17:19:55 +00004665/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004666/// 'icmp op load X, cst', try to see if we can compute the backedge
4667/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004668ScalarEvolution::ExitLimit
4669ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4670 LoadInst *LI,
4671 Constant *RHS,
4672 const Loop *L,
4673 ICmpInst::Predicate predicate) {
4674
Dan Gohman1c343752009-06-27 21:21:31 +00004675 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004676
4677 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004678 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004679 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004680 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004681
4682 // Make sure that it is really a constant global we are gepping, with an
4683 // initializer, and make sure the first IDX is really 0.
4684 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004685 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004686 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4687 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004688 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004689
4690 // Okay, we allow one non-constant index into the GEP instruction.
4691 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004692 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004693 unsigned VarIdxNum = 0;
4694 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4695 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4696 Indexes.push_back(CI);
4697 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004698 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004699 VarIdx = GEP->getOperand(i);
4700 VarIdxNum = i-2;
4701 Indexes.push_back(0);
4702 }
4703
Andrew Trickeb6dd232012-03-26 22:33:59 +00004704 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4705 if (!VarIdx)
4706 return getCouldNotCompute();
4707
Chris Lattner673e02b2004-10-12 01:49:27 +00004708 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4709 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004710 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004711 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004712
4713 // We can only recognize very limited forms of loop index expressions, in
4714 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004715 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004716 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004717 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4718 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004719 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004720
4721 unsigned MaxSteps = MaxBruteForceIterations;
4722 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004723 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004724 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004725 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004726
4727 // Form the GEP offset.
4728 Indexes[VarIdxNum] = Val;
4729
Chris Lattnerdada5862012-01-24 05:49:24 +00004730 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4731 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004732 if (Result == 0) break; // Cannot compute!
4733
4734 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004735 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004736 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004737 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004738#if 0
David Greene25e0e872009-12-23 22:18:14 +00004739 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004740 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4741 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004742#endif
4743 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004744 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004745 }
4746 }
Dan Gohman1c343752009-06-27 21:21:31 +00004747 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004748}
4749
4750
Chris Lattner3221ad02004-04-17 22:58:41 +00004751/// CanConstantFold - Return true if we can constant fold an instruction of the
4752/// specified type, assuming that all operands were constants.
4753static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004754 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004755 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4756 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004757 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004758
Chris Lattner3221ad02004-04-17 22:58:41 +00004759 if (const CallInst *CI = dyn_cast<CallInst>(I))
4760 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004761 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004762 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004763}
4764
Andrew Trick13d31e02011-10-05 03:25:31 +00004765/// Determine whether this instruction can constant evolve within this loop
4766/// assuming its operands can all constant evolve.
4767static bool canConstantEvolve(Instruction *I, const Loop *L) {
4768 // An instruction outside of the loop can't be derived from a loop PHI.
4769 if (!L->contains(I)) return false;
4770
4771 if (isa<PHINode>(I)) {
4772 if (L->getHeader() == I->getParent())
4773 return true;
4774 else
4775 // We don't currently keep track of the control flow needed to evaluate
4776 // PHIs, so we cannot handle PHIs inside of loops.
4777 return false;
4778 }
4779
4780 // If we won't be able to constant fold this expression even if the operands
4781 // are constants, bail early.
4782 return CanConstantFold(I);
4783}
4784
4785/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4786/// recursing through each instruction operand until reaching a loop header phi.
4787static PHINode *
4788getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004789 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004790
4791 // Otherwise, we can evaluate this instruction if all of its operands are
4792 // constant or derived from a PHI node themselves.
4793 PHINode *PHI = 0;
4794 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4795 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4796
4797 if (isa<Constant>(*OpI)) continue;
4798
4799 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4800 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4801
4802 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004803 if (!P)
4804 // If this operand is already visited, reuse the prior result.
4805 // We may have P != PHI if this is the deepest point at which the
4806 // inconsistent paths meet.
4807 P = PHIMap.lookup(OpInst);
4808 if (!P) {
4809 // Recurse and memoize the results, whether a phi is found or not.
4810 // This recursive call invalidates pointers into PHIMap.
4811 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4812 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004813 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004814 if (P == 0) return 0; // Not evolving from PHI
4815 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4816 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004817 }
4818 // This is a expression evolving from a constant PHI!
4819 return PHI;
4820}
4821
Chris Lattner3221ad02004-04-17 22:58:41 +00004822/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4823/// in the loop that V is derived from. We allow arbitrary operations along the
4824/// way, but the operands of an operation must either be constants or a value
4825/// derived from a constant PHI. If this expression does not fit with these
4826/// constraints, return null.
4827static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004828 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004829 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004830
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004831 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004832 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004833 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004834
Andrew Trick13d31e02011-10-05 03:25:31 +00004835 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004836 DenseMap<Instruction *, PHINode *> PHIMap;
4837 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004838}
4839
4840/// EvaluateExpression - Given an expression that passes the
4841/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4842/// in the loop has the value PHIVal. If we can't fold this expression for some
4843/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004844static Constant *EvaluateExpression(Value *V, const Loop *L,
4845 DenseMap<Instruction *, Constant *> &Vals,
Micah Villmow3574eca2012-10-08 16:38:25 +00004846 const DataLayout *TD,
Chad Rosier00737bd2011-12-01 21:29:16 +00004847 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004848 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004849 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004850 Instruction *I = dyn_cast<Instruction>(V);
4851 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004852
Andrew Trick13d31e02011-10-05 03:25:31 +00004853 if (Constant *C = Vals.lookup(I)) return C;
4854
Nick Lewycky614fef62011-10-22 19:58:20 +00004855 // An instruction inside the loop depends on a value outside the loop that we
4856 // weren't given a mapping for, or a value such as a call inside the loop.
4857 if (!canConstantEvolve(I, L)) return 0;
4858
4859 // An unmapped PHI can be due to a branch or another loop inside this loop,
4860 // or due to this not being the initial iteration through a loop where we
4861 // couldn't compute the evolution of this particular PHI last time.
4862 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004863
Dan Gohman9d4588f2010-06-22 13:15:46 +00004864 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004865
4866 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004867 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4868 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004869 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4870 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004871 continue;
4872 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004873 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004874 Vals[Operand] = C;
4875 if (!C) return 0;
4876 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004877 }
4878
Nick Lewycky614fef62011-10-22 19:58:20 +00004879 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004880 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004881 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004882 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4883 if (!LI->isVolatile())
4884 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4885 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004886 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4887 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004888}
4889
4890/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4891/// in the header of its containing loop, we know the loop executes a
4892/// constant number of times, and the PHI node is just a recurrence
4893/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004894Constant *
4895ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004896 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004897 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004898 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004899 ConstantEvolutionLoopExitValue.find(PN);
4900 if (I != ConstantEvolutionLoopExitValue.end())
4901 return I->second;
4902
Dan Gohmane0567812010-04-08 23:03:40 +00004903 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004904 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4905
4906 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4907
Andrew Trick13d31e02011-10-05 03:25:31 +00004908 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004909 BasicBlock *Header = L->getHeader();
4910 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004911
Chris Lattner3221ad02004-04-17 22:58:41 +00004912 // Since the loop is canonicalized, the PHI node must have two entries. One
4913 // entry must be a constant (coming in from outside of the loop), and the
4914 // second must be derived from the same PHI.
4915 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004916 PHINode *PHI = 0;
4917 for (BasicBlock::iterator I = Header->begin();
4918 (PHI = dyn_cast<PHINode>(I)); ++I) {
4919 Constant *StartCST =
4920 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4921 if (StartCST == 0) continue;
4922 CurrentIterVals[PHI] = StartCST;
4923 }
4924 if (!CurrentIterVals.count(PN))
4925 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004926
4927 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004928
4929 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004930 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004931 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004932
Dan Gohman46bdfb02009-02-24 18:55:53 +00004933 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004934 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004935 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004936 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004937 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004938
Nick Lewycky614fef62011-10-22 19:58:20 +00004939 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004940 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004941 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004942 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4943 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004944 if (NextPHI == 0)
4945 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004946 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004947
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004948 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4949
Nick Lewycky614fef62011-10-22 19:58:20 +00004950 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4951 // cease to be able to evaluate one of them or if they stop evolving,
4952 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004953 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004954 for (DenseMap<Instruction *, Constant *>::const_iterator
4955 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4956 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004957 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004958 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4959 }
4960 // We use two distinct loops because EvaluateExpression may invalidate any
4961 // iterators into CurrentIterVals.
4962 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4963 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4964 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004965 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004966 if (!NextPHI) { // Not already computed.
4967 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004968 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004969 }
4970 if (NextPHI != I->second)
4971 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004972 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004973
4974 // If all entries in CurrentIterVals == NextIterVals then we can stop
4975 // iterating, the loop can't continue to change.
