blob: f296543814b00f33c8eb10a05ab0c94c8cf02917 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
183 Instruction *visitAnd(BinaryOperator &I);
184 Instruction *visitOr (BinaryOperator &I);
185 Instruction *visitXor(BinaryOperator &I);
186 Instruction *visitShl(BinaryOperator &I);
187 Instruction *visitAShr(BinaryOperator &I);
188 Instruction *visitLShr(BinaryOperator &I);
189 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000190 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
191 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192 Instruction *visitFCmpInst(FCmpInst &I);
193 Instruction *visitICmpInst(ICmpInst &I);
194 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
195 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
196 Instruction *LHS,
197 ConstantInt *RHS);
198 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
199 ConstantInt *DivRHS);
200
201 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
202 ICmpInst::Predicate Cond, Instruction &I);
203 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
204 BinaryOperator &I);
205 Instruction *commonCastTransforms(CastInst &CI);
206 Instruction *commonIntCastTransforms(CastInst &CI);
207 Instruction *commonPointerCastTransforms(CastInst &CI);
208 Instruction *visitTrunc(TruncInst &CI);
209 Instruction *visitZExt(ZExtInst &CI);
210 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000211 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000213 Instruction *visitFPToUI(FPToUIInst &FI);
214 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 Instruction *visitUIToFP(CastInst &CI);
216 Instruction *visitSIToFP(CastInst &CI);
217 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000218 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 Instruction *visitBitCast(BitCastInst &CI);
220 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
221 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000222 Instruction *visitSelectInst(SelectInst &SI);
223 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224 Instruction *visitCallInst(CallInst &CI);
225 Instruction *visitInvokeInst(InvokeInst &II);
226 Instruction *visitPHINode(PHINode &PN);
227 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
228 Instruction *visitAllocationInst(AllocationInst &AI);
229 Instruction *visitFreeInst(FreeInst &FI);
230 Instruction *visitLoadInst(LoadInst &LI);
231 Instruction *visitStoreInst(StoreInst &SI);
232 Instruction *visitBranchInst(BranchInst &BI);
233 Instruction *visitSwitchInst(SwitchInst &SI);
234 Instruction *visitInsertElementInst(InsertElementInst &IE);
235 Instruction *visitExtractElementInst(ExtractElementInst &EI);
236 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000237 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238
239 // visitInstruction - Specify what to return for unhandled instructions...
240 Instruction *visitInstruction(Instruction &I) { return 0; }
241
242 private:
243 Instruction *visitCallSite(CallSite CS);
244 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000245 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000246 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
247 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000248 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000249
250 public:
251 // InsertNewInstBefore - insert an instruction New before instruction Old
252 // in the program. Add the new instruction to the worklist.
253 //
254 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
255 assert(New && New->getParent() == 0 &&
256 "New instruction already inserted into a basic block!");
257 BasicBlock *BB = Old.getParent();
258 BB->getInstList().insert(&Old, New); // Insert inst
259 AddToWorkList(New);
260 return New;
261 }
262
263 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
264 /// This also adds the cast to the worklist. Finally, this returns the
265 /// cast.
266 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
267 Instruction &Pos) {
268 if (V->getType() == Ty) return V;
269
270 if (Constant *CV = dyn_cast<Constant>(V))
271 return ConstantExpr::getCast(opc, CV, Ty);
272
Gabor Greifa645dd32008-05-16 19:29:10 +0000273 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 AddToWorkList(C);
275 return C;
276 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000277
278 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
279 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
280 }
281
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282
283 // ReplaceInstUsesWith - This method is to be used when an instruction is
284 // found to be dead, replacable with another preexisting expression. Here
285 // we add all uses of I to the worklist, replace all uses of I with the new
286 // value, then return I, so that the inst combiner will know that I was
287 // modified.
288 //
289 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
290 AddUsersToWorkList(I); // Add all modified instrs to worklist
291 if (&I != V) {
292 I.replaceAllUsesWith(V);
293 return &I;
294 } else {
295 // If we are replacing the instruction with itself, this must be in a
296 // segment of unreachable code, so just clobber the instruction.
297 I.replaceAllUsesWith(UndefValue::get(I.getType()));
298 return &I;
299 }
300 }
301
302 // UpdateValueUsesWith - This method is to be used when an value is
303 // found to be replacable with another preexisting expression or was
304 // updated. Here we add all uses of I to the worklist, replace all uses of
305 // I with the new value (unless the instruction was just updated), then
306 // return true, so that the inst combiner will know that I was modified.
307 //
308 bool UpdateValueUsesWith(Value *Old, Value *New) {
309 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
310 if (Old != New)
311 Old->replaceAllUsesWith(New);
312 if (Instruction *I = dyn_cast<Instruction>(Old))
313 AddToWorkList(I);
314 if (Instruction *I = dyn_cast<Instruction>(New))
315 AddToWorkList(I);
316 return true;
317 }
318
319 // EraseInstFromFunction - When dealing with an instruction that has side
320 // effects or produces a void value, we can't rely on DCE to delete the
321 // instruction. Instead, visit methods should return the value returned by
322 // this function.
323 Instruction *EraseInstFromFunction(Instruction &I) {
324 assert(I.use_empty() && "Cannot erase instruction that is used!");
325 AddUsesToWorkList(I);
326 RemoveFromWorkList(&I);
327 I.eraseFromParent();
328 return 0; // Don't do anything with FI
329 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000330
331 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
332 APInt &KnownOne, unsigned Depth = 0) const {
333 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
334 }
335
336 bool MaskedValueIsZero(Value *V, const APInt &Mask,
337 unsigned Depth = 0) const {
338 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
339 }
340 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
341 return llvm::ComputeNumSignBits(Op, TD, Depth);
342 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 private:
345 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
346 /// InsertBefore instruction. This is specialized a bit to avoid inserting
347 /// casts that are known to not do anything...
348 ///
349 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
350 Value *V, const Type *DestTy,
351 Instruction *InsertBefore);
352
353 /// SimplifyCommutative - This performs a few simplifications for
354 /// commutative operators.
355 bool SimplifyCommutative(BinaryOperator &I);
356
357 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
358 /// most-complex to least-complex order.
359 bool SimplifyCompare(CmpInst &I);
360
361 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
362 /// on the demanded bits.
363 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
364 APInt& KnownZero, APInt& KnownOne,
365 unsigned Depth = 0);
366
367 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
368 uint64_t &UndefElts, unsigned Depth = 0);
369
370 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
371 // PHI node as operand #0, see if we can fold the instruction into the PHI
372 // (which is only possible if all operands to the PHI are constants).
373 Instruction *FoldOpIntoPhi(Instruction &I);
374
375 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
376 // operator and they all are only used by the PHI, PHI together their
377 // inputs, and do the operation once, to the result of the PHI.
378 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
379 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
380
381
382 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
383 ConstantInt *AndRHS, BinaryOperator &TheAnd);
384
385 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
386 bool isSub, Instruction &I);
387 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
388 bool isSigned, bool Inside, Instruction &IB);
389 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
390 Instruction *MatchBSwap(BinaryOperator &I);
391 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000392 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000393 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000394
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000395
396 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000397
Dan Gohman2d648bb2008-04-10 18:43:06 +0000398 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
399 unsigned CastOpc,
400 int &NumCastsRemoved);
401 unsigned GetOrEnforceKnownAlignment(Value *V,
402 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000403
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405}
406
Dan Gohman089efff2008-05-13 00:00:25 +0000407char InstCombiner::ID = 0;
408static RegisterPass<InstCombiner>
409X("instcombine", "Combine redundant instructions");
410
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411// getComplexity: Assign a complexity or rank value to LLVM Values...
412// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
413static unsigned getComplexity(Value *V) {
414 if (isa<Instruction>(V)) {
415 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
416 return 3;
417 return 4;
418 }
419 if (isa<Argument>(V)) return 3;
420 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
421}
422
423// isOnlyUse - Return true if this instruction will be deleted if we stop using
424// it.
425static bool isOnlyUse(Value *V) {
426 return V->hasOneUse() || isa<Constant>(V);
427}
428
429// getPromotedType - Return the specified type promoted as it would be to pass
430// though a va_arg area...
431static const Type *getPromotedType(const Type *Ty) {
432 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
433 if (ITy->getBitWidth() < 32)
434 return Type::Int32Ty;
435 }
436 return Ty;
437}
438
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000439/// getBitCastOperand - If the specified operand is a CastInst, a constant
440/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
441/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442static Value *getBitCastOperand(Value *V) {
443 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000444 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000446 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
447 // GetElementPtrInst?
448 if (GEP->hasAllZeroIndices())
449 return GEP->getOperand(0);
450 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000452 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000454 else if (CE->getOpcode() == Instruction::GetElementPtr) {
455 // GetElementPtr ConstantExp?
456 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
457 I != E; ++I) {
458 ConstantInt *CI = dyn_cast<ConstantInt>(I);
459 if (!CI || !CI->isZero())
460 // Any non-zero indices? Not cast-like.
461 return 0;
462 }
463 // All-zero indices? This is just like casting.
464 return CE->getOperand(0);
465 }
466 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467 return 0;
468}
469
470/// This function is a wrapper around CastInst::isEliminableCastPair. It
471/// simply extracts arguments and returns what that function returns.
472static Instruction::CastOps
473isEliminableCastPair(
474 const CastInst *CI, ///< The first cast instruction
475 unsigned opcode, ///< The opcode of the second cast instruction
476 const Type *DstTy, ///< The target type for the second cast instruction
477 TargetData *TD ///< The target data for pointer size
478) {
479
480 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
481 const Type *MidTy = CI->getType(); // B from above
482
483 // Get the opcodes of the two Cast instructions
484 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
485 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
486
487 return Instruction::CastOps(
488 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
489 DstTy, TD->getIntPtrType()));
490}
491
492/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
493/// in any code being generated. It does not require codegen if V is simple
494/// enough or if the cast can be folded into other casts.
495static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
496 const Type *Ty, TargetData *TD) {
497 if (V->getType() == Ty || isa<Constant>(V)) return false;
498
499 // If this is another cast that can be eliminated, it isn't codegen either.
500 if (const CastInst *CI = dyn_cast<CastInst>(V))
501 if (isEliminableCastPair(CI, opcode, Ty, TD))
502 return false;
503 return true;
504}
505
506/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
507/// InsertBefore instruction. This is specialized a bit to avoid inserting
508/// casts that are known to not do anything...
509///
510Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
511 Value *V, const Type *DestTy,
512 Instruction *InsertBefore) {
513 if (V->getType() == DestTy) return V;
514 if (Constant *C = dyn_cast<Constant>(V))
515 return ConstantExpr::getCast(opcode, C, DestTy);
516
517 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
518}
519
520// SimplifyCommutative - This performs a few simplifications for commutative
521// operators:
522//
523// 1. Order operands such that they are listed from right (least complex) to
524// left (most complex). This puts constants before unary operators before
525// binary operators.
526//
527// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
528// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
529//
530bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
531 bool Changed = false;
532 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
533 Changed = !I.swapOperands();
534
535 if (!I.isAssociative()) return Changed;
536 Instruction::BinaryOps Opcode = I.getOpcode();
537 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
538 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
539 if (isa<Constant>(I.getOperand(1))) {
540 Constant *Folded = ConstantExpr::get(I.getOpcode(),
541 cast<Constant>(I.getOperand(1)),
542 cast<Constant>(Op->getOperand(1)));
543 I.setOperand(0, Op->getOperand(0));
544 I.setOperand(1, Folded);
545 return true;
546 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
547 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
548 isOnlyUse(Op) && isOnlyUse(Op1)) {
549 Constant *C1 = cast<Constant>(Op->getOperand(1));
550 Constant *C2 = cast<Constant>(Op1->getOperand(1));
551
552 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
553 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000554 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000555 Op1->getOperand(0),
556 Op1->getName(), &I);
557 AddToWorkList(New);
558 I.setOperand(0, New);
559 I.setOperand(1, Folded);
560 return true;
561 }
562 }
563 return Changed;
564}
565
566/// SimplifyCompare - For a CmpInst this function just orders the operands
567/// so that theyare listed from right (least complex) to left (most complex).
568/// This puts constants before unary operators before binary operators.
569bool InstCombiner::SimplifyCompare(CmpInst &I) {
570 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
571 return false;
572 I.swapOperands();
573 // Compare instructions are not associative so there's nothing else we can do.
574 return true;
575}
576
577// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
578// if the LHS is a constant zero (which is the 'negate' form).
579//
580static inline Value *dyn_castNegVal(Value *V) {
581 if (BinaryOperator::isNeg(V))
582 return BinaryOperator::getNegArgument(V);
583
584 // Constants can be considered to be negated values if they can be folded.
585 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
586 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000587
588 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
589 if (C->getType()->getElementType()->isInteger())
590 return ConstantExpr::getNeg(C);
591
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000592 return 0;
593}
594
595static inline Value *dyn_castNotVal(Value *V) {
596 if (BinaryOperator::isNot(V))
597 return BinaryOperator::getNotArgument(V);
598
599 // Constants can be considered to be not'ed values...
600 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
601 return ConstantInt::get(~C->getValue());
602 return 0;
603}
604
605// dyn_castFoldableMul - If this value is a multiply that can be folded into
606// other computations (because it has a constant operand), return the
607// non-constant operand of the multiply, and set CST to point to the multiplier.
608// Otherwise, return null.
609//
610static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
611 if (V->hasOneUse() && V->getType()->isInteger())
612 if (Instruction *I = dyn_cast<Instruction>(V)) {
613 if (I->getOpcode() == Instruction::Mul)
614 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
615 return I->getOperand(0);
616 if (I->getOpcode() == Instruction::Shl)
617 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
618 // The multiplier is really 1 << CST.
619 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
620 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
621 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
622 return I->getOperand(0);
623 }
624 }
625 return 0;
626}
627
628/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
629/// expression, return it.
630static User *dyn_castGetElementPtr(Value *V) {
631 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
633 if (CE->getOpcode() == Instruction::GetElementPtr)
634 return cast<User>(V);
635 return false;
636}
637
Dan Gohman2d648bb2008-04-10 18:43:06 +0000638/// getOpcode - If this is an Instruction or a ConstantExpr, return the
639/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000640static unsigned getOpcode(const Value *V) {
641 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000642 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000643 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000644 return CE->getOpcode();
645 // Use UserOp1 to mean there's no opcode.
646 return Instruction::UserOp1;
647}
648
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649/// AddOne - Add one to a ConstantInt
650static ConstantInt *AddOne(ConstantInt *C) {
651 APInt Val(C->getValue());
652 return ConstantInt::get(++Val);
653}
654/// SubOne - Subtract one from a ConstantInt
655static ConstantInt *SubOne(ConstantInt *C) {
656 APInt Val(C->getValue());
657 return ConstantInt::get(--Val);
658}
659/// Add - Add two ConstantInts together
660static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
661 return ConstantInt::get(C1->getValue() + C2->getValue());
662}
663/// And - Bitwise AND two ConstantInts together
664static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
665 return ConstantInt::get(C1->getValue() & C2->getValue());
666}
667/// Subtract - Subtract one ConstantInt from another
668static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
669 return ConstantInt::get(C1->getValue() - C2->getValue());
670}
671/// Multiply - Multiply two ConstantInts together
672static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
673 return ConstantInt::get(C1->getValue() * C2->getValue());
674}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000675/// MultiplyOverflows - True if the multiply can not be expressed in an int
676/// this size.
677static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
678 uint32_t W = C1->getBitWidth();
679 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
680 if (sign) {
681 LHSExt.sext(W * 2);
682 RHSExt.sext(W * 2);
683 } else {
684 LHSExt.zext(W * 2);
685 RHSExt.zext(W * 2);
686 }
687
688 APInt MulExt = LHSExt * RHSExt;
689
690 if (sign) {
691 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
692 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
693 return MulExt.slt(Min) || MulExt.sgt(Max);
694 } else
695 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
696}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000697
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698
699/// ShrinkDemandedConstant - Check to see if the specified operand of the
700/// specified instruction is a constant integer. If so, check to see if there
701/// are any bits set in the constant that are not demanded. If so, shrink the
702/// constant and return true.
703static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
704 APInt Demanded) {
705 assert(I && "No instruction?");
706 assert(OpNo < I->getNumOperands() && "Operand index too large");
707
708 // If the operand is not a constant integer, nothing to do.
709 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
710 if (!OpC) return false;
711
712 // If there are no bits set that aren't demanded, nothing to do.
713 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
714 if ((~Demanded & OpC->getValue()) == 0)
715 return false;
716
717 // This instruction is producing bits that are not demanded. Shrink the RHS.
718 Demanded &= OpC->getValue();
719 I->setOperand(OpNo, ConstantInt::get(Demanded));
720 return true;
721}
722
723// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
724// set of known zero and one bits, compute the maximum and minimum values that
725// could have the specified known zero and known one bits, returning them in
726// min/max.
727static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
728 const APInt& KnownZero,
729 const APInt& KnownOne,
730 APInt& Min, APInt& Max) {
731 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
732 assert(KnownZero.getBitWidth() == BitWidth &&
733 KnownOne.getBitWidth() == BitWidth &&
734 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
735 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
736 APInt UnknownBits = ~(KnownZero|KnownOne);
737
738 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
739 // bit if it is unknown.
740 Min = KnownOne;
741 Max = KnownOne|UnknownBits;
742
743 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
744 Min.set(BitWidth-1);
745 Max.clear(BitWidth-1);
746 }
747}
748
749// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
750// a set of known zero and one bits, compute the maximum and minimum values that
751// could have the specified known zero and known one bits, returning them in
752// min/max.
753static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000754 const APInt &KnownZero,
755 const APInt &KnownOne,
756 APInt &Min, APInt &Max) {
757 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758 assert(KnownZero.getBitWidth() == BitWidth &&
759 KnownOne.getBitWidth() == BitWidth &&
760 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
761 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
762 APInt UnknownBits = ~(KnownZero|KnownOne);
763
764 // The minimum value is when the unknown bits are all zeros.
765 Min = KnownOne;
766 // The maximum value is when the unknown bits are all ones.
767 Max = KnownOne|UnknownBits;
768}
769
770/// SimplifyDemandedBits - This function attempts to replace V with a simpler
771/// value based on the demanded bits. When this function is called, it is known
772/// that only the bits set in DemandedMask of the result of V are ever used
773/// downstream. Consequently, depending on the mask and V, it may be possible
774/// to replace V with a constant or one of its operands. In such cases, this
775/// function does the replacement and returns true. In all other cases, it
776/// returns false after analyzing the expression and setting KnownOne and known
777/// to be one in the expression. KnownZero contains all the bits that are known
778/// to be zero in the expression. These are provided to potentially allow the
779/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
780/// the expression. KnownOne and KnownZero always follow the invariant that
781/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
782/// the bits in KnownOne and KnownZero may only be accurate for those bits set
783/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
784/// and KnownOne must all be the same.
785bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
786 APInt& KnownZero, APInt& KnownOne,
787 unsigned Depth) {
788 assert(V != 0 && "Null pointer of Value???");
789 assert(Depth <= 6 && "Limit Search Depth");
790 uint32_t BitWidth = DemandedMask.getBitWidth();
791 const IntegerType *VTy = cast<IntegerType>(V->getType());
792 assert(VTy->getBitWidth() == BitWidth &&
793 KnownZero.getBitWidth() == BitWidth &&
794 KnownOne.getBitWidth() == BitWidth &&
795 "Value *V, DemandedMask, KnownZero and KnownOne \
796 must have same BitWidth");
797 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
798 // We know all of the bits for a constant!
799 KnownOne = CI->getValue() & DemandedMask;
800 KnownZero = ~KnownOne & DemandedMask;
801 return false;
802 }
803
804 KnownZero.clear();
805 KnownOne.clear();
806 if (!V->hasOneUse()) { // Other users may use these bits.
807 if (Depth != 0) { // Not at the root.
808 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
809 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
810 return false;
811 }
812 // If this is the root being simplified, allow it to have multiple uses,
813 // just set the DemandedMask to all bits.
814 DemandedMask = APInt::getAllOnesValue(BitWidth);
815 } else if (DemandedMask == 0) { // Not demanding any bits from V.
816 if (V != UndefValue::get(VTy))
817 return UpdateValueUsesWith(V, UndefValue::get(VTy));
818 return false;
819 } else if (Depth == 6) { // Limit search depth.
820 return false;
821 }
822
823 Instruction *I = dyn_cast<Instruction>(V);
824 if (!I) return false; // Only analyze instructions.
825
826 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
827 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
828 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000829 default:
830 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
831 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000832 case Instruction::And:
833 // If either the LHS or the RHS are Zero, the result is zero.
834 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
835 RHSKnownZero, RHSKnownOne, Depth+1))
836 return true;
837 assert((RHSKnownZero & RHSKnownOne) == 0 &&
838 "Bits known to be one AND zero?");
839
840 // If something is known zero on the RHS, the bits aren't demanded on the
841 // LHS.
842 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
843 LHSKnownZero, LHSKnownOne, Depth+1))
844 return true;
845 assert((LHSKnownZero & LHSKnownOne) == 0 &&
846 "Bits known to be one AND zero?");
847
848 // If all of the demanded bits are known 1 on one side, return the other.
849 // These bits cannot contribute to the result of the 'and'.
850 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
851 (DemandedMask & ~LHSKnownZero))
852 return UpdateValueUsesWith(I, I->getOperand(0));
853 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
854 (DemandedMask & ~RHSKnownZero))
855 return UpdateValueUsesWith(I, I->getOperand(1));
856
857 // If all of the demanded bits in the inputs are known zeros, return zero.
858 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
859 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
860
861 // If the RHS is a constant, see if we can simplify it.
862 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
863 return UpdateValueUsesWith(I, I);
864
865 // Output known-1 bits are only known if set in both the LHS & RHS.
866 RHSKnownOne &= LHSKnownOne;
867 // Output known-0 are known to be clear if zero in either the LHS | RHS.
868 RHSKnownZero |= LHSKnownZero;
869 break;
870 case Instruction::Or:
871 // If either the LHS or the RHS are One, the result is One.
872 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
873 RHSKnownZero, RHSKnownOne, Depth+1))
874 return true;
875 assert((RHSKnownZero & RHSKnownOne) == 0 &&
876 "Bits known to be one AND zero?");
877 // If something is known one on the RHS, the bits aren't demanded on the
878 // LHS.
879 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
880 LHSKnownZero, LHSKnownOne, Depth+1))
881 return true;
882 assert((LHSKnownZero & LHSKnownOne) == 0 &&
883 "Bits known to be one AND zero?");
884
885 // If all of the demanded bits are known zero on one side, return the other.
886 // These bits cannot contribute to the result of the 'or'.
887 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
888 (DemandedMask & ~LHSKnownOne))
889 return UpdateValueUsesWith(I, I->getOperand(0));
890 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
891 (DemandedMask & ~RHSKnownOne))
892 return UpdateValueUsesWith(I, I->getOperand(1));
893
894 // If all of the potentially set bits on one side are known to be set on
895 // the other side, just use the 'other' side.
896 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
897 (DemandedMask & (~RHSKnownZero)))
898 return UpdateValueUsesWith(I, I->getOperand(0));
899 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
900 (DemandedMask & (~LHSKnownZero)))
901 return UpdateValueUsesWith(I, I->getOperand(1));
902
903 // If the RHS is a constant, see if we can simplify it.
904 if (ShrinkDemandedConstant(I, 1, DemandedMask))
905 return UpdateValueUsesWith(I, I);
906
907 // Output known-0 bits are only known if clear in both the LHS & RHS.
908 RHSKnownZero &= LHSKnownZero;
909 // Output known-1 are known to be set if set in either the LHS | RHS.
910 RHSKnownOne |= LHSKnownOne;
911 break;
912 case Instruction::Xor: {
913 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
914 RHSKnownZero, RHSKnownOne, Depth+1))
915 return true;
916 assert((RHSKnownZero & RHSKnownOne) == 0 &&
917 "Bits known to be one AND zero?");
918 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
919 LHSKnownZero, LHSKnownOne, Depth+1))
920 return true;
921 assert((LHSKnownZero & LHSKnownOne) == 0 &&
922 "Bits known to be one AND zero?");
923
924 // If all of the demanded bits are known zero on one side, return the other.
925 // These bits cannot contribute to the result of the 'xor'.
926 if ((DemandedMask & RHSKnownZero) == DemandedMask)
927 return UpdateValueUsesWith(I, I->getOperand(0));
928 if ((DemandedMask & LHSKnownZero) == DemandedMask)
929 return UpdateValueUsesWith(I, I->getOperand(1));
930
931 // Output known-0 bits are known if clear or set in both the LHS & RHS.
932 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
933 (RHSKnownOne & LHSKnownOne);
934 // Output known-1 are known to be set if set in only one of the LHS, RHS.
935 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
936 (RHSKnownOne & LHSKnownZero);
937
938 // If all of the demanded bits are known to be zero on one side or the
939 // other, turn this into an *inclusive* or.
940 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
941 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
942 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000943 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944 I->getName());
945 InsertNewInstBefore(Or, *I);
946 return UpdateValueUsesWith(I, Or);
947 }
948
949 // If all of the demanded bits on one side are known, and all of the set
950 // bits on that side are also known to be set on the other side, turn this
951 // into an AND, as we know the bits will be cleared.
952 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
953 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
954 // all known
955 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
956 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
957 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000958 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959 InsertNewInstBefore(And, *I);
960 return UpdateValueUsesWith(I, And);
961 }
962 }
963
964 // If the RHS is a constant, see if we can simplify it.
965 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
966 if (ShrinkDemandedConstant(I, 1, DemandedMask))
967 return UpdateValueUsesWith(I, I);
968
969 RHSKnownZero = KnownZeroOut;
970 RHSKnownOne = KnownOneOut;
971 break;
972 }
973 case Instruction::Select:
974 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
975 RHSKnownZero, RHSKnownOne, Depth+1))
976 return true;
977 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
978 LHSKnownZero, LHSKnownOne, Depth+1))
979 return true;
980 assert((RHSKnownZero & RHSKnownOne) == 0 &&
981 "Bits known to be one AND zero?");
982 assert((LHSKnownZero & LHSKnownOne) == 0 &&
983 "Bits known to be one AND zero?");
984
985 // If the operands are constants, see if we can simplify them.
986 if (ShrinkDemandedConstant(I, 1, DemandedMask))
987 return UpdateValueUsesWith(I, I);
988 if (ShrinkDemandedConstant(I, 2, DemandedMask))
989 return UpdateValueUsesWith(I, I);
990
991 // Only known if known in both the LHS and RHS.
992 RHSKnownOne &= LHSKnownOne;
993 RHSKnownZero &= LHSKnownZero;
994 break;
995 case Instruction::Trunc: {
996 uint32_t truncBf =
997 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
998 DemandedMask.zext(truncBf);
999 RHSKnownZero.zext(truncBf);
1000 RHSKnownOne.zext(truncBf);
1001 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1002 RHSKnownZero, RHSKnownOne, Depth+1))
1003 return true;
1004 DemandedMask.trunc(BitWidth);
1005 RHSKnownZero.trunc(BitWidth);
1006 RHSKnownOne.trunc(BitWidth);
1007 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1008 "Bits known to be one AND zero?");
1009 break;
1010 }
1011 case Instruction::BitCast:
1012 if (!I->getOperand(0)->getType()->isInteger())
1013 return false;
1014
1015 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1016 RHSKnownZero, RHSKnownOne, Depth+1))
1017 return true;
1018 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1019 "Bits known to be one AND zero?");
1020 break;
1021 case Instruction::ZExt: {
1022 // Compute the bits in the result that are not present in the input.
1023 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1024 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1025
1026 DemandedMask.trunc(SrcBitWidth);
1027 RHSKnownZero.trunc(SrcBitWidth);
1028 RHSKnownOne.trunc(SrcBitWidth);
1029 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1030 RHSKnownZero, RHSKnownOne, Depth+1))
1031 return true;
1032 DemandedMask.zext(BitWidth);
1033 RHSKnownZero.zext(BitWidth);
1034 RHSKnownOne.zext(BitWidth);
1035 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1036 "Bits known to be one AND zero?");
1037 // The top bits are known to be zero.
1038 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1039 break;
1040 }
1041 case Instruction::SExt: {
1042 // Compute the bits in the result that are not present in the input.
1043 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1044 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1045
1046 APInt InputDemandedBits = DemandedMask &
1047 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1048
1049 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1050 // If any of the sign extended bits are demanded, we know that the sign
1051 // bit is demanded.
1052 if ((NewBits & DemandedMask) != 0)
1053 InputDemandedBits.set(SrcBitWidth-1);
1054
1055 InputDemandedBits.trunc(SrcBitWidth);
1056 RHSKnownZero.trunc(SrcBitWidth);
1057 RHSKnownOne.trunc(SrcBitWidth);
1058 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1059 RHSKnownZero, RHSKnownOne, Depth+1))
1060 return true;
1061 InputDemandedBits.zext(BitWidth);
1062 RHSKnownZero.zext(BitWidth);
1063 RHSKnownOne.zext(BitWidth);
1064 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1065 "Bits known to be one AND zero?");
1066
1067 // If the sign bit of the input is known set or clear, then we know the
1068 // top bits of the result.
1069
1070 // If the input sign bit is known zero, or if the NewBits are not demanded
1071 // convert this into a zero extension.
1072 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1073 {
1074 // Convert to ZExt cast
1075 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1076 return UpdateValueUsesWith(I, NewCast);
1077 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1078 RHSKnownOne |= NewBits;
1079 }
1080 break;
1081 }
1082 case Instruction::Add: {
1083 // Figure out what the input bits are. If the top bits of the and result
1084 // are not demanded, then the add doesn't demand them from its input
1085 // either.
1086 uint32_t NLZ = DemandedMask.countLeadingZeros();
1087
1088 // If there is a constant on the RHS, there are a variety of xformations
1089 // we can do.
1090 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1091 // If null, this should be simplified elsewhere. Some of the xforms here
1092 // won't work if the RHS is zero.
1093 if (RHS->isZero())
1094 break;
1095
1096 // If the top bit of the output is demanded, demand everything from the
1097 // input. Otherwise, we demand all the input bits except NLZ top bits.
1098 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1099
1100 // Find information about known zero/one bits in the input.
1101 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1102 LHSKnownZero, LHSKnownOne, Depth+1))
1103 return true;
1104
1105 // If the RHS of the add has bits set that can't affect the input, reduce
1106 // the constant.
1107 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1108 return UpdateValueUsesWith(I, I);
1109
1110 // Avoid excess work.
1111 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1112 break;
1113
1114 // Turn it into OR if input bits are zero.
1115 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1116 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001117 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118 I->getName());
1119 InsertNewInstBefore(Or, *I);
1120 return UpdateValueUsesWith(I, Or);
1121 }
1122
1123 // We can say something about the output known-zero and known-one bits,
1124 // depending on potential carries from the input constant and the
1125 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1126 // bits set and the RHS constant is 0x01001, then we know we have a known
1127 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1128
1129 // To compute this, we first compute the potential carry bits. These are
1130 // the bits which may be modified. I'm not aware of a better way to do
1131 // this scan.
1132 const APInt& RHSVal = RHS->getValue();
1133 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1134
1135 // Now that we know which bits have carries, compute the known-1/0 sets.
1136
1137 // Bits are known one if they are known zero in one operand and one in the
1138 // other, and there is no input carry.
1139 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1140 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1141
1142 // Bits are known zero if they are known zero in both operands and there
1143 // is no input carry.
1144 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1145 } else {
1146 // If the high-bits of this ADD are not demanded, then it does not demand
1147 // the high bits of its LHS or RHS.
1148 if (DemandedMask[BitWidth-1] == 0) {
1149 // Right fill the mask of bits for this ADD to demand the most
1150 // significant bit and all those below it.
1151 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1152 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1153 LHSKnownZero, LHSKnownOne, Depth+1))
1154 return true;
1155 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1156 LHSKnownZero, LHSKnownOne, Depth+1))
1157 return true;
1158 }
1159 }
1160 break;
1161 }
1162 case Instruction::Sub:
1163 // If the high-bits of this SUB are not demanded, then it does not demand
1164 // the high bits of its LHS or RHS.
1165 if (DemandedMask[BitWidth-1] == 0) {
1166 // Right fill the mask of bits for this SUB to demand the most
1167 // significant bit and all those below it.
1168 uint32_t NLZ = DemandedMask.countLeadingZeros();
1169 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1170 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1171 LHSKnownZero, LHSKnownOne, Depth+1))
1172 return true;
1173 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1174 LHSKnownZero, LHSKnownOne, Depth+1))
1175 return true;
1176 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001177 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1178 // the known zeros and ones.
1179 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180 break;
1181 case Instruction::Shl:
1182 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1183 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1184 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1185 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1186 RHSKnownZero, RHSKnownOne, Depth+1))
1187 return true;
1188 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1189 "Bits known to be one AND zero?");
1190 RHSKnownZero <<= ShiftAmt;
1191 RHSKnownOne <<= ShiftAmt;
1192 // low bits known zero.
1193 if (ShiftAmt)
1194 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1195 }
1196 break;
1197 case Instruction::LShr:
1198 // For a logical shift right
1199 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1200 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1201
1202 // Unsigned shift right.
1203 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1204 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1205 RHSKnownZero, RHSKnownOne, Depth+1))
1206 return true;
1207 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1208 "Bits known to be one AND zero?");
1209 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1210 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1211 if (ShiftAmt) {
1212 // Compute the new bits that are at the top now.
1213 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1214 RHSKnownZero |= HighBits; // high bits known zero.
1215 }
1216 }
1217 break;
1218 case Instruction::AShr:
1219 // If this is an arithmetic shift right and only the low-bit is set, we can
1220 // always convert this into a logical shr, even if the shift amount is
1221 // variable. The low bit of the shift cannot be an input sign bit unless
1222 // the shift amount is >= the size of the datatype, which is undefined.
1223 if (DemandedMask == 1) {
1224 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001225 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001226 I->getOperand(0), I->getOperand(1), I->getName());
1227 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1228 return UpdateValueUsesWith(I, NewVal);
1229 }
1230
1231 // If the sign bit is the only bit demanded by this ashr, then there is no
1232 // need to do it, the shift doesn't change the high bit.
1233 if (DemandedMask.isSignBit())
1234 return UpdateValueUsesWith(I, I->getOperand(0));
1235
1236 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1237 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1238
1239 // Signed shift right.
1240 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1241 // If any of the "high bits" are demanded, we should set the sign bit as
1242 // demanded.
1243 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1244 DemandedMaskIn.set(BitWidth-1);
1245 if (SimplifyDemandedBits(I->getOperand(0),
1246 DemandedMaskIn,
1247 RHSKnownZero, RHSKnownOne, Depth+1))
1248 return true;
1249 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1250 "Bits known to be one AND zero?");
1251 // Compute the new bits that are at the top now.
1252 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1253 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1254 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1255
1256 // Handle the sign bits.
1257 APInt SignBit(APInt::getSignBit(BitWidth));
1258 // Adjust to where it is now in the mask.
1259 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1260
1261 // If the input sign bit is known to be zero, or if none of the top bits
1262 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001263 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264 (HighBits & ~DemandedMask) == HighBits) {
1265 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001266 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 I->getOperand(0), SA, I->getName());
1268 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1269 return UpdateValueUsesWith(I, NewVal);
1270 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1271 RHSKnownOne |= HighBits;
1272 }
1273 }
1274 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001275 case Instruction::SRem:
1276 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001277 APInt RA = Rem->getValue().abs();
1278 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001279 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1280 return UpdateValueUsesWith(I, I->getOperand(0));
1281
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001282 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001283 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1284 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1285 LHSKnownZero, LHSKnownOne, Depth+1))
1286 return true;
1287
1288 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1289 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001290
1291 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001292
1293 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1294 }
1295 }
1296 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001297 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001298 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1299 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001300 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1301 KnownZero2, KnownOne2, Depth+1))
1302 return true;
1303
Dan Gohmanbec16052008-04-28 17:02:21 +00001304 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001305 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001306 KnownZero2, KnownOne2, Depth+1))
1307 return true;
1308
1309 Leaders = std::max(Leaders,
1310 KnownZero2.countLeadingOnes());
1311 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001312 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313 }
Chris Lattner989ba312008-06-18 04:33:20 +00001314 case Instruction::Call:
1315 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1316 switch (II->getIntrinsicID()) {
1317 default: break;
1318 case Intrinsic::bswap: {
1319 // If the only bits demanded come from one byte of the bswap result,
1320 // just shift the input byte into position to eliminate the bswap.
1321 unsigned NLZ = DemandedMask.countLeadingZeros();
1322 unsigned NTZ = DemandedMask.countTrailingZeros();
1323
1324 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1325 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1326 // have 14 leading zeros, round to 8.
1327 NLZ &= ~7;
1328 NTZ &= ~7;
1329 // If we need exactly one byte, we can do this transformation.
1330 if (BitWidth-NLZ-NTZ == 8) {
1331 unsigned ResultBit = NTZ;
1332 unsigned InputBit = BitWidth-NTZ-8;
1333
1334 // Replace this with either a left or right shift to get the byte into
1335 // the right place.
1336 Instruction *NewVal;
1337 if (InputBit > ResultBit)
1338 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1339 ConstantInt::get(I->getType(), InputBit-ResultBit));
1340 else
1341 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1342 ConstantInt::get(I->getType(), ResultBit-InputBit));
1343 NewVal->takeName(I);
1344 InsertNewInstBefore(NewVal, *I);
1345 return UpdateValueUsesWith(I, NewVal);
1346 }
1347
1348 // TODO: Could compute known zero/one bits based on the input.
1349 break;
1350 }
1351 }
1352 }
Chris Lattner4946e222008-06-18 18:11:55 +00001353 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001354 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001355 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001356
1357 // If the client is only demanding bits that we know, return the known
1358 // constant.
1359 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1360 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1361 return false;
1362}
1363
1364
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001365/// SimplifyDemandedVectorElts - The specified value produces a vector with
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001366/// 64 or fewer elements. DemandedElts contains the set of elements that are
1367/// actually used by the caller. This method analyzes which elements of the
1368/// operand are undef and returns that information in UndefElts.
1369///
1370/// If the information about demanded elements can be used to simplify the
1371/// operation, the operation is simplified, then the resultant value is
1372/// returned. This returns null if no change was made.
1373Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1374 uint64_t &UndefElts,
1375 unsigned Depth) {
1376 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1377 assert(VWidth <= 64 && "Vector too wide to analyze!");
1378 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001379 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001380
1381 if (isa<UndefValue>(V)) {
1382 // If the entire vector is undefined, just return this info.
1383 UndefElts = EltMask;
1384 return 0;
1385 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1386 UndefElts = EltMask;
1387 return UndefValue::get(V->getType());
1388 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001389
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390 UndefElts = 0;
1391 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1392 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1393 Constant *Undef = UndefValue::get(EltTy);
1394
1395 std::vector<Constant*> Elts;
1396 for (unsigned i = 0; i != VWidth; ++i)
1397 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1398 Elts.push_back(Undef);
1399 UndefElts |= (1ULL << i);
1400 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1401 Elts.push_back(Undef);
1402 UndefElts |= (1ULL << i);
1403 } else { // Otherwise, defined.
1404 Elts.push_back(CP->getOperand(i));
1405 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001406
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001407 // If we changed the constant, return it.
1408 Constant *NewCP = ConstantVector::get(Elts);
1409 return NewCP != CP ? NewCP : 0;
1410 } else if (isa<ConstantAggregateZero>(V)) {
1411 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1412 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001413
1414 // Check if this is identity. If so, return 0 since we are not simplifying
1415 // anything.
1416 if (DemandedElts == ((1ULL << VWidth) -1))
1417 return 0;
1418
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001419 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1420 Constant *Zero = Constant::getNullValue(EltTy);
1421 Constant *Undef = UndefValue::get(EltTy);
1422 std::vector<Constant*> Elts;
1423 for (unsigned i = 0; i != VWidth; ++i)
1424 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1425 UndefElts = DemandedElts ^ EltMask;
1426 return ConstantVector::get(Elts);
1427 }
1428
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001429 // Limit search depth.
1430 if (Depth == 10)
1431 return false;
1432
1433 // If multiple users are using the root value, procede with
1434 // simplification conservatively assuming that all elements
1435 // are needed.
1436 if (!V->hasOneUse()) {
1437 // Quit if we find multiple users of a non-root value though.
1438 // They'll be handled when it's their turn to be visited by
1439 // the main instcombine process.
1440 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001441 // TODO: Just compute the UndefElts information recursively.
1442 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001443
1444 // Conservatively assume that all elements are needed.
1445 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001446 }
1447
1448 Instruction *I = dyn_cast<Instruction>(V);
1449 if (!I) return false; // Only analyze instructions.
1450
1451 bool MadeChange = false;
1452 uint64_t UndefElts2;
1453 Value *TmpV;
1454 switch (I->getOpcode()) {
1455 default: break;
1456
1457 case Instruction::InsertElement: {
1458 // If this is a variable index, we don't know which element it overwrites.
1459 // demand exactly the same input as we produce.
1460 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1461 if (Idx == 0) {
1462 // Note that we can't propagate undef elt info, because we don't know
1463 // which elt is getting updated.
1464 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1465 UndefElts2, Depth+1);
1466 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1467 break;
1468 }
1469
1470 // If this is inserting an element that isn't demanded, remove this
1471 // insertelement.
1472 unsigned IdxNo = Idx->getZExtValue();
1473 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1474 return AddSoonDeadInstToWorklist(*I, 0);
1475
1476 // Otherwise, the element inserted overwrites whatever was there, so the
1477 // input demanded set is simpler than the output set.
1478 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1479 DemandedElts & ~(1ULL << IdxNo),
1480 UndefElts, Depth+1);
1481 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1482
1483 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001484 UndefElts &= ~(1ULL << IdxNo);
1485 break;
1486 }
1487 case Instruction::ShuffleVector: {
1488 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001489 uint64_t LHSVWidth =
1490 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001491 uint64_t LeftDemanded = 0, RightDemanded = 0;
1492 for (unsigned i = 0; i < VWidth; i++) {
1493 if (DemandedElts & (1ULL << i)) {
1494 unsigned MaskVal = Shuffle->getMaskValue(i);
1495 if (MaskVal != -1u) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001496 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001497 "shufflevector mask index out of range!");
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001498 if (MaskVal < LHSVWidth)
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001499 LeftDemanded |= 1ULL << MaskVal;
1500 else
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001501 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001502 }
1503 }
1504 }
1505
1506 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1507 UndefElts2, Depth+1);
1508 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1509
1510 uint64_t UndefElts3;
1511 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1512 UndefElts3, Depth+1);
1513 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1514
1515 bool NewUndefElts = false;
1516 for (unsigned i = 0; i < VWidth; i++) {
1517 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001518 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001519 uint64_t NewBit = 1ULL << i;
1520 UndefElts |= NewBit;
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001521 } else if (MaskVal < LHSVWidth) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001522 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1523 NewUndefElts |= NewBit;
1524 UndefElts |= NewBit;
1525 } else {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001526 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001527 NewUndefElts |= NewBit;
1528 UndefElts |= NewBit;
1529 }
1530 }
1531
1532 if (NewUndefElts) {
1533 // Add additional discovered undefs.
