blob: 76aa4559b90eaaba8cca9505bb422dbc9ee24f05 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030using namespace llvm;
31
Owen Anderson9a184ef2008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000045}
46
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
213 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000214 assert(false && "Duplicated entries?");
215 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
216 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000217 std::make_pair(RegOp,
218 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000219 AmbEntries.push_back(MemOp);
220 }
221
222 // If the third value is 1, then it's folding either a load or a store.
223 static const unsigned OpTbl0[][3] = {
224 { X86::CALL32r, X86::CALL32m, 1 },
225 { X86::CALL64r, X86::CALL64m, 1 },
226 { X86::CMP16ri, X86::CMP16mi, 1 },
227 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000228 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000229 { X86::CMP32ri, X86::CMP32mi, 1 },
230 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000231 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000232 { X86::CMP64ri32, X86::CMP64mi32, 1 },
233 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000234 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000235 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::DIV16r, X86::DIV16m, 1 },
238 { X86::DIV32r, X86::DIV32m, 1 },
239 { X86::DIV64r, X86::DIV64m, 1 },
240 { X86::DIV8r, X86::DIV8m, 1 },
241 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
242 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
243 { X86::IDIV16r, X86::IDIV16m, 1 },
244 { X86::IDIV32r, X86::IDIV32m, 1 },
245 { X86::IDIV64r, X86::IDIV64m, 1 },
246 { X86::IDIV8r, X86::IDIV8m, 1 },
247 { X86::IMUL16r, X86::IMUL16m, 1 },
248 { X86::IMUL32r, X86::IMUL32m, 1 },
249 { X86::IMUL64r, X86::IMUL64m, 1 },
250 { X86::IMUL8r, X86::IMUL8m, 1 },
251 { X86::JMP32r, X86::JMP32m, 1 },
252 { X86::JMP64r, X86::JMP64m, 1 },
253 { X86::MOV16ri, X86::MOV16mi, 0 },
254 { X86::MOV16rr, X86::MOV16mr, 0 },
255 { X86::MOV16to16_, X86::MOV16_mr, 0 },
256 { X86::MOV32ri, X86::MOV32mi, 0 },
257 { X86::MOV32rr, X86::MOV32mr, 0 },
258 { X86::MOV32to32_, X86::MOV32_mr, 0 },
259 { X86::MOV64ri32, X86::MOV64mi32, 0 },
260 { X86::MOV64rr, X86::MOV64mr, 0 },
261 { X86::MOV8ri, X86::MOV8mi, 0 },
262 { X86::MOV8rr, X86::MOV8mr, 0 },
263 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
264 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
265 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
266 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
267 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
268 { X86::MOVSDrr, X86::MOVSDmr, 0 },
269 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
270 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
271 { X86::MOVSSrr, X86::MOVSSmr, 0 },
272 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
273 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
274 { X86::MUL16r, X86::MUL16m, 1 },
275 { X86::MUL32r, X86::MUL32m, 1 },
276 { X86::MUL64r, X86::MUL64m, 1 },
277 { X86::MUL8r, X86::MUL8m, 1 },
278 { X86::SETAEr, X86::SETAEm, 0 },
279 { X86::SETAr, X86::SETAm, 0 },
280 { X86::SETBEr, X86::SETBEm, 0 },
281 { X86::SETBr, X86::SETBm, 0 },
282 { X86::SETEr, X86::SETEm, 0 },
283 { X86::SETGEr, X86::SETGEm, 0 },
284 { X86::SETGr, X86::SETGm, 0 },
285 { X86::SETLEr, X86::SETLEm, 0 },
286 { X86::SETLr, X86::SETLm, 0 },
287 { X86::SETNEr, X86::SETNEm, 0 },
288 { X86::SETNPr, X86::SETNPm, 0 },
289 { X86::SETNSr, X86::SETNSm, 0 },
290 { X86::SETPr, X86::SETPm, 0 },
291 { X86::SETSr, X86::SETSm, 0 },
292 { X86::TAILJMPr, X86::TAILJMPm, 1 },
293 { X86::TEST16ri, X86::TEST16mi, 1 },
294 { X86::TEST32ri, X86::TEST32mi, 1 },
295 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000296 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000297 };
298
299 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
300 unsigned RegOp = OpTbl0[i][0];
301 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000302 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
303 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000304 assert(false && "Duplicated entries?");
305 unsigned FoldedLoad = OpTbl0[i][2];
306 // Index 0, folded load or store.
307 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
308 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
309 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000310 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000311 AmbEntries.push_back(MemOp);
312 }
313
314 static const unsigned OpTbl1[][2] = {
315 { X86::CMP16rr, X86::CMP16rm },
316 { X86::CMP32rr, X86::CMP32rm },
317 { X86::CMP64rr, X86::CMP64rm },
318 { X86::CMP8rr, X86::CMP8rm },
319 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
320 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
321 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
322 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
323 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
324 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
325 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
326 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
327 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
328 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
329 { X86::FsMOVAPDrr, X86::MOVSDrm },
330 { X86::FsMOVAPSrr, X86::MOVSSrm },
331 { X86::IMUL16rri, X86::IMUL16rmi },
332 { X86::IMUL16rri8, X86::IMUL16rmi8 },
333 { X86::IMUL32rri, X86::IMUL32rmi },
334 { X86::IMUL32rri8, X86::IMUL32rmi8 },
335 { X86::IMUL64rri32, X86::IMUL64rmi32 },
336 { X86::IMUL64rri8, X86::IMUL64rmi8 },
337 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
338 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
339 { X86::Int_COMISDrr, X86::Int_COMISDrm },
340 { X86::Int_COMISSrr, X86::Int_COMISSrm },
341 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
342 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
343 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
344 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
345 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
346 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
347 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
348 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
349 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
350 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
351 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
352 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
353 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
354 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
355 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
356 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
357 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
358 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
359 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
360 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
361 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
362 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
363 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
364 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
365 { X86::MOV16rr, X86::MOV16rm },
366 { X86::MOV16to16_, X86::MOV16_rm },
367 { X86::MOV32rr, X86::MOV32rm },
368 { X86::MOV32to32_, X86::MOV32_rm },
369 { X86::MOV64rr, X86::MOV64rm },
370 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
371 { X86::MOV64toSDrr, X86::MOV64toSDrm },
372 { X86::MOV8rr, X86::MOV8rm },
373 { X86::MOVAPDrr, X86::MOVAPDrm },
374 { X86::MOVAPSrr, X86::MOVAPSrm },
375 { X86::MOVDDUPrr, X86::MOVDDUPrm },
376 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
377 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
378 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
379 { X86::MOVSDrr, X86::MOVSDrm },
380 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
381 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
382 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
383 { X86::MOVSSrr, X86::MOVSSrm },
384 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
385 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
386 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
387 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
388 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
389 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
390 { X86::MOVUPDrr, X86::MOVUPDrm },
391 { X86::MOVUPSrr, X86::MOVUPSrm },
392 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
393 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
394 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
395 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
396 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
397 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
398 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
399 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
400 { X86::PSHUFDri, X86::PSHUFDmi },
401 { X86::PSHUFHWri, X86::PSHUFHWmi },
402 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000403 { X86::RCPPSr, X86::RCPPSm },
404 { X86::RCPPSr_Int, X86::RCPPSm_Int },
405 { X86::RSQRTPSr, X86::RSQRTPSm },
406 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
407 { X86::RSQRTSSr, X86::RSQRTSSm },
408 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
409 { X86::SQRTPDr, X86::SQRTPDm },
410 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
411 { X86::SQRTPSr, X86::SQRTPSm },
412 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
413 { X86::SQRTSDr, X86::SQRTSDm },
414 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
415 { X86::SQRTSSr, X86::SQRTSSm },
416 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
417 { X86::TEST16rr, X86::TEST16rm },
418 { X86::TEST32rr, X86::TEST32rm },
419 { X86::TEST64rr, X86::TEST64rm },
420 { X86::TEST8rr, X86::TEST8rm },
421 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
422 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000423 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000424 };
425
426 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
427 unsigned RegOp = OpTbl1[i][0];
428 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000429 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
430 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000431 assert(false && "Duplicated entries?");
432 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
433 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
434 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000435 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000436 AmbEntries.push_back(MemOp);
437 }
438
439 static const unsigned OpTbl2[][2] = {
440 { X86::ADC32rr, X86::ADC32rm },
441 { X86::ADC64rr, X86::ADC64rm },
442 { X86::ADD16rr, X86::ADD16rm },
443 { X86::ADD32rr, X86::ADD32rm },
444 { X86::ADD64rr, X86::ADD64rm },
445 { X86::ADD8rr, X86::ADD8rm },
446 { X86::ADDPDrr, X86::ADDPDrm },
447 { X86::ADDPSrr, X86::ADDPSrm },
448 { X86::ADDSDrr, X86::ADDSDrm },
449 { X86::ADDSSrr, X86::ADDSSrm },
450 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
451 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
452 { X86::AND16rr, X86::AND16rm },
453 { X86::AND32rr, X86::AND32rm },
454 { X86::AND64rr, X86::AND64rm },
455 { X86::AND8rr, X86::AND8rm },
456 { X86::ANDNPDrr, X86::ANDNPDrm },
457 { X86::ANDNPSrr, X86::ANDNPSrm },
458 { X86::ANDPDrr, X86::ANDPDrm },
459 { X86::ANDPSrr, X86::ANDPSrm },