4976 if (StoppedEvolving)
4977 return RetVal = CurrentIterVals[PN];
4978
Andrew Trick13d31e02011-10-05 03:25:31 +00004979 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004980 }
4981}
4982
Andrew Trick5116ff62011-07-26 17:19:55 +00004983/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004984/// constant number of times (the condition evolves only from constants),
4985/// try to evaluate a few iterations of the loop until we get the exit
4986/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004987/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004988const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4989 Value *Cond,
4990 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004991 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004992 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004993
Dan Gohmanb92654d2010-06-19 14:17:24 +00004994 // If the loop is canonicalized, the PHI will have exactly two entries.
4995 // That's the only form we support here.
4996 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4997
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004998 DenseMap<Instruction *, Constant *> CurrentIterVals;
4999 BasicBlock *Header = L->getHeader();
5000 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5001
Dan Gohmanb92654d2010-06-19 14:17:24 +00005002 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00005003 // second must be derived from the same PHI.
5004 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005005 PHINode *PHI = 0;
5006 for (BasicBlock::iterator I = Header->begin();
5007 (PHI = dyn_cast<PHINode>(I)); ++I) {
5008 Constant *StartCST =
5009 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5010 if (StartCST == 0) continue;
5011 CurrentIterVals[PHI] = StartCST;
5012 }
5013 if (!CurrentIterVals.count(PN))
5014 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00005015
5016 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5017 // the loop symbolically to determine when the condition gets a value of
5018 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005019
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005020 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005021 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005022 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00005023 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5024 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00005025
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005026 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00005027 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005028
Reid Spencere8019bb2007-03-01 07:25:48 +00005029 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00005030 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00005031 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00005032 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005033
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005034 // Update all the PHI nodes for the next iteration.
5035 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00005036
5037 // Create a list of which PHIs we need to compute. We want to do this before
5038 // calling EvaluateExpression on them because that may invalidate iterators
5039 // into CurrentIterVals.
5040 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005041 for (DenseMap<Instruction *, Constant *>::const_iterator
5042 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5043 PHINode *PHI = dyn_cast<PHINode>(I->first);
5044 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00005045 PHIsToCompute.push_back(PHI);
5046 }
5047 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5048 E = PHIsToCompute.end(); I != E; ++I) {
5049 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005050 Constant *&NextPHI = NextIterVals[PHI];
5051 if (NextPHI) continue; // Already computed!
5052
5053 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00005054 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005055 }
5056 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00005057 }
5058
5059 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00005060 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005061}
5062
Dan Gohmane7125f42009-09-03 15:00:26 +00005063/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00005064/// at the specified scope in the program. The L value specifies a loop
5065/// nest to evaluate the expression at, where null is the top-level or a
5066/// specified loop is immediately inside of the loop.
5067///
5068/// This method can be used to compute the exit value for a variable defined
5069/// in a loop by querying what the value will hold in the parent loop.
5070///
Dan Gohmand594e6f2009-05-24 23:25:42 +00005071/// In the case that a relevant loop exit value cannot be computed, the
5072/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005073const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00005074 // Check to see if we've folded this expression at this loop before.
5075 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5076 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5077 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5078 if (!Pair.second)
5079 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00005080
Dan Gohman42214892009-08-31 21:15:23 +00005081 // Otherwise compute it.
5082 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00005083 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005084 return C;
5085}
5086
Nick Lewycky614fef62011-10-22 19:58:20 +00005087/// This builds up a Constant using the ConstantExpr interface. That way, we
5088/// will return Constants for objects which aren't represented by a
5089/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5090/// Returns NULL if the SCEV isn't representable as a Constant.
5091static Constant *BuildConstantFromSCEV(const SCEV *V) {
5092 switch (V->getSCEVType()) {
5093 default: // TODO: smax, umax.
5094 case scCouldNotCompute:
5095 case scAddRecExpr:
5096 break;
5097 case scConstant:
5098 return cast<SCEVConstant>(V)->getValue();
5099 case scUnknown:
5100 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5101 case scSignExtend: {
5102 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5103 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5104 return ConstantExpr::getSExt(CastOp, SS->getType());
5105 break;
5106 }
5107 case scZeroExtend: {
5108 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5109 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5110 return ConstantExpr::getZExt(CastOp, SZ->getType());
5111 break;
5112 }
5113 case scTruncate: {
5114 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5115 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5116 return ConstantExpr::getTrunc(CastOp, ST->getType());
5117 break;
5118 }
5119 case scAddExpr: {
5120 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5121 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5122 if (C->getType()->isPointerTy())
5123 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5124 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5125 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5126 if (!C2) return 0;
5127
5128 // First pointer!
5129 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5130 std::swap(C, C2);
5131 // The offsets have been converted to bytes. We can add bytes to an
5132 // i8* by GEP with the byte count in the first index.
5133 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5134 }
5135
5136 // Don't bother trying to sum two pointers. We probably can't
5137 // statically compute a load that results from it anyway.
5138 if (C2->getType()->isPointerTy())
5139 return 0;
5140
5141 if (C->getType()->isPointerTy()) {
5142 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5143 C2 = ConstantExpr::getIntegerCast(
5144 C2, Type::getInt32Ty(C->getContext()), true);
5145 C = ConstantExpr::getGetElementPtr(C, C2);
5146 } else
5147 C = ConstantExpr::getAdd(C, C2);
5148 }
5149 return C;
5150 }
5151 break;
5152 }
5153 case scMulExpr: {
5154 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5155 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5156 // Don't bother with pointers at all.
5157 if (C->getType()->isPointerTy()) return 0;
5158 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5159 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5160 if (!C2 || C2->getType()->isPointerTy()) return 0;
5161 C = ConstantExpr::getMul(C, C2);
5162 }
5163 return C;
5164 }
5165 break;
5166 }
5167 case scUDivExpr: {
5168 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5169 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5170 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5171 if (LHS->getType() == RHS->getType())
5172 return ConstantExpr::getUDiv(LHS, RHS);
5173 break;
5174 }
5175 }
5176 return 0;
5177}
5178
Dan Gohman42214892009-08-31 21:15:23 +00005179const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005180 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005181
Nick Lewycky3e630762008-02-20 06:48:22 +00005182 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005183 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005184 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005185 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005186 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005187 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5188 if (PHINode *PN = dyn_cast<PHINode>(I))
5189 if (PN->getParent() == LI->getHeader()) {
5190 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005191 // to see if the loop that contains it has a known backedge-taken
5192 // count. If so, we may be able to force computation of the exit
5193 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005194 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005195 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005196 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005197 // Okay, we know how many times the containing loop executes. If
5198 // this is a constant evolving PHI node, get the final value at
5199 // the specified iteration number.
5200 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005201 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005202 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005203 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005204 }
5205 }
5206
Reid Spencer09906f32006-12-04 21:33:23 +00005207 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005208 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005209 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005210 // result. This is particularly useful for computing loop exit values.
5211 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005212 SmallVector<Constant *, 4> Operands;
5213 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005214 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5215 Value *Op = I->getOperand(i);
5216 if (Constant *C = dyn_cast<Constant>(Op)) {
5217 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005218 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005219 }
Dan Gohman11046452010-06-29 23:43:06 +00005220
5221 // If any of the operands is non-constant and if they are
5222 // non-integer and non-pointer, don't even try to analyze them
5223 // with scev techniques.
5224 if (!isSCEVable(Op->getType()))
5225 return V;
5226
5227 const SCEV *OrigV = getSCEV(Op);
5228 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5229 MadeImprovement |= OrigV != OpV;
5230
Nick Lewycky614fef62011-10-22 19:58:20 +00005231 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005232 if (!C) return V;
5233 if (C->getType() != Op->getType())
5234 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5235 Op->getType(),
5236 false),
5237 C, Op->getType());
5238 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005239 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005240
Dan Gohman11046452010-06-29 23:43:06 +00005241 // Check to see if getSCEVAtScope actually made an improvement.
5242 if (MadeImprovement) {
5243 Constant *C = 0;
5244 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5245 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005246 Operands[0], Operands[1], TD,
5247 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005248 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5249 if (!LI->isVolatile())
5250 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5251 } else
Dan Gohman11046452010-06-29 23:43:06 +00005252 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005253 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005254 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005255 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005256 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005257 }
5258 }
5259
5260 // This is some other type of SCEVUnknown, just return it.
5261 return V;
5262 }
5263
Dan Gohman622ed672009-05-04 22:02:23 +00005264 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005265 // Avoid performing the look-up in the common case where the specified
5266 // expression has no loop-variant portions.
5267 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005268 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005269 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005270 // Okay, at least one of these operands is loop variant but might be
5271 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005272 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5273 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005274 NewOps.push_back(OpAtScope);
5275
5276 for (++i; i != e; ++i) {
5277 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005278 NewOps.push_back(OpAtScope);
5279 }
5280 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005281 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005282 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005283 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005284 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005285 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005286 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005287 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005288 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005289 }
5290 }
5291 // If we got here, all operands are loop invariant.
5292 return Comm;
5293 }
5294
Dan Gohman622ed672009-05-04 22:02:23 +00005295 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005296 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5297 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005298 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5299 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005300 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005301 }
5302
5303 // If this is a loop recurrence for a loop that does not contain L, then we
5304 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005305 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005306 // First, attempt to evaluate each operand.
