blob: 0cab81b1bbe3ae1aa5bc6ff790c21c2d90156ee9 [file] [log] [blame]
Chris Lattner233f7dc2002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner8a2a3112001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman844731a2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattner8a2a3112001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner318bf792007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattner8a2a3112001-12-14 16:52:21 +000017// into:
Chris Lattner318bf792007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattner8a2a3112001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner065a6162003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattner2cd91962003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdf17af12003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencere4d87aa2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnere92d2f42003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbac32862004-11-14 19:13:23 +000032// ... etc.
Chris Lattner2cd91962003-07-23 21:41:57 +000033//
Chris Lattner8a2a3112001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner0cea42a2004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattner022103b2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattnerac8f2fd2010-01-04 07:12:23 +000038#include "InstCombine.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000039#include "llvm-c/Initialization.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/StringSwitch.h"
Chris Lattner79066fa2007-01-30 23:46:24 +000043#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner9dbb4292009-11-09 23:28:39 +000044#include "llvm/Analysis/InstructionSimplify.h"
Victor Hernandezf006b182009-10-27 20:05:49 +000045#include "llvm/Analysis/MemoryBuiltins.h"
Stephen Hines36b56882014-04-23 16:57:46 -070046#include "llvm/IR/CFG.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000047#include "llvm/IR/DataLayout.h"
Stephen Hines36b56882014-04-23 16:57:46 -070048#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000049#include "llvm/IR/IntrinsicInst.h"
Stephen Hines36b56882014-04-23 16:57:46 -070050#include "llvm/IR/PatternMatch.h"
51#include "llvm/IR/ValueHandle.h"
Meador Inge2920a712012-11-13 04:16:17 +000052#include "llvm/Support/CommandLine.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000053#include "llvm/Support/Debug.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000054#include "llvm/Target/TargetLibraryInfo.h"
55#include "llvm/Transforms/Utils/Local.h"
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000056#include <algorithm>
Torok Edwin3eaee312008-04-20 08:33:11 +000057#include <climits>
Chris Lattner67b1e1b2003-12-07 01:24:23 +000058using namespace llvm;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000059using namespace llvm::PatternMatch;
Brian Gaeked0fde302003-11-11 22:41:34 +000060
Chris Lattner0e5f4992006-12-19 21:40:18 +000061STATISTIC(NumCombined , "Number of insts combined");
62STATISTIC(NumConstProp, "Number of constant folds");
63STATISTIC(NumDeadInst , "Number of dead inst eliminated");
Chris Lattner0e5f4992006-12-19 21:40:18 +000064STATISTIC(NumSunkInst , "Number of instructions sunk");
Duncan Sands37bf92b2010-12-22 13:36:08 +000065STATISTIC(NumExpand, "Number of expansions");
Duncan Sandsa3c44a52010-12-22 09:40:51 +000066STATISTIC(NumFactor , "Number of factorizations");
67STATISTIC(NumReassoc , "Number of reassociations");
Chris Lattnera92f6962002-10-01 22:38:41 +000068
Meador Inge2920a712012-11-13 04:16:17 +000069static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70 cl::init(false),
71 cl::desc("Enable unsafe double to float "
72 "shrinking for math lib calls"));
73
Owen Anderson74cfb0c2010-10-07 20:04:55 +000074// Initialization Routines
75void llvm::initializeInstCombine(PassRegistry &Registry) {
76 initializeInstCombinerPass(Registry);
77}
78
79void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
80 initializeInstCombine(*unwrap(R));
81}
Chris Lattnerdd841ae2002-04-18 17:39:14 +000082
Dan Gohman844731a2008-05-13 00:00:25 +000083char InstCombiner::ID = 0;
Chad Rosier00737bd2011-12-01 21:29:16 +000084INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85 "Combine redundant instructions", false, false)
86INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
87INITIALIZE_PASS_END(InstCombiner, "instcombine",
Owen Andersonce665bd2010-10-07 22:25:06 +000088 "Combine redundant instructions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +000089
Chris Lattnere0b4b722010-01-04 07:17:19 +000090void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnere0b4b722010-01-04 07:17:19 +000091 AU.setPreservesCFG();
Chad Rosier3d925d22011-11-29 23:57:10 +000092 AU.addRequired<TargetLibraryInfo>();
Chris Lattnere0b4b722010-01-04 07:17:19 +000093}
94
95
Nuno Lopes5c525b52012-05-22 17:19:09 +000096Value *InstCombiner::EmitGEPOffset(User *GEP) {
Micah Villmow3574eca2012-10-08 16:38:25 +000097 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
Nuno Lopes5c525b52012-05-22 17:19:09 +000098}
99
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000100/// ShouldChangeType - Return true if it is desirable to convert a computation
101/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
102/// type for example, or from a smaller to a larger illegal type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000103bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
Duncan Sands1df98592010-02-16 11:11:14 +0000104 assert(From->isIntegerTy() && To->isIntegerTy());
Jakub Staszak58c1da82012-05-06 13:52:31 +0000105
Stephen Hines36b56882014-04-23 16:57:46 -0700106 // If we don't have DL, we don't know if the source/dest are legal.
107 if (!DL) return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000108
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000109 unsigned FromWidth = From->getPrimitiveSizeInBits();
110 unsigned ToWidth = To->getPrimitiveSizeInBits();
Stephen Hines36b56882014-04-23 16:57:46 -0700111 bool FromLegal = DL->isLegalInteger(FromWidth);
112 bool ToLegal = DL->isLegalInteger(ToWidth);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000113
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000114 // If this is a legal integer from type, and the result would be an illegal
115 // type, don't do the transformation.
116 if (FromLegal && !ToLegal)
117 return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000118
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000119 // Otherwise, if both are illegal, do not increase the size of the result. We
120 // do allow things like i160 -> i64, but not i64 -> i160.
121 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122 return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000123
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000124 return true;
125}
126
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000127// Return true, if No Signed Wrap should be maintained for I.
128// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129// where both B and C should be ConstantInts, results in a constant that does
130// not overflow. This function only handles the Add and Sub opcodes. For
131// all other opcodes, the function conservatively returns false.
132static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
133 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
134 if (!OBO || !OBO->hasNoSignedWrap()) {
135 return false;
136 }
137
138 // We reason about Add and Sub Only.
139 Instruction::BinaryOps Opcode = I.getOpcode();
Jakub Staszak58c1da82012-05-06 13:52:31 +0000140 if (Opcode != Instruction::Add &&
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000141 Opcode != Instruction::Sub) {
142 return false;
143 }
144
145 ConstantInt *CB = dyn_cast<ConstantInt>(B);
146 ConstantInt *CC = dyn_cast<ConstantInt>(C);
147
148 if (!CB || !CC) {
149 return false;
150 }
151
152 const APInt &BVal = CB->getValue();
153 const APInt &CVal = CC->getValue();
154 bool Overflow = false;
155
156 if (Opcode == Instruction::Add) {
157 BVal.sadd_ov(CVal, Overflow);
158 } else {
159 BVal.ssub_ov(CVal, Overflow);
160 }
161
162 return !Overflow;
163}
164
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000165/// Conservatively clears subclassOptionalData after a reassociation or
166/// commutation. We preserve fast-math flags when applicable as they can be
167/// preserved.
168static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
169 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
170 if (!FPMO) {
171 I.clearSubclassOptionalData();
172 return;
173 }
174
175 FastMathFlags FMF = I.getFastMathFlags();
176 I.clearSubclassOptionalData();
177 I.setFastMathFlags(FMF);
178}
179
Duncan Sands096aa792010-11-13 15:10:37 +0000180/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
181/// operators which are associative or commutative:
182//
183// Commutative operators:
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000184//
Chris Lattner4f98c562003-03-10 21:43:22 +0000185// 1. Order operands such that they are listed from right (least complex) to
186// left (most complex). This puts constants before unary operators before
187// binary operators.
188//
Duncan Sands096aa792010-11-13 15:10:37 +0000189// Associative operators:
Chris Lattner4f98c562003-03-10 21:43:22 +0000190//
Duncan Sands096aa792010-11-13 15:10:37 +0000191// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
192// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
193//
194// Associative and commutative operators:
195//
196// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
197// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
198// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
199// if C1 and C2 are constants.
200//
201bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +0000202 Instruction::BinaryOps Opcode = I.getOpcode();
Duncan Sands096aa792010-11-13 15:10:37 +0000203 bool Changed = false;
Chris Lattnerc8802d22003-03-11 00:12:48 +0000204
Duncan Sands096aa792010-11-13 15:10:37 +0000205 do {
206 // Order operands such that they are listed from right (least complex) to
207 // left (most complex). This puts constants before unary operators before
208 // binary operators.
209 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
210 getComplexity(I.getOperand(1)))
211 Changed = !I.swapOperands();
212
213 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
214 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
215
216 if (I.isAssociative()) {
217 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
218 if (Op0 && Op0->getOpcode() == Opcode) {
219 Value *A = Op0->getOperand(0);
220 Value *B = Op0->getOperand(1);
221 Value *C = I.getOperand(1);
222
223 // Does "B op C" simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700224 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
Duncan Sands096aa792010-11-13 15:10:37 +0000225 // It simplifies to V. Form "A op V".
226 I.setOperand(0, A);
227 I.setOperand(1, V);
Dan Gohman5195b712011-02-02 02:05:46 +0000228 // Conservatively clear the optional flags, since they may not be
229 // preserved by the reassociation.
Nick Lewycky7f0170c2011-08-14 03:41:33 +0000230 if (MaintainNoSignedWrap(I, B, C) &&
Bill Wendling56cb2292012-07-19 00:11:40 +0000231 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
Nick Lewycky7f0170c2011-08-14 03:41:33 +0000232 // Note: this is only valid because SimplifyBinOp doesn't look at
233 // the operands to Op0.
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000234 I.clearSubclassOptionalData();
235 I.setHasNoSignedWrap(true);
236 } else {
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000237 ClearSubclassDataAfterReassociation(I);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000238 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000239
Duncan Sands096aa792010-11-13 15:10:37 +0000240 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000241 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000242 continue;
Misha Brukmanfd939082005-04-21 23:48:37 +0000243 }
Duncan Sands096aa792010-11-13 15:10:37 +0000244 }
245
246 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
247 if (Op1 && Op1->getOpcode() == Opcode) {
248 Value *A = I.getOperand(0);
249 Value *B = Op1->getOperand(0);
250 Value *C = Op1->getOperand(1);
251
252 // Does "A op B" simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700253 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
Duncan Sands096aa792010-11-13 15:10:37 +0000254 // It simplifies to V. Form "V op C".
255 I.setOperand(0, V);
256 I.setOperand(1, C);
Dan Gohman5195b712011-02-02 02:05:46 +0000257 // Conservatively clear the optional flags, since they may not be
258 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000259 ClearSubclassDataAfterReassociation(I);
Duncan Sands096aa792010-11-13 15:10:37 +0000260 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000261 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000262 continue;
263 }
264 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000265 }
Duncan Sands096aa792010-11-13 15:10:37 +0000266
267 if (I.isAssociative() && I.isCommutative()) {
268 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
269 if (Op0 && Op0->getOpcode() == Opcode) {
270 Value *A = Op0->getOperand(0);
271 Value *B = Op0->getOperand(1);
272 Value *C = I.getOperand(1);
273
274 // Does "C op A" simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700275 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands096aa792010-11-13 15:10:37 +0000276 // It simplifies to V. Form "V op B".
277 I.setOperand(0, V);
278 I.setOperand(1, B);
Dan Gohman5195b712011-02-02 02:05:46 +0000279 // Conservatively clear the optional flags, since they may not be
280 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000281 ClearSubclassDataAfterReassociation(I);
Duncan Sands096aa792010-11-13 15:10:37 +0000282 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000283 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000284 continue;
285 }
286 }
287
288 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
289 if (Op1 && Op1->getOpcode() == Opcode) {
290 Value *A = I.getOperand(0);
291 Value *B = Op1->getOperand(0);
292 Value *C = Op1->getOperand(1);
293
294 // Does "C op A" simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700295 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands096aa792010-11-13 15:10:37 +0000296 // It simplifies to V. Form "B op V".
297 I.setOperand(0, B);
298 I.setOperand(1, V);
Dan Gohman5195b712011-02-02 02:05:46 +0000299 // Conservatively clear the optional flags, since they may not be
300 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000301 ClearSubclassDataAfterReassociation(I);
Duncan Sands096aa792010-11-13 15:10:37 +0000302 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000303 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000304 continue;
305 }
306 }
307
308 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
309 // if C1 and C2 are constants.
310 if (Op0 && Op1 &&
311 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
312 isa<Constant>(Op0->getOperand(1)) &&
313 isa<Constant>(Op1->getOperand(1)) &&
314 Op0->hasOneUse() && Op1->hasOneUse()) {
315 Value *A = Op0->getOperand(0);
316 Constant *C1 = cast<Constant>(Op0->getOperand(1));
317 Value *B = Op1->getOperand(0);
318 Constant *C2 = cast<Constant>(Op1->getOperand(1));
319
320 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000321 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
Stephen Hines36b56882014-04-23 16:57:46 -0700322 if (isa<FPMathOperator>(New)) {
323 FastMathFlags Flags = I.getFastMathFlags();
324 Flags &= Op0->getFastMathFlags();
325 Flags &= Op1->getFastMathFlags();
326 New->setFastMathFlags(Flags);
327 }
Eli Friedmana311c342011-05-27 00:19:40 +0000328 InsertNewInstWith(New, I);
Eli Friedmane6f364b2011-05-18 23:58:37 +0000329 New->takeName(Op1);
Duncan Sands096aa792010-11-13 15:10:37 +0000330 I.setOperand(0, New);
331 I.setOperand(1, Folded);
Dan Gohman5195b712011-02-02 02:05:46 +0000332 // Conservatively clear the optional flags, since they may not be
333 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000334 ClearSubclassDataAfterReassociation(I);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000335
Duncan Sands096aa792010-11-13 15:10:37 +0000336 Changed = true;
337 continue;
338 }
339 }
340
341 // No further simplifications.
342 return Changed;
343 } while (1);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000344}
Chris Lattner8a2a3112001-12-14 16:52:21 +0000345
Duncan Sands5057f382010-11-23 14:23:47 +0000346/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
Duncan Sandsc2b1c0b2010-11-23 15:25:34 +0000347/// "(X LOp Y) ROp (X LOp Z)".
Duncan Sands5057f382010-11-23 14:23:47 +0000348static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
349 Instruction::BinaryOps ROp) {
350 switch (LOp) {
351 default:
352 return false;
353
354 case Instruction::And:
355 // And distributes over Or and Xor.