460 { X86::CMOVA16rr, X86::CMOVA16rm },
461 { X86::CMOVA32rr, X86::CMOVA32rm },
462 { X86::CMOVA64rr, X86::CMOVA64rm },
463 { X86::CMOVAE16rr, X86::CMOVAE16rm },
464 { X86::CMOVAE32rr, X86::CMOVAE32rm },
465 { X86::CMOVAE64rr, X86::CMOVAE64rm },
466 { X86::CMOVB16rr, X86::CMOVB16rm },
467 { X86::CMOVB32rr, X86::CMOVB32rm },
468 { X86::CMOVB64rr, X86::CMOVB64rm },
469 { X86::CMOVBE16rr, X86::CMOVBE16rm },
470 { X86::CMOVBE32rr, X86::CMOVBE32rm },
471 { X86::CMOVBE64rr, X86::CMOVBE64rm },
472 { X86::CMOVE16rr, X86::CMOVE16rm },
473 { X86::CMOVE32rr, X86::CMOVE32rm },
474 { X86::CMOVE64rr, X86::CMOVE64rm },
475 { X86::CMOVG16rr, X86::CMOVG16rm },
476 { X86::CMOVG32rr, X86::CMOVG32rm },
477 { X86::CMOVG64rr, X86::CMOVG64rm },
478 { X86::CMOVGE16rr, X86::CMOVGE16rm },
479 { X86::CMOVGE32rr, X86::CMOVGE32rm },
480 { X86::CMOVGE64rr, X86::CMOVGE64rm },
481 { X86::CMOVL16rr, X86::CMOVL16rm },
482 { X86::CMOVL32rr, X86::CMOVL32rm },
483 { X86::CMOVL64rr, X86::CMOVL64rm },
484 { X86::CMOVLE16rr, X86::CMOVLE16rm },
485 { X86::CMOVLE32rr, X86::CMOVLE32rm },
486 { X86::CMOVLE64rr, X86::CMOVLE64rm },
487 { X86::CMOVNE16rr, X86::CMOVNE16rm },
488 { X86::CMOVNE32rr, X86::CMOVNE32rm },
489 { X86::CMOVNE64rr, X86::CMOVNE64rm },
490 { X86::CMOVNP16rr, X86::CMOVNP16rm },
491 { X86::CMOVNP32rr, X86::CMOVNP32rm },
492 { X86::CMOVNP64rr, X86::CMOVNP64rm },
493 { X86::CMOVNS16rr, X86::CMOVNS16rm },
494 { X86::CMOVNS32rr, X86::CMOVNS32rm },
495 { X86::CMOVNS64rr, X86::CMOVNS64rm },
496 { X86::CMOVP16rr, X86::CMOVP16rm },
497 { X86::CMOVP32rr, X86::CMOVP32rm },
498 { X86::CMOVP64rr, X86::CMOVP64rm },
499 { X86::CMOVS16rr, X86::CMOVS16rm },
500 { X86::CMOVS32rr, X86::CMOVS32rm },
501 { X86::CMOVS64rr, X86::CMOVS64rm },
502 { X86::CMPPDrri, X86::CMPPDrmi },
503 { X86::CMPPSrri, X86::CMPPSrmi },
504 { X86::CMPSDrr, X86::CMPSDrm },
505 { X86::CMPSSrr, X86::CMPSSrm },
506 { X86::DIVPDrr, X86::DIVPDrm },
507 { X86::DIVPSrr, X86::DIVPSrm },
508 { X86::DIVSDrr, X86::DIVSDrm },
509 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000510 { X86::FsANDNPDrr, X86::FsANDNPDrm },
511 { X86::FsANDNPSrr, X86::FsANDNPSrm },
512 { X86::FsANDPDrr, X86::FsANDPDrm },
513 { X86::FsANDPSrr, X86::FsANDPSrm },
514 { X86::FsORPDrr, X86::FsORPDrm },
515 { X86::FsORPSrr, X86::FsORPSrm },
516 { X86::FsXORPDrr, X86::FsXORPDrm },
517 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000518 { X86::HADDPDrr, X86::HADDPDrm },
519 { X86::HADDPSrr, X86::HADDPSrm },
520 { X86::HSUBPDrr, X86::HSUBPDrm },
521 { X86::HSUBPSrr, X86::HSUBPSrm },
522 { X86::IMUL16rr, X86::IMUL16rm },
523 { X86::IMUL32rr, X86::IMUL32rm },
524 { X86::IMUL64rr, X86::IMUL64rm },
525 { X86::MAXPDrr, X86::MAXPDrm },
526 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
527 { X86::MAXPSrr, X86::MAXPSrm },
528 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
529 { X86::MAXSDrr, X86::MAXSDrm },
530 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
531 { X86::MAXSSrr, X86::MAXSSrm },
532 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
533 { X86::MINPDrr, X86::MINPDrm },
534 { X86::MINPDrr_Int, X86::MINPDrm_Int },
535 { X86::MINPSrr, X86::MINPSrm },
536 { X86::MINPSrr_Int, X86::MINPSrm_Int },
537 { X86::MINSDrr, X86::MINSDrm },
538 { X86::MINSDrr_Int, X86::MINSDrm_Int },
539 { X86::MINSSrr, X86::MINSSrm },
540 { X86::MINSSrr_Int, X86::MINSSrm_Int },
541 { X86::MULPDrr, X86::MULPDrm },
542 { X86::MULPSrr, X86::MULPSrm },
543 { X86::MULSDrr, X86::MULSDrm },
544 { X86::MULSSrr, X86::MULSSrm },
545 { X86::OR16rr, X86::OR16rm },
546 { X86::OR32rr, X86::OR32rm },
547 { X86::OR64rr, X86::OR64rm },
548 { X86::OR8rr, X86::OR8rm },
549 { X86::ORPDrr, X86::ORPDrm },
550 { X86::ORPSrr, X86::ORPSrm },
551 { X86::PACKSSDWrr, X86::PACKSSDWrm },
552 { X86::PACKSSWBrr, X86::PACKSSWBrm },
553 { X86::PACKUSWBrr, X86::PACKUSWBrm },
554 { X86::PADDBrr, X86::PADDBrm },
555 { X86::PADDDrr, X86::PADDDrm },
556 { X86::PADDQrr, X86::PADDQrm },
557 { X86::PADDSBrr, X86::PADDSBrm },
558 { X86::PADDSWrr, X86::PADDSWrm },
559 { X86::PADDWrr, X86::PADDWrm },
560 { X86::PANDNrr, X86::PANDNrm },
561 { X86::PANDrr, X86::PANDrm },
562 { X86::PAVGBrr, X86::PAVGBrm },
563 { X86::PAVGWrr, X86::PAVGWrm },
564 { X86::PCMPEQBrr, X86::PCMPEQBrm },
565 { X86::PCMPEQDrr, X86::PCMPEQDrm },
566 { X86::PCMPEQWrr, X86::PCMPEQWrm },
567 { X86::PCMPGTBrr, X86::PCMPGTBrm },
568 { X86::PCMPGTDrr, X86::PCMPGTDrm },
569 { X86::PCMPGTWrr, X86::PCMPGTWrm },
570 { X86::PINSRWrri, X86::PINSRWrmi },
571 { X86::PMADDWDrr, X86::PMADDWDrm },
572 { X86::PMAXSWrr, X86::PMAXSWrm },
573 { X86::PMAXUBrr, X86::PMAXUBrm },
574 { X86::PMINSWrr, X86::PMINSWrm },
575 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000576 { X86::PMULDQrr, X86::PMULDQrm },
577 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000578 { X86::PMULHUWrr, X86::PMULHUWrm },
579 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000580 { X86::PMULLDrr, X86::PMULLDrm },
581 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000582 { X86::PMULLWrr, X86::PMULLWrm },
583 { X86::PMULUDQrr, X86::PMULUDQrm },
584 { X86::PORrr, X86::PORrm },
585 { X86::PSADBWrr, X86::PSADBWrm },
586 { X86::PSLLDrr, X86::PSLLDrm },
587 { X86::PSLLQrr, X86::PSLLQrm },
588 { X86::PSLLWrr, X86::PSLLWrm },
589 { X86::PSRADrr, X86::PSRADrm },
590 { X86::PSRAWrr, X86::PSRAWrm },
591 { X86::PSRLDrr, X86::PSRLDrm },
592 { X86::PSRLQrr, X86::PSRLQrm },
593 { X86::PSRLWrr, X86::PSRLWrm },
594 { X86::PSUBBrr, X86::PSUBBrm },
595 { X86::PSUBDrr, X86::PSUBDrm },
596 { X86::PSUBSBrr, X86::PSUBSBrm },
597 { X86::PSUBSWrr, X86::PSUBSWrm },
598 { X86::PSUBWrr, X86::PSUBWrm },
599 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
600 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
601 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
602 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
603 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
604 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
605 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
606 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
607 { X86::PXORrr, X86::PXORrm },
608 { X86::SBB32rr, X86::SBB32rm },
609 { X86::SBB64rr, X86::SBB64rm },
610 { X86::SHUFPDrri, X86::SHUFPDrmi },
611 { X86::SHUFPSrri, X86::SHUFPSrmi },
612 { X86::SUB16rr, X86::SUB16rm },
613 { X86::SUB32rr, X86::SUB32rm },
614 { X86::SUB64rr, X86::SUB64rm },
615 { X86::SUB8rr, X86::SUB8rm },
616 { X86::SUBPDrr, X86::SUBPDrm },
617 { X86::SUBPSrr, X86::SUBPSrm },
618 { X86::SUBSDrr, X86::SUBSDrm },
619 { X86::SUBSSrr, X86::SUBSSrm },
620 // FIXME: TEST*rr -> swapped operand of TEST*mr.
621 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
622 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
623 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
624 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
625 { X86::XOR16rr, X86::XOR16rm },
626 { X86::XOR32rr, X86::XOR32rm },
627 { X86::XOR64rr, X86::XOR64rm },
628 { X86::XOR8rr, X86::XOR8rm },
629 { X86::XORPDrr, X86::XORPDrm },
630 { X86::XORPSrr, X86::XORPSrm }
631 };
632
633 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
634 unsigned RegOp = OpTbl2[i][0];
635 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000636 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
637 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000638 assert(false && "Duplicated entries?");
639 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
640 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000641 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000642 AmbEntries.push_back(MemOp);
643 }
644
645 // Remove ambiguous entries.
646 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000647}
648
649bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
650 unsigned& sourceReg,
651 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000652 switch (MI.getOpcode()) {
653 default:
654 return false;
655 case X86::MOV8rr:
656 case X86::MOV16rr:
657 case X86::MOV32rr:
658 case X86::MOV64rr:
659 case X86::MOV16to16_:
660 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000661 case X86::MOVSSrr:
662 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000663
664 // FP Stack register class copies
665 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
666 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
667 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
668
Chris Lattnerff195282008-03-11 19:28:17 +0000669 case X86::FsMOVAPSrr:
670 case X86::FsMOVAPDrr:
671 case X86::MOVAPSrr:
672 case X86::MOVAPDrr:
673 case X86::MOVSS2PSrr:
674 case X86::MOVSD2PDrr:
675 case X86::MOVPS2SSrr:
676 case X86::MOVPD2SDrr:
677 case X86::MMX_MOVD64rr:
678 case X86::MMX_MOVQ64rr:
679 assert(MI.getNumOperands() >= 2 &&
680 MI.getOperand(0).isRegister() &&
681 MI.getOperand(1).isRegister() &&
682 "invalid register-register move instruction");
683 sourceReg = MI.getOperand(1).getReg();
684 destReg = MI.getOperand(0).getReg();
685 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000686 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000687}
688
689unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
690 int &FrameIndex) const {
691 switch (MI->getOpcode()) {
692 default: break;
693 case X86::MOV8rm:
694 case X86::MOV16rm:
695 case X86::MOV16_rm:
696 case X86::MOV32rm:
697 case X86::MOV32_rm:
698 case X86::MOV64rm:
699 case X86::LD_Fp64m:
700 case X86::MOVSSrm:
701 case X86::MOVSDrm:
702 case X86::MOVAPSrm:
703 case X86::MOVAPDrm:
704 case X86::MMX_MOVD64rm:
705 case X86::MMX_MOVQ64rm:
Chris Lattner6017d482007-12-30 23:10:15 +0000706 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
707 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000708 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000710 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000711 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712 return MI->getOperand(0).getReg();
713 }
714 break;
715 }
716 return 0;
717}
718
719unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
720 int &FrameIndex) const {
721 switch (MI->getOpcode()) {
722 default: break;
723 case X86::MOV8mr:
724 case X86::MOV16mr:
725 case X86::MOV16_mr:
726 case X86::MOV32mr:
727 case X86::MOV32_mr:
728 case X86::MOV64mr:
729 case X86::ST_FpP64m:
730 case X86::MOVSSmr:
731 case X86::MOVSDmr:
732 case X86::MOVAPSmr:
733 case X86::MOVAPDmr:
734 case X86::MMX_MOVD64mr:
735 case X86::MMX_MOVQ64mr:
736 case X86::MMX_MOVNTQmr:
Chris Lattner6017d482007-12-30 23:10:15 +0000737 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
738 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000739 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000741 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000742 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 return MI->getOperand(4).getReg();
744 }
745 break;
746 }
747 return 0;
748}
749
750
Evan Chengb819a512008-03-27 01:45:11 +0000751/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
752/// X86::MOVPC32r.
753static bool regIsPICBase(unsigned BaseReg, MachineRegisterInfo &MRI) {
754 bool isPICBase = false;
755 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
756 E = MRI.def_end(); I != E; ++I) {
757 MachineInstr *DefMI = I.getOperand().getParent();
758 if (DefMI->getOpcode() != X86::MOVPC32r)
759 return false;
760 assert(!isPICBase && "More than one PIC base?");
761 isPICBase = true;
762 }
763 return isPICBase;
764}
Evan Chenge9caab52008-03-31 07:54:19 +0000765
766/// isGVStub - Return true if the GV requires an extra load to get the
767/// real address.