1534 std::vector<Constant*> Elts;
1535 for (unsigned i = 0; i < VWidth; ++i) {
1536 if (UndefElts & (1ULL << i))
1537 Elts.push_back(UndefValue::get(Type::Int32Ty));
1538 else
1539 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1540 Shuffle->getMaskValue(i)));
1541 }
1542 I->setOperand(2, ConstantVector::get(Elts));
1543 MadeChange = true;
1544 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001545 break;
1546 }
1547 case Instruction::BitCast: {
1548 // Vector->vector casts only.
1549 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1550 if (!VTy) break;
1551 unsigned InVWidth = VTy->getNumElements();
1552 uint64_t InputDemandedElts = 0;
1553 unsigned Ratio;
1554
1555 if (VWidth == InVWidth) {
1556 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1557 // elements as are demanded of us.
1558 Ratio = 1;
1559 InputDemandedElts = DemandedElts;
1560 } else if (VWidth > InVWidth) {
1561 // Untested so far.
1562 break;
1563
1564 // If there are more elements in the result than there are in the source,
1565 // then an input element is live if any of the corresponding output
1566 // elements are live.
1567 Ratio = VWidth/InVWidth;
1568 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1569 if (DemandedElts & (1ULL << OutIdx))
1570 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1571 }
1572 } else {
1573 // Untested so far.
1574 break;
1575
1576 // If there are more elements in the source than there are in the result,
1577 // then an input element is live if the corresponding output element is
1578 // live.
1579 Ratio = InVWidth/VWidth;
1580 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1581 if (DemandedElts & (1ULL << InIdx/Ratio))
1582 InputDemandedElts |= 1ULL << InIdx;
1583 }
1584
1585 // div/rem demand all inputs, because they don't want divide by zero.
1586 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1587 UndefElts2, Depth+1);
1588 if (TmpV) {
1589 I->setOperand(0, TmpV);
1590 MadeChange = true;
1591 }
1592
1593 UndefElts = UndefElts2;
1594 if (VWidth > InVWidth) {
1595 assert(0 && "Unimp");
1596 // If there are more elements in the result than there are in the source,
1597 // then an output element is undef if the corresponding input element is
1598 // undef.
1599 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1600 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1601 UndefElts |= 1ULL << OutIdx;
1602 } else if (VWidth < InVWidth) {
1603 assert(0 && "Unimp");
1604 // If there are more elements in the source than there are in the result,
1605 // then a result element is undef if all of the corresponding input
1606 // elements are undef.
1607 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1608 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1609 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1610 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1611 }
1612 break;
1613 }
1614 case Instruction::And:
1615 case Instruction::Or:
1616 case Instruction::Xor:
1617 case Instruction::Add:
1618 case Instruction::Sub:
1619 case Instruction::Mul:
1620 // div/rem demand all inputs, because they don't want divide by zero.
1621 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1622 UndefElts, Depth+1);
1623 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1624 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1625 UndefElts2, Depth+1);
1626 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1627
1628 // Output elements are undefined if both are undefined. Consider things
1629 // like undef&0. The result is known zero, not undef.
1630 UndefElts &= UndefElts2;
1631 break;
1632
1633 case Instruction::Call: {
1634 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1635 if (!II) break;
1636 switch (II->getIntrinsicID()) {
1637 default: break;
1638
1639 // Binary vector operations that work column-wise. A dest element is a
1640 // function of the corresponding input elements from the two inputs.
1641 case Intrinsic::x86_sse_sub_ss:
1642 case Intrinsic::x86_sse_mul_ss:
1643 case Intrinsic::x86_sse_min_ss:
1644 case Intrinsic::x86_sse_max_ss:
1645 case Intrinsic::x86_sse2_sub_sd:
1646 case Intrinsic::x86_sse2_mul_sd:
1647 case Intrinsic::x86_sse2_min_sd:
1648 case Intrinsic::x86_sse2_max_sd:
1649 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1650 UndefElts, Depth+1);
1651 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1652 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1653 UndefElts2, Depth+1);
1654 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1655
1656 // If only the low elt is demanded and this is a scalarizable intrinsic,
1657 // scalarize it now.
1658 if (DemandedElts == 1) {
1659 switch (II->getIntrinsicID()) {
1660 default: break;
1661 case Intrinsic::x86_sse_sub_ss:
1662 case Intrinsic::x86_sse_mul_ss:
1663 case Intrinsic::x86_sse2_sub_sd:
1664 case Intrinsic::x86_sse2_mul_sd:
1665 // TODO: Lower MIN/MAX/ABS/etc
1666 Value *LHS = II->getOperand(1);
1667 Value *RHS = II->getOperand(2);
1668 // Extract the element as scalars.
1669 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1670 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1671
1672 switch (II->getIntrinsicID()) {
1673 default: assert(0 && "Case stmts out of sync!");
1674 case Intrinsic::x86_sse_sub_ss:
1675 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001676 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001677 II->getName()), *II);
1678 break;
1679 case Intrinsic::x86_sse_mul_ss:
1680 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001681 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001682 II->getName()), *II);
1683 break;
1684 }
1685
1686 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001687 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1688 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689 InsertNewInstBefore(New, *II);
1690 AddSoonDeadInstToWorklist(*II, 0);
1691 return New;
1692 }
1693 }
1694
1695 // Output elements are undefined if both are undefined. Consider things
1696 // like undef&0. The result is known zero, not undef.
1697 UndefElts &= UndefElts2;
1698 break;
1699 }
1700 break;
1701 }
1702 }
1703 return MadeChange ? I : 0;
1704}
1705
Dan Gohman5d56fd42008-05-19 22:14:15 +00001706
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707/// AssociativeOpt - Perform an optimization on an associative operator. This
1708/// function is designed to check a chain of associative operators for a
1709/// potential to apply a certain optimization. Since the optimization may be
1710/// applicable if the expression was reassociated, this checks the chain, then
1711/// reassociates the expression as necessary to expose the optimization
1712/// opportunity. This makes use of a special Functor, which must define
1713/// 'shouldApply' and 'apply' methods.
1714///
1715template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001716static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001717 unsigned Opcode = Root.getOpcode();
1718 Value *LHS = Root.getOperand(0);
1719
1720 // Quick check, see if the immediate LHS matches...
1721 if (F.shouldApply(LHS))
1722 return F.apply(Root);
1723
1724 // Otherwise, if the LHS is not of the same opcode as the root, return.
1725 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1726 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1727 // Should we apply this transform to the RHS?
1728 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1729
1730 // If not to the RHS, check to see if we should apply to the LHS...
1731 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1732 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1733 ShouldApply = true;
1734 }
1735
1736 // If the functor wants to apply the optimization to the RHS of LHSI,
1737 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1738 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001739 // Now all of the instructions are in the current basic block, go ahead
1740 // and perform the reassociation.
1741 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1742
1743 // First move the selected RHS to the LHS of the root...
1744 Root.setOperand(0, LHSI->getOperand(1));
1745
1746 // Make what used to be the LHS of the root be the user of the root...
1747 Value *ExtraOperand = TmpLHSI->getOperand(1);
1748 if (&Root == TmpLHSI) {
1749 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1750 return 0;
1751 }
1752 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1753 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001754 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001755 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001756 ARI = Root;
1757
1758 // Now propagate the ExtraOperand down the chain of instructions until we
1759 // get to LHSI.
1760 while (TmpLHSI != LHSI) {
1761 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1762 // Move the instruction to immediately before the chain we are
1763 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001764 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001765 ARI = NextLHSI;
1766
1767 Value *NextOp = NextLHSI->getOperand(1);
1768 NextLHSI->setOperand(1, ExtraOperand);
1769 TmpLHSI = NextLHSI;
1770 ExtraOperand = NextOp;
1771 }
1772
1773 // Now that the instructions are reassociated, have the functor perform
1774 // the transformation...
1775 return F.apply(Root);
1776 }
1777
1778 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1779 }
1780 return 0;
1781}
1782
Dan Gohman089efff2008-05-13 00:00:25 +00001783namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784
Nick Lewycky27f6c132008-05-23 04:34:58 +00001785// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001786struct AddRHS {
1787 Value *RHS;
1788 AddRHS(Value *rhs) : RHS(rhs) {}
1789 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1790 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001791 return BinaryOperator::CreateShl(Add.getOperand(0),
1792 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001793 }
1794};
1795
1796// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1797// iff C1&C2 == 0
1798struct AddMaskingAnd {
1799 Constant *C2;
1800 AddMaskingAnd(Constant *c) : C2(c) {}
1801 bool shouldApply(Value *LHS) const {
1802 ConstantInt *C1;
1803 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1804 ConstantExpr::getAnd(C1, C2)->isNullValue();
1805 }
1806 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001807 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001808 }
1809};
1810
Dan Gohman089efff2008-05-13 00:00:25 +00001811}
1812
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001813static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1814 InstCombiner *IC) {
1815 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1816 if (Constant *SOC = dyn_cast<Constant>(SO))
1817 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1818
Gabor Greifa645dd32008-05-16 19:29:10 +00001819 return IC->InsertNewInstBefore(CastInst::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001820 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1821 }
1822
1823 // Figure out if the constant is the left or the right argument.
1824 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1825 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1826
1827 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1828 if (ConstIsRHS)
1829 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1830 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1831 }
1832
1833 Value *Op0 = SO, *Op1 = ConstOperand;
1834 if (!ConstIsRHS)
1835 std::swap(Op0, Op1);
1836 Instruction *New;
1837 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001838 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001839 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001840 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001841 SO->getName()+".cmp");
1842 else {
1843 assert(0 && "Unknown binary instruction type!");
1844 abort();
1845 }
1846 return IC->InsertNewInstBefore(New, I);
1847}
1848
1849// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1850// constant as the other operand, try to fold the binary operator into the
1851// select arguments. This also works for Cast instructions, which obviously do
1852// not have a second operand.
1853static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1854 InstCombiner *IC) {
1855 // Don't modify shared select instructions
1856 if (!SI->hasOneUse()) return 0;
1857 Value *TV = SI->getOperand(1);
1858 Value *FV = SI->getOperand(2);
1859
1860 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1861 // Bool selects with constant operands can be folded to logical ops.
1862 if (SI->getType() == Type::Int1Ty) return 0;
1863
1864 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1865 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1866
Gabor Greifd6da1d02008-04-06 20:25:17 +00001867 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1868 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001869 }
1870 return 0;
1871}
1872
1873
1874/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1875/// node as operand #0, see if we can fold the instruction into the PHI (which
1876/// is only possible if all operands to the PHI are constants).
1877Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1878 PHINode *PN = cast<PHINode>(I.getOperand(0));
1879 unsigned NumPHIValues = PN->getNumIncomingValues();
1880 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1881
1882 // Check to see if all of the operands of the PHI are constants. If there is
1883 // one non-constant value, remember the BB it is. If there is more than one
1884 // or if *it* is a PHI, bail out.
1885 BasicBlock *NonConstBB = 0;
1886 for (unsigned i = 0; i != NumPHIValues; ++i)
1887 if (!isa<Constant>(PN->getIncomingValue(i))) {
1888 if (NonConstBB) return 0; // More than one non-const value.
1889 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1890 NonConstBB = PN->getIncomingBlock(i);
1891
1892 // If the incoming non-constant value is in I's block, we have an infinite
1893 // loop.
1894 if (NonConstBB == I.getParent())
1895 return 0;
1896 }
1897
1898 // If there is exactly one non-constant value, we can insert a copy of the
1899 // operation in that block. However, if this is a critical edge, we would be
1900 // inserting the computation one some other paths (e.g. inside a loop). Only
1901 // do this if the pred block is unconditionally branching into the phi block.
1902 if (NonConstBB) {
1903 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1904 if (!BI || !BI->isUnconditional()) return 0;
1905 }
1906
1907 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001908 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001909 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1910 InsertNewInstBefore(NewPN, *PN);
1911 NewPN->takeName(PN);
1912
1913 // Next, add all of the operands to the PHI.
1914 if (I.getNumOperands() == 2) {
1915 Constant *C = cast<Constant>(I.getOperand(1));
1916 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001917 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001918 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1919 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1920 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1921 else
1922 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1923 } else {
1924 assert(PN->getIncomingBlock(i) == NonConstBB);
1925 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001926 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001927 PN->getIncomingValue(i), C, "phitmp",
1928 NonConstBB->getTerminator());
1929 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001930 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001931 CI->getPredicate(),
1932 PN->getIncomingValue(i), C, "phitmp",
1933 NonConstBB->getTerminator());
1934 else
1935 assert(0 && "Unknown binop!");
1936
1937 AddToWorkList(cast<Instruction>(InV));
1938 }
1939 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1940 }
1941 } else {
1942 CastInst *CI = cast<CastInst>(&I);
1943 const Type *RetTy = CI->getType();
1944 for (unsigned i = 0; i != NumPHIValues; ++i) {
1945 Value *InV;
1946 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1947 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1948 } else {
1949 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001950 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001951 I.getType(), "phitmp",
1952 NonConstBB->getTerminator());
1953 AddToWorkList(cast<Instruction>(InV));
1954 }
1955 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1956 }
1957 }
1958 return ReplaceInstUsesWith(I, NewPN);
1959}
1960
Chris Lattner55476162008-01-29 06:52:45 +00001961
Chris Lattner3554f972008-05-20 05:46:13 +00001962/// WillNotOverflowSignedAdd - Return true if we can prove that:
1963/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1964/// This basically requires proving that the add in the original type would not
1965/// overflow to change the sign bit or have a carry out.
1966bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1967 // There are different heuristics we can use for this. Here are some simple
1968 // ones.
1969
1970 // Add has the property that adding any two 2's complement numbers can only
1971 // have one carry bit which can change a sign. As such, if LHS and RHS each
1972 // have at least two sign bits, we know that the addition of the two values will
1973 // sign extend fine.
1974 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1975 return true;
1976
1977
1978 // If one of the operands only has one non-zero bit, and if the other operand
1979 // has a known-zero bit in a more significant place than it (not including the
1980 // sign bit) the ripple may go up to and fill the zero, but won't change the
1981 // sign. For example, (X & ~4) + 1.
1982
1983 // TODO: Implement.
1984
1985 return false;
1986}
1987
Chris Lattner55476162008-01-29 06:52:45 +00001988
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001989Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1990 bool Changed = SimplifyCommutative(I);
1991 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1992
1993 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1994 // X + undef -> undef
1995 if (isa<UndefValue>(RHS))
1996 return ReplaceInstUsesWith(I, RHS);
1997
1998 // X + 0 --> X
1999 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
2000 if (RHSC->isNullValue())
2001 return ReplaceInstUsesWith(I, LHS);
2002 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00002003 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2004 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002005 return ReplaceInstUsesWith(I, LHS);
2006 }
2007
2008 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
2009 // X + (signbit) --> X ^ signbit
2010 const APInt& Val = CI->getValue();
2011 uint32_t BitWidth = Val.getBitWidth();
2012 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00002013 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002014
2015 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2016 // (X & 254)+1 -> (X&254)|1
2017 if (!isa<VectorType>(I.getType())) {
2018 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2019 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2020 KnownZero, KnownOne))
2021 return &I;
2022 }
Dan Gohman35b76162008-10-30 20:40:10 +00002023
2024 // zext(i1) - 1 -> select i1, 0, -1
2025 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2026 if (CI->isAllOnesValue() &&
2027 ZI->getOperand(0)->getType() == Type::Int1Ty)
2028 return SelectInst::Create(ZI->getOperand(0),
2029 Constant::getNullValue(I.getType()),
2030 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002031 }
2032
2033 if (isa<PHINode>(LHS))
2034 if (Instruction *NV = FoldOpIntoPhi(I))
2035 return NV;
2036
2037 ConstantInt *XorRHS = 0;
2038 Value *XorLHS = 0;
2039 if (isa<ConstantInt>(RHSC) &&
2040 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2041 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2042 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2043
2044 uint32_t Size = TySizeBits / 2;
2045 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2046 APInt CFF80Val(-C0080Val);
2047 do {
2048 if (TySizeBits > Size) {
2049 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2050 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2051 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2052 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2053 // This is a sign extend if the top bits are known zero.
2054 if (!MaskedValueIsZero(XorLHS,
2055 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2056 Size = 0; // Not a sign ext, but can't be any others either.
2057 break;
2058 }
2059 }
2060 Size >>= 1;
2061 C0080Val = APIntOps::lshr(C0080Val, Size);
2062 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2063 } while (Size >= 1);
2064
2065 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002066 // with funny bit widths then this switch statement should be removed. It
2067 // is just here to get the size of the "middle" type back up to something
2068 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002069 const Type *MiddleType = 0;
2070 switch (Size) {
2071 default: break;
2072 case 32: MiddleType = Type::Int32Ty; break;
2073 case 16: MiddleType = Type::Int16Ty; break;
2074 case 8: MiddleType = Type::Int8Ty; break;
2075 }
2076 if (MiddleType) {
2077 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2078 InsertNewInstBefore(NewTrunc, I);
2079 return new SExtInst(NewTrunc, I.getType(), I.getName());
2080 }
2081 }
2082 }
2083
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002084 if (I.getType() == Type::Int1Ty)
2085 return BinaryOperator::CreateXor(LHS, RHS);
2086
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002087 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002088 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002089 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2090
2091 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2092 if (RHSI->getOpcode() == Instruction::Sub)
2093 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2094 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2095 }
2096 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2097 if (LHSI->getOpcode() == Instruction::Sub)
2098 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2099 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2100 }
2101 }
2102
2103 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002104 // -A + -B --> -(A + B)
2105 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002106 if (LHS->getType()->isIntOrIntVector()) {
2107 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002108 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002109 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002110 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002111 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002112 }
2113
Gabor Greifa645dd32008-05-16 19:29:10 +00002114 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002115 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002116
2117 // A + -B --> A - B
2118 if (!isa<Constant>(RHS))
2119 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002120 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002121
2122
2123 ConstantInt *C2;
2124 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2125 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002126 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002127
2128 // X*C1 + X*C2 --> X * (C1+C2)
2129 ConstantInt *C1;
2130 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002131 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002132 }
2133
2134 // X + X*C --> X * (C+1)
2135 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002136 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002137
2138 // X + ~X --> -1 since ~X = -X-1
2139 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2140 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2141
2142
2143 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2144 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2145 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2146 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002147
2148 // A+B --> A|B iff A and B have no bits set in common.
2149 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2150 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2151 APInt LHSKnownOne(IT->getBitWidth(), 0);
2152 APInt LHSKnownZero(IT->getBitWidth(), 0);
2153 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2154 if (LHSKnownZero != 0) {
2155 APInt RHSKnownOne(IT->getBitWidth(), 0);
2156 APInt RHSKnownZero(IT->getBitWidth(), 0);
2157 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2158
2159 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002160 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002161 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002162 }
2163 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002164
Nick Lewycky83598a72008-02-03 07:42:09 +00002165 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002166 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002167 Value *W, *X, *Y, *Z;
2168 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2169 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2170 if (W != Y) {
2171 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002172 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002173 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002174 std::swap(W, X);
2175 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002176 std::swap(Y, Z);
2177 std::swap(W, X);
2178 }
2179 }
2180
2181 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002182 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002183 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002184 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002185 }
2186 }
2187 }
2188
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002189 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2190 Value *X = 0;
2191 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002192 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002193
2194 // (X & FF00) + xx00 -> (X+xx00) & FF00
2195 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2196 Constant *Anded = And(CRHS, C2);
2197 if (Anded == CRHS) {
2198 // See if all bits from the first bit set in the Add RHS up are included
2199 // in the mask. First, get the rightmost bit.
2200 const APInt& AddRHSV = CRHS->getValue();
2201
2202 // Form a mask of all bits from the lowest bit added through the top.
2203 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2204
2205 // See if the and mask includes all of these bits.
2206 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2207
2208 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2209 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002210 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002211 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002212 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002213 }
2214 }
2215 }
2216
2217 // Try to fold constant add into select arguments.
2218 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2219 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2220 return R;
2221 }
2222
2223 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002224 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002225 {
2226 CastInst *CI = dyn_cast<CastInst>(LHS);
2227 Value *Other = RHS;
2228 if (!CI) {
2229 CI = dyn_cast<CastInst>(RHS);
2230 Other = LHS;
2231 }
2232 if (CI && CI->getType()->isSized() &&
2233 (CI->getType()->getPrimitiveSizeInBits() ==
2234 TD->getIntPtrType()->getPrimitiveSizeInBits())
2235 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002236 unsigned AS =
2237 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002238 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2239 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002240 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002241 return new PtrToIntInst(I2, CI->getType());
2242 }
2243 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002244
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002245 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002246 {
2247 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2248 Value *Other = RHS;
2249 if (!SI) {
2250 SI = dyn_cast<SelectInst>(RHS);
2251 Other = LHS;
2252 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002253 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002254 Value *TV = SI->getTrueValue();
2255 Value *FV = SI->getFalseValue();
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002256 Value *A, *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002257
2258 // Can we fold the add into the argument of the select?
2259 // We check both true and false select arguments for a matching subtract.
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002260 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
2261 A == Other) // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002262 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002263 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) &&
2264 A == Other) // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002265 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002266 }
2267 }
Chris Lattner55476162008-01-29 06:52:45 +00002268
2269 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2270 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2271 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2272 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002273
Chris Lattner3554f972008-05-20 05:46:13 +00002274 // Check for (add (sext x), y), see if we can merge this into an
2275 // integer add followed by a sext.
2276 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2277 // (add (sext x), cst) --> (sext (add x, cst'))
2278 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2279 Constant *CI =
2280 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2281 if (LHSConv->hasOneUse() &&
2282 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2283 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2284 // Insert the new, smaller add.
2285 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2286 CI, "addconv");
2287 InsertNewInstBefore(NewAdd, I);
2288 return new SExtInst(NewAdd, I.getType());
2289 }
2290 }
2291
2292 // (add (sext x), (sext y)) --> (sext (add int x, y))
2293 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2294 // Only do this if x/y have the same type, if at last one of them has a
2295 // single use (so we don't increase the number of sexts), and if the
2296 // integer add will not overflow.
2297 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2298 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2299 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2300 RHSConv->getOperand(0))) {
2301 // Insert the new integer add.
2302 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2303 RHSConv->getOperand(0),
2304 "addconv");
2305 InsertNewInstBefore(NewAdd, I);
2306 return new SExtInst(NewAdd, I.getType());
2307 }
2308 }
2309 }
2310
2311 // Check for (add double (sitofp x), y), see if we can merge this into an
2312 // integer add followed by a promotion.
2313 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2314 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2315 // ... if the constant fits in the integer value. This is useful for things
2316 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2317 // requires a constant pool load, and generally allows the add to be better
2318 // instcombined.
2319 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2320 Constant *CI =
2321 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2322 if (LHSConv->hasOneUse() &&
2323 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2324 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2325 // Insert the new integer add.
2326 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2327 CI, "addconv");
2328 InsertNewInstBefore(NewAdd, I);
2329 return new SIToFPInst(NewAdd, I.getType());
2330 }
2331 }
2332
2333 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2334 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2335 // Only do this if x/y have the same type, if at last one of them has a
2336 // single use (so we don't increase the number of int->fp conversions),
2337 // and if the integer add will not overflow.
2338 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2339 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2340 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2341 RHSConv->getOperand(0))) {
2342 // Insert the new integer add.
2343 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2344 RHSConv->getOperand(0),
2345 "addconv");
2346 InsertNewInstBefore(NewAdd, I);
2347 return new SIToFPInst(NewAdd, I.getType());
2348 }
2349 }
2350 }
2351
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002352 return Changed ? &I : 0;
2353}
2354
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2356 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2357
Chris Lattner27fbef42008-07-17 06:07:20 +00002358 if (Op0 == Op1 && // sub X, X -> 0
2359 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002360 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2361
2362 // If this is a 'B = x-(-A)', change to B = x+A...
2363 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002364 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365
2366 if (isa<UndefValue>(Op0))
2367 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2368 if (isa<UndefValue>(Op1))
2369 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2370
2371 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2372 // Replace (-1 - A) with (~A)...
2373 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002374 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002375
2376 // C - ~X == X + (1+C)
2377 Value *X = 0;
2378 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002379 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002380
2381 // -(X >>u 31) -> (X >>s 31)
2382 // -(X >>s 31) -> (X >>u 31)
2383 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002384 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002385 if (SI->getOpcode() == Instruction::LShr) {
2386 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2387 // Check to see if we are shifting out everything but the sign bit.
2388 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2389 SI->getType()->getPrimitiveSizeInBits()-1) {
2390 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002391 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392 SI->getOperand(0), CU, SI->getName());
2393 }
2394 }
2395 }
2396 else if (SI->getOpcode() == Instruction::AShr) {
2397 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2398 // Check to see if we are shifting out everything but the sign bit.
2399 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2400 SI->getType()->getPrimitiveSizeInBits()-1) {
2401 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002402 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002403 SI->getOperand(0), CU, SI->getName());
2404 }
2405 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002406 }
2407 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408 }
2409
2410 // Try to fold constant sub into select arguments.
2411 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2412 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2413 return R;
2414
2415 if (isa<PHINode>(Op0))
2416 if (Instruction *NV = FoldOpIntoPhi(I))
2417 return NV;
2418 }
2419
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002420 if (I.getType() == Type::Int1Ty)
2421 return BinaryOperator::CreateXor(Op0, Op1);
2422
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002423 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2424 if (Op1I->getOpcode() == Instruction::Add &&
2425 !Op0->getType()->isFPOrFPVector()) {
2426 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002427 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002428 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002429 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002430 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2431 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2432 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002433 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002434 Op1I->getOperand(0));
2435 }
2436 }
2437
2438 if (Op1I->hasOneUse()) {
2439 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2440 // is not used by anyone else...
2441 //
2442 if (Op1I->getOpcode() == Instruction::Sub &&
2443 !Op1I->getType()->isFPOrFPVector()) {
2444 // Swap the two operands of the subexpr...
2445 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2446 Op1I->setOperand(0, IIOp1);
2447 Op1I->setOperand(1, IIOp0);
2448
2449 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002450 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002451 }
2452
2453 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2454 //
2455 if (Op1I->getOpcode() == Instruction::And &&
2456 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2457 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2458
2459 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002460 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2461 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002462 }
2463
2464 // 0 - (X sdiv C) -> (X sdiv -C)
2465 if (Op1I->getOpcode() == Instruction::SDiv)
2466 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2467 if (CSI->isZero())
2468 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002469 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002470 ConstantExpr::getNeg(DivRHS));
2471
2472 // X - X*C --> X * (1-C)
2473 ConstantInt *C2 = 0;
2474 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2475 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002476 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002477 }
Dan Gohmanda338742007-09-17 17:31:57 +00002478
2479 // X - ((X / Y) * Y) --> X % Y
2480 if (Op1I->getOpcode() == Instruction::Mul)
2481 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2482 if (Op0 == I->getOperand(0) &&
2483 Op1I->getOperand(1) == I->getOperand(1)) {
2484 if (I->getOpcode() == Instruction::SDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002485 return BinaryOperator::CreateSRem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002486 if (I->getOpcode() == Instruction::UDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002487 return BinaryOperator::CreateURem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002488 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002489 }
2490 }
2491
2492 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002493 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002494 if (Op0I->getOpcode() == Instruction::Add) {
2495 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2496 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2497 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2498 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2499 } else if (Op0I->getOpcode() == Instruction::Sub) {
2500 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002501 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002502 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002503 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002504
2505 ConstantInt *C1;
2506 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2507 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002508 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002509
2510 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2511 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002512 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002513 }
2514 return 0;
2515}
2516
2517/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2518/// comparison only checks the sign bit. If it only checks the sign bit, set
2519/// TrueIfSigned if the result of the comparison is true when the input value is
2520/// signed.
2521static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2522 bool &TrueIfSigned) {
2523 switch (pred) {
2524 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2525 TrueIfSigned = true;
2526 return RHS->isZero();
2527 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2528 TrueIfSigned = true;
2529 return RHS->isAllOnesValue();
2530 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2531 TrueIfSigned = false;
2532 return RHS->isAllOnesValue();
2533 case ICmpInst::ICMP_UGT:
2534 // True if LHS u> RHS and RHS == high-bit-mask - 1
2535 TrueIfSigned = true;
2536 return RHS->getValue() ==
2537 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2538 case ICmpInst::ICMP_UGE:
2539 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2540 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002541 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002542 default:
2543 return false;
2544 }
2545}
2546
2547Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2548 bool Changed = SimplifyCommutative(I);
2549 Value *Op0 = I.getOperand(0);
2550
2551 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2552 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2553
2554 // Simplify mul instructions with a constant RHS...
2555 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2556 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2557
2558 // ((X << C1)*C2) == (X * (C2 << C1))
2559 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2560 if (SI->getOpcode() == Instruction::Shl)
2561 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002562 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002563 ConstantExpr::getShl(CI, ShOp));
2564
2565 if (CI->isZero())
2566 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2567 if (CI->equalsInt(1)) // X * 1 == X
2568 return ReplaceInstUsesWith(I, Op0);
2569 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002570 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002571
2572 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2573 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002574 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002575 ConstantInt::get(Op0->getType(), Val.logBase2()));
2576 }
2577 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2578 if (Op1F->isNullValue())
2579 return ReplaceInstUsesWith(I, Op1);
2580
2581 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2582 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002583 if (Op1F->isExactlyValue(1.0))
2584 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2585 } else if (isa<VectorType>(Op1->getType())) {
2586 if (isa<ConstantAggregateZero>(Op1))
2587 return ReplaceInstUsesWith(I, Op1);
2588
2589 // As above, vector X*splat(1.0) -> X in all defined cases.
2590 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1))
2591 if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
2592 if (F->isExactlyValue(1.0))
2593 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002594 }
2595
2596 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2597 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002598 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002599 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002600 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002601 Op1, "tmp");
2602 InsertNewInstBefore(Add, I);
2603 Value *C1C2 = ConstantExpr::getMul(Op1,
2604 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002605 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002606
2607 }
2608
2609 // Try to fold constant mul into select arguments.
2610 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2611 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2612 return R;
2613
2614 if (isa<PHINode>(Op0))
2615 if (Instruction *NV = FoldOpIntoPhi(I))
2616 return NV;
2617 }
2618
2619 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2620 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002621 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002622
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002623 if (I.getType() == Type::Int1Ty)
2624 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2625
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002626 // If one of the operands of the multiply is a cast from a boolean value, then
2627 // we know the bool is either zero or one, so this is a 'masking' multiply.
2628 // See if we can simplify things based on how the boolean was originally
2629 // formed.
2630 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002631 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002632 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2633 BoolCast = CI;
2634 if (!BoolCast)
2635 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2636 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2637 BoolCast = CI;
2638 if (BoolCast) {
2639 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2640 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2641 const Type *SCOpTy = SCIOp0->getType();
2642 bool TIS = false;
2643
2644 // If the icmp is true iff the sign bit of X is set, then convert this
2645 // multiply into a shift/and combination.
2646 if (isa<ConstantInt>(SCIOp1) &&
2647 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2648 TIS) {
2649 // Shift the X value right to turn it into "all signbits".
2650 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2651 SCOpTy->getPrimitiveSizeInBits()-1);
2652 Value *V =
2653 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002654 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002655 BoolCast->getOperand(0)->getName()+
2656 ".mask"), I);
2657
2658 // If the multiply type is not the same as the source type, sign extend
2659 // or truncate to the multiply type.
2660 if (I.getType() != V->getType()) {
2661 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2662 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2663 Instruction::CastOps opcode =
2664 (SrcBits == DstBits ? Instruction::BitCast :
2665 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2666 V = InsertCastBefore(opcode, V, I.getType(), I);
2667 }
2668
2669 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002670 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002671 }
2672 }
2673 }
2674
2675 return Changed ? &I : 0;
2676}
2677
Chris Lattner76972db2008-07-14 00:15:52 +00002678/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2679/// instruction.
2680bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2681 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2682
2683 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2684 int NonNullOperand = -1;
2685 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2686 if (ST->isNullValue())
2687 NonNullOperand = 2;
2688 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2689 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2690 if (ST->isNullValue())
2691 NonNullOperand = 1;
2692
2693 if (NonNullOperand == -1)
2694 return false;
2695
2696 Value *SelectCond = SI->getOperand(0);
2697
2698 // Change the div/rem to use 'Y' instead of the select.
2699 I.setOperand(1, SI->getOperand(NonNullOperand));
2700
2701 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2702 // problem. However, the select, or the condition of the select may have
2703 // multiple uses. Based on our knowledge that the operand must be non-zero,
2704 // propagate the known value for the select into other uses of it, and
2705 // propagate a known value of the condition into its other users.
2706
2707 // If the select and condition only have a single use, don't bother with this,
2708 // early exit.
2709 if (SI->use_empty() && SelectCond->hasOneUse())
2710 return true;
2711
2712 // Scan the current block backward, looking for other uses of SI.
2713 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2714
2715 while (BBI != BBFront) {
2716 --BBI;
2717 // If we found a call to a function, we can't assume it will return, so
2718 // information from below it cannot be propagated above it.
2719 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2720 break;
2721
2722 // Replace uses of the select or its condition with the known values.
2723 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2724 I != E; ++I) {
2725 if (*I == SI) {
2726 *I = SI->getOperand(NonNullOperand);
2727 AddToWorkList(BBI);
2728 } else if (*I == SelectCond) {
2729 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2730 ConstantInt::getFalse();
2731 AddToWorkList(BBI);
2732 }
2733 }
2734
2735 // If we past the instruction, quit looking for it.
2736 if (&*BBI == SI)
2737 SI = 0;
2738 if (&*BBI == SelectCond)
2739 SelectCond = 0;
2740
2741 // If we ran out of things to eliminate, break out of the loop.
2742 if (SelectCond == 0 && SI == 0)
2743 break;
2744
2745 }
2746 return true;
2747}
2748
2749
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002750/// This function implements the transforms on div instructions that work
2751/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2752/// used by the visitors to those instructions.
2753/// @brief Transforms common to all three div instructions
2754Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2755 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2756
Chris Lattner653ef3c2008-02-19 06:12:18 +00002757 // undef / X -> 0 for integer.
2758 // undef / X -> undef for FP (the undef could be a snan).
2759 if (isa<UndefValue>(Op0)) {
2760 if (Op0->getType()->isFPOrFPVector())
2761 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002762 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002763 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002764
2765 // X / undef -> undef
2766 if (isa<UndefValue>(Op1))
2767 return ReplaceInstUsesWith(I, Op1);
2768
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002769 return 0;
2770}
2771
2772/// This function implements the transforms common to both integer division
2773/// instructions (udiv and sdiv). It is called by the visitors to those integer
2774/// division instructions.
2775/// @brief Common integer divide transforms
2776Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2777 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2778
Chris Lattnercefb36c2008-05-16 02:59:42 +00002779 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002780 if (Op0 == Op1) {
2781 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2782 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2783 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2784 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2785 }
2786
2787 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2788 return ReplaceInstUsesWith(I, CI);
2789 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002790
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002791 if (Instruction *Common = commonDivTransforms(I))
2792 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002793
2794 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2795 // This does not apply for fdiv.
2796 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2797 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002798
2799 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2800 // div X, 1 == X
2801 if (RHS->equalsInt(1))
2802 return ReplaceInstUsesWith(I, Op0);
2803
2804 // (X / C1) / C2 -> X / (C1*C2)
2805 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2806 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2807 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002808 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2809 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2810 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002811 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002812 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002813 }
2814
2815 if (!RHS->isZero()) { // avoid X udiv 0
2816 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2817 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2818 return R;
2819 if (isa<PHINode>(Op0))
2820 if (Instruction *NV = FoldOpIntoPhi(I))
2821 return NV;
2822 }
2823 }
2824
2825 // 0 / X == 0, we don't need to preserve faults!
2826 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2827 if (LHS->equalsInt(0))
2828 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2829
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002830 // It can't be division by zero, hence it must be division by one.
2831 if (I.getType() == Type::Int1Ty)
2832 return ReplaceInstUsesWith(I, Op0);
2833
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002834 return 0;
2835}
2836
2837Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2838 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2839
2840 // Handle the integer div common cases
2841 if (Instruction *Common = commonIDivTransforms(I))
2842 return Common;
2843
2844 // X udiv C^2 -> X >> C
2845 // Check to see if this is an unsigned division with an exact power of 2,
2846 // if so, convert to a right shift.
2847 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2848 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002849 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002850 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2851 }
2852
2853 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2854 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2855 if (RHSI->getOpcode() == Instruction::Shl &&
2856 isa<ConstantInt>(RHSI->getOperand(0))) {
2857 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2858 if (C1.isPowerOf2()) {
2859 Value *N = RHSI->getOperand(1);
2860 const Type *NTy = N->getType();
2861 if (uint32_t C2 = C1.logBase2()) {
2862 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002863 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002864 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002865 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002866 }
2867 }
2868 }
2869
2870 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2871 // where C1&C2 are powers of two.
2872 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2873 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2874 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2875 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2876 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2877 // Compute the shift amounts
2878 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2879 // Construct the "on true" case of the select
2880 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002881 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002882 Op0, TC, SI->getName()+".t");
2883 TSI = InsertNewInstBefore(TSI, I);
2884
2885 // Construct the "on false" case of the select
2886 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002887 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002888 Op0, FC, SI->getName()+".f");
2889 FSI = InsertNewInstBefore(FSI, I);
2890
2891 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002892 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002893 }
2894 }
2895 return 0;
2896}
2897
2898Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2899 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2900
2901 // Handle the integer div common cases
2902 if (Instruction *Common = commonIDivTransforms(I))
2903 return Common;
2904
2905 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2906 // sdiv X, -1 == -X
2907 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002908 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002909
2910 // -X/C -> X/-C
2911 if (Value *LHSNeg = dyn_castNegVal(Op0))
Gabor Greifa645dd32008-05-16 19:29:10 +00002912 return BinaryOperator::CreateSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002913 }
2914
2915 // If the sign bits of both operands are zero (i.e. we can prove they are
2916 // unsigned inputs), turn this into a udiv.
2917 if (I.getType()->isInteger()) {
2918 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2919 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002920 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002921 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002922 }
2923 }
2924
2925 return 0;
2926}
2927
2928Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2929 return commonDivTransforms(I);
2930}
2931
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002932/// This function implements the transforms on rem instructions that work
2933/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2934/// is used by the visitors to those instructions.
2935/// @brief Transforms common to all three rem instructions
2936Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2937 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2938
Chris Lattner653ef3c2008-02-19 06:12:18 +00002939 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002940 if (Constant *LHS = dyn_cast<Constant>(Op0))
2941 if (LHS->isNullValue())
2942 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2943
Chris Lattner653ef3c2008-02-19 06:12:18 +00002944 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2945 if (I.getType()->isFPOrFPVector())
2946 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002947 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002948 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002949 if (isa<UndefValue>(Op1))
2950 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2951
2952 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002953 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2954 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002955
2956 return 0;
2957}
2958
2959/// This function implements the transforms common to both integer remainder
2960/// instructions (urem and srem). It is called by the visitors to those integer
2961/// remainder instructions.
2962/// @brief Common integer remainder transforms
2963Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2964 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2965
2966 if (Instruction *common = commonRemTransforms(I))
2967 return common;
2968
2969 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2970 // X % 0 == undef, we don't need to preserve faults!
2971 if (RHS->equalsInt(0))
2972 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2973
2974 if (RHS->equalsInt(1)) // X % 1 == 0
2975 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2976
2977 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2978 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2979 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2980 return R;
2981 } else if (isa<PHINode>(Op0I)) {
2982 if (Instruction *NV = FoldOpIntoPhi(I))
2983 return NV;
2984 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00002985
2986 // See if we can fold away this rem instruction.
2987 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
2988 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2989 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2990 KnownZero, KnownOne))
2991 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002992 }
2993 }
2994
2995 return 0;
2996}
2997
2998Instruction *InstCombiner::visitURem(BinaryOperator &I) {
2999 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3000
3001 if (Instruction *common = commonIRemTransforms(I))
3002 return common;
3003
3004 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3005 // X urem C^2 -> X and C
3006 // Check to see if this is an unsigned remainder with an exact power of 2,
3007 // if so, convert to a bitwise and.
3008 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3009 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003010 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003011 }
3012
3013 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3014 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3015 if (RHSI->getOpcode() == Instruction::Shl &&
3016 isa<ConstantInt>(RHSI->getOperand(0))) {
3017 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3018 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003019 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003020 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003021 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003022 }
3023 }
3024 }
3025
3026 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3027 // where C1&C2 are powers of two.
3028 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3029 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3030 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3031 // STO == 0 and SFO == 0 handled above.
3032 if ((STO->getValue().isPowerOf2()) &&
3033 (SFO->getValue().isPowerOf2())) {
3034 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003035 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003036 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003037 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003038 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003039 }
3040 }
3041 }
3042
3043 return 0;
3044}
3045
3046Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3047 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3048
Dan Gohmandb3dd962007-11-05 23:16:33 +00003049 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003050 if (Instruction *common = commonIRemTransforms(I))
3051 return common;
3052
3053 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003054 if (!isa<Constant>(RHSNeg) ||
3055 (isa<ConstantInt>(RHSNeg) &&
3056 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003057 // X % -Y -> X % Y
3058 AddUsesToWorkList(I);
3059 I.setOperand(1, RHSNeg);
3060 return &I;
3061 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003062
Dan Gohmandb3dd962007-11-05 23:16:33 +00003063 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003064 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003065 if (I.getType()->isInteger()) {
3066 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3067 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3068 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003069 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003070 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003071 }
3072
3073 return 0;
3074}
3075
3076Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3077 return commonRemTransforms(I);
3078}
3079
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080// isOneBitSet - Return true if there is exactly one bit set in the specified
3081// constant.
3082static bool isOneBitSet(const ConstantInt *CI) {
3083 return CI->getValue().isPowerOf2();
3084}
3085
3086// isHighOnes - Return true if the constant is of the form 1+0+.
3087// This is the same as lowones(~X).
3088static bool isHighOnes(const ConstantInt *CI) {
3089 return (~CI->getValue() + 1).isPowerOf2();
3090}
3091
3092/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3093/// are carefully arranged to allow folding of expressions such as:
3094///
3095/// (A < B) | (A > B) --> (A != B)
3096///
3097/// Note that this is only valid if the first and second predicates have the
3098/// same sign. Is illegal to do: (A u< B) | (A s> B)
3099///
3100/// Three bits are used to represent the condition, as follows:
3101/// 0 A > B
3102/// 1 A == B
3103/// 2 A < B
3104///
3105/// <=> Value Definition
3106/// 000 0 Always false
3107/// 001 1 A > B
3108/// 010 2 A == B
3109/// 011 3 A >= B
3110/// 100 4 A < B
3111/// 101 5 A != B
3112/// 110 6 A <= B
3113/// 111 7 Always true
3114///
3115static unsigned getICmpCode(const ICmpInst *ICI) {
3116 switch (ICI->getPredicate()) {
3117 // False -> 0
3118 case ICmpInst::ICMP_UGT: return 1; // 001
3119 case ICmpInst::ICMP_SGT: return 1; // 001
3120 case ICmpInst::ICMP_EQ: return 2; // 010
3121 case ICmpInst::ICMP_UGE: return 3; // 011
3122 case ICmpInst::ICMP_SGE: return 3; // 011
3123 case ICmpInst::ICMP_ULT: return 4; // 100
3124 case ICmpInst::ICMP_SLT: return 4; // 100
3125 case ICmpInst::ICMP_NE: return 5; // 101
3126 case ICmpInst::ICMP_ULE: return 6; // 110
3127 case ICmpInst::ICMP_SLE: return 6; // 110
3128 // True -> 7
3129 default:
3130 assert(0 && "Invalid ICmp predicate!");
3131 return 0;
3132 }
3133}
3134
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003135/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3136/// predicate into a three bit mask. It also returns whether it is an ordered
3137/// predicate by reference.