5307 // Avoid performing the look-up in the common case where the specified
5308 // expression has no loop-variant portions.
5309 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5310 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5311 if (OpAtScope == AddRec->getOperand(i))
5312 continue;
5313
5314 // Okay, at least one of these operands is loop variant but might be
5315 // foldable. Build a new instance of the folded commutative expression.
5316 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5317 AddRec->op_begin()+i);
5318 NewOps.push_back(OpAtScope);
5319 for (++i; i != e; ++i)
5320 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5321
Andrew Trick3f95c882011-04-27 01:21:25 +00005322 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005323 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005324 AddRec->getNoWrapFlags(SCEV::FlagNW));
5325 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005326 // The addrec may be folded to a nonrecurrence, for example, if the
5327 // induction variable is multiplied by zero after constant folding. Go
5328 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005329 if (!AddRec)
5330 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005331 break;
5332 }
5333
5334 // If the scope is outside the addrec's loop, evaluate it by using the
5335 // loop exit value of the addrec.
5336 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005337 // To evaluate this recurrence, we need to know how many times the AddRec
5338 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005339 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005340 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005341
Eli Friedmanb42a6262008-08-04 23:49:06 +00005342 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005343 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005344 }
Dan Gohman11046452010-06-29 23:43:06 +00005345
Dan Gohmand594e6f2009-05-24 23:25:42 +00005346 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005347 }
5348
Dan Gohman622ed672009-05-04 22:02:23 +00005349 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005350 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005351 if (Op == Cast->getOperand())
5352 return Cast; // must be loop invariant
5353 return getZeroExtendExpr(Op, Cast->getType());
5354 }
5355
Dan Gohman622ed672009-05-04 22:02:23 +00005356 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005357 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005358 if (Op == Cast->getOperand())
5359 return Cast; // must be loop invariant
5360 return getSignExtendExpr(Op, Cast->getType());
5361 }
5362
Dan Gohman622ed672009-05-04 22:02:23 +00005363 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005364 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005365 if (Op == Cast->getOperand())
5366 return Cast; // must be loop invariant
5367 return getTruncateExpr(Op, Cast->getType());
5368 }
5369
Torok Edwinc23197a2009-07-14 16:55:14 +00005370 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005371}
5372
Dan Gohman66a7e852009-05-08 20:38:54 +00005373/// getSCEVAtScope - This is a convenience function which does
5374/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005375const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005376 return getSCEVAtScope(getSCEV(V), L);
5377}
5378
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005379/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5380/// following equation:
5381///
5382/// A * X = B (mod N)
5383///
5384/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5385/// A and B isn't important.
5386///
5387/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005388static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005389 ScalarEvolution &SE) {
5390 uint32_t BW = A.getBitWidth();
5391 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5392 assert(A != 0 && "A must be non-zero.");
5393
5394 // 1. D = gcd(A, N)
5395 //
5396 // The gcd of A and N may have only one prime factor: 2. The number of
5397 // trailing zeros in A is its multiplicity
5398 uint32_t Mult2 = A.countTrailingZeros();
5399 // D = 2^Mult2
5400
5401 // 2. Check if B is divisible by D.
5402 //
5403 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5404 // is not less than multiplicity of this prime factor for D.
5405 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005406 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005407
5408 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5409 // modulo (N / D).
5410 //
5411 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5412 // bit width during computations.
5413 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5414 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005415 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005416 APInt I = AD.multiplicativeInverse(Mod);
5417
5418 // 4. Compute the minimum unsigned root of the equation:
5419 // I * (B / D) mod (N / D)
5420 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5421
5422 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5423 // bits.
5424 return SE.getConstant(Result.trunc(BW));
5425}
Chris Lattner53e677a2004-04-02 20:23:17 +00005426
5427/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5428/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5429/// might be the same) or two SCEVCouldNotCompute objects.
5430///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005431static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005432SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005433 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005434 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5435 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5436 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005437
Chris Lattner53e677a2004-04-02 20:23:17 +00005438 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005439 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005440 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005441 return std::make_pair(CNC, CNC);
5442 }
5443
Reid Spencere8019bb2007-03-01 07:25:48 +00005444 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005445 const APInt &L = LC->getValue()->getValue();
5446 const APInt &M = MC->getValue()->getValue();
5447 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005448 APInt Two(BitWidth, 2);
5449 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005450
Dan Gohman64a845e2009-06-24 04:48:43 +00005451 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005452 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005453 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005454 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5455 // The B coefficient is M-N/2
5456 APInt B(M);
5457 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005458
Reid Spencere8019bb2007-03-01 07:25:48 +00005459 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005460 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005461
Reid Spencere8019bb2007-03-01 07:25:48 +00005462 // Compute the B^2-4ac term.
5463 APInt SqrtTerm(B);
5464 SqrtTerm *= B;
5465 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005466
Nick Lewycky6ce24712012-08-01 09:14:36 +00005467 if (SqrtTerm.isNegative()) {
5468 // The loop is provably infinite.
5469 const SCEV *CNC = SE.getCouldNotCompute();
5470 return std::make_pair(CNC, CNC);
5471 }
5472
Reid Spencere8019bb2007-03-01 07:25:48 +00005473 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5474 // integer value or else APInt::sqrt() will assert.
5475 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005476
Dan Gohman64a845e2009-06-24 04:48:43 +00005477 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005478 // The divisions must be performed as signed divisions.
5479 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005480 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005481 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005482 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005483 return std::make_pair(CNC, CNC);
5484 }
5485
Owen Andersone922c022009-07-22 00:24:57 +00005486 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005487
5488 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005489 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005490 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005491 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005492
Dan Gohman64a845e2009-06-24 04:48:43 +00005493 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005494 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005495 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005496}
5497
5498/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005499/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005500///
5501/// This is only used for loops with a "x != y" exit test. The exit condition is
5502/// now expressed as a single expression, V = x-y. So the exit test is
5503/// effectively V != 0. We know and take advantage of the fact that this
5504/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005505ScalarEvolution::ExitLimit
Andrew Trick61601142013-05-31 06:43:25 +00005506ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005507 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005508 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005509 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005510 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005511 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005512 }
5513
Dan Gohman35738ac2009-05-04 22:30:44 +00005514 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005515 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005516 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005517
Chris Lattner7975e3e2011-01-09 22:39:48 +00005518 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5519 // the quadratic equation to solve it.
5520 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5521 std::pair<const SCEV *,const SCEV *> Roots =
5522 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005523 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5524 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005525 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005526#if 0
David Greene25e0e872009-12-23 22:18:14 +00005527 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005528 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005529#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005530 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005531 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005532 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5533 R1->getValue(),
5534 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005535 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005536 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005537
Chris Lattner53e677a2004-04-02 20:23:17 +00005538 // We can only use this value if the chrec ends up with an exact zero
5539 // value at this index. When solving for "X*X != 5", for example, we
5540 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005541 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005542 if (Val->isZero())
5543 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005544 }
5545 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005546 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005547 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005548
Chris Lattner7975e3e2011-01-09 22:39:48 +00005549 // Otherwise we can only handle this if it is affine.
5550 if (!AddRec->isAffine())
5551 return getCouldNotCompute();
5552
5553 // If this is an affine expression, the execution count of this branch is
5554 // the minimum unsigned root of the following equation:
5555 //
5556 // Start + Step*N = 0 (mod 2^BW)
5557 //
5558 // equivalent to:
5559 //
5560 // Step*N = -Start (mod 2^BW)
5561 //
5562 // where BW is the common bit width of Start and Step.
5563
5564 // Get the initial value for the loop.
5565 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5566 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5567
5568 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005569 //
5570 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5571 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5572 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5573 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005574 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky4d3bba52012-06-28 23:44:57 +00005575 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattner7975e3e2011-01-09 22:39:48 +00005576 return getCouldNotCompute();
5577
Andrew Trick3228cc22011-03-14 16:50:06 +00005578 // For positive steps (counting up until unsigned overflow):
5579 // N = -Start/Step (as unsigned)
5580 // For negative steps (counting down to zero):
5581 // N = Start/-Step
5582 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005583 bool CountDown = StepC->getValue()->getValue().isNegative();
5584 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005585
5586 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005587 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5588 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005589 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5590 ConstantRange CR = getUnsignedRange(Start);
5591 const SCEV *MaxBECount;
5592 if (!CountDown && CR.getUnsignedMin().isMinValue())
5593 // When counting up, the worst starting value is 1, not 0.