768static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
769 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
770}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000771
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000772bool
773X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000774 switch (MI->getOpcode()) {
775 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000776 case X86::MOV8rm:
777 case X86::MOV16rm:
778 case X86::MOV16_rm:
779 case X86::MOV32rm:
780 case X86::MOV32_rm:
781 case X86::MOV64rm:
782 case X86::LD_Fp64m:
783 case X86::MOVSSrm:
784 case X86::MOVSDrm:
785 case X86::MOVAPSrm:
786 case X86::MOVAPDrm:
787 case X86::MMX_MOVD64rm:
788 case X86::MMX_MOVQ64rm: {
789 // Loads from constant pools are trivially rematerializable.
790 if (MI->getOperand(1).isReg() &&
791 MI->getOperand(2).isImm() &&
792 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Evan Chenge9caab52008-03-31 07:54:19 +0000793 (MI->getOperand(4).isCPI() ||
794 (MI->getOperand(4).isGlobal() &&
795 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000796 unsigned BaseReg = MI->getOperand(1).getReg();
797 if (BaseReg == 0)
798 return true;
799 // Allow re-materialization of PIC load.
Evan Chengc87df652008-04-01 23:26:12 +0000800 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
801 return false;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000802 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
803 bool isPICBase = false;
804 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
805 E = MRI.def_end(); I != E; ++I) {
806 MachineInstr *DefMI = I.getOperand().getParent();
807 if (DefMI->getOpcode() != X86::MOVPC32r)
808 return false;
809 assert(!isPICBase && "More than one PIC base?");
810 isPICBase = true;
811 }
812 return isPICBase;
813 }
814 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000815 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000816
817 case X86::LEA32r:
818 case X86::LEA64r: {
819 if (MI->getOperand(1).isReg() &&
820 MI->getOperand(2).isImm() &&
821 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
822 !MI->getOperand(4).isReg()) {
823 // lea fi#, lea GV, etc. are all rematerializable.
824 unsigned BaseReg = MI->getOperand(1).getReg();
825 if (BaseReg == 0)
826 return true;
827 // Allow re-materialization of lea PICBase + x.
Evan Chengb819a512008-03-27 01:45:11 +0000828 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
829 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000830 }
831 return false;
832 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000833 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000834
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000835 // All other instructions marked M_REMATERIALIZABLE are always trivially
836 // rematerializable.
837 return true;
838}
839
Evan Chengc564ded2008-06-24 07:10:51 +0000840/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
841/// would clobber the EFLAGS condition register. Note the result may be
842/// conservative. If it cannot definitely determine the safety after visiting
843/// two instructions it assumes it's not safe.
844static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
845 MachineBasicBlock::iterator I) {
846 // For compile time consideration, if we are not able to determine the
847 // safety after visiting 2 instructions, we will assume it's not safe.
848 for (unsigned i = 0; i < 2; ++i) {
849 if (I == MBB.end())
850 // Reached end of block, it's safe.
851 return true;
852 bool SeenDef = false;
853 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
854 MachineOperand &MO = I->getOperand(j);
855 if (!MO.isRegister())
856 continue;
857 if (MO.getReg() == X86::EFLAGS) {
858 if (MO.isUse())
859 return false;
860 SeenDef = true;
861 }
862 }
863
864 if (SeenDef)
865 // This instruction defines EFLAGS, no need to look any further.
866 return true;
867 ++I;
868 }
869
870 // Conservative answer.
871 return false;
872}
873
Evan Cheng7d73efc2008-03-31 20:40:39 +0000874void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
875 MachineBasicBlock::iterator I,
876 unsigned DestReg,
877 const MachineInstr *Orig) const {
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000878 unsigned SubIdx = Orig->getOperand(0).isReg()
879 ? Orig->getOperand(0).getSubReg() : 0;
880 bool ChangeSubIdx = SubIdx != 0;
881 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
882 DestReg = RI.getSubReg(DestReg, SubIdx);
883 SubIdx = 0;
884 }
885
Evan Cheng7d73efc2008-03-31 20:40:39 +0000886 // MOV32r0 etc. are implemented with xor which clobbers condition code.
887 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000888 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000889 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000890 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000891 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000892 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000893 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000894 case X86::MOV64r0: {
895 if (!isSafeToClobberEFLAGS(MBB, I)) {
896 unsigned Opc = 0;
897 switch (Orig->getOpcode()) {
898 default: break;
899 case X86::MOV8r0: Opc = X86::MOV8ri; break;
900 case X86::MOV16r0: Opc = X86::MOV16ri; break;
901 case X86::MOV32r0: Opc = X86::MOV32ri; break;
902 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
903 }
904 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
905 Emitted = true;
906 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000907 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000908 }
909 }
910
911 if (!Emitted) {
Evan Cheng7d73efc2008-03-31 20:40:39 +0000912 MachineInstr *MI = Orig->clone();
913 MI->getOperand(0).setReg(DestReg);
914 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000915 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000916
917 if (ChangeSubIdx) {
918 MachineInstr *NewMI = prior(I);
919 NewMI->getOperand(0).setSubReg(SubIdx);
920 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000921}
922
Chris Lattnerea3a1812008-01-10 23:08:24 +0000923/// isInvariantLoad - Return true if the specified instruction (which is marked
924/// mayLoad) is loading from a location whose value is invariant across the
925/// function. For example, loading a value from the constant pool or from
926/// from the argument area of a function if it does not change. This should
927/// only return true of *all* loads the instruction does are invariant (if it
928/// does multiple loads).
929bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000930 // This code cares about loads from three cases: constant pool entries,
931 // invariant argument slots, and global stubs. In order to handle these cases
932 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000933 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000934 // none of these three cases is ever used as anything other than a load base
935 // and X86 doesn't have any instructions that load from multiple places.
936
937 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
938 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000939 // Loads from constant pools are trivially invariant.
Chris Lattner0875b572008-01-12 00:35:08 +0000940 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000941 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000942
943 if (MO.isGlobal())
944 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000945
946 // If this is a load from an invariant stack slot, the load is a constant.
947 if (MO.isFI()) {
948 const MachineFrameInfo &MFI =
949 *MI->getParent()->getParent()->getFrameInfo();
950 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000951 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
952 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000953 }
Chris Lattner0875b572008-01-12 00:35:08 +0000954
Chris Lattnerea3a1812008-01-10 23:08:24 +0000955 // All other instances of these instructions are presumed to have other
956 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000957 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000958}
959
Evan Chengfa1a4952007-10-05 08:04:01 +0000960/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
961/// is not marked dead.
962static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000963 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
964 MachineOperand &MO = MI->getOperand(i);
965 if (MO.isRegister() && MO.isDef() &&
966 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
967 return true;
968 }
969 }
970 return false;
971}
972
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000973/// convertToThreeAddress - This method must be implemented by targets that
974/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
975/// may be able to convert a two-address instruction into a true
976/// three-address instruction on demand. This allows the X86 target (for
977/// example) to convert ADD and SHL instructions into LEA instructions if they
978/// would require register copies due to two-addressness.
979///
980/// This method returns a null pointer if the transformation cannot be
981/// performed, otherwise it returns the new instruction.
982///
983MachineInstr *
984X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
985 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000986 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000987 MachineInstr *MI = MBBI;
988 // All instructions input are two-addr instructions. Get the known operands.
989 unsigned Dest = MI->getOperand(0).getReg();
990 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +0000991 bool isDead = MI->getOperand(0).isDead();
992 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000993
994 MachineInstr *NewMI = NULL;
995 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
996 // we have better subtarget support, enable the 16-bit LEA generation here.
997 bool DisableLEA16 = true;
998
Evan Cheng6b96ed32007-10-05 20:34:26 +0000999 unsigned MIOpc = MI->getOpcode();
1000 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001 case X86::SHUFPSrri: {
1002 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1003 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1004
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 unsigned B = MI->getOperand(1).getReg();
1006 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001007 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001008 unsigned A = MI->getOperand(0).getReg();
1009 unsigned M = MI->getOperand(3).getImm();
1010 NewMI = BuildMI(get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
1011 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001012 break;
1013 }
1014 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001015 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001016 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1017 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 unsigned ShAmt = MI->getOperand(2).getImm();
1019 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001020
1021 NewMI = BuildMI(get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
1022 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001023 break;
1024 }
1025 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001026 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1028 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 unsigned ShAmt = MI->getOperand(2).getImm();
1030 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001031
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001032 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1033 X86::LEA64_32r : X86::LEA32r;
Evan Chenge52c1912008-07-03 09:09:37 +00001034 NewMI = BuildMI(get(Opc)).addReg(Dest, true, false, false, isDead)
1035 .addReg(0).addImm(1 << ShAmt)
1036 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001037 break;
1038 }
1039 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001040 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001041 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1042 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001043 unsigned ShAmt = MI->getOperand(2).getImm();
1044 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001045
Christopher Lamb380c6272007-08-10 21:18:25 +00001046 if (DisableLEA16) {
1047 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001048 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001049 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1050 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001051 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1052 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001053
Christopher Lamb8d226a22008-03-11 10:27:36 +00001054 // Build and insert into an implicit UNDEF value. This is OK because
1055 // well be shifting and then extracting the lower 16-bits.
Evan Chenge52c1912008-07-03 09:09:37 +00001056 MachineInstr *Undef = BuildMI(get(X86::IMPLICIT_DEF), leaInReg);
1057 MachineInstr *InsMI = BuildMI(get(X86::INSERT_SUBREG),leaInReg)
1058 .addReg(leaInReg).addReg(Src, false, false, isKill)
1059 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001060
Evan Chenge52c1912008-07-03 09:09:37 +00001061 NewMI = BuildMI(get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
1062 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001063
Evan Chenge52c1912008-07-03 09:09:37 +00001064 MachineInstr *ExtMI = BuildMI(get(X86::EXTRACT_SUBREG))
1065 .addReg(Dest, true, false, false, isDead)
1066 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Christopher Lamb380c6272007-08-10 21:18:25 +00001067
Christopher Lamb76d72da2008-03-16 03:12:01 +00001068 MFI->insert(MBBI, Undef);
Evan Chenge52c1912008-07-03 09:09:37 +00001069 MFI->insert(MBBI, InsMI); // Insert the insert_subreg
1070 MFI->insert(MBBI, NewMI); // Insert the lea inst
1071 MFI->insert(MBBI, ExtMI); // Insert the extract_subreg
Owen Andersonc6959722008-07-02 23:41:07 +00001072 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001073 // Update live variables
1074 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1075 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1076 if (isKill)
1077 LV->replaceKillInstruction(Src, MI, InsMI);
1078 if (isDead)
1079 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001080 }
Evan Chenge52c1912008-07-03 09:09:37 +00001081 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001082 } else {
Evan Chenge52c1912008-07-03 09:09:37 +00001083 NewMI = BuildMI(get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
1084 .addReg(0).addImm(1 << ShAmt)
1085 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001086 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001087 break;
1088 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001089 default: {
1090 // The following opcodes also sets the condition code register(s). Only
1091 // convert them to equivalent lea if the condition code register def's
1092 // are dead!