356 switch (ROp) {
357 default:
358 return false;
359 case Instruction::Or:
360 case Instruction::Xor:
361 return true;
362 }
363
364 case Instruction::Mul:
365 // Multiplication distributes over addition and subtraction.
366 switch (ROp) {
367 default:
368 return false;
369 case Instruction::Add:
370 case Instruction::Sub:
371 return true;
372 }
373
374 case Instruction::Or:
375 // Or distributes over And.
376 switch (ROp) {
377 default:
378 return false;
379 case Instruction::And:
380 return true;
381 }
382 }
383}
384
385/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
386/// "(X ROp Z) LOp (Y ROp Z)".
387static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
388 Instruction::BinaryOps ROp) {
389 if (Instruction::isCommutative(ROp))
390 return LeftDistributesOverRight(ROp, LOp);
391 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
392 // but this requires knowing that the addition does not overflow and other
393 // such subtleties.
394 return false;
395}
396
Duncan Sands37bf92b2010-12-22 13:36:08 +0000397/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
398/// which some other binary operation distributes over either by factorizing
399/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
400/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
401/// a win). Returns the simplified value, or null if it didn't simplify.
402Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
403 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
404 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
405 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
406 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
Duncan Sands5057f382010-11-23 14:23:47 +0000407
Duncan Sands37bf92b2010-12-22 13:36:08 +0000408 // Factorization.
409 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
410 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
411 // a common term.
412 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
413 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
414 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
Duncan Sands5057f382010-11-23 14:23:47 +0000415
Duncan Sands37bf92b2010-12-22 13:36:08 +0000416 // Does "X op' Y" always equal "Y op' X"?
417 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
Duncan Sands5057f382010-11-23 14:23:47 +0000418
Duncan Sands37bf92b2010-12-22 13:36:08 +0000419 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
420 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
421 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
422 // commutative case, "(A op' B) op (C op' A)"?
423 if (A == C || (InnerCommutative && A == D)) {
424 if (A != C)
425 std::swap(C, D);
426 // Consider forming "A op' (B op D)".
427 // If "B op D" simplifies then it can be formed with no cost.
Stephen Hines36b56882014-04-23 16:57:46 -0700428 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
Duncan Sands37bf92b2010-12-22 13:36:08 +0000429 // If "B op D" doesn't simplify then only go on if both of the existing
430 // operations "A op' B" and "C op' D" will be zapped as no longer used.
431 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
432 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
433 if (V) {
434 ++NumFactor;
435 V = Builder->CreateBinOp(InnerOpcode, A, V);
436 V->takeName(&I);
437 return V;
438 }
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000439 }
Duncan Sands5057f382010-11-23 14:23:47 +0000440
Duncan Sands37bf92b2010-12-22 13:36:08 +0000441 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
442 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
443 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
444 // commutative case, "(A op' B) op (B op' D)"?
445 if (B == D || (InnerCommutative && B == C)) {
446 if (B != D)
447 std::swap(C, D);
448 // Consider forming "(A op C) op' B".
449 // If "A op C" simplifies then it can be formed with no cost.
Stephen Hines36b56882014-04-23 16:57:46 -0700450 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
Duncan Sands37bf92b2010-12-22 13:36:08 +0000451 // If "A op C" doesn't simplify then only go on if both of the existing
452 // operations "A op' B" and "C op' D" will be zapped as no longer used.
453 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
454 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
455 if (V) {
456 ++NumFactor;
457 V = Builder->CreateBinOp(InnerOpcode, V, B);
458 V->takeName(&I);
459 return V;
460 }
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000461 }
Duncan Sands37bf92b2010-12-22 13:36:08 +0000462 }
463
464 // Expansion.
465 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
466 // The instruction has the form "(A op' B) op C". See if expanding it out
467 // to "(A op C) op' (B op C)" results in simplifications.
468 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
469 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
470
471 // Do "A op C" and "B op C" both simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700472 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
473 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
Duncan Sands37bf92b2010-12-22 13:36:08 +0000474 // They do! Return "L op' R".
475 ++NumExpand;
476 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
477 if ((L == A && R == B) ||
478 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
479 return Op0;
480 // Otherwise return "L op' R" if it simplifies.
Stephen Hines36b56882014-04-23 16:57:46 -0700481 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sands37bf92b2010-12-22 13:36:08 +0000482 return V;
483 // Otherwise, create a new instruction.
484 C = Builder->CreateBinOp(InnerOpcode, L, R);
485 C->takeName(&I);
486 return C;
487 }
488 }
489
490 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
491 // The instruction has the form "A op (B op' C)". See if expanding it out
492 // to "(A op B) op' (A op C)" results in simplifications.
493 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
494 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
495
496 // Do "A op B" and "A op C" both simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700497 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
498 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
Duncan Sands37bf92b2010-12-22 13:36:08 +0000499 // They do! Return "L op' R".
500 ++NumExpand;
501 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
502 if ((L == B && R == C) ||
503 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
504 return Op1;
505 // Otherwise return "L op' R" if it simplifies.
Stephen Hines36b56882014-04-23 16:57:46 -0700506 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sands37bf92b2010-12-22 13:36:08 +0000507 return V;
508 // Otherwise, create a new instruction.
509 A = Builder->CreateBinOp(InnerOpcode, L, R);
510 A->takeName(&I);
511 return A;
512 }
513 }
Duncan Sands5057f382010-11-23 14:23:47 +0000514
515 return 0;
516}
517
Chris Lattner8d969642003-03-10 23:06:50 +0000518// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
519// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattnerb35dde12002-05-06 16:49:18 +0000520//
Chris Lattner02446fc2010-01-04 07:37:31 +0000521Value *InstCombiner::dyn_castNegVal(Value *V) const {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000522 if (BinaryOperator::isNeg(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000523 return BinaryOperator::getNegArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000524
Chris Lattner0ce85802004-12-14 20:08:06 +0000525 // Constants can be considered to be negated values if they can be folded.
526 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000527 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000528
Chris Lattner7302d802012-02-06 21:56:39 +0000529 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
530 if (C->getType()->getElementType()->isIntegerTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +0000531 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000532
Chris Lattner8d969642003-03-10 23:06:50 +0000533 return 0;
Chris Lattnerb35dde12002-05-06 16:49:18 +0000534}
535
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000536// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
537// instruction if the LHS is a constant negative zero (which is the 'negate'
538// form).
539//
Shuxin Yang935e35d2013-01-09 00:13:41 +0000540Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
541 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000542 return BinaryOperator::getFNegArgument(V);
543
544 // Constants can be considered to be negated values if they can be folded.
545 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000546 return ConstantExpr::getFNeg(C);
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000547
Chris Lattner7302d802012-02-06 21:56:39 +0000548 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
549 if (C->getType()->getElementType()->isFloatingPointTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +0000550 return ConstantExpr::getFNeg(C);
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000551
552 return 0;
553}
554
Chris Lattner6e7ba452005-01-01 16:22:27 +0000555static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner2eefe512004-04-09 19:05:30 +0000556 InstCombiner *IC) {
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000557 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattner2345d1d2009-08-30 20:01:10 +0000558 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000559 }
Chris Lattner6e7ba452005-01-01 16:22:27 +0000560
Chris Lattner2eefe512004-04-09 19:05:30 +0000561 // Figure out if the constant is the left or the right argument.
Chris Lattner6e7ba452005-01-01 16:22:27 +0000562 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
563 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattner564a7272003-08-13 19:01:45 +0000564
Chris Lattner2eefe512004-04-09 19:05:30 +0000565 if (Constant *SOC = dyn_cast<Constant>(SO)) {
566 if (ConstIsRHS)
Owen Andersonbaf3c402009-07-29 18:55:55 +0000567 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
568 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner2eefe512004-04-09 19:05:30 +0000569 }
570
571 Value *Op0 = SO, *Op1 = ConstOperand;
572 if (!ConstIsRHS)
573 std::swap(Op0, Op1);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000574
Stephen Hines36b56882014-04-23 16:57:46 -0700575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
576 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
Chris Lattner74381062009-08-30 07:44:24 +0000577 SO->getName()+".op");
Stephen Hines36b56882014-04-23 16:57:46 -0700578 Instruction *FPInst = dyn_cast<Instruction>(RI);
579 if (FPInst && isa<FPMathOperator>(FPInst))
580 FPInst->copyFastMathFlags(BO);
581 return RI;
582 }
Chris Lattner74381062009-08-30 07:44:24 +0000583 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
584 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
585 SO->getName()+".cmp");
586 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
587 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
588 SO->getName()+".cmp");
589 llvm_unreachable("Unknown binary instruction type!");
Chris Lattner6e7ba452005-01-01 16:22:27 +0000590}
591
592// FoldOpIntoSelect - Given an instruction with a select as one operand and a
593// constant as the other operand, try to fold the binary operator into the
594// select arguments. This also works for Cast instructions, which obviously do
595// not have a second operand.
Chris Lattner80f43d32010-01-04 07:53:58 +0000596Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
Chris Lattner6e7ba452005-01-01 16:22:27 +0000597 // Don't modify shared select instructions
598 if (!SI->hasOneUse()) return 0;
599 Value *TV = SI->getOperand(1);
600 Value *FV = SI->getOperand(2);
601
602 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner956db272005-04-21 05:43:13 +0000603 // Bool selects with constant operands can be folded to logical ops.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000604 if (SI->getType()->isIntegerTy(1)) return 0;
Chris Lattner956db272005-04-21 05:43:13 +0000605
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000606 // If it's a bitcast involving vectors, make sure it has the same number of
607 // elements on both sides.
608 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000609 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
610 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000611
612 // Verify that either both or neither are vectors.
613 if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
614 // If vectors, verify that they have the same number of elements.
615 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
616 return 0;
617 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000618
Chris Lattner80f43d32010-01-04 07:53:58 +0000619 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
620 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
Chris Lattner6e7ba452005-01-01 16:22:27 +0000621
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000622 return SelectInst::Create(SI->getCondition(),
623 SelectTrueVal, SelectFalseVal);
Chris Lattner6e7ba452005-01-01 16:22:27 +0000624 }
625 return 0;
Chris Lattner2eefe512004-04-09 19:05:30 +0000626}
627
Chris Lattner4e998b22004-09-29 05:07:12 +0000628
Chris Lattner5d1704d2009-09-27 19:57:57 +0000629/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
630/// has a PHI node as operand #0, see if we can fold the instruction into the
631/// PHI (which is only possible if all operands to the PHI are constants).
Chris Lattner213cd612009-09-27 20:46:36 +0000632///
Chris Lattner9922ccf2011-01-16 05:14:26 +0000633Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
Chris Lattner4e998b22004-09-29 05:07:12 +0000634 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattnerbac32862004-11-14 19:13:23 +0000635 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner5aac8322011-01-16 04:37:29 +0000636 if (NumPHIValues == 0)
Chris Lattner213cd612009-09-27 20:46:36 +0000637 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000638
Chris Lattner084fe622011-01-21 05:08:26 +0000639 // We normally only transform phis with a single use. However, if a PHI has
640 // multiple uses and they are all the same operation, we can fold *all* of the
641 // uses into the PHI.
Chris Lattner192228e2011-01-16 05:28:59 +0000642 if (!PN->hasOneUse()) {
643 // Walk the use list for the instruction, comparing them to I.
Stephen Hines36b56882014-04-23 16:57:46 -0700644 for (User *U : PN->users()) {
645 Instruction *UI = cast<Instruction>(U);
646 if (UI != &I && !I.isIdenticalTo(UI))
Chris Lattner192228e2011-01-16 05:28:59 +0000647 return 0;
Chris Lattnercd151d22011-01-21 05:29:50 +0000648 }
Chris Lattner192228e2011-01-16 05:28:59 +0000649 // Otherwise, we can replace *all* users with the new PHI we form.
650 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000651
Chris Lattner5d1704d2009-09-27 19:57:57 +0000652 // Check to see if all of the operands of the PHI are simple constants
653 // (constantint/constantfp/undef). If there is one non-constant value,
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000654 // remember the BB it is in. If there is more than one or if *it* is a PHI,
655 // bail out. We don't do arbitrary constant expressions here because moving
656 // their computation can be expensive without a cost model.
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000657 BasicBlock *NonConstBB = 0;
Chris Lattner5aac8322011-01-16 04:37:29 +0000658 for (unsigned i = 0; i != NumPHIValues; ++i) {
659 Value *InVal = PN->getIncomingValue(i);
660 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
661 continue;
662
663 if (isa<PHINode>(InVal)) return 0; // Itself a phi.
664 if (NonConstBB) return 0; // More than one non-const value.
Jakub Staszak58c1da82012-05-06 13:52:31 +0000665
Chris Lattner5aac8322011-01-16 04:37:29 +0000666 NonConstBB = PN->getIncomingBlock(i);
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000667
668 // If the InVal is an invoke at the end of the pred block, then we can't
669 // insert a computation after it without breaking the edge.
670 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
671 if (II->getParent() == NonConstBB)
672 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000673
Chris Lattnercd151d22011-01-21 05:29:50 +0000674 // If the incoming non-constant value is in I's block, we will remove one
675 // instruction, but insert another equivalent one, leading to infinite
676 // instcombine.
677 if (NonConstBB == I.getParent())
678 return 0;
Chris Lattner5aac8322011-01-16 04:37:29 +0000679 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000680
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000681 // If there is exactly one non-constant value, we can insert a copy of the
682 // operation in that block. However, if this is a critical edge, we would be
683 // inserting the computation one some other paths (e.g. inside a loop). Only
684 // do this if the pred block is unconditionally branching into the phi block.
Chris Lattner9922ccf2011-01-16 05:14:26 +0000685 if (NonConstBB != 0) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000686 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
687 if (!BI || !BI->isUnconditional()) return 0;
688 }
Chris Lattner4e998b22004-09-29 05:07:12 +0000689
690 // Okay, we can do the transformation: create the new PHI node.
Eli Friedmane6f364b2011-05-18 23:58:37 +0000691 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
Chris Lattner857eb572009-10-21 23:41:58 +0000692 InsertNewInstBefore(NewPN, *PN);
693 NewPN->takeName(PN);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000694
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000695 // If we are going to have to insert a new computation, do so right before the
696 // predecessors terminator.
697 if (NonConstBB)
698 Builder->SetInsertPoint(NonConstBB->getTerminator());
Jakub Staszak58c1da82012-05-06 13:52:31 +0000699
Chris Lattner4e998b22004-09-29 05:07:12 +0000700 // Next, add all of the operands to the PHI.