5594 MaxBECount = CR.getUnsignedMax().isMinValue()
5595 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5596 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5597 else
5598 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5599 : -CR.getUnsignedMin());
5600 return ExitLimit(Distance, MaxBECount);
5601 }
Andrew Trick635f7182011-03-09 17:23:39 +00005602
Andrew Trickdcfd4042011-03-14 17:28:02 +00005603 // If the recurrence is known not to wraparound, unsigned divide computes the
Andrew Trick61601142013-05-31 06:43:25 +00005604 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5605 // that the value will either become zero (and thus the loop terminates), that
5606 // the loop will terminate through some other exit condition first, or that
5607 // the loop has undefined behavior. This means we can't "miss" the exit
5608 // value, even with nonunit stride.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005609 //
Andrew Trick61601142013-05-31 06:43:25 +00005610 // This is only valid for expressions that directly compute the loop exit. It
5611 // is invalid for subexpressions in which the loop may exit through this
5612 // branch even if this subexpression is false. In that case, the trip count
5613 // computed by this udiv could be smaller than the number of well-defined
5614 // iterations.
5615 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW))
Andrew Trickdcfd4042011-03-14 17:28:02 +00005616 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick61601142013-05-31 06:43:25 +00005617
Chris Lattner7975e3e2011-01-09 22:39:48 +00005618 // Then, try to solve the above equation provided that Start is constant.
5619 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5620 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5621 -StartC->getValue()->getValue(),
5622 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005623 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005624}
5625
5626/// HowFarToNonZero - Return the number of times a backedge checking the
5627/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005628/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005629ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005630ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005631 // Loops that look like: while (X == 0) are very strange indeed. We don't
5632 // handle them yet except for the trivial case. This could be expanded in the
5633 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005634
Chris Lattner53e677a2004-04-02 20:23:17 +00005635 // If the value is a constant, check to see if it is known to be non-zero
5636 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005637 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005638 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005639 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005640 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005641 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005642
Chris Lattner53e677a2004-04-02 20:23:17 +00005643 // We could implement others, but I really doubt anyone writes loops like
5644 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005645 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005646}
5647
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005648/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5649/// (which may not be an immediate predecessor) which has exactly one
5650/// successor from which BB is reachable, or null if no such block is
5651/// found.
5652///
Dan Gohman005752b2010-04-15 16:19:08 +00005653std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005654ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005655 // If the block has a unique predecessor, then there is no path from the
5656 // predecessor to the block that does not go through the direct edge
5657 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005658 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005659 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005660
5661 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005662 // If the header has a unique predecessor outside the loop, it must be
5663 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005664 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005665 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005666
Dan Gohman005752b2010-04-15 16:19:08 +00005667 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005668}
5669
Dan Gohman763bad12009-06-20 00:35:32 +00005670/// HasSameValue - SCEV structural equivalence is usually sufficient for
5671/// testing whether two expressions are equal, however for the purposes of
5672/// looking for a condition guarding a loop, it can be useful to be a little
5673/// more general, since a front-end may have replicated the controlling
5674/// expression.
5675///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005676static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005677 // Quick check to see if they are the same SCEV.
5678 if (A == B) return true;
5679
5680 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5681 // two different instructions with the same value. Check for this case.
5682 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5683 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5684 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5685 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005686 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005687 return true;
5688
5689 // Otherwise assume they may have a different value.
5690 return false;
5691}
5692
Dan Gohmane9796502010-04-24 01:28:42 +00005693/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru94c22712012-09-27 10:14:43 +00005694/// predicate Pred. Return true iff any changes were made.
Dan Gohmane9796502010-04-24 01:28:42 +00005695///
5696bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005697 const SCEV *&LHS, const SCEV *&RHS,
5698 unsigned Depth) {
Dan Gohmane9796502010-04-24 01:28:42 +00005699 bool Changed = false;
5700
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005701 // If we hit the max recursion limit bail out.
5702 if (Depth >= 3)
5703 return false;
5704
Dan Gohmane9796502010-04-24 01:28:42 +00005705 // Canonicalize a constant to the right side.
5706 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5707 // Check for both operands constant.
5708 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5709 if (ConstantExpr::getICmp(Pred,
5710 LHSC->getValue(),
5711 RHSC->getValue())->isNullValue())
5712 goto trivially_false;
5713 else
5714 goto trivially_true;
5715 }
5716 // Otherwise swap the operands to put the constant on the right.
5717 std::swap(LHS, RHS);
5718 Pred = ICmpInst::getSwappedPredicate(Pred);
5719 Changed = true;
5720 }
5721
5722 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005723 // addrec's loop, put the addrec on the left. Also make a dominance check,
5724 // as both operands could be addrecs loop-invariant in each other's loop.
5725 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5726 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005727 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005728 std::swap(LHS, RHS);
5729 Pred = ICmpInst::getSwappedPredicate(Pred);
5730 Changed = true;
5731 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005732 }
Dan Gohmane9796502010-04-24 01:28:42 +00005733
5734 // If there's a constant operand, canonicalize comparisons with boundary
5735 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5736 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5737 const APInt &RA = RC->getValue()->getValue();
5738 switch (Pred) {
5739 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5740 case ICmpInst::ICMP_EQ:
5741 case ICmpInst::ICMP_NE:
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005742 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5743 if (!RA)
5744 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5745 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer127563b2012-05-30 18:42:43 +00005746 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5747 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005748 RHS = AE->getOperand(1);
5749 LHS = ME->getOperand(1);
5750 Changed = true;
5751 }
Dan Gohmane9796502010-04-24 01:28:42 +00005752 break;
5753 case ICmpInst::ICMP_UGE:
5754 if ((RA - 1).isMinValue()) {
5755 Pred = ICmpInst::ICMP_NE;
5756 RHS = getConstant(RA - 1);
5757 Changed = true;
5758 break;
5759 }
5760 if (RA.isMaxValue()) {
5761 Pred = ICmpInst::ICMP_EQ;
5762 Changed = true;
5763 break;
5764 }
5765 if (RA.isMinValue()) goto trivially_true;
5766
5767 Pred = ICmpInst::ICMP_UGT;
5768 RHS = getConstant(RA - 1);
5769 Changed = true;
5770 break;
5771 case ICmpInst::ICMP_ULE:
5772 if ((RA + 1).isMaxValue()) {
5773 Pred = ICmpInst::ICMP_NE;
5774 RHS = getConstant(RA + 1);
5775 Changed = true;
5776 break;
5777 }
5778 if (RA.isMinValue()) {
5779 Pred = ICmpInst::ICMP_EQ;
5780 Changed = true;
5781 break;
5782 }
5783 if (RA.isMaxValue()) goto trivially_true;
5784
5785 Pred = ICmpInst::ICMP_ULT;
5786 RHS = getConstant(RA + 1);
5787 Changed = true;
5788 break;
5789 case ICmpInst::ICMP_SGE:
5790 if ((RA - 1).isMinSignedValue()) {
5791 Pred = ICmpInst::ICMP_NE;
5792 RHS = getConstant(RA - 1);
5793 Changed = true;
5794 break;
5795 }
5796 if (RA.isMaxSignedValue()) {
5797 Pred = ICmpInst::ICMP_EQ;
5798 Changed = true;
5799 break;
5800 }
5801 if (RA.isMinSignedValue()) goto trivially_true;
5802
5803 Pred = ICmpInst::ICMP_SGT;
5804 RHS = getConstant(RA - 1);
5805 Changed = true;
5806 break;
5807 case ICmpInst::ICMP_SLE:
5808 if ((RA + 1).isMaxSignedValue()) {
5809 Pred = ICmpInst::ICMP_NE;
5810 RHS = getConstant(RA + 1);
5811 Changed = true;
5812 break;
5813 }
5814 if (RA.isMinSignedValue()) {
5815 Pred = ICmpInst::ICMP_EQ;
5816 Changed = true;
5817 break;
5818 }
5819 if (RA.isMaxSignedValue()) goto trivially_true;
5820
5821 Pred = ICmpInst::ICMP_SLT;
5822 RHS = getConstant(RA + 1);
5823 Changed = true;
5824 break;
5825 case ICmpInst::ICMP_UGT:
5826 if (RA.isMinValue()) {
5827 Pred = ICmpInst::ICMP_NE;
5828 Changed = true;
5829 break;
5830 }
5831 if ((RA + 1).isMaxValue()) {
5832 Pred = ICmpInst::ICMP_EQ;
5833 RHS = getConstant(RA + 1);
5834 Changed = true;
5835 break;
5836 }
5837 if (RA.isMaxValue()) goto trivially_false;
5838 break;
5839 case ICmpInst::ICMP_ULT:
5840 if (RA.isMaxValue()) {
5841 Pred = ICmpInst::ICMP_NE;
5842 Changed = true;
5843 break;
5844 }
5845 if ((RA - 1).isMinValue()) {
5846 Pred = ICmpInst::ICMP_EQ;
5847 RHS = getConstant(RA - 1);
5848 Changed = true;
5849 break;
5850 }
5851 if (RA.isMinValue()) goto trivially_false;
5852 break;
5853 case ICmpInst::ICMP_SGT:
5854 if (RA.isMinSignedValue()) {
5855 Pred = ICmpInst::ICMP_NE;
5856 Changed = true;
5857 break;
5858 }
5859 if ((RA + 1).isMaxSignedValue()) {
5860 Pred = ICmpInst::ICMP_EQ;
5861 RHS = getConstant(RA + 1);
5862 Changed = true;
5863 break;
5864 }
5865 if (RA.isMaxSignedValue()) goto trivially_false;
5866 break;
5867 case ICmpInst::ICMP_SLT:
5868 if (RA.isMaxSignedValue()) {
5869 Pred = ICmpInst::ICMP_NE;
5870 Changed = true;
5871 break;
5872 }
5873 if ((RA - 1).isMinSignedValue()) {
5874 Pred = ICmpInst::ICMP_EQ;
5875 RHS = getConstant(RA - 1);
5876 Changed = true;
5877 break;
5878 }
5879 if (RA.isMinSignedValue()) goto trivially_false;
5880 break;
5881 }
5882 }
5883
5884 // Check for obvious equality.