1093 if (hasLiveCondCodeDef(MI))
1094 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001095
Evan Chenga28a9562007-10-09 07:14:53 +00001096 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001097 switch (MIOpc) {
1098 default: return 0;
1099 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001100 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001101 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001102 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1103 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001104 NewMI = addRegOffset(BuildMI(get(Opc))
1105 .addReg(Dest, true, false, false, isDead),
1106 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001107 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001109 case X86::INC16r:
1110 case X86::INC64_16r:
1111 if (DisableLEA16) return 0;
1112 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001113 NewMI = addRegOffset(BuildMI(get(X86::LEA16r))
1114 .addReg(Dest, true, false, false, isDead),
1115 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001116 break;
1117 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001118 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001119 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001120 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1121 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001122 NewMI = addRegOffset(BuildMI(get(Opc))
1123 .addReg(Dest, true, false, false, isDead),
1124 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001125 break;
1126 }
1127 case X86::DEC16r:
1128 case X86::DEC64_16r:
1129 if (DisableLEA16) return 0;
1130 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001131 NewMI = addRegOffset(BuildMI(get(X86::LEA16r))
1132 .addReg(Dest, true, false, false, isDead),
1133 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001134 break;
1135 case X86::ADD64rr:
1136 case X86::ADD32rr: {
1137 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001138 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1139 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001140 unsigned Src2 = MI->getOperand(2).getReg();
1141 bool isKill2 = MI->getOperand(2).isKill();
1142 NewMI = addRegReg(BuildMI(get(Opc))
1143 .addReg(Dest, true, false, false, isDead),
1144 Src, isKill, Src2, isKill2);
1145 if (LV && isKill2)
1146 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001147 break;
1148 }
Evan Chenge52c1912008-07-03 09:09:37 +00001149 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001150 if (DisableLEA16) return 0;
1151 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001152 unsigned Src2 = MI->getOperand(2).getReg();
1153 bool isKill2 = MI->getOperand(2).isKill();
1154 NewMI = addRegReg(BuildMI(get(X86::LEA16r))
1155 .addReg(Dest, true, false, false, isDead),
1156 Src, isKill, Src2, isKill2);
1157 if (LV && isKill2)
1158 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001159 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001160 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001161 case X86::ADD64ri32:
1162 case X86::ADD64ri8:
1163 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1164 if (MI->getOperand(2).isImmediate())
Evan Chenge52c1912008-07-03 09:09:37 +00001165 NewMI = addRegOffset(BuildMI(get(X86::LEA64r))
1166 .addReg(Dest, true, false, false, isDead),
1167 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001168 break;
1169 case X86::ADD32ri:
1170 case X86::ADD32ri8:
1171 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001172 if (MI->getOperand(2).isImmediate()) {
1173 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Evan Chenge52c1912008-07-03 09:09:37 +00001174 NewMI = addRegOffset(BuildMI(get(Opc))
1175 .addReg(Dest, true, false, false, isDead),
1176 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001177 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001178 break;
1179 case X86::ADD16ri:
1180 case X86::ADD16ri8:
1181 if (DisableLEA16) return 0;
1182 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1183 if (MI->getOperand(2).isImmediate())
Evan Chenge52c1912008-07-03 09:09:37 +00001184 NewMI = addRegOffset(BuildMI(get(X86::LEA16r))
1185 .addReg(Dest, true, false, false, isDead),
1186 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001187 break;
1188 case X86::SHL16ri:
1189 if (DisableLEA16) return 0;
1190 case X86::SHL32ri:
1191 case X86::SHL64ri: {
1192 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1193 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001194 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001195 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1196 X86AddressMode AM;
1197 AM.Scale = 1 << ShAmt;
1198 AM.IndexReg = Src;
1199 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001200 : (MIOpc == X86::SHL32ri
1201 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Chenge52c1912008-07-03 09:09:37 +00001202 NewMI = addFullAddress(BuildMI(get(Opc))
1203 .addReg(Dest, true, false, false, isDead), AM);
1204 if (isKill)
1205 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001206 }
1207 break;
1208 }
1209 }
1210 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001211 }
1212
Evan Chengc3cb24d2008-02-07 08:29:53 +00001213 if (!NewMI) return 0;
1214
Evan Chenge52c1912008-07-03 09:09:37 +00001215 if (LV) { // Update live variables
1216 if (isKill)
1217 LV->replaceKillInstruction(Src, MI, NewMI);
1218 if (isDead)
1219 LV->replaceKillInstruction(Dest, MI, NewMI);
1220 }
1221
Evan Cheng6b96ed32007-10-05 20:34:26 +00001222 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001223 return NewMI;
1224}
1225
1226/// commuteInstruction - We have a few instructions that must be hacked on to
1227/// commute them.
1228///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001229MachineInstr *
1230X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001231 switch (MI->getOpcode()) {
1232 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1233 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1234 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001235 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1236 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1237 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001238 unsigned Opc;
1239 unsigned Size;
1240 switch (MI->getOpcode()) {
1241 default: assert(0 && "Unreachable!");
1242 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1243 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1244 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1245 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001246 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1247 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001249 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001250 unsigned A = MI->getOperand(0).getReg();
1251 unsigned B = MI->getOperand(1).getReg();
1252 unsigned C = MI->getOperand(2).getReg();
Evan Chengeb76f832008-07-03 00:04:51 +00001253 bool AisDead = MI->getOperand(0).isDead();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254 bool BisKill = MI->getOperand(1).isKill();
1255 bool CisKill = MI->getOperand(2).isKill();
Evan Chengb554e532008-02-13 02:46:49 +00001256 // If machine instrs are no longer in two-address forms, update
1257 // destination register as well.
1258 if (A == B) {
1259 // Must be two address instruction!
1260 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1261 "Expecting a two-address instruction!");
1262 A = C;
1263 CisKill = false;
1264 }
Evan Chengeb76f832008-07-03 00:04:51 +00001265 return BuildMI(get(Opc)).addReg(A, true, false, false, AisDead)
1266 .addReg(C, false, false, CisKill)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 .addReg(B, false, false, BisKill).addImm(Size-Amt);
1268 }
Evan Cheng926658c2007-10-05 23:13:21 +00001269 case X86::CMOVB16rr:
1270 case X86::CMOVB32rr:
1271 case X86::CMOVB64rr:
1272 case X86::CMOVAE16rr:
1273 case X86::CMOVAE32rr:
1274 case X86::CMOVAE64rr:
1275 case X86::CMOVE16rr:
1276 case X86::CMOVE32rr:
1277 case X86::CMOVE64rr:
1278 case X86::CMOVNE16rr:
1279 case X86::CMOVNE32rr:
1280 case X86::CMOVNE64rr:
1281 case X86::CMOVBE16rr:
1282 case X86::CMOVBE32rr:
1283 case X86::CMOVBE64rr:
1284 case X86::CMOVA16rr:
1285 case X86::CMOVA32rr:
1286 case X86::CMOVA64rr:
1287 case X86::CMOVL16rr:
1288 case X86::CMOVL32rr:
1289 case X86::CMOVL64rr:
1290 case X86::CMOVGE16rr:
1291 case X86::CMOVGE32rr:
1292 case X86::CMOVGE64rr:
1293 case X86::CMOVLE16rr:
1294 case X86::CMOVLE32rr:
1295 case X86::CMOVLE64rr:
1296 case X86::CMOVG16rr:
1297 case X86::CMOVG32rr:
1298 case X86::CMOVG64rr:
1299 case X86::CMOVS16rr:
1300 case X86::CMOVS32rr:
1301 case X86::CMOVS64rr:
1302 case X86::CMOVNS16rr:
1303 case X86::CMOVNS32rr:
1304 case X86::CMOVNS64rr:
1305 case X86::CMOVP16rr:
1306 case X86::CMOVP32rr:
1307 case X86::CMOVP64rr:
1308 case X86::CMOVNP16rr:
1309 case X86::CMOVNP32rr:
1310 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001311 unsigned Opc = 0;
1312 switch (MI->getOpcode()) {
1313 default: break;
1314 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1315 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1316 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1317 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1318 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1319 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1320 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1321 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1322 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1323 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1324 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1325 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1326 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1327 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1328 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1329 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1330 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1331 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1332 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1333 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1334 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1335 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1336 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1337 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1338 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1339 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1340 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1341 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1342 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1343 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1344 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1345 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1346 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1347 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1348 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1349 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1350 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1351 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1352 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1353 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1354 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1355 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1356 }
1357
Chris Lattner86bb02f2008-01-11 18:10:50 +00001358 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001359 // Fallthrough intended.
1360 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001361 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001362 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001363 }
1364}
1365
1366static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1367 switch (BrOpc) {
1368 default: return X86::COND_INVALID;
1369 case X86::JE: return X86::COND_E;
1370 case X86::JNE: return X86::COND_NE;
1371 case X86::JL: return X86::COND_L;
1372 case X86::JLE: return X86::COND_LE;
1373 case X86::JG: return X86::COND_G;
1374 case X86::JGE: return X86::COND_GE;
1375 case X86::JB: return X86::COND_B;
1376 case X86::JBE: return X86::COND_BE;
1377 case X86::JA: return X86::COND_A;
1378 case X86::JAE: return X86::COND_AE;
1379 case X86::JS: return X86::COND_S;
1380 case X86::JNS: return X86::COND_NS;
1381 case X86::JP: return X86::COND_P;
1382 case X86::JNP: return X86::COND_NP;
1383 case X86::JO: return X86::COND_O;
1384 case X86::JNO: return X86::COND_NO;
1385 }
1386}
1387
1388unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1389 switch (CC) {
1390 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001391 case X86::COND_E: return X86::JE;
1392 case X86::COND_NE: return X86::JNE;
1393 case X86::COND_L: return X86::JL;
1394 case X86::COND_LE: return X86::JLE;
1395 case X86::COND_G: return X86::JG;
1396 case X86::COND_GE: return X86::JGE;
1397 case X86::COND_B: return X86::JB;
1398 case X86::COND_BE: return X86::JBE;
1399 case X86::COND_A: return X86::JA;
1400 case X86::COND_AE: return X86::JAE;
1401 case X86::COND_S: return X86::JS;
1402 case X86::COND_NS: return X86::JNS;
1403 case X86::COND_P: return X86::JP;
1404 case X86::COND_NP: return X86::JNP;
1405 case X86::COND_O: return X86::JO;
1406 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001407 }
1408}
1409
1410/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1411/// e.g. turning COND_E to COND_NE.
1412X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1413 switch (CC) {
1414 default: assert(0 && "Illegal condition code!");
1415 case X86::COND_E: return X86::COND_NE;
1416 case X86::COND_NE: return X86::COND_E;
1417 case X86::COND_L: return X86::COND_GE;
1418 case X86::COND_LE: return X86::COND_G;
1419 case X86::COND_G: return X86::COND_LE;
1420 case X86::COND_GE: return X86::COND_L;
1421 case X86::COND_B: return X86::COND_AE;
1422 case X86::COND_BE: return X86::COND_A;
1423 case X86::COND_A: return X86::COND_BE;
1424 case X86::COND_AE: return X86::COND_B;
1425 case X86::COND_S: return X86::COND_NS;
1426 case X86::COND_NS: return X86::COND_S;
1427 case X86::COND_P: return X86::COND_NP;
1428 case X86::COND_NP: return X86::COND_P;
1429 case X86::COND_O: return X86::COND_NO;
1430 case X86::COND_NO: return X86::COND_O;
1431 }
1432}
1433
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001434bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001435 const TargetInstrDesc &TID = MI->getDesc();
1436 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001437
1438 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001439 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001440 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001441 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001442 return true;
1443 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001444}
1445
Evan Cheng12515792007-07-26 17:32:14 +00001446// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1447static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1448 const X86InstrInfo &TII) {
1449 if (MI->getOpcode() == X86::FP_REG_KILL)
1450 return false;
1451 return TII.isUnpredicatedTerminator(MI);
1452}
1453
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1455 MachineBasicBlock *&TBB,
1456 MachineBasicBlock *&FBB,
1457 std::vector<MachineOperand> &Cond) const {
1458 // If the block has no terminators, it just falls into the block after it.
1459 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +00001460 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001461 return false;
1462
1463 // Get the last instruction in the block.