3138static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3139 isOrdered = false;
3140 switch (CC) {
3141 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3142 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003143 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3144 case FCmpInst::FCMP_UGT: return 1; // 001
3145 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3146 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003147 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3148 case FCmpInst::FCMP_UGE: return 3; // 011
3149 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3150 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003151 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3152 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003153 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3154 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003155 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003156 default:
3157 // Not expecting FCMP_FALSE and FCMP_TRUE;
3158 assert(0 && "Unexpected FCmp predicate!");
3159 return 0;
3160 }
3161}
3162
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003163/// getICmpValue - This is the complement of getICmpCode, which turns an
3164/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003165/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003166/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003167static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3168 switch (code) {
3169 default: assert(0 && "Illegal ICmp code!");
3170 case 0: return ConstantInt::getFalse();
3171 case 1:
3172 if (sign)
3173 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3174 else
3175 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3176 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3177 case 3:
3178 if (sign)
3179 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3180 else
3181 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3182 case 4:
3183 if (sign)
3184 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3185 else
3186 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3187 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3188 case 6:
3189 if (sign)
3190 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3191 else
3192 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3193 case 7: return ConstantInt::getTrue();
3194 }
3195}
3196
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003197/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3198/// opcode and two operands into either a FCmp instruction. isordered is passed
3199/// in to determine which kind of predicate to use in the new fcmp instruction.
3200static Value *getFCmpValue(bool isordered, unsigned code,
3201 Value *LHS, Value *RHS) {
3202 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003203 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003204 case 0:
3205 if (isordered)
3206 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3207 else
3208 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3209 case 1:
3210 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003211 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3212 else
3213 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003214 case 2:
3215 if (isordered)
3216 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3217 else
3218 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003219 case 3:
3220 if (isordered)
3221 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3222 else
3223 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3224 case 4:
3225 if (isordered)
3226 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3227 else
3228 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3229 case 5:
3230 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003231 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3232 else
3233 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3234 case 6:
3235 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003236 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3237 else
3238 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003239 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003240 }
3241}
3242
3243
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003244static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3245 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3246 (ICmpInst::isSignedPredicate(p1) &&
3247 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3248 (ICmpInst::isSignedPredicate(p2) &&
3249 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3250}
3251
3252namespace {
3253// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3254struct FoldICmpLogical {
3255 InstCombiner &IC;
3256 Value *LHS, *RHS;
3257 ICmpInst::Predicate pred;
3258 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3259 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3260 pred(ICI->getPredicate()) {}
3261 bool shouldApply(Value *V) const {
3262 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3263 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003264 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3265 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003266 return false;
3267 }
3268 Instruction *apply(Instruction &Log) const {
3269 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3270 if (ICI->getOperand(0) != LHS) {
3271 assert(ICI->getOperand(1) == LHS);
3272 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3273 }
3274
3275 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3276 unsigned LHSCode = getICmpCode(ICI);
3277 unsigned RHSCode = getICmpCode(RHSICI);
3278 unsigned Code;
3279 switch (Log.getOpcode()) {
3280 case Instruction::And: Code = LHSCode & RHSCode; break;
3281 case Instruction::Or: Code = LHSCode | RHSCode; break;
3282 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3283 default: assert(0 && "Illegal logical opcode!"); return 0;
3284 }
3285
3286 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3287 ICmpInst::isSignedPredicate(ICI->getPredicate());
3288
3289 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3290 if (Instruction *I = dyn_cast<Instruction>(RV))
3291 return I;
3292 // Otherwise, it's a constant boolean value...
3293 return IC.ReplaceInstUsesWith(Log, RV);
3294 }
3295};
3296} // end anonymous namespace
3297
3298// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3299// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3300// guaranteed to be a binary operator.
3301Instruction *InstCombiner::OptAndOp(Instruction *Op,
3302 ConstantInt *OpRHS,
3303 ConstantInt *AndRHS,
3304 BinaryOperator &TheAnd) {
3305 Value *X = Op->getOperand(0);
3306 Constant *Together = 0;
3307 if (!Op->isShift())
3308 Together = And(AndRHS, OpRHS);
3309
3310 switch (Op->getOpcode()) {
3311 case Instruction::Xor:
3312 if (Op->hasOneUse()) {
3313 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003314 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003315 InsertNewInstBefore(And, TheAnd);
3316 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003317 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003318 }
3319 break;
3320 case Instruction::Or:
3321 if (Together == AndRHS) // (X | C) & C --> C
3322 return ReplaceInstUsesWith(TheAnd, AndRHS);
3323
3324 if (Op->hasOneUse() && Together != OpRHS) {
3325 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003326 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003327 InsertNewInstBefore(Or, TheAnd);
3328 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003329 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003330 }
3331 break;
3332 case Instruction::Add:
3333 if (Op->hasOneUse()) {
3334 // Adding a one to a single bit bit-field should be turned into an XOR
3335 // of the bit. First thing to check is to see if this AND is with a
3336 // single bit constant.
3337 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3338
3339 // If there is only one bit set...
3340 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3341 // Ok, at this point, we know that we are masking the result of the
3342 // ADD down to exactly one bit. If the constant we are adding has
3343 // no bits set below this bit, then we can eliminate the ADD.
3344 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3345
3346 // Check to see if any bits below the one bit set in AndRHSV are set.
3347 if ((AddRHS & (AndRHSV-1)) == 0) {
3348 // If not, the only thing that can effect the output of the AND is
3349 // the bit specified by AndRHSV. If that bit is set, the effect of
3350 // the XOR is to toggle the bit. If it is clear, then the ADD has
3351 // no effect.
3352 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3353 TheAnd.setOperand(0, X);
3354 return &TheAnd;
3355 } else {
3356 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003357 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003358 InsertNewInstBefore(NewAnd, TheAnd);
3359 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003360 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003361 }
3362 }
3363 }
3364 }
3365 break;
3366
3367 case Instruction::Shl: {
3368 // We know that the AND will not produce any of the bits shifted in, so if
3369 // the anded constant includes them, clear them now!
3370 //
3371 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3372 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3373 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3374 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3375
3376 if (CI->getValue() == ShlMask) {
3377 // Masking out bits that the shift already masks
3378 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3379 } else if (CI != AndRHS) { // Reducing bits set in and.
3380 TheAnd.setOperand(1, CI);
3381 return &TheAnd;
3382 }
3383 break;
3384 }
3385 case Instruction::LShr:
3386 {
3387 // We know that the AND will not produce any of the bits shifted in, so if
3388 // the anded constant includes them, clear them now! This only applies to
3389 // unsigned shifts, because a signed shr may bring in set bits!
3390 //
3391 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3392 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3393 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3394 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3395
3396 if (CI->getValue() == ShrMask) {
3397 // Masking out bits that the shift already masks.
3398 return ReplaceInstUsesWith(TheAnd, Op);
3399 } else if (CI != AndRHS) {
3400 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3401 return &TheAnd;
3402 }
3403 break;
3404 }
3405 case Instruction::AShr:
3406 // Signed shr.
3407 // See if this is shifting in some sign extension, then masking it out
3408 // with an and.
3409 if (Op->hasOneUse()) {
3410 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3411 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3412 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3413 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3414 if (C == AndRHS) { // Masking out bits shifted in.
3415 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3416 // Make the argument unsigned.
3417 Value *ShVal = Op->getOperand(0);
3418 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003419 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003420 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003421 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003422 }
3423 }
3424 break;
3425 }
3426 return 0;
3427}
3428
3429
3430/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3431/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3432/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3433/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3434/// insert new instructions.
3435Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3436 bool isSigned, bool Inside,
3437 Instruction &IB) {
3438 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3439 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3440 "Lo is not <= Hi in range emission code!");
3441
3442 if (Inside) {
3443 if (Lo == Hi) // Trivially false.
3444 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3445
3446 // V >= Min && V < Hi --> V < Hi
3447 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3448 ICmpInst::Predicate pred = (isSigned ?
3449 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3450 return new ICmpInst(pred, V, Hi);
3451 }
3452
3453 // Emit V-Lo <u Hi-Lo
3454 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003455 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003456 InsertNewInstBefore(Add, IB);
3457 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3458 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3459 }
3460
3461 if (Lo == Hi) // Trivially true.
3462 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3463
3464 // V < Min || V >= Hi -> V > Hi-1
3465 Hi = SubOne(cast<ConstantInt>(Hi));
3466 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3467 ICmpInst::Predicate pred = (isSigned ?
3468 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3469 return new ICmpInst(pred, V, Hi);
3470 }
3471
3472 // Emit V-Lo >u Hi-1-Lo
3473 // Note that Hi has already had one subtracted from it, above.
3474 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003475 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003476 InsertNewInstBefore(Add, IB);
3477 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3478 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3479}
3480
3481// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3482// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3483// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3484// not, since all 1s are not contiguous.
3485static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3486 const APInt& V = Val->getValue();
3487 uint32_t BitWidth = Val->getType()->getBitWidth();
3488 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3489
3490 // look for the first zero bit after the run of ones
3491 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3492 // look for the first non-zero bit
3493 ME = V.getActiveBits();
3494 return true;
3495}
3496
3497/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3498/// where isSub determines whether the operator is a sub. If we can fold one of
3499/// the following xforms:
3500///
3501/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3502/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3503/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3504///
3505/// return (A +/- B).
3506///
3507Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3508 ConstantInt *Mask, bool isSub,
3509 Instruction &I) {
3510 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3511 if (!LHSI || LHSI->getNumOperands() != 2 ||
3512 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3513
3514 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3515
3516 switch (LHSI->getOpcode()) {
3517 default: return 0;
3518 case Instruction::And:
3519 if (And(N, Mask) == Mask) {
3520 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3521 if ((Mask->getValue().countLeadingZeros() +
3522 Mask->getValue().countPopulation()) ==
3523 Mask->getValue().getBitWidth())
3524 break;
3525
3526 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3527 // part, we don't need any explicit masks to take them out of A. If that
3528 // is all N is, ignore it.
3529 uint32_t MB = 0, ME = 0;
3530 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3531 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3532 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3533 if (MaskedValueIsZero(RHS, Mask))
3534 break;
3535 }
3536 }
3537 return 0;
3538 case Instruction::Or:
3539 case Instruction::Xor:
3540 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3541 if ((Mask->getValue().countLeadingZeros() +
3542 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3543 && And(N, Mask)->isZero())
3544 break;
3545 return 0;
3546 }
3547
3548 Instruction *New;
3549 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003550 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003551 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003552 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003553 return InsertNewInstBefore(New, I);
3554}
3555
3556Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3557 bool Changed = SimplifyCommutative(I);
3558 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3559
3560 if (isa<UndefValue>(Op1)) // X & undef -> 0
3561 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3562
3563 // and X, X = X
3564 if (Op0 == Op1)
3565 return ReplaceInstUsesWith(I, Op1);
3566
3567 // See if we can simplify any instructions used by the instruction whose sole
3568 // purpose is to compute bits we don't care about.
3569 if (!isa<VectorType>(I.getType())) {
3570 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3571 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3572 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3573 KnownZero, KnownOne))
3574 return &I;
3575 } else {
3576 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3577 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3578 return ReplaceInstUsesWith(I, I.getOperand(0));
3579 } else if (isa<ConstantAggregateZero>(Op1)) {
3580 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3581 }
3582 }
3583
3584 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3585 const APInt& AndRHSMask = AndRHS->getValue();
3586 APInt NotAndRHS(~AndRHSMask);
3587
3588 // Optimize a variety of ((val OP C1) & C2) combinations...
3589 if (isa<BinaryOperator>(Op0)) {
3590 Instruction *Op0I = cast<Instruction>(Op0);
3591 Value *Op0LHS = Op0I->getOperand(0);
3592 Value *Op0RHS = Op0I->getOperand(1);
3593 switch (Op0I->getOpcode()) {
3594 case Instruction::Xor:
3595 case Instruction::Or:
3596 // If the mask is only needed on one incoming arm, push it up.
3597 if (Op0I->hasOneUse()) {
3598 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3599 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003600 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003601 Op0RHS->getName()+".masked");
3602 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003603 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003604 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3605 }
3606 if (!isa<Constant>(Op0RHS) &&
3607 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3608 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003609 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003610 Op0LHS->getName()+".masked");
3611 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003612 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003613 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3614 }
3615 }
3616
3617 break;
3618 case Instruction::Add:
3619 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3620 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3621 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3622 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003623 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003624 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003625 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003626 break;
3627
3628 case Instruction::Sub:
3629 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3630 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3631 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3632 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003633 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003634
Nick Lewyckya349ba42008-07-10 05:51:40 +00003635 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3636 // has 1's for all bits that the subtraction with A might affect.
3637 if (Op0I->hasOneUse()) {
3638 uint32_t BitWidth = AndRHSMask.getBitWidth();
3639 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3640 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3641
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003642 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003643 if (!(A && A->isZero()) && // avoid infinite recursion.
3644 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003645 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3646 InsertNewInstBefore(NewNeg, I);
3647 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3648 }
3649 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003650 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003651
3652 case Instruction::Shl:
3653 case Instruction::LShr:
3654 // (1 << x) & 1 --> zext(x == 0)
3655 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003656 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003657 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3658 Constant::getNullValue(I.getType()));
3659 InsertNewInstBefore(NewICmp, I);
3660 return new ZExtInst(NewICmp, I.getType());
3661 }
3662 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003663 }
3664
3665 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3666 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3667 return Res;
3668 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3669 // If this is an integer truncation or change from signed-to-unsigned, and
3670 // if the source is an and/or with immediate, transform it. This
3671 // frequently occurs for bitfield accesses.
3672 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3673 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3674 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003675 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003676 if (CastOp->getOpcode() == Instruction::And) {
3677 // Change: and (cast (and X, C1) to T), C2
3678 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3679 // This will fold the two constants together, which may allow
3680 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003681 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003682 CastOp->getOperand(0), I.getType(),
3683 CastOp->getName()+".shrunk");
3684 NewCast = InsertNewInstBefore(NewCast, I);
3685 // trunc_or_bitcast(C1)&C2
3686 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3687 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003688 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003689 } else if (CastOp->getOpcode() == Instruction::Or) {
3690 // Change: and (cast (or X, C1) to T), C2
3691 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3692 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3693 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3694 return ReplaceInstUsesWith(I, AndRHS);
3695 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003696 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003697 }
3698 }
3699
3700 // Try to fold constant and into select arguments.
3701 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3702 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3703 return R;
3704 if (isa<PHINode>(Op0))
3705 if (Instruction *NV = FoldOpIntoPhi(I))
3706 return NV;
3707 }
3708
3709 Value *Op0NotVal = dyn_castNotVal(Op0);
3710 Value *Op1NotVal = dyn_castNotVal(Op1);
3711
3712 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3713 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3714
3715 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3716 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003717 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003718 I.getName()+".demorgan");
3719 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003720 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003721 }
3722
3723 {
3724 Value *A = 0, *B = 0, *C = 0, *D = 0;
3725 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3726 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3727 return ReplaceInstUsesWith(I, Op1);
3728
3729 // (A|B) & ~(A&B) -> A^B
3730 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3731 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003732 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003733 }
3734 }
3735
3736 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3737 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3738 return ReplaceInstUsesWith(I, Op0);
3739
3740 // ~(A&B) & (A|B) -> A^B
3741 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3742 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003743 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003744 }
3745 }
3746
3747 if (Op0->hasOneUse() &&
3748 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3749 if (A == Op1) { // (A^B)&A -> A&(A^B)
3750 I.swapOperands(); // Simplify below
3751 std::swap(Op0, Op1);
3752 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3753 cast<BinaryOperator>(Op0)->swapOperands();
3754 I.swapOperands(); // Simplify below
3755 std::swap(Op0, Op1);
3756 }
3757 }
3758 if (Op1->hasOneUse() &&
3759 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3760 if (B == Op0) { // B&(A^B) -> B&(B^A)
3761 cast<BinaryOperator>(Op1)->swapOperands();
3762 std::swap(A, B);
3763 }
3764 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003765 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003766 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003767 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003768 }
3769 }
3770 }
3771
Nick Lewycky771d6052008-08-06 04:54:03 +00003772 { // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3773 // where C is a power of 2
3774 Value *A, *B;
3775 ConstantInt *C1, *C2;
Evan Cheng94fd9742008-08-20 23:36:48 +00003776 ICmpInst::Predicate LHSCC = ICmpInst::BAD_ICMP_PREDICATE;
3777 ICmpInst::Predicate RHSCC = ICmpInst::BAD_ICMP_PREDICATE;
Nick Lewycky771d6052008-08-06 04:54:03 +00003778 if (match(&I, m_And(m_ICmp(LHSCC, m_Value(A), m_ConstantInt(C1)),
3779 m_ICmp(RHSCC, m_Value(B), m_ConstantInt(C2)))))
3780 if (C1 == C2 && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3781 C1->getValue().isPowerOf2()) {
3782 Instruction *NewOr = BinaryOperator::CreateOr(A, B);
3783 InsertNewInstBefore(NewOr, I);
3784 return new ICmpInst(LHSCC, NewOr, C1);
3785 }
3786 }
3787
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003788 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3789 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3790 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3791 return R;
3792
3793 Value *LHSVal, *RHSVal;
3794 ConstantInt *LHSCst, *RHSCst;
3795 ICmpInst::Predicate LHSCC, RHSCC;
3796 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3797 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3798 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3799 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3800 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3801 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3802 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattner205ad1d2007-11-22 23:47:13 +00003803 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3804
3805 // Don't try to fold ICMP_SLT + ICMP_ULT.
3806 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3807 ICmpInst::isSignedPredicate(LHSCC) ==
3808 ICmpInst::isSignedPredicate(RHSCC))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003809 // Ensure that the larger constant is on the RHS.
Chris Lattnerda628ca2008-01-13 20:59:02 +00003810 ICmpInst::Predicate GT;
3811 if (ICmpInst::isSignedPredicate(LHSCC) ||
3812 (ICmpInst::isEquality(LHSCC) &&
3813 ICmpInst::isSignedPredicate(RHSCC)))
3814 GT = ICmpInst::ICMP_SGT;
3815 else
3816 GT = ICmpInst::ICMP_UGT;
3817
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003818 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3819 ICmpInst *LHS = cast<ICmpInst>(Op0);
3820 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3821 std::swap(LHS, RHS);
3822 std::swap(LHSCst, RHSCst);
3823 std::swap(LHSCC, RHSCC);
3824 }
3825
3826 // At this point, we know we have have two icmp instructions
3827 // comparing a value against two constants and and'ing the result
3828 // together. Because of the above check, we know that we only have
3829 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3830 // (from the FoldICmpLogical check above), that the two constants
3831 // are not equal and that the larger constant is on the RHS
3832 assert(LHSCst != RHSCst && "Compares not folded above?");
3833
3834 switch (LHSCC) {
3835 default: assert(0 && "Unknown integer condition code!");
3836 case ICmpInst::ICMP_EQ:
3837 switch (RHSCC) {
3838 default: assert(0 && "Unknown integer condition code!");
3839 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3840 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3841 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3842 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3843 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3844 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3845 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3846 return ReplaceInstUsesWith(I, LHS);
3847 }
3848 case ICmpInst::ICMP_NE:
3849 switch (RHSCC) {
3850 default: assert(0 && "Unknown integer condition code!");
3851 case ICmpInst::ICMP_ULT:
3852 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3853 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3854 break; // (X != 13 & X u< 15) -> no change
3855 case ICmpInst::ICMP_SLT:
3856 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3857 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3858 break; // (X != 13 & X s< 15) -> no change
3859 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3860 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3861 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3862 return ReplaceInstUsesWith(I, RHS);
3863 case ICmpInst::ICMP_NE:
3864 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3865 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00003866 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003867 LHSVal->getName()+".off");
3868 InsertNewInstBefore(Add, I);
3869 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3870 ConstantInt::get(Add->getType(), 1));
3871 }
3872 break; // (X != 13 & X != 15) -> no change
3873 }
3874 break;
3875 case ICmpInst::ICMP_ULT:
3876 switch (RHSCC) {
3877 default: assert(0 && "Unknown integer condition code!");
3878 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3879 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3880 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3881 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3882 break;
3883 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3884 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3885 return ReplaceInstUsesWith(I, LHS);
3886 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3887 break;
3888 }
3889 break;
3890 case ICmpInst::ICMP_SLT:
3891 switch (RHSCC) {
3892 default: assert(0 && "Unknown integer condition code!");
3893 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3894 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3895 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3896 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3897 break;
3898 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3899 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3900 return ReplaceInstUsesWith(I, LHS);
3901 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3902 break;
3903 }
3904 break;
3905 case ICmpInst::ICMP_UGT:
3906 switch (RHSCC) {
3907 default: assert(0 && "Unknown integer condition code!");
Eli Friedman22b85622008-06-21 23:36:13 +00003908 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003909 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3910 return ReplaceInstUsesWith(I, RHS);
3911 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3912 break;
3913 case ICmpInst::ICMP_NE:
3914 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3915 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3916 break; // (X u> 13 & X != 15) -> no change
3917 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3918 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3919 true, I);
3920 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3921 break;
3922 }
3923 break;
3924 case ICmpInst::ICMP_SGT:
3925 switch (RHSCC) {
3926 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerab0fc252007-11-16 06:04:17 +00003927 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003928 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3929 return ReplaceInstUsesWith(I, RHS);
3930 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3931 break;
3932 case ICmpInst::ICMP_NE:
3933 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3934 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3935 break; // (X s> 13 & X != 15) -> no change
3936 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
3937 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
3938 true, I);
3939 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3940 break;
3941 }
3942 break;
3943 }
3944 }
3945 }
3946
3947 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3948 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3949 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3950 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3951 const Type *SrcTy = Op0C->getOperand(0)->getType();
3952 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3953 // Only do this if the casts both really cause code to be generated.
3954 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3955 I.getType(), TD) &&
3956 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3957 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003958 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003959 Op1C->getOperand(0),
3960 I.getName());
3961 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003962 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003963 }
3964 }
3965
3966 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3967 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3968 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3969 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3970 SI0->getOperand(1) == SI1->getOperand(1) &&
3971 (SI0->hasOneUse() || SI1->hasOneUse())) {
3972 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00003973 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003974 SI1->getOperand(0),
3975 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003976 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003977 SI1->getOperand(1));
3978 }
3979 }
3980
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003981 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00003982 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
3983 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
3984 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003985 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
3986 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00003987 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3988 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3989 // If either of the constants are nans, then the whole thing returns
3990 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00003991 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00003992 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3993 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
3994 RHS->getOperand(0));
3995 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003996 } else {
3997 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
3998 FCmpInst::Predicate Op0CC, Op1CC;
3999 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4000 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00004001 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4002 // Swap RHS operands to match LHS.
4003 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4004 std::swap(Op1LHS, Op1RHS);
4005 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004006 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4007 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4008 if (Op0CC == Op1CC)
4009 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4010 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4011 Op1CC == FCmpInst::FCMP_FALSE)
4012 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4013 else if (Op0CC == FCmpInst::FCMP_TRUE)
4014 return ReplaceInstUsesWith(I, Op1);
4015 else if (Op1CC == FCmpInst::FCMP_TRUE)
4016 return ReplaceInstUsesWith(I, Op0);
4017 bool Op0Ordered;
4018 bool Op1Ordered;
4019 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4020 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4021 if (Op1Pred == 0) {
4022 std::swap(Op0, Op1);
4023 std::swap(Op0Pred, Op1Pred);
4024 std::swap(Op0Ordered, Op1Ordered);
4025 }
4026 if (Op0Pred == 0) {
4027 // uno && ueq -> uno && (uno || eq) -> ueq
4028 // ord && olt -> ord && (ord && lt) -> olt
4029 if (Op0Ordered == Op1Ordered)
4030 return ReplaceInstUsesWith(I, Op1);
4031 // uno && oeq -> uno && (ord && eq) -> false
4032 // uno && ord -> false
4033 if (!Op0Ordered)
4034 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4035 // ord && ueq -> ord && (uno || eq) -> oeq
4036 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4037 Op0LHS, Op0RHS));
4038 }
4039 }
4040 }
4041 }
Chris Lattner91882432007-10-24 05:38:08 +00004042 }
4043 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004044
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004045 return Changed ? &I : 0;
4046}
4047
Chris Lattner567f5112008-10-05 02:13:19 +00004048/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4049/// capable of providing pieces of a bswap. The subexpression provides pieces
4050/// of a bswap if it is proven that each of the non-zero bytes in the output of
4051/// the expression came from the corresponding "byte swapped" byte in some other
4052/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4053/// we know that the expression deposits the low byte of %X into the high byte
4054/// of the bswap result and that all other bytes are zero. This expression is
4055/// accepted, the high byte of ByteValues is set to X to indicate a correct
4056/// match.
4057///
4058/// This function returns true if the match was unsuccessful and false if so.
4059/// On entry to the function the "OverallLeftShift" is a signed integer value
4060/// indicating the number of bytes that the subexpression is later shifted. For
4061/// example, if the expression is later right shifted by 16 bits, the
4062/// OverallLeftShift value would be -2 on entry. This is used to specify which
4063/// byte of ByteValues is actually being set.
4064///
4065/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4066/// byte is masked to zero by a user. For example, in (X & 255), X will be
4067/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4068/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4069/// always in the local (OverallLeftShift) coordinate space.
4070///
4071static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4072 SmallVector<Value*, 8> &ByteValues) {
4073 if (Instruction *I = dyn_cast<Instruction>(V)) {
4074 // If this is an or instruction, it may be an inner node of the bswap.
4075 if (I->getOpcode() == Instruction::Or) {
4076 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4077 ByteValues) ||
4078 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4079 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004080 }
Chris Lattner567f5112008-10-05 02:13:19 +00004081
4082 // If this is a logical shift by a constant multiple of 8, recurse with
4083 // OverallLeftShift and ByteMask adjusted.
4084 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4085 unsigned ShAmt =
4086 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4087 // Ensure the shift amount is defined and of a byte value.
4088 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4089 return true;
4090
4091 unsigned ByteShift = ShAmt >> 3;
4092 if (I->getOpcode() == Instruction::Shl) {
4093 // X << 2 -> collect(X, +2)
4094 OverallLeftShift += ByteShift;
4095 ByteMask >>= ByteShift;
4096 } else {
4097 // X >>u 2 -> collect(X, -2)
4098 OverallLeftShift -= ByteShift;
4099 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004100 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004101 }
4102
4103 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4104 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4105
4106 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4107 ByteValues);
4108 }
4109
4110 // If this is a logical 'and' with a mask that clears bytes, clear the
4111 // corresponding bytes in ByteMask.
4112 if (I->getOpcode() == Instruction::And &&
4113 isa<ConstantInt>(I->getOperand(1))) {
4114 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4115 unsigned NumBytes = ByteValues.size();
4116 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4117 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4118
4119 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4120 // If this byte is masked out by a later operation, we don't care what
4121 // the and mask is.
4122 if ((ByteMask & (1 << i)) == 0)
4123 continue;
4124
4125 // If the AndMask is all zeros for this byte, clear the bit.
4126 APInt MaskB = AndMask & Byte;
4127 if (MaskB == 0) {
4128 ByteMask &= ~(1U << i);
4129 continue;
4130 }
4131
4132 // If the AndMask is not all ones for this byte, it's not a bytezap.
4133 if (MaskB != Byte)
4134 return true;
4135
4136 // Otherwise, this byte is kept.
4137 }
4138
4139 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4140 ByteValues);
4141 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004142 }
4143
Chris Lattner567f5112008-10-05 02:13:19 +00004144 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4145 // the input value to the bswap. Some observations: 1) if more than one byte
4146 // is demanded from this input, then it could not be successfully assembled
4147 // into a byteswap. At least one of the two bytes would not be aligned with
4148 // their ultimate destination.
4149 if (!isPowerOf2_32(ByteMask)) return true;
4150 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004151
Chris Lattner567f5112008-10-05 02:13:19 +00004152 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4153 // is demanded, it needs to go into byte 0 of the result. This means that the
4154 // byte needs to be shifted until it lands in the right byte bucket. The
4155 // shift amount depends on the position: if the byte is coming from the high
4156 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4157 // low part, it must be shifted left.
4158 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4159 if (InputByteNo < ByteValues.size()/2) {
4160 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4161 return true;
4162 } else {
4163 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4164 return true;
4165 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004166
4167 // If the destination byte value is already defined, the values are or'd
4168 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004169 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004170 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004171 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004172 return false;
4173}
4174
4175/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4176/// If so, insert the new bswap intrinsic and return it.
4177Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4178 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004179 if (!ITy || ITy->getBitWidth() % 16 ||
4180 // ByteMask only allows up to 32-byte values.
4181 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004182 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4183
4184 /// ByteValues - For each byte of the result, we keep track of which value
4185 /// defines each byte.
4186 SmallVector<Value*, 8> ByteValues;
4187 ByteValues.resize(ITy->getBitWidth()/8);
4188
4189 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004190 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4191 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004192 return 0;
4193
4194 // Check to see if all of the bytes come from the same value.
4195 Value *V = ByteValues[0];
4196 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4197
4198 // Check to make sure that all of the bytes come from the same value.
4199 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4200 if (ByteValues[i] != V)
4201 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004202 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004203 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004204 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004205 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004206}
4207
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004208/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4209/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4210/// we can simplify this expression to "cond ? C : D or B".
4211static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4212 Value *C, Value *D) {
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004213 // If A is not a select of -1/0, this cannot match.
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004214 Value *Cond = 0, *Cond2 = 0;
Chris Lattnerd8640f62008-11-16 04:33:38 +00004215 if (!match(A, m_SelectCst(m_Value(Cond), -1, 0)))
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004216 return 0;
4217
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004218 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattnerd8640f62008-11-16 04:33:38 +00004219 if (match(D, m_SelectCst(m_Value(Cond2), 0, -1)) && Cond2 == Cond)
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004220 return SelectInst::Create(Cond, C, B);
Chris Lattnerd8640f62008-11-16 04:33:38 +00004221 if (match(D, m_Not(m_SelectCst(m_Value(Cond2), -1, 0))) && Cond2 == Cond)
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004222 return SelectInst::Create(Cond, C, B);
4223 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattnerd8640f62008-11-16 04:33:38 +00004224 if (match(B, m_SelectCst(m_Value(Cond2), 0, -1)) && Cond2 == Cond)
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004225 return SelectInst::Create(Cond, C, D);
Chris Lattnerd8640f62008-11-16 04:33:38 +00004226 if (match(B, m_Not(m_SelectCst(m_Value(Cond2), -1, 0))) && Cond2 == Cond)
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004227 return SelectInst::Create(Cond, C, D);
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004228 return 0;
4229}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004230
4231Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4232 bool Changed = SimplifyCommutative(I);
4233 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4234
4235 if (isa<UndefValue>(Op1)) // X | undef -> -1
4236 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4237
4238 // or X, X = X
4239 if (Op0 == Op1)
4240 return ReplaceInstUsesWith(I, Op0);
4241
4242 // See if we can simplify any instructions used by the instruction whose sole
4243 // purpose is to compute bits we don't care about.
4244 if (!isa<VectorType>(I.getType())) {
4245 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4246 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4247 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4248 KnownZero, KnownOne))
4249 return &I;
4250 } else if (isa<ConstantAggregateZero>(Op1)) {
4251 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4252 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4253 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4254 return ReplaceInstUsesWith(I, I.getOperand(1));
4255 }
4256
4257
4258
4259 // or X, -1 == -1
4260 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4261 ConstantInt *C1 = 0; Value *X = 0;
4262 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4263 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004264 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004265 InsertNewInstBefore(Or, I);
4266 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004267 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004268 ConstantInt::get(RHS->getValue() | C1->getValue()));
4269 }
4270
4271 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4272 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004273 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004274 InsertNewInstBefore(Or, I);
4275 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004276 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004277 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4278 }
4279
4280 // Try to fold constant and into select arguments.
4281 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4282 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4283 return R;
4284 if (isa<PHINode>(Op0))
4285 if (Instruction *NV = FoldOpIntoPhi(I))
4286 return NV;
4287 }
4288
4289 Value *A = 0, *B = 0;
4290 ConstantInt *C1 = 0, *C2 = 0;
4291
4292 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4293 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4294 return ReplaceInstUsesWith(I, Op1);
4295 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4296 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4297 return ReplaceInstUsesWith(I, Op0);
4298
4299 // (A | B) | C and A | (B | C) -> bswap if possible.
4300 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4301 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4302 match(Op1, m_Or(m_Value(), m_Value())) ||
4303 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4304 match(Op1, m_Shift(m_Value(), m_Value())))) {
4305 if (Instruction *BSwap = MatchBSwap(I))
4306 return BSwap;
4307 }
4308
4309 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4310 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4311 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004312 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004313 InsertNewInstBefore(NOr, I);
4314 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004315 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004316 }
4317
4318 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4319 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4320 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004321 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004322 InsertNewInstBefore(NOr, I);
4323 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004324 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004325 }
4326
4327 // (A & C)|(B & D)
4328 Value *C = 0, *D = 0;
4329 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4330 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4331 Value *V1 = 0, *V2 = 0, *V3 = 0;
4332 C1 = dyn_cast<ConstantInt>(C);
4333 C2 = dyn_cast<ConstantInt>(D);
4334 if (C1 && C2) { // (A & C1)|(B & C2)
4335 // If we have: ((V + N) & C1) | (V & C2)
4336 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4337 // replace with V+N.
4338 if (C1->getValue() == ~C2->getValue()) {
4339 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4340 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4341 // Add commutes, try both ways.
4342 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4343 return ReplaceInstUsesWith(I, A);
4344 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4345 return ReplaceInstUsesWith(I, A);
4346 }
4347 // Or commutes, try both ways.
4348 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4349 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4350 // Add commutes, try both ways.
4351 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4352 return ReplaceInstUsesWith(I, B);
4353 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4354 return ReplaceInstUsesWith(I, B);
4355 }
4356 }
4357 V1 = 0; V2 = 0; V3 = 0;
4358 }
4359
4360 // Check to see if we have any common things being and'ed. If so, find the
4361 // terms for V1 & (V2|V3).
4362 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4363 if (A == B) // (A & C)|(A & D) == A & (C|D)
4364 V1 = A, V2 = C, V3 = D;
4365 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4366 V1 = A, V2 = B, V3 = C;
4367 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4368 V1 = C, V2 = A, V3 = D;
4369 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4370 V1 = C, V2 = A, V3 = B;
4371
4372 if (V1) {
4373 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004374 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4375 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004376 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004377 }
Dan Gohman279952c2008-10-28 22:38:57 +00004378
Dan Gohman35b76162008-10-30 20:40:10 +00004379 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004380 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4381 return Match;
4382 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4383 return Match;
4384 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4385 return Match;
4386 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4387 return Match;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004388 }
4389
4390 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4391 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4392 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4393 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4394 SI0->getOperand(1) == SI1->getOperand(1) &&
4395 (SI0->hasOneUse() || SI1->hasOneUse())) {
4396 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004397 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004398 SI1->getOperand(0),
4399 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004400 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004401 SI1->getOperand(1));
4402 }
4403 }
4404
4405 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4406 if (A == Op1) // ~A | A == -1
4407 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4408 } else {
4409 A = 0;
4410 }
4411 // Note, A is still live here!
4412 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4413 if (Op0 == B)
4414 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4415
4416 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4417 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004418 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004419 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004420 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004421 }
4422 }
4423
4424 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4425 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4426 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4427 return R;
4428
4429 Value *LHSVal, *RHSVal;
4430 ConstantInt *LHSCst, *RHSCst;
4431 ICmpInst::Predicate LHSCC, RHSCC;
4432 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4433 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4434 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4435 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4436 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4437 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4438 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4439 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4440 // We can't fold (ugt x, C) | (sgt x, C2).
4441 PredicatesFoldable(LHSCC, RHSCC)) {
4442 // Ensure that the larger constant is on the RHS.
4443 ICmpInst *LHS = cast<ICmpInst>(Op0);
4444 bool NeedsSwap;
Nick Lewycky5515c7a2008-09-30 06:08:34 +00004445 if (ICmpInst::isEquality(LHSCC) ? ICmpInst::isSignedPredicate(RHSCC)
4446 : ICmpInst::isSignedPredicate(LHSCC))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004447 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4448 else
4449 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4450
4451 if (NeedsSwap) {
4452 std::swap(LHS, RHS);
4453 std::swap(LHSCst, RHSCst);
4454 std::swap(LHSCC, RHSCC);
4455 }
4456
4457 // At this point, we know we have have two icmp instructions
4458 // comparing a value against two constants and or'ing the result
4459 // together. Because of the above check, we know that we only have
4460 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4461 // FoldICmpLogical check above), that the two constants are not
4462 // equal.
4463 assert(LHSCst != RHSCst && "Compares not folded above?");
4464
4465 switch (LHSCC) {
4466 default: assert(0 && "Unknown integer condition code!");
4467 case ICmpInst::ICMP_EQ:
4468 switch (RHSCC) {
4469 default: assert(0 && "Unknown integer condition code!");
4470 case ICmpInst::ICMP_EQ:
4471 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4472 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00004473 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004474 LHSVal->getName()+".off");
4475 InsertNewInstBefore(Add, I);
4476 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4477 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4478 }
4479 break; // (X == 13 | X == 15) -> no change
4480 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4481 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4482 break;
4483 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4484 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4485 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4486 return ReplaceInstUsesWith(I, RHS);
4487 }
4488 break;
4489 case ICmpInst::ICMP_NE:
4490 switch (RHSCC) {
4491 default: assert(0 && "Unknown integer condition code!");
4492 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4493 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4494 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4495 return ReplaceInstUsesWith(I, LHS);
4496 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4497 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4498 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4499 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4500 }
4501 break;
4502 case ICmpInst::ICMP_ULT:
4503 switch (RHSCC) {
4504 default: assert(0 && "Unknown integer condition code!");
4505 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4506 break;
4507 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
Chris Lattner26376862007-11-01 02:18:41 +00004508 // If RHSCst is [us]MAXINT, it is always false. Not handling
4509 // this can cause overflow.
4510 if (RHSCst->isMaxValue(false))
4511 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004512 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4513 false, I);
4514 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4515 break;
4516 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4517 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4518 return ReplaceInstUsesWith(I, RHS);
4519 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4520 break;
4521 }
4522 break;
4523 case ICmpInst::ICMP_SLT:
4524 switch (RHSCC) {
4525 default: assert(0 && "Unknown integer condition code!");
4526 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4527 break;
4528 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
Chris Lattner26376862007-11-01 02:18:41 +00004529 // If RHSCst is [us]MAXINT, it is always false. Not handling
4530 // this can cause overflow.
4531 if (RHSCst->isMaxValue(true))
4532 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004533 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4534 false, I);
4535 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4536 break;
4537 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4538 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4539 return ReplaceInstUsesWith(I, RHS);
4540 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4541 break;
4542 }
4543 break;
4544 case ICmpInst::ICMP_UGT:
4545 switch (RHSCC) {
4546 default: assert(0 && "Unknown integer condition code!");
4547 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4548 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4549 return ReplaceInstUsesWith(I, LHS);
4550 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4551 break;
4552 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4553 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4554 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4555 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4556 break;
4557 }
4558 break;
4559 case ICmpInst::ICMP_SGT:
4560 switch (RHSCC) {
4561 default: assert(0 && "Unknown integer condition code!");
4562 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4563 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4564 return ReplaceInstUsesWith(I, LHS);
4565 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4566 break;
4567 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4568 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4569 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4570 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4571 break;
4572 }
4573 break;
4574 }
4575 }
4576 }
4577
4578 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004579 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004580 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4581 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004582 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4583 !isa<ICmpInst>(Op1C->getOperand(0))) {
4584 const Type *SrcTy = Op0C->getOperand(0)->getType();
4585 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4586 // Only do this if the casts both really cause code to be
4587 // generated.
4588 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4589 I.getType(), TD) &&
4590 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4591 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004592 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004593 Op1C->getOperand(0),
4594 I.getName());
4595 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004596 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004597 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004598 }
4599 }
Chris Lattner91882432007-10-24 05:38:08 +00004600 }
4601
4602
4603 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4604 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4605 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4606 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004607 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004608 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004609 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4610 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4611 // If either of the constants are nans, then the whole thing returns
4612 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004613 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004614 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4615
4616 // Otherwise, no need to compare the two constants, compare the
4617 // rest.
4618 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4619 RHS->getOperand(0));
4620 }
Evan Cheng72988052008-10-14 18:44:08 +00004621 } else {
4622 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4623 FCmpInst::Predicate Op0CC, Op1CC;
4624 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4625 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4626 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4627 // Swap RHS operands to match LHS.
4628 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4629 std::swap(Op1LHS, Op1RHS);
4630 }
4631 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4632 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4633 if (Op0CC == Op1CC)
4634 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4635 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4636 Op1CC == FCmpInst::FCMP_TRUE)
4637 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4638 else if (Op0CC == FCmpInst::FCMP_FALSE)
4639 return ReplaceInstUsesWith(I, Op1);
4640 else if (Op1CC == FCmpInst::FCMP_FALSE)
4641 return ReplaceInstUsesWith(I, Op0);
4642 bool Op0Ordered;
4643 bool Op1Ordered;
4644 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4645 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4646 if (Op0Ordered == Op1Ordered) {
4647 // If both are ordered or unordered, return a new fcmp with
4648 // or'ed predicates.
4649 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4650 Op0LHS, Op0RHS);
4651 if (Instruction *I = dyn_cast<Instruction>(RV))
4652 return I;
4653 // Otherwise, it's a constant boolean value...
4654 return ReplaceInstUsesWith(I, RV);
4655 }
4656 }
4657 }
4658 }
Chris Lattner91882432007-10-24 05:38:08 +00004659 }
4660 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004661
4662 return Changed ? &I : 0;
4663}
4664
Dan Gohman089efff2008-05-13 00:00:25 +00004665namespace {
4666
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004667// XorSelf - Implements: X ^ X --> 0
4668struct XorSelf {
4669 Value *RHS;
4670 XorSelf(Value *rhs) : RHS(rhs) {}
4671 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4672 Instruction *apply(BinaryOperator &Xor) const {
4673 return &Xor;
4674 }
4675};
4676
Dan Gohman089efff2008-05-13 00:00:25 +00004677}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004678
4679Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4680 bool Changed = SimplifyCommutative(I);
4681 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4682
Evan Chenge5cd8032008-03-25 20:07:13 +00004683 if (isa<UndefValue>(Op1)) {
4684 if (isa<UndefValue>(Op0))
4685 // Handle undef ^ undef -> 0 special case. This is a common
4686 // idiom (misuse).