5885 if (HasSameValue(LHS, RHS)) {
5886 if (ICmpInst::isTrueWhenEqual(Pred))
5887 goto trivially_true;
5888 if (ICmpInst::isFalseWhenEqual(Pred))
5889 goto trivially_false;
5890 }
5891
Dan Gohman03557dc2010-05-03 16:35:17 +00005892 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5893 // adding or subtracting 1 from one of the operands.
5894 switch (Pred) {
5895 case ICmpInst::ICMP_SLE:
5896 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5897 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005898 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005899 Pred = ICmpInst::ICMP_SLT;
5900 Changed = true;
5901 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005902 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005903 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005904 Pred = ICmpInst::ICMP_SLT;
5905 Changed = true;
5906 }
5907 break;
5908 case ICmpInst::ICMP_SGE:
5909 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005910 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005911 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005912 Pred = ICmpInst::ICMP_SGT;
5913 Changed = true;
5914 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5915 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005916 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005917 Pred = ICmpInst::ICMP_SGT;
5918 Changed = true;
5919 }
5920 break;
5921 case ICmpInst::ICMP_ULE:
5922 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005923 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005924 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005925 Pred = ICmpInst::ICMP_ULT;
5926 Changed = true;
5927 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005928 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005929 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005930 Pred = ICmpInst::ICMP_ULT;
5931 Changed = true;
5932 }
5933 break;
5934 case ICmpInst::ICMP_UGE:
5935 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005936 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005937 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005938 Pred = ICmpInst::ICMP_UGT;
5939 Changed = true;
5940 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005941 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005942 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005943 Pred = ICmpInst::ICMP_UGT;
5944 Changed = true;
5945 }
5946 break;
5947 default:
5948 break;
5949 }
5950
Dan Gohmane9796502010-04-24 01:28:42 +00005951 // TODO: More simplifications are possible here.
5952
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005953 // Recursively simplify until we either hit a recursion limit or nothing
5954 // changes.
5955 if (Changed)
5956 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5957
Dan Gohmane9796502010-04-24 01:28:42 +00005958 return Changed;
5959
5960trivially_true:
5961 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005962 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005963 Pred = ICmpInst::ICMP_EQ;
5964 return true;
5965
5966trivially_false:
5967 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005968 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005969 Pred = ICmpInst::ICMP_NE;
5970 return true;
5971}
5972
Dan Gohman85b05a22009-07-13 21:35:55 +00005973bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5974 return getSignedRange(S).getSignedMax().isNegative();
5975}
5976
5977bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5978 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5979}
5980
5981bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5982 return !getSignedRange(S).getSignedMin().isNegative();
5983}
5984
5985bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5986 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5987}
5988
5989bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5990 return isKnownNegative(S) || isKnownPositive(S);
5991}
5992
5993bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5994 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005995 // Canonicalize the inputs first.
5996 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5997
Dan Gohman53c66ea2010-04-11 22:16:48 +00005998 // If LHS or RHS is an addrec, check to see if the condition is true in
5999 // every iteration of the loop.
6000 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
6001 if (isLoopEntryGuardedByCond(
6002 AR->getLoop(), Pred, AR->getStart(), RHS) &&
6003 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00006004 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00006005 return true;
6006 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
6007 if (isLoopEntryGuardedByCond(
6008 AR->getLoop(), Pred, LHS, AR->getStart()) &&
6009 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00006010 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00006011 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00006012
Dan Gohman53c66ea2010-04-11 22:16:48 +00006013 // Otherwise see what can be done with known constant ranges.
6014 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6015}
6016
6017bool
6018ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6019 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006020 if (HasSameValue(LHS, RHS))
6021 return ICmpInst::isTrueWhenEqual(Pred);
6022
Dan Gohman53c66ea2010-04-11 22:16:48 +00006023 // This code is split out from isKnownPredicate because it is called from
6024 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00006025 switch (Pred) {
6026 default:
Dan Gohman850f7912009-07-16 17:34:36 +00006027 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00006028 case ICmpInst::ICMP_SGT:
6029 Pred = ICmpInst::ICMP_SLT;
6030 std::swap(LHS, RHS);
6031 case ICmpInst::ICMP_SLT: {
6032 ConstantRange LHSRange = getSignedRange(LHS);
6033 ConstantRange RHSRange = getSignedRange(RHS);
6034 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6035 return true;
6036 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6037 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006038 break;
6039 }
6040 case ICmpInst::ICMP_SGE:
6041 Pred = ICmpInst::ICMP_SLE;
6042 std::swap(LHS, RHS);
6043 case ICmpInst::ICMP_SLE: {
6044 ConstantRange LHSRange = getSignedRange(LHS);
6045 ConstantRange RHSRange = getSignedRange(RHS);
6046 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6047 return true;
6048 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6049 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006050 break;
6051 }
6052 case ICmpInst::ICMP_UGT:
6053 Pred = ICmpInst::ICMP_ULT;
6054 std::swap(LHS, RHS);
6055 case ICmpInst::ICMP_ULT: {
6056 ConstantRange LHSRange = getUnsignedRange(LHS);
6057 ConstantRange RHSRange = getUnsignedRange(RHS);
6058 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6059 return true;
6060 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6061 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006062 break;
6063 }
6064 case ICmpInst::ICMP_UGE:
6065 Pred = ICmpInst::ICMP_ULE;
6066 std::swap(LHS, RHS);
6067 case ICmpInst::ICMP_ULE: {
6068 ConstantRange LHSRange = getUnsignedRange(LHS);
6069 ConstantRange RHSRange = getUnsignedRange(RHS);
6070 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6071 return true;
6072 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6073 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006074 break;
6075 }
6076 case ICmpInst::ICMP_NE: {
6077 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6078 return true;
6079 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6080 return true;
6081
6082 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6083 if (isKnownNonZero(Diff))
6084 return true;
6085 break;
6086 }
6087 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00006088 // The check at the top of the function catches the case where
6089 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00006090 break;
6091 }
6092 return false;
6093}
6094
6095/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6096/// protected by a conditional between LHS and RHS. This is used to
6097/// to eliminate casts.
6098bool
6099ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6100 ICmpInst::Predicate Pred,
6101 const SCEV *LHS, const SCEV *RHS) {
6102 // Interpret a null as meaning no loop, where there is obviously no guard
6103 // (interprocedural conditions notwithstanding).
6104 if (!L) return true;
6105
6106 BasicBlock *Latch = L->getLoopLatch();
6107 if (!Latch)
6108 return false;
6109
6110 BranchInst *LoopContinuePredicate =
6111 dyn_cast<BranchInst>(Latch->getTerminator());
6112 if (!LoopContinuePredicate ||
6113 LoopContinuePredicate->isUnconditional())
6114 return false;
6115
Dan Gohmanaf08a362010-08-10 23:46:30 +00006116 return isImpliedCond(Pred, LHS, RHS,
6117 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006118 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006119}
6120
Dan Gohman3948d0b2010-04-11 19:27:13 +00006121/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006122/// by a conditional between LHS and RHS. This is used to help avoid max
6123/// expressions in loop trip counts, and to eliminate casts.
6124bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006125ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6126 ICmpInst::Predicate Pred,
6127 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006128 // Interpret a null as meaning no loop, where there is obviously no guard
6129 // (interprocedural conditions notwithstanding).
6130 if (!L) return false;
6131
Dan Gohman859b4822009-05-18 15:36:09 +00006132 // Starting at the loop predecessor, climb up the predecessor chain, as long
6133 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006134 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006135 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006136 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006137 Pair.first;
6138 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006139
6140 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006141 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006142 if (!LoopEntryPredicate ||
6143 LoopEntryPredicate->isUnconditional())
6144 continue;
6145
Dan Gohmanaf08a362010-08-10 23:46:30 +00006146 if (isImpliedCond(Pred, LHS, RHS,
6147 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006148 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006149 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006150 }
6151
Dan Gohman38372182008-08-12 20:17:31 +00006152 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006153}
6154
Andrew Trick8aa22012012-05-19 00:48:25 +00006155/// RAII wrapper to prevent recursive application of isImpliedCond.
6156/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6157/// currently evaluating isImpliedCond.