1464 MachineInstr *LastInst = I;
1465
1466 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +00001467 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner5b930372008-01-07 07:27:27 +00001468 if (!LastInst->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001469 return true;
1470
1471 // If the block ends with a branch there are 3 possibilities:
1472 // it's an unconditional, conditional, or indirect branch.
1473
1474 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001475 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001476 return false;
1477 }
1478 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1479 if (BranchCode == X86::COND_INVALID)
1480 return true; // Can't handle indirect branch.
1481
1482 // Otherwise, block ends with fall-through condbranch.
Chris Lattner6017d482007-12-30 23:10:15 +00001483 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001484 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1485 return false;
1486 }
1487
1488 // Get the instruction before it if it's a terminator.
1489 MachineInstr *SecondLastInst = I;
1490
1491 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +00001492 if (SecondLastInst && I != MBB.begin() &&
1493 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494 return true;
1495
1496 // If the block ends with X86::JMP and a conditional branch, handle it.
1497 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1498 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001499 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001500 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner6017d482007-12-30 23:10:15 +00001501 FBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001502 return false;
1503 }
1504
1505 // If the block ends with two X86::JMPs, handle it. The second one is not
1506 // executed, so remove it.
1507 if (SecondLastInst->getOpcode() == X86::JMP &&
1508 LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001509 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001510 I = LastInst;
1511 I->eraseFromParent();
1512 return false;
1513 }
1514
1515 // Otherwise, can't handle this.
1516 return true;
1517}
1518
1519unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1520 MachineBasicBlock::iterator I = MBB.end();
1521 if (I == MBB.begin()) return 0;
1522 --I;
1523 if (I->getOpcode() != X86::JMP &&
1524 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1525 return 0;
1526
1527 // Remove the branch.
1528 I->eraseFromParent();
1529
1530 I = MBB.end();
1531
1532 if (I == MBB.begin()) return 1;
1533 --I;
1534 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1535 return 1;
1536
1537 // Remove the branch.
1538 I->eraseFromParent();
1539 return 2;
1540}
1541
Owen Anderson81875432008-01-01 21:11:32 +00001542static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1543 MachineOperand &MO) {
1544 if (MO.isRegister())
1545 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001546 MO.isKill(), MO.isDead(), MO.getSubReg());
Owen Anderson81875432008-01-01 21:11:32 +00001547 else if (MO.isImmediate())
1548 MIB = MIB.addImm(MO.getImm());
1549 else if (MO.isFrameIndex())
1550 MIB = MIB.addFrameIndex(MO.getIndex());
1551 else if (MO.isGlobalAddress())
1552 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1553 else if (MO.isConstantPoolIndex())
1554 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1555 else if (MO.isJumpTableIndex())
1556 MIB = MIB.addJumpTableIndex(MO.getIndex());
1557 else if (MO.isExternalSymbol())
1558 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1559 else
1560 assert(0 && "Unknown operand for X86InstrAddOperand!");
1561
1562 return MIB;
1563}
1564
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001565unsigned
1566X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1567 MachineBasicBlock *FBB,
1568 const std::vector<MachineOperand> &Cond) const {
1569 // Shouldn't be a fall through.
1570 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1571 assert((Cond.size() == 1 || Cond.size() == 0) &&
1572 "X86 branch conditions have one component!");
1573
1574 if (FBB == 0) { // One way branch.
1575 if (Cond.empty()) {
1576 // Unconditional branch?
1577 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1578 } else {
1579 // Conditional branch.
1580 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1581 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1582 }
1583 return 1;
1584 }
1585
1586 // Two-way Conditional branch.
1587 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1588 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1589 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1590 return 2;
1591}
1592
Owen Anderson8f2c8932007-12-31 06:32:00 +00001593void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001594 MachineBasicBlock::iterator MI,
1595 unsigned DestReg, unsigned SrcReg,
1596 const TargetRegisterClass *DestRC,
1597 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001598 if (DestRC == SrcRC) {
1599 unsigned Opc;
1600 if (DestRC == &X86::GR64RegClass) {
1601 Opc = X86::MOV64rr;
1602 } else if (DestRC == &X86::GR32RegClass) {
1603 Opc = X86::MOV32rr;
1604 } else if (DestRC == &X86::GR16RegClass) {
1605 Opc = X86::MOV16rr;
1606 } else if (DestRC == &X86::GR8RegClass) {
1607 Opc = X86::MOV8rr;
1608 } else if (DestRC == &X86::GR32_RegClass) {
1609 Opc = X86::MOV32_rr;
1610 } else if (DestRC == &X86::GR16_RegClass) {
1611 Opc = X86::MOV16_rr;
1612 } else if (DestRC == &X86::RFP32RegClass) {
1613 Opc = X86::MOV_Fp3232;
1614 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1615 Opc = X86::MOV_Fp6464;
1616 } else if (DestRC == &X86::RFP80RegClass) {
1617 Opc = X86::MOV_Fp8080;
1618 } else if (DestRC == &X86::FR32RegClass) {
1619 Opc = X86::FsMOVAPSrr;
1620 } else if (DestRC == &X86::FR64RegClass) {
1621 Opc = X86::FsMOVAPDrr;
1622 } else if (DestRC == &X86::VR128RegClass) {
1623 Opc = X86::MOVAPSrr;
1624 } else if (DestRC == &X86::VR64RegClass) {
1625 Opc = X86::MMX_MOVQ64rr;
1626 } else {
1627 assert(0 && "Unknown regclass");
1628 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001629 }
Chris Lattner59707122008-03-09 07:58:04 +00001630 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1631 return;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001632 }
Chris Lattner59707122008-03-09 07:58:04 +00001633
1634 // Moving EFLAGS to / from another register requires a push and a pop.
1635 if (SrcRC == &X86::CCRRegClass) {
1636 assert(SrcReg == X86::EFLAGS);
1637 if (DestRC == &X86::GR64RegClass) {
1638 BuildMI(MBB, MI, get(X86::PUSHFQ));
1639 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1640 return;
1641 } else if (DestRC == &X86::GR32RegClass) {
1642 BuildMI(MBB, MI, get(X86::PUSHFD));
1643 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1644 return;
1645 }
1646 } else if (DestRC == &X86::CCRRegClass) {
1647 assert(DestReg == X86::EFLAGS);
1648 if (SrcRC == &X86::GR64RegClass) {
1649 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1650 BuildMI(MBB, MI, get(X86::POPFQ));
1651 return;
1652 } else if (SrcRC == &X86::GR32RegClass) {
1653 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1654 BuildMI(MBB, MI, get(X86::POPFD));
1655 return;
1656 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001657 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001658
Chris Lattner0d128722008-03-09 09:15:31 +00001659 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001660 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001661 // Copying from ST(0)/ST(1).
1662 assert((SrcReg == X86::ST0 || SrcReg == X86::ST1) &&
1663 "Can only copy from ST(0)/ST(1) right now");
1664 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001665 unsigned Opc;
1666 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001667 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001668 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001669 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001670 else {
1671 assert(DestRC == &X86::RFP80RegClass);
Chris Lattner60d14d82008-03-21 06:38:26 +00001672 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001673 }
1674 BuildMI(MBB, MI, get(Opc), DestReg);
1675 return;
1676 }
Chris Lattner0d128722008-03-09 09:15:31 +00001677
1678 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1679 if (DestRC == &X86::RSTRegClass) {
1680 // Copying to ST(0). FIXME: handle ST(1) also
1681 assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1682 unsigned Opc;
1683 if (SrcRC == &X86::RFP32RegClass)
1684 Opc = X86::FpSET_ST0_32;
1685 else if (SrcRC == &X86::RFP64RegClass)
1686 Opc = X86::FpSET_ST0_64;
1687 else {
1688 assert(SrcRC == &X86::RFP80RegClass);
1689 Opc = X86::FpSET_ST0_80;
1690 }
1691 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1692 return;
1693 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001694
Chris Lattnercffd2472008-03-10 23:56:08 +00001695 assert(0 && "Not yet supported!");
Chris Lattner59707122008-03-09 07:58:04 +00001696 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001697}
1698
Owen Anderson81875432008-01-01 21:11:32 +00001699static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1700 unsigned StackAlign) {
1701 unsigned Opc = 0;
1702 if (RC == &X86::GR64RegClass) {
1703 Opc = X86::MOV64mr;
1704 } else if (RC == &X86::GR32RegClass) {
1705 Opc = X86::MOV32mr;
1706 } else if (RC == &X86::GR16RegClass) {
1707 Opc = X86::MOV16mr;
1708 } else if (RC == &X86::GR8RegClass) {
1709 Opc = X86::MOV8mr;
1710 } else if (RC == &X86::GR32_RegClass) {
1711 Opc = X86::MOV32_mr;
1712 } else if (RC == &X86::GR16_RegClass) {
1713 Opc = X86::MOV16_mr;
1714 } else if (RC == &X86::RFP80RegClass) {
1715 Opc = X86::ST_FpP80m; // pops
1716 } else if (RC == &X86::RFP64RegClass) {
1717 Opc = X86::ST_Fp64m;
1718 } else if (RC == &X86::RFP32RegClass) {
1719 Opc = X86::ST_Fp32m;
1720 } else if (RC == &X86::FR32RegClass) {
1721 Opc = X86::MOVSSmr;
1722 } else if (RC == &X86::FR64RegClass) {
1723 Opc = X86::MOVSDmr;
1724 } else if (RC == &X86::VR128RegClass) {
1725 // FIXME: Use movaps once we are capable of selectively
1726 // aligning functions that spill SSE registers on 16-byte boundaries.
1727 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1728 } else if (RC == &X86::VR64RegClass) {
1729 Opc = X86::MMX_MOVQ64mr;
1730 } else {
1731 assert(0 && "Unknown regclass");
1732 abort();
1733 }
1734
1735 return Opc;
1736}
1737
1738void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1739 MachineBasicBlock::iterator MI,
1740 unsigned SrcReg, bool isKill, int FrameIdx,
1741 const TargetRegisterClass *RC) const {
1742 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1743 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1744 .addReg(SrcReg, false, false, isKill);
1745}
1746
1747void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1748 bool isKill,
1749 SmallVectorImpl<MachineOperand> &Addr,
1750 const TargetRegisterClass *RC,
1751 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1752 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1753 MachineInstrBuilder MIB = BuildMI(get(Opc));
1754 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1755 MIB = X86InstrAddOperand(MIB, Addr[i]);
1756 MIB.addReg(SrcReg, false, false, isKill);
1757 NewMIs.push_back(MIB);
1758}
1759
1760static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1761 unsigned StackAlign) {
1762 unsigned Opc = 0;
1763 if (RC == &X86::GR64RegClass) {
1764 Opc = X86::MOV64rm;
1765 } else if (RC == &X86::GR32RegClass) {
1766 Opc = X86::MOV32rm;
1767 } else if (RC == &X86::GR16RegClass) {
1768 Opc = X86::MOV16rm;
1769 } else if (RC == &X86::GR8RegClass) {
1770 Opc = X86::MOV8rm;
1771 } else if (RC == &X86::GR32_RegClass) {
1772 Opc = X86::MOV32_rm;
1773 } else if (RC == &X86::GR16_RegClass) {
1774 Opc = X86::MOV16_rm;
1775 } else if (RC == &X86::RFP80RegClass) {
1776 Opc = X86::LD_Fp80m;
1777 } else if (RC == &X86::RFP64RegClass) {
1778 Opc = X86::LD_Fp64m;
1779 } else if (RC == &X86::RFP32RegClass) {
1780 Opc = X86::LD_Fp32m;
1781 } else if (RC == &X86::FR32RegClass) {
1782 Opc = X86::MOVSSrm;
1783 } else if (RC == &X86::FR64RegClass) {
1784 Opc = X86::MOVSDrm;
1785 } else if (RC == &X86::VR128RegClass) {
1786 // FIXME: Use movaps once we are capable of selectively
1787 // aligning functions that spill SSE registers on 16-byte boundaries.