4687 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004688 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004689 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004690
4691 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4692 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004693 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004694 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4695 }
4696
4697 // See if we can simplify any instructions used by the instruction whose sole
4698 // purpose is to compute bits we don't care about.
4699 if (!isa<VectorType>(I.getType())) {
4700 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4701 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4702 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4703 KnownZero, KnownOne))
4704 return &I;
4705 } else if (isa<ConstantAggregateZero>(Op1)) {
4706 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4707 }
4708
4709 // Is this a ~ operation?
4710 if (Value *NotOp = dyn_castNotVal(&I)) {
4711 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4712 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4713 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4714 if (Op0I->getOpcode() == Instruction::And ||
4715 Op0I->getOpcode() == Instruction::Or) {
4716 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4717 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4718 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004719 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004720 Op0I->getOperand(1)->getName()+".not");
4721 InsertNewInstBefore(NotY, I);
4722 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004723 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004724 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004725 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004726 }
4727 }
4728 }
4729 }
4730
4731
4732 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004733 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4734 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4735 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004736 return new ICmpInst(ICI->getInversePredicate(),
4737 ICI->getOperand(0), ICI->getOperand(1));
4738
Nick Lewycky1405e922007-08-06 20:04:16 +00004739 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4740 return new FCmpInst(FCI->getInversePredicate(),
4741 FCI->getOperand(0), FCI->getOperand(1));
4742 }
4743
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004744 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4745 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4746 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4747 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4748 Instruction::CastOps Opcode = Op0C->getOpcode();
4749 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4750 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4751 Op0C->getDestTy())) {
4752 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4753 CI->getOpcode(), CI->getInversePredicate(),
4754 CI->getOperand(0), CI->getOperand(1)), I);
4755 NewCI->takeName(CI);
4756 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4757 }
4758 }
4759 }
4760 }
4761 }
4762
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004763 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4764 // ~(c-X) == X-c-1 == X+(-c-1)
4765 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4766 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4767 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4768 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4769 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004770 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004771 }
4772
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004773 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004774 if (Op0I->getOpcode() == Instruction::Add) {
4775 // ~(X-c) --> (-c-1)-X
4776 if (RHS->isAllOnesValue()) {
4777 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004778 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004779 ConstantExpr::getSub(NegOp0CI,
4780 ConstantInt::get(I.getType(), 1)),
4781 Op0I->getOperand(0));
4782 } else if (RHS->getValue().isSignBit()) {
4783 // (X + C) ^ signbit -> (X + C + signbit)
4784 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004785 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004786
4787 }
4788 } else if (Op0I->getOpcode() == Instruction::Or) {
4789 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4790 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4791 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4792 // Anything in both C1 and C2 is known to be zero, remove it from
4793 // NewRHS.
4794 Constant *CommonBits = And(Op0CI, RHS);
4795 NewRHS = ConstantExpr::getAnd(NewRHS,
4796 ConstantExpr::getNot(CommonBits));
4797 AddToWorkList(Op0I);
4798 I.setOperand(0, Op0I->getOperand(0));
4799 I.setOperand(1, NewRHS);
4800 return &I;
4801 }
4802 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004803 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004804 }
4805
4806 // Try to fold constant and into select arguments.
4807 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4808 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4809 return R;
4810 if (isa<PHINode>(Op0))
4811 if (Instruction *NV = FoldOpIntoPhi(I))
4812 return NV;
4813 }
4814
4815 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4816 if (X == Op1)
4817 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4818
4819 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4820 if (X == Op0)
4821 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4822
4823
4824 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4825 if (Op1I) {
4826 Value *A, *B;
4827 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4828 if (A == Op0) { // B^(B|A) == (A|B)^B
4829 Op1I->swapOperands();
4830 I.swapOperands();
4831 std::swap(Op0, Op1);
4832 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4833 I.swapOperands(); // Simplified below.
4834 std::swap(Op0, Op1);
4835 }
4836 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4837 if (Op0 == A) // A^(A^B) == B
4838 return ReplaceInstUsesWith(I, B);
4839 else if (Op0 == B) // A^(B^A) == B
4840 return ReplaceInstUsesWith(I, A);
4841 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4842 if (A == Op0) { // A^(A&B) -> A^(B&A)
4843 Op1I->swapOperands();
4844 std::swap(A, B);
4845 }
4846 if (B == Op0) { // A^(B&A) -> (B&A)^A
4847 I.swapOperands(); // Simplified below.
4848 std::swap(Op0, Op1);
4849 }
4850 }
4851 }
4852
4853 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4854 if (Op0I) {
4855 Value *A, *B;
4856 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4857 if (A == Op1) // (B|A)^B == (A|B)^B
4858 std::swap(A, B);
4859 if (B == Op1) { // (A|B)^B == A & ~B
4860 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004861 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4862 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004863 }
4864 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4865 if (Op1 == A) // (A^B)^A == B
4866 return ReplaceInstUsesWith(I, B);
4867 else if (Op1 == B) // (B^A)^A == B
4868 return ReplaceInstUsesWith(I, A);
4869 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4870 if (A == Op1) // (A&B)^A -> (B&A)^A
4871 std::swap(A, B);
4872 if (B == Op1 && // (B&A)^A == ~B & A
4873 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4874 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00004875 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4876 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004877 }
4878 }
4879 }
4880
4881 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4882 if (Op0I && Op1I && Op0I->isShift() &&
4883 Op0I->getOpcode() == Op1I->getOpcode() &&
4884 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4885 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4886 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004887 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004888 Op1I->getOperand(0),
4889 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004890 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004891 Op1I->getOperand(1));
4892 }
4893
4894 if (Op0I && Op1I) {
4895 Value *A, *B, *C, *D;
4896 // (A & B)^(A | B) -> A ^ B
4897 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4898 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4899 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004900 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004901 }
4902 // (A | B)^(A & B) -> A ^ B
4903 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4904 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4905 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004906 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004907 }
4908
4909 // (A & B)^(C & D)
4910 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4911 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4912 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4913 // (X & Y)^(X & Y) -> (Y^Z) & X
4914 Value *X = 0, *Y = 0, *Z = 0;
4915 if (A == C)
4916 X = A, Y = B, Z = D;
4917 else if (A == D)
4918 X = A, Y = B, Z = C;
4919 else if (B == C)
4920 X = B, Y = A, Z = D;
4921 else if (B == D)
4922 X = B, Y = A, Z = C;
4923
4924 if (X) {
4925 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004926 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
4927 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004928 }
4929 }
4930 }
4931
4932 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4933 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4934 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4935 return R;
4936
4937 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004938 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004939 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4940 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4941 const Type *SrcTy = Op0C->getOperand(0)->getType();
4942 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4943 // Only do this if the casts both really cause code to be generated.
4944 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4945 I.getType(), TD) &&
4946 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4947 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004948 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004949 Op1C->getOperand(0),
4950 I.getName());
4951 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004952 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004953 }
4954 }
Chris Lattner91882432007-10-24 05:38:08 +00004955 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004956
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004957 return Changed ? &I : 0;
4958}
4959
4960/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4961/// overflowed for this type.
4962static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4963 ConstantInt *In2, bool IsSigned = false) {
4964 Result = cast<ConstantInt>(Add(In1, In2));
4965
4966 if (IsSigned)
4967 if (In2->getValue().isNegative())
4968 return Result->getValue().sgt(In1->getValue());
4969 else
4970 return Result->getValue().slt(In1->getValue());
4971 else
4972 return Result->getValue().ult(In1->getValue());
4973}
4974
Dan Gohmanb80d5612008-09-10 23:30:57 +00004975/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
4976/// overflowed for this type.
4977static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4978 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00004979 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00004980
4981 if (IsSigned)
4982 if (In2->getValue().isNegative())
4983 return Result->getValue().slt(In1->getValue());
4984 else
4985 return Result->getValue().sgt(In1->getValue());
4986 else
4987 return Result->getValue().ugt(In1->getValue());
4988}
4989
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004990/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4991/// code necessary to compute the offset from the base pointer (without adding
4992/// in the base pointer). Return the result as a signed integer of intptr size.
4993static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4994 TargetData &TD = IC.getTargetData();
4995 gep_type_iterator GTI = gep_type_begin(GEP);
4996 const Type *IntPtrTy = TD.getIntPtrType();
4997 Value *Result = Constant::getNullValue(IntPtrTy);
4998
4999 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005000 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005001 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5002
Gabor Greif17396002008-06-12 21:37:33 +00005003 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5004 ++i, ++GTI) {
5005 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00005006 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005007 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5008 if (OpC->isZero()) continue;
5009
5010 // Handle a struct index, which adds its field offset to the pointer.
5011 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5012 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5013
5014 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5015 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5016 else
5017 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005018 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005019 ConstantInt::get(IntPtrTy, Size),
5020 GEP->getName()+".offs"), I);
5021 continue;
5022 }
5023
5024 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5025 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5026 Scale = ConstantExpr::getMul(OC, Scale);
5027 if (Constant *RC = dyn_cast<Constant>(Result))
5028 Result = ConstantExpr::getAdd(RC, Scale);
5029 else {
5030 // Emit an add instruction.
5031 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005032 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005033 GEP->getName()+".offs"), I);
5034 }
5035 continue;
5036 }
5037 // Convert to correct type.
5038 if (Op->getType() != IntPtrTy) {
5039 if (Constant *OpC = dyn_cast<Constant>(Op))
5040 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5041 else
5042 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5043 Op->getName()+".c"), I);
5044 }
5045 if (Size != 1) {
5046 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5047 if (Constant *OpC = dyn_cast<Constant>(Op))
5048 Op = ConstantExpr::getMul(OpC, Scale);
5049 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005050 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005051 GEP->getName()+".idx"), I);
5052 }
5053
5054 // Emit an add instruction.
5055 if (isa<Constant>(Op) && isa<Constant>(Result))
5056 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5057 cast<Constant>(Result));
5058 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005059 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005060 GEP->getName()+".offs"), I);
5061 }
5062 return Result;
5063}
5064
Chris Lattnereba75862008-04-22 02:53:33 +00005065
5066/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5067/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5068/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5069/// complex, and scales are involved. The above expression would also be legal
5070/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5071/// later form is less amenable to optimization though, and we are allowed to
5072/// generate the first by knowing that pointer arithmetic doesn't overflow.
5073///
5074/// If we can't emit an optimized form for this expression, this returns null.
5075///
5076static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5077 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005078 TargetData &TD = IC.getTargetData();
5079 gep_type_iterator GTI = gep_type_begin(GEP);
5080
5081 // Check to see if this gep only has a single variable index. If so, and if
5082 // any constant indices are a multiple of its scale, then we can compute this
5083 // in terms of the scale of the variable index. For example, if the GEP
5084 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5085 // because the expression will cross zero at the same point.
5086 unsigned i, e = GEP->getNumOperands();
5087 int64_t Offset = 0;
5088 for (i = 1; i != e; ++i, ++GTI) {
5089 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5090 // Compute the aggregate offset of constant indices.
5091 if (CI->isZero()) continue;
5092
5093 // Handle a struct index, which adds its field offset to the pointer.
5094 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5095 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5096 } else {
5097 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5098 Offset += Size*CI->getSExtValue();
5099 }
5100 } else {
5101 // Found our variable index.
5102 break;
5103 }
5104 }
5105
5106 // If there are no variable indices, we must have a constant offset, just
5107 // evaluate it the general way.
5108 if (i == e) return 0;
5109
5110 Value *VariableIdx = GEP->getOperand(i);
5111 // Determine the scale factor of the variable element. For example, this is
5112 // 4 if the variable index is into an array of i32.
5113 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5114
5115 // Verify that there are no other variable indices. If so, emit the hard way.
5116 for (++i, ++GTI; i != e; ++i, ++GTI) {
5117 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5118 if (!CI) return 0;
5119
5120 // Compute the aggregate offset of constant indices.
5121 if (CI->isZero()) continue;
5122
5123 // Handle a struct index, which adds its field offset to the pointer.
5124 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5125 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5126 } else {
5127 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5128 Offset += Size*CI->getSExtValue();
5129 }
5130 }
5131
5132 // Okay, we know we have a single variable index, which must be a
5133 // pointer/array/vector index. If there is no offset, life is simple, return
5134 // the index.
5135 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5136 if (Offset == 0) {
5137 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5138 // we don't need to bother extending: the extension won't affect where the
5139 // computation crosses zero.
5140 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5141 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5142 VariableIdx->getNameStart(), &I);
5143 return VariableIdx;
5144 }
5145
5146 // Otherwise, there is an index. The computation we will do will be modulo
5147 // the pointer size, so get it.
5148 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5149
5150 Offset &= PtrSizeMask;
5151 VariableScale &= PtrSizeMask;
5152
5153 // To do this transformation, any constant index must be a multiple of the
5154 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5155 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5156 // multiple of the variable scale.
5157 int64_t NewOffs = Offset / (int64_t)VariableScale;
5158 if (Offset != NewOffs*(int64_t)VariableScale)
5159 return 0;
5160
5161 // Okay, we can do this evaluation. Start by converting the index to intptr.
5162 const Type *IntPtrTy = TD.getIntPtrType();
5163 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005164 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005165 true /*SExt*/,
5166 VariableIdx->getNameStart(), &I);
5167 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005168 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005169}
5170
5171
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005172/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5173/// else. At this point we know that the GEP is on the LHS of the comparison.
5174Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5175 ICmpInst::Predicate Cond,
5176 Instruction &I) {
5177 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5178
Chris Lattnereba75862008-04-22 02:53:33 +00005179 // Look through bitcasts.
5180 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5181 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005182
5183 Value *PtrBase = GEPLHS->getOperand(0);
5184 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005185 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005186 // This transformation (ignoring the base and scales) is valid because we
5187 // know pointers can't overflow. See if we can output an optimized form.
5188 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5189
5190 // If not, synthesize the offset the hard way.
5191 if (Offset == 0)
5192 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005193 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5194 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005195 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5196 // If the base pointers are different, but the indices are the same, just
5197 // compare the base pointer.
5198 if (PtrBase != GEPRHS->getOperand(0)) {
5199 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5200 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5201 GEPRHS->getOperand(0)->getType();
5202 if (IndicesTheSame)
5203 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5204 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5205 IndicesTheSame = false;
5206 break;
5207 }
5208
5209 // If all indices are the same, just compare the base pointers.
5210 if (IndicesTheSame)
5211 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5212 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5213
5214 // Otherwise, the base pointers are different and the indices are
5215 // different, bail out.
5216 return 0;
5217 }
5218
5219 // If one of the GEPs has all zero indices, recurse.
5220 bool AllZeros = true;
5221 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5222 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5223 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5224 AllZeros = false;
5225 break;
5226 }
5227 if (AllZeros)
5228 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5229 ICmpInst::getSwappedPredicate(Cond), I);
5230
5231 // If the other GEP has all zero indices, recurse.
5232 AllZeros = true;
5233 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5234 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5235 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5236 AllZeros = false;
5237 break;
5238 }
5239 if (AllZeros)
5240 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5241
5242 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5243 // If the GEPs only differ by one index, compare it.
5244 unsigned NumDifferences = 0; // Keep track of # differences.
5245 unsigned DiffOperand = 0; // The operand that differs.
5246 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5247 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5248 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5249 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5250 // Irreconcilable differences.
5251 NumDifferences = 2;
5252 break;
5253 } else {
5254 if (NumDifferences++) break;
5255 DiffOperand = i;
5256 }
5257 }
5258
5259 if (NumDifferences == 0) // SAME GEP?
5260 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005261 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005262 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005263
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005264 else if (NumDifferences == 1) {
5265 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5266 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5267 // Make sure we do a signed comparison here.
5268 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5269 }
5270 }
5271
5272 // Only lower this if the icmp is the only user of the GEP or if we expect
5273 // the result to fold to a constant!
5274 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5275 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5276 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5277 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5278 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5279 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5280 }
5281 }
5282 return 0;
5283}
5284
Chris Lattnere6b62d92008-05-19 20:18:56 +00005285/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5286///
5287Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5288 Instruction *LHSI,
5289 Constant *RHSC) {
5290 if (!isa<ConstantFP>(RHSC)) return 0;
5291 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5292
5293 // Get the width of the mantissa. We don't want to hack on conversions that
5294 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005295 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005296 if (MantissaWidth == -1) return 0; // Unknown.
5297
5298 // Check to see that the input is converted from an integer type that is small
5299 // enough that preserves all bits. TODO: check here for "known" sign bits.
5300 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5301 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5302
5303 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendling20636df2008-11-09 04:26:50 +00005304 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5305 if (LHSUnsigned)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005306 ++InputSize;
5307
5308 // If the conversion would lose info, don't hack on this.
5309 if ((int)InputSize > MantissaWidth)
5310 return 0;
5311
5312 // Otherwise, we can potentially simplify the comparison. We know that it
5313 // will always come through as an integer value and we know the constant is
5314 // not a NAN (it would have been previously simplified).
5315 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5316
5317 ICmpInst::Predicate Pred;
5318 switch (I.getPredicate()) {
5319 default: assert(0 && "Unexpected predicate!");
5320 case FCmpInst::FCMP_UEQ:
Bill Wendling20636df2008-11-09 04:26:50 +00005321 case FCmpInst::FCMP_OEQ:
5322 Pred = ICmpInst::ICMP_EQ;
5323 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005324 case FCmpInst::FCMP_UGT:
Bill Wendling20636df2008-11-09 04:26:50 +00005325 case FCmpInst::FCMP_OGT:
5326 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5327 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005328 case FCmpInst::FCMP_UGE:
Bill Wendling20636df2008-11-09 04:26:50 +00005329 case FCmpInst::FCMP_OGE:
5330 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5331 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005332 case FCmpInst::FCMP_ULT:
Bill Wendling20636df2008-11-09 04:26:50 +00005333 case FCmpInst::FCMP_OLT:
5334 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5335 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005336 case FCmpInst::FCMP_ULE:
Bill Wendling20636df2008-11-09 04:26:50 +00005337 case FCmpInst::FCMP_OLE:
5338 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5339 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005340 case FCmpInst::FCMP_UNE:
Bill Wendling20636df2008-11-09 04:26:50 +00005341 case FCmpInst::FCMP_ONE:
5342 Pred = ICmpInst::ICMP_NE;
5343 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005344 case FCmpInst::FCMP_ORD:
5345 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5346 case FCmpInst::FCMP_UNO:
5347 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5348 }
5349
5350 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5351
5352 // Now we know that the APFloat is a normal number, zero or inf.
5353
Chris Lattnerf13ff492008-05-20 03:50:52 +00005354 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005355 // comparing an i8 to 300.0.
5356 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5357
Bill Wendling20636df2008-11-09 04:26:50 +00005358 if (!LHSUnsigned) {
5359 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5360 // and large values.
5361 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5362 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5363 APFloat::rmNearestTiesToEven);
5364 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5365 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5366 Pred == ICmpInst::ICMP_SLE)
5367 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5368 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5369 }
5370 } else {
5371 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5372 // +INF and large values.
5373 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5374 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5375 APFloat::rmNearestTiesToEven);
5376 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5377 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5378 Pred == ICmpInst::ICMP_ULE)
5379 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5380 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5381 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005382 }
5383
Bill Wendling20636df2008-11-09 04:26:50 +00005384 if (!LHSUnsigned) {
5385 // See if the RHS value is < SignedMin.
5386 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5387 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5388 APFloat::rmNearestTiesToEven);
5389 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5390 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5391 Pred == ICmpInst::ICMP_SGE)
5392 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5393 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5394 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005395 }
5396
Bill Wendling20636df2008-11-09 04:26:50 +00005397 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5398 // [0, UMAX], but it may still be fractional. See if it is fractional by
5399 // casting the FP value to the integer value and back, checking for equality.
5400 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005401 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5402 if (!RHS.isZero() &&
5403 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendling20636df2008-11-09 04:26:50 +00005404 // If we had a comparison against a fractional value, we have to adjust the
5405 // compare predicate and sometimes the value. RHSC is rounded towards zero
5406 // at this point.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005407 switch (Pred) {
5408 default: assert(0 && "Unexpected integer comparison!");
5409 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5410 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5411 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5412 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Bill Wendling20636df2008-11-09 04:26:50 +00005413 case ICmpInst::ICMP_ULE:
5414 // (float)int <= 4.4 --> int <= 4
5415 // (float)int <= -4.4 --> false
5416 if (RHS.isNegative())
5417 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5418 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005419 case ICmpInst::ICMP_SLE:
5420 // (float)int <= 4.4 --> int <= 4
5421 // (float)int <= -4.4 --> int < -4
5422 if (RHS.isNegative())
5423 Pred = ICmpInst::ICMP_SLT;
5424 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005425 case ICmpInst::ICMP_ULT:
5426 // (float)int < -4.4 --> false
5427 // (float)int < 4.4 --> int <= 4
5428 if (RHS.isNegative())
5429 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5430 Pred = ICmpInst::ICMP_ULE;
5431 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005432 case ICmpInst::ICMP_SLT:
5433 // (float)int < -4.4 --> int < -4
5434 // (float)int < 4.4 --> int <= 4
5435 if (!RHS.isNegative())
5436 Pred = ICmpInst::ICMP_SLE;
5437 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005438 case ICmpInst::ICMP_UGT:
5439 // (float)int > 4.4 --> int > 4
5440 // (float)int > -4.4 --> true
5441 if (RHS.isNegative())
5442 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5443 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005444 case ICmpInst::ICMP_SGT:
5445 // (float)int > 4.4 --> int > 4
5446 // (float)int > -4.4 --> int >= -4
5447 if (RHS.isNegative())
5448 Pred = ICmpInst::ICMP_SGE;
5449 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005450 case ICmpInst::ICMP_UGE:
5451 // (float)int >= -4.4 --> true
5452 // (float)int >= 4.4 --> int > 4
5453 if (!RHS.isNegative())
5454 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5455 Pred = ICmpInst::ICMP_UGT;
5456 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005457 case ICmpInst::ICMP_SGE:
5458 // (float)int >= -4.4 --> int >= -4
5459 // (float)int >= 4.4 --> int > 4
5460 if (!RHS.isNegative())
5461 Pred = ICmpInst::ICMP_SGT;
5462 break;
5463 }
5464 }
5465
5466 // Lower this FP comparison into an appropriate integer version of the
5467 // comparison.
5468 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5469}
5470
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005471Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5472 bool Changed = SimplifyCompare(I);
5473 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5474
5475 // Fold trivial predicates.
5476 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5477 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5478 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5479 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5480
5481 // Simplify 'fcmp pred X, X'
5482 if (Op0 == Op1) {
5483 switch (I.getPredicate()) {
5484 default: assert(0 && "Unknown predicate!");
5485 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5486 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5487 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5488 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5489 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5490 case FCmpInst::FCMP_OLT: // True if ordered and less than
5491 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5492 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5493
5494 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5495 case FCmpInst::FCMP_ULT: // True if unordered or less than
5496 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5497 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5498 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5499 I.setPredicate(FCmpInst::FCMP_UNO);
5500 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5501 return &I;
5502
5503 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5504 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5505 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5506 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5507 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5508 I.setPredicate(FCmpInst::FCMP_ORD);
5509 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5510 return &I;
5511 }
5512 }
5513
5514 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5515 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5516
5517 // Handle fcmp with constant RHS
5518 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005519 // If the constant is a nan, see if we can fold the comparison based on it.
5520 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5521 if (CFP->getValueAPF().isNaN()) {
5522 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
5523 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Chris Lattnerf13ff492008-05-20 03:50:52 +00005524 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5525 "Comparison must be either ordered or unordered!");
5526 // True if unordered.
5527 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
Chris Lattnere6b62d92008-05-19 20:18:56 +00005528 }
5529 }
5530
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005531 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5532 switch (LHSI->getOpcode()) {
5533 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005534 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5535 // block. If in the same block, we're encouraging jump threading. If
5536 // not, we are just pessimizing the code by making an i1 phi.
5537 if (LHSI->getParent() == I.getParent())
5538 if (Instruction *NV = FoldOpIntoPhi(I))
5539 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005540 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005541 case Instruction::SIToFP:
5542 case Instruction::UIToFP:
5543 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5544 return NV;
5545 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005546 case Instruction::Select:
5547 // If either operand of the select is a constant, we can fold the
5548 // comparison into the select arms, which will cause one to be
5549 // constant folded and the select turned into a bitwise or.
5550 Value *Op1 = 0, *Op2 = 0;
5551 if (LHSI->hasOneUse()) {
5552 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5553 // Fold the known value into the constant operand.
5554 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5555 // Insert a new FCmp of the other select operand.
5556 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5557 LHSI->getOperand(2), RHSC,
5558 I.getName()), I);
5559 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5560 // Fold the known value into the constant operand.
5561 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5562 // Insert a new FCmp of the other select operand.
5563 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5564 LHSI->getOperand(1), RHSC,
5565 I.getName()), I);
5566 }
5567 }
5568
5569 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005570 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005571 break;
5572 }
5573 }
5574
5575 return Changed ? &I : 0;
5576}
5577
5578Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5579 bool Changed = SimplifyCompare(I);
5580 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5581 const Type *Ty = Op0->getType();
5582
5583 // icmp X, X
5584 if (Op0 == Op1)
5585 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005586 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005587
5588 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5589 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005590
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005591 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5592 // addresses never equal each other! We already know that Op0 != Op1.
5593 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5594 isa<ConstantPointerNull>(Op0)) &&
5595 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5596 isa<ConstantPointerNull>(Op1)))
5597 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005598 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005599
5600 // icmp's with boolean values can always be turned into bitwise operations
5601 if (Ty == Type::Int1Ty) {
5602 switch (I.getPredicate()) {
5603 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005604 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005605 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005606 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005607 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005608 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005609 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005610 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005611
5612 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005613 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005614 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005615 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005616 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005617 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005618 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005619 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005620 case ICmpInst::ICMP_SGT:
5621 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005622 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005623 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5624 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5625 InsertNewInstBefore(Not, I);
5626 return BinaryOperator::CreateAnd(Not, Op0);
5627 }
5628 case ICmpInst::ICMP_UGE:
5629 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5630 // FALL THROUGH
5631 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005632 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005633 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005634 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005635 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005636 case ICmpInst::ICMP_SGE:
5637 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5638 // FALL THROUGH
5639 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5640 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5641 InsertNewInstBefore(Not, I);
5642 return BinaryOperator::CreateOr(Not, Op0);
5643 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005644 }
5645 }
5646
Dan Gohman58c09632008-09-16 18:46:06 +00005647 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005648 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005649 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005650
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005651 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5652 if (I.isEquality() && CI->isNullValue() &&
5653 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5654 // (icmp cond A B) if cond is equality
5655 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005656 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005657
Dan Gohman58c09632008-09-16 18:46:06 +00005658 // If we have an icmp le or icmp ge instruction, turn it into the
5659 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5660 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005661 switch (I.getPredicate()) {
5662 default: break;
5663 case ICmpInst::ICMP_ULE:
5664 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5665 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5666 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5667 case ICmpInst::ICMP_SLE:
5668 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5669 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5670 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5671 case ICmpInst::ICMP_UGE:
5672 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5673 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5674 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5675 case ICmpInst::ICMP_SGE:
5676 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5677 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5678 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5679 }
5680
Chris Lattnera1308652008-07-11 05:40:05 +00005681 // See if we can fold the comparison based on range information we can get
5682 // by checking whether bits are known to be zero or one in the input.
5683 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5684 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5685
5686 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005687 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005688 bool UnusedBit;
5689 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5690
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005691 if (SimplifyDemandedBits(Op0,
5692 isSignBit ? APInt::getSignBit(BitWidth)
5693 : APInt::getAllOnesValue(BitWidth),
5694 KnownZero, KnownOne, 0))
5695 return &I;
5696
5697 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005698 // in. Compute the Min, Max and RHS values based on the known bits. For the
5699 // EQ and NE we use unsigned values.
5700 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005701 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5702 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5703 else
5704 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5705
Chris Lattnera1308652008-07-11 05:40:05 +00005706 // If Min and Max are known to be the same, then SimplifyDemandedBits
5707 // figured out that the LHS is a constant. Just constant fold this now so
5708 // that code below can assume that Min != Max.
5709 if (Min == Max)
5710 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5711 ConstantInt::get(Min),
5712 CI));
5713
5714 // Based on the range information we know about the LHS, see if we can
5715 // simplify this comparison. For example, (x&4) < 8 is always true.
5716 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005717 switch (I.getPredicate()) { // LE/GE have been folded already.
5718 default: assert(0 && "Unknown icmp opcode!");
5719 case ICmpInst::ICMP_EQ:
5720 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5721 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5722 break;
5723 case ICmpInst::ICMP_NE:
5724 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5725 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5726 break;
5727 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005728 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005729 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005730 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005731 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005732 if (RHSVal == Max) // A <u MAX -> A != MAX
5733 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5734 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5735 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5736
5737 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5738 if (CI->isMinValue(true))
5739 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5740 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005741 break;
5742 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005743 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005744 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005745 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005746 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005747
5748 if (RHSVal == Min) // A >u MIN -> A != MIN
5749 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5750 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5751 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5752
5753 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5754 if (CI->isMaxValue(true))
5755 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5756 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005757 break;
5758 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005759 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005760 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005761 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005762 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005763 if (RHSVal == Max) // A <s MAX -> A != MAX
5764 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005765 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005766 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005767 break;
5768 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005769 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005770 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005771 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005772 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005773
5774 if (RHSVal == Min) // A >s MIN -> A != MIN
5775 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5776 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5777 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005778 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005779 }
Dan Gohman58c09632008-09-16 18:46:06 +00005780 }
5781
5782 // Test if the ICmpInst instruction is used exclusively by a select as
5783 // part of a minimum or maximum operation. If so, refrain from doing
5784 // any other folding. This helps out other analyses which understand
5785 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5786 // and CodeGen. And in this case, at least one of the comparison
5787 // operands has at least one user besides the compare (the select),
5788 // which would often largely negate the benefit of folding anyway.
5789 if (I.hasOneUse())
5790 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5791 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5792 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5793 return 0;
5794
5795 // See if we are doing a comparison between a constant and an instruction that
5796 // can be folded into the comparison.
5797 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005798 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5799 // instruction, see if that instruction also has constants so that the
5800 // instruction can be folded into the icmp
5801 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5802 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5803 return Res;
5804 }
5805
5806 // Handle icmp with constant (but not simple integer constant) RHS
5807 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5808 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5809 switch (LHSI->getOpcode()) {
5810 case Instruction::GetElementPtr:
5811 if (RHSC->isNullValue()) {
5812 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5813 bool isAllZeros = true;
5814 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5815 if (!isa<Constant>(LHSI->getOperand(i)) ||
5816 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5817 isAllZeros = false;
5818 break;
5819 }
5820 if (isAllZeros)
5821 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5822 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5823 }
5824 break;
5825
5826 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005827 // Only fold icmp into the PHI if the phi and fcmp are in the same
5828 // block. If in the same block, we're encouraging jump threading. If
5829 // not, we are just pessimizing the code by making an i1 phi.
5830 if (LHSI->getParent() == I.getParent())
5831 if (Instruction *NV = FoldOpIntoPhi(I))
5832 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005833 break;
5834 case Instruction::Select: {
5835 // If either operand of the select is a constant, we can fold the
5836 // comparison into the select arms, which will cause one to be
5837 // constant folded and the select turned into a bitwise or.
5838 Value *Op1 = 0, *Op2 = 0;
5839 if (LHSI->hasOneUse()) {
5840 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5841 // Fold the known value into the constant operand.
5842 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5843 // Insert a new ICmp of the other select operand.
5844 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5845 LHSI->getOperand(2), RHSC,
5846 I.getName()), I);
5847 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5848 // Fold the known value into the constant operand.
5849 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5850 // Insert a new ICmp of the other select operand.
5851 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5852 LHSI->getOperand(1), RHSC,
5853 I.getName()), I);
5854 }
5855 }
5856
5857 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005858 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005859 break;
5860 }
5861 case Instruction::Malloc:
5862 // If we have (malloc != null), and if the malloc has a single use, we
5863 // can assume it is successful and remove the malloc.
5864 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5865 AddToWorkList(LHSI);
5866 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005867 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005868 }
5869 break;
5870 }
5871 }
5872
5873 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5874 if (User *GEP = dyn_castGetElementPtr(Op0))
5875 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5876 return NI;
5877 if (User *GEP = dyn_castGetElementPtr(Op1))
5878 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5879 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5880 return NI;
5881
5882 // Test to see if the operands of the icmp are casted versions of other
5883 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5884 // now.
5885 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5886 if (isa<PointerType>(Op0->getType()) &&
5887 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5888 // We keep moving the cast from the left operand over to the right
5889 // operand, where it can often be eliminated completely.
5890 Op0 = CI->getOperand(0);
5891
5892 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5893 // so eliminate it as well.
5894 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5895 Op1 = CI2->getOperand(0);
5896
5897 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005898 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005899 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5900 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5901 } else {
5902 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00005903 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005904 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005905 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005906 return new ICmpInst(I.getPredicate(), Op0, Op1);
5907 }
5908 }
5909
5910 if (isa<CastInst>(Op0)) {
5911 // Handle the special case of: icmp (cast bool to X), <cst>
5912 // This comes up when you have code like
5913 // int X = A < B;
5914 // if (X) ...
5915 // For generality, we handle any zero-extension of any operand comparison
5916 // with a constant or another cast from the same type.
5917 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5918 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5919 return R;
5920 }
5921
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005922 // See if it's the same type of instruction on the left and right.
5923 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
5924 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005925 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
5926 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
5927 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00005928 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005929 default: break;
5930 case Instruction::Add:
5931 case Instruction::Sub:
5932 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005933 // a+x icmp eq/ne b+x --> a icmp b
5934 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
5935 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005936 break;
5937 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005938 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
5939 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
5940 // Mask = -1 >> count-trailing-zeros(Cst).
5941 if (!CI->isZero() && !CI->isOne()) {
5942 const APInt &AP = CI->getValue();
5943 ConstantInt *Mask = ConstantInt::get(
5944 APInt::getLowBitsSet(AP.getBitWidth(),
5945 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005946 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005947 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
5948 Mask);
5949 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
5950 Mask);
5951 InsertNewInstBefore(And1, I);
5952 InsertNewInstBefore(And2, I);
5953 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005954 }
5955 }
5956 break;
5957 }
5958 }
5959 }
5960 }
5961
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005962 // ~x < ~y --> y < x
5963 { Value *A, *B;
5964 if (match(Op0, m_Not(m_Value(A))) &&
5965 match(Op1, m_Not(m_Value(B))))
5966 return new ICmpInst(I.getPredicate(), B, A);
5967 }
5968
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005969 if (I.isEquality()) {
5970 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005971
5972 // -x == -y --> x == y
5973 if (match(Op0, m_Neg(m_Value(A))) &&
5974 match(Op1, m_Neg(m_Value(B))))
5975 return new ICmpInst(I.getPredicate(), A, B);
5976
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005977 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5978 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5979 Value *OtherVal = A == Op1 ? B : A;
5980 return new ICmpInst(I.getPredicate(), OtherVal,
5981 Constant::getNullValue(A->getType()));
5982 }
5983
5984 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5985 // A^c1 == C^c2 --> A == C^(c1^c2)
5986 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5987 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5988 if (Op1->hasOneUse()) {
5989 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00005990 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005991 return new ICmpInst(I.getPredicate(), A,
5992 InsertNewInstBefore(Xor, I));
5993 }
5994
5995 // A^B == A^D -> B == D
5996 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5997 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5998 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5999 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6000 }
6001 }
6002
6003 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6004 (A == Op0 || B == Op0)) {
6005 // A == (A^B) -> B == 0
6006 Value *OtherVal = A == Op0 ? B : A;
6007 return new ICmpInst(I.getPredicate(), OtherVal,
6008 Constant::getNullValue(A->getType()));
6009 }
6010 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
6011 // (A-B) == A -> B == 0
6012 return new ICmpInst(I.getPredicate(), B,
6013 Constant::getNullValue(B->getType()));
6014 }
6015 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
6016 // A == (A-B) -> B == 0
6017 return new ICmpInst(I.getPredicate(), B,
6018 Constant::getNullValue(B->getType()));
6019 }
6020
6021 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6022 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6023 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6024 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6025 Value *X = 0, *Y = 0, *Z = 0;
6026
6027 if (A == C) {
6028 X = B; Y = D; Z = A;
6029 } else if (A == D) {
6030 X = B; Y = C; Z = A;
6031 } else if (B == C) {
6032 X = A; Y = D; Z = B;
6033 } else if (B == D) {
6034 X = A; Y = C; Z = B;
6035 }
6036
6037 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00006038 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6039 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006040 I.setOperand(0, Op1);
6041 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6042 return &I;
6043 }
6044 }
6045 }
6046 return Changed ? &I : 0;
6047}
6048
6049
6050/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6051/// and CmpRHS are both known to be integer constants.
6052Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6053 ConstantInt *DivRHS) {
6054 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6055 const APInt &CmpRHSV = CmpRHS->getValue();
6056
6057 // FIXME: If the operand types don't match the type of the divide
6058 // then don't attempt this transform. The code below doesn't have the
6059 // logic to deal with a signed divide and an unsigned compare (and
6060 // vice versa). This is because (x /s C1) <s C2 produces different
6061 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6062 // (x /u C1) <u C2. Simply casting the operands and result won't
6063 // work. :( The if statement below tests that condition and bails
6064 // if it finds it.
6065 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6066 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6067 return 0;
6068 if (DivRHS->isZero())
6069 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006070 if (DivIsSigned && DivRHS->isAllOnesValue())
6071 return 0; // The overflow computation also screws up here
6072 if (DivRHS->isOne())
6073 return 0; // Not worth bothering, and eliminates some funny cases
6074 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006075
6076 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6077 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6078 // C2 (CI). By solving for X we can turn this into a range check
6079 // instead of computing a divide.
6080 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6081
6082 // Determine if the product overflows by seeing if the product is
6083 // not equal to the divide. Make sure we do the same kind of divide
6084 // as in the LHS instruction that we're folding.
6085 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6086 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6087
6088 // Get the ICmp opcode
6089 ICmpInst::Predicate Pred = ICI.getPredicate();
6090
6091 // Figure out the interval that is being checked. For example, a comparison
6092 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6093 // Compute this interval based on the constants involved and the signedness of
6094 // the compare/divide. This computes a half-open interval, keeping track of
6095 // whether either value in the interval overflows. After analysis each
6096 // overflow variable is set to 0 if it's corresponding bound variable is valid
6097 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6098 int LoOverflow = 0, HiOverflow = 0;
6099 ConstantInt *LoBound = 0, *HiBound = 0;
6100
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006101 if (!DivIsSigned) { // udiv
6102 // e.g. X/5 op 3 --> [15, 20)
6103 LoBound = Prod;
6104 HiOverflow = LoOverflow = ProdOV;
6105 if (!HiOverflow)
6106 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006107 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006108 if (CmpRHSV == 0) { // (X / pos) op 0
6109 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6110 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6111 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006112 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006113 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6114 HiOverflow = LoOverflow = ProdOV;
6115 if (!HiOverflow)
6116 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6117 } else { // (X / pos) op neg
6118 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006119 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006120 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6121 if (!LoOverflow) {
6122 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6123 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6124 true) ? -1 : 0;
6125 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006126 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006127 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006128 if (CmpRHSV == 0) { // (X / neg) op 0
6129 // e.g. X/-5 op 0 --> [-4, 5)
6130 LoBound = AddOne(DivRHS);
6131 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6132 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6133 HiOverflow = 1; // [INTMIN+1, overflow)
6134 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6135 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006136 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006137 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006138 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006139 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6140 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006141 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006142 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006143 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6144 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006145 if (!HiOverflow)
6146 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006147 }
6148
6149 // Dividing by a negative swaps the condition. LT <-> GT
6150 Pred = ICmpInst::getSwappedPredicate(Pred);
6151 }
6152
6153 Value *X = DivI->getOperand(0);
6154 switch (Pred) {
6155 default: assert(0 && "Unhandled icmp opcode!");
6156 case ICmpInst::ICMP_EQ:
6157 if (LoOverflow && HiOverflow)
6158 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6159 else if (HiOverflow)
6160 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6161 ICmpInst::ICMP_UGE, X, LoBound);
6162 else if (LoOverflow)
6163 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6164 ICmpInst::ICMP_ULT, X, HiBound);
6165 else
6166 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6167 case ICmpInst::ICMP_NE:
6168 if (LoOverflow && HiOverflow)
6169 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6170 else if (HiOverflow)
6171 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6172 ICmpInst::ICMP_ULT, X, LoBound);
6173 else if (LoOverflow)
6174 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6175 ICmpInst::ICMP_UGE, X, HiBound);
6176 else
6177 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6178 case ICmpInst::ICMP_ULT:
6179 case ICmpInst::ICMP_SLT:
6180 if (LoOverflow == +1) // Low bound is greater than input range.
6181 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6182 if (LoOverflow == -1) // Low bound is less than input range.
6183 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6184 return new ICmpInst(Pred, X, LoBound);
6185 case ICmpInst::ICMP_UGT:
6186 case ICmpInst::ICMP_SGT:
6187 if (HiOverflow == +1) // High bound greater than input range.
6188 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6189 else if (HiOverflow == -1) // High bound less than input range.
6190 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6191 if (Pred == ICmpInst::ICMP_UGT)
6192 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6193 else
6194 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6195 }
6196}
6197
6198
6199/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6200///
6201Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6202 Instruction *LHSI,
6203 ConstantInt *RHS) {
6204 const APInt &RHSV = RHS->getValue();
6205
6206 switch (LHSI->getOpcode()) {
6207 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6208 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6209 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6210 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006211 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6212 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006213 Value *CompareVal = LHSI->getOperand(0);
6214
6215 // If the sign bit of the XorCST is not set, there is no change to
6216 // the operation, just stop using the Xor.
6217 if (!XorCST->getValue().isNegative()) {
6218 ICI.setOperand(0, CompareVal);
6219 AddToWorkList(LHSI);
6220 return &ICI;
6221 }
6222
6223 // Was the old condition true if the operand is positive?
6224 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6225
6226 // If so, the new one isn't.
6227 isTrueIfPositive ^= true;
6228
6229 if (isTrueIfPositive)
6230 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6231 else
6232 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6233 }
6234 }
6235 break;
6236 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6237 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6238 LHSI->getOperand(0)->hasOneUse()) {
6239 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6240
6241 // If the LHS is an AND of a truncating cast, we can widen the
6242 // and/compare to be the input width without changing the value
6243 // produced, eliminating a cast.
6244 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6245 // We can do this transformation if either the AND constant does not
6246 // have its sign bit set or if it is an equality comparison.