Chris Lattner5d1704d2009-09-27 19:57:57 +0000701 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
702 // We only currently try to fold the condition of a select when it is a phi,
703 // not the true/false values.
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000704 Value *TrueV = SI->getTrueValue();
705 Value *FalseV = SI->getFalseValue();
Chris Lattner3ddfb212009-09-28 06:49:44 +0000706 BasicBlock *PhiTransBB = PN->getParent();
Chris Lattner5d1704d2009-09-27 19:57:57 +0000707 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000708 BasicBlock *ThisBB = PN->getIncomingBlock(i);
Chris Lattner3ddfb212009-09-28 06:49:44 +0000709 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
710 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Chris Lattner5d1704d2009-09-27 19:57:57 +0000711 Value *InV = 0;
Bill Wendling7b703752013-12-06 22:12:13 +0000712 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
713 // even if currently isNullValue gives false.
714 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
715 if (InC && !isa<ConstantExpr>(InC))
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000716 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000717 else
718 InV = Builder->CreateSelect(PN->getIncomingValue(i),
719 TrueVInPred, FalseVInPred, "phitmp");
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000720 NewPN->addIncoming(InV, ThisBB);
Chris Lattner5d1704d2009-09-27 19:57:57 +0000721 }
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000722 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
723 Constant *C = cast<Constant>(I.getOperand(1));
724 for (unsigned i = 0; i != NumPHIValues; ++i) {
725 Value *InV = 0;
726 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
727 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
728 else if (isa<ICmpInst>(CI))
729 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
730 C, "phitmp");
731 else
732 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
733 C, "phitmp");
734 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
735 }
Chris Lattner5d1704d2009-09-27 19:57:57 +0000736 } else if (I.getNumOperands() == 2) {
Chris Lattner4e998b22004-09-29 05:07:12 +0000737 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattnerbac32862004-11-14 19:13:23 +0000738 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnera9ff5eb2007-08-05 08:47:58 +0000739 Value *InV = 0;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000740 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
741 InV = ConstantExpr::get(I.getOpcode(), InC, C);
742 else
743 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
744 PN->getIncomingValue(i), C, "phitmp");
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000745 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +0000746 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000747 } else {
Reid Spencer3da59db2006-11-27 01:05:10 +0000748 CastInst *CI = cast<CastInst>(&I);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000749 Type *RetTy = CI->getType();
Chris Lattnerbac32862004-11-14 19:13:23 +0000750 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000751 Value *InV;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000752 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000753 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000754 else
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000755 InV = Builder->CreateCast(CI->getOpcode(),
756 PN->getIncomingValue(i), I.getType(), "phitmp");
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000757 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +0000758 }
759 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000760
Stephen Hines36b56882014-04-23 16:57:46 -0700761 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
Chris Lattner192228e2011-01-16 05:28:59 +0000762 Instruction *User = cast<Instruction>(*UI++);
763 if (User == &I) continue;
764 ReplaceInstUsesWith(*User, NewPN);
765 EraseInstFromFunction(*User);
766 }
Chris Lattner4e998b22004-09-29 05:07:12 +0000767 return ReplaceInstUsesWith(I, NewPN);
768}
769
Matt Arsenault8e3367e2013-08-19 22:17:40 +0000770/// FindElementAtOffset - Given a pointer type and a constant offset, determine
771/// whether or not there is a sequence of GEP indices into the pointed type that
772/// will land us at the specified offset. If so, fill them into NewIndices and
773/// return the resultant element type, otherwise return null.
774Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
775 SmallVectorImpl<Value*> &NewIndices) {
776 assert(PtrTy->isPtrOrPtrVectorTy());
777
Stephen Hines36b56882014-04-23 16:57:46 -0700778 if (!DL)
Matt Arsenault8e3367e2013-08-19 22:17:40 +0000779 return 0;
780
781 Type *Ty = PtrTy->getPointerElementType();
782 if (!Ty->isSized())
783 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000784
Chris Lattner46cd5a12009-01-09 05:44:56 +0000785 // Start with the index over the outer type. Note that the type size
786 // might be zero (even if the offset isn't zero) if the indexed type
787 // is something like [0 x {int, int}]
Stephen Hines36b56882014-04-23 16:57:46 -0700788 Type *IntPtrTy = DL->getIntPtrType(PtrTy);
Chris Lattner46cd5a12009-01-09 05:44:56 +0000789 int64_t FirstIdx = 0;
Stephen Hines36b56882014-04-23 16:57:46 -0700790 if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +0000791 FirstIdx = Offset/TySize;
Chris Lattner31a69cb2009-01-11 20:41:36 +0000792 Offset -= FirstIdx*TySize;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000793
Benjamin Kramer028dba32013-01-23 17:52:29 +0000794 // Handle hosts where % returns negative instead of values [0..TySize).
795 if (Offset < 0) {
796 --FirstIdx;
797 Offset += TySize;
798 assert(Offset >= 0);
799 }
Chris Lattner46cd5a12009-01-09 05:44:56 +0000800 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
801 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000802
Owen Andersoneed707b2009-07-24 23:12:02 +0000803 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Jakub Staszak58c1da82012-05-06 13:52:31 +0000804
Chris Lattner46cd5a12009-01-09 05:44:56 +0000805 // Index into the types. If we fail, set OrigBase to null.
806 while (Offset) {
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000807 // Indexing into tail padding between struct/array elements.
Stephen Hines36b56882014-04-23 16:57:46 -0700808 if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
Chris Lattner3914f722009-01-24 01:00:13 +0000809 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000810
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000811 if (StructType *STy = dyn_cast<StructType>(Ty)) {
Stephen Hines36b56882014-04-23 16:57:46 -0700812 const StructLayout *SL = DL->getStructLayout(STy);
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000813 assert(Offset < (int64_t)SL->getSizeInBytes() &&
814 "Offset must stay within the indexed type");
Jakub Staszak58c1da82012-05-06 13:52:31 +0000815
Chris Lattner46cd5a12009-01-09 05:44:56 +0000816 unsigned Elt = SL->getElementContainingOffset(Offset);
Chris Lattner4de84762010-01-04 07:02:48 +0000817 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
818 Elt));
Jakub Staszak58c1da82012-05-06 13:52:31 +0000819
Chris Lattner46cd5a12009-01-09 05:44:56 +0000820 Offset -= SL->getElementOffset(Elt);
821 Ty = STy->getElementType(Elt);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000822 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Stephen Hines36b56882014-04-23 16:57:46 -0700823 uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000824 assert(EltSize && "Cannot index into a zero-sized array");
Owen Andersoneed707b2009-07-24 23:12:02 +0000825 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000826 Offset %= EltSize;
Chris Lattner1c412d92009-01-11 20:23:52 +0000827 Ty = AT->getElementType();
Chris Lattner46cd5a12009-01-09 05:44:56 +0000828 } else {
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000829 // Otherwise, we can't index into the middle of this atomic type, bail.
Chris Lattner3914f722009-01-24 01:00:13 +0000830 return 0;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000831 }
832 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000833
Chris Lattner3914f722009-01-24 01:00:13 +0000834 return Ty;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000835}
836
Rafael Espindola592ad6a2011-07-31 04:43:41 +0000837static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
838 // If this GEP has only 0 indices, it is the same pointer as
839 // Src. If Src is not a trivial GEP too, don't combine
840 // the indices.
841 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
842 !Src.hasOneUse())
843 return false;
844 return true;
845}
Chris Lattner473945d2002-05-06 18:06:38 +0000846
Duncan Sandsbbc70162012-10-23 08:28:26 +0000847/// Descale - Return a value X such that Val = X * Scale, or null if none. If
848/// the multiplication is known not to overflow then NoSignedWrap is set.
849Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
850 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
851 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
852 Scale.getBitWidth() && "Scale not compatible with value!");
853
854 // If Val is zero or Scale is one then Val = Val * Scale.
855 if (match(Val, m_Zero()) || Scale == 1) {
856 NoSignedWrap = true;
857 return Val;
858 }
859
860 // If Scale is zero then it does not divide Val.
861 if (Scale.isMinValue())
862 return 0;
863
864 // Look through chains of multiplications, searching for a constant that is
865 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
866 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
867 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
868 // down from Val:
869 //
870 // Val = M1 * X || Analysis starts here and works down
871 // M1 = M2 * Y || Doesn't descend into terms with more
872 // M2 = Z * 4 \/ than one use
873 //
874 // Then to modify a term at the bottom:
875 //
876 // Val = M1 * X
877 // M1 = Z * Y || Replaced M2 with Z
878 //
879 // Then to work back up correcting nsw flags.
880
881 // Op - the term we are currently analyzing. Starts at Val then drills down.
882 // Replaced with its descaled value before exiting from the drill down loop.
883 Value *Op = Val;
884
885 // Parent - initially null, but after drilling down notes where Op came from.
886 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
887 // 0'th operand of Val.
888 std::pair<Instruction*, unsigned> Parent;
889
890 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
891 // levels that doesn't overflow.
892 bool RequireNoSignedWrap = false;
893
894 // logScale - log base 2 of the scale. Negative if not a power of 2.
895 int32_t logScale = Scale.exactLogBase2();
896
897 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
898
899 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
900 // If Op is a constant divisible by Scale then descale to the quotient.
901 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
902 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
903 if (!Remainder.isMinValue())
904 // Not divisible by Scale.
905 return 0;
906 // Replace with the quotient in the parent.
907 Op = ConstantInt::get(CI->getType(), Quotient);
908 NoSignedWrap = true;
909 break;
910 }
911
912 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
913
914 if (BO->getOpcode() == Instruction::Mul) {
915 // Multiplication.
916 NoSignedWrap = BO->hasNoSignedWrap();
917 if (RequireNoSignedWrap && !NoSignedWrap)
918 return 0;
919
920 // There are three cases for multiplication: multiplication by exactly
921 // the scale, multiplication by a constant different to the scale, and
922 // multiplication by something else.
923 Value *LHS = BO->getOperand(0);
924 Value *RHS = BO->getOperand(1);
925
926 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
927 // Multiplication by a constant.
928 if (CI->getValue() == Scale) {
929 // Multiplication by exactly the scale, replace the multiplication
930 // by its left-hand side in the parent.
931 Op = LHS;
932 break;
933 }
934
935 // Otherwise drill down into the constant.
936 if (!Op->hasOneUse())
937 return 0;
938
939 Parent = std::make_pair(BO, 1);
940 continue;
941 }
942
943 // Multiplication by something else. Drill down into the left-hand side
944 // since that's where the reassociate pass puts the good stuff.
945 if (!Op->hasOneUse())
946 return 0;
947
948 Parent = std::make_pair(BO, 0);
949 continue;
950 }
951
952 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
953 isa<ConstantInt>(BO->getOperand(1))) {
954 // Multiplication by a power of 2.
955 NoSignedWrap = BO->hasNoSignedWrap();
956 if (RequireNoSignedWrap && !NoSignedWrap)
957 return 0;
958
959 Value *LHS = BO->getOperand(0);
960 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
961 getLimitedValue(Scale.getBitWidth());
962 // Op = LHS << Amt.
963
964 if (Amt == logScale) {
965 // Multiplication by exactly the scale, replace the multiplication
966 // by its left-hand side in the parent.
967 Op = LHS;
968 break;
969 }
970 if (Amt < logScale || !Op->hasOneUse())
971 return 0;
972
973 // Multiplication by more than the scale. Reduce the multiplying amount
974 // by the scale in the parent.
975 Parent = std::make_pair(BO, 1);
976 Op = ConstantInt::get(BO->getType(), Amt - logScale);
977 break;
978 }
979 }
980
981 if (!Op->hasOneUse())
982 return 0;
983
984 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
985 if (Cast->getOpcode() == Instruction::SExt) {
986 // Op is sign-extended from a smaller type, descale in the smaller type.
987 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
988 APInt SmallScale = Scale.trunc(SmallSize);
989 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
990 // descale Op as (sext Y) * Scale. In order to have
991 // sext (Y * SmallScale) = (sext Y) * Scale
992 // some conditions need to hold however: SmallScale must sign-extend to
993 // Scale and the multiplication Y * SmallScale should not overflow.
994 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
995 // SmallScale does not sign-extend to Scale.
996 return 0;
997 assert(SmallScale.exactLogBase2() == logScale);
998 // Require that Y * SmallScale must not overflow.
999 RequireNoSignedWrap = true;
1000
1001 // Drill down through the cast.
1002 Parent = std::make_pair(Cast, 0);
1003 Scale = SmallScale;
1004 continue;
1005 }
1006
Duncan Sandsf1ec4e42012-10-23 09:07:02 +00001007 if (Cast->getOpcode() == Instruction::Trunc) {
Duncan Sandsbbc70162012-10-23 08:28:26 +00001008 // Op is truncated from a larger type, descale in the larger type.
1009 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1010 // trunc (Y * sext Scale) = (trunc Y) * Scale
1011 // always holds. However (trunc Y) * Scale may overflow even if
1012 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1013 // from this point up in the expression (see later).
1014 if (RequireNoSignedWrap)
1015 return 0;
1016
1017 // Drill down through the cast.
1018 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1019 Parent = std::make_pair(Cast, 0);
1020 Scale = Scale.sext(LargeSize);
1021 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1022 logScale = -1;
1023 assert(Scale.exactLogBase2() == logScale);
1024 continue;
1025 }
1026 }
1027
1028 // Unsupported expression, bail out.
1029 return 0;
1030 }
1031
1032 // We know that we can successfully descale, so from here on we can safely
1033 // modify the IR. Op holds the descaled version of the deepest term in the
1034 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1035 // not to overflow.
1036
1037 if (!Parent.first)
1038 // The expression only had one term.
1039 return Op;
1040
1041 // Rewrite the parent using the descaled version of its operand.
1042 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1043 assert(Op != Parent.first->getOperand(Parent.second) &&
1044 "Descaling was a no-op?");
1045 Parent.first->setOperand(Parent.second, Op);
1046 Worklist.Add(Parent.first);
1047
1048 // Now work back up the expression correcting nsw flags. The logic is based
1049 // on the following observation: if X * Y is known not to overflow as a signed
1050 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1051 // then X * Z will not overflow as a signed multiplication either. As we work
1052 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1053 // current level has strictly smaller absolute value than the original.
1054 Instruction *Ancestor = Parent.first;
1055 do {
1056 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1057 // If the multiplication wasn't nsw then we can't say anything about the
1058 // value of the descaled multiplication, and we have to clear nsw flags
1059 // from this point on up.