1788 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1789 } else if (RC == &X86::VR64RegClass) {
1790 Opc = X86::MMX_MOVQ64rm;
1791 } else {
1792 assert(0 && "Unknown regclass");
1793 abort();
1794 }
1795
1796 return Opc;
1797}
1798
1799void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1800 MachineBasicBlock::iterator MI,
1801 unsigned DestReg, int FrameIdx,
1802 const TargetRegisterClass *RC) const{
1803 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1804 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1805}
1806
1807void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001808 SmallVectorImpl<MachineOperand> &Addr,
1809 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001810 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1811 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1812 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1813 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1814 MIB = X86InstrAddOperand(MIB, Addr[i]);
1815 NewMIs.push_back(MIB);
1816}
1817
Owen Anderson6690c7f2008-01-04 23:57:37 +00001818bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1819 MachineBasicBlock::iterator MI,
1820 const std::vector<CalleeSavedInfo> &CSI) const {
1821 if (CSI.empty())
1822 return false;
1823
1824 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1825 unsigned SlotSize = is64Bit ? 8 : 4;
1826
1827 MachineFunction &MF = *MBB.getParent();
1828 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1829 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1830
1831 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1832 for (unsigned i = CSI.size(); i != 0; --i) {
1833 unsigned Reg = CSI[i-1].getReg();
1834 // Add the callee-saved register as live-in. It's killed at the spill.
1835 MBB.addLiveIn(Reg);
1836 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1837 }
1838 return true;
1839}
1840
1841bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1842 MachineBasicBlock::iterator MI,
1843 const std::vector<CalleeSavedInfo> &CSI) const {
1844 if (CSI.empty())
1845 return false;
1846
1847 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1848
1849 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1850 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1851 unsigned Reg = CSI[i].getReg();
1852 BuildMI(MBB, MI, get(Opc), Reg);
1853 }
1854 return true;
1855}
1856
Owen Anderson9a184ef2008-01-07 01:35:02 +00001857static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1858 SmallVector<MachineOperand,4> &MOs,
1859 MachineInstr *MI, const TargetInstrInfo &TII) {
1860 // Create the base instruction with the memory operand as the first part.
1861 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1862 MachineInstrBuilder MIB(NewMI);
1863 unsigned NumAddrOps = MOs.size();
1864 for (unsigned i = 0; i != NumAddrOps; ++i)
1865 MIB = X86InstrAddOperand(MIB, MOs[i]);
1866 if (NumAddrOps < 4) // FrameIndex only
1867 MIB.addImm(1).addReg(0).addImm(0);
1868
1869 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001870 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001871 for (unsigned i = 0; i != NumOps; ++i) {
1872 MachineOperand &MO = MI->getOperand(i+2);
1873 MIB = X86InstrAddOperand(MIB, MO);
1874 }
1875 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1876 MachineOperand &MO = MI->getOperand(i);
1877 MIB = X86InstrAddOperand(MIB, MO);
1878 }
1879 return MIB;
1880}
1881
1882static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1883 SmallVector<MachineOperand,4> &MOs,
1884 MachineInstr *MI, const TargetInstrInfo &TII) {
1885 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1886 MachineInstrBuilder MIB(NewMI);
1887
1888 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1889 MachineOperand &MO = MI->getOperand(i);
1890 if (i == OpNo) {
1891 assert(MO.isRegister() && "Expected to fold into reg operand!");
1892 unsigned NumAddrOps = MOs.size();
1893 for (unsigned i = 0; i != NumAddrOps; ++i)
1894 MIB = X86InstrAddOperand(MIB, MOs[i]);
1895 if (NumAddrOps < 4) // FrameIndex only
1896 MIB.addImm(1).addReg(0).addImm(0);
1897 } else {
1898 MIB = X86InstrAddOperand(MIB, MO);
1899 }
1900 }
1901 return MIB;
1902}
1903
1904static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1905 SmallVector<MachineOperand,4> &MOs,
1906 MachineInstr *MI) {
1907 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1908
1909 unsigned NumAddrOps = MOs.size();
1910 for (unsigned i = 0; i != NumAddrOps; ++i)
1911 MIB = X86InstrAddOperand(MIB, MOs[i]);
1912 if (NumAddrOps < 4) // FrameIndex only
1913 MIB.addImm(1).addReg(0).addImm(0);
1914 return MIB.addImm(0);
1915}
1916
1917MachineInstr*
1918X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001919 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001920 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1921 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001922 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001923 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001924 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001925
1926 MachineInstr *NewMI = NULL;
1927 // Folding a memory location into the two-address part of a two-address
1928 // instruction is different than folding it other places. It requires
1929 // replacing the *two* registers with the memory location.
1930 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1931 MI->getOperand(0).isRegister() &&
1932 MI->getOperand(1).isRegister() &&
1933 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1934 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1935 isTwoAddrFold = true;
1936 } else if (i == 0) { // If operand 0
1937 if (MI->getOpcode() == X86::MOV16r0)
1938 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1939 else if (MI->getOpcode() == X86::MOV32r0)
1940 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1941 else if (MI->getOpcode() == X86::MOV64r0)
1942 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1943 else if (MI->getOpcode() == X86::MOV8r0)
1944 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00001945 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00001946 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001947
1948 OpcodeTablePtr = &RegOp2MemOpTable0;
1949 } else if (i == 1) {
1950 OpcodeTablePtr = &RegOp2MemOpTable1;
1951 } else if (i == 2) {
1952 OpcodeTablePtr = &RegOp2MemOpTable2;
1953 }
1954
1955 // If table selected...
1956 if (OpcodeTablePtr) {
1957 // Find the Opcode to fuse
1958 DenseMap<unsigned*, unsigned>::iterator I =
1959 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1960 if (I != OpcodeTablePtr->end()) {
1961 if (isTwoAddrFold)
1962 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1963 else
1964 NewMI = FuseInst(I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001965 return NewMI;
1966 }
1967 }
1968
1969 // No fusion
1970 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001971 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001972 return NULL;
1973}
1974
1975
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001976MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1977 MachineInstr *MI,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001978 SmallVectorImpl<unsigned> &Ops,
1979 int FrameIndex) const {
1980 // Check switch flag
1981 if (NoFusing) return NULL;
1982
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001983 const MachineFrameInfo *MFI = MF.getFrameInfo();
1984 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1985 // FIXME: Move alignment requirement into tables?
1986 if (Alignment < 16) {
1987 switch (MI->getOpcode()) {
1988 default: break;
1989 // Not always safe to fold movsd into these instructions since their load
1990 // folding variants expects the address to be 16 byte aligned.
1991 case X86::FsANDNPDrr:
1992 case X86::FsANDNPSrr:
1993 case X86::FsANDPDrr:
1994 case X86::FsANDPSrr:
1995 case X86::FsORPDrr:
1996 case X86::FsORPSrr:
1997 case X86::FsXORPDrr:
1998 case X86::FsXORPSrr:
1999 return NULL;
2000 }
2001 }
2002
Owen Anderson9a184ef2008-01-07 01:35:02 +00002003 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2004 unsigned NewOpc = 0;
2005 switch (MI->getOpcode()) {
2006 default: return NULL;
2007 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2008 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2009 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2010 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2011 }
2012 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002013 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002014 MI->getOperand(1).ChangeToImmediate(0);
2015 } else if (Ops.size() != 1)
2016 return NULL;
2017
2018 SmallVector<MachineOperand,4> MOs;
2019 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2020 return foldMemoryOperand(MI, Ops[0], MOs);
2021}
2022
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002023MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2024 MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002025 SmallVectorImpl<unsigned> &Ops,
2026 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002027 // Check switch flag
2028 if (NoFusing) return NULL;
2029
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002030 unsigned Alignment = 0;
2031 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
Dan Gohman1fad9e62008-04-07 19:35:22 +00002032 const MachineMemOperand &MRO = LoadMI->getMemOperand(i);
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002033 unsigned Align = MRO.getAlignment();
2034 if (Align > Alignment)
2035 Alignment = Align;
2036 }
2037
2038 // FIXME: Move alignment requirement into tables?
2039 if (Alignment < 16) {
2040 switch (MI->getOpcode()) {
2041 default: break;
2042 // Not always safe to fold movsd into these instructions since their load
2043 // folding variants expects the address to be 16 byte aligned.
2044 case X86::FsANDNPDrr:
2045 case X86::FsANDNPSrr:
2046 case X86::FsANDPDrr:
2047 case X86::FsANDPSrr:
2048 case X86::FsORPDrr:
2049 case X86::FsORPSrr:
2050 case X86::FsXORPDrr:
2051 case X86::FsXORPSrr:
2052 return NULL;
2053 }
2054 }
2055
Owen Anderson9a184ef2008-01-07 01:35:02 +00002056 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2057 unsigned NewOpc = 0;
2058 switch (MI->getOpcode()) {
2059 default: return NULL;
2060 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2061 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2062 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2063 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2064 }
2065 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002066 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002067 MI->getOperand(1).ChangeToImmediate(0);
2068 } else if (Ops.size() != 1)
2069 return NULL;
2070
2071 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00002072 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002073 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2074 MOs.push_back(LoadMI->getOperand(i));
2075 return foldMemoryOperand(MI, Ops[0], MOs);
2076}
2077
2078
2079bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002080 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002081 // Check switch flag
2082 if (NoFusing) return 0;
2083
2084 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2085 switch (MI->getOpcode()) {
2086 default: return false;
2087 case X86::TEST8rr:
2088 case X86::TEST16rr:
2089 case X86::TEST32rr:
2090 case X86::TEST64rr:
2091 return true;
2092 }
2093 }
2094
2095 if (Ops.size() != 1)
2096 return false;
2097
2098 unsigned OpNum = Ops[0];
2099 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002100 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002101 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002102 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002103
2104 // Folding a memory location into the two-address part of a two-address
2105 // instruction is different than folding it other places. It requires
2106 // replacing the *two* registers with the memory location.
2107 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2108 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2109 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2110 } else if (OpNum == 0) { // If operand 0
2111 switch (Opc) {
2112 case X86::MOV16r0:
2113 case X86::MOV32r0:
2114 case X86::MOV64r0:
2115 case X86::MOV8r0:
2116 return true;
2117 default: break;
2118 }
2119 OpcodeTablePtr = &RegOp2MemOpTable0;
2120 } else if (OpNum == 1) {
2121 OpcodeTablePtr = &RegOp2MemOpTable1;
2122 } else if (OpNum == 2) {
2123 OpcodeTablePtr = &RegOp2MemOpTable2;
2124 }
2125
2126 if (OpcodeTablePtr) {
2127 // Find the Opcode to fuse
2128 DenseMap<unsigned*, unsigned>::iterator I =
2129 OpcodeTablePtr->find((unsigned*)Opc);
2130 if (I != OpcodeTablePtr->end())
2131 return true;
2132 }
2133 return false;
2134}
2135
2136bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2137 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2138 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2139 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2140 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2141 if (I == MemOp2RegOpTable.end())
2142 return false;
2143 unsigned Opc = I->second.first;
2144 unsigned Index = I->second.second & 0xf;
2145 bool FoldedLoad = I->second.second & (1 << 4);
2146 bool FoldedStore = I->second.second & (1 << 5);
2147 if (UnfoldLoad && !FoldedLoad)
2148 return false;
2149 UnfoldLoad &= FoldedLoad;
2150 if (UnfoldStore && !FoldedStore)
2151 return false;
2152 UnfoldStore &= FoldedStore;
2153
Chris Lattner5b930372008-01-07 07:27:27 +00002154 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002155 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002156 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002157 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2158 SmallVector<MachineOperand,4> AddrOps;
2159 SmallVector<MachineOperand,2> BeforeOps;
2160 SmallVector<MachineOperand,2> AfterOps;
2161 SmallVector<MachineOperand,4> ImpOps;
2162 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2163 MachineOperand &Op = MI->getOperand(i);
2164 if (i >= Index && i < Index+4)
2165 AddrOps.push_back(Op);
2166 else if (Op.isRegister() && Op.isImplicit())
2167 ImpOps.push_back(Op);
2168 else if (i < Index)
2169 BeforeOps.push_back(Op);
2170 else if (i > Index)
2171 AfterOps.push_back(Op);
2172 }
2173
2174 // Emit the load instruction.
