blob: 743d8bb15f7711b96d52d2b57b1da09d7dfd31db [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
183 Instruction *visitAnd(BinaryOperator &I);
184 Instruction *visitOr (BinaryOperator &I);
185 Instruction *visitXor(BinaryOperator &I);
186 Instruction *visitShl(BinaryOperator &I);
187 Instruction *visitAShr(BinaryOperator &I);
188 Instruction *visitLShr(BinaryOperator &I);
189 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000190 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
191 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192 Instruction *visitFCmpInst(FCmpInst &I);
193 Instruction *visitICmpInst(ICmpInst &I);
194 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
195 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
196 Instruction *LHS,
197 ConstantInt *RHS);
198 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
199 ConstantInt *DivRHS);
200
201 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
202 ICmpInst::Predicate Cond, Instruction &I);
203 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
204 BinaryOperator &I);
205 Instruction *commonCastTransforms(CastInst &CI);
206 Instruction *commonIntCastTransforms(CastInst &CI);
207 Instruction *commonPointerCastTransforms(CastInst &CI);
208 Instruction *visitTrunc(TruncInst &CI);
209 Instruction *visitZExt(ZExtInst &CI);
210 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000211 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000213 Instruction *visitFPToUI(FPToUIInst &FI);
214 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 Instruction *visitUIToFP(CastInst &CI);
216 Instruction *visitSIToFP(CastInst &CI);
217 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000218 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 Instruction *visitBitCast(BitCastInst &CI);
220 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
221 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000222 Instruction *visitSelectInst(SelectInst &SI);
223 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224 Instruction *visitCallInst(CallInst &CI);
225 Instruction *visitInvokeInst(InvokeInst &II);
226 Instruction *visitPHINode(PHINode &PN);
227 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
228 Instruction *visitAllocationInst(AllocationInst &AI);
229 Instruction *visitFreeInst(FreeInst &FI);
230 Instruction *visitLoadInst(LoadInst &LI);
231 Instruction *visitStoreInst(StoreInst &SI);
232 Instruction *visitBranchInst(BranchInst &BI);
233 Instruction *visitSwitchInst(SwitchInst &SI);
234 Instruction *visitInsertElementInst(InsertElementInst &IE);
235 Instruction *visitExtractElementInst(ExtractElementInst &EI);
236 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000237 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238
239 // visitInstruction - Specify what to return for unhandled instructions...
240 Instruction *visitInstruction(Instruction &I) { return 0; }
241
242 private:
243 Instruction *visitCallSite(CallSite CS);
244 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000245 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000246 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
247 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000248 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000249
250 public:
251 // InsertNewInstBefore - insert an instruction New before instruction Old
252 // in the program. Add the new instruction to the worklist.
253 //
254 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
255 assert(New && New->getParent() == 0 &&
256 "New instruction already inserted into a basic block!");
257 BasicBlock *BB = Old.getParent();
258 BB->getInstList().insert(&Old, New); // Insert inst
259 AddToWorkList(New);
260 return New;
261 }
262
263 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
264 /// This also adds the cast to the worklist. Finally, this returns the
265 /// cast.
266 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
267 Instruction &Pos) {
268 if (V->getType() == Ty) return V;
269
270 if (Constant *CV = dyn_cast<Constant>(V))
271 return ConstantExpr::getCast(opc, CV, Ty);
272
Gabor Greifa645dd32008-05-16 19:29:10 +0000273 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 AddToWorkList(C);
275 return C;
276 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000277
278 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
279 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
280 }
281
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282
283 // ReplaceInstUsesWith - This method is to be used when an instruction is
284 // found to be dead, replacable with another preexisting expression. Here
285 // we add all uses of I to the worklist, replace all uses of I with the new
286 // value, then return I, so that the inst combiner will know that I was
287 // modified.
288 //
289 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
290 AddUsersToWorkList(I); // Add all modified instrs to worklist
291 if (&I != V) {
292 I.replaceAllUsesWith(V);
293 return &I;
294 } else {
295 // If we are replacing the instruction with itself, this must be in a
296 // segment of unreachable code, so just clobber the instruction.
297 I.replaceAllUsesWith(UndefValue::get(I.getType()));
298 return &I;
299 }
300 }
301
302 // UpdateValueUsesWith - This method is to be used when an value is
303 // found to be replacable with another preexisting expression or was
304 // updated. Here we add all uses of I to the worklist, replace all uses of
305 // I with the new value (unless the instruction was just updated), then
306 // return true, so that the inst combiner will know that I was modified.