6247 // Extending a relational comparison when we're checking the sign
6248 // bit would not work.
6249 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006250 (ICI.isEquality() ||
6251 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006252 uint32_t BitWidth =
6253 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6254 APInt NewCST = AndCST->getValue();
6255 NewCST.zext(BitWidth);
6256 APInt NewCI = RHSV;
6257 NewCI.zext(BitWidth);
6258 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006259 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006260 ConstantInt::get(NewCST),LHSI->getName());
6261 InsertNewInstBefore(NewAnd, ICI);
6262 return new ICmpInst(ICI.getPredicate(), NewAnd,
6263 ConstantInt::get(NewCI));
6264 }
6265 }
6266
6267 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6268 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6269 // happens a LOT in code produced by the C front-end, for bitfield
6270 // access.
6271 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6272 if (Shift && !Shift->isShift())
6273 Shift = 0;
6274
6275 ConstantInt *ShAmt;
6276 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6277 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6278 const Type *AndTy = AndCST->getType(); // Type of the and.
6279
6280 // We can fold this as long as we can't shift unknown bits
6281 // into the mask. This can only happen with signed shift
6282 // rights, as they sign-extend.
6283 if (ShAmt) {
6284 bool CanFold = Shift->isLogicalShift();
6285 if (!CanFold) {
6286 // To test for the bad case of the signed shr, see if any
6287 // of the bits shifted in could be tested after the mask.
6288 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6289 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6290
6291 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6292 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6293 AndCST->getValue()) == 0)
6294 CanFold = true;
6295 }
6296
6297 if (CanFold) {
6298 Constant *NewCst;
6299 if (Shift->getOpcode() == Instruction::Shl)
6300 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6301 else
6302 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6303
6304 // Check to see if we are shifting out any of the bits being
6305 // compared.
6306 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6307 // If we shifted bits out, the fold is not going to work out.
6308 // As a special case, check to see if this means that the
6309 // result is always true or false now.
6310 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6311 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6312 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6313 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6314 } else {
6315 ICI.setOperand(1, NewCst);
6316 Constant *NewAndCST;
6317 if (Shift->getOpcode() == Instruction::Shl)
6318 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6319 else
6320 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6321 LHSI->setOperand(1, NewAndCST);
6322 LHSI->setOperand(0, Shift->getOperand(0));
6323 AddToWorkList(Shift); // Shift is dead.
6324 AddUsesToWorkList(ICI);
6325 return &ICI;
6326 }
6327 }
6328 }
6329
6330 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6331 // preferable because it allows the C<<Y expression to be hoisted out
6332 // of a loop if Y is invariant and X is not.
6333 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6334 ICI.isEquality() && !Shift->isArithmeticShift() &&
6335 isa<Instruction>(Shift->getOperand(0))) {
6336 // Compute C << Y.
6337 Value *NS;
6338 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006339 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006340 Shift->getOperand(1), "tmp");
6341 } else {
6342 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006343 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006344 Shift->getOperand(1), "tmp");
6345 }
6346 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6347
6348 // Compute X & (C << Y).
6349 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006350 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006351 InsertNewInstBefore(NewAnd, ICI);
6352
6353 ICI.setOperand(0, NewAnd);
6354 return &ICI;
6355 }
6356 }
6357 break;
6358
6359 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6360 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6361 if (!ShAmt) break;
6362
6363 uint32_t TypeBits = RHSV.getBitWidth();
6364
6365 // Check that the shift amount is in range. If not, don't perform
6366 // undefined shifts. When the shift is visited it will be
6367 // simplified.
6368 if (ShAmt->uge(TypeBits))
6369 break;
6370
6371 if (ICI.isEquality()) {
6372 // If we are comparing against bits always shifted out, the
6373 // comparison cannot succeed.
6374 Constant *Comp =
6375 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6376 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6377 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6378 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6379 return ReplaceInstUsesWith(ICI, Cst);
6380 }
6381
6382 if (LHSI->hasOneUse()) {
6383 // Otherwise strength reduce the shift into an and.
6384 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6385 Constant *Mask =
6386 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6387
6388 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006389 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006390 Mask, LHSI->getName()+".mask");
6391 Value *And = InsertNewInstBefore(AndI, ICI);
6392 return new ICmpInst(ICI.getPredicate(), And,
6393 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6394 }
6395 }
6396
6397 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6398 bool TrueIfSigned = false;
6399 if (LHSI->hasOneUse() &&
6400 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6401 // (X << 31) <s 0 --> (X&1) != 0
6402 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6403 (TypeBits-ShAmt->getZExtValue()-1));
6404 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006405 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006406 Mask, LHSI->getName()+".mask");
6407 Value *And = InsertNewInstBefore(AndI, ICI);
6408
6409 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6410 And, Constant::getNullValue(And->getType()));
6411 }
6412 break;
6413 }
6414
6415 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6416 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006417 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006418 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006419 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006420
Chris Lattner5ee84f82008-03-21 05:19:58 +00006421 // Check that the shift amount is in range. If not, don't perform
6422 // undefined shifts. When the shift is visited it will be
6423 // simplified.
6424 uint32_t TypeBits = RHSV.getBitWidth();
6425 if (ShAmt->uge(TypeBits))
6426 break;
6427
6428 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006429
Chris Lattner5ee84f82008-03-21 05:19:58 +00006430 // If we are comparing against bits always shifted out, the
6431 // comparison cannot succeed.
6432 APInt Comp = RHSV << ShAmtVal;
6433 if (LHSI->getOpcode() == Instruction::LShr)
6434 Comp = Comp.lshr(ShAmtVal);
6435 else
6436 Comp = Comp.ashr(ShAmtVal);
6437
6438 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6439 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6440 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6441 return ReplaceInstUsesWith(ICI, Cst);
6442 }
6443
6444 // Otherwise, check to see if the bits shifted out are known to be zero.
6445 // If so, we can compare against the unshifted value:
6446 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006447 if (LHSI->hasOneUse() &&
6448 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006449 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6450 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6451 ConstantExpr::getShl(RHS, ShAmt));
6452 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006453
Evan Chengfb9292a2008-04-23 00:38:06 +00006454 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006455 // Otherwise strength reduce the shift into an and.
6456 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6457 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006458
Chris Lattner5ee84f82008-03-21 05:19:58 +00006459 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006460 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006461 Mask, LHSI->getName()+".mask");
6462 Value *And = InsertNewInstBefore(AndI, ICI);
6463 return new ICmpInst(ICI.getPredicate(), And,
6464 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006465 }
6466 break;
6467 }
6468
6469 case Instruction::SDiv:
6470 case Instruction::UDiv:
6471 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6472 // Fold this div into the comparison, producing a range check.
6473 // Determine, based on the divide type, what the range is being
6474 // checked. If there is an overflow on the low or high side, remember
6475 // it, otherwise compute the range [low, hi) bounding the new value.
6476 // See: InsertRangeTest above for the kinds of replacements possible.
6477 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6478 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6479 DivRHS))
6480 return R;
6481 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006482
6483 case Instruction::Add:
6484 // Fold: icmp pred (add, X, C1), C2
6485
6486 if (!ICI.isEquality()) {
6487 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6488 if (!LHSC) break;
6489 const APInt &LHSV = LHSC->getValue();
6490
6491 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6492 .subtract(LHSV);
6493
6494 if (ICI.isSignedPredicate()) {
6495 if (CR.getLower().isSignBit()) {
6496 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6497 ConstantInt::get(CR.getUpper()));
6498 } else if (CR.getUpper().isSignBit()) {
6499 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6500 ConstantInt::get(CR.getLower()));
6501 }
6502 } else {
6503 if (CR.getLower().isMinValue()) {
6504 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6505 ConstantInt::get(CR.getUpper()));
6506 } else if (CR.getUpper().isMinValue()) {
6507 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6508 ConstantInt::get(CR.getLower()));
6509 }
6510 }
6511 }
6512 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006513 }
6514
6515 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6516 if (ICI.isEquality()) {
6517 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6518
6519 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6520 // the second operand is a constant, simplify a bit.
6521 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6522 switch (BO->getOpcode()) {
6523 case Instruction::SRem:
6524 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6525 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6526 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6527 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6528 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006529 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006530 BO->getName());
6531 InsertNewInstBefore(NewRem, ICI);
6532 return new ICmpInst(ICI.getPredicate(), NewRem,
6533 Constant::getNullValue(BO->getType()));
6534 }
6535 }
6536 break;
6537 case Instruction::Add:
6538 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6539 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6540 if (BO->hasOneUse())
6541 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6542 Subtract(RHS, BOp1C));
6543 } else if (RHSV == 0) {
6544 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6545 // efficiently invertible, or if the add has just this one use.
6546 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6547
6548 if (Value *NegVal = dyn_castNegVal(BOp1))
6549 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6550 else if (Value *NegVal = dyn_castNegVal(BOp0))
6551 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6552 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006553 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006554 InsertNewInstBefore(Neg, ICI);
6555 Neg->takeName(BO);
6556 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6557 }
6558 }
6559 break;
6560 case Instruction::Xor:
6561 // For the xor case, we can xor two constants together, eliminating
6562 // the explicit xor.
6563 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6564 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6565 ConstantExpr::getXor(RHS, BOC));
6566
6567 // FALLTHROUGH
6568 case Instruction::Sub:
6569 // Replace (([sub|xor] A, B) != 0) with (A != B)
6570 if (RHSV == 0)
6571 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6572 BO->getOperand(1));
6573 break;
6574
6575 case Instruction::Or:
6576 // If bits are being or'd in that are not present in the constant we
6577 // are comparing against, then the comparison could never succeed!
6578 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6579 Constant *NotCI = ConstantExpr::getNot(RHS);
6580 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6581 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6582 isICMP_NE));
6583 }
6584 break;
6585
6586 case Instruction::And:
6587 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6588 // If bits are being compared against that are and'd out, then the
6589 // comparison can never succeed!
6590 if ((RHSV & ~BOC->getValue()) != 0)
6591 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6592 isICMP_NE));
6593
6594 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6595 if (RHS == BOC && RHSV.isPowerOf2())
6596 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6597 ICmpInst::ICMP_NE, LHSI,
6598 Constant::getNullValue(RHS->getType()));
6599
6600 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006601 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006602 Value *X = BO->getOperand(0);
6603 Constant *Zero = Constant::getNullValue(X->getType());
6604 ICmpInst::Predicate pred = isICMP_NE ?
6605 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6606 return new ICmpInst(pred, X, Zero);
6607 }
6608
6609 // ((X & ~7) == 0) --> X < 8
6610 if (RHSV == 0 && isHighOnes(BOC)) {
6611 Value *X = BO->getOperand(0);
6612 Constant *NegX = ConstantExpr::getNeg(BOC);
6613 ICmpInst::Predicate pred = isICMP_NE ?
6614 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6615 return new ICmpInst(pred, X, NegX);
6616 }
6617 }
6618 default: break;
6619 }
6620 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6621 // Handle icmp {eq|ne} <intrinsic>, intcst.
6622 if (II->getIntrinsicID() == Intrinsic::bswap) {
6623 AddToWorkList(II);
6624 ICI.setOperand(0, II->getOperand(1));
6625 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6626 return &ICI;
6627 }
6628 }
6629 } else { // Not a ICMP_EQ/ICMP_NE
6630 // If the LHS is a cast from an integral value of the same size,
6631 // then since we know the RHS is a constant, try to simlify.
6632 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6633 Value *CastOp = Cast->getOperand(0);
6634 const Type *SrcTy = CastOp->getType();
6635 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6636 if (SrcTy->isInteger() &&
6637 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6638 // If this is an unsigned comparison, try to make the comparison use
6639 // smaller constant values.
6640 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6641 // X u< 128 => X s> -1
6642 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6643 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6644 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6645 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6646 // X u> 127 => X s< 0
6647 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6648 Constant::getNullValue(SrcTy));
6649 }
6650 }
6651 }
6652 }
6653 return 0;
6654}
6655
6656/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6657/// We only handle extending casts so far.
6658///
6659Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6660 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6661 Value *LHSCIOp = LHSCI->getOperand(0);
6662 const Type *SrcTy = LHSCIOp->getType();
6663 const Type *DestTy = LHSCI->getType();
6664 Value *RHSCIOp;
6665
6666 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6667 // integer type is the same size as the pointer type.
6668 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6669 getTargetData().getPointerSizeInBits() ==
6670 cast<IntegerType>(DestTy)->getBitWidth()) {
6671 Value *RHSOp = 0;
6672 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6673 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6674 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6675 RHSOp = RHSC->getOperand(0);
6676 // If the pointer types don't match, insert a bitcast.
6677 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006678 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006679 }
6680
6681 if (RHSOp)
6682 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6683 }
6684
6685 // The code below only handles extension cast instructions, so far.
6686 // Enforce this.
6687 if (LHSCI->getOpcode() != Instruction::ZExt &&
6688 LHSCI->getOpcode() != Instruction::SExt)
6689 return 0;
6690
6691 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6692 bool isSignedCmp = ICI.isSignedPredicate();
6693
6694 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6695 // Not an extension from the same type?
6696 RHSCIOp = CI->getOperand(0);
6697 if (RHSCIOp->getType() != LHSCIOp->getType())
6698 return 0;
6699
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006700 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006701 // and the other is a zext), then we can't handle this.
6702 if (CI->getOpcode() != LHSCI->getOpcode())
6703 return 0;
6704
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006705 // Deal with equality cases early.
6706 if (ICI.isEquality())
6707 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6708
6709 // A signed comparison of sign extended values simplifies into a
6710 // signed comparison.
6711 if (isSignedCmp && isSignedExt)
6712 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6713
6714 // The other three cases all fold into an unsigned comparison.
6715 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006716 }
6717
6718 // If we aren't dealing with a constant on the RHS, exit early
6719 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6720 if (!CI)
6721 return 0;
6722
6723 // Compute the constant that would happen if we truncated to SrcTy then
6724 // reextended to DestTy.
6725 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6726 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6727
6728 // If the re-extended constant didn't change...
6729 if (Res2 == CI) {
6730 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6731 // For example, we might have:
6732 // %A = sext short %X to uint
6733 // %B = icmp ugt uint %A, 1330
6734 // It is incorrect to transform this into
6735 // %B = icmp ugt short %X, 1330
6736 // because %A may have negative value.
6737 //
Chris Lattner3d816532008-07-11 04:09:09 +00006738 // However, we allow this when the compare is EQ/NE, because they are
6739 // signless.
6740 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006741 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006742 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006743 }
6744
6745 // The re-extended constant changed so the constant cannot be represented
6746 // in the shorter type. Consequently, we cannot emit a simple comparison.
6747
6748 // First, handle some easy cases. We know the result cannot be equal at this
6749 // point so handle the ICI.isEquality() cases
6750 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6751 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6752 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6753 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6754
6755 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6756 // should have been folded away previously and not enter in here.
6757 Value *Result;
6758 if (isSignedCmp) {
6759 // We're performing a signed comparison.
6760 if (cast<ConstantInt>(CI)->getValue().isNegative())
6761 Result = ConstantInt::getFalse(); // X < (small) --> false
6762 else
6763 Result = ConstantInt::getTrue(); // X < (large) --> true
6764 } else {
6765 // We're performing an unsigned comparison.
6766 if (isSignedExt) {
6767 // We're performing an unsigned comp with a sign extended value.
6768 // This is true if the input is >= 0. [aka >s -1]
6769 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6770 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6771 NegOne, ICI.getName()), ICI);
6772 } else {
6773 // Unsigned extend & unsigned compare -> always true.
6774 Result = ConstantInt::getTrue();
6775 }
6776 }
6777
6778 // Finally, return the value computed.
6779 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006780 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006781 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006782
6783 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6784 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6785 "ICmp should be folded!");
6786 if (Constant *CI = dyn_cast<Constant>(Result))
6787 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6788 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006789}
6790
6791Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6792 return commonShiftTransforms(I);
6793}
6794
6795Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6796 return commonShiftTransforms(I);
6797}
6798
6799Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006800 if (Instruction *R = commonShiftTransforms(I))
6801 return R;
6802
6803 Value *Op0 = I.getOperand(0);
6804
6805 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6806 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6807 if (CSI->isAllOnesValue())
6808 return ReplaceInstUsesWith(I, CSI);
6809
6810 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006811 if (!isa<VectorType>(I.getType()) &&
6812 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006813 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006814 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006815
6816 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006817}
6818
6819Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6820 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6821 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6822
6823 // shl X, 0 == X and shr X, 0 == X
6824 // shl 0, X == 0 and shr 0, X == 0
6825 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6826 Op0 == Constant::getNullValue(Op0->getType()))
6827 return ReplaceInstUsesWith(I, Op0);
6828
6829 if (isa<UndefValue>(Op0)) {
6830 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6831 return ReplaceInstUsesWith(I, Op0);
6832 else // undef << X -> 0, undef >>u X -> 0
6833 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6834 }
6835 if (isa<UndefValue>(Op1)) {
6836 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6837 return ReplaceInstUsesWith(I, Op0);
6838 else // X << undef, X >>u undef -> 0
6839 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6840 }
6841
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006842 // Try to fold constant and into select arguments.
6843 if (isa<Constant>(Op0))
6844 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6845 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6846 return R;
6847
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006848 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6849 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6850 return Res;
6851 return 0;
6852}
6853
6854Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6855 BinaryOperator &I) {
6856 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6857
6858 // See if we can simplify any instructions used by the instruction whose sole
6859 // purpose is to compute bits we don't care about.
6860 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6861 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6862 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6863 KnownZero, KnownOne))
6864 return &I;
6865
6866 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6867 // of a signed value.
6868 //
6869 if (Op1->uge(TypeBits)) {
6870 if (I.getOpcode() != Instruction::AShr)
6871 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6872 else {
6873 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6874 return &I;
6875 }
6876 }
6877
6878 // ((X*C1) << C2) == (X * (C1 << C2))
6879 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6880 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6881 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00006882 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006883 ConstantExpr::getShl(BOOp, Op1));
6884
6885 // Try to fold constant and into select arguments.
6886 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6887 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6888 return R;
6889 if (isa<PHINode>(Op0))
6890 if (Instruction *NV = FoldOpIntoPhi(I))
6891 return NV;
6892
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006893 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6894 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6895 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6896 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6897 // place. Don't try to do this transformation in this case. Also, we
6898 // require that the input operand is a shift-by-constant so that we have
6899 // confidence that the shifts will get folded together. We could do this
6900 // xform in more cases, but it is unlikely to be profitable.
6901 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6902 isa<ConstantInt>(TrOp->getOperand(1))) {
6903 // Okay, we'll do this xform. Make the shift of shift.
6904 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00006905 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006906 I.getName());
6907 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6908
6909 // For logical shifts, the truncation has the effect of making the high
6910 // part of the register be zeros. Emulate this by inserting an AND to
6911 // clear the top bits as needed. This 'and' will usually be zapped by
6912 // other xforms later if dead.
6913 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6914 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6915 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6916
6917 // The mask we constructed says what the trunc would do if occurring
6918 // between the shifts. We want to know the effect *after* the second
6919 // shift. We know that it is a logical shift by a constant, so adjust the
6920 // mask as appropriate.
6921 if (I.getOpcode() == Instruction::Shl)
6922 MaskV <<= Op1->getZExtValue();
6923 else {
6924 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6925 MaskV = MaskV.lshr(Op1->getZExtValue());
6926 }
6927
Gabor Greifa645dd32008-05-16 19:29:10 +00006928 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006929 TI->getName());
6930 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6931
6932 // Return the value truncated to the interesting size.
6933 return new TruncInst(And, I.getType());
6934 }
6935 }
6936
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006937 if (Op0->hasOneUse()) {
6938 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6939 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6940 Value *V1, *V2;
6941 ConstantInt *CC;
6942 switch (Op0BO->getOpcode()) {
6943 default: break;
6944 case Instruction::Add:
6945 case Instruction::And:
6946 case Instruction::Or:
6947 case Instruction::Xor: {
6948 // These operators commute.
6949 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6950 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6951 match(Op0BO->getOperand(1),
6952 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006953 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006954 Op0BO->getOperand(0), Op1,
6955 Op0BO->getName());
6956 InsertNewInstBefore(YS, I); // (Y << C)
6957 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006958 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006959 Op0BO->getOperand(1)->getName());
6960 InsertNewInstBefore(X, I); // (X + (Y << C))
6961 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006962 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006963 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6964 }
6965
6966 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6967 Value *Op0BOOp1 = Op0BO->getOperand(1);
6968 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6969 match(Op0BOOp1,
6970 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
6971 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6972 V2 == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006973 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006974 Op0BO->getOperand(0), Op1,
6975 Op0BO->getName());
6976 InsertNewInstBefore(YS, I); // (Y << C)
6977 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006978 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006979 V1->getName()+".mask");
6980 InsertNewInstBefore(XM, I); // X & (CC << C)
6981
Gabor Greifa645dd32008-05-16 19:29:10 +00006982 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006983 }
6984 }
6985
6986 // FALL THROUGH.
6987 case Instruction::Sub: {
6988 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6989 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6990 match(Op0BO->getOperand(0),
6991 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006992 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006993 Op0BO->getOperand(1), Op1,
6994 Op0BO->getName());
6995 InsertNewInstBefore(YS, I); // (Y << C)
6996 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006997 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006998 Op0BO->getOperand(0)->getName());
6999 InsertNewInstBefore(X, I); // (X + (Y << C))
7000 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007001 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007002 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7003 }
7004
7005 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7006 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7007 match(Op0BO->getOperand(0),
7008 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7009 m_ConstantInt(CC))) && V2 == Op1 &&
7010 cast<BinaryOperator>(Op0BO->getOperand(0))
7011 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007012 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007013 Op0BO->getOperand(1), Op1,
7014 Op0BO->getName());
7015 InsertNewInstBefore(YS, I); // (Y << C)
7016 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007017 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007018 V1->getName()+".mask");
7019 InsertNewInstBefore(XM, I); // X & (CC << C)
7020
Gabor Greifa645dd32008-05-16 19:29:10 +00007021 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007022 }
7023
7024 break;
7025 }
7026 }
7027
7028
7029 // If the operand is an bitwise operator with a constant RHS, and the
7030 // shift is the only use, we can pull it out of the shift.
7031 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7032 bool isValid = true; // Valid only for And, Or, Xor
7033 bool highBitSet = false; // Transform if high bit of constant set?
7034
7035 switch (Op0BO->getOpcode()) {
7036 default: isValid = false; break; // Do not perform transform!
7037 case Instruction::Add:
7038 isValid = isLeftShift;
7039 break;
7040 case Instruction::Or:
7041 case Instruction::Xor:
7042 highBitSet = false;
7043 break;
7044 case Instruction::And:
7045 highBitSet = true;
7046 break;
7047 }
7048
7049 // If this is a signed shift right, and the high bit is modified
7050 // by the logical operation, do not perform the transformation.
7051 // The highBitSet boolean indicates the value of the high bit of
7052 // the constant which would cause it to be modified for this
7053 // operation.
7054 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007055 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007056 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007057
7058 if (isValid) {
7059 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7060
7061 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007062 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007063 InsertNewInstBefore(NewShift, I);
7064 NewShift->takeName(Op0BO);
7065
Gabor Greifa645dd32008-05-16 19:29:10 +00007066 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007067 NewRHS);
7068 }
7069 }
7070 }
7071 }
7072
7073 // Find out if this is a shift of a shift by a constant.
7074 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7075 if (ShiftOp && !ShiftOp->isShift())
7076 ShiftOp = 0;
7077
7078 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7079 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7080 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7081 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7082 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7083 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7084 Value *X = ShiftOp->getOperand(0);
7085
7086 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7087 if (AmtSum > TypeBits)
7088 AmtSum = TypeBits;
7089
7090 const IntegerType *Ty = cast<IntegerType>(I.getType());
7091
7092 // Check for (X << c1) << c2 and (X >> c1) >> c2
7093 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007094 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007095 ConstantInt::get(Ty, AmtSum));
7096 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7097 I.getOpcode() == Instruction::AShr) {
7098 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007099 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007100 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7101 I.getOpcode() == Instruction::LShr) {
7102 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7103 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007104 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007105 InsertNewInstBefore(Shift, I);
7106
7107 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007108 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007109 }
7110
7111 // Okay, if we get here, one shift must be left, and the other shift must be
7112 // right. See if the amounts are equal.
7113 if (ShiftAmt1 == ShiftAmt2) {
7114 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7115 if (I.getOpcode() == Instruction::Shl) {
7116 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007117 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007118 }
7119 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7120 if (I.getOpcode() == Instruction::LShr) {
7121 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007122 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007123 }
7124 // We can simplify ((X << C) >>s C) into a trunc + sext.
7125 // NOTE: we could do this for any C, but that would make 'unusual' integer
7126 // types. For now, just stick to ones well-supported by the code
7127 // generators.
7128 const Type *SExtType = 0;
7129 switch (Ty->getBitWidth() - ShiftAmt1) {
7130 case 1 :
7131 case 8 :
7132 case 16 :
7133 case 32 :
7134 case 64 :
7135 case 128:
7136 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7137 break;
7138 default: break;
7139 }
7140 if (SExtType) {
7141 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7142 InsertNewInstBefore(NewTrunc, I);
7143 return new SExtInst(NewTrunc, Ty);
7144 }
7145 // Otherwise, we can't handle it yet.
7146 } else if (ShiftAmt1 < ShiftAmt2) {
7147 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7148
7149 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7150 if (I.getOpcode() == Instruction::Shl) {
7151 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7152 ShiftOp->getOpcode() == Instruction::AShr);
7153 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007154 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007155 InsertNewInstBefore(Shift, I);
7156
7157 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007158 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007159 }
7160
7161 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7162 if (I.getOpcode() == Instruction::LShr) {
7163 assert(ShiftOp->getOpcode() == Instruction::Shl);
7164 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007165 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007166 InsertNewInstBefore(Shift, I);
7167
7168 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007169 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007170 }
7171
7172 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7173 } else {
7174 assert(ShiftAmt2 < ShiftAmt1);
7175 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7176
7177 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7178 if (I.getOpcode() == Instruction::Shl) {
7179 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7180 ShiftOp->getOpcode() == Instruction::AShr);
7181 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007182 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007183 ConstantInt::get(Ty, ShiftDiff));
7184 InsertNewInstBefore(Shift, I);
7185
7186 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007187 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007188 }
7189
7190 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7191 if (I.getOpcode() == Instruction::LShr) {
7192 assert(ShiftOp->getOpcode() == Instruction::Shl);
7193 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007194 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007195 InsertNewInstBefore(Shift, I);
7196
7197 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007198 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007199 }
7200
7201 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7202 }
7203 }
7204 return 0;
7205}
7206
7207
7208/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7209/// expression. If so, decompose it, returning some value X, such that Val is
7210/// X*Scale+Offset.
7211///
7212static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7213 int &Offset) {
7214 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7215 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7216 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007217 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007218 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007219 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7220 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7221 if (I->getOpcode() == Instruction::Shl) {
7222 // This is a value scaled by '1 << the shift amt'.
7223 Scale = 1U << RHS->getZExtValue();
7224 Offset = 0;
7225 return I->getOperand(0);
7226 } else if (I->getOpcode() == Instruction::Mul) {
7227 // This value is scaled by 'RHS'.
7228 Scale = RHS->getZExtValue();
7229 Offset = 0;
7230 return I->getOperand(0);
7231 } else if (I->getOpcode() == Instruction::Add) {
7232 // We have X+C. Check to see if we really have (X*C2)+C1,
7233 // where C1 is divisible by C2.
7234 unsigned SubScale;
7235 Value *SubVal =
7236 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7237 Offset += RHS->getZExtValue();
7238 Scale = SubScale;
7239 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007240 }
7241 }
7242 }
7243
7244 // Otherwise, we can't look past this.
7245 Scale = 1;
7246 Offset = 0;
7247 return Val;
7248}
7249
7250
7251/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7252/// try to eliminate the cast by moving the type information into the alloc.
7253Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7254 AllocationInst &AI) {
7255 const PointerType *PTy = cast<PointerType>(CI.getType());
7256
7257 // Remove any uses of AI that are dead.
7258 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7259
7260 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7261 Instruction *User = cast<Instruction>(*UI++);
7262 if (isInstructionTriviallyDead(User)) {
7263 while (UI != E && *UI == User)
7264 ++UI; // If this instruction uses AI more than once, don't break UI.
7265
7266 ++NumDeadInst;
7267 DOUT << "IC: DCE: " << *User;
7268 EraseInstFromFunction(*User);
7269 }
7270 }
7271
7272 // Get the type really allocated and the type casted to.
7273 const Type *AllocElTy = AI.getAllocatedType();
7274 const Type *CastElTy = PTy->getElementType();
7275 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7276
7277 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7278 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7279 if (CastElTyAlign < AllocElTyAlign) return 0;
7280
7281 // If the allocation has multiple uses, only promote it if we are strictly
7282 // increasing the alignment of the resultant allocation. If we keep it the
7283 // same, we open the door to infinite loops of various kinds.
7284 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7285
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007286 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7287 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007288 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7289
7290 // See if we can satisfy the modulus by pulling a scale out of the array
7291 // size argument.
7292 unsigned ArraySizeScale;
7293 int ArrayOffset;
7294 Value *NumElements = // See if the array size is a decomposable linear expr.
7295 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7296
7297 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7298 // do the xform.
7299 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7300 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7301
7302 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7303 Value *Amt = 0;
7304 if (Scale == 1) {
7305 Amt = NumElements;
7306 } else {
7307 // If the allocation size is constant, form a constant mul expression
7308 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7309 if (isa<ConstantInt>(NumElements))
7310 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7311 // otherwise multiply the amount and the number of elements
7312 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007313 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007314 Amt = InsertNewInstBefore(Tmp, AI);
7315 }
7316 }
7317
7318 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7319 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007320 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007321 Amt = InsertNewInstBefore(Tmp, AI);
7322 }
7323
7324 AllocationInst *New;
7325 if (isa<MallocInst>(AI))
7326 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7327 else
7328 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7329 InsertNewInstBefore(New, AI);
7330 New->takeName(&AI);
7331
7332 // If the allocation has multiple uses, insert a cast and change all things
7333 // that used it to use the new cast. This will also hack on CI, but it will
7334 // die soon.
7335 if (!AI.hasOneUse()) {
7336 AddUsesToWorkList(AI);
7337 // New is the allocation instruction, pointer typed. AI is the original
7338 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7339 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7340 InsertNewInstBefore(NewCast, AI);
7341 AI.replaceAllUsesWith(NewCast);
7342 }
7343 return ReplaceInstUsesWith(CI, New);
7344}
7345
7346/// CanEvaluateInDifferentType - Return true if we can take the specified value
7347/// and return it as type Ty without inserting any new casts and without
7348/// changing the computed value. This is used by code that tries to decide
7349/// whether promoting or shrinking integer operations to wider or smaller types
7350/// will allow us to eliminate a truncate or extend.
7351///
7352/// This is a truncation operation if Ty is smaller than V->getType(), or an
7353/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007354///
7355/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7356/// should return true if trunc(V) can be computed by computing V in the smaller
7357/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7358/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7359/// efficiently truncated.
7360///
7361/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7362/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7363/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007364bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7365 unsigned CastOpc,
7366 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007367 // We can always evaluate constants in another type.
7368 if (isa<ConstantInt>(V))
7369 return true;
7370
7371 Instruction *I = dyn_cast<Instruction>(V);
7372 if (!I) return false;
7373
7374 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7375
Chris Lattneref70bb82007-08-02 06:11:14 +00007376 // If this is an extension or truncate, we can often eliminate it.
7377 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7378 // If this is a cast from the destination type, we can trivially eliminate
7379 // it, and this will remove a cast overall.
7380 if (I->getOperand(0)->getType() == Ty) {
7381 // If the first operand is itself a cast, and is eliminable, do not count
7382 // this as an eliminable cast. We would prefer to eliminate those two
7383 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007384 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007385 ++NumCastsRemoved;
7386 return true;
7387 }
7388 }
7389
7390 // We can't extend or shrink something that has multiple uses: doing so would
7391 // require duplicating the instruction in general, which isn't profitable.
7392 if (!I->hasOneUse()) return false;
7393
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007394 switch (I->getOpcode()) {
7395 case Instruction::Add:
7396 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007397 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007398 case Instruction::And:
7399 case Instruction::Or:
7400 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007401 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007402 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7403 NumCastsRemoved) &&
7404 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7405 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007406
7407 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007408 // If we are truncating the result of this SHL, and if it's a shift of a
7409 // constant amount, we can always perform a SHL in a smaller type.
7410 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7411 uint32_t BitWidth = Ty->getBitWidth();
7412 if (BitWidth < OrigTy->getBitWidth() &&
7413 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007414 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7415 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007416 }
7417 break;
7418 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007419 // If this is a truncate of a logical shr, we can truncate it to a smaller
7420 // lshr iff we know that the bits we would otherwise be shifting in are
7421 // already zeros.
7422 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7423 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7424 uint32_t BitWidth = Ty->getBitWidth();
7425 if (BitWidth < OrigBitWidth &&
7426 MaskedValueIsZero(I->getOperand(0),
7427 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7428 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007429 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7430 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007431 }
7432 }
7433 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007434 case Instruction::ZExt:
7435 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007436 case Instruction::Trunc:
7437 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007438 // can safely replace it. Note that replacing it does not reduce the number
7439 // of casts in the input.
7440 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007441 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007442 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007443 case Instruction::Select: {
7444 SelectInst *SI = cast<SelectInst>(I);
7445 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7446 NumCastsRemoved) &&
7447 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7448 NumCastsRemoved);
7449 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007450 case Instruction::PHI: {
7451 // We can change a phi if we can change all operands.
7452 PHINode *PN = cast<PHINode>(I);
7453 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7454 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7455 NumCastsRemoved))
7456 return false;
7457 return true;
7458 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007459 default:
7460 // TODO: Can handle more cases here.
7461 break;
7462 }
7463
7464 return false;
7465}
7466
7467/// EvaluateInDifferentType - Given an expression that
7468/// CanEvaluateInDifferentType returns true for, actually insert the code to
7469/// evaluate the expression.
7470Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7471 bool isSigned) {
7472 if (Constant *C = dyn_cast<Constant>(V))
7473 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7474
7475 // Otherwise, it must be an instruction.
7476 Instruction *I = cast<Instruction>(V);
7477 Instruction *Res = 0;
7478 switch (I->getOpcode()) {
7479 case Instruction::Add:
7480 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007481 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007482 case Instruction::And:
7483 case Instruction::Or:
7484 case Instruction::Xor:
7485 case Instruction::AShr:
7486 case Instruction::LShr:
7487 case Instruction::Shl: {
7488 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7489 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007490 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007491 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007492 break;
7493 }
7494 case Instruction::Trunc:
7495 case Instruction::ZExt:
7496 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007497 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007498 // just return the source. There's no need to insert it because it is not
7499 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007500 if (I->getOperand(0)->getType() == Ty)
7501 return I->getOperand(0);
7502
Chris Lattner4200c2062008-06-18 04:00:49 +00007503 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007504 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007505 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007506 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007507 case Instruction::Select: {
7508 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7509 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7510 Res = SelectInst::Create(I->getOperand(0), True, False);
7511 break;
7512 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007513 case Instruction::PHI: {
7514 PHINode *OPN = cast<PHINode>(I);
7515 PHINode *NPN = PHINode::Create(Ty);
7516 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7517 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7518 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7519 }
7520 Res = NPN;
7521 break;
7522 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007523 default:
7524 // TODO: Can handle more cases here.
7525 assert(0 && "Unreachable!");
7526 break;
7527 }
7528
Chris Lattner4200c2062008-06-18 04:00:49 +00007529 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007530 return InsertNewInstBefore(Res, *I);
7531}
7532
7533/// @brief Implement the transforms common to all CastInst visitors.
7534Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7535 Value *Src = CI.getOperand(0);
7536
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007537 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7538 // eliminate it now.
7539 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7540 if (Instruction::CastOps opc =
7541 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7542 // The first cast (CSrc) is eliminable so we need to fix up or replace
7543 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007544 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007545 }
7546 }
7547
7548 // If we are casting a select then fold the cast into the select
7549 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7550 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7551 return NV;
7552
7553 // If we are casting a PHI then fold the cast into the PHI
7554 if (isa<PHINode>(Src))
7555 if (Instruction *NV = FoldOpIntoPhi(CI))
7556 return NV;
7557
7558 return 0;
7559}
7560
7561/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7562Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7563 Value *Src = CI.getOperand(0);
7564
7565 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7566 // If casting the result of a getelementptr instruction with no offset, turn
7567 // this into a cast of the original pointer!
7568 if (GEP->hasAllZeroIndices()) {
7569 // Changing the cast operand is usually not a good idea but it is safe
7570 // here because the pointer operand is being replaced with another
7571 // pointer operand so the opcode doesn't need to change.
7572 AddToWorkList(GEP);
7573 CI.setOperand(0, GEP->getOperand(0));
7574 return &CI;
7575 }
7576
7577 // If the GEP has a single use, and the base pointer is a bitcast, and the
7578 // GEP computes a constant offset, see if we can convert these three
7579 // instructions into fewer. This typically happens with unions and other
7580 // non-type-safe code.
7581 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7582 if (GEP->hasAllConstantIndices()) {
7583 // We are guaranteed to get a constant from EmitGEPOffset.
7584 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7585 int64_t Offset = OffsetV->getSExtValue();
7586
7587 // Get the base pointer input of the bitcast, and the type it points to.
7588 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7589 const Type *GEPIdxTy =
7590 cast<PointerType>(OrigBase->getType())->getElementType();
7591 if (GEPIdxTy->isSized()) {
7592 SmallVector<Value*, 8> NewIndices;
7593
7594 // Start with the index over the outer type. Note that the type size
7595 // might be zero (even if the offset isn't zero) if the indexed type
7596 // is something like [0 x {int, int}]
7597 const Type *IntPtrTy = TD->getIntPtrType();
7598 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007599 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007600 FirstIdx = Offset/TySize;
7601 Offset %= TySize;
7602
7603 // Handle silly modulus not returning values values [0..TySize).
7604 if (Offset < 0) {
7605 --FirstIdx;
7606 Offset += TySize;
7607 assert(Offset >= 0);
7608 }
7609 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7610 }
7611
7612 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7613
7614 // Index into the types. If we fail, set OrigBase to null.
7615 while (Offset) {
7616 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7617 const StructLayout *SL = TD->getStructLayout(STy);
7618 if (Offset < (int64_t)SL->getSizeInBytes()) {
7619 unsigned Elt = SL->getElementContainingOffset(Offset);
7620 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7621
7622 Offset -= SL->getElementOffset(Elt);
7623 GEPIdxTy = STy->getElementType(Elt);
7624 } else {
7625 // Otherwise, we can't index into this, bail out.
7626 Offset = 0;
7627 OrigBase = 0;
7628 }
7629 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7630 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007631 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007632 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7633 Offset %= EltSize;
7634 } else {
7635 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7636 }
7637 GEPIdxTy = STy->getElementType();
7638 } else {
7639 // Otherwise, we can't index into this, bail out.
7640 Offset = 0;
7641 OrigBase = 0;
7642 }
7643 }
7644 if (OrigBase) {
7645 // If we were able to index down into an element, create the GEP
7646 // and bitcast the result. This eliminates one bitcast, potentially
7647 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007648 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7649 NewIndices.begin(),
7650 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007651 InsertNewInstBefore(NGEP, CI);
7652 NGEP->takeName(GEP);
7653
7654 if (isa<BitCastInst>(CI))
7655 return new BitCastInst(NGEP, CI.getType());
7656 assert(isa<PtrToIntInst>(CI));
7657 return new PtrToIntInst(NGEP, CI.getType());
7658 }
7659 }
7660 }
7661 }
7662 }
7663
7664 return commonCastTransforms(CI);
7665}
7666
7667
7668
7669/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7670/// integer types. This function implements the common transforms for all those
7671/// cases.
7672/// @brief Implement the transforms common to CastInst with integer operands
7673Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7674 if (Instruction *Result = commonCastTransforms(CI))
7675 return Result;
7676
7677 Value *Src = CI.getOperand(0);
7678 const Type *SrcTy = Src->getType();
7679 const Type *DestTy = CI.getType();
7680 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7681 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7682
7683 // See if we can simplify any instructions used by the LHS whose sole
7684 // purpose is to compute bits we don't care about.
7685 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7686 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7687 KnownZero, KnownOne))
7688 return &CI;
7689
7690 // If the source isn't an instruction or has more than one use then we
7691 // can't do anything more.
7692 Instruction *SrcI = dyn_cast<Instruction>(Src);
7693 if (!SrcI || !Src->hasOneUse())
7694 return 0;
7695
7696 // Attempt to propagate the cast into the instruction for int->int casts.
7697 int NumCastsRemoved = 0;
7698 if (!isa<BitCastInst>(CI) &&
7699 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007700 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007701 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007702 // eliminates the cast, so it is always a win. If this is a zero-extension,
7703 // we need to do an AND to maintain the clear top-part of the computation,
7704 // so we require that the input have eliminated at least one cast. If this
7705 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007706 // require that two casts have been eliminated.
7707 bool DoXForm;
7708 switch (CI.getOpcode()) {
7709 default:
7710 // All the others use floating point so we shouldn't actually
7711 // get here because of the check above.
7712 assert(0 && "Unknown cast type");
7713 case Instruction::Trunc:
7714 DoXForm = true;
7715 break;
7716 case Instruction::ZExt:
7717 DoXForm = NumCastsRemoved >= 1;
7718 break;
7719 case Instruction::SExt:
7720 DoXForm = NumCastsRemoved >= 2;
7721 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007722 }
7723
7724 if (DoXForm) {
7725 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7726 CI.getOpcode() == Instruction::SExt);
7727 assert(Res->getType() == DestTy);
7728 switch (CI.getOpcode()) {
7729 default: assert(0 && "Unknown cast type!");
7730 case Instruction::Trunc:
7731 case Instruction::BitCast:
7732 // Just replace this cast with the result.
7733 return ReplaceInstUsesWith(CI, Res);
7734 case Instruction::ZExt: {
7735 // We need to emit an AND to clear the high bits.
7736 assert(SrcBitSize < DestBitSize && "Not a zext?");
7737 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7738 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007739 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007740 }
7741 case Instruction::SExt:
7742 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007743 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007744 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7745 CI), DestTy);
7746 }
7747 }
7748 }
7749
7750 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7751 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7752
7753 switch (SrcI->getOpcode()) {
7754 case Instruction::Add:
7755 case Instruction::Mul:
7756 case Instruction::And:
7757 case Instruction::Or:
7758 case Instruction::Xor:
7759 // If we are discarding information, rewrite.
7760 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7761 // Don't insert two casts if they cannot be eliminated. We allow
7762 // two casts to be inserted if the sizes are the same. This could
7763 // only be converting signedness, which is a noop.