2175 if (UnfoldLoad) {
2176 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2177 if (UnfoldStore) {
2178 // Address operands cannot be marked isKill.
2179 for (unsigned i = 1; i != 5; ++i) {
2180 MachineOperand &MO = NewMIs[0]->getOperand(i);
2181 if (MO.isRegister())
2182 MO.setIsKill(false);
2183 }
2184 }
2185 }
2186
2187 // Emit the data processing instruction.
2188 MachineInstr *DataMI = new MachineInstr(TID, true);
2189 MachineInstrBuilder MIB(DataMI);
2190
2191 if (FoldedStore)
2192 MIB.addReg(Reg, true);
2193 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2194 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2195 if (FoldedLoad)
2196 MIB.addReg(Reg);
2197 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2198 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2199 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2200 MachineOperand &MO = ImpOps[i];
2201 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2202 }
2203 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2204 unsigned NewOpc = 0;
2205 switch (DataMI->getOpcode()) {
2206 default: break;
2207 case X86::CMP64ri32:
2208 case X86::CMP32ri:
2209 case X86::CMP16ri:
2210 case X86::CMP8ri: {
2211 MachineOperand &MO0 = DataMI->getOperand(0);
2212 MachineOperand &MO1 = DataMI->getOperand(1);
2213 if (MO1.getImm() == 0) {
2214 switch (DataMI->getOpcode()) {
2215 default: break;
2216 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2217 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2218 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2219 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2220 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002221 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002222 MO1.ChangeToRegister(MO0.getReg(), false);
2223 }
2224 }
2225 }
2226 NewMIs.push_back(DataMI);
2227
2228 // Emit the store instruction.
2229 if (UnfoldStore) {
2230 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002231 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002232 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2233 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2234 }
2235
2236 return true;
2237}
2238
2239bool
2240X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2241 SmallVectorImpl<SDNode*> &NewNodes) const {
2242 if (!N->isTargetOpcode())
2243 return false;
2244
2245 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2246 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2247 if (I == MemOp2RegOpTable.end())
2248 return false;
2249 unsigned Opc = I->second.first;
2250 unsigned Index = I->second.second & 0xf;
2251 bool FoldedLoad = I->second.second & (1 << 4);
2252 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002253 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002254 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002255 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002256 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2257 std::vector<SDOperand> AddrOps;
2258 std::vector<SDOperand> BeforeOps;
2259 std::vector<SDOperand> AfterOps;
2260 unsigned NumOps = N->getNumOperands();
2261 for (unsigned i = 0; i != NumOps-1; ++i) {
2262 SDOperand Op = N->getOperand(i);
2263 if (i >= Index && i < Index+4)
2264 AddrOps.push_back(Op);
2265 else if (i < Index)
2266 BeforeOps.push_back(Op);
2267 else if (i > Index)
2268 AfterOps.push_back(Op);
2269 }
2270 SDOperand Chain = N->getOperand(NumOps-1);
2271 AddrOps.push_back(Chain);
2272
2273 // Emit the load instruction.
2274 SDNode *Load = 0;
2275 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002276 MVT VT = *RC->vt_begin();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002277 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2278 MVT::Other, &AddrOps[0], AddrOps.size());
2279 NewNodes.push_back(Load);
2280 }
2281
2282 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002283 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002284 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002285 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002286 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002287 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002288 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2289 VTs.push_back(*DstRC->vt_begin());
2290 }
2291 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002292 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002293 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002294 VTs.push_back(VT);
2295 }
2296 if (Load)
2297 BeforeOps.push_back(SDOperand(Load, 0));
2298 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2299 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2300 NewNodes.push_back(NewNode);
2301
2302 // Emit the store instruction.
2303 if (FoldedStore) {
2304 AddrOps.pop_back();
2305 AddrOps.push_back(SDOperand(NewNode, 0));
2306 AddrOps.push_back(Chain);
2307 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2308 MVT::Other, &AddrOps[0], AddrOps.size());
2309 NewNodes.push_back(Store);
2310 }
2311
2312 return true;
2313}
2314
2315unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2316 bool UnfoldLoad, bool UnfoldStore) const {
2317 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2318 MemOp2RegOpTable.find((unsigned*)Opc);
2319 if (I == MemOp2RegOpTable.end())
2320 return 0;
2321 bool FoldedLoad = I->second.second & (1 << 4);
2322 bool FoldedStore = I->second.second & (1 << 5);
2323 if (UnfoldLoad && !FoldedLoad)
2324 return 0;
2325 if (UnfoldStore && !FoldedStore)
2326 return 0;
2327 return I->second.first;
2328}
2329
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002330bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2331 if (MBB.empty()) return false;
2332
2333 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002334 case X86::TCRETURNri:
2335 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002336 case X86::RET: // Return.
2337 case X86::RETI:
2338 case X86::TAILJMPd:
2339 case X86::TAILJMPr:
2340 case X86::TAILJMPm:
2341 case X86::JMP: // Uncond branch.
2342 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002343 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002344 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002345 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002346 return true;
2347 default: return false;
2348 }
2349}
2350
2351bool X86InstrInfo::
2352ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
2353 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2354 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2355 return false;
2356}
2357
2358const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2359 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2360 if (Subtarget->is64Bit())
2361 return &X86::GR64RegClass;
2362 else
2363 return &X86::GR32RegClass;
2364}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002365
2366unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2367 switch (Desc->TSFlags & X86II::ImmMask) {
2368 case X86II::Imm8: return 1;
2369 case X86II::Imm16: return 2;
2370 case X86II::Imm32: return 4;
2371 case X86II::Imm64: return 8;
2372 default: assert(0 && "Immediate size not set!");
2373 return 0;
2374 }
2375}
2376
2377/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2378/// e.g. r8, xmm8, etc.
2379bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2380 if (!MO.isRegister()) return false;
2381 switch (MO.getReg()) {
2382 default: break;
2383 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2384 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2385 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2386 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2387 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2388 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2389 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2390 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2391 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2392 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2393 return true;
2394 }
2395 return false;
2396}
2397
2398
2399/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2400/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2401/// size, and 3) use of X86-64 extended registers.
2402unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2403 unsigned REX = 0;
2404 const TargetInstrDesc &Desc = MI.getDesc();
2405
2406 // Pseudo instructions do not need REX prefix byte.
2407 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2408 return 0;
2409 if (Desc.TSFlags & X86II::REX_W)
2410 REX |= 1 << 3;
2411
2412 unsigned NumOps = Desc.getNumOperands();
2413 if (NumOps) {
2414 bool isTwoAddr = NumOps > 1 &&
2415 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2416
2417 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2418 unsigned i = isTwoAddr ? 1 : 0;
2419 for (unsigned e = NumOps; i != e; ++i) {
2420 const MachineOperand& MO = MI.getOperand(i);
2421 if (MO.isRegister()) {
2422 unsigned Reg = MO.getReg();
2423 if (isX86_64NonExtLowByteReg(Reg))
2424 REX |= 0x40;
2425 }
2426 }
2427
2428 switch (Desc.TSFlags & X86II::FormMask) {
2429 case X86II::MRMInitReg:
2430 if (isX86_64ExtendedReg(MI.getOperand(0)))
2431 REX |= (1 << 0) | (1 << 2);
2432 break;
2433 case X86II::MRMSrcReg: {
2434 if (isX86_64ExtendedReg(MI.getOperand(0)))
2435 REX |= 1 << 2;
2436 i = isTwoAddr ? 2 : 1;
2437 for (unsigned e = NumOps; i != e; ++i) {
2438 const MachineOperand& MO = MI.getOperand(i);
2439 if (isX86_64ExtendedReg(MO))
2440 REX |= 1 << 0;
2441 }
2442 break;
2443 }
2444 case X86II::MRMSrcMem: {
2445 if (isX86_64ExtendedReg(MI.getOperand(0)))
2446 REX |= 1 << 2;
2447 unsigned Bit = 0;
2448 i = isTwoAddr ? 2 : 1;
2449 for (; i != NumOps; ++i) {
2450 const MachineOperand& MO = MI.getOperand(i);
2451 if (MO.isRegister()) {
2452 if (isX86_64ExtendedReg(MO))
2453 REX |= 1 << Bit;
2454 Bit++;
2455 }
2456 }
2457 break;
2458 }
2459 case X86II::MRM0m: case X86II::MRM1m:
2460 case X86II::MRM2m: case X86II::MRM3m:
2461 case X86II::MRM4m: case X86II::MRM5m:
2462 case X86II::MRM6m: case X86II::MRM7m:
2463 case X86II::MRMDestMem: {
2464 unsigned e = isTwoAddr ? 5 : 4;
2465 i = isTwoAddr ? 1 : 0;
2466 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2467 REX |= 1 << 2;
2468 unsigned Bit = 0;
2469 for (; i != e; ++i) {
2470 const MachineOperand& MO = MI.getOperand(i);
2471 if (MO.isRegister()) {
2472 if (isX86_64ExtendedReg(MO))
2473 REX |= 1 << Bit;
2474 Bit++;
2475 }
2476 }
2477 break;
2478 }
2479 default: {
2480 if (isX86_64ExtendedReg(MI.getOperand(0)))
2481 REX |= 1 << 0;
2482 i = isTwoAddr ? 2 : 1;
2483 for (unsigned e = NumOps; i != e; ++i) {
2484 const MachineOperand& MO = MI.getOperand(i);
2485 if (isX86_64ExtendedReg(MO))
2486 REX |= 1 << 2;
2487 }
2488 break;
2489 }
2490 }
2491 }
2492 return REX;
2493}
2494
2495/// sizePCRelativeBlockAddress - This method returns the size of a PC
2496/// relative block address instruction
2497///
2498static unsigned sizePCRelativeBlockAddress() {
2499 return 4;
2500}
2501
2502/// sizeGlobalAddress - Give the size of the emission of this global address
2503///
2504static unsigned sizeGlobalAddress(bool dword) {
2505 return dword ? 8 : 4;
2506}
2507
2508/// sizeConstPoolAddress - Give the size of the emission of this constant
2509/// pool address
2510///
2511static unsigned sizeConstPoolAddress(bool dword) {
2512 return dword ? 8 : 4;
2513}
2514
2515/// sizeExternalSymbolAddress - Give the size of the emission of this external
2516/// symbol
2517///
2518static unsigned sizeExternalSymbolAddress(bool dword) {
2519 return dword ? 8 : 4;
2520}
2521
2522/// sizeJumpTableAddress - Give the size of the emission of this jump
2523/// table address
2524///
2525static unsigned sizeJumpTableAddress(bool dword) {
2526 return dword ? 8 : 4;
2527}
2528
2529static unsigned sizeConstant(unsigned Size) {
2530 return Size;
2531}
2532
2533static unsigned sizeRegModRMByte(){
2534 return 1;
2535}
2536
2537static unsigned sizeSIBByte(){
2538 return 1;
2539}
2540
2541static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2542 unsigned FinalSize = 0;
2543 // If this is a simple integer displacement that doesn't require a relocation.