307 //
308 bool UpdateValueUsesWith(Value *Old, Value *New) {
309 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
310 if (Old != New)
311 Old->replaceAllUsesWith(New);
312 if (Instruction *I = dyn_cast<Instruction>(Old))
313 AddToWorkList(I);
314 if (Instruction *I = dyn_cast<Instruction>(New))
315 AddToWorkList(I);
316 return true;
317 }
318
319 // EraseInstFromFunction - When dealing with an instruction that has side
320 // effects or produces a void value, we can't rely on DCE to delete the
321 // instruction. Instead, visit methods should return the value returned by
322 // this function.
323 Instruction *EraseInstFromFunction(Instruction &I) {
324 assert(I.use_empty() && "Cannot erase instruction that is used!");
325 AddUsesToWorkList(I);
326 RemoveFromWorkList(&I);
327 I.eraseFromParent();
328 return 0; // Don't do anything with FI
329 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000330
331 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
332 APInt &KnownOne, unsigned Depth = 0) const {
333 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
334 }
335
336 bool MaskedValueIsZero(Value *V, const APInt &Mask,
337 unsigned Depth = 0) const {
338 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
339 }
340 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
341 return llvm::ComputeNumSignBits(Op, TD, Depth);
342 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 private:
345 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
346 /// InsertBefore instruction. This is specialized a bit to avoid inserting
347 /// casts that are known to not do anything...
348 ///
349 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
350 Value *V, const Type *DestTy,
351 Instruction *InsertBefore);
352
353 /// SimplifyCommutative - This performs a few simplifications for
354 /// commutative operators.
355 bool SimplifyCommutative(BinaryOperator &I);
356
357 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
358 /// most-complex to least-complex order.
359 bool SimplifyCompare(CmpInst &I);
360
361 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
362 /// on the demanded bits.
363 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
364 APInt& KnownZero, APInt& KnownOne,
365 unsigned Depth = 0);
366
367 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
368 uint64_t &UndefElts, unsigned Depth = 0);
369
370 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
371 // PHI node as operand #0, see if we can fold the instruction into the PHI
372 // (which is only possible if all operands to the PHI are constants).
373 Instruction *FoldOpIntoPhi(Instruction &I);
374
375 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
376 // operator and they all are only used by the PHI, PHI together their
377 // inputs, and do the operation once, to the result of the PHI.
378 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
379 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
380
381
382 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
383 ConstantInt *AndRHS, BinaryOperator &TheAnd);
384
385 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
386 bool isSub, Instruction &I);
387 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
388 bool isSigned, bool Inside, Instruction &IB);
389 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
390 Instruction *MatchBSwap(BinaryOperator &I);
391 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000392 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000393 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000394
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000395
396 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000397
Dan Gohman2d648bb2008-04-10 18:43:06 +0000398 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
399 unsigned CastOpc,
400 int &NumCastsRemoved);
401 unsigned GetOrEnforceKnownAlignment(Value *V,
402 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000403
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405}
406
Dan Gohman089efff2008-05-13 00:00:25 +0000407char InstCombiner::ID = 0;
408static RegisterPass<InstCombiner>
409X("instcombine", "Combine redundant instructions");
410
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411// getComplexity: Assign a complexity or rank value to LLVM Values...
412// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
413static unsigned getComplexity(Value *V) {
414 if (isa<Instruction>(V)) {
415 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
416 return 3;
417 return 4;
418 }
419 if (isa<Argument>(V)) return 3;
420 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
421}
422
423// isOnlyUse - Return true if this instruction will be deleted if we stop using
424// it.
425static bool isOnlyUse(Value *V) {
426 return V->hasOneUse() || isa<Constant>(V);
427}
428
429// getPromotedType - Return the specified type promoted as it would be to pass
430// though a va_arg area...
431static const Type *getPromotedType(const Type *Ty) {
432 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
433 if (ITy->getBitWidth() < 32)
434 return Type::Int32Ty;
435 }
436 return Ty;
437}
438
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000439/// getBitCastOperand - If the specified operand is a CastInst, a constant
440/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
441/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442static Value *getBitCastOperand(Value *V) {
443 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000444 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000446 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
447 // GetElementPtrInst?
448 if (GEP->hasAllZeroIndices())
449 return GEP->getOperand(0);
450 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000452 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000454 else if (CE->getOpcode() == Instruction::GetElementPtr) {
455 // GetElementPtr ConstantExp?