7764 if (DestBitSize == SrcBitSize ||
7765 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7766 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7767 Instruction::CastOps opcode = CI.getOpcode();
7768 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7769 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007770 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007771 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7772 }
7773 }
7774
7775 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7776 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7777 SrcI->getOpcode() == Instruction::Xor &&
7778 Op1 == ConstantInt::getTrue() &&
7779 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7780 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007781 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007782 }
7783 break;
7784 case Instruction::SDiv:
7785 case Instruction::UDiv:
7786 case Instruction::SRem:
7787 case Instruction::URem:
7788 // If we are just changing the sign, rewrite.
7789 if (DestBitSize == SrcBitSize) {
7790 // Don't insert two casts if they cannot be eliminated. We allow
7791 // two casts to be inserted if the sizes are the same. This could
7792 // only be converting signedness, which is a noop.
7793 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7794 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7795 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7796 Op0, DestTy, SrcI);
7797 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7798 Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007799 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007800 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7801 }
7802 }
7803 break;
7804
7805 case Instruction::Shl:
7806 // Allow changing the sign of the source operand. Do not allow
7807 // changing the size of the shift, UNLESS the shift amount is a
7808 // constant. We must not change variable sized shifts to a smaller
7809 // size, because it is undefined to shift more bits out than exist
7810 // in the value.
7811 if (DestBitSize == SrcBitSize ||
7812 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7813 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7814 Instruction::BitCast : Instruction::Trunc);
7815 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7816 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007817 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007818 }
7819 break;
7820 case Instruction::AShr:
7821 // If this is a signed shr, and if all bits shifted in are about to be
7822 // truncated off, turn it into an unsigned shr to allow greater
7823 // simplifications.
7824 if (DestBitSize < SrcBitSize &&
7825 isa<ConstantInt>(Op1)) {
7826 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7827 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7828 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007829 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007830 }
7831 }
7832 break;
7833 }
7834 return 0;
7835}
7836
7837Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7838 if (Instruction *Result = commonIntCastTransforms(CI))
7839 return Result;
7840
7841 Value *Src = CI.getOperand(0);
7842 const Type *Ty = CI.getType();
7843 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7844 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7845
7846 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7847 switch (SrcI->getOpcode()) {
7848 default: break;
7849 case Instruction::LShr:
7850 // We can shrink lshr to something smaller if we know the bits shifted in
7851 // are already zeros.
7852 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7853 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7854
7855 // Get a mask for the bits shifting in.
7856 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7857 Value* SrcIOp0 = SrcI->getOperand(0);
7858 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7859 if (ShAmt >= DestBitWidth) // All zeros.
7860 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7861
7862 // Okay, we can shrink this. Truncate the input, then return a new
7863 // shift.
7864 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7865 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7866 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007867 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007868 }
7869 } else { // This is a variable shr.
7870
7871 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7872 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7873 // loop-invariant and CSE'd.
7874 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7875 Value *One = ConstantInt::get(SrcI->getType(), 1);
7876
7877 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00007878 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007879 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007880 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007881 SrcI->getOperand(0),
7882 "tmp"), CI);
7883 Value *Zero = Constant::getNullValue(V->getType());
7884 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7885 }
7886 }
7887 break;
7888 }
7889 }
7890
7891 return 0;
7892}
7893
Evan Chenge3779cf2008-03-24 00:21:34 +00007894/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7895/// in order to eliminate the icmp.
7896Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7897 bool DoXform) {
7898 // If we are just checking for a icmp eq of a single bit and zext'ing it
7899 // to an integer, then shift the bit to the appropriate place and then
7900 // cast to integer to avoid the comparison.
7901 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7902 const APInt &Op1CV = Op1C->getValue();
7903
7904 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7905 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7906 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7907 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7908 if (!DoXform) return ICI;
7909
7910 Value *In = ICI->getOperand(0);
7911 Value *Sh = ConstantInt::get(In->getType(),
7912 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007913 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00007914 In->getName()+".lobit"),
7915 CI);
7916 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007917 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00007918 false/*ZExt*/, "tmp", &CI);
7919
7920 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7921 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007922 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00007923 In->getName()+".not"),
7924 CI);
7925 }
7926
7927 return ReplaceInstUsesWith(CI, In);
7928 }
7929
7930
7931
7932 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7933 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7934 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7935 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7936 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7937 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7938 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7939 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7940 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7941 // This only works for EQ and NE
7942 ICI->isEquality()) {
7943 // If Op1C some other power of two, convert:
7944 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7945 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7946 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7947 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7948
7949 APInt KnownZeroMask(~KnownZero);
7950 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7951 if (!DoXform) return ICI;
7952
7953 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7954 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7955 // (X&4) == 2 --> false
7956 // (X&4) != 2 --> true
7957 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7958 Res = ConstantExpr::getZExt(Res, CI.getType());
7959 return ReplaceInstUsesWith(CI, Res);
7960 }
7961
7962 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7963 Value *In = ICI->getOperand(0);
7964 if (ShiftAmt) {
7965 // Perform a logical shr by shiftamt.
7966 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00007967 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00007968 ConstantInt::get(In->getType(), ShiftAmt),
7969 In->getName()+".lobit"), CI);
7970 }
7971
7972 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7973 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007974 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00007975 InsertNewInstBefore(cast<Instruction>(In), CI);
7976 }
7977
7978 if (CI.getType() == In->getType())
7979 return ReplaceInstUsesWith(CI, In);
7980 else
Gabor Greifa645dd32008-05-16 19:29:10 +00007981 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00007982 }
7983 }
7984 }
7985
7986 return 0;
7987}
7988
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007989Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
7990 // If one of the common conversion will work ..
7991 if (Instruction *Result = commonIntCastTransforms(CI))
7992 return Result;
7993
7994 Value *Src = CI.getOperand(0);
7995
7996 // If this is a cast of a cast
7997 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7998 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7999 // types and if the sizes are just right we can convert this into a logical
8000 // 'and' which will be much cheaper than the pair of casts.
8001 if (isa<TruncInst>(CSrc)) {
8002 // Get the sizes of the types involved
8003 Value *A = CSrc->getOperand(0);
8004 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8005 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8006 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
8007 // If we're actually extending zero bits and the trunc is a no-op
8008 if (MidSize < DstSize && SrcSize == DstSize) {
8009 // Replace both of the casts with an And of the type mask.
8010 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8011 Constant *AndConst = ConstantInt::get(AndValue);
8012 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00008013 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008014 // Unfortunately, if the type changed, we need to cast it back.
8015 if (And->getType() != CI.getType()) {
8016 And->setName(CSrc->getName()+".mask");
8017 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008018 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008019 }
8020 return And;
8021 }
8022 }
8023 }
8024
Evan Chenge3779cf2008-03-24 00:21:34 +00008025 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8026 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008027
Evan Chenge3779cf2008-03-24 00:21:34 +00008028 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8029 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8030 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8031 // of the (zext icmp) will be transformed.
8032 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8033 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8034 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8035 (transformZExtICmp(LHS, CI, false) ||
8036 transformZExtICmp(RHS, CI, false))) {
8037 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8038 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008039 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008040 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008041 }
8042
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008043 return 0;
8044}
8045
8046Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8047 if (Instruction *I = commonIntCastTransforms(CI))
8048 return I;
8049
8050 Value *Src = CI.getOperand(0);
8051
Dan Gohman35b76162008-10-30 20:40:10 +00008052 // Canonicalize sign-extend from i1 to a select.
8053 if (Src->getType() == Type::Int1Ty)
8054 return SelectInst::Create(Src,
8055 ConstantInt::getAllOnesValue(CI.getType()),
8056 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008057
8058 // See if the value being truncated is already sign extended. If so, just
8059 // eliminate the trunc/sext pair.
8060 if (getOpcode(Src) == Instruction::Trunc) {
8061 Value *Op = cast<User>(Src)->getOperand(0);
8062 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8063 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8064 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8065 unsigned NumSignBits = ComputeNumSignBits(Op);
8066
8067 if (OpBits == DestBits) {
8068 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8069 // bits, it is already ready.
8070 if (NumSignBits > DestBits-MidBits)
8071 return ReplaceInstUsesWith(CI, Op);
8072 } else if (OpBits < DestBits) {
8073 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8074 // bits, just sext from i32.
8075 if (NumSignBits > OpBits-MidBits)
8076 return new SExtInst(Op, CI.getType(), "tmp");
8077 } else {
8078 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8079 // bits, just truncate to i32.
8080 if (NumSignBits > OpBits-MidBits)
8081 return new TruncInst(Op, CI.getType(), "tmp");
8082 }
8083 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008084
8085 // If the input is a shl/ashr pair of a same constant, then this is a sign
8086 // extension from a smaller value. If we could trust arbitrary bitwidth
8087 // integers, we could turn this into a truncate to the smaller bit and then
8088 // use a sext for the whole extension. Since we don't, look deeper and check
8089 // for a truncate. If the source and dest are the same type, eliminate the
8090 // trunc and extend and just do shifts. For example, turn:
8091 // %a = trunc i32 %i to i8
8092 // %b = shl i8 %a, 6
8093 // %c = ashr i8 %b, 6
8094 // %d = sext i8 %c to i32
8095 // into:
8096 // %a = shl i32 %i, 30
8097 // %d = ashr i32 %a, 30
8098 Value *A = 0;
8099 ConstantInt *BA = 0, *CA = 0;
8100 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8101 m_ConstantInt(CA))) &&
8102 BA == CA && isa<TruncInst>(A)) {
8103 Value *I = cast<TruncInst>(A)->getOperand(0);
8104 if (I->getType() == CI.getType()) {
8105 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8106 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8107 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8108 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8109 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8110 CI.getName()), CI);
8111 return BinaryOperator::CreateAShr(I, ShAmtV);
8112 }
8113 }
8114
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008115 return 0;
8116}
8117
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008118/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8119/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008120static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008121 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008122 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008123 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8124 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008125 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008126 return 0;
8127}
8128
8129/// LookThroughFPExtensions - If this is an fp extension instruction, look
8130/// through it until we get the source value.
8131static Value *LookThroughFPExtensions(Value *V) {
8132 if (Instruction *I = dyn_cast<Instruction>(V))
8133 if (I->getOpcode() == Instruction::FPExt)
8134 return LookThroughFPExtensions(I->getOperand(0));
8135
8136 // If this value is a constant, return the constant in the smallest FP type
8137 // that can accurately represent it. This allows us to turn
8138 // (float)((double)X+2.0) into x+2.0f.
8139 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8140 if (CFP->getType() == Type::PPC_FP128Ty)
8141 return V; // No constant folding of this.
8142 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008143 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008144 return V;
8145 if (CFP->getType() == Type::DoubleTy)
8146 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008147 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008148 return V;
8149 // Don't try to shrink to various long double types.
8150 }
8151
8152 return V;
8153}
8154
8155Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8156 if (Instruction *I = commonCastTransforms(CI))
8157 return I;
8158
8159 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8160 // smaller than the destination type, we can eliminate the truncate by doing
8161 // the add as the smaller type. This applies to add/sub/mul/div as well as
8162 // many builtins (sqrt, etc).
8163 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8164 if (OpI && OpI->hasOneUse()) {
8165 switch (OpI->getOpcode()) {
8166 default: break;
8167 case Instruction::Add:
8168 case Instruction::Sub:
8169 case Instruction::Mul:
8170 case Instruction::FDiv:
8171 case Instruction::FRem:
8172 const Type *SrcTy = OpI->getType();
8173 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8174 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8175 if (LHSTrunc->getType() != SrcTy &&
8176 RHSTrunc->getType() != SrcTy) {
8177 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8178 // If the source types were both smaller than the destination type of
8179 // the cast, do this xform.
8180 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8181 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8182 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8183 CI.getType(), CI);
8184 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8185 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008186 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008187 }
8188 }
8189 break;
8190 }
8191 }
8192 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008193}
8194
8195Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8196 return commonCastTransforms(CI);
8197}
8198
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008199Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008200 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8201 if (OpI == 0)
8202 return commonCastTransforms(FI);
8203
8204 // fptoui(uitofp(X)) --> X
8205 // fptoui(sitofp(X)) --> X
8206 // This is safe if the intermediate type has enough bits in its mantissa to
8207 // accurately represent all values of X. For example, do not do this with
8208 // i64->float->i64. This is also safe for sitofp case, because any negative
8209 // 'X' value would cause an undefined result for the fptoui.
8210 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8211 OpI->getOperand(0)->getType() == FI.getType() &&
8212 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8213 OpI->getType()->getFPMantissaWidth())
8214 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008215
8216 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008217}
8218
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008219Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008220 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8221 if (OpI == 0)
8222 return commonCastTransforms(FI);
8223
8224 // fptosi(sitofp(X)) --> X
8225 // fptosi(uitofp(X)) --> X
8226 // This is safe if the intermediate type has enough bits in its mantissa to
8227 // accurately represent all values of X. For example, do not do this with
8228 // i64->float->i64. This is also safe for sitofp case, because any negative
8229 // 'X' value would cause an undefined result for the fptoui.
8230 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8231 OpI->getOperand(0)->getType() == FI.getType() &&
8232 (int)FI.getType()->getPrimitiveSizeInBits() <=
8233 OpI->getType()->getFPMantissaWidth())
8234 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008235
8236 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008237}
8238
8239Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8240 return commonCastTransforms(CI);
8241}
8242
8243Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8244 return commonCastTransforms(CI);
8245}
8246
8247Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8248 return commonPointerCastTransforms(CI);
8249}
8250
Chris Lattner7c1626482008-01-08 07:23:51 +00008251Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8252 if (Instruction *I = commonCastTransforms(CI))
8253 return I;
8254
8255 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8256 if (!DestPointee->isSized()) return 0;
8257
8258 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8259 ConstantInt *Cst;
8260 Value *X;
8261 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8262 m_ConstantInt(Cst)))) {
8263 // If the source and destination operands have the same type, see if this
8264 // is a single-index GEP.
8265 if (X->getType() == CI.getType()) {
8266 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008267 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008268
8269 // Convert the constant to intptr type.
8270 APInt Offset = Cst->getValue();
8271 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8272
8273 // If Offset is evenly divisible by Size, we can do this xform.
8274 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8275 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008276 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008277 }
8278 }
8279 // TODO: Could handle other cases, e.g. where add is indexing into field of
8280 // struct etc.
8281 } else if (CI.getOperand(0)->hasOneUse() &&
8282 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8283 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8284 // "inttoptr+GEP" instead of "add+intptr".
8285
8286 // Get the size of the pointee type.
8287 uint64_t Size = TD->getABITypeSize(DestPointee);
8288
8289 // Convert the constant to intptr type.
8290 APInt Offset = Cst->getValue();
8291 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8292
8293 // If Offset is evenly divisible by Size, we can do this xform.
8294 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8295 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8296
8297 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8298 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008299 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008300 }
8301 }
8302 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008303}
8304
8305Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8306 // If the operands are integer typed then apply the integer transforms,
8307 // otherwise just apply the common ones.
8308 Value *Src = CI.getOperand(0);
8309 const Type *SrcTy = Src->getType();
8310 const Type *DestTy = CI.getType();
8311
8312 if (SrcTy->isInteger() && DestTy->isInteger()) {
8313 if (Instruction *Result = commonIntCastTransforms(CI))
8314 return Result;
8315 } else if (isa<PointerType>(SrcTy)) {
8316 if (Instruction *I = commonPointerCastTransforms(CI))
8317 return I;
8318 } else {
8319 if (Instruction *Result = commonCastTransforms(CI))
8320 return Result;
8321 }
8322
8323
8324 // Get rid of casts from one type to the same type. These are useless and can
8325 // be replaced by the operand.
8326 if (DestTy == Src->getType())
8327 return ReplaceInstUsesWith(CI, Src);
8328
8329 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8330 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8331 const Type *DstElTy = DstPTy->getElementType();
8332 const Type *SrcElTy = SrcPTy->getElementType();
8333
Nate Begemandf5b3612008-03-31 00:22:16 +00008334 // If the address spaces don't match, don't eliminate the bitcast, which is
8335 // required for changing types.
8336 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8337 return 0;
8338
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008339 // If we are casting a malloc or alloca to a pointer to a type of the same
8340 // size, rewrite the allocation instruction to allocate the "right" type.
8341 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8342 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8343 return V;
8344
8345 // If the source and destination are pointers, and this cast is equivalent
8346 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8347 // This can enhance SROA and other transforms that want type-safe pointers.
8348 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8349 unsigned NumZeros = 0;
8350 while (SrcElTy != DstElTy &&
8351 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8352 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8353 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8354 ++NumZeros;
8355 }
8356
8357 // If we found a path from the src to dest, create the getelementptr now.
8358 if (SrcElTy == DstElTy) {
8359 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008360 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8361 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008362 }
8363 }
8364
8365 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8366 if (SVI->hasOneUse()) {
8367 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8368 // a bitconvert to a vector with the same # elts.
8369 if (isa<VectorType>(DestTy) &&
Mon P Wangbff5d9c2008-11-10 04:46:22 +00008370 cast<VectorType>(DestTy)->getNumElements() ==
8371 SVI->getType()->getNumElements() &&
8372 SVI->getType()->getNumElements() ==
8373 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008374 CastInst *Tmp;
8375 // If either of the operands is a cast from CI.getType(), then
8376 // evaluating the shuffle in the casted destination's type will allow
8377 // us to eliminate at least one cast.
8378 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8379 Tmp->getOperand(0)->getType() == DestTy) ||
8380 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8381 Tmp->getOperand(0)->getType() == DestTy)) {
8382 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
8383 SVI->getOperand(0), DestTy, &CI);
8384 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
8385 SVI->getOperand(1), DestTy, &CI);
8386 // Return a new shuffle vector. Use the same element ID's, as we
8387 // know the vector types match #elts.
8388 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8389 }
8390 }
8391 }
8392 }
8393 return 0;
8394}
8395
8396/// GetSelectFoldableOperands - We want to turn code that looks like this:
8397/// %C = or %A, %B
8398/// %D = select %cond, %C, %A
8399/// into:
8400/// %C = select %cond, %B, 0
8401/// %D = or %A, %C
8402///
8403/// Assuming that the specified instruction is an operand to the select, return
8404/// a bitmask indicating which operands of this instruction are foldable if they
8405/// equal the other incoming value of the select.
8406///
8407static unsigned GetSelectFoldableOperands(Instruction *I) {
8408 switch (I->getOpcode()) {
8409 case Instruction::Add:
8410 case Instruction::Mul:
8411 case Instruction::And:
8412 case Instruction::Or:
8413 case Instruction::Xor:
8414 return 3; // Can fold through either operand.
8415 case Instruction::Sub: // Can only fold on the amount subtracted.
8416 case Instruction::Shl: // Can only fold on the shift amount.
8417 case Instruction::LShr:
8418 case Instruction::AShr:
8419 return 1;
8420 default:
8421 return 0; // Cannot fold
8422 }
8423}
8424
8425/// GetSelectFoldableConstant - For the same transformation as the previous
8426/// function, return the identity constant that goes into the select.
8427static Constant *GetSelectFoldableConstant(Instruction *I) {
8428 switch (I->getOpcode()) {
8429 default: assert(0 && "This cannot happen!"); abort();
8430 case Instruction::Add:
8431 case Instruction::Sub:
8432 case Instruction::Or:
8433 case Instruction::Xor:
8434 case Instruction::Shl:
8435 case Instruction::LShr:
8436 case Instruction::AShr:
8437 return Constant::getNullValue(I->getType());
8438 case Instruction::And:
8439 return Constant::getAllOnesValue(I->getType());
8440 case Instruction::Mul:
8441 return ConstantInt::get(I->getType(), 1);
8442 }
8443}
8444
8445/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8446/// have the same opcode and only one use each. Try to simplify this.
8447Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8448 Instruction *FI) {
8449 if (TI->getNumOperands() == 1) {
8450 // If this is a non-volatile load or a cast from the same type,
8451 // merge.
8452 if (TI->isCast()) {
8453 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8454 return 0;
8455 } else {
8456 return 0; // unknown unary op.
8457 }
8458
8459 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008460 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8461 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008462 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008463 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008464 TI->getType());
8465 }
8466
8467 // Only handle binary operators here.
8468 if (!isa<BinaryOperator>(TI))
8469 return 0;
8470
8471 // Figure out if the operations have any operands in common.
8472 Value *MatchOp, *OtherOpT, *OtherOpF;
8473 bool MatchIsOpZero;
8474 if (TI->getOperand(0) == FI->getOperand(0)) {
8475 MatchOp = TI->getOperand(0);
8476 OtherOpT = TI->getOperand(1);
8477 OtherOpF = FI->getOperand(1);
8478 MatchIsOpZero = true;
8479 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8480 MatchOp = TI->getOperand(1);
8481 OtherOpT = TI->getOperand(0);
8482 OtherOpF = FI->getOperand(0);
8483 MatchIsOpZero = false;
8484 } else if (!TI->isCommutative()) {
8485 return 0;
8486 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8487 MatchOp = TI->getOperand(0);
8488 OtherOpT = TI->getOperand(1);
8489 OtherOpF = FI->getOperand(0);
8490 MatchIsOpZero = true;
8491 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8492 MatchOp = TI->getOperand(1);
8493 OtherOpT = TI->getOperand(0);
8494 OtherOpF = FI->getOperand(1);
8495 MatchIsOpZero = true;
8496 } else {
8497 return 0;
8498 }
8499
8500 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008501 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8502 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008503 InsertNewInstBefore(NewSI, SI);
8504
8505 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8506 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008507 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008508 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008509 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008510 }
8511 assert(0 && "Shouldn't get here");
8512 return 0;
8513}
8514
Dan Gohman58c09632008-09-16 18:46:06 +00008515/// visitSelectInstWithICmp - Visit a SelectInst that has an
8516/// ICmpInst as its first operand.
8517///
8518Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8519 ICmpInst *ICI) {
8520 bool Changed = false;
8521 ICmpInst::Predicate Pred = ICI->getPredicate();
8522 Value *CmpLHS = ICI->getOperand(0);
8523 Value *CmpRHS = ICI->getOperand(1);
8524 Value *TrueVal = SI.getTrueValue();
8525 Value *FalseVal = SI.getFalseValue();
8526
8527 // Check cases where the comparison is with a constant that
8528 // can be adjusted to fit the min/max idiom. We may edit ICI in
8529 // place here, so make sure the select is the only user.
8530 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008531 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008532 switch (Pred) {
8533 default: break;
8534 case ICmpInst::ICMP_ULT:
8535 case ICmpInst::ICMP_SLT: {
8536 // X < MIN ? T : F --> F
8537 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8538 return ReplaceInstUsesWith(SI, FalseVal);
8539 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8540 Constant *AdjustedRHS = SubOne(CI);
8541 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8542 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8543 Pred = ICmpInst::getSwappedPredicate(Pred);
8544 CmpRHS = AdjustedRHS;
8545 std::swap(FalseVal, TrueVal);
8546 ICI->setPredicate(Pred);
8547 ICI->setOperand(1, CmpRHS);
8548 SI.setOperand(1, TrueVal);
8549 SI.setOperand(2, FalseVal);
8550 Changed = true;
8551 }
8552 break;
8553 }
8554 case ICmpInst::ICMP_UGT:
8555 case ICmpInst::ICMP_SGT: {
8556 // X > MAX ? T : F --> F
8557 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8558 return ReplaceInstUsesWith(SI, FalseVal);
8559 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8560 Constant *AdjustedRHS = AddOne(CI);
8561 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8562 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8563 Pred = ICmpInst::getSwappedPredicate(Pred);
8564 CmpRHS = AdjustedRHS;
8565 std::swap(FalseVal, TrueVal);
8566 ICI->setPredicate(Pred);
8567 ICI->setOperand(1, CmpRHS);
8568 SI.setOperand(1, TrueVal);
8569 SI.setOperand(2, FalseVal);
8570 Changed = true;
8571 }
8572 break;
8573 }
8574 }
8575
Dan Gohman35b76162008-10-30 20:40:10 +00008576 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8577 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
8578 CmpInst::Predicate Pred = ICI->getPredicate();
8579 if (match(TrueVal, m_ConstantInt(0)) &&
8580 match(FalseVal, m_ConstantInt(-1)))
8581 Pred = CmpInst::getInversePredicate(Pred);
8582 else if (!match(TrueVal, m_ConstantInt(-1)) ||
8583 !match(FalseVal, m_ConstantInt(0)))
8584 Pred = CmpInst::BAD_ICMP_PREDICATE;
8585 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8586 // If we are just checking for a icmp eq of a single bit and zext'ing it
8587 // to an integer, then shift the bit to the appropriate place and then
8588 // cast to integer to avoid the comparison.
8589 const APInt &Op1CV = CI->getValue();
8590
8591 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8592 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8593 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8594 (Pred == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8595 Value *In = ICI->getOperand(0);
8596 Value *Sh = ConstantInt::get(In->getType(),
8597 In->getType()->getPrimitiveSizeInBits()-1);
8598 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8599 In->getName()+".lobit"),
8600 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008601 if (In->getType() != SI.getType())
8602 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008603 true/*SExt*/, "tmp", ICI);
8604
8605 if (Pred == ICmpInst::ICMP_SGT)
8606 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8607 In->getName()+".not"), *ICI);
8608
8609 return ReplaceInstUsesWith(SI, In);
8610 }
8611 }
8612 }
8613
Dan Gohman58c09632008-09-16 18:46:06 +00008614 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8615 // Transform (X == Y) ? X : Y -> Y
8616 if (Pred == ICmpInst::ICMP_EQ)
8617 return ReplaceInstUsesWith(SI, FalseVal);
8618 // Transform (X != Y) ? X : Y -> X
8619 if (Pred == ICmpInst::ICMP_NE)
8620 return ReplaceInstUsesWith(SI, TrueVal);
8621 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8622
8623 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8624 // Transform (X == Y) ? Y : X -> X
8625 if (Pred == ICmpInst::ICMP_EQ)
8626 return ReplaceInstUsesWith(SI, FalseVal);
8627 // Transform (X != Y) ? Y : X -> Y
8628 if (Pred == ICmpInst::ICMP_NE)
8629 return ReplaceInstUsesWith(SI, TrueVal);
8630 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8631 }
8632
8633 /// NOTE: if we wanted to, this is where to detect integer ABS
8634
8635 return Changed ? &SI : 0;
8636}
8637
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008638Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8639 Value *CondVal = SI.getCondition();
8640 Value *TrueVal = SI.getTrueValue();
8641 Value *FalseVal = SI.getFalseValue();
8642
8643 // select true, X, Y -> X
8644 // select false, X, Y -> Y
8645 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8646 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8647
8648 // select C, X, X -> X
8649 if (TrueVal == FalseVal)
8650 return ReplaceInstUsesWith(SI, TrueVal);
8651
8652 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8653 return ReplaceInstUsesWith(SI, FalseVal);
8654 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8655 return ReplaceInstUsesWith(SI, TrueVal);
8656 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8657 if (isa<Constant>(TrueVal))
8658 return ReplaceInstUsesWith(SI, TrueVal);
8659 else
8660 return ReplaceInstUsesWith(SI, FalseVal);
8661 }
8662
8663 if (SI.getType() == Type::Int1Ty) {
8664 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8665 if (C->getZExtValue()) {
8666 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008667 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008668 } else {
8669 // Change: A = select B, false, C --> A = and !B, C
8670 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008671 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008672 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008673 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008674 }
8675 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8676 if (C->getZExtValue() == false) {
8677 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008678 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008679 } else {
8680 // Change: A = select B, C, true --> A = or !B, C
8681 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008682 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008683 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008684 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008685 }
8686 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008687
8688 // select a, b, a -> a&b
8689 // select a, a, b -> a|b
8690 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008691 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008692 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008693 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008694 }
8695
8696 // Selecting between two integer constants?
8697 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8698 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8699 // select C, 1, 0 -> zext C to int
8700 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008701 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008702 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8703 // select C, 0, 1 -> zext !C to int
8704 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008705 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008706 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008707 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008708 }
8709
8710 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8711
8712 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8713
8714 // (x <s 0) ? -1 : 0 -> ashr x, 31
8715 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8716 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8717 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8718 // The comparison constant and the result are not neccessarily the
8719 // same width. Make an all-ones value by inserting a AShr.
8720 Value *X = IC->getOperand(0);
8721 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8722 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008723 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008724 ShAmt, "ones");
8725 InsertNewInstBefore(SRA, SI);
8726
8727 // Finally, convert to the type of the select RHS. We figure out
8728 // if this requires a SExt, Trunc or BitCast based on the sizes.
8729 Instruction::CastOps opc = Instruction::BitCast;
8730 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8731 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8732 if (SRASize < SISize)
8733 opc = Instruction::SExt;
8734 else if (SRASize > SISize)
8735 opc = Instruction::Trunc;
Gabor Greifa645dd32008-05-16 19:29:10 +00008736 return CastInst::Create(opc, SRA, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008737 }
8738 }
8739
8740
8741 // If one of the constants is zero (we know they can't both be) and we
8742 // have an icmp instruction with zero, and we have an 'and' with the
8743 // non-constant value, eliminate this whole mess. This corresponds to
8744 // cases like this: ((X & 27) ? 27 : 0)
8745 if (TrueValC->isZero() || FalseValC->isZero())
8746 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8747 cast<Constant>(IC->getOperand(1))->isNullValue())
8748 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8749 if (ICA->getOpcode() == Instruction::And &&
8750 isa<ConstantInt>(ICA->getOperand(1)) &&
8751 (ICA->getOperand(1) == TrueValC ||
8752 ICA->getOperand(1) == FalseValC) &&
8753 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8754 // Okay, now we know that everything is set up, we just don't
8755 // know whether we have a icmp_ne or icmp_eq and whether the
8756 // true or false val is the zero.
8757 bool ShouldNotVal = !TrueValC->isZero();
8758 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8759 Value *V = ICA;
8760 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008761 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008762 Instruction::Xor, V, ICA->getOperand(1)), SI);
8763 return ReplaceInstUsesWith(SI, V);
8764 }
8765 }
8766 }
8767
8768 // See if we are selecting two values based on a comparison of the two values.
8769 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8770 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8771 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008772 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8773 // This is not safe in general for floating point:
8774 // consider X== -0, Y== +0.
8775 // It becomes safe if either operand is a nonzero constant.
8776 ConstantFP *CFPt, *CFPf;
8777 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8778 !CFPt->getValueAPF().isZero()) ||
8779 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8780 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008781 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008782 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008783 // Transform (X != Y) ? X : Y -> X
8784 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8785 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008786 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008787
8788 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8789 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008790 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8791 // This is not safe in general for floating point:
8792 // consider X== -0, Y== +0.
8793 // It becomes safe if either operand is a nonzero constant.
8794 ConstantFP *CFPt, *CFPf;
8795 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8796 !CFPt->getValueAPF().isZero()) ||
8797 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8798 !CFPf->getValueAPF().isZero()))
8799 return ReplaceInstUsesWith(SI, FalseVal);
8800 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008801 // Transform (X != Y) ? Y : X -> Y
8802 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8803 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008804 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008805 }
Dan Gohman58c09632008-09-16 18:46:06 +00008806 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008807 }
8808
8809 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008810 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8811 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8812 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008813
8814 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8815 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8816 if (TI->hasOneUse() && FI->hasOneUse()) {
8817 Instruction *AddOp = 0, *SubOp = 0;
8818
8819 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8820 if (TI->getOpcode() == FI->getOpcode())
8821 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8822 return IV;
8823
8824 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8825 // even legal for FP.
8826 if (TI->getOpcode() == Instruction::Sub &&
8827 FI->getOpcode() == Instruction::Add) {
8828 AddOp = FI; SubOp = TI;
8829 } else if (FI->getOpcode() == Instruction::Sub &&
8830 TI->getOpcode() == Instruction::Add) {
8831 AddOp = TI; SubOp = FI;
8832 }
8833
8834 if (AddOp) {
8835 Value *OtherAddOp = 0;
8836 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8837 OtherAddOp = AddOp->getOperand(1);
8838 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8839 OtherAddOp = AddOp->getOperand(0);
8840 }
8841
8842 if (OtherAddOp) {
8843 // So at this point we know we have (Y -> OtherAddOp):
8844 // select C, (add X, Y), (sub X, Z)
8845 Value *NegVal; // Compute -Z
8846 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8847 NegVal = ConstantExpr::getNeg(C);
8848 } else {
8849 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008850 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008851 }
8852
8853 Value *NewTrueOp = OtherAddOp;
8854 Value *NewFalseOp = NegVal;
8855 if (AddOp != TI)
8856 std::swap(NewTrueOp, NewFalseOp);
8857 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008858 SelectInst::Create(CondVal, NewTrueOp,
8859 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008860
8861 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008862 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008863 }
8864 }
8865 }
8866
8867 // See if we can fold the select into one of our operands.
8868 if (SI.getType()->isInteger()) {
8869 // See the comment above GetSelectFoldableOperands for a description of the
8870 // transformation we are doing here.
8871 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8872 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8873 !isa<Constant>(FalseVal))
8874 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8875 unsigned OpToFold = 0;
8876 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8877 OpToFold = 1;
8878 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8879 OpToFold = 2;
8880 }
8881
8882 if (OpToFold) {
8883 Constant *C = GetSelectFoldableConstant(TVI);
8884 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008885 SelectInst::Create(SI.getCondition(),
8886 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008887 InsertNewInstBefore(NewSel, SI);
8888 NewSel->takeName(TVI);
8889 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008890 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008891 else {
8892 assert(0 && "Unknown instruction!!");
8893 }
8894 }
8895 }
8896
8897 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8898 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8899 !isa<Constant>(TrueVal))
8900 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8901 unsigned OpToFold = 0;
8902 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8903 OpToFold = 1;
8904 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8905 OpToFold = 2;
8906 }
8907
8908 if (OpToFold) {
8909 Constant *C = GetSelectFoldableConstant(FVI);
8910 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008911 SelectInst::Create(SI.getCondition(), C,
8912 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008913 InsertNewInstBefore(NewSel, SI);
8914 NewSel->takeName(FVI);
8915 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008916 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008917 else
8918 assert(0 && "Unknown instruction!!");
8919 }
8920 }
8921 }
8922
8923 if (BinaryOperator::isNot(CondVal)) {
8924 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8925 SI.setOperand(1, FalseVal);
8926 SI.setOperand(2, TrueVal);
8927 return &SI;
8928 }
8929
8930 return 0;
8931}
8932
Dan Gohman2d648bb2008-04-10 18:43:06 +00008933/// EnforceKnownAlignment - If the specified pointer points to an object that
8934/// we control, modify the object's alignment to PrefAlign. This isn't
8935/// often possible though. If alignment is important, a more reliable approach
8936/// is to simply align all global variables and allocation instructions to
8937/// their preferred alignment from the beginning.
8938///
8939static unsigned EnforceKnownAlignment(Value *V,
8940 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00008941
Dan Gohman2d648bb2008-04-10 18:43:06 +00008942 User *U = dyn_cast<User>(V);
8943 if (!U) return Align;
8944
8945 switch (getOpcode(U)) {
8946 default: break;
8947 case Instruction::BitCast:
8948 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8949 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008950 // If all indexes are zero, it is just the alignment of the base pointer.
8951 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00008952 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00008953 if (!isa<Constant>(*i) ||
8954 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008955 AllZeroOperands = false;
8956 break;
8957 }
Chris Lattner47cf3452007-08-09 19:05:49 +00008958
8959 if (AllZeroOperands) {
8960 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008961 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00008962 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008963 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008964 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008965 }
8966
8967 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8968 // If there is a large requested alignment and we can, bump up the alignment
8969 // of the global.
8970 if (!GV->isDeclaration()) {
8971 GV->setAlignment(PrefAlign);
8972 Align = PrefAlign;
8973 }
8974 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8975 // If there is a requested alignment and if this is an alloca, round up. We
8976 // don't do this for malloc, because some systems can't respect the request.
8977 if (isa<AllocaInst>(AI)) {
8978 AI->setAlignment(PrefAlign);
8979 Align = PrefAlign;
8980 }
8981 }
8982
8983 return Align;
8984}
8985
8986/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
8987/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
8988/// and it is more than the alignment of the ultimate object, see if we can
8989/// increase the alignment of the ultimate object, making this check succeed.
8990unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
8991 unsigned PrefAlign) {
8992 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
8993 sizeof(PrefAlign) * CHAR_BIT;
8994 APInt Mask = APInt::getAllOnesValue(BitWidth);
8995 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8996 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
8997 unsigned TrailZ = KnownZero.countTrailingOnes();
8998 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
8999
9000 if (PrefAlign > Align)
9001 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9002
9003 // We don't need to make any adjustment.
9004 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009005}
9006
Chris Lattner00ae5132008-01-13 23:50:23 +00009007Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00009008 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9009 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00009010 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9011 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9012
9013 if (CopyAlign < MinAlign) {
9014 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9015 return MI;
9016 }
9017
9018 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9019 // load/store.
9020 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9021 if (MemOpLength == 0) return 0;
9022
Chris Lattnerc669fb62008-01-14 00:28:35 +00009023 // Source and destination pointer types are always "i8*" for intrinsic. See
9024 // if the size is something we can handle with a single primitive load/store.
9025 // A single load+store correctly handles overlapping memory in the memmove
9026 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00009027 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00009028 if (Size == 0) return MI; // Delete this mem transfer.
9029
9030 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00009031 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00009032
Chris Lattnerc669fb62008-01-14 00:28:35 +00009033 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00009034 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00009035
9036 // Memcpy forces the use of i8* for the source and destination. That means
9037 // that if you're using memcpy to move one double around, you'll get a cast
9038 // from double* to i8*. We'd much rather use a double load+store rather than
9039 // an i64 load+store, here because this improves the odds that the source or
9040 // dest address will be promotable. See if we can find a better type than the
9041 // integer datatype.
9042 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9043 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9044 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9045 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9046 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009047 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009048 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9049 if (STy->getNumElements() == 1)
9050 SrcETy = STy->getElementType(0);
9051 else
9052 break;
9053 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9054 if (ATy->getNumElements() == 1)
9055 SrcETy = ATy->getElementType();
9056 else
9057 break;
9058 } else
9059 break;
9060 }
9061
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009062 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009063 NewPtrTy = PointerType::getUnqual(SrcETy);
9064 }
9065 }
9066
9067
Chris Lattner00ae5132008-01-13 23:50:23 +00009068 // If the memcpy/memmove provides better alignment info than we can
9069 // infer, use it.
9070 SrcAlign = std::max(SrcAlign, CopyAlign);
9071 DstAlign = std::max(DstAlign, CopyAlign);
9072
9073 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9074 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009075 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9076 InsertNewInstBefore(L, *MI);
9077 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9078
9079 // Set the size of the copy to 0, it will be deleted on the next iteration.
9080 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9081 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009082}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009083
Chris Lattner5af8a912008-04-30 06:39:11 +00009084Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9085 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9086 if (MI->getAlignment()->getZExtValue() < Alignment) {
9087 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9088 return MI;
9089 }
9090
9091 // Extract the length and alignment and fill if they are constant.
9092 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9093 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9094 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9095 return 0;
9096 uint64_t Len = LenC->getZExtValue();
9097 Alignment = MI->getAlignment()->getZExtValue();
9098
9099 // If the length is zero, this is a no-op
9100 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9101
9102 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9103 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9104 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9105
9106 Value *Dest = MI->getDest();
9107 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9108
9109 // Alignment 0 is identity for alignment 1 for memset, but not store.
9110 if (Alignment == 0) Alignment = 1;
9111
9112 // Extract the fill value and store.
9113 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9114 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9115 Alignment), *MI);
9116
9117 // Set the size of the copy to 0, it will be deleted on the next iteration.
9118 MI->setLength(Constant::getNullValue(LenC->getType()));
9119 return MI;
9120 }
9121
9122 return 0;
9123}
9124
9125
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009126/// visitCallInst - CallInst simplification. This mostly only handles folding
9127/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9128/// the heavy lifting.
9129///
9130Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9131 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9132 if (!II) return visitCallSite(&CI);
9133
9134 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9135 // visitCallSite.
9136 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9137 bool Changed = false;
9138
9139 // memmove/cpy/set of zero bytes is a noop.
9140 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9141 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9142
9143 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9144 if (CI->getZExtValue() == 1) {
9145 // Replace the instruction with just byte operations. We would
9146 // transform other cases to loads/stores, but we don't know if
9147 // alignment is sufficient.
9148 }
9149 }
9150
9151 // If we have a memmove and the source operation is a constant global,
9152 // then the source and dest pointers can't alias, so we can change this
9153 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009154 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009155 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9156 if (GVSrc->isConstant()) {
9157 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009158 Intrinsic::ID MemCpyID;
9159 if (CI.getOperand(3)->getType() == Type::Int32Ty)
9160 MemCpyID = Intrinsic::memcpy_i32;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009161 else
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009162 MemCpyID = Intrinsic::memcpy_i64;
9163 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009164 Changed = true;
9165 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009166
9167 // memmove(x,x,size) -> noop.
9168 if (MMI->getSource() == MMI->getDest())
9169 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009170 }
9171
9172 // If we can determine a pointer alignment that is bigger than currently
9173 // set, update the alignment.
9174 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009175 if (Instruction *I = SimplifyMemTransfer(MI))
9176 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009177 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9178 if (Instruction *I = SimplifyMemSet(MSI))
9179 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009180 }
9181
9182 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009183 }
9184
9185 switch (II->getIntrinsicID()) {
9186 default: break;
9187 case Intrinsic::bswap:
9188 // bswap(bswap(x)) -> x
9189 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9190 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9191 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9192 break;
9193 case Intrinsic::ppc_altivec_lvx:
9194 case Intrinsic::ppc_altivec_lvxl:
9195 case Intrinsic::x86_sse_loadu_ps:
9196 case Intrinsic::x86_sse2_loadu_pd:
9197 case Intrinsic::x86_sse2_loadu_dq:
9198 // Turn PPC lvx -> load if the pointer is known aligned.
9199 // Turn X86 loadups -> load if the pointer is known aligned.
9200 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9201 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9202 PointerType::getUnqual(II->getType()),
9203 CI);
9204 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009205 }
Chris Lattner989ba312008-06-18 04:33:20 +00009206 break;
9207 case Intrinsic::ppc_altivec_stvx:
9208 case Intrinsic::ppc_altivec_stvxl:
9209 // Turn stvx -> store if the pointer is known aligned.
9210 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9211 const Type *OpPtrTy =
9212 PointerType::getUnqual(II->getOperand(1)->getType());
9213 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9214 return new StoreInst(II->getOperand(1), Ptr);
9215 }
9216 break;
9217 case Intrinsic::x86_sse_storeu_ps:
9218 case Intrinsic::x86_sse2_storeu_pd:
9219 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009220 // Turn X86 storeu -> store if the pointer is known aligned.
9221 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9222 const Type *OpPtrTy =
9223 PointerType::getUnqual(II->getOperand(2)->getType());
9224 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9225 return new StoreInst(II->getOperand(2), Ptr);
9226 }
9227 break;
9228
9229 case Intrinsic::x86_sse_cvttss2si: {
9230 // These intrinsics only demands the 0th element of its input vector. If
9231 // we can simplify the input based on that, do so now.