1060 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1061 NoSignedWrap &= OpNoSignedWrap;
1062 if (NoSignedWrap != OpNoSignedWrap) {
1063 BO->setHasNoSignedWrap(NoSignedWrap);
1064 Worklist.Add(Ancestor);
1065 }
1066 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1067 // The fact that the descaled input to the trunc has smaller absolute
1068 // value than the original input doesn't tell us anything useful about
1069 // the absolute values of the truncations.
1070 NoSignedWrap = false;
1071 }
1072 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1073 "Failed to keep proper track of nsw flags while drilling down?");
1074
1075 if (Ancestor == Val)
1076 // Got to the top, all done!
1077 return Val;
1078
1079 // Move up one level in the expression.
1080 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
Stephen Hines36b56882014-04-23 16:57:46 -07001081 Ancestor = Ancestor->user_back();
Duncan Sandsbbc70162012-10-23 08:28:26 +00001082 } while (1);
1083}
1084
Chris Lattner7e708292002-06-25 16:13:24 +00001085Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001086 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1087
Stephen Hines36b56882014-04-23 16:57:46 -07001088 if (Value *V = SimplifyGEPInst(Ops, DL))
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001089 return ReplaceInstUsesWith(GEP, V);
1090
Chris Lattner620ce142004-05-07 22:09:22 +00001091 Value *PtrOp = GEP.getOperand(0);
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001092
Duncan Sandsa63395a2010-11-22 16:32:50 +00001093 // Eliminate unneeded casts for indices, and replace indices which displace
1094 // by multiples of a zero size type with zero.
Stephen Hines36b56882014-04-23 16:57:46 -07001095 if (DL) {
Chris Lattnerccf4b342009-08-30 04:49:01 +00001096 bool MadeChange = false;
Stephen Hines36b56882014-04-23 16:57:46 -07001097 Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
Duncan Sandsa63395a2010-11-22 16:32:50 +00001098
Chris Lattnerccf4b342009-08-30 04:49:01 +00001099 gep_type_iterator GTI = gep_type_begin(GEP);
1100 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1101 I != E; ++I, ++GTI) {
Duncan Sandsa63395a2010-11-22 16:32:50 +00001102 // Skip indices into struct types.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001103 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
Duncan Sandsa63395a2010-11-22 16:32:50 +00001104 if (!SeqTy) continue;
1105
1106 // If the element type has zero size then any index over it is equivalent
1107 // to an index of zero, so replace it with zero if it is not zero already.
1108 if (SeqTy->getElementType()->isSized() &&
Stephen Hines36b56882014-04-23 16:57:46 -07001109 DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
Duncan Sandsa63395a2010-11-22 16:32:50 +00001110 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1111 *I = Constant::getNullValue(IntPtrTy);
1112 MadeChange = true;
1113 }
1114
Nadav Rotem16087692011-12-05 06:29:09 +00001115 Type *IndexTy = (*I)->getType();
Duncan Sandsc5b969a2012-11-03 11:44:17 +00001116 if (IndexTy != IntPtrTy) {
Duncan Sandsa63395a2010-11-22 16:32:50 +00001117 // If we are using a wider index than needed for this platform, shrink
1118 // it to what we need. If narrower, sign-extend it to what we need.
1119 // This explicit cast can make subsequent optimizations more obvious.
1120 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1121 MadeChange = true;
1122 }
Chris Lattner28977af2004-04-05 01:30:19 +00001123 }
Chris Lattnerccf4b342009-08-30 04:49:01 +00001124 if (MadeChange) return &GEP;
Chris Lattnerdb9654e2007-03-25 20:43:09 +00001125 }
Chris Lattner28977af2004-04-05 01:30:19 +00001126
Chris Lattner90ac28c2002-08-02 19:29:35 +00001127 // Combine Indices - If the source pointer to this getelementptr instruction
1128 // is a getelementptr instruction, combine the indices of the two
1129 // getelementptr instructions into a single instruction.
1130 //
Dan Gohmand6aa02d2009-07-28 01:40:03 +00001131 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
Rafael Espindola592ad6a2011-07-31 04:43:41 +00001132 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
Rafael Espindolab5a12dd2011-07-11 03:43:47 +00001133 return 0;
1134
Duncan Sandsbbc70162012-10-23 08:28:26 +00001135 // Note that if our source is a gep chain itself then we wait for that
Chris Lattner620ce142004-05-07 22:09:22 +00001136 // chain to be resolved before we perform this transformation. This
1137 // avoids us creating a TON of code in some cases.
Rafael Espindola592ad6a2011-07-31 04:43:41 +00001138 if (GEPOperator *SrcGEP =
1139 dyn_cast<GEPOperator>(Src->getOperand(0)))
1140 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001141 return 0; // Wait until our source is folded to completion.
Chris Lattner620ce142004-05-07 22:09:22 +00001142
Chris Lattner72588fc2007-02-15 22:48:32 +00001143 SmallVector<Value*, 8> Indices;
Chris Lattner620ce142004-05-07 22:09:22 +00001144
1145 // Find out whether the last index in the source GEP is a sequential idx.
1146 bool EndsWithSequential = false;
Chris Lattnerab984842009-08-30 05:30:55 +00001147 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1148 I != E; ++I)
Duncan Sands1df98592010-02-16 11:11:14 +00001149 EndsWithSequential = !(*I)->isStructTy();
Misha Brukmanfd939082005-04-21 23:48:37 +00001150
Chris Lattner90ac28c2002-08-02 19:29:35 +00001151 // Can we combine the two pointer arithmetics offsets?
Chris Lattner620ce142004-05-07 22:09:22 +00001152 if (EndsWithSequential) {
Chris Lattnerdecd0812003-03-05 22:33:14 +00001153 // Replace: gep (gep %P, long B), long A, ...
1154 // With: T = long A+B; gep %P, T, ...
1155 //
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001156 Value *Sum;
1157 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1158 Value *GO1 = GEP.getOperand(1);
Owen Andersona7235ea2009-07-31 20:28:14 +00001159 if (SO1 == Constant::getNullValue(SO1->getType())) {
Chris Lattner28977af2004-04-05 01:30:19 +00001160 Sum = GO1;
Owen Andersona7235ea2009-07-31 20:28:14 +00001161 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Chris Lattner28977af2004-04-05 01:30:19 +00001162 Sum = SO1;
1163 } else {
Chris Lattnerab984842009-08-30 05:30:55 +00001164 // If they aren't the same type, then the input hasn't been processed
1165 // by the loop above yet (which canonicalizes sequential index types to
1166 // intptr_t). Just avoid transforming this until the input has been
1167 // normalized.
1168 if (SO1->getType() != GO1->getType())
1169 return 0;
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001170 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner28977af2004-04-05 01:30:19 +00001171 }
Chris Lattner620ce142004-05-07 22:09:22 +00001172
Chris Lattnerab984842009-08-30 05:30:55 +00001173 // Update the GEP in place if possible.
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001174 if (Src->getNumOperands() == 2) {
1175 GEP.setOperand(0, Src->getOperand(0));
Chris Lattner620ce142004-05-07 22:09:22 +00001176 GEP.setOperand(1, Sum);
1177 return &GEP;
Chris Lattner620ce142004-05-07 22:09:22 +00001178 }
Chris Lattnerab984842009-08-30 05:30:55 +00001179 Indices.append(Src->op_begin()+1, Src->op_end()-1);
Chris Lattnerccf4b342009-08-30 04:49:01 +00001180 Indices.push_back(Sum);
Chris Lattnerab984842009-08-30 05:30:55 +00001181 Indices.append(GEP.op_begin()+2, GEP.op_end());
Misha Brukmanfd939082005-04-21 23:48:37 +00001182 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner28977af2004-04-05 01:30:19 +00001183 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001184 Src->getNumOperands() != 1) {
Chris Lattner90ac28c2002-08-02 19:29:35 +00001185 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerab984842009-08-30 05:30:55 +00001186 Indices.append(Src->op_begin()+1, Src->op_end());
1187 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
Chris Lattner90ac28c2002-08-02 19:29:35 +00001188 }
1189
Dan Gohmanf8dbee72009-09-07 23:54:19 +00001190 if (!Indices.empty())
Chris Lattner948cdeb2010-01-05 07:42:10 +00001191 return (GEP.isInBounds() && Src->isInBounds()) ?
Jay Foada9203102011-07-25 09:48:08 +00001192 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1193 GEP.getName()) :
1194 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
Chris Lattner6e24d832009-08-30 05:00:50 +00001195 }
Nadav Rotem0286ca82011-04-05 14:29:52 +00001196
Benjamin Kramer4c332fa2013-09-20 14:38:44 +00001197 // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y))
1198 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1199 // pointer arithmetic.
Stephen Hines36b56882014-04-23 16:57:46 -07001200 if (DL && GEP.getNumIndices() == 1 &&
Matt Arsenault1df59ef2013-10-03 18:15:57 +00001201 match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) {
1202 unsigned AS = GEP.getPointerAddressSpace();
1203 if (GEP.getType() == Builder->getInt8PtrTy(AS) &&
1204 GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
Stephen Hines36b56882014-04-23 16:57:46 -07001205 DL->getPointerSizeInBits(AS)) {
Matt Arsenault1df59ef2013-10-03 18:15:57 +00001206 Operator *Index = cast<Operator>(GEP.getOperand(1));
1207 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1208 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1209 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1210 }
Benjamin Kramer4c332fa2013-09-20 14:38:44 +00001211 }
1212
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001213 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Chris Lattner948cdeb2010-01-05 07:42:10 +00001214 Value *StrippedPtr = PtrOp->stripPointerCasts();
Nadav Rotemc71108b2012-03-26 20:39:18 +00001215 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1216
Nadav Rotem02f0a492012-03-26 21:00:53 +00001217 // We do not handle pointer-vector geps here.
1218 if (!StrippedPtrTy)
1219 return 0;
1220
Stephen Hines36b56882014-04-23 16:57:46 -07001221 if (StrippedPtr != PtrOp) {
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001222 bool HasZeroPointerIndex = false;
1223 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1224 HasZeroPointerIndex = C->isZero();
Nadav Rotem0286ca82011-04-05 14:29:52 +00001225
Chris Lattner963f4ba2009-08-30 20:36:46 +00001226 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1227 // into : GEP [10 x i8]* X, i32 0, ...
1228 //
1229 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1230 // into : GEP i8* X, ...
Nadav Rotem0286ca82011-04-05 14:29:52 +00001231 //
Chris Lattner963f4ba2009-08-30 20:36:46 +00001232 // This occurs when the program declares an array extern like "int X[];"
Chris Lattner6e24d832009-08-30 05:00:50 +00001233 if (HasZeroPointerIndex) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001234 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1235 if (ArrayType *CATy =
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001236 dyn_cast<ArrayType>(CPTy->getElementType())) {
1237 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
Chris Lattner948cdeb2010-01-05 07:42:10 +00001238 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001239 // -> GEP i8* X, ...
Chris Lattner948cdeb2010-01-05 07:42:10 +00001240 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1241 GetElementPtrInst *Res =
Jay Foada9203102011-07-25 09:48:08 +00001242 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
Chris Lattner948cdeb2010-01-05 07:42:10 +00001243 Res->setIsInBounds(GEP.isInBounds());
1244 return Res;
Chris Lattner963f4ba2009-08-30 20:36:46 +00001245 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001246
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001247 if (ArrayType *XATy =
Chris Lattner948cdeb2010-01-05 07:42:10 +00001248 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001249 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
Chris Lattnereed48272005-09-13 00:40:14 +00001250 if (CATy->getElementType() == XATy->getElementType()) {
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001251 // -> GEP [10 x i8]* X, i32 0, ...
Chris Lattnereed48272005-09-13 00:40:14 +00001252 // At this point, we know that the cast source type is a pointer
1253 // to an array of the same type as the destination pointer
1254 // array. Because the array type is never stepped over (there
1255 // is a leading zero) we can fold the cast into this GEP.
Chris Lattner948cdeb2010-01-05 07:42:10 +00001256 GEP.setOperand(0, StrippedPtr);
Chris Lattnereed48272005-09-13 00:40:14 +00001257 return &GEP;
1258 }
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001259 }
1260 }
Chris Lattnereed48272005-09-13 00:40:14 +00001261 } else if (GEP.getNumOperands() == 2) {
1262 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001263 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1264 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001265 Type *SrcElTy = StrippedPtrTy->getElementType();
Matt Arsenault3ea117e2013-08-14 00:24:34 +00001266 Type *ResElTy = PtrOp->getType()->getPointerElementType();
Stephen Hines36b56882014-04-23 16:57:46 -07001267 if (DL && SrcElTy->isArrayTy() &&
1268 DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1269 DL->getTypeAllocSize(ResElTy)) {
1270 Type *IdxType = DL->getIntPtrType(GEP.getType());
Matt Arsenaultfdc26602013-08-14 00:24:38 +00001271 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
Chris Lattner948cdeb2010-01-05 07:42:10 +00001272 Value *NewGEP = GEP.isInBounds() ?
Jay Foad0a2a60a2011-07-22 08:16:57 +00001273 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1274 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
Stephen Hines36b56882014-04-23 16:57:46 -07001275
Reid Spencer3da59db2006-11-27 01:05:10 +00001276 // V and GEP are both pointer types --> BitCast
Stephen Hines36b56882014-04-23 16:57:46 -07001277 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1278 return new BitCastInst(NewGEP, GEP.getType());
1279 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001280 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001281
Chris Lattner7835cdd2005-09-13 18:36:04 +00001282 // Transform things like:
Duncan Sandsbbc70162012-10-23 08:28:26 +00001283 // %V = mul i64 %N, 4
1284 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1285 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
Stephen Hines36b56882014-04-23 16:57:46 -07001286 if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
Duncan Sandsbbc70162012-10-23 08:28:26 +00001287 // Check that changing the type amounts to dividing the index by a scale
1288 // factor.
Stephen Hines36b56882014-04-23 16:57:46 -07001289 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1290 uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
Duncan Sandsbbc70162012-10-23 08:28:26 +00001291 if (ResSize && SrcSize % ResSize == 0) {
1292 Value *Idx = GEP.getOperand(1);
1293 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1294 uint64_t Scale = SrcSize / ResSize;
1295
1296 // Earlier transforms ensure that the index has type IntPtrType, which
1297 // considerably simplifies the logic by eliminating implicit casts.
Stephen Hines36b56882014-04-23 16:57:46 -07001298 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
Duncan Sandsbbc70162012-10-23 08:28:26 +00001299 "Index not cast to pointer width?");
1300
1301 bool NSW;
1302 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1303 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1304 // If the multiplication NewIdx * Scale may overflow then the new
1305 // GEP may not be "inbounds".