6158struct MarkPendingLoopPredicate {
6159 Value *Cond;
6160 DenseSet<Value*> &LoopPreds;
6161 bool Pending;
6162
6163 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6164 : Cond(C), LoopPreds(LP) {
6165 Pending = !LoopPreds.insert(Cond).second;
6166 }
6167 ~MarkPendingLoopPredicate() {
6168 if (!Pending)
6169 LoopPreds.erase(Cond);
6170 }
6171};
6172
Dan Gohman0f4b2852009-07-21 23:03:19 +00006173/// isImpliedCond - Test whether the condition described by Pred, LHS,
6174/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006175bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006176 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006177 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006178 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006179 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6180 if (Mark.Pending)
6181 return false;
6182
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006183 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006184 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006185 if (BO->getOpcode() == Instruction::And) {
6186 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006187 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6188 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006189 } else if (BO->getOpcode() == Instruction::Or) {
6190 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006191 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6192 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006193 }
6194 }
6195
Dan Gohmanaf08a362010-08-10 23:46:30 +00006196 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006197 if (!ICI) return false;
6198
Dan Gohman85b05a22009-07-13 21:35:55 +00006199 // Bail if the ICmp's operands' types are wider than the needed type
6200 // before attempting to call getSCEV on them. This avoids infinite
6201 // recursion, since the analysis of widening casts can require loop
6202 // exit condition information for overflow checking, which would
6203 // lead back here.
6204 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006205 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006206 return false;
6207
Andrew Trickffc9ee42012-11-29 18:35:13 +00006208 // Now that we found a conditional branch that dominates the loop or controls
6209 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman0f4b2852009-07-21 23:03:19 +00006210 ICmpInst::Predicate FoundPred;
6211 if (Inverse)
6212 FoundPred = ICI->getInversePredicate();
6213 else
6214 FoundPred = ICI->getPredicate();
6215
6216 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6217 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006218
6219 // Balance the types. The case where FoundLHS' type is wider than
6220 // LHS' type is checked for above.
6221 if (getTypeSizeInBits(LHS->getType()) >
6222 getTypeSizeInBits(FoundLHS->getType())) {
6223 if (CmpInst::isSigned(Pred)) {
6224 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6225 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6226 } else {
6227 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6228 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6229 }
6230 }
6231
Dan Gohman0f4b2852009-07-21 23:03:19 +00006232 // Canonicalize the query to match the way instcombine will have
6233 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006234 if (SimplifyICmpOperands(Pred, LHS, RHS))
6235 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006236 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramer7d4253a2012-11-29 19:07:57 +00006237 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6238 if (FoundLHS == FoundRHS)
6239 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006240
6241 // Check to see if we can make the LHS or RHS match.
6242 if (LHS == FoundRHS || RHS == FoundLHS) {
6243 if (isa<SCEVConstant>(RHS)) {
6244 std::swap(FoundLHS, FoundRHS);
6245 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6246 } else {
6247 std::swap(LHS, RHS);
6248 Pred = ICmpInst::getSwappedPredicate(Pred);
6249 }
6250 }
6251
6252 // Check whether the found predicate is the same as the desired predicate.
6253 if (FoundPred == Pred)
6254 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6255
6256 // Check whether swapping the found predicate makes it the same as the
6257 // desired predicate.
6258 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6259 if (isa<SCEVConstant>(RHS))
6260 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6261 else
6262 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6263 RHS, LHS, FoundLHS, FoundRHS);
6264 }
6265
6266 // Check whether the actual condition is beyond sufficient.
6267 if (FoundPred == ICmpInst::ICMP_EQ)
6268 if (ICmpInst::isTrueWhenEqual(Pred))
6269 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6270 return true;
6271 if (Pred == ICmpInst::ICMP_NE)
6272 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6273 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6274 return true;
6275
6276 // Otherwise assume the worst.
6277 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006278}
6279
Dan Gohman0f4b2852009-07-21 23:03:19 +00006280/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006281/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006282/// and FoundRHS is true.
6283bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6284 const SCEV *LHS, const SCEV *RHS,
6285 const SCEV *FoundLHS,
6286 const SCEV *FoundRHS) {
6287 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6288 FoundLHS, FoundRHS) ||
6289 // ~x < ~y --> x > y
6290 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6291 getNotSCEV(FoundRHS),
6292 getNotSCEV(FoundLHS));
6293}
6294
6295/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006296/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006297/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006298bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006299ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6300 const SCEV *LHS, const SCEV *RHS,
6301 const SCEV *FoundLHS,
6302 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006303 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006304 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6305 case ICmpInst::ICMP_EQ:
6306 case ICmpInst::ICMP_NE:
6307 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6308 return true;
6309 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006310 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006311 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006312 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6313 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006314 return true;
6315 break;
6316 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006317 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006318 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6319 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006320 return true;
6321 break;
6322 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006323 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006324 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6325 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006326 return true;
6327 break;
6328 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006329 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006330 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6331 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006332 return true;
6333 break;
6334 }
6335
6336 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006337}
6338
Dan Gohman51f53b72009-06-21 23:46:38 +00006339/// getBECount - Subtract the end and start values and divide by the step,
6340/// rounding up, to get the number of times the backedge is executed. Return
6341/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006342const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006343 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006344 const SCEV *Step,
6345 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006346 assert(!isKnownNegative(Step) &&
6347 "This code doesn't handle negative strides yet!");
6348
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006349 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006350
6351 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6352 // here because SCEV may not be able to determine that the unsigned division
6353 // after rounding is zero.
6354 if (Start == End)
6355 return getConstant(Ty, 0);
6356
Dan Gohmandeff6212010-05-03 22:09:21 +00006357 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006358 const SCEV *Diff = getMinusSCEV(End, Start);
6359 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006360
6361 // Add an adjustment to the difference between End and Start so that
6362 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006363 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006364
Dan Gohman1f96e672009-09-17 18:05:20 +00006365 if (!NoWrap) {
6366 // Check Add for unsigned overflow.
6367 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006368 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006369 getTypeSizeInBits(Ty) + 1);
6370 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6371 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6372 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6373 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6374 return getCouldNotCompute();
6375 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006376
6377 return getUDivExpr(Add, Step);
6378}
6379
Chris Lattnerdb25de42005-08-15 23:33:51 +00006380/// HowManyLessThans - Return the number of times a backedge containing the
6381/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006382/// CouldNotCompute.
Andrew Trick61601142013-05-31 06:43:25 +00006383///
6384/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6385/// control the branch. In this case, we can only compute an iteration count for
6386/// a subexpression that cannot overflow before evaluating true.
Andrew Trick5116ff62011-07-26 17:19:55 +00006387ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006388ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick61601142013-05-31 06:43:25 +00006389 const Loop *L, bool isSigned,
6390 bool IsSubExpr) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006391 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006392 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006393
Dan Gohman35738ac2009-05-04 22:30:44 +00006394 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006395 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006396 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006397
Dan Gohman1f96e672009-09-17 18:05:20 +00006398 // Check to see if we have a flag which makes analysis easy.
Andrew Trick61601142013-05-31 06:43:25 +00006399 bool NoWrap = false;
6400 if (!IsSubExpr) {
6401 NoWrap = AddRec->getNoWrapFlags(
6402 (SCEV::NoWrapFlags)(((isSigned ? SCEV::FlagNSW : SCEV::FlagNUW))
6403 | SCEV::FlagNW));
6404 }
Chris Lattnerdb25de42005-08-15 23:33:51 +00006405 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006406 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006407 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006408
Dan Gohman52fddd32010-01-26 04:40:18 +00006409 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006410 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006411 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006412 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006413 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006414 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006415 // value and past the maximum value for its type in a single step.
6416 // Note that it's not sufficient to check NoWrap here, because even
6417 // though the value after a wrap is undefined, it's not undefined
6418 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006419 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006420 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006421 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006422 if (isSigned) {
6423 APInt Max = APInt::getSignedMaxValue(BitWidth);
6424 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6425 .slt(getSignedRange(RHS).getSignedMax()))
6426 return getCouldNotCompute();
6427 } else {
6428 APInt Max = APInt::getMaxValue(BitWidth);
6429 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6430 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6431 return getCouldNotCompute();
6432 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006433 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006434 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006435 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006436
Dan Gohmana1af7572009-04-30 20:47:05 +00006437 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6438 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6439 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006440 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006441
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006442 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006443 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006444
Dan Gohmana1af7572009-04-30 20:47:05 +00006445 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006446 const SCEV *MinStart = getConstant(isSigned ?
6447 getSignedRange(Start).getSignedMin() :
6448 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006449
Dan Gohmana1af7572009-04-30 20:47:05 +00006450 // If we know that the condition is true in order to enter the loop,
6451 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006452 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6453 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006454 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006455 if (!isLoopEntryGuardedByCond(L,
6456 isSigned ? ICmpInst::ICMP_SLT :
6457 ICmpInst::ICMP_ULT,
6458 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006459 End = isSigned ? getSMaxExpr(RHS, Start)
6460 : getUMaxExpr(RHS, Start);
6461
6462 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006463 const SCEV *MaxEnd = getConstant(isSigned ?