9232 uint64_t UndefElts;
9233 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9234 UndefElts)) {
9235 II->setOperand(1, V);
9236 return II;
9237 }
9238 break;
9239 }
9240
9241 case Intrinsic::ppc_altivec_vperm:
9242 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9243 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9244 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009245
Chris Lattner989ba312008-06-18 04:33:20 +00009246 // Check that all of the elements are integer constants or undefs.
9247 bool AllEltsOk = true;
9248 for (unsigned i = 0; i != 16; ++i) {
9249 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9250 !isa<UndefValue>(Mask->getOperand(i))) {
9251 AllEltsOk = false;
9252 break;
9253 }
9254 }
9255
9256 if (AllEltsOk) {
9257 // Cast the input vectors to byte vectors.
9258 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9259 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9260 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009261
Chris Lattner989ba312008-06-18 04:33:20 +00009262 // Only extract each element once.
9263 Value *ExtractedElts[32];
9264 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9265
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009266 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009267 if (isa<UndefValue>(Mask->getOperand(i)))
9268 continue;
9269 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9270 Idx &= 31; // Match the hardware behavior.
9271
9272 if (ExtractedElts[Idx] == 0) {
9273 Instruction *Elt =
9274 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9275 InsertNewInstBefore(Elt, CI);
9276 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009277 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009278
Chris Lattner989ba312008-06-18 04:33:20 +00009279 // Insert this value into the result vector.
9280 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9281 i, "tmp");
9282 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009283 }
Chris Lattner989ba312008-06-18 04:33:20 +00009284 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009285 }
Chris Lattner989ba312008-06-18 04:33:20 +00009286 }
9287 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009288
Chris Lattner989ba312008-06-18 04:33:20 +00009289 case Intrinsic::stackrestore: {
9290 // If the save is right next to the restore, remove the restore. This can
9291 // happen when variable allocas are DCE'd.
9292 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9293 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9294 BasicBlock::iterator BI = SS;
9295 if (&*++BI == II)
9296 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009297 }
Chris Lattner989ba312008-06-18 04:33:20 +00009298 }
9299
9300 // Scan down this block to see if there is another stack restore in the
9301 // same block without an intervening call/alloca.
9302 BasicBlock::iterator BI = II;
9303 TerminatorInst *TI = II->getParent()->getTerminator();
9304 bool CannotRemove = false;
9305 for (++BI; &*BI != TI; ++BI) {
9306 if (isa<AllocaInst>(BI)) {
9307 CannotRemove = true;
9308 break;
9309 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009310 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9311 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9312 // If there is a stackrestore below this one, remove this one.
9313 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9314 return EraseInstFromFunction(CI);
9315 // Otherwise, ignore the intrinsic.
9316 } else {
9317 // If we found a non-intrinsic call, we can't remove the stack
9318 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009319 CannotRemove = true;
9320 break;
9321 }
Chris Lattner989ba312008-06-18 04:33:20 +00009322 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009323 }
Chris Lattner989ba312008-06-18 04:33:20 +00009324
9325 // If the stack restore is in a return/unwind block and if there are no
9326 // allocas or calls between the restore and the return, nuke the restore.
9327 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9328 return EraseInstFromFunction(CI);
9329 break;
9330 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009331 }
9332
9333 return visitCallSite(II);
9334}
9335
9336// InvokeInst simplification
9337//
9338Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9339 return visitCallSite(&II);
9340}
9341
Dale Johannesen96021832008-04-25 21:16:07 +00009342/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9343/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009344static bool isSafeToEliminateVarargsCast(const CallSite CS,
9345 const CastInst * const CI,
9346 const TargetData * const TD,
9347 const int ix) {
9348 if (!CI->isLosslessCast())
9349 return false;
9350
9351 // The size of ByVal arguments is derived from the type, so we
9352 // can't change to a type with a different size. If the size were
9353 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009354 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009355 return true;
9356
9357 const Type* SrcTy =
9358 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9359 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9360 if (!SrcTy->isSized() || !DstTy->isSized())
9361 return false;
9362 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9363 return false;
9364 return true;
9365}
9366
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009367// visitCallSite - Improvements for call and invoke instructions.
9368//
9369Instruction *InstCombiner::visitCallSite(CallSite CS) {
9370 bool Changed = false;
9371
9372 // If the callee is a constexpr cast of a function, attempt to move the cast
9373 // to the arguments of the call/invoke.
9374 if (transformConstExprCastCall(CS)) return 0;
9375
9376 Value *Callee = CS.getCalledValue();
9377
9378 if (Function *CalleeF = dyn_cast<Function>(Callee))
9379 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9380 Instruction *OldCall = CS.getInstruction();
9381 // If the call and callee calling conventions don't match, this call must
9382 // be unreachable, as the call is undefined.
9383 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009384 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9385 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009386 if (!OldCall->use_empty())
9387 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9388 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9389 return EraseInstFromFunction(*OldCall);
9390 return 0;
9391 }
9392
9393 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9394 // This instruction is not reachable, just remove it. We insert a store to
9395 // undef so that we know that this code is not reachable, despite the fact
9396 // that we can't modify the CFG here.
9397 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009398 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009399 CS.getInstruction());
9400
9401 if (!CS.getInstruction()->use_empty())
9402 CS.getInstruction()->
9403 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9404
9405 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9406 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009407 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9408 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009409 }
9410 return EraseInstFromFunction(*CS.getInstruction());
9411 }
9412
Duncan Sands74833f22007-09-17 10:26:40 +00009413 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9414 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9415 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9416 return transformCallThroughTrampoline(CS);
9417
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009418 const PointerType *PTy = cast<PointerType>(Callee->getType());
9419 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9420 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009421 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009422 // See if we can optimize any arguments passed through the varargs area of
9423 // the call.
9424 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009425 E = CS.arg_end(); I != E; ++I, ++ix) {
9426 CastInst *CI = dyn_cast<CastInst>(*I);
9427 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9428 *I = CI->getOperand(0);
9429 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009430 }
Dale Johannesen35615462008-04-23 18:34:37 +00009431 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009432 }
9433
Duncan Sands2937e352007-12-19 21:13:37 +00009434 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009435 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009436 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009437 Changed = true;
9438 }
9439
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009440 return Changed ? CS.getInstruction() : 0;
9441}
9442
9443// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9444// attempt to move the cast to the arguments of the call/invoke.
9445//
9446bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9447 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9448 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9449 if (CE->getOpcode() != Instruction::BitCast ||
9450 !isa<Function>(CE->getOperand(0)))
9451 return false;
9452 Function *Callee = cast<Function>(CE->getOperand(0));
9453 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009454 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009455
9456 // Okay, this is a cast from a function to a different type. Unless doing so
9457 // would cause a type conversion of one of our arguments, change this call to
9458 // be a direct call with arguments casted to the appropriate types.
9459 //
9460 const FunctionType *FT = Callee->getFunctionType();
9461 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009462 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009463
Duncan Sands7901ce12008-06-01 07:38:42 +00009464 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009465 return false; // TODO: Handle multiple return values.
9466
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009467 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009468 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009469 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009470 // Conversion is ok if changing from one pointer type to another or from
9471 // a pointer to an integer of the same size.
9472 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009473 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009474 return false; // Cannot transform this return value.
9475
Duncan Sands5c489582008-01-06 10:12:28 +00009476 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009477 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009478 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009479 return false; // Cannot transform this return value.
9480
Chris Lattner1c8733e2008-03-12 17:45:29 +00009481 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009482 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009483 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009484 return false; // Attribute not compatible with transformed value.
9485 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009486
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009487 // If the callsite is an invoke instruction, and the return value is used by
9488 // a PHI node in a successor, we cannot change the return type of the call
9489 // because there is no place to put the cast instruction (without breaking
9490 // the critical edge). Bail out in this case.
9491 if (!Caller->use_empty())
9492 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9493 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9494 UI != E; ++UI)
9495 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9496 if (PN->getParent() == II->getNormalDest() ||
9497 PN->getParent() == II->getUnwindDest())
9498 return false;
9499 }
9500
9501 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9502 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9503
9504 CallSite::arg_iterator AI = CS.arg_begin();
9505 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9506 const Type *ParamTy = FT->getParamType(i);
9507 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009508
9509 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009510 return false; // Cannot transform this parameter value.
9511
Devang Patelf2a4a922008-09-26 22:53:05 +00009512 if (CallerPAL.getParamAttributes(i + 1)
9513 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009514 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009515
Duncan Sands7901ce12008-06-01 07:38:42 +00009516 // Converting from one pointer type to another or between a pointer and an
9517 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009518 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009519 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9520 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009521 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009522 }
9523
9524 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9525 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009526 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009527
Chris Lattner1c8733e2008-03-12 17:45:29 +00009528 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9529 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009530 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009531 // won't be dropping them. Check that these extra arguments have attributes
9532 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009533 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9534 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009535 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009536 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009537 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009538 return false;
9539 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009540
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009541 // Okay, we decided that this is a safe thing to do: go ahead and start
9542 // inserting cast instructions as necessary...
9543 std::vector<Value*> Args;
9544 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009545 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009546 attrVec.reserve(NumCommonArgs);
9547
9548 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009549 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009550
9551 // If the return value is not being used, the type may not be compatible
9552 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009553 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009554
9555 // Add the new return attributes.
9556 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009557 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009558
9559 AI = CS.arg_begin();
9560 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9561 const Type *ParamTy = FT->getParamType(i);
9562 if ((*AI)->getType() == ParamTy) {
9563 Args.push_back(*AI);
9564 } else {
9565 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9566 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009567 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009568 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9569 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009570
9571 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009572 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009573 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009574 }
9575
9576 // If the function takes more arguments than the call was taking, add them
9577 // now...
9578 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9579 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9580
9581 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009582 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009583 if (!FT->isVarArg()) {
9584 cerr << "WARNING: While resolving call to function '"
9585 << Callee->getName() << "' arguments were dropped!\n";
9586 } else {
9587 // Add all of the arguments in their promoted form to the arg list...
9588 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9589 const Type *PTy = getPromotedType((*AI)->getType());
9590 if (PTy != (*AI)->getType()) {
9591 // Must promote to pass through va_arg area!
9592 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9593 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009594 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009595 InsertNewInstBefore(Cast, *Caller);
9596 Args.push_back(Cast);
9597 } else {
9598 Args.push_back(*AI);
9599 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009600
Duncan Sands4ced1f82008-01-13 08:02:44 +00009601 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009602 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009603 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009604 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009605 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009606 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009607
Devang Patelf2a4a922008-09-26 22:53:05 +00009608 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9609 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9610
Duncan Sands7901ce12008-06-01 07:38:42 +00009611 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009612 Caller->setName(""); // Void type should not have a name.
9613
Devang Pateld222f862008-09-25 21:00:45 +00009614 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009615
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009616 Instruction *NC;
9617 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009618 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009619 Args.begin(), Args.end(),
9620 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009621 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009622 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009623 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009624 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9625 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009626 CallInst *CI = cast<CallInst>(Caller);
9627 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009628 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009629 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009630 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009631 }
9632
9633 // Insert a cast of the return type as necessary.
9634 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009635 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009636 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009637 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009638 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009639 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009640
9641 // If this is an invoke instruction, we should insert it after the first
9642 // non-phi, instruction in the normal successor block.
9643 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009644 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009645 InsertNewInstBefore(NC, *I);
9646 } else {
9647 // Otherwise, it's a call, just insert cast right after the call instr
9648 InsertNewInstBefore(NC, *Caller);
9649 }
9650 AddUsersToWorkList(*Caller);
9651 } else {
9652 NV = UndefValue::get(Caller->getType());
9653 }
9654 }
9655
9656 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9657 Caller->replaceAllUsesWith(NV);
9658 Caller->eraseFromParent();
9659 RemoveFromWorkList(Caller);
9660 return true;
9661}
9662
Duncan Sands74833f22007-09-17 10:26:40 +00009663// transformCallThroughTrampoline - Turn a call to a function created by the
9664// init_trampoline intrinsic into a direct call to the underlying function.
9665//
9666Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9667 Value *Callee = CS.getCalledValue();
9668 const PointerType *PTy = cast<PointerType>(Callee->getType());
9669 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009670 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009671
9672 // If the call already has the 'nest' attribute somewhere then give up -
9673 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009674 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009675 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009676
9677 IntrinsicInst *Tramp =
9678 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9679
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009680 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009681 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9682 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9683
Devang Pateld222f862008-09-25 21:00:45 +00009684 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009685 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009686 unsigned NestIdx = 1;
9687 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009688 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009689
9690 // Look for a parameter marked with the 'nest' attribute.
9691 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9692 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009693 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009694 // Record the parameter type and any other attributes.
9695 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009696 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009697 break;
9698 }
9699
9700 if (NestTy) {
9701 Instruction *Caller = CS.getInstruction();
9702 std::vector<Value*> NewArgs;
9703 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9704
Devang Pateld222f862008-09-25 21:00:45 +00009705 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009706 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009707
Duncan Sands74833f22007-09-17 10:26:40 +00009708 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009709 // mean appending it. Likewise for attributes.
9710
Devang Patelf2a4a922008-09-26 22:53:05 +00009711 // Add any result attributes.
9712 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009713 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009714
Duncan Sands74833f22007-09-17 10:26:40 +00009715 {
9716 unsigned Idx = 1;
9717 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9718 do {
9719 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009720 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009721 Value *NestVal = Tramp->getOperand(3);
9722 if (NestVal->getType() != NestTy)
9723 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9724 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009725 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009726 }
9727
9728 if (I == E)
9729 break;
9730
Duncan Sands48b81112008-01-14 19:52:09 +00009731 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009732 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009733 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009734 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009735 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009736
9737 ++Idx, ++I;
9738 } while (1);
9739 }
9740
Devang Patelf2a4a922008-09-26 22:53:05 +00009741 // Add any function attributes.
9742 if (Attributes Attr = Attrs.getFnAttributes())
9743 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9744
Duncan Sands74833f22007-09-17 10:26:40 +00009745 // The trampoline may have been bitcast to a bogus type (FTy).
9746 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009747 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009748
Duncan Sands74833f22007-09-17 10:26:40 +00009749 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009750 NewTypes.reserve(FTy->getNumParams()+1);
9751
Duncan Sands74833f22007-09-17 10:26:40 +00009752 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009753 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009754 {
9755 unsigned Idx = 1;
9756 FunctionType::param_iterator I = FTy->param_begin(),
9757 E = FTy->param_end();
9758
9759 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009760 if (Idx == NestIdx)
9761 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009762 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009763
9764 if (I == E)
9765 break;
9766
Duncan Sands48b81112008-01-14 19:52:09 +00009767 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009768 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009769
9770 ++Idx, ++I;
9771 } while (1);
9772 }
9773
9774 // Replace the trampoline call with a direct call. Let the generic
9775 // code sort out any function type mismatches.
9776 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009777 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009778 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9779 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009780 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009781
9782 Instruction *NewCaller;
9783 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009784 NewCaller = InvokeInst::Create(NewCallee,
9785 II->getNormalDest(), II->getUnwindDest(),
9786 NewArgs.begin(), NewArgs.end(),
9787 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009788 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009789 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009790 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009791 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9792 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009793 if (cast<CallInst>(Caller)->isTailCall())
9794 cast<CallInst>(NewCaller)->setTailCall();
9795 cast<CallInst>(NewCaller)->
9796 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009797 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009798 }
9799 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9800 Caller->replaceAllUsesWith(NewCaller);
9801 Caller->eraseFromParent();
9802 RemoveFromWorkList(Caller);
9803 return 0;
9804 }
9805 }
9806
9807 // Replace the trampoline call with a direct call. Since there is no 'nest'
9808 // parameter, there is no need to adjust the argument list. Let the generic
9809 // code sort out any function type mismatches.
9810 Constant *NewCallee =
9811 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9812 CS.setCalledFunction(NewCallee);
9813 return CS.getInstruction();
9814}
9815
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009816/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9817/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9818/// and a single binop.
9819Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9820 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9821 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9822 isa<CmpInst>(FirstInst));
9823 unsigned Opc = FirstInst->getOpcode();
9824 Value *LHSVal = FirstInst->getOperand(0);
9825 Value *RHSVal = FirstInst->getOperand(1);
9826
9827 const Type *LHSType = LHSVal->getType();
9828 const Type *RHSType = RHSVal->getType();
9829
9830 // Scan to see if all operands are the same opcode, all have one use, and all
9831 // kill their operands (i.e. the operands have one use).
9832 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9833 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9834 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9835 // Verify type of the LHS matches so we don't fold cmp's of different
9836 // types or GEP's with different index types.
9837 I->getOperand(0)->getType() != LHSType ||
9838 I->getOperand(1)->getType() != RHSType)
9839 return 0;
9840
9841 // If they are CmpInst instructions, check their predicates
9842 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9843 if (cast<CmpInst>(I)->getPredicate() !=
9844 cast<CmpInst>(FirstInst)->getPredicate())
9845 return 0;
9846
9847 // Keep track of which operand needs a phi node.
9848 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9849 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9850 }
9851
9852 // Otherwise, this is safe to transform, determine if it is profitable.
9853
9854 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9855 // Indexes are often folded into load/store instructions, so we don't want to
9856 // hide them behind a phi.
9857 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9858 return 0;
9859
9860 Value *InLHS = FirstInst->getOperand(0);
9861 Value *InRHS = FirstInst->getOperand(1);
9862 PHINode *NewLHS = 0, *NewRHS = 0;
9863 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009864 NewLHS = PHINode::Create(LHSType,
9865 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009866 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9867 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9868 InsertNewInstBefore(NewLHS, PN);
9869 LHSVal = NewLHS;
9870 }
9871
9872 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009873 NewRHS = PHINode::Create(RHSType,
9874 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009875 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9876 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9877 InsertNewInstBefore(NewRHS, PN);
9878 RHSVal = NewRHS;
9879 }
9880
9881 // Add all operands to the new PHIs.
9882 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9883 if (NewLHS) {
9884 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9885 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9886 }
9887 if (NewRHS) {
9888 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9889 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9890 }
9891 }
9892
9893 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009894 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009895 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009896 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009897 RHSVal);
9898 else {
9899 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greifd6da1d02008-04-06 20:25:17 +00009900 return GetElementPtrInst::Create(LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009901 }
9902}
9903
9904/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9905/// of the block that defines it. This means that it must be obvious the value
9906/// of the load is not changed from the point of the load to the end of the
9907/// block it is in.
9908///
9909/// Finally, it is safe, but not profitable, to sink a load targetting a
9910/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9911/// to a register.
9912static bool isSafeToSinkLoad(LoadInst *L) {
9913 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9914
9915 for (++BBI; BBI != E; ++BBI)
9916 if (BBI->mayWriteToMemory())
9917 return false;
9918
9919 // Check for non-address taken alloca. If not address-taken already, it isn't
9920 // profitable to do this xform.
9921 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9922 bool isAddressTaken = false;
9923 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9924 UI != E; ++UI) {
9925 if (isa<LoadInst>(UI)) continue;
9926 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9927 // If storing TO the alloca, then the address isn't taken.
9928 if (SI->getOperand(1) == AI) continue;
9929 }
9930 isAddressTaken = true;
9931 break;
9932 }
9933
9934 if (!isAddressTaken)
9935 return false;
9936 }
9937
9938 return true;
9939}
9940
9941
9942// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9943// operator and they all are only used by the PHI, PHI together their
9944// inputs, and do the operation once, to the result of the PHI.
9945Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9946 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9947
9948 // Scan the instruction, looking for input operations that can be folded away.
9949 // If all input operands to the phi are the same instruction (e.g. a cast from
9950 // the same type or "+42") we can pull the operation through the PHI, reducing
9951 // code size and simplifying code.
9952 Constant *ConstantOp = 0;
9953 const Type *CastSrcTy = 0;
9954 bool isVolatile = false;
9955 if (isa<CastInst>(FirstInst)) {
9956 CastSrcTy = FirstInst->getOperand(0)->getType();
9957 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9958 // Can fold binop, compare or shift here if the RHS is a constant,
9959 // otherwise call FoldPHIArgBinOpIntoPHI.
9960 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9961 if (ConstantOp == 0)
9962 return FoldPHIArgBinOpIntoPHI(PN);
9963 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9964 isVolatile = LI->isVolatile();
9965 // We can't sink the load if the loaded value could be modified between the
9966 // load and the PHI.
9967 if (LI->getParent() != PN.getIncomingBlock(0) ||
9968 !isSafeToSinkLoad(LI))
9969 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009970
9971 // If the PHI is of volatile loads and the load block has multiple
9972 // successors, sinking it would remove a load of the volatile value from
9973 // the path through the other successor.
9974 if (isVolatile &&
9975 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9976 return 0;
9977
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009978 } else if (isa<GetElementPtrInst>(FirstInst)) {
9979 if (FirstInst->getNumOperands() == 2)
9980 return FoldPHIArgBinOpIntoPHI(PN);
9981 // Can't handle general GEPs yet.
9982 return 0;
9983 } else {
9984 return 0; // Cannot fold this operation.
9985 }
9986
9987 // Check to see if all arguments are the same operation.
9988 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9989 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
9990 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
9991 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
9992 return 0;
9993 if (CastSrcTy) {
9994 if (I->getOperand(0)->getType() != CastSrcTy)
9995 return 0; // Cast operation must match.
9996 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9997 // We can't sink the load if the loaded value could be modified between
9998 // the load and the PHI.
9999 if (LI->isVolatile() != isVolatile ||
10000 LI->getParent() != PN.getIncomingBlock(i) ||
10001 !isSafeToSinkLoad(LI))
10002 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +000010003
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010004 // If the PHI is of volatile loads and the load block has multiple
10005 // successors, sinking it would remove a load of the volatile value from
10006 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +000010007 if (isVolatile &&
10008 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10009 return 0;
10010
10011
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010012 } else if (I->getOperand(1) != ConstantOp) {
10013 return 0;
10014 }
10015 }
10016
10017 // Okay, they are all the same operation. Create a new PHI node of the
10018 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +000010019 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10020 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010021 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10022
10023 Value *InVal = FirstInst->getOperand(0);
10024 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10025
10026 // Add all operands to the new PHI.
10027 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10028 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10029 if (NewInVal != InVal)
10030 InVal = 0;
10031 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10032 }
10033
10034 Value *PhiVal;
10035 if (InVal) {
10036 // The new PHI unions all of the same values together. This is really
10037 // common, so we handle it intelligently here for compile-time speed.
10038 PhiVal = InVal;
10039 delete NewPN;
10040 } else {
10041 InsertNewInstBefore(NewPN, PN);
10042 PhiVal = NewPN;
10043 }
10044
10045 // Insert and return the new operation.
10046 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010047 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010048 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010049 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010050 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010051 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010052 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010053 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10054
10055 // If this was a volatile load that we are merging, make sure to loop through
10056 // and mark all the input loads as non-volatile. If we don't do this, we will
10057 // insert a new volatile load and the old ones will not be deletable.
10058 if (isVolatile)
10059 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10060 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10061
10062 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010063}
10064
10065/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10066/// that is dead.
10067static bool DeadPHICycle(PHINode *PN,
10068 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10069 if (PN->use_empty()) return true;
10070 if (!PN->hasOneUse()) return false;
10071
10072 // Remember this node, and if we find the cycle, return.
10073 if (!PotentiallyDeadPHIs.insert(PN))
10074 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010075
10076 // Don't scan crazily complex things.
10077 if (PotentiallyDeadPHIs.size() == 16)
10078 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010079
10080 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10081 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10082
10083 return false;
10084}
10085
Chris Lattner27b695d2007-11-06 21:52:06 +000010086/// PHIsEqualValue - Return true if this phi node is always equal to
10087/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10088/// z = some value; x = phi (y, z); y = phi (x, z)
10089static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10090 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10091 // See if we already saw this PHI node.
10092 if (!ValueEqualPHIs.insert(PN))
10093 return true;
10094
10095 // Don't scan crazily complex things.
10096 if (ValueEqualPHIs.size() == 16)
10097 return false;
10098
10099 // Scan the operands to see if they are either phi nodes or are equal to
10100 // the value.
10101 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10102 Value *Op = PN->getIncomingValue(i);
10103 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10104 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10105 return false;
10106 } else if (Op != NonPhiInVal)
10107 return false;
10108 }
10109
10110 return true;
10111}
10112
10113
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010114// PHINode simplification
10115//
10116Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10117 // If LCSSA is around, don't mess with Phi nodes
10118 if (MustPreserveLCSSA) return 0;
10119
10120 if (Value *V = PN.hasConstantValue())
10121 return ReplaceInstUsesWith(PN, V);
10122
10123 // If all PHI operands are the same operation, pull them through the PHI,
10124 // reducing code size.
10125 if (isa<Instruction>(PN.getIncomingValue(0)) &&
10126 PN.getIncomingValue(0)->hasOneUse())
10127 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10128 return Result;
10129
10130 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10131 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10132 // PHI)... break the cycle.
10133 if (PN.hasOneUse()) {
10134 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10135 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10136 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10137 PotentiallyDeadPHIs.insert(&PN);
10138 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10139 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10140 }
10141
10142 // If this phi has a single use, and if that use just computes a value for
10143 // the next iteration of a loop, delete the phi. This occurs with unused
10144 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10145 // common case here is good because the only other things that catch this
10146 // are induction variable analysis (sometimes) and ADCE, which is only run
10147 // late.
10148 if (PHIUser->hasOneUse() &&
10149 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10150 PHIUser->use_back() == &PN) {
10151 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10152 }
10153 }
10154
Chris Lattner27b695d2007-11-06 21:52:06 +000010155 // We sometimes end up with phi cycles that non-obviously end up being the
10156 // same value, for example:
10157 // z = some value; x = phi (y, z); y = phi (x, z)
10158 // where the phi nodes don't necessarily need to be in the same block. Do a
10159 // quick check to see if the PHI node only contains a single non-phi value, if
10160 // so, scan to see if the phi cycle is actually equal to that value.
10161 {
10162 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10163 // Scan for the first non-phi operand.
10164 while (InValNo != NumOperandVals &&
10165 isa<PHINode>(PN.getIncomingValue(InValNo)))
10166 ++InValNo;
10167
10168 if (InValNo != NumOperandVals) {
10169 Value *NonPhiInVal = PN.getOperand(InValNo);
10170
10171 // Scan the rest of the operands to see if there are any conflicts, if so
10172 // there is no need to recursively scan other phis.
10173 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10174 Value *OpVal = PN.getIncomingValue(InValNo);
10175 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10176 break;
10177 }
10178
10179 // If we scanned over all operands, then we have one unique value plus
10180 // phi values. Scan PHI nodes to see if they all merge in each other or
10181 // the value.
10182 if (InValNo == NumOperandVals) {
10183 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10184 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10185 return ReplaceInstUsesWith(PN, NonPhiInVal);
10186 }
10187 }
10188 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010189 return 0;
10190}
10191
10192static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10193 Instruction *InsertPoint,
10194 InstCombiner *IC) {
10195 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10196 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10197 // We must cast correctly to the pointer type. Ensure that we
10198 // sign extend the integer value if it is smaller as this is
10199 // used for address computation.
10200 Instruction::CastOps opcode =
10201 (VTySize < PtrSize ? Instruction::SExt :
10202 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10203 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10204}
10205
10206
10207Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10208 Value *PtrOp = GEP.getOperand(0);
10209 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10210 // If so, eliminate the noop.
10211 if (GEP.getNumOperands() == 1)
10212 return ReplaceInstUsesWith(GEP, PtrOp);
10213
10214 if (isa<UndefValue>(GEP.getOperand(0)))
10215 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10216
10217 bool HasZeroPointerIndex = false;
10218 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10219 HasZeroPointerIndex = C->isNullValue();
10220
10221 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10222 return ReplaceInstUsesWith(GEP, PtrOp);
10223
10224 // Eliminate unneeded casts for indices.
10225 bool MadeChange = false;
10226
10227 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010228 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10229 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010230 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010231 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010232 if (CI->getOpcode() == Instruction::ZExt ||
10233 CI->getOpcode() == Instruction::SExt) {
10234 const Type *SrcTy = CI->getOperand(0)->getType();
10235 // We can eliminate a cast from i32 to i64 iff the target
10236 // is a 32-bit pointer target.
10237 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10238 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010239 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010240 }
10241 }
10242 }
10243 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010244 // to what we need. If narrower, sign-extend it to what we need.
10245 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010246 // insert it. This explicit cast can make subsequent optimizations more
10247 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010248 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010249 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010250 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010251 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010252 MadeChange = true;
10253 } else {
10254 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10255 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010256 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010257 MadeChange = true;
10258 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010259 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10260 if (Constant *C = dyn_cast<Constant>(Op)) {
10261 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10262 MadeChange = true;
10263 } else {
10264 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10265 GEP);
10266 *i = Op;
10267 MadeChange = true;
10268 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010269 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010270 }
10271 }
10272 if (MadeChange) return &GEP;
10273
10274 // If this GEP instruction doesn't move the pointer, and if the input operand
10275 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10276 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010277 if (GEP.hasAllZeroIndices()) {
10278 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10279 // If the bitcast is of an allocation, and the allocation will be
10280 // converted to match the type of the cast, don't touch this.
10281 if (isa<AllocationInst>(BCI->getOperand(0))) {
10282 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010283 if (Instruction *I = visitBitCast(*BCI)) {
10284 if (I != BCI) {
10285 I->takeName(BCI);
10286 BCI->getParent()->getInstList().insert(BCI, I);
10287 ReplaceInstUsesWith(*BCI, I);
10288 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010289 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010290 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010291 }
10292 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10293 }
10294 }
10295
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010296 // Combine Indices - If the source pointer to this getelementptr instruction
10297 // is a getelementptr instruction, combine the indices of the two
10298 // getelementptr instructions into a single instruction.
10299 //
10300 SmallVector<Value*, 8> SrcGEPOperands;
10301 if (User *Src = dyn_castGetElementPtr(PtrOp))
10302 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10303
10304 if (!SrcGEPOperands.empty()) {
10305 // Note that if our source is a gep chain itself that we wait for that
10306 // chain to be resolved before we perform this transformation. This
10307 // avoids us creating a TON of code in some cases.
10308 //
10309 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10310 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10311 return 0; // Wait until our source is folded to completion.
10312
10313 SmallVector<Value*, 8> Indices;
10314
10315 // Find out whether the last index in the source GEP is a sequential idx.
10316 bool EndsWithSequential = false;
10317 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10318 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10319 EndsWithSequential = !isa<StructType>(*I);
10320
10321 // Can we combine the two pointer arithmetics offsets?
10322 if (EndsWithSequential) {
10323 // Replace: gep (gep %P, long B), long A, ...
10324 // With: T = long A+B; gep %P, T, ...
10325 //
10326 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10327 if (SO1 == Constant::getNullValue(SO1->getType())) {
10328 Sum = GO1;
10329 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10330 Sum = SO1;
10331 } else {
10332 // If they aren't the same type, convert both to an integer of the
10333 // target's pointer size.
10334 if (SO1->getType() != GO1->getType()) {
10335 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10336 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10337 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10338 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10339 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010340 unsigned PS = TD->getPointerSizeInBits();
10341 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010342 // Convert GO1 to SO1's type.
10343 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10344
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010345 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010346 // Convert SO1 to GO1's type.
10347 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10348 } else {
10349 const Type *PT = TD->getIntPtrType();
10350 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10351 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10352 }
10353 }
10354 }
10355 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10356 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10357 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010358 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010359 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10360 }
10361 }
10362
10363 // Recycle the GEP we already have if possible.
10364 if (SrcGEPOperands.size() == 2) {
10365 GEP.setOperand(0, SrcGEPOperands[0]);
10366 GEP.setOperand(1, Sum);
10367 return &GEP;
10368 } else {
10369 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10370 SrcGEPOperands.end()-1);
10371 Indices.push_back(Sum);
10372 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10373 }
10374 } else if (isa<Constant>(*GEP.idx_begin()) &&
10375 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10376 SrcGEPOperands.size() != 1) {
10377 // Otherwise we can do the fold if the first index of the GEP is a zero
10378 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10379 SrcGEPOperands.end());
10380 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10381 }
10382
10383 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010384 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10385 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010386
10387 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10388 // GEP of global variable. If all of the indices for this GEP are
10389 // constants, we can promote this to a constexpr instead of an instruction.
10390
10391 // Scan for nonconstants...
10392 SmallVector<Constant*, 8> Indices;
10393 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10394 for (; I != E && isa<Constant>(*I); ++I)
10395 Indices.push_back(cast<Constant>(*I));
10396
10397 if (I == E) { // If they are all constants...
10398 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10399 &Indices[0],Indices.size());
10400
10401 // Replace all uses of the GEP with the new constexpr...
10402 return ReplaceInstUsesWith(GEP, CE);
10403 }
10404 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10405 if (!isa<PointerType>(X->getType())) {
10406 // Not interesting. Source pointer must be a cast from pointer.
10407 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010408 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10409 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010410 //
10411 // This occurs when the program declares an array extern like "int X[];"
10412 //
10413 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10414 const PointerType *XTy = cast<PointerType>(X->getType());
10415 if (const ArrayType *XATy =
10416 dyn_cast<ArrayType>(XTy->getElementType()))
10417 if (const ArrayType *CATy =
10418 dyn_cast<ArrayType>(CPTy->getElementType()))
10419 if (CATy->getElementType() == XATy->getElementType()) {
10420 // At this point, we know that the cast source type is a pointer
10421 // to an array of the same type as the destination pointer
10422 // array. Because the array type is never stepped over (there
10423 // is a leading zero) we can fold the cast into this GEP.
10424 GEP.setOperand(0, X);
10425 return &GEP;
10426 }
10427 } else if (GEP.getNumOperands() == 2) {
10428 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010429 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10430 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010431 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10432 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10433 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010434 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10435 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010436 Value *Idx[2];
10437 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10438 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010439 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010440 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010441 // V and GEP are both pointer types --> BitCast
10442 return new BitCastInst(V, GEP.getType());
10443 }
10444
10445 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010446 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010447 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010448 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010449
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010450 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010451 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010452 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010453
10454 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10455 // allow either a mul, shift, or constant here.
10456 Value *NewIdx = 0;
10457 ConstantInt *Scale = 0;
10458 if (ArrayEltSize == 1) {
10459 NewIdx = GEP.getOperand(1);
10460 Scale = ConstantInt::get(NewIdx->getType(), 1);
10461 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10462 NewIdx = ConstantInt::get(CI->getType(), 1);
10463 Scale = CI;
10464 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10465 if (Inst->getOpcode() == Instruction::Shl &&
10466 isa<ConstantInt>(Inst->getOperand(1))) {
10467 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10468 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10469 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10470 NewIdx = Inst->getOperand(0);
10471 } else if (Inst->getOpcode() == Instruction::Mul &&
10472 isa<ConstantInt>(Inst->getOperand(1))) {
10473 Scale = cast<ConstantInt>(Inst->getOperand(1));
10474 NewIdx = Inst->getOperand(0);
10475 }
10476 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010477
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010478 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010479 // out, perform the transformation. Note, we don't know whether Scale is
10480 // signed or not. We'll use unsigned version of division/modulo
10481 // operation after making sure Scale doesn't have the sign bit set.
10482 if (Scale && Scale->getSExtValue() >= 0LL &&
10483 Scale->getZExtValue() % ArrayEltSize == 0) {
10484 Scale = ConstantInt::get(Scale->getType(),
10485 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010486 if (Scale->getZExtValue() != 1) {
10487 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010488 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010489 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010490 NewIdx = InsertNewInstBefore(Sc, GEP);
10491 }
10492
10493 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010494 Value *Idx[2];
10495 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10496 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010497 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010498 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010499 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10500 // The NewGEP must be pointer typed, so must the old one -> BitCast
10501 return new BitCastInst(NewGEP, GEP.getType());
10502 }
10503 }
10504 }
10505 }
10506
10507 return 0;
10508}
10509
10510Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10511 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010512 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010513 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10514 const Type *NewTy =
10515 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10516 AllocationInst *New = 0;
10517
10518 // Create and insert the replacement instruction...
10519 if (isa<MallocInst>(AI))
10520 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10521 else {
10522 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10523 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10524 }
10525
10526 InsertNewInstBefore(New, AI);
10527
10528 // Scan to the end of the allocation instructions, to skip over a block of
10529 // allocas if possible...
10530 //
10531 BasicBlock::iterator It = New;
10532 while (isa<AllocationInst>(*It)) ++It;
10533
10534 // Now that I is pointing to the first non-allocation-inst in the block,
10535 // insert our getelementptr instruction...
10536 //
10537 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010538 Value *Idx[2];
10539 Idx[0] = NullIdx;
10540 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010541 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10542 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010543
10544 // Now make everything use the getelementptr instead of the original
10545 // allocation.
10546 return ReplaceInstUsesWith(AI, V);
10547 } else if (isa<UndefValue>(AI.getArraySize())) {
10548 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10549 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010550 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010551
10552 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10553 // Note that we only do this for alloca's, because malloc should allocate and
10554 // return a unique pointer, even for a zero byte allocation.
10555 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010556 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010557 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10558
10559 return 0;
10560}
10561
10562Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10563 Value *Op = FI.getOperand(0);
10564
10565 // free undef -> unreachable.
10566 if (isa<UndefValue>(Op)) {
10567 // Insert a new store to null because we cannot modify the CFG here.
10568 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010569 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010570 return EraseInstFromFunction(FI);
10571 }
10572
10573 // If we have 'free null' delete the instruction. This can happen in stl code
10574 // when lots of inlining happens.
10575 if (isa<ConstantPointerNull>(Op))
10576 return EraseInstFromFunction(FI);
10577
10578 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10579 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10580 FI.setOperand(0, CI->getOperand(0));
10581 return &FI;
10582 }
10583
10584 // Change free (gep X, 0,0,0,0) into free(X)
10585 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10586 if (GEPI->hasAllZeroIndices()) {
10587 AddToWorkList(GEPI);
10588 FI.setOperand(0, GEPI->getOperand(0));
10589 return &FI;
10590 }
10591 }
10592
10593 // Change free(malloc) into nothing, if the malloc has a single use.
10594 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10595 if (MI->hasOneUse()) {
10596 EraseInstFromFunction(FI);
10597 return EraseInstFromFunction(*MI);
10598 }
10599
10600 return 0;
10601}
10602
10603
10604/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010605static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010606 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010607 User *CI = cast<User>(LI.getOperand(0));
10608 Value *CastOp = CI->getOperand(0);
10609
Devang Patela0f8ea82007-10-18 19:52:32 +000010610 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10611 // Instead of loading constant c string, use corresponding integer value
10612 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010613 std::string Str;
10614 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010615 unsigned len = Str.length();
10616 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10617 unsigned numBits = Ty->getPrimitiveSizeInBits();
10618 // Replace LI with immediate integer store.
10619 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010620 APInt StrVal(numBits, 0);
10621 APInt SingleChar(numBits, 0);
10622 if (TD->isLittleEndian()) {
10623 for (signed i = len-1; i >= 0; i--) {
10624 SingleChar = (uint64_t) Str[i];
10625 StrVal = (StrVal << 8) | SingleChar;
10626 }
10627 } else {
10628 for (unsigned i = 0; i < len; i++) {
10629 SingleChar = (uint64_t) Str[i];
10630 StrVal = (StrVal << 8) | SingleChar;
10631 }
10632 // Append NULL at the end.
10633 SingleChar = 0;
10634 StrVal = (StrVal << 8) | SingleChar;
10635 }
10636 Value *NL = ConstantInt::get(StrVal);
10637 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010638 }
10639 }
10640 }
10641
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010642 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10643 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10644 const Type *SrcPTy = SrcTy->getElementType();
10645
10646 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10647 isa<VectorType>(DestPTy)) {
10648 // If the source is an array, the code below will not succeed. Check to
10649 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10650 // constants.
10651 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10652 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10653 if (ASrcTy->getNumElements() != 0) {
10654 Value *Idxs[2];
10655 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10656 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10657 SrcTy = cast<PointerType>(CastOp->getType());
10658 SrcPTy = SrcTy->getElementType();
10659 }
10660
10661 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10662 isa<VectorType>(SrcPTy)) &&
10663 // Do not allow turning this into a load of an integer, which is then
10664 // casted to a pointer, this pessimizes pointer analysis a lot.
10665 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10666 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10667 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10668
10669 // Okay, we are casting from one integer or pointer type to another of
10670 // the same size. Instead of casting the pointer before the load, cast
10671 // the result of the loaded value.
10672 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10673 CI->getName(),
10674 LI.isVolatile()),LI);
10675 // Now cast the result of the load.
10676 return new BitCastInst(NewLoad, LI.getType());
10677 }
10678 }
10679 }
10680 return 0;
10681}
10682
10683/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10684/// from this value cannot trap. If it is not obviously safe to load from the
10685/// specified pointer, we do a quick local scan of the basic block containing
10686/// ScanFrom, to determine if the address is already accessed.
10687static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010688 // If it is an alloca it is always safe to load from.
10689 if (isa<AllocaInst>(V)) return true;
10690
Duncan Sandse40a94a2007-09-19 10:25:38 +000010691 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010692 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010693 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010694 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010695
10696 // Otherwise, be a little bit agressive by scanning the local block where we
10697 // want to check to see if the pointer is already being loaded or stored
10698 // from/to. If so, the previous load or store would have already trapped,
10699 // so there is no harm doing an extra load (also, CSE will later eliminate
10700 // the load entirely).
10701 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10702
10703 while (BBI != E) {
10704 --BBI;
10705
Chris Lattner476983a2008-06-20 05:12:56 +000010706 // If we see a free or a call (which might do a free) the pointer could be
10707 // marked invalid.
10708 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10709 return false;
10710
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010711 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10712 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010713 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010714 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010715 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010716
10717 }
10718 return false;
10719}
10720
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010721/// equivalentAddressValues - Test if A and B will obviously have the same
10722/// value. This includes recognizing that %t0 and %t1 will have the same
10723/// value in code like this:
10724/// %t0 = getelementptr @a, 0, 3
10725/// store i32 0, i32* %t0
10726/// %t1 = getelementptr @a, 0, 3
10727/// %t2 = load i32* %t1
10728///
10729static bool equivalentAddressValues(Value *A, Value *B) {
10730 // Test if the values are trivially equivalent.
10731 if (A == B) return true;
10732
10733 // Test if the values come form identical arithmetic instructions.
10734 if (isa<BinaryOperator>(A) ||
10735 isa<CastInst>(A) ||
10736 isa<PHINode>(A) ||
10737 isa<GetElementPtrInst>(A))
10738 if (Instruction *BI = dyn_cast<Instruction>(B))
10739 if (cast<Instruction>(A)->isIdenticalTo(BI))
10740 return true;
10741
10742 // Otherwise they may not be equivalent.
10743 return false;
10744}
10745
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010746Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10747 Value *Op = LI.getOperand(0);
10748
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010749 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010750 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10751 if (KnownAlign >
10752 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10753 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010754 LI.setAlignment(KnownAlign);
10755
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010756 // load (cast X) --> cast (load X) iff safe
10757 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010758 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010759 return Res;
10760
10761 // None of the following transforms are legal for volatile loads.