2544 if (!RelocOp) {
2545 FinalSize += sizeConstant(4);
2546 return FinalSize;
2547 }
2548
2549 // Otherwise, this is something that requires a relocation.
2550 if (RelocOp->isGlobalAddress()) {
2551 FinalSize += sizeGlobalAddress(false);
2552 } else if (RelocOp->isConstantPoolIndex()) {
2553 FinalSize += sizeConstPoolAddress(false);
2554 } else if (RelocOp->isJumpTableIndex()) {
2555 FinalSize += sizeJumpTableAddress(false);
2556 } else {
2557 assert(0 && "Unknown value to relocate!");
2558 }
2559 return FinalSize;
2560}
2561
2562static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2563 bool IsPIC, bool Is64BitMode) {
2564 const MachineOperand &Op3 = MI.getOperand(Op+3);
2565 int DispVal = 0;
2566 const MachineOperand *DispForReloc = 0;
2567 unsigned FinalSize = 0;
2568
2569 // Figure out what sort of displacement we have to handle here.
2570 if (Op3.isGlobalAddress()) {
2571 DispForReloc = &Op3;
2572 } else if (Op3.isConstantPoolIndex()) {
2573 if (Is64BitMode || IsPIC) {
2574 DispForReloc = &Op3;
2575 } else {
2576 DispVal = 1;
2577 }
2578 } else if (Op3.isJumpTableIndex()) {
2579 if (Is64BitMode || IsPIC) {
2580 DispForReloc = &Op3;
2581 } else {
2582 DispVal = 1;
2583 }
2584 } else {
2585 DispVal = 1;
2586 }
2587
2588 const MachineOperand &Base = MI.getOperand(Op);
2589 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2590
2591 unsigned BaseReg = Base.getReg();
2592
2593 // Is a SIB byte needed?
2594 if (IndexReg.getReg() == 0 &&
2595 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2596 if (BaseReg == 0) { // Just a displacement?
2597 // Emit special case [disp32] encoding
2598 ++FinalSize;
2599 FinalSize += getDisplacementFieldSize(DispForReloc);
2600 } else {
2601 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2602 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2603 // Emit simple indirect register encoding... [EAX] f.e.
2604 ++FinalSize;
2605 // Be pessimistic and assume it's a disp32, not a disp8
2606 } else {
2607 // Emit the most general non-SIB encoding: [REG+disp32]
2608 ++FinalSize;
2609 FinalSize += getDisplacementFieldSize(DispForReloc);
2610 }
2611 }
2612
2613 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2614 assert(IndexReg.getReg() != X86::ESP &&
2615 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2616
2617 bool ForceDisp32 = false;
2618 if (BaseReg == 0 || DispForReloc) {
2619 // Emit the normal disp32 encoding.
2620 ++FinalSize;
2621 ForceDisp32 = true;
2622 } else {
2623 ++FinalSize;
2624 }
2625
2626 FinalSize += sizeSIBByte();
2627
2628 // Do we need to output a displacement?
2629 if (DispVal != 0 || ForceDisp32) {
2630 FinalSize += getDisplacementFieldSize(DispForReloc);
2631 }
2632 }
2633 return FinalSize;
2634}
2635
2636
2637static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2638 const TargetInstrDesc *Desc,
2639 bool IsPIC, bool Is64BitMode) {
2640
2641 unsigned Opcode = Desc->Opcode;
2642 unsigned FinalSize = 0;
2643
2644 // Emit the lock opcode prefix as needed.
2645 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2646
2647 // Emit the repeat opcode prefix as needed.
2648 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2649
2650 // Emit the operand size opcode prefix as needed.
2651 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2652
2653 // Emit the address size opcode prefix as needed.
2654 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2655
2656 bool Need0FPrefix = false;
2657 switch (Desc->TSFlags & X86II::Op0Mask) {
2658 case X86II::TB: // Two-byte opcode prefix
2659 case X86II::T8: // 0F 38
2660 case X86II::TA: // 0F 3A
2661 Need0FPrefix = true;
2662 break;
2663 case X86II::REP: break; // already handled.
2664 case X86II::XS: // F3 0F
2665 ++FinalSize;
2666 Need0FPrefix = true;
2667 break;
2668 case X86II::XD: // F2 0F
2669 ++FinalSize;
2670 Need0FPrefix = true;
2671 break;
2672 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2673 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2674 ++FinalSize;
2675 break; // Two-byte opcode prefix
2676 default: assert(0 && "Invalid prefix!");
2677 case 0: break; // No prefix!
2678 }
2679
2680 if (Is64BitMode) {
2681 // REX prefix
2682 unsigned REX = X86InstrInfo::determineREX(MI);
2683 if (REX)
2684 ++FinalSize;
2685 }
2686
2687 // 0x0F escape code must be emitted just before the opcode.
2688 if (Need0FPrefix)
2689 ++FinalSize;
2690
2691 switch (Desc->TSFlags & X86II::Op0Mask) {
2692 case X86II::T8: // 0F 38
2693 ++FinalSize;
2694 break;
2695 case X86II::TA: // 0F 3A
2696 ++FinalSize;
2697 break;
2698 }
2699
2700 // If this is a two-address instruction, skip one of the register operands.
2701 unsigned NumOps = Desc->getNumOperands();
2702 unsigned CurOp = 0;
2703 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2704 CurOp++;
2705
2706 switch (Desc->TSFlags & X86II::FormMask) {
2707 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2708 case X86II::Pseudo:
2709 // Remember the current PC offset, this is the PIC relocation
2710 // base address.
2711 switch (Opcode) {
2712 default:
2713 break;
2714 case TargetInstrInfo::INLINEASM: {
2715 const MachineFunction *MF = MI.getParent()->getParent();
2716 const char *AsmStr = MI.getOperand(0).getSymbolName();
2717 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2718 FinalSize += AI->getInlineAsmLength(AsmStr);
2719 break;
2720 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002721 case TargetInstrInfo::DBG_LABEL:
2722 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002723 break;
2724 case TargetInstrInfo::IMPLICIT_DEF:
2725 case TargetInstrInfo::DECLARE:
2726 case X86::DWARF_LOC:
2727 case X86::FP_REG_KILL:
2728 break;
2729 case X86::MOVPC32r: {
2730 // This emits the "call" portion of this pseudo instruction.
2731 ++FinalSize;
2732 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2733 break;
2734 }
2735 }
2736 CurOp = NumOps;
2737 break;
2738 case X86II::RawFrm:
2739 ++FinalSize;
2740
2741 if (CurOp != NumOps) {
2742 const MachineOperand &MO = MI.getOperand(CurOp++);
2743 if (MO.isMachineBasicBlock()) {
2744 FinalSize += sizePCRelativeBlockAddress();
2745 } else if (MO.isGlobalAddress()) {
2746 FinalSize += sizeGlobalAddress(false);
2747 } else if (MO.isExternalSymbol()) {
2748 FinalSize += sizeExternalSymbolAddress(false);
2749 } else if (MO.isImmediate()) {
2750 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2751 } else {
2752 assert(0 && "Unknown RawFrm operand!");
2753 }
2754 }
2755 break;
2756
2757 case X86II::AddRegFrm:
2758 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002759 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002760
2761 if (CurOp != NumOps) {
2762 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2763 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2764 if (MO1.isImmediate())
2765 FinalSize += sizeConstant(Size);
2766 else {
2767 bool dword = false;
2768 if (Opcode == X86::MOV64ri)
2769 dword = true;
2770 if (MO1.isGlobalAddress()) {
2771 FinalSize += sizeGlobalAddress(dword);
2772 } else if (MO1.isExternalSymbol())
2773 FinalSize += sizeExternalSymbolAddress(dword);
2774 else if (MO1.isConstantPoolIndex())
2775 FinalSize += sizeConstPoolAddress(dword);
2776 else if (MO1.isJumpTableIndex())
2777 FinalSize += sizeJumpTableAddress(dword);
2778 }
2779 }
2780 break;
2781
2782 case X86II::MRMDestReg: {
2783 ++FinalSize;
2784 FinalSize += sizeRegModRMByte();
2785 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002786 if (CurOp != NumOps) {
2787 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002788 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002789 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002790 break;
2791 }
2792 case X86II::MRMDestMem: {
2793 ++FinalSize;
2794 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2795 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002796 if (CurOp != NumOps) {
2797 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002798 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002799 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002800 break;
2801 }
2802
2803 case X86II::MRMSrcReg:
2804 ++FinalSize;
2805 FinalSize += sizeRegModRMByte();
2806 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002807 if (CurOp != NumOps) {
2808 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002809 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002810 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002811 break;
2812
2813 case X86II::MRMSrcMem: {
2814
2815 ++FinalSize;
2816 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2817 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002818 if (CurOp != NumOps) {
2819 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002820 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002821 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002822 break;
2823 }
2824
2825 case X86II::MRM0r: case X86II::MRM1r:
2826 case X86II::MRM2r: case X86II::MRM3r:
2827 case X86II::MRM4r: case X86II::MRM5r:
2828 case X86II::MRM6r: case X86II::MRM7r:
2829 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002830 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002831 FinalSize += sizeRegModRMByte();
2832
2833 if (CurOp != NumOps) {
2834 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2835 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2836 if (MO1.isImmediate())
2837 FinalSize += sizeConstant(Size);
2838 else {
2839 bool dword = false;
2840 if (Opcode == X86::MOV64ri32)
2841 dword = true;
2842 if (MO1.isGlobalAddress()) {
2843 FinalSize += sizeGlobalAddress(dword);
2844 } else if (MO1.isExternalSymbol())
2845 FinalSize += sizeExternalSymbolAddress(dword);
2846 else if (MO1.isConstantPoolIndex())
2847 FinalSize += sizeConstPoolAddress(dword);
2848 else if (MO1.isJumpTableIndex())
2849 FinalSize += sizeJumpTableAddress(dword);
2850 }
2851 }
2852 break;
2853
2854 case X86II::MRM0m: case X86II::MRM1m:
2855 case X86II::MRM2m: case X86II::MRM3m:
2856 case X86II::MRM4m: case X86II::MRM5m:
2857 case X86II::MRM6m: case X86II::MRM7m: {
2858
2859 ++FinalSize;
2860 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2861 CurOp += 4;
2862
2863 if (CurOp != NumOps) {
2864 const MachineOperand &MO = MI.getOperand(CurOp++);
2865 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2866 if (MO.isImmediate())
2867 FinalSize += sizeConstant(Size);
2868 else {
2869 bool dword = false;
2870 if (Opcode == X86::MOV64mi32)
2871 dword = true;
2872 if (MO.isGlobalAddress()) {
2873 FinalSize += sizeGlobalAddress(dword);
2874 } else if (MO.isExternalSymbol())
2875 FinalSize += sizeExternalSymbolAddress(dword);
2876 else if (MO.isConstantPoolIndex())
2877 FinalSize += sizeConstPoolAddress(dword);
2878 else if (MO.isJumpTableIndex())
2879 FinalSize += sizeJumpTableAddress(dword);
2880 }
2881 }
2882 break;
2883 }
2884
2885 case X86II::MRMInitReg:
2886 ++FinalSize;
2887 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2888 FinalSize += sizeRegModRMByte();
2889 ++CurOp;
2890 break;
2891 }
2892
2893 if (!Desc->isVariadic() && CurOp != NumOps) {
2894 cerr << "Cannot determine size: ";
2895 MI.dump();
2896 cerr << '\n';
2897 abort();
2898 }
2899
2900
2901 return FinalSize;
2902}
2903
2904
2905unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2906 const TargetInstrDesc &Desc = MI->getDesc();
2907 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00002908 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002909 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2910 if (Desc.getOpcode() == X86::MOVPC32r) {
2911 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2912 }
2913 return Size;
2914}