6464 getSignedRange(End).getSignedMax() :
6465 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006466
Dan Gohman52fddd32010-01-26 04:40:18 +00006467 // If MaxEnd is within a step of the maximum integer value in its type,
6468 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006469 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006470 // compute the correct value.
6471 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006472 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006473 MaxEnd = isSigned ?
6474 getSMinExpr(MaxEnd,
6475 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6476 StepMinusOne)) :
6477 getUMinExpr(MaxEnd,
6478 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6479 StepMinusOne));
6480
Dan Gohmana1af7572009-04-30 20:47:05 +00006481 // Finally, we subtract these two values and divide, rounding up, to get
6482 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006483 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006484
6485 // The maximum backedge count is similar, except using the minimum start
6486 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006487 // If we already have an exact constant BECount, use it instead.
6488 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6489 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6490
6491 // If the stride is nonconstant, and NoWrap == true, then
6492 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6493 // exact BECount and invalid MaxBECount, which should be avoided to catch
6494 // more optimization opportunities.
6495 if (isa<SCEVCouldNotCompute>(MaxBECount))
6496 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006497
Andrew Trick5116ff62011-07-26 17:19:55 +00006498 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006499 }
6500
Dan Gohman1c343752009-06-27 21:21:31 +00006501 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006502}
6503
Chris Lattner53e677a2004-04-02 20:23:17 +00006504/// getNumIterationsInRange - Return the number of iterations of this loop that
6505/// produce values in the specified constant range. Another way of looking at
6506/// this is that it returns the first iteration number where the value is not in
6507/// the condition, thus computing the exit count. If the iteration count can't
6508/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006509const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006510 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006511 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006512 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006513
6514 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006515 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006516 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006517 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006518 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006519 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006520 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006521 if (const SCEVAddRecExpr *ShiftedAddRec =
6522 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006523 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006524 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006525 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006526 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006527 }
6528
6529 // The only time we can solve this is when we have all constant indices.
6530 // Otherwise, we cannot determine the overflow conditions.
6531 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6532 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006533 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006534
6535
6536 // Okay at this point we know that all elements of the chrec are constants and
6537 // that the start element is zero.
6538
6539 // First check to see if the range contains zero. If not, the first
6540 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006541 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006542 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006543 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006544
Chris Lattner53e677a2004-04-02 20:23:17 +00006545 if (isAffine()) {
6546 // If this is an affine expression then we have this situation:
6547 // Solve {0,+,A} in Range === Ax in Range
6548
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006549 // We know that zero is in the range. If A is positive then we know that
6550 // the upper value of the range must be the first possible exit value.
6551 // If A is negative then the lower of the range is the last possible loop
6552 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006553 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006554 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6555 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006556
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006557 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006558 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006559 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006560
6561 // Evaluate at the exit value. If we really did fall out of the valid
6562 // range, then we computed our trip count, otherwise wrap around or other
6563 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006564 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006565 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006566 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006567
6568 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006569 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006570 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006571 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006572 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006573 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006574 } else if (isQuadratic()) {
6575 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6576 // quadratic equation to solve it. To do this, we must frame our problem in
6577 // terms of figuring out when zero is crossed, instead of when
6578 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006579 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006580 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006581 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6582 // getNoWrapFlags(FlagNW)
6583 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006584
6585 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006586 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006587 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006588 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6589 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006590 if (R1) {
6591 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006592 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006593 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006594 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006595 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006596 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006597
Chris Lattner53e677a2004-04-02 20:23:17 +00006598 // Make sure the root is not off by one. The returned iteration should
6599 // not be in the range, but the previous one should be. When solving
6600 // for "X*X < 5", for example, we should not return a root of 2.
6601 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006602 R1->getValue(),
6603 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006604 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006605 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006606 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006607 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006608
Dan Gohman246b2562007-10-22 18:31:58 +00006609 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006610 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006611 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006612 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006613 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006614
Chris Lattner53e677a2004-04-02 20:23:17 +00006615 // If R1 was not in the range, then it is a good return value. Make
6616 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006617 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006618 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006619 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006620 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006621 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006622 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006623 }
6624 }
6625 }
6626
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006627 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006628}
6629
6630
6631
6632//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006633// SCEVCallbackVH Class Implementation
6634//===----------------------------------------------------------------------===//
6635
Dan Gohman1959b752009-05-19 19:22:47 +00006636void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006637 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006638 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6639 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006640 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006641 // this now dangles!
6642}
6643
Dan Gohman81f91212010-07-28 01:09:07 +00006644void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006645 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006646
Dan Gohman35738ac2009-05-04 22:30:44 +00006647 // Forget all the expressions associated with users of the old value,
6648 // so that future queries will recompute the expressions using the new
6649 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006650 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006651 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006652 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006653 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6654 UI != UE; ++UI)
6655 Worklist.push_back(*UI);
6656 while (!Worklist.empty()) {
6657 User *U = Worklist.pop_back_val();
6658 // Deleting the Old value will cause this to dangle. Postpone
6659 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006660 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006661 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006662 if (!Visited.insert(U))
6663 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006664 if (PHINode *PN = dyn_cast<PHINode>(U))
6665 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006666 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006667 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6668 UI != UE; ++UI)
6669 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006670 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006671 // Delete the Old value.
6672 if (PHINode *PN = dyn_cast<PHINode>(Old))
6673 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006674 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006675 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006676}
6677
Dan Gohman1959b752009-05-19 19:22:47 +00006678ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006679 : CallbackVH(V), SE(se) {}
6680
6681//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006682// ScalarEvolution Class Implementation
6683//===----------------------------------------------------------------------===//
6684
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006685ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006686 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006687 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006688}
6689
Chris Lattner53e677a2004-04-02 20:23:17 +00006690bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006691 this->F = &F;
6692 LI = &getAnalysis<LoopInfo>();
Micah Villmow3574eca2012-10-08 16:38:25 +00006693 TD = getAnalysisIfAvailable<DataLayout>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006694 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006695 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006696 return false;
6697}
6698
6699void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006700 // Iterate through all the SCEVUnknown instances and call their
6701 // destructors, so that they release their references to their values.
6702 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6703 U->~SCEVUnknown();
6704 FirstUnknown = 0;
6705
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006706 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006707
6708 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6709 // that a loop had multiple computable exits.
6710 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6711 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6712 I != E; ++I) {
6713 I->second.clear();
6714 }
6715
Andrew Trick8aa22012012-05-19 00:48:25 +00006716 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6717
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006718 BackedgeTakenCounts.clear();
6719 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006720 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006721 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006722 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006723 UnsignedRanges.clear();
6724 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006725 UniqueSCEVs.clear();
6726 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006727}
6728
6729void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6730 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006731 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006732 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006733 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006734}
6735
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006736bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006737 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006738}
6739
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006740static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006741 const Loop *L) {
6742 // Print all inner loops first
6743 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6744 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006745
Dan Gohman30733292010-01-09 18:17:45 +00006746 OS << "Loop ";
6747 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6748 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006749
Dan Gohman5d984912009-12-18 01:14:11 +00006750 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006751 L->getExitBlocks(ExitBlocks);
6752 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006753 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006754
Dan Gohman46bdfb02009-02-24 18:55:53 +00006755 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6756 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006757 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006758 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006759 }
6760
Dan Gohman30733292010-01-09 18:17:45 +00006761 OS << "\n"
6762 "Loop ";
6763 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6764 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006765
6766 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6767 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6768 } else {
6769 OS << "Unpredictable max backedge-taken count. ";
6770 }
6771
6772 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006773}
6774
Dan Gohman5d984912009-12-18 01:14:11 +00006775void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006776 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006777 // out SCEV values of all instructions that are interesting. Doing
6778 // this potentially causes it to create new SCEV objects though,
6779 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006780 // observable from outside the class though, so casting away the
6781 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006782 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006783
Dan Gohman30733292010-01-09 18:17:45 +00006784 OS << "Classifying expressions for: ";
6785 WriteAsOperand(OS, F, /*PrintType=*/false);
6786 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006787 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006788 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006789 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006790 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006791 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006792 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006793
Dan Gohman0c689c52009-06-19 17:49:54 +00006794 const Loop *L = LI->getLoopFor((*I).getParent());
6795
Dan Gohman0bba49c2009-07-07 17:06:11 +00006796 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006797 if (AtUse != SV) {
6798 OS << " --> ";
6799 AtUse->print(OS);
6800 }
6801
6802 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006803 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006804 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006805 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006806 OS << "<<Unknown>>";
6807 } else {
6808 OS << *ExitValue;
6809 }
6810 }
6811
Chris Lattner53e677a2004-04-02 20:23:17 +00006812 OS << "\n";
6813 }
6814
Dan Gohman30733292010-01-09 18:17:45 +00006815 OS << "Determining loop execution counts for: ";
6816 WriteAsOperand(OS, F, /*PrintType=*/false);
6817 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006818 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6819 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006820}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006821
Dan Gohman714b5292010-11-17 23:21:44 +00006822ScalarEvolution::LoopDisposition
6823ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6824 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6825 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6826 Values.insert(std::make_pair(L, LoopVariant));
6827 if (!Pair.second)
6828 return Pair.first->second;
6829
6830 LoopDisposition D = computeLoopDisposition(S, L);
6831 return LoopDispositions[S][L] = D;
6832}
6833
6834ScalarEvolution::LoopDisposition
6835ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006836 switch (S->getSCEVType()) {
6837 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006838 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006839 case scTruncate:
6840 case scZeroExtend:
6841 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006842 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006843 case scAddRecExpr: {
6844 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6845
Dan Gohman714b5292010-11-17 23:21:44 +00006846 // If L is the addrec's loop, it's computable.