1306 Value *NewGEP = GEP.isInBounds() && NSW ?
1307 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1308 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
Stephen Hines36b56882014-04-23 16:57:46 -07001309
Duncan Sandsbbc70162012-10-23 08:28:26 +00001310 // The NewGEP must be pointer typed, so must the old one -> BitCast
Stephen Hines36b56882014-04-23 16:57:46 -07001311 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1312 return new BitCastInst(NewGEP, GEP.getType());
1313 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Duncan Sandsbbc70162012-10-23 08:28:26 +00001314 }
1315 }
1316 }
1317
1318 // Similarly, transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001319 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner7835cdd2005-09-13 18:36:04 +00001320 // (where tmp = 8*tmp2) into:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001321 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Stephen Hines36b56882014-04-23 16:57:46 -07001322 if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
Duncan Sandsbbc70162012-10-23 08:28:26 +00001323 SrcElTy->isArrayTy()) {
1324 // Check that changing to the array element type amounts to dividing the
1325 // index by a scale factor.
Stephen Hines36b56882014-04-23 16:57:46 -07001326 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
Matt Arsenault3ea117e2013-08-14 00:24:34 +00001327 uint64_t ArrayEltSize
Stephen Hines36b56882014-04-23 16:57:46 -07001328 = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
Duncan Sandsbbc70162012-10-23 08:28:26 +00001329 if (ResSize && ArrayEltSize % ResSize == 0) {
1330 Value *Idx = GEP.getOperand(1);
1331 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1332 uint64_t Scale = ArrayEltSize / ResSize;
Jakub Staszak58c1da82012-05-06 13:52:31 +00001333
Duncan Sandsbbc70162012-10-23 08:28:26 +00001334 // Earlier transforms ensure that the index has type IntPtrType, which
1335 // considerably simplifies the logic by eliminating implicit casts.
Stephen Hines36b56882014-04-23 16:57:46 -07001336 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
Duncan Sandsbbc70162012-10-23 08:28:26 +00001337 "Index not cast to pointer width?");
1338
1339 bool NSW;
1340 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1341 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1342 // If the multiplication NewIdx * Scale may overflow then the new
1343 // GEP may not be "inbounds".
Matt Arsenaultfdc26602013-08-14 00:24:38 +00001344 Value *Off[2] = {
Stephen Hines36b56882014-04-23 16:57:46 -07001345 Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
Matt Arsenaultfdc26602013-08-14 00:24:38 +00001346 NewIdx
1347 };
1348
Duncan Sandsbbc70162012-10-23 08:28:26 +00001349 Value *NewGEP = GEP.isInBounds() && NSW ?
1350 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1351 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1352 // The NewGEP must be pointer typed, so must the old one -> BitCast
Stephen Hines36b56882014-04-23 16:57:46 -07001353 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1354 return new BitCastInst(NewGEP, GEP.getType());
1355 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattner7835cdd2005-09-13 18:36:04 +00001356 }
1357 }
Chris Lattner7835cdd2005-09-13 18:36:04 +00001358 }
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001359 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00001360 }
Nadav Rotem0286ca82011-04-05 14:29:52 +00001361
Stephen Hines36b56882014-04-23 16:57:46 -07001362 if (!DL)
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001363 return 0;
1364
Chris Lattner46cd5a12009-01-09 05:44:56 +00001365 /// See if we can simplify:
Chris Lattner873ff012009-08-30 05:55:36 +00001366 /// X = bitcast A* to B*
Chris Lattner46cd5a12009-01-09 05:44:56 +00001367 /// Y = gep X, <...constant indices...>
1368 /// into a gep of the original struct. This is important for SROA and alias
1369 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattner58407792009-01-09 04:53:57 +00001370 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001371 Value *Operand = BCI->getOperand(0);
1372 PointerType *OpType = cast<PointerType>(Operand->getType());
Stephen Hines36b56882014-04-23 16:57:46 -07001373 unsigned OffsetBits = DL->getPointerTypeSizeInBits(OpType);
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001374 APInt Offset(OffsetBits, 0);
1375 if (!isa<BitCastInst>(Operand) &&
Stephen Hines36b56882014-04-23 16:57:46 -07001376 GEP.accumulateConstantOffset(*DL, Offset) &&
Nadav Rotem0286ca82011-04-05 14:29:52 +00001377 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1378
Chris Lattner46cd5a12009-01-09 05:44:56 +00001379 // If this GEP instruction doesn't move the pointer, just replace the GEP
1380 // with a bitcast of the real input to the dest type.
Nuno Lopes98281a22012-12-30 16:25:48 +00001381 if (!Offset) {
Chris Lattner46cd5a12009-01-09 05:44:56 +00001382 // If the bitcast is of an allocation, and the allocation will be
1383 // converted to match the type of the cast, don't touch this.
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001384 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +00001385 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1386 if (Instruction *I = visitBitCast(*BCI)) {
1387 if (I != BCI) {
1388 I->takeName(BCI);
1389 BCI->getParent()->getInstList().insert(BCI, I);
1390 ReplaceInstUsesWith(*BCI, I);
1391 }
1392 return &GEP;
Chris Lattner58407792009-01-09 04:53:57 +00001393 }
Chris Lattner58407792009-01-09 04:53:57 +00001394 }
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001395 return new BitCastInst(Operand, GEP.getType());
Chris Lattner58407792009-01-09 04:53:57 +00001396 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001397
Chris Lattner46cd5a12009-01-09 05:44:56 +00001398 // Otherwise, if the offset is non-zero, we need to find out if there is a
1399 // field at Offset in 'A's type. If so, we can pull the cast through the
1400 // GEP.
1401 SmallVector<Value*, 8> NewIndices;
Matt Arsenault8e3367e2013-08-19 22:17:40 +00001402 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
Chris Lattner948cdeb2010-01-05 07:42:10 +00001403 Value *NGEP = GEP.isInBounds() ?
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001404 Builder->CreateInBoundsGEP(Operand, NewIndices) :
1405 Builder->CreateGEP(Operand, NewIndices);
Jakub Staszak58c1da82012-05-06 13:52:31 +00001406
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001407 if (NGEP->getType() == GEP.getType())
1408 return ReplaceInstUsesWith(GEP, NGEP);
Chris Lattner46cd5a12009-01-09 05:44:56 +00001409 NGEP->takeName(&GEP);
1410 return new BitCastInst(NGEP, GEP.getType());
1411 }
Chris Lattner58407792009-01-09 04:53:57 +00001412 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001413 }
1414
Chris Lattner8a2a3112001-12-14 16:52:21 +00001415 return 0;
1416}
1417
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001418static bool
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001419isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1420 const TargetLibraryInfo *TLI) {
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001421 SmallVector<Instruction*, 4> Worklist;
1422 Worklist.push_back(AI);
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001423
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001424 do {
1425 Instruction *PI = Worklist.pop_back_val();
Stephen Hines36b56882014-04-23 16:57:46 -07001426 for (User *U : PI->users()) {
1427 Instruction *I = cast<Instruction>(U);
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001428 switch (I->getOpcode()) {
1429 default:
1430 // Give up the moment we see something we can't handle.
Nuno Lopes99694582012-07-06 23:09:25 +00001431 return false;
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001432
1433 case Instruction::BitCast:
1434 case Instruction::GetElementPtr:
1435 Users.push_back(I);
1436 Worklist.push_back(I);
1437 continue;
1438
1439 case Instruction::ICmp: {
1440 ICmpInst *ICI = cast<ICmpInst>(I);
1441 // We can fold eq/ne comparisons with null to false/true, respectively.
1442 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1443 return false;
1444 Users.push_back(I);
1445 continue;
1446 }
1447
1448 case Instruction::Call:
1449 // Ignore no-op and store intrinsics.
1450 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1451 switch (II->getIntrinsicID()) {
1452 default:
1453 return false;
1454
1455 case Intrinsic::memmove:
1456 case Intrinsic::memcpy:
1457 case Intrinsic::memset: {
1458 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1459 if (MI->isVolatile() || MI->getRawDest() != PI)
1460 return false;
1461 }
1462 // fall through
1463 case Intrinsic::dbg_declare:
1464 case Intrinsic::dbg_value:
1465 case Intrinsic::invariant_start:
1466 case Intrinsic::invariant_end:
1467 case Intrinsic::lifetime_start:
1468 case Intrinsic::lifetime_end:
1469 case Intrinsic::objectsize:
1470 Users.push_back(I);
1471 continue;
1472 }
1473 }
1474
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001475 if (isFreeCall(I, TLI)) {
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001476 Users.push_back(I);
1477 continue;
1478 }
1479 return false;
1480
1481 case Instruction::Store: {
1482 StoreInst *SI = cast<StoreInst>(I);
1483 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1484 return false;
1485 Users.push_back(I);
1486 continue;
1487 }
1488 }
1489 llvm_unreachable("missing a return?");
Nuno Lopes99694582012-07-06 23:09:25 +00001490 }
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001491 } while (!Worklist.empty());
Duncan Sands1d9b9732010-05-27 19:09:06 +00001492 return true;
1493}
1494
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001495Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
Duncan Sands1d9b9732010-05-27 19:09:06 +00001496 // If we have a malloc call which is only used in any amount of comparisons
1497 // to null and free calls, delete the calls and replace the comparisons with
1498 // true or false as appropriate.
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001499 SmallVector<WeakVH, 64> Users;
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001500 if (isAllocSiteRemovable(&MI, Users, TLI)) {
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001501 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1502 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1503 if (!I) continue;
Duncan Sands1d9b9732010-05-27 19:09:06 +00001504
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001505 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001506 ReplaceInstUsesWith(*C,
1507 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1508 C->isFalseWhenEqual()));
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001509 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001510 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
Nuno Lopes99694582012-07-06 23:09:25 +00001511 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1512 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1513 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1514 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1515 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1516 }
Duncan Sands1d9b9732010-05-27 19:09:06 +00001517 }
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001518 EraseInstFromFunction(*I);
Duncan Sands1d9b9732010-05-27 19:09:06 +00001519 }
Nuno Lopes2b3e9582012-06-21 21:25:05 +00001520
1521 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
Nuno Lopesc363c742012-06-28 22:31:24 +00001522 // Replace invoke with a NOP intrinsic to maintain the original CFG
Nuno Lopes3769fe12012-06-25 17:11:47 +00001523 Module *M = II->getParent()->getParent()->getParent();
Nuno Lopesc363c742012-06-28 22:31:24 +00001524 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1525 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
Dmitri Gribenko5c332db2013-05-05 00:40:33 +00001526 None, "", II->getParent());
Nuno Lopes2b3e9582012-06-21 21:25:05 +00001527 }
Duncan Sands1d9b9732010-05-27 19:09:06 +00001528 return EraseInstFromFunction(MI);
1529 }
1530 return 0;
1531}
1532
Quentin Colombet637582e2013-01-07 18:37:41 +00001533/// \brief Move the call to free before a NULL test.
1534///
1535/// Check if this free is accessed after its argument has been test
1536/// against NULL (property 0).
1537/// If yes, it is legal to move this call in its predecessor block.
1538///
1539/// The move is performed only if the block containing the call to free
1540/// will be removed, i.e.:
1541/// 1. it has only one predecessor P, and P has two successors
1542/// 2. it contains the call and an unconditional branch
1543/// 3. its successor is the same as its predecessor's successor
1544///
1545/// The profitability is out-of concern here and this function should
1546/// be called only if the caller knows this transformation would be
1547/// profitable (e.g., for code size).
1548static Instruction *
1549tryToMoveFreeBeforeNullTest(CallInst &FI) {
1550 Value *Op = FI.getArgOperand(0);
1551 BasicBlock *FreeInstrBB = FI.getParent();
1552 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1553
1554 // Validate part of constraint #1: Only one predecessor
1555 // FIXME: We can extend the number of predecessor, but in that case, we
1556 // would duplicate the call to free in each predecessor and it may
1557 // not be profitable even for code size.
1558 if (!PredBB)
1559 return 0;
1560
1561 // Validate constraint #2: Does this block contains only the call to
1562 // free and an unconditional branch?
1563 // FIXME: We could check if we can speculate everything in the
1564 // predecessor block
1565 if (FreeInstrBB->size() != 2)
1566 return 0;
1567 BasicBlock *SuccBB;
1568 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1569 return 0;
1570
1571 // Validate the rest of constraint #1 by matching on the pred branch.
1572 TerminatorInst *TI = PredBB->getTerminator();
1573 BasicBlock *TrueBB, *FalseBB;
1574 ICmpInst::Predicate Pred;
1575 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1576 return 0;
1577 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1578 return 0;
1579
1580 // Validate constraint #3: Ensure the null case just falls through.
1581 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1582 return 0;
1583 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1584 "Broken CFG: missing edge from predecessor to successor");
1585
1586 FI.moveBefore(TI);
1587 return &FI;
1588}
Duncan Sands1d9b9732010-05-27 19:09:06 +00001589
1590
Gabor Greif91697372010-06-24 12:21:15 +00001591Instruction *InstCombiner::visitFree(CallInst &FI) {
1592 Value *Op = FI.getArgOperand(0);
Victor Hernandez66284e02009-10-24 04:23:03 +00001593
1594 // free undef -> unreachable.
1595 if (isa<UndefValue>(Op)) {
1596 // Insert a new store to null because we cannot modify the CFG here.
Eli Friedmane6f364b2011-05-18 23:58:37 +00001597 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1598 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
Victor Hernandez66284e02009-10-24 04:23:03 +00001599 return EraseInstFromFunction(FI);
1600 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001601
Victor Hernandez66284e02009-10-24 04:23:03 +00001602 // If we have 'free null' delete the instruction. This can happen in stl code
1603 // when lots of inlining happens.
1604 if (isa<ConstantPointerNull>(Op))
1605 return EraseInstFromFunction(FI);
1606
Quentin Colombet637582e2013-01-07 18:37:41 +00001607 // If we optimize for code size, try to move the call to free before the null
1608 // test so that simplify cfg can remove the empty block and dead code
1609 // elimination the branch. I.e., helps to turn something like:
1610 // if (foo) free(foo);
1611 // into
1612 // free(foo);
1613 if (MinimizeSize)
1614 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1615 return I;
1616
Victor Hernandez66284e02009-10-24 04:23:03 +00001617 return 0;
1618}
Chris Lattner67b1e1b2003-12-07 01:24:23 +00001619
Chris Lattner3284d1f2007-04-15 00:07:55 +00001620
Chris Lattner2f503e62005-01-31 05:36:43 +00001621
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00001622Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1623 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4b828e62005-06-18 17:37:34 +00001624 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001625 BasicBlock *TrueDest;
1626 BasicBlock *FalseDest;
Dan Gohman4ae51262009-08-12 16:23:25 +00001627 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001628 !isa<Constant>(X)) {
1629 // Swap Destinations and condition...