10762 if (LI.isVolatile()) return 0;
10763
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010764 // Do really simple store-to-load forwarding and load CSE, to catch cases
10765 // where there are several consequtive memory accesses to the same location,
10766 // separated by a few arithmetic operations.
10767 BasicBlock::iterator BBI = &LI;
10768 for (unsigned ScanInsts = 6; BBI != LI.getParent()->begin() && ScanInsts;
10769 --ScanInsts) {
10770 --BBI;
10771
10772 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
10773 if (equivalentAddressValues(SI->getOperand(1), LI.getOperand(0)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010774 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010775 } else if (LoadInst *LIB = dyn_cast<LoadInst>(BBI)) {
10776 if (equivalentAddressValues(LIB->getOperand(0), LI.getOperand(0)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010777 return ReplaceInstUsesWith(LI, LIB);
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010778 }
10779
10780 // Don't skip over things that can modify memory.
10781 if (BBI->mayWriteToMemory())
10782 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010783 }
10784
Christopher Lamb2c175392007-12-29 07:56:53 +000010785 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10786 const Value *GEPI0 = GEPI->getOperand(0);
10787 // TODO: Consider a target hook for valid address spaces for this xform.
10788 if (isa<ConstantPointerNull>(GEPI0) &&
10789 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010790 // Insert a new store to null instruction before the load to indicate
10791 // that this code is not reachable. We do this instead of inserting
10792 // an unreachable instruction directly because we cannot modify the
10793 // CFG.
10794 new StoreInst(UndefValue::get(LI.getType()),
10795 Constant::getNullValue(Op->getType()), &LI);
10796 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10797 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010798 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010799
10800 if (Constant *C = dyn_cast<Constant>(Op)) {
10801 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010802 // TODO: Consider a target hook for valid address spaces for this xform.
10803 if (isa<UndefValue>(C) || (C->isNullValue() &&
10804 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010805 // Insert a new store to null instruction before the load to indicate that
10806 // this code is not reachable. We do this instead of inserting an
10807 // unreachable instruction directly because we cannot modify the CFG.
10808 new StoreInst(UndefValue::get(LI.getType()),
10809 Constant::getNullValue(Op->getType()), &LI);
10810 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10811 }
10812
10813 // Instcombine load (constant global) into the value loaded.
10814 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10815 if (GV->isConstant() && !GV->isDeclaration())
10816 return ReplaceInstUsesWith(LI, GV->getInitializer());
10817
10818 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010819 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010820 if (CE->getOpcode() == Instruction::GetElementPtr) {
10821 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10822 if (GV->isConstant() && !GV->isDeclaration())
10823 if (Constant *V =
10824 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10825 return ReplaceInstUsesWith(LI, V);
10826 if (CE->getOperand(0)->isNullValue()) {
10827 // Insert a new store to null instruction before the load to indicate
10828 // that this code is not reachable. We do this instead of inserting
10829 // an unreachable instruction directly because we cannot modify the
10830 // CFG.
10831 new StoreInst(UndefValue::get(LI.getType()),
10832 Constant::getNullValue(Op->getType()), &LI);
10833 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10834 }
10835
10836 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010837 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010838 return Res;
10839 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010840 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010841 }
Chris Lattner0270a112007-08-11 18:48:48 +000010842
10843 // If this load comes from anywhere in a constant global, and if the global
10844 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000010845 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000010846 if (GV->isConstant() && GV->hasInitializer()) {
10847 if (GV->getInitializer()->isNullValue())
10848 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10849 else if (isa<UndefValue>(GV->getInitializer()))
10850 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10851 }
10852 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010853
10854 if (Op->hasOneUse()) {
10855 // Change select and PHI nodes to select values instead of addresses: this
10856 // helps alias analysis out a lot, allows many others simplifications, and
10857 // exposes redundancy in the code.
10858 //
10859 // Note that we cannot do the transformation unless we know that the
10860 // introduced loads cannot trap! Something like this is valid as long as
10861 // the condition is always false: load (select bool %C, int* null, int* %G),
10862 // but it would not be valid if we transformed it to load from null
10863 // unconditionally.
10864 //
10865 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10866 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10867 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10868 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10869 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10870 SI->getOperand(1)->getName()+".val"), LI);
10871 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10872 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000010873 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010874 }
10875
10876 // load (select (cond, null, P)) -> load P
10877 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10878 if (C->isNullValue()) {
10879 LI.setOperand(0, SI->getOperand(2));
10880 return &LI;
10881 }
10882
10883 // load (select (cond, P, null)) -> load P
10884 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10885 if (C->isNullValue()) {
10886 LI.setOperand(0, SI->getOperand(1));
10887 return &LI;
10888 }
10889 }
10890 }
10891 return 0;
10892}
10893
10894/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10895/// when possible.
10896static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10897 User *CI = cast<User>(SI.getOperand(1));
10898 Value *CastOp = CI->getOperand(0);
10899
10900 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10901 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10902 const Type *SrcPTy = SrcTy->getElementType();
10903
10904 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10905 // If the source is an array, the code below will not succeed. Check to
10906 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10907 // constants.
10908 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10909 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10910 if (ASrcTy->getNumElements() != 0) {
10911 Value* Idxs[2];
10912 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10913 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10914 SrcTy = cast<PointerType>(CastOp->getType());
10915 SrcPTy = SrcTy->getElementType();
10916 }
10917
10918 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10919 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10920 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10921
10922 // Okay, we are casting from one integer or pointer type to another of
10923 // the same size. Instead of casting the pointer before
10924 // the store, cast the value to be stored.
10925 Value *NewCast;
10926 Value *SIOp0 = SI.getOperand(0);
10927 Instruction::CastOps opcode = Instruction::BitCast;
10928 const Type* CastSrcTy = SIOp0->getType();
10929 const Type* CastDstTy = SrcPTy;
10930 if (isa<PointerType>(CastDstTy)) {
10931 if (CastSrcTy->isInteger())
10932 opcode = Instruction::IntToPtr;
10933 } else if (isa<IntegerType>(CastDstTy)) {
10934 if (isa<PointerType>(SIOp0->getType()))
10935 opcode = Instruction::PtrToInt;
10936 }
10937 if (Constant *C = dyn_cast<Constant>(SIOp0))
10938 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10939 else
10940 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000010941 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010942 SI);
10943 return new StoreInst(NewCast, CastOp);
10944 }
10945 }
10946 }
10947 return 0;
10948}
10949
10950Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10951 Value *Val = SI.getOperand(0);
10952 Value *Ptr = SI.getOperand(1);
10953
10954 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10955 EraseInstFromFunction(SI);
10956 ++NumCombined;
10957 return 0;
10958 }
10959
10960 // If the RHS is an alloca with a single use, zapify the store, making the
10961 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000010962 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010963 if (isa<AllocaInst>(Ptr)) {
10964 EraseInstFromFunction(SI);
10965 ++NumCombined;
10966 return 0;
10967 }
10968
10969 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10970 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10971 GEP->getOperand(0)->hasOneUse()) {
10972 EraseInstFromFunction(SI);
10973 ++NumCombined;
10974 return 0;
10975 }
10976 }
10977
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010978 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010979 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
10980 if (KnownAlign >
10981 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
10982 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010983 SI.setAlignment(KnownAlign);
10984
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010985 // Do really simple DSE, to catch cases where there are several consequtive
10986 // stores to the same location, separated by a few arithmetic operations. This
10987 // situation often occurs with bitfield accesses.
10988 BasicBlock::iterator BBI = &SI;
10989 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
10990 --ScanInsts) {
10991 --BBI;
10992
10993 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
10994 // Prev store isn't volatile, and stores to the same location?
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010995 if (!PrevSI->isVolatile() && equivalentAddressValues(PrevSI->getOperand(1),
10996 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010997 ++NumDeadStore;
10998 ++BBI;
10999 EraseInstFromFunction(*PrevSI);
11000 continue;
11001 }
11002 break;
11003 }
11004
11005 // If this is a load, we have to stop. However, if the loaded value is from
11006 // the pointer we're loading and is producing the pointer we're storing,
11007 // then *this* store is dead (X = load P; store X -> P).
11008 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011009 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11010 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011011 EraseInstFromFunction(SI);
11012 ++NumCombined;
11013 return 0;
11014 }
11015 // Otherwise, this is a load from some other location. Stores before it
11016 // may not be dead.
11017 break;
11018 }
11019
11020 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000011021 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011022 break;
11023 }
11024
11025
11026 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11027
11028 // store X, null -> turns into 'unreachable' in SimplifyCFG
11029 if (isa<ConstantPointerNull>(Ptr)) {
11030 if (!isa<UndefValue>(Val)) {
11031 SI.setOperand(0, UndefValue::get(Val->getType()));
11032 if (Instruction *U = dyn_cast<Instruction>(Val))
11033 AddToWorkList(U); // Dropped a use.
11034 ++NumCombined;
11035 }
11036 return 0; // Do not modify these!
11037 }
11038
11039 // store undef, Ptr -> noop
11040 if (isa<UndefValue>(Val)) {
11041 EraseInstFromFunction(SI);
11042 ++NumCombined;
11043 return 0;
11044 }
11045
11046 // If the pointer destination is a cast, see if we can fold the cast into the
11047 // source instead.
11048 if (isa<CastInst>(Ptr))
11049 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11050 return Res;
11051 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11052 if (CE->isCast())
11053 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11054 return Res;
11055
11056
11057 // If this store is the last instruction in the basic block, and if the block
11058 // ends with an unconditional branch, try to move it to the successor block.
11059 BBI = &SI; ++BBI;
11060 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11061 if (BI->isUnconditional())
11062 if (SimplifyStoreAtEndOfBlock(SI))
11063 return 0; // xform done!
11064
11065 return 0;
11066}
11067
11068/// SimplifyStoreAtEndOfBlock - Turn things like:
11069/// if () { *P = v1; } else { *P = v2 }
11070/// into a phi node with a store in the successor.
11071///
11072/// Simplify things like:
11073/// *P = v1; if () { *P = v2; }
11074/// into a phi node with a store in the successor.
11075///
11076bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11077 BasicBlock *StoreBB = SI.getParent();
11078
11079 // Check to see if the successor block has exactly two incoming edges. If
11080 // so, see if the other predecessor contains a store to the same location.
11081 // if so, insert a PHI node (if needed) and move the stores down.
11082 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11083
11084 // Determine whether Dest has exactly two predecessors and, if so, compute
11085 // the other predecessor.
11086 pred_iterator PI = pred_begin(DestBB);
11087 BasicBlock *OtherBB = 0;
11088 if (*PI != StoreBB)
11089 OtherBB = *PI;
11090 ++PI;
11091 if (PI == pred_end(DestBB))
11092 return false;
11093
11094 if (*PI != StoreBB) {
11095 if (OtherBB)
11096 return false;
11097 OtherBB = *PI;
11098 }
11099 if (++PI != pred_end(DestBB))
11100 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011101
11102 // Bail out if all the relevant blocks aren't distinct (this can happen,
11103 // for example, if SI is in an infinite loop)
11104 if (StoreBB == DestBB || OtherBB == DestBB)
11105 return false;
11106
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011107 // Verify that the other block ends in a branch and is not otherwise empty.
11108 BasicBlock::iterator BBI = OtherBB->getTerminator();
11109 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11110 if (!OtherBr || BBI == OtherBB->begin())
11111 return false;
11112
11113 // If the other block ends in an unconditional branch, check for the 'if then
11114 // else' case. there is an instruction before the branch.
11115 StoreInst *OtherStore = 0;
11116 if (OtherBr->isUnconditional()) {
11117 // If this isn't a store, or isn't a store to the same location, bail out.
11118 --BBI;
11119 OtherStore = dyn_cast<StoreInst>(BBI);
11120 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11121 return false;
11122 } else {
11123 // Otherwise, the other block ended with a conditional branch. If one of the
11124 // destinations is StoreBB, then we have the if/then case.
11125 if (OtherBr->getSuccessor(0) != StoreBB &&
11126 OtherBr->getSuccessor(1) != StoreBB)
11127 return false;
11128
11129 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11130 // if/then triangle. See if there is a store to the same ptr as SI that
11131 // lives in OtherBB.
11132 for (;; --BBI) {
11133 // Check to see if we find the matching store.
11134 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11135 if (OtherStore->getOperand(1) != SI.getOperand(1))
11136 return false;
11137 break;
11138 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011139 // If we find something that may be using or overwriting the stored
11140 // value, or if we run out of instructions, we can't do the xform.
11141 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011142 BBI == OtherBB->begin())
11143 return false;
11144 }
11145
11146 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011147 // make sure nothing reads or overwrites the stored value in
11148 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011149 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11150 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011151 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011152 return false;
11153 }
11154 }
11155
11156 // Insert a PHI node now if we need it.
11157 Value *MergedVal = OtherStore->getOperand(0);
11158 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011159 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011160 PN->reserveOperandSpace(2);
11161 PN->addIncoming(SI.getOperand(0), SI.getParent());
11162 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11163 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11164 }
11165
11166 // Advance to a place where it is safe to insert the new store and
11167 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011168 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011169 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11170 OtherStore->isVolatile()), *BBI);
11171
11172 // Nuke the old stores.
11173 EraseInstFromFunction(SI);
11174 EraseInstFromFunction(*OtherStore);
11175 ++NumCombined;
11176 return true;
11177}
11178
11179
11180Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11181 // Change br (not X), label True, label False to: br X, label False, True
11182 Value *X = 0;
11183 BasicBlock *TrueDest;
11184 BasicBlock *FalseDest;
11185 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11186 !isa<Constant>(X)) {
11187 // Swap Destinations and condition...
11188 BI.setCondition(X);
11189 BI.setSuccessor(0, FalseDest);
11190 BI.setSuccessor(1, TrueDest);
11191 return &BI;
11192 }
11193
11194 // Cannonicalize fcmp_one -> fcmp_oeq
11195 FCmpInst::Predicate FPred; Value *Y;
11196 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11197 TrueDest, FalseDest)))
11198 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11199 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11200 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11201 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11202 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11203 NewSCC->takeName(I);
11204 // Swap Destinations and condition...
11205 BI.setCondition(NewSCC);
11206 BI.setSuccessor(0, FalseDest);
11207 BI.setSuccessor(1, TrueDest);
11208 RemoveFromWorkList(I);
11209 I->eraseFromParent();
11210 AddToWorkList(NewSCC);
11211 return &BI;
11212 }
11213
11214 // Cannonicalize icmp_ne -> icmp_eq
11215 ICmpInst::Predicate IPred;
11216 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11217 TrueDest, FalseDest)))
11218 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11219 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11220 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11221 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11222 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11223 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11224 NewSCC->takeName(I);
11225 // Swap Destinations and condition...
11226 BI.setCondition(NewSCC);
11227 BI.setSuccessor(0, FalseDest);
11228 BI.setSuccessor(1, TrueDest);
11229 RemoveFromWorkList(I);
11230 I->eraseFromParent();;
11231 AddToWorkList(NewSCC);
11232 return &BI;
11233 }
11234
11235 return 0;
11236}
11237
11238Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11239 Value *Cond = SI.getCondition();
11240 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11241 if (I->getOpcode() == Instruction::Add)
11242 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11243 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11244 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11245 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11246 AddRHS));
11247 SI.setOperand(0, I->getOperand(0));
11248 AddToWorkList(I);
11249 return &SI;
11250 }
11251 }
11252 return 0;
11253}
11254
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011255Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011256 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011257
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011258 if (!EV.hasIndices())
11259 return ReplaceInstUsesWith(EV, Agg);
11260
11261 if (Constant *C = dyn_cast<Constant>(Agg)) {
11262 if (isa<UndefValue>(C))
11263 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11264
11265 if (isa<ConstantAggregateZero>(C))
11266 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11267
11268 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11269 // Extract the element indexed by the first index out of the constant
11270 Value *V = C->getOperand(*EV.idx_begin());
11271 if (EV.getNumIndices() > 1)
11272 // Extract the remaining indices out of the constant indexed by the
11273 // first index
11274 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11275 else
11276 return ReplaceInstUsesWith(EV, V);
11277 }
11278 return 0; // Can't handle other constants
11279 }
11280 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11281 // We're extracting from an insertvalue instruction, compare the indices
11282 const unsigned *exti, *exte, *insi, *inse;
11283 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11284 exte = EV.idx_end(), inse = IV->idx_end();
11285 exti != exte && insi != inse;
11286 ++exti, ++insi) {
11287 if (*insi != *exti)
11288 // The insert and extract both reference distinctly different elements.
11289 // This means the extract is not influenced by the insert, and we can
11290 // replace the aggregate operand of the extract with the aggregate
11291 // operand of the insert. i.e., replace
11292 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11293 // %E = extractvalue { i32, { i32 } } %I, 0
11294 // with
11295 // %E = extractvalue { i32, { i32 } } %A, 0
11296 return ExtractValueInst::Create(IV->getAggregateOperand(),
11297 EV.idx_begin(), EV.idx_end());
11298 }
11299 if (exti == exte && insi == inse)
11300 // Both iterators are at the end: Index lists are identical. Replace
11301 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11302 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11303 // with "i32 42"
11304 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11305 if (exti == exte) {
11306 // The extract list is a prefix of the insert list. i.e. replace
11307 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11308 // %E = extractvalue { i32, { i32 } } %I, 1
11309 // with
11310 // %X = extractvalue { i32, { i32 } } %A, 1
11311 // %E = insertvalue { i32 } %X, i32 42, 0
11312 // by switching the order of the insert and extract (though the
11313 // insertvalue should be left in, since it may have other uses).
11314 Value *NewEV = InsertNewInstBefore(
11315 ExtractValueInst::Create(IV->getAggregateOperand(),
11316 EV.idx_begin(), EV.idx_end()),
11317 EV);
11318 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11319 insi, inse);
11320 }
11321 if (insi == inse)
11322 // The insert list is a prefix of the extract list
11323 // We can simply remove the common indices from the extract and make it
11324 // operate on the inserted value instead of the insertvalue result.
11325 // i.e., replace
11326 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11327 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11328 // with
11329 // %E extractvalue { i32 } { i32 42 }, 0
11330 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11331 exti, exte);
11332 }
11333 // Can't simplify extracts from other values. Note that nested extracts are
11334 // already simplified implicitely by the above (extract ( extract (insert) )
11335 // will be translated into extract ( insert ( extract ) ) first and then just
11336 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011337 return 0;
11338}
11339
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011340/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11341/// is to leave as a vector operation.
11342static bool CheapToScalarize(Value *V, bool isConstant) {
11343 if (isa<ConstantAggregateZero>(V))
11344 return true;
11345 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11346 if (isConstant) return true;
11347 // If all elts are the same, we can extract.
11348 Constant *Op0 = C->getOperand(0);
11349 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11350 if (C->getOperand(i) != Op0)
11351 return false;
11352 return true;
11353 }
11354 Instruction *I = dyn_cast<Instruction>(V);
11355 if (!I) return false;
11356
11357 // Insert element gets simplified to the inserted element or is deleted if
11358 // this is constant idx extract element and its a constant idx insertelt.
11359 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11360 isa<ConstantInt>(I->getOperand(2)))
11361 return true;
11362 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11363 return true;
11364 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11365 if (BO->hasOneUse() &&
11366 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11367 CheapToScalarize(BO->getOperand(1), isConstant)))
11368 return true;
11369 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11370 if (CI->hasOneUse() &&
11371 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11372 CheapToScalarize(CI->getOperand(1), isConstant)))
11373 return true;
11374
11375 return false;
11376}
11377
11378/// Read and decode a shufflevector mask.
11379///
11380/// It turns undef elements into values that are larger than the number of
11381/// elements in the input.
11382static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11383 unsigned NElts = SVI->getType()->getNumElements();
11384 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11385 return std::vector<unsigned>(NElts, 0);
11386 if (isa<UndefValue>(SVI->getOperand(2)))
11387 return std::vector<unsigned>(NElts, 2*NElts);
11388
11389 std::vector<unsigned> Result;
11390 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011391 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11392 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011393 Result.push_back(NElts*2); // undef -> 8
11394 else
Gabor Greif17396002008-06-12 21:37:33 +000011395 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011396 return Result;
11397}
11398
11399/// FindScalarElement - Given a vector and an element number, see if the scalar
11400/// value is already around as a register, for example if it were inserted then
11401/// extracted from the vector.
11402static Value *FindScalarElement(Value *V, unsigned EltNo) {
11403 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11404 const VectorType *PTy = cast<VectorType>(V->getType());
11405 unsigned Width = PTy->getNumElements();
11406 if (EltNo >= Width) // Out of range access.
11407 return UndefValue::get(PTy->getElementType());
11408
11409 if (isa<UndefValue>(V))
11410 return UndefValue::get(PTy->getElementType());
11411 else if (isa<ConstantAggregateZero>(V))
11412 return Constant::getNullValue(PTy->getElementType());
11413 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11414 return CP->getOperand(EltNo);
11415 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11416 // If this is an insert to a variable element, we don't know what it is.
11417 if (!isa<ConstantInt>(III->getOperand(2)))
11418 return 0;
11419 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11420
11421 // If this is an insert to the element we are looking for, return the
11422 // inserted value.
11423 if (EltNo == IIElt)
11424 return III->getOperand(1);
11425
11426 // Otherwise, the insertelement doesn't modify the value, recurse on its
11427 // vector input.
11428 return FindScalarElement(III->getOperand(0), EltNo);
11429 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011430 unsigned LHSWidth =
11431 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011432 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011433 if (InEl < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011434 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011435 else if (InEl < LHSWidth*2)
11436 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011437 else
11438 return UndefValue::get(PTy->getElementType());
11439 }
11440
11441 // Otherwise, we don't know.
11442 return 0;
11443}
11444
11445Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011446 // If vector val is undef, replace extract with scalar undef.
11447 if (isa<UndefValue>(EI.getOperand(0)))
11448 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11449
11450 // If vector val is constant 0, replace extract with scalar 0.
11451 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11452 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11453
11454 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011455 // If vector val is constant with all elements the same, replace EI with
11456 // that element. When the elements are not identical, we cannot replace yet
11457 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011458 Constant *op0 = C->getOperand(0);
11459 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11460 if (C->getOperand(i) != op0) {
11461 op0 = 0;
11462 break;
11463 }
11464 if (op0)
11465 return ReplaceInstUsesWith(EI, op0);
11466 }
11467
11468 // If extracting a specified index from the vector, see if we can recursively
11469 // find a previously computed scalar that was inserted into the vector.
11470 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11471 unsigned IndexVal = IdxC->getZExtValue();
11472 unsigned VectorWidth =
11473 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11474
11475 // If this is extracting an invalid index, turn this into undef, to avoid
11476 // crashing the code below.
11477 if (IndexVal >= VectorWidth)
11478 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11479
11480 // This instruction only demands the single element from the input vector.
11481 // If the input vector has a single use, simplify it based on this use
11482 // property.
11483 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11484 uint64_t UndefElts;
11485 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11486 1 << IndexVal,
11487 UndefElts)) {
11488 EI.setOperand(0, V);
11489 return &EI;
11490 }
11491 }
11492
11493 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11494 return ReplaceInstUsesWith(EI, Elt);
11495
11496 // If the this extractelement is directly using a bitcast from a vector of
11497 // the same number of elements, see if we can find the source element from
11498 // it. In this case, we will end up needing to bitcast the scalars.
11499 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11500 if (const VectorType *VT =
11501 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11502 if (VT->getNumElements() == VectorWidth)
11503 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11504 return new BitCastInst(Elt, EI.getType());
11505 }
11506 }
11507
11508 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11509 if (I->hasOneUse()) {
11510 // Push extractelement into predecessor operation if legal and
11511 // profitable to do so
11512 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11513 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11514 if (CheapToScalarize(BO, isConstantElt)) {
11515 ExtractElementInst *newEI0 =
11516 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11517 EI.getName()+".lhs");
11518 ExtractElementInst *newEI1 =
11519 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11520 EI.getName()+".rhs");
11521 InsertNewInstBefore(newEI0, EI);
11522 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011523 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011524 }
11525 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011526 unsigned AS =
11527 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011528 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11529 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011530 GetElementPtrInst *GEP =
11531 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011532 InsertNewInstBefore(GEP, EI);
11533 return new LoadInst(GEP);
11534 }
11535 }
11536 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11537 // Extracting the inserted element?
11538 if (IE->getOperand(2) == EI.getOperand(1))
11539 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11540 // If the inserted and extracted elements are constants, they must not
11541 // be the same value, extract from the pre-inserted value instead.
11542 if (isa<Constant>(IE->getOperand(2)) &&
11543 isa<Constant>(EI.getOperand(1))) {
11544 AddUsesToWorkList(EI);
11545 EI.setOperand(0, IE->getOperand(0));
11546 return &EI;
11547 }
11548 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11549 // If this is extracting an element from a shufflevector, figure out where
11550 // it came from and extract from the appropriate input element instead.
11551 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11552 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11553 Value *Src;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011554 unsigned LHSWidth =
11555 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11556
11557 if (SrcIdx < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011558 Src = SVI->getOperand(0);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011559 else if (SrcIdx < LHSWidth*2) {
11560 SrcIdx -= LHSWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011561 Src = SVI->getOperand(1);
11562 } else {
11563 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11564 }
11565 return new ExtractElementInst(Src, SrcIdx);
11566 }
11567 }
11568 }
11569 return 0;
11570}
11571
11572/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11573/// elements from either LHS or RHS, return the shuffle mask and true.
11574/// Otherwise, return false.
11575static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11576 std::vector<Constant*> &Mask) {
11577 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11578 "Invalid CollectSingleShuffleElements");
11579 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11580
11581 if (isa<UndefValue>(V)) {
11582 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11583 return true;
11584 } else if (V == LHS) {
11585 for (unsigned i = 0; i != NumElts; ++i)
11586 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11587 return true;
11588 } else if (V == RHS) {
11589 for (unsigned i = 0; i != NumElts; ++i)
11590 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11591 return true;
11592 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11593 // If this is an insert of an extract from some other vector, include it.
11594 Value *VecOp = IEI->getOperand(0);
11595 Value *ScalarOp = IEI->getOperand(1);
11596 Value *IdxOp = IEI->getOperand(2);
11597
11598 if (!isa<ConstantInt>(IdxOp))
11599 return false;
11600 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11601
11602 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11603 // Okay, we can handle this if the vector we are insertinting into is
11604 // transitively ok.
11605 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11606 // If so, update the mask to reflect the inserted undef.
11607 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11608 return true;
11609 }
11610 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11611 if (isa<ConstantInt>(EI->getOperand(1)) &&
11612 EI->getOperand(0)->getType() == V->getType()) {
11613 unsigned ExtractedIdx =
11614 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11615
11616 // This must be extracting from either LHS or RHS.
11617 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11618 // Okay, we can handle this if the vector we are insertinting into is
11619 // transitively ok.
11620 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11621 // If so, update the mask to reflect the inserted value.
11622 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011623 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011624 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11625 } else {
11626 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011627 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011628 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11629
11630 }
11631 return true;
11632 }
11633 }
11634 }
11635 }
11636 }
11637 // TODO: Handle shufflevector here!
11638
11639 return false;
11640}
11641
11642/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11643/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11644/// that computes V and the LHS value of the shuffle.
11645static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11646 Value *&RHS) {
11647 assert(isa<VectorType>(V->getType()) &&
11648 (RHS == 0 || V->getType() == RHS->getType()) &&
11649 "Invalid shuffle!");
11650 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11651
11652 if (isa<UndefValue>(V)) {
11653 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11654 return V;
11655 } else if (isa<ConstantAggregateZero>(V)) {
11656 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11657 return V;
11658 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11659 // If this is an insert of an extract from some other vector, include it.
11660 Value *VecOp = IEI->getOperand(0);
11661 Value *ScalarOp = IEI->getOperand(1);
11662 Value *IdxOp = IEI->getOperand(2);
11663
11664 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11665 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11666 EI->getOperand(0)->getType() == V->getType()) {
11667 unsigned ExtractedIdx =
11668 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11669 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11670
11671 // Either the extracted from or inserted into vector must be RHSVec,
11672 // otherwise we'd end up with a shuffle of three inputs.
11673 if (EI->getOperand(0) == RHS || RHS == 0) {
11674 RHS = EI->getOperand(0);
11675 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011676 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011677 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11678 return V;
11679 }
11680
11681 if (VecOp == RHS) {
11682 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11683 // Everything but the extracted element is replaced with the RHS.
11684 for (unsigned i = 0; i != NumElts; ++i) {
11685 if (i != InsertedIdx)
11686 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11687 }
11688 return V;
11689 }
11690
11691 // If this insertelement is a chain that comes from exactly these two
11692 // vectors, return the vector and the effective shuffle.
11693 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11694 return EI->getOperand(0);
11695
11696 }
11697 }
11698 }
11699 // TODO: Handle shufflevector here!
11700
11701 // Otherwise, can't do anything fancy. Return an identity vector.
11702 for (unsigned i = 0; i != NumElts; ++i)
11703 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11704 return V;
11705}
11706
11707Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11708 Value *VecOp = IE.getOperand(0);
11709 Value *ScalarOp = IE.getOperand(1);
11710 Value *IdxOp = IE.getOperand(2);
11711
11712 // Inserting an undef or into an undefined place, remove this.
11713 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11714 ReplaceInstUsesWith(IE, VecOp);
11715
11716 // If the inserted element was extracted from some other vector, and if the
11717 // indexes are constant, try to turn this into a shufflevector operation.
11718 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11719 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11720 EI->getOperand(0)->getType() == IE.getType()) {
11721 unsigned NumVectorElts = IE.getType()->getNumElements();
11722 unsigned ExtractedIdx =
11723 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11724 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11725
11726 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11727 return ReplaceInstUsesWith(IE, VecOp);
11728
11729 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11730 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11731
11732 // If we are extracting a value from a vector, then inserting it right
11733 // back into the same place, just use the input vector.
11734 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11735 return ReplaceInstUsesWith(IE, VecOp);
11736
11737 // We could theoretically do this for ANY input. However, doing so could
11738 // turn chains of insertelement instructions into a chain of shufflevector
11739 // instructions, and right now we do not merge shufflevectors. As such,
11740 // only do this in a situation where it is clear that there is benefit.
11741 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11742 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11743 // the values of VecOp, except then one read from EIOp0.
11744 // Build a new shuffle mask.
11745 std::vector<Constant*> Mask;
11746 if (isa<UndefValue>(VecOp))
11747 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11748 else {
11749 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11750 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11751 NumVectorElts));
11752 }
11753 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11754 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11755 ConstantVector::get(Mask));
11756 }
11757
11758 // If this insertelement isn't used by some other insertelement, turn it
11759 // (and any insertelements it points to), into one big shuffle.
11760 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11761 std::vector<Constant*> Mask;
11762 Value *RHS = 0;
11763 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11764 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11765 // We now have a shuffle of LHS, RHS, Mask.
11766 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11767 }
11768 }
11769 }
11770
11771 return 0;
11772}
11773
11774
11775Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11776 Value *LHS = SVI.getOperand(0);
11777 Value *RHS = SVI.getOperand(1);
11778 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11779
11780 bool MadeChange = false;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011781
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011782 // Undefined shuffle mask -> undefined value.
11783 if (isa<UndefValue>(SVI.getOperand(2)))
11784 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011785
11786 uint64_t UndefElts;
11787 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011788
11789 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11790 return 0;
11791
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011792 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11793 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011794 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11795 LHS = SVI.getOperand(0);
11796 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011797 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011798 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011799
11800 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11801 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11802 if (LHS == RHS || isa<UndefValue>(LHS)) {
11803 if (isa<UndefValue>(LHS) && LHS == RHS) {
11804 // shuffle(undef,undef,mask) -> undef.
11805 return ReplaceInstUsesWith(SVI, LHS);
11806 }
11807
11808 // Remap any references to RHS to use LHS.
11809 std::vector<Constant*> Elts;
11810 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11811 if (Mask[i] >= 2*e)
11812 Elts.push_back(UndefValue::get(Type::Int32Ty));
11813 else {
11814 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000011815 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011816 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011817 Elts.push_back(UndefValue::get(Type::Int32Ty));
11818 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011819 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011820 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11821 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011822 }
11823 }
11824 SVI.setOperand(0, SVI.getOperand(1));
11825 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11826 SVI.setOperand(2, ConstantVector::get(Elts));
11827 LHS = SVI.getOperand(0);
11828 RHS = SVI.getOperand(1);
11829 MadeChange = true;
11830 }
11831
11832 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11833 bool isLHSID = true, isRHSID = true;
11834
11835 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11836 if (Mask[i] >= e*2) continue; // Ignore undef values.
11837 // Is this an identity shuffle of the LHS value?
11838 isLHSID &= (Mask[i] == i);
11839
11840 // Is this an identity shuffle of the RHS value?
11841 isRHSID &= (Mask[i]-e == i);
11842 }
11843
11844 // Eliminate identity shuffles.
11845 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11846 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11847
11848 // If the LHS is a shufflevector itself, see if we can combine it with this
11849 // one without producing an unusual shuffle. Here we are really conservative:
11850 // we are absolutely afraid of producing a shuffle mask not in the input
11851 // program, because the code gen may not be smart enough to turn a merged
11852 // shuffle into two specific shuffles: it may produce worse code. As such,
11853 // we only merge two shuffles if the result is one of the two input shuffle
11854 // masks. In this case, merging the shuffles just removes one instruction,
11855 // which we know is safe. This is good for things like turning:
11856 // (splat(splat)) -> splat.
11857 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11858 if (isa<UndefValue>(RHS)) {
11859 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11860
11861 std::vector<unsigned> NewMask;
11862 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11863 if (Mask[i] >= 2*e)
11864 NewMask.push_back(2*e);
11865 else
11866 NewMask.push_back(LHSMask[Mask[i]]);
11867
11868 // If the result mask is equal to the src shuffle or this shuffle mask, do
11869 // the replacement.
11870 if (NewMask == LHSMask || NewMask == Mask) {
11871 std::vector<Constant*> Elts;
11872 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11873 if (NewMask[i] >= e*2) {
11874 Elts.push_back(UndefValue::get(Type::Int32Ty));
11875 } else {
11876 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11877 }
11878 }
11879 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11880 LHSSVI->getOperand(1),
11881 ConstantVector::get(Elts));
11882 }
11883 }
11884 }
11885
11886 return MadeChange ? &SVI : 0;
11887}
11888
11889
11890
11891
11892/// TryToSinkInstruction - Try to move the specified instruction from its
11893/// current block into the beginning of DestBlock, which can only happen if it's
11894/// safe to move the instruction past all of the instructions between it and the
11895/// end of its block.
11896static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11897 assert(I->hasOneUse() && "Invariants didn't hold!");
11898
11899 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000011900 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
11901 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011902
11903 // Do not sink alloca instructions out of the entry block.
11904 if (isa<AllocaInst>(I) && I->getParent() ==
11905 &DestBlock->getParent()->getEntryBlock())
11906 return false;
11907
11908 // We can only sink load instructions if there is nothing between the load and
11909 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000011910 if (I->mayReadFromMemory()) {
11911 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011912 Scan != E; ++Scan)
11913 if (Scan->mayWriteToMemory())
11914 return false;
11915 }
11916
Dan Gohman514277c2008-05-23 21:05:58 +000011917 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011918
11919 I->moveBefore(InsertPos);
11920 ++NumSunkInst;
11921 return true;
11922}
11923
11924
11925/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11926/// all reachable code to the worklist.
11927///
11928/// This has a couple of tricks to make the code faster and more powerful. In
11929/// particular, we constant fold and DCE instructions as we go, to avoid adding
11930/// them to the worklist (this significantly speeds up instcombine on code where
11931/// many instructions are dead or constant). Additionally, if we find a branch
11932/// whose condition is a known constant, we only visit the reachable successors.
11933///
11934static void AddReachableCodeToWorklist(BasicBlock *BB,
11935 SmallPtrSet<BasicBlock*, 64> &Visited,
11936 InstCombiner &IC,
11937 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000011938 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011939 Worklist.push_back(BB);
11940
11941 while (!Worklist.empty()) {
11942 BB = Worklist.back();
11943 Worklist.pop_back();
11944
11945 // We have now visited this block! If we've already been here, ignore it.
11946 if (!Visited.insert(BB)) continue;
11947
11948 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11949 Instruction *Inst = BBI++;
11950
11951 // DCE instruction if trivially dead.
11952 if (isInstructionTriviallyDead(Inst)) {
11953 ++NumDeadInst;
11954 DOUT << "IC: DCE: " << *Inst;
11955 Inst->eraseFromParent();
11956 continue;
11957 }
11958
11959 // ConstantProp instruction if trivially constant.
11960 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11961 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11962 Inst->replaceAllUsesWith(C);
11963 ++NumConstProp;
11964 Inst->eraseFromParent();
11965 continue;
11966 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000011967
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011968 IC.AddToWorkList(Inst);
11969 }
11970
11971 // Recursively visit successors. If this is a branch or switch on a
11972 // constant, only visit the reachable successor.
11973 TerminatorInst *TI = BB->getTerminator();
11974 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
11975 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
11976 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011977 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011978 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011979 continue;
11980 }
11981 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
11982 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
11983 // See if this is an explicit destination.
11984 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
11985 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011986 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011987 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011988 continue;
11989 }
11990
11991 // Otherwise it is the default destination.
11992 Worklist.push_back(SI->getSuccessor(0));
11993 continue;
11994 }
11995 }
11996
11997 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
11998 Worklist.push_back(TI->getSuccessor(i));
11999 }
12000}
12001
12002bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12003 bool Changed = false;
12004 TD = &getAnalysis<TargetData>();
12005
12006 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12007 << F.getNameStr() << "\n");
12008
12009 {
12010 // Do a depth-first traversal of the function, populate the worklist with
12011 // the reachable instructions. Ignore blocks that are not reachable. Keep
12012 // track of which blocks we visit.
12013 SmallPtrSet<BasicBlock*, 64> Visited;
12014 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12015
12016 // Do a quick scan over the function. If we find any blocks that are
12017 // unreachable, remove any instructions inside of them. This prevents
12018 // the instcombine code from having to deal with some bad special cases.
12019 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12020 if (!Visited.count(BB)) {
12021 Instruction *Term = BB->getTerminator();
12022 while (Term != BB->begin()) { // Remove instrs bottom-up
12023 BasicBlock::iterator I = Term; --I;
12024
12025 DOUT << "IC: DCE: " << *I;
12026 ++NumDeadInst;
12027
12028 if (!I->use_empty())
12029 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12030 I->eraseFromParent();
12031 }
12032 }
12033 }
12034
12035 while (!Worklist.empty()) {
12036 Instruction *I = RemoveOneFromWorkList();
12037 if (I == 0) continue; // skip null values.
12038
12039 // Check to see if we can DCE the instruction.
12040 if (isInstructionTriviallyDead(I)) {
12041 // Add operands to the worklist.
12042 if (I->getNumOperands() < 4)
12043 AddUsesToWorkList(*I);
12044 ++NumDeadInst;
12045
12046 DOUT << "IC: DCE: " << *I;
12047
12048 I->eraseFromParent();
12049 RemoveFromWorkList(I);
12050 continue;
12051 }
12052
12053 // Instruction isn't dead, see if we can constant propagate it.
12054 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12055 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12056
12057 // Add operands to the worklist.
12058 AddUsesToWorkList(*I);
12059 ReplaceInstUsesWith(*I, C);
12060
12061 ++NumConstProp;
12062 I->eraseFromParent();
12063 RemoveFromWorkList(I);
12064 continue;
12065 }
12066
Nick Lewyckyadb67922008-05-25 20:56:15 +000012067 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12068 // See if we can constant fold its operands.
12069 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12070 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12071 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12072 i->set(NewC);
12073 }
12074 }
12075 }
12076
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012077 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012078 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012079 BasicBlock *BB = I->getParent();
12080 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12081 if (UserParent != BB) {
12082 bool UserIsSuccessor = false;
12083 // See if the user is one of our successors.
12084 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12085 if (*SI == UserParent) {
12086 UserIsSuccessor = true;
12087 break;
12088 }
12089
12090 // If the user is one of our immediate successors, and if that successor
12091 // only has us as a predecessors (we'd have to split the critical edge
12092 // otherwise), we can keep going.
12093 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12094 next(pred_begin(UserParent)) == pred_end(UserParent))
12095 // Okay, the CFG is simple enough, try to sink this instruction.
12096 Changed |= TryToSinkInstruction(I, UserParent);
12097 }
12098 }
12099
12100 // Now that we have an instruction, try combining it to simplify it...
12101#ifndef NDEBUG
12102 std::string OrigI;
12103#endif
12104 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12105 if (Instruction *Result = visit(*I)) {
12106 ++NumCombined;
12107 // Should we replace the old instruction with a new one?
12108 if (Result != I) {
12109 DOUT << "IC: Old = " << *I
12110 << " New = " << *Result;
12111
12112 // Everything uses the new instruction now.
12113 I->replaceAllUsesWith(Result);
12114
12115 // Push the new instruction and any users onto the worklist.
12116 AddToWorkList(Result);
12117 AddUsersToWorkList(*Result);
12118
12119 // Move the name to the new instruction first.
12120 Result->takeName(I);
12121
12122 // Insert the new instruction into the basic block...
12123 BasicBlock *InstParent = I->getParent();
12124 BasicBlock::iterator InsertPos = I;
12125
12126 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12127 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12128 ++InsertPos;
12129
12130 InstParent->getInstList().insert(InsertPos, Result);
12131
12132 // Make sure that we reprocess all operands now that we reduced their
12133 // use counts.
12134 AddUsesToWorkList(*I);
12135
12136 // Instructions can end up on the worklist more than once. Make sure
12137 // we do not process an instruction that has been deleted.
12138 RemoveFromWorkList(I);
12139
12140 // Erase the old instruction.
12141 InstParent->getInstList().erase(I);
12142 } else {
12143#ifndef NDEBUG
12144 DOUT << "IC: Mod = " << OrigI
12145 << " New = " << *I;
12146#endif
12147
12148 // If the instruction was modified, it's possible that it is now dead.
12149 // if so, remove it.
12150 if (isInstructionTriviallyDead(I)) {
12151 // Make sure we process all operands now that we are reducing their
12152 // use counts.
12153 AddUsesToWorkList(*I);
12154
12155 // Instructions may end up in the worklist more than once. Erase all
12156 // occurrences of this instruction.
12157 RemoveFromWorkList(I);
12158 I->eraseFromParent();
12159 } else {
12160 AddToWorkList(I);
12161 AddUsersToWorkList(*I);
12162 }
12163 }
12164 Changed = true;
12165 }
12166 }
12167
12168 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012169
12170 // Do an explicit clear, this shrinks the map if needed.
12171 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012172 return Changed;
12173}
12174
12175
12176bool InstCombiner::runOnFunction(Function &F) {
12177 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12178
12179 bool EverMadeChange = false;
12180
12181 // Iterate while there is work to do.
12182 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012183 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012184 EverMadeChange = true;
12185 return EverMadeChange;
12186}
12187
12188FunctionPass *llvm::createInstructionCombiningPass() {
12189 return new InstCombiner();
12190}
12191
Chris Lattner6297fc72008-08-11 22:06:05 +000012192