6847 if (AR->getLoop() == L)
6848 return LoopComputable;
6849
Dan Gohman17ead4f2010-11-17 21:23:15 +00006850 // Add recurrences are never invariant in the function-body (null loop).
6851 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006852 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006853
6854 // This recurrence is variant w.r.t. L if L contains AR's loop.
6855 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006856 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006857
6858 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6859 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006860 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006861
6862 // This recurrence is variant w.r.t. L if any of its operands
6863 // are variant.
6864 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6865 I != E; ++I)
6866 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006867 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006868
6869 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006870 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006871 }
6872 case scAddExpr:
6873 case scMulExpr:
6874 case scUMaxExpr:
6875 case scSMaxExpr: {
6876 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006877 bool HasVarying = false;
6878 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6879 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006880 LoopDisposition D = getLoopDisposition(*I, L);
6881 if (D == LoopVariant)
6882 return LoopVariant;
6883 if (D == LoopComputable)
6884 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006885 }
Dan Gohman714b5292010-11-17 23:21:44 +00006886 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006887 }
6888 case scUDivExpr: {
6889 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006890 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6891 if (LD == LoopVariant)
6892 return LoopVariant;
6893 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6894 if (RD == LoopVariant)
6895 return LoopVariant;
6896 return (LD == LoopInvariant && RD == LoopInvariant) ?
6897 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006898 }
6899 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006900 // All non-instruction values are loop invariant. All instructions are loop
6901 // invariant if they are not contained in the specified loop.
6902 // Instructions are never considered invariant in the function body
6903 // (null loop) because they are defined within the "loop".
6904 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6905 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6906 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006907 case scCouldNotCompute:
6908 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006909 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006910 }
Dan Gohman714b5292010-11-17 23:21:44 +00006911}
6912
6913bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6914 return getLoopDisposition(S, L) == LoopInvariant;
6915}
6916
6917bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6918 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006919}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006920
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006921ScalarEvolution::BlockDisposition
6922ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6923 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6924 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6925 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6926 if (!Pair.second)
6927 return Pair.first->second;
6928
6929 BlockDisposition D = computeBlockDisposition(S, BB);
6930 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006931}
6932
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006933ScalarEvolution::BlockDisposition
6934ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006935 switch (S->getSCEVType()) {
6936 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006937 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006938 case scTruncate:
6939 case scZeroExtend:
6940 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006941 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006942 case scAddRecExpr: {
6943 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006944 // to test for proper dominance too, because the instruction which
6945 // produces the addrec's value is a PHI, and a PHI effectively properly
6946 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006947 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6948 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006949 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006950 }
6951 // FALL THROUGH into SCEVNAryExpr handling.
6952 case scAddExpr:
6953 case scMulExpr:
6954 case scUMaxExpr:
6955 case scSMaxExpr: {
6956 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006957 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006958 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006959 I != E; ++I) {
6960 BlockDisposition D = getBlockDisposition(*I, BB);
6961 if (D == DoesNotDominateBlock)
6962 return DoesNotDominateBlock;
6963 if (D == DominatesBlock)
6964 Proper = false;
6965 }
6966 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006967 }
6968 case scUDivExpr: {
6969 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006970 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6971 BlockDisposition LD = getBlockDisposition(LHS, BB);
6972 if (LD == DoesNotDominateBlock)
6973 return DoesNotDominateBlock;
6974 BlockDisposition RD = getBlockDisposition(RHS, BB);
6975 if (RD == DoesNotDominateBlock)
6976 return DoesNotDominateBlock;
6977 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6978 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006979 }
6980 case scUnknown:
6981 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006982 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6983 if (I->getParent() == BB)
6984 return DominatesBlock;
6985 if (DT->properlyDominates(I->getParent(), BB))
6986 return ProperlyDominatesBlock;
6987 return DoesNotDominateBlock;
6988 }
6989 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006990 case scCouldNotCompute:
6991 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006992 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006993 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006994 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006995}
6996
6997bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6998 return getBlockDisposition(S, BB) >= DominatesBlock;
6999}
7000
7001bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7002 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00007003}
Dan Gohman4ce32db2010-11-17 22:27:42 +00007004
Andrew Trick8b7036b2012-07-13 23:33:03 +00007005namespace {
7006// Search for a SCEV expression node within an expression tree.
7007// Implements SCEVTraversal::Visitor.
7008struct SCEVSearch {
7009 const SCEV *Node;
7010 bool IsFound;
7011
7012 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7013
7014 bool follow(const SCEV *S) {
7015 IsFound |= (S == Node);
7016 return !IsFound;
7017 }
7018 bool isDone() const { return IsFound; }
7019};
7020}
7021
Dan Gohman4ce32db2010-11-17 22:27:42 +00007022bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick8b7036b2012-07-13 23:33:03 +00007023 SCEVSearch Search(Op);
7024 visitAll(S, Search);
7025 return Search.IsFound;
Dan Gohman4ce32db2010-11-17 22:27:42 +00007026}
Dan Gohman56a75682010-11-17 23:28:48 +00007027
7028void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7029 ValuesAtScopes.erase(S);
7030 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00007031 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00007032 UnsignedRanges.erase(S);
7033 SignedRanges.erase(S);
Andrew Tricke74c2e82013-03-26 03:14:53 +00007034
7035 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7036 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7037 BackedgeTakenInfo &BEInfo = I->second;
7038 if (BEInfo.hasOperand(S, this)) {
7039 BEInfo.clear();
7040 BackedgeTakenCounts.erase(I++);
7041 }
7042 else
7043 ++I;
7044 }
Dan Gohman56a75682010-11-17 23:28:48 +00007045}
Benjamin Kramerff183102012-10-26 17:31:32 +00007046
7047typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00007048
7049/// replaceSubString - Replaces all occurences of From in Str with To.
7050static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7051 size_t Pos = 0;
7052 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7053 Str.replace(Pos, From.size(), To.data(), To.size());
7054 Pos += To.size();
7055 }
7056}
7057
Benjamin Kramerff183102012-10-26 17:31:32 +00007058/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7059static void
7060getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7061 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7062 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7063
7064 std::string &S = Map[L];
7065 if (S.empty()) {
7066 raw_string_ostream OS(S);
7067 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00007068
7069 // false and 0 are semantically equivalent. This can happen in dead loops.
7070 replaceSubString(OS.str(), "false", "0");
7071 // Remove wrap flags, their use in SCEV is highly fragile.
7072 // FIXME: Remove this when SCEV gets smarter about them.
7073 replaceSubString(OS.str(), "<nw>", "");
7074 replaceSubString(OS.str(), "<nsw>", "");
7075 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramerff183102012-10-26 17:31:32 +00007076 }
7077 }
7078}
7079
7080void ScalarEvolution::verifyAnalysis() const {
7081 if (!VerifySCEV)
7082 return;
7083
7084 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7085
7086 // Gather stringified backedge taken counts for all loops using SCEV's caches.
7087 // FIXME: It would be much better to store actual values instead of strings,
7088 // but SCEV pointers will change if we drop the caches.
7089 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7090 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7091 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7092
7093 // Gather stringified backedge taken counts for all loops without using
7094 // SCEV's caches.
7095 SE.releaseMemory();
7096 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7097 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7098
7099 // Now compare whether they're the same with and without caches. This allows
7100 // verifying that no pass changed the cache.
7101 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7102 "New loops suddenly appeared!");
7103
7104 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7105 OldE = BackedgeDumpsOld.end(),
7106 NewI = BackedgeDumpsNew.begin();
7107 OldI != OldE; ++OldI, ++NewI) {
7108 assert(OldI->first == NewI->first && "Loop order changed!");
7109
7110 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7111 // changes.
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007112 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramerff183102012-10-26 17:31:32 +00007113 // means that a pass is buggy or SCEV has to learn a new pattern but is
7114 // usually not harmful.
7115 if (OldI->second != NewI->second &&
7116 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007117 NewI->second.find("undef") == std::string::npos &&
7118 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramerff183102012-10-26 17:31:32 +00007119 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007120 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramerff183102012-10-26 17:31:32 +00007121 << OldI->first->getHeader()->getName()
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007122 << "' changed from '" << OldI->second
7123 << "' to '" << NewI->second << "'!\n";
Benjamin Kramerff183102012-10-26 17:31:32 +00007124 std::abort();
7125 }
7126 }
7127
7128 // TODO: Verify more things.
7129}