1630 BI.setCondition(X);
Chandler Carruth602650c2011-10-17 01:11:57 +00001631 BI.swapSuccessors();
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001632 return &BI;
1633 }
1634
Stephen Hines36b56882014-04-23 16:57:46 -07001635 // Canonicalize fcmp_one -> fcmp_oeq
Reid Spencere4d87aa2006-12-23 06:05:41 +00001636 FCmpInst::Predicate FPred; Value *Y;
Jakub Staszak58c1da82012-05-06 13:52:31 +00001637 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
Chris Lattner7a1e9242009-08-30 06:13:40 +00001638 TrueDest, FalseDest)) &&
1639 BI.getCondition()->hasOneUse())
1640 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1641 FPred == FCmpInst::FCMP_OGE) {
1642 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1643 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
Jakub Staszak58c1da82012-05-06 13:52:31 +00001644
Chris Lattner7a1e9242009-08-30 06:13:40 +00001645 // Swap Destinations and condition.
Chandler Carruth602650c2011-10-17 01:11:57 +00001646 BI.swapSuccessors();
Chris Lattner7a1e9242009-08-30 06:13:40 +00001647 Worklist.Add(Cond);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001648 return &BI;
1649 }
1650
Stephen Hines36b56882014-04-23 16:57:46 -07001651 // Canonicalize icmp_ne -> icmp_eq
Reid Spencere4d87aa2006-12-23 06:05:41 +00001652 ICmpInst::Predicate IPred;
1653 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
Chris Lattner7a1e9242009-08-30 06:13:40 +00001654 TrueDest, FalseDest)) &&
1655 BI.getCondition()->hasOneUse())
1656 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1657 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1658 IPred == ICmpInst::ICMP_SGE) {
1659 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1660 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1661 // Swap Destinations and condition.
Chandler Carruth602650c2011-10-17 01:11:57 +00001662 BI.swapSuccessors();
Chris Lattner7a1e9242009-08-30 06:13:40 +00001663 Worklist.Add(Cond);
Chris Lattner40f5d702003-06-04 05:10:11 +00001664 return &BI;
1665 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001666
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00001667 return 0;
1668}
Chris Lattner0864acf2002-11-04 16:18:53 +00001669
Chris Lattner46238a62004-07-03 00:26:11 +00001670Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1671 Value *Cond = SI.getCondition();
1672 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1673 if (I->getOpcode() == Instruction::Add)
1674 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1675 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001676 // Skip the first item since that's the default case.
Stepan Dyatkovskiy3d3abe02012-03-11 06:09:17 +00001677 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00001678 i != e; ++i) {
1679 ConstantInt* CaseVal = i.getCaseValue();
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001680 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1681 AddRHS);
1682 assert(isa<ConstantInt>(NewCaseVal) &&
1683 "Result of expression should be constant");
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00001684 i.setValue(cast<ConstantInt>(NewCaseVal));
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001685 }
1686 SI.setCondition(I->getOperand(0));
Chris Lattner7a1e9242009-08-30 06:13:40 +00001687 Worklist.Add(I);
Chris Lattner46238a62004-07-03 00:26:11 +00001688 return &SI;
1689 }
1690 }
1691 return 0;
1692}
1693
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001694Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001695 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001696
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001697 if (!EV.hasIndices())
1698 return ReplaceInstUsesWith(EV, Agg);
1699
1700 if (Constant *C = dyn_cast<Constant>(Agg)) {
Chris Lattnerd59ae902012-01-26 02:32:04 +00001701 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1702 if (EV.getNumIndices() == 0)
1703 return ReplaceInstUsesWith(EV, C2);
1704 // Extract the remaining indices out of the constant indexed by the
1705 // first index
1706 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001707 }
1708 return 0; // Can't handle other constants
Chris Lattnerd59ae902012-01-26 02:32:04 +00001709 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001710
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001711 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1712 // We're extracting from an insertvalue instruction, compare the indices
1713 const unsigned *exti, *exte, *insi, *inse;
1714 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1715 exte = EV.idx_end(), inse = IV->idx_end();
1716 exti != exte && insi != inse;
1717 ++exti, ++insi) {
1718 if (*insi != *exti)
1719 // The insert and extract both reference distinctly different elements.
1720 // This means the extract is not influenced by the insert, and we can
1721 // replace the aggregate operand of the extract with the aggregate
1722 // operand of the insert. i.e., replace
1723 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1724 // %E = extractvalue { i32, { i32 } } %I, 0
1725 // with
1726 // %E = extractvalue { i32, { i32 } } %A, 0
1727 return ExtractValueInst::Create(IV->getAggregateOperand(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001728 EV.getIndices());
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001729 }
1730 if (exti == exte && insi == inse)
1731 // Both iterators are at the end: Index lists are identical. Replace
1732 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1733 // %C = extractvalue { i32, { i32 } } %B, 1, 0
1734 // with "i32 42"
1735 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1736 if (exti == exte) {
1737 // The extract list is a prefix of the insert list. i.e. replace
1738 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1739 // %E = extractvalue { i32, { i32 } } %I, 1
1740 // with
1741 // %X = extractvalue { i32, { i32 } } %A, 1
1742 // %E = insertvalue { i32 } %X, i32 42, 0
1743 // by switching the order of the insert and extract (though the
1744 // insertvalue should be left in, since it may have other uses).
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001745 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001746 EV.getIndices());
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001747 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001748 makeArrayRef(insi, inse));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001749 }
1750 if (insi == inse)
1751 // The insert list is a prefix of the extract list
1752 // We can simply remove the common indices from the extract and make it
1753 // operate on the inserted value instead of the insertvalue result.
1754 // i.e., replace
1755 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1756 // %E = extractvalue { i32, { i32 } } %I, 1, 0
1757 // with
1758 // %E extractvalue { i32 } { i32 42 }, 0
Jakub Staszak58c1da82012-05-06 13:52:31 +00001759 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001760 makeArrayRef(exti, exte));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001761 }
Chris Lattner7e606e22009-11-09 07:07:56 +00001762 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1763 // We're extracting from an intrinsic, see if we're the only user, which
1764 // allows us to simplify multiple result intrinsics to simpler things that
Gabor Greif91697372010-06-24 12:21:15 +00001765 // just get one value.
Chris Lattner7e606e22009-11-09 07:07:56 +00001766 if (II->hasOneUse()) {
1767 // Check if we're grabbing the overflow bit or the result of a 'with
1768 // overflow' intrinsic. If it's the latter we can remove the intrinsic
1769 // and replace it with a traditional binary instruction.
1770 switch (II->getIntrinsicID()) {
1771 case Intrinsic::uadd_with_overflow:
1772 case Intrinsic::sadd_with_overflow:
1773 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001774 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001775 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001776 EraseInstFromFunction(*II);
1777 return BinaryOperator::CreateAdd(LHS, RHS);
1778 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001779
Chris Lattner74b64612010-12-19 19:43:52 +00001780 // If the normal result of the add is dead, and the RHS is a constant,
1781 // we can transform this into a range comparison.
1782 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
Chris Lattnerf2a97ed2010-12-19 23:24:04 +00001783 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1784 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1785 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1786 ConstantExpr::getNot(CI));
Chris Lattner7e606e22009-11-09 07:07:56 +00001787 break;
1788 case Intrinsic::usub_with_overflow:
1789 case Intrinsic::ssub_with_overflow:
1790 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001791 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001792 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001793 EraseInstFromFunction(*II);
1794 return BinaryOperator::CreateSub(LHS, RHS);
1795 }
1796 break;
1797 case Intrinsic::umul_with_overflow:
1798 case Intrinsic::smul_with_overflow:
1799 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001800 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001801 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001802 EraseInstFromFunction(*II);
1803 return BinaryOperator::CreateMul(LHS, RHS);
1804 }
1805 break;
1806 default:
1807 break;
1808 }
1809 }
1810 }
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001811 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1812 // If the (non-volatile) load only has one use, we can rewrite this to a
1813 // load from a GEP. This reduces the size of the load.
1814 // FIXME: If a load is used only by extractvalue instructions then this
1815 // could be done regardless of having multiple uses.
Eli Friedmancc4a0432011-08-15 22:09:40 +00001816 if (L->isSimple() && L->hasOneUse()) {
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001817 // extractvalue has integer indices, getelementptr has Value*s. Convert.
1818 SmallVector<Value*, 4> Indices;
1819 // Prefix an i32 0 since we need the first element.
1820 Indices.push_back(Builder->getInt32(0));
1821 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1822 I != E; ++I)
1823 Indices.push_back(Builder->getInt32(*I));
1824
1825 // We need to insert these at the location of the old load, not at that of
1826 // the extractvalue.
1827 Builder->SetInsertPoint(L->getParent(), L);
Jay Foad0a2a60a2011-07-22 08:16:57 +00001828 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001829 // Returning the load directly will cause the main loop to insert it in
1830 // the wrong spot, so use ReplaceInstUsesWith().
1831 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1832 }
1833 // We could simplify extracts from other values. Note that nested extracts may
1834 // already be simplified implicitly by the above: extract (extract (insert) )
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001835 // will be translated into extract ( insert ( extract ) ) first and then just
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001836 // the value inserted, if appropriate. Similarly for extracts from single-use
1837 // loads: extract (extract (load)) will be translated to extract (load (gep))
1838 // and if again single-use then via load (gep (gep)) to load (gep).
1839 // However, double extracts from e.g. function arguments or return values
1840 // aren't handled yet.
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001841 return 0;
1842}
1843
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001844enum Personality_Type {
1845 Unknown_Personality,
1846 GNU_Ada_Personality,
Bill Wendling76f267d2011-10-17 21:20:24 +00001847 GNU_CXX_Personality,
1848 GNU_ObjC_Personality
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001849};
1850
1851/// RecognizePersonality - See if the given exception handling personality
1852/// function is one that we understand. If so, return a description of it;
1853/// otherwise return Unknown_Personality.
1854static Personality_Type RecognizePersonality(Value *Pers) {
1855 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1856 if (!F)
1857 return Unknown_Personality;
1858 return StringSwitch<Personality_Type>(F->getName())
1859 .Case("__gnat_eh_personality", GNU_Ada_Personality)
Bill Wendling76f267d2011-10-17 21:20:24 +00001860 .Case("__gxx_personality_v0", GNU_CXX_Personality)
1861 .Case("__objc_personality_v0", GNU_ObjC_Personality)
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001862 .Default(Unknown_Personality);
1863}
1864
1865/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1866static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1867 switch (Personality) {
1868 case Unknown_Personality:
1869 return false;
1870 case GNU_Ada_Personality:
1871 // While __gnat_all_others_value will match any Ada exception, it doesn't
1872 // match foreign exceptions (or didn't, before gcc-4.7).
1873 return false;
1874 case GNU_CXX_Personality:
Bill Wendling76f267d2011-10-17 21:20:24 +00001875 case GNU_ObjC_Personality:
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001876 return TypeInfo->isNullValue();
1877 }
1878 llvm_unreachable("Unknown personality!");
1879}
1880
1881static bool shorter_filter(const Value *LHS, const Value *RHS) {
1882 return
1883 cast<ArrayType>(LHS->getType())->getNumElements()
1884 <
1885 cast<ArrayType>(RHS->getType())->getNumElements();
1886}
1887
1888Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1889 // The logic here should be correct for any real-world personality function.
1890 // However if that turns out not to be true, the offending logic can always
1891 // be conditioned on the personality function, like the catch-all logic is.
1892 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1893
1894 // Simplify the list of clauses, eg by removing repeated catch clauses
1895 // (these are often created by inlining).
1896 bool MakeNewInstruction = false; // If true, recreate using the following:
1897 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1898 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
1899
1900 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1901 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1902 bool isLastClause = i + 1 == e;
1903 if (LI.isCatch(i)) {
1904 // A catch clause.
1905 Value *CatchClause = LI.getClause(i);
1906 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1907
1908 // If we already saw this clause, there is no point in having a second
1909 // copy of it.
1910 if (AlreadyCaught.insert(TypeInfo)) {
1911 // This catch clause was not already seen.
1912 NewClauses.push_back(CatchClause);
1913 } else {
1914 // Repeated catch clause - drop the redundant copy.
1915 MakeNewInstruction = true;
1916 }
1917
1918 // If this is a catch-all then there is no point in keeping any following
1919 // clauses or marking the landingpad as having a cleanup.
1920 if (isCatchAll(Personality, TypeInfo)) {
1921 if (!isLastClause)
1922 MakeNewInstruction = true;
1923 CleanupFlag = false;
1924 break;
1925 }
1926 } else {
1927 // A filter clause. If any of the filter elements were already caught
1928 // then they can be dropped from the filter. It is tempting to try to
1929 // exploit the filter further by saying that any typeinfo that does not
1930 // occur in the filter can't be caught later (and thus can be dropped).
1931 // However this would be wrong, since typeinfos can match without being
1932 // equal (for example if one represents a C++ class, and the other some
1933 // class derived from it).
1934 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1935 Value *FilterClause = LI.getClause(i);
1936 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1937 unsigned NumTypeInfos = FilterType->getNumElements();
1938
1939 // An empty filter catches everything, so there is no point in keeping any
1940 // following clauses or marking the landingpad as having a cleanup. By
1941 // dealing with this case here the following code is made a bit simpler.
1942 if (!NumTypeInfos) {
1943 NewClauses.push_back(FilterClause);
1944 if (!isLastClause)
1945 MakeNewInstruction = true;
1946 CleanupFlag = false;
1947 break;
1948 }
1949
1950 bool MakeNewFilter = false; // If true, make a new filter.
1951 SmallVector<Constant *, 16> NewFilterElts; // New elements.
1952 if (isa<ConstantAggregateZero>(FilterClause)) {
1953 // Not an empty filter - it contains at least one null typeinfo.
1954 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1955 Constant *TypeInfo =
1956 Constant::getNullValue(FilterType->getElementType());
1957 // If this typeinfo is a catch-all then the filter can never match.
1958 if (isCatchAll(Personality, TypeInfo)) {
1959 // Throw the filter away.
1960 MakeNewInstruction = true;
1961 continue;
1962 }
1963
1964 // There is no point in having multiple copies of this typeinfo, so
1965 // discard all but the first copy if there is more than one.
1966 NewFilterElts.push_back(TypeInfo);
1967 if (NumTypeInfos > 1)
1968 MakeNewFilter = true;
1969 } else {
1970 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1971 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1972 NewFilterElts.reserve(NumTypeInfos);
1973
1974 // Remove any filter elements that were already caught or that already
1975 // occurred in the filter. While there, see if any of the elements are
1976 // catch-alls. If so, the filter can be discarded.
1977 bool SawCatchAll = false;
1978 for (unsigned j = 0; j != NumTypeInfos; ++j) {
1979 Value *Elt = Filter->getOperand(j);
1980 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1981 if (isCatchAll(Personality, TypeInfo)) {
1982 // This element is a catch-all. Bail out, noting this fact.
1983 SawCatchAll = true;
1984 break;
1985 }
1986 if (AlreadyCaught.count(TypeInfo))
1987 // Already caught by an earlier clause, so having it in the filter
1988 // is pointless.
1989 continue;
1990 // There is no point in having multiple copies of the same typeinfo in
1991 // a filter, so only add it if we didn't already.
1992 if (SeenInFilter.insert(TypeInfo))
1993 NewFilterElts.push_back(cast<Constant>(Elt));
1994 }
1995 // A filter containing a catch-all cannot match anything by definition.
1996 if (SawCatchAll) {
1997 // Throw the filter away.
1998 MakeNewInstruction = true;
1999 continue;
2000 }
2001
2002 // If we dropped something from the filter, make a new one.
2003 if (NewFilterElts.size() < NumTypeInfos)
2004 MakeNewFilter = true;
2005 }
2006 if (MakeNewFilter) {
2007 FilterType = ArrayType::get(FilterType->getElementType(),
2008 NewFilterElts.size());
2009 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2010 MakeNewInstruction = true;
2011 }
2012
2013 NewClauses.push_back(FilterClause);
2014
2015 // If the new filter is empty then it will catch everything so there is
2016 // no point in keeping any following clauses or marking the landingpad
2017 // as having a cleanup. The case of the original filter being empty was
2018 // already handled above.
2019 if (MakeNewFilter && !NewFilterElts.size()) {
2020 assert(MakeNewInstruction && "New filter but not a new instruction!");
2021 CleanupFlag = false;
2022 break;
2023 }
2024 }
2025 }
2026
2027 // If several filters occur in a row then reorder them so that the shortest
2028 // filters come first (those with the smallest number of elements). This is
2029 // advantageous because shorter filters are more likely to match, speeding up
2030 // unwinding, but mostly because it increases the effectiveness of the other
2031 // filter optimizations below.
2032 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2033 unsigned j;
2034 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2035 for (j = i; j != e; ++j)
2036 if (!isa<ArrayType>(NewClauses[j]->getType()))
2037 break;
2038
2039 // Check whether the filters are already sorted by length. We need to know
2040 // if sorting them is actually going to do anything so that we only make a
2041 // new landingpad instruction if it does.
2042 for (unsigned k = i; k + 1 < j; ++k)
2043 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2044 // Not sorted, so sort the filters now. Doing an unstable sort would be
2045 // correct too but reordering filters pointlessly might confuse users.
2046 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2047 shorter_filter);
2048 MakeNewInstruction = true;
2049 break;
2050 }
2051
2052 // Look for the next batch of filters.
2053 i = j + 1;
2054 }
2055
2056 // If typeinfos matched if and only if equal, then the elements of a filter L
2057 // that occurs later than a filter F could be replaced by the intersection of
2058 // the elements of F and L. In reality two typeinfos can match without being
2059 // equal (for example if one represents a C++ class, and the other some class
2060 // derived from it) so it would be wrong to perform this transform in general.
2061 // However the transform is correct and useful if F is a subset of L. In that
2062 // case L can be replaced by F, and thus removed altogether since repeating a
2063 // filter is pointless. So here we look at all pairs of filters F and L where
2064 // L follows F in the list of clauses, and remove L if every element of F is
2065 // an element of L. This can occur when inlining C++ functions with exception
2066 // specifications.
2067 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2068 // Examine each filter in turn.
2069 Value *Filter = NewClauses[i];
2070 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2071 if (!FTy)
2072 // Not a filter - skip it.
2073 continue;
2074 unsigned FElts = FTy->getNumElements();
2075 // Examine each filter following this one. Doing this backwards means that
2076 // we don't have to worry about filters disappearing under us when removed.
2077 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2078 Value *LFilter = NewClauses[j];
2079 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2080 if (!LTy)
2081 // Not a filter - skip it.
2082 continue;
2083 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2084 // an element of LFilter, then discard LFilter.
Craig Topper6227d5c2013-07-04 01:31:24 +00002085 SmallVectorImpl<Value *>::iterator J = NewClauses.begin() + j;
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00002086 // If Filter is empty then it is a subset of LFilter.
2087 if (!FElts) {
2088 // Discard LFilter.
2089 NewClauses.erase(J);
2090 MakeNewInstruction = true;
2091 // Move on to the next filter.
2092 continue;
2093 }
2094 unsigned LElts = LTy->getNumElements();
2095 // If Filter is longer than LFilter then it cannot be a subset of it.
2096 if (FElts > LElts)
2097 // Move on to the next filter.
2098 continue;
2099 // At this point we know that LFilter has at least one element.
2100 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002101 // Filter is a subset of LFilter iff Filter contains only zeros (as we
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00002102 // already know that Filter is not longer than LFilter).
2103 if (isa<ConstantAggregateZero>(Filter)) {
2104 assert(FElts <= LElts && "Should have handled this case earlier!");
2105 // Discard LFilter.
2106 NewClauses.erase(J);
2107 MakeNewInstruction = true;
2108 }
2109 // Move on to the next filter.
2110 continue;
2111 }
2112 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2113 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2114 // Since Filter is non-empty and contains only zeros, it is a subset of
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002115 // LFilter iff LFilter contains a zero.
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00002116 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2117 for (unsigned l = 0; l != LElts; ++l)
2118 if (LArray->getOperand(l)->isNullValue()) {
2119 // LFilter contains a zero - discard it.
2120 NewClauses.erase(J);
2121 MakeNewInstruction = true;
2122 break;
2123 }
2124 // Move on to the next filter.
2125 continue;
2126 }
2127 // At this point we know that both filters are ConstantArrays. Loop over
2128 // operands to see whether every element of Filter is also an element of
2129 // LFilter. Since filters tend to be short this is probably faster than
2130 // using a method that scales nicely.
2131 ConstantArray *FArray = cast<ConstantArray>(Filter);
2132 bool AllFound = true;
2133 for (unsigned f = 0; f != FElts; ++f) {
2134 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2135 AllFound = false;
2136 for (unsigned l = 0; l != LElts; ++l) {
2137 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2138 if (LTypeInfo == FTypeInfo) {
2139 AllFound = true;
2140 break;
2141 }
2142 }
2143 if (!AllFound)
2144 break;
2145 }
2146 if (AllFound) {
2147 // Discard LFilter.
2148 NewClauses.erase(J);
2149 MakeNewInstruction = true;
2150 }
2151 // Move on to the next filter.
2152 }
2153 }
2154
2155 // If we changed any of the clauses, replace the old landingpad instruction
2156 // with a new one.
2157 if (MakeNewInstruction) {
2158 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2159 LI.getPersonalityFn(),
2160 NewClauses.size());
2161 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2162 NLI->addClause(NewClauses[i]);
2163 // A landing pad with no clauses must have the cleanup flag set. It is
2164 // theoretically possible, though highly unlikely, that we eliminated all
2165 // clauses. If so, force the cleanup flag to true.
2166 if (NewClauses.empty())
2167 CleanupFlag = true;
2168 NLI->setCleanup(CleanupFlag);
2169 return NLI;
2170 }
2171
2172 // Even if none of the clauses changed, we may nonetheless have understood
2173 // that the cleanup flag is pointless. Clear it if so.
2174 if (LI.isCleanup() != CleanupFlag) {
2175 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2176 LI.setCleanup(CleanupFlag);
2177 return &LI;
2178 }
2179
2180 return 0;
2181}
2182
Chris Lattnera844fc4c2006-04-10 22:45:52 +00002183
Robert Bocchino1d7456d2006-01-13 22:48:06 +00002184
Chris Lattnerea1c4542004-12-08 23:43:58 +00002185
2186/// TryToSinkInstruction - Try to move the specified instruction from its
2187/// current block into the beginning of DestBlock, which can only happen if it's
2188/// safe to move the instruction past all of the instructions between it and the
2189/// end of its block.
2190static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2191 assert(I->hasOneUse() && "Invariants didn't hold!");
2192
Bill Wendling9d6070f2011-08-15 21:14:31 +00002193 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Bill Wendlingc9b2a982011-08-17 20:36:44 +00002194 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2195 isa<TerminatorInst>(I))
Chris Lattnerbfc538c2008-05-09 15:07:33 +00002196 return false;
Misha Brukmanfd939082005-04-21 23:48:37 +00002197
Chris Lattnerea1c4542004-12-08 23:43:58 +00002198 // Do not sink alloca instructions out of the entry block.
Dan Gohmanecb7a772007-03-22 16:38:57 +00002199 if (isa<AllocaInst>(I) && I->getParent() ==
2200 &DestBlock->getParent()->getEntryBlock())
Chris Lattnerea1c4542004-12-08 23:43:58 +00002201 return false;
2202
Chris Lattner96a52a62004-12-09 07:14:34 +00002203 // We can only sink load instructions if there is nothing between the load and
2204 // the end of block that could change the value.
Chris Lattner2539e332008-05-08 17:37:37 +00002205 if (I->mayReadFromMemory()) {
2206 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattner96a52a62004-12-09 07:14:34 +00002207 Scan != E; ++Scan)
2208 if (Scan->mayWriteToMemory())
2209 return false;
Chris Lattner96a52a62004-12-09 07:14:34 +00002210 }
Chris Lattnerea1c4542004-12-08 23:43:58 +00002211
Bill Wendling5b6f42f2011-08-16 20:45:24 +00002212 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
Chris Lattner4bc5f802005-08-08 19:11:57 +00002213 I->moveBefore(InsertPos);
Chris Lattnerea1c4542004-12-08 23:43:58 +00002214 ++NumSunkInst;
2215 return true;
2216}
2217
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002218
2219/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2220/// all reachable code to the worklist.
2221///
2222/// This has a couple of tricks to make the code faster and more powerful. In
2223/// particular, we constant fold and DCE instructions as we go, to avoid adding
2224/// them to the worklist (this significantly speeds up instcombine on code where
2225/// many instructions are dead or constant). Additionally, if we find a branch
2226/// whose condition is a known constant, we only visit the reachable successors.
2227///
Jakub Staszak58c1da82012-05-06 13:52:31 +00002228static bool AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner1f87a582007-02-15 19:41:52 +00002229 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerdbab3862007-03-02 21:28:56 +00002230 InstCombiner &IC,
Stephen Hines36b56882014-04-23 16:57:46 -07002231 const DataLayout *DL,
Chad Rosier00737bd2011-12-01 21:29:16 +00002232 const TargetLibraryInfo *TLI) {
Chris Lattner2ee743b2009-10-15 04:59:28 +00002233 bool MadeIRChange = false;
Chris Lattner2806dff2008-08-15 04:03:01 +00002234 SmallVector<BasicBlock*, 256> Worklist;
Chris Lattner2c7718a2007-03-23 19:17:18 +00002235 Worklist.push_back(BB);
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002236
Benjamin Kramera53fe602010-10-23 17:10:24 +00002237 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002238 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2239
Dan Gohman321a8132010-01-05 16:27:25 +00002240 do {
2241 BB = Worklist.pop_back_val();
Jakub Staszak58c1da82012-05-06 13:52:31 +00002242
Chris Lattner2c7718a2007-03-23 19:17:18 +00002243 // We have now visited this block! If we've already been here, ignore it.
2244 if (!Visited.insert(BB)) continue;
Devang Patel7fe1dec2008-11-19 18:56:50 +00002245
Chris Lattner2c7718a2007-03-23 19:17:18 +00002246 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2247 Instruction *Inst = BBI++;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002248
Chris Lattner2c7718a2007-03-23 19:17:18 +00002249 // DCE instruction if trivially dead.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002250 if (isInstructionTriviallyDead(Inst, TLI)) {
Chris Lattner2c7718a2007-03-23 19:17:18 +00002251 ++NumDeadInst;
Matt Arsenault596aa122013-09-05 19:48:28 +00002252 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
Chris Lattner2c7718a2007-03-23 19:17:18 +00002253 Inst->eraseFromParent();
2254 continue;
2255 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002256
Chris Lattner2c7718a2007-03-23 19:17:18 +00002257 // ConstantProp instruction if trivially constant.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002258 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
Stephen Hines36b56882014-04-23 16:57:46 -07002259 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002260 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002261 << *Inst << '\n');
2262 Inst->replaceAllUsesWith(C);
2263 ++NumConstProp;
2264 Inst->eraseFromParent();
2265 continue;
2266 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002267
Stephen Hines36b56882014-04-23 16:57:46 -07002268 if (DL) {
Chris Lattner2ee743b2009-10-15 04:59:28 +00002269 // See if we can constant fold its operands.
2270 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2271 i != e; ++i) {
2272 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2273 if (CE == 0) continue;
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002274
2275 Constant*& FoldRes = FoldedConstants[CE];
2276 if (!FoldRes)
Stephen Hines36b56882014-04-23 16:57:46 -07002277 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002278 if (!FoldRes)
2279 FoldRes = CE;
2280
2281 if (FoldRes != CE) {
2282 *i = FoldRes;
Chris Lattner2ee743b2009-10-15 04:59:28 +00002283 MadeIRChange = true;
2284 }
2285 }
2286 }
Devang Patel7fe1dec2008-11-19 18:56:50 +00002287
Chris Lattner67f7d542009-10-12 03:58:40 +00002288 InstrsForInstCombineWorklist.push_back(Inst);
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002289 }
Chris Lattner2c7718a2007-03-23 19:17:18 +00002290
2291 // Recursively visit successors. If this is a branch or switch on a
2292 // constant, only visit the reachable successor.
2293 TerminatorInst *TI = BB->getTerminator();
2294 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2295 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2296 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky91436992008-03-09 08:50:23 +00002297 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewycky280a6e62008-04-25 16:53:59 +00002298 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +00002299 continue;
2300 }
2301 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2302 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2303 // See if this is an explicit destination.
Stepan Dyatkovskiy3d3abe02012-03-11 06:09:17 +00002304 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00002305 i != e; ++i)
2306 if (i.getCaseValue() == Cond) {
2307 BasicBlock *ReachableBB = i.getCaseSuccessor();
Nick Lewycky280a6e62008-04-25 16:53:59 +00002308 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +00002309 continue;
2310 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002311
Chris Lattner2c7718a2007-03-23 19:17:18 +00002312 // Otherwise it is the default destination.
Stepan Dyatkovskiy24473122012-02-01 07:49:51 +00002313 Worklist.push_back(SI->getDefaultDest());
Chris Lattner2c7718a2007-03-23 19:17:18 +00002314 continue;
2315 }
2316 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002317
Chris Lattner2c7718a2007-03-23 19:17:18 +00002318 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2319 Worklist.push_back(TI->getSuccessor(i));
Dan Gohman321a8132010-01-05 16:27:25 +00002320 } while (!Worklist.empty());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002321
Chris Lattner67f7d542009-10-12 03:58:40 +00002322 // Once we've found all of the instructions to add to instcombine's worklist,
2323 // add them in reverse order. This way instcombine will visit from the top
2324 // of the function down. This jives well with the way that it adds all uses
2325 // of instructions to the worklist after doing a transformation, thus avoiding
2326 // some N^2 behavior in pathological cases.
2327 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2328 InstrsForInstCombineWorklist.size());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002329
Chris Lattner2ee743b2009-10-15 04:59:28 +00002330 return MadeIRChange;
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002331}
2332
Chris Lattnerec9c3582007-03-03 02:04:50 +00002333bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002334 MadeIRChange = false;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002335
Matt Arsenault596aa122013-09-05 19:48:28 +00002336 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
Benjamin Kramera7b0cb72011-11-15 16:27:03 +00002337 << F.getName() << "\n");
Chris Lattner8a2a3112001-12-14 16:52:21 +00002338
Chris Lattnerb3d59702005-07-07 20:40:38 +00002339 {
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002340 // Do a depth-first traversal of the function, populate the worklist with
2341 // the reachable instructions. Ignore blocks that are not reachable. Keep
2342 // track of which blocks we visit.
Chris Lattner1f87a582007-02-15 19:41:52 +00002343 SmallPtrSet<BasicBlock*, 64> Visited;
Stephen Hines36b56882014-04-23 16:57:46 -07002344 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
Chad Rosier00737bd2011-12-01 21:29:16 +00002345 TLI);
Jeff Cohen00b168892005-07-27 06:12:32 +00002346
Chris Lattnerb3d59702005-07-07 20:40:38 +00002347 // Do a quick scan over the function. If we find any blocks that are
2348 // unreachable, remove any instructions inside of them. This prevents
2349 // the instcombine code from having to deal with some bad special cases.
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002350 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2351 if (Visited.count(BB)) continue;
2352
Bill Wendlinga2684682011-09-04 09:43:36 +00002353 // Delete the instructions backwards, as it has a reduced likelihood of
2354 // having to update as many def-use and use-def chains.
2355 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2356 while (EndInst != BB->begin()) {
2357 // Delete the next to last instruction.
2358 BasicBlock::iterator I = EndInst;
2359 Instruction *Inst = --I;
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002360 if (!Inst->use_empty())
2361 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
Bill Wendlinga2684682011-09-04 09:43:36 +00002362 if (isa<LandingPadInst>(Inst)) {
2363 EndInst = Inst;
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002364 continue;
Bill Wendlinga2684682011-09-04 09:43:36 +00002365 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002366 if (!isa<DbgInfoIntrinsic>(Inst)) {
2367 ++NumDeadInst;
2368 MadeIRChange = true;
Chris Lattnerb3d59702005-07-07 20:40:38 +00002369 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002370 Inst->eraseFromParent();
Chris Lattnerb3d59702005-07-07 20:40:38 +00002371 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002372 }
Chris Lattnerb3d59702005-07-07 20:40:38 +00002373 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00002374
Chris Lattner873ff012009-08-30 05:55:36 +00002375 while (!Worklist.isEmpty()) {
2376 Instruction *I = Worklist.RemoveOne();
Chris Lattnerdbab3862007-03-02 21:28:56 +00002377 if (I == 0) continue; // skip null values.
Chris Lattner8a2a3112001-12-14 16:52:21 +00002378
Chris Lattner8c8c66a2006-05-11 17:11:52 +00002379 // Check to see if we can DCE the instruction.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002380 if (isInstructionTriviallyDead(I, TLI)) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002381 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
Chris Lattner7a1e9242009-08-30 06:13:40 +00002382 EraseInstFromFunction(*I);
2383 ++NumDeadInst;
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002384 MadeIRChange = true;
Chris Lattner4bb7c022003-10-06 17:11:01 +00002385 continue;
2386 }
Chris Lattner62b14df2002-09-02 04:59:56 +00002387
Chris Lattner8c8c66a2006-05-11 17:11:52 +00002388 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002389 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
Stephen Hines36b56882014-04-23 16:57:46 -07002390 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002391 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
Chris Lattnerad5fec12005-01-28 19:32:01 +00002392
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002393 // Add operands to the worklist.
2394 ReplaceInstUsesWith(*I, C);
2395 ++NumConstProp;
2396 EraseInstFromFunction(*I);
2397 MadeIRChange = true;
2398 continue;
2399 }
Chris Lattner4bb7c022003-10-06 17:11:01 +00002400
Chris Lattnerea1c4542004-12-08 23:43:58 +00002401 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfc74abf2008-07-23 00:34:11 +00002402 if (I->hasOneUse()) {
Chris Lattnerea1c4542004-12-08 23:43:58 +00002403 BasicBlock *BB = I->getParent();
Stephen Hines36b56882014-04-23 16:57:46 -07002404 Instruction *UserInst = cast<Instruction>(*I->user_begin());
Chris Lattner8db2cd12009-10-14 15:21:58 +00002405 BasicBlock *UserParent;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002406
Chris Lattner8db2cd12009-10-14 15:21:58 +00002407 // Get the block the use occurs in.
2408 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
Stephen Hines36b56882014-04-23 16:57:46 -07002409 UserParent = PN->getIncomingBlock(*I->use_begin());
Chris Lattner8db2cd12009-10-14 15:21:58 +00002410 else
2411 UserParent = UserInst->getParent();
Jakub Staszak58c1da82012-05-06 13:52:31 +00002412
Chris Lattnerea1c4542004-12-08 23:43:58 +00002413 if (UserParent != BB) {
2414 bool UserIsSuccessor = false;
2415 // See if the user is one of our successors.
2416 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2417 if (*SI == UserParent) {
2418 UserIsSuccessor = true;
2419 break;
2420 }
2421
2422 // If the user is one of our immediate successors, and if that successor
2423 // only has us as a predecessors (we'd have to split the critical edge
2424 // otherwise), we can keep going.
Chris Lattner8db2cd12009-10-14 15:21:58 +00002425 if (UserIsSuccessor && UserParent->getSinglePredecessor())
Chris Lattnerea1c4542004-12-08 23:43:58 +00002426 // Okay, the CFG is simple enough, try to sink this instruction.
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002427 MadeIRChange |= TryToSinkInstruction(I, UserParent);
Chris Lattnerea1c4542004-12-08 23:43:58 +00002428 }
2429 }
2430
Chris Lattner74381062009-08-30 07:44:24 +00002431 // Now that we have an instruction, try combining it to simplify it.
2432 Builder->SetInsertPoint(I->getParent(), I);
Eli Friedmanef819d02011-05-18 01:28:27 +00002433 Builder->SetCurrentDebugLocation(I->getDebugLoc());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002434
Reid Spencera9b81012007-03-26 17:44:01 +00002435#ifndef NDEBUG
2436 std::string OrigI;
2437#endif
Chris Lattnerbdff5482009-08-23 04:37:46 +00002438 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
Matt Arsenault596aa122013-09-05 19:48:28 +00002439 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
Jeffrey Yasskin43069632009-10-08 00:12:24 +00002440
Chris Lattner90ac28c2002-08-02 19:29:35 +00002441 if (Instruction *Result = visit(*I)) {
Chris Lattner3dec1f22002-05-10 15:38:35 +00002442 ++NumCombined;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002443 // Should we replace the old instruction with a new one?
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00002444 if (Result != I) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002445 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
Jim Grosbache2999b42011-10-05 20:44:29 +00002446 << " New = " << *Result << '\n');
2447
Eli Friedmana311c342011-05-27 00:19:40 +00002448 if (!I->getDebugLoc().isUnknown())
2449 Result->setDebugLoc(I->getDebugLoc());
Chris Lattnerf523d062004-06-09 05:08:07 +00002450 // Everything uses the new instruction now.
2451 I->replaceAllUsesWith(Result);
2452
Jim Grosbach35d9da32011-10-05 20:53:43 +00002453 // Move the name to the new instruction first.
2454 Result->takeName(I);
2455
Jim Grosbache2999b42011-10-05 20:44:29 +00002456 // Push the new instruction and any users onto the worklist.
2457 Worklist.Add(Result);
2458 Worklist.AddUsersToWorkList(*Result);
2459
Chris Lattner4bb7c022003-10-06 17:11:01 +00002460 // Insert the new instruction into the basic block...
2461 BasicBlock *InstParent = I->getParent();
Chris Lattnerbac32862004-11-14 19:13:23 +00002462 BasicBlock::iterator InsertPos = I;
2463
Eli Friedman049260d2011-11-01 04:49:29 +00002464 // If we replace a PHI with something that isn't a PHI, fix up the
2465 // insertion point.
2466 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2467 InsertPos = InstParent->getFirstInsertionPt();
Chris Lattnerbac32862004-11-14 19:13:23 +00002468
2469 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +00002470
Chris Lattner7a1e9242009-08-30 06:13:40 +00002471 EraseInstFromFunction(*I);
Chris Lattner7e708292002-06-25 16:13:24 +00002472 } else {
Evan Chengc7baf682007-03-27 16:44:48 +00002473#ifndef NDEBUG
Matt Arsenault596aa122013-09-05 19:48:28 +00002474 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
Chris Lattnerbdff5482009-08-23 04:37:46 +00002475 << " New = " << *I << '\n');
Evan Chengc7baf682007-03-27 16:44:48 +00002476#endif
Chris Lattner0cea42a2004-03-13 23:54:27 +00002477
Chris Lattner90ac28c2002-08-02 19:29:35 +00002478 // If the instruction was modified, it's possible that it is now dead.
2479 // if so, remove it.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002480 if (isInstructionTriviallyDead(I, TLI)) {
Chris Lattner7a1e9242009-08-30 06:13:40 +00002481 EraseInstFromFunction(*I);
Chris Lattnerf523d062004-06-09 05:08:07 +00002482 } else {
Chris Lattner7a1e9242009-08-30 06:13:40 +00002483 Worklist.Add(I);
Chris Lattnere5ecdb52009-08-30 06:22:51 +00002484 Worklist.AddUsersToWorkList(*I);
Chris Lattner90ac28c2002-08-02 19:29:35 +00002485 }
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00002486 }
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002487 MadeIRChange = true;
Chris Lattner8a2a3112001-12-14 16:52:21 +00002488 }
2489 }
2490
Chris Lattner873ff012009-08-30 05:55:36 +00002491 Worklist.Zap();
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002492 return MadeIRChange;
Chris Lattnerbd0ef772002-02-26 21:46:54 +00002493}
2494
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002495namespace {
2496class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2497 InstCombiner *IC;
2498public:
Stephen Hines36b56882014-04-23 16:57:46 -07002499 InstCombinerLibCallSimplifier(const DataLayout *DL,
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002500 const TargetLibraryInfo *TLI,
2501 InstCombiner *IC)
Stephen Hines36b56882014-04-23 16:57:46 -07002502 : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002503 this->IC = IC;
2504 }
2505
2506 /// replaceAllUsesWith - override so that instruction replacement
2507 /// can be defined in terms of the instruction combiner framework.
Stephen Hines36b56882014-04-23 16:57:46 -07002508 void replaceAllUsesWith(Instruction *I, Value *With) const override {
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002509 IC->ReplaceInstUsesWith(*I, With);
2510 }
2511};
2512}
Chris Lattnerec9c3582007-03-03 02:04:50 +00002513
2514bool InstCombiner::runOnFunction(Function &F) {
Stephen Hines36b56882014-04-23 16:57:46 -07002515 if (skipOptnoneFunction(F))
2516 return false;
2517
2518 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
2519 DL = DLP ? &DLP->getDataLayout() : 0;
Chad Rosier00737bd2011-12-01 21:29:16 +00002520 TLI = &getAnalysis<TargetLibraryInfo>();
Quentin Colombet637582e2013-01-07 18:37:41 +00002521 // Minimizing size?
2522 MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2523 Attribute::MinSize);
Jakub Staszak58c1da82012-05-06 13:52:31 +00002524
Chris Lattner74381062009-08-30 07:44:24 +00002525 /// Builder - This is an IRBuilder that automatically inserts new
2526 /// instructions into the worklist when they are created.
Jakub Staszak58c1da82012-05-06 13:52:31 +00002527 IRBuilder<true, TargetFolder, InstCombineIRInserter>
Stephen Hines36b56882014-04-23 16:57:46 -07002528 TheBuilder(F.getContext(), TargetFolder(DL),
Chris Lattner74381062009-08-30 07:44:24 +00002529 InstCombineIRInserter(Worklist));
2530 Builder = &TheBuilder;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002531
Stephen Hines36b56882014-04-23 16:57:46 -07002532 InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
Meador Inge5e890452012-10-13 16:45:24 +00002533 Simplifier = &TheSimplifier;
2534
Chris Lattnerec9c3582007-03-03 02:04:50 +00002535 bool EverMadeChange = false;
2536
Devang Patel813c9a02011-03-17 22:18:16 +00002537 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2538 // by instcombiner.
2539 EverMadeChange = LowerDbgDeclare(F);
2540
Chris Lattnerec9c3582007-03-03 02:04:50 +00002541 // Iterate while there is work to do.
2542 unsigned Iteration = 0;
Bill Wendlinga6c31122008-05-14 22:45:20 +00002543 while (DoOneIteration(F, Iteration++))
Chris Lattnerec9c3582007-03-03 02:04:50 +00002544 EverMadeChange = true;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002545
Chris Lattner74381062009-08-30 07:44:24 +00002546 Builder = 0;
Chris Lattnerec9c3582007-03-03 02:04:50 +00002547 return EverMadeChange;
2548}
2549
Brian Gaeke96d4bf72004-07-27 17:43:21 +00002550FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002551 return new InstCombiner();
Chris Lattnerbd0ef772002-02-26 21:46:54 +00002552}