456 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
457 I != E; ++I) {
458 ConstantInt *CI = dyn_cast<ConstantInt>(I);
459 if (!CI || !CI->isZero())
460 // Any non-zero indices? Not cast-like.
461 return 0;
462 }
463 // All-zero indices? This is just like casting.
464 return CE->getOperand(0);
465 }
466 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467 return 0;
468}
469
470/// This function is a wrapper around CastInst::isEliminableCastPair. It
471/// simply extracts arguments and returns what that function returns.
472static Instruction::CastOps
473isEliminableCastPair(
474 const CastInst *CI, ///< The first cast instruction
475 unsigned opcode, ///< The opcode of the second cast instruction
476 const Type *DstTy, ///< The target type for the second cast instruction
477 TargetData *TD ///< The target data for pointer size
478) {
479
480 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
481 const Type *MidTy = CI->getType(); // B from above
482
483 // Get the opcodes of the two Cast instructions
484 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
485 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
486
487 return Instruction::CastOps(
488 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
489 DstTy, TD->getIntPtrType()));
490}
491
492/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
493/// in any code being generated. It does not require codegen if V is simple
494/// enough or if the cast can be folded into other casts.
495static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
496 const Type *Ty, TargetData *TD) {
497 if (V->getType() == Ty || isa<Constant>(V)) return false;
498
499 // If this is another cast that can be eliminated, it isn't codegen either.
500 if (const CastInst *CI = dyn_cast<CastInst>(V))
501 if (isEliminableCastPair(CI, opcode, Ty, TD))
502 return false;
503 return true;
504}
505
506/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
507/// InsertBefore instruction. This is specialized a bit to avoid inserting
508/// casts that are known to not do anything...
509///
510Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
511 Value *V, const Type *DestTy,
512 Instruction *InsertBefore) {
513 if (V->getType() == DestTy) return V;
514 if (Constant *C = dyn_cast<Constant>(V))
515 return ConstantExpr::getCast(opcode, C, DestTy);
516
517 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
518}
519
520// SimplifyCommutative - This performs a few simplifications for commutative
521// operators:
522//
523// 1. Order operands such that they are listed from right (least complex) to
524// left (most complex). This puts constants before unary operators before
525// binary operators.
526//
527// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
528// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
529//
530bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
531 bool Changed = false;
532 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
533 Changed = !I.swapOperands();
534
535 if (!I.isAssociative()) return Changed;
536 Instruction::BinaryOps Opcode = I.getOpcode();
537 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
538 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
539 if (isa<Constant>(I.getOperand(1))) {
540 Constant *Folded = ConstantExpr::get(I.getOpcode(),
541 cast<Constant>(I.getOperand(1)),
542 cast<Constant>(Op->getOperand(1)));
543 I.setOperand(0, Op->getOperand(0));
544 I.setOperand(1, Folded);
545 return true;
546 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
547 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
548 isOnlyUse(Op) && isOnlyUse(Op1)) {
549 Constant *C1 = cast<Constant>(Op->getOperand(1));
550 Constant *C2 = cast<Constant>(Op1->getOperand(1));
551
552 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
553 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000554 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000555 Op1->getOperand(0),
556 Op1->getName(), &I);
557 AddToWorkList(New);
558 I.setOperand(0, New);
559 I.setOperand(1, Folded);
560 return true;
561 }
562 }
563 return Changed;
564}
565
566/// SimplifyCompare - For a CmpInst this function just orders the operands
567/// so that theyare listed from right (least complex) to left (most complex).
568/// This puts constants before unary operators before binary operators.
569bool InstCombiner::SimplifyCompare(CmpInst &I) {
570 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
571 return false;
572 I.swapOperands();
573 // Compare instructions are not associative so there's nothing else we can do.
574 return true;
575}
576
577// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
578// if the LHS is a constant zero (which is the 'negate' form).
579//
580static inline Value *dyn_castNegVal(Value *V) {
581 if (BinaryOperator::isNeg(V))
582 return BinaryOperator::getNegArgument(V);
583
584 // Constants can be considered to be negated values if they can be folded.
585 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
586 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000587
588 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
589 if (C->getType()->getElementType()->isInteger())
590 return ConstantExpr::getNeg(C);
591
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000592 return 0;
593}
594
595static inline Value *dyn_castNotVal(Value *V) {
596 if (BinaryOperator::isNot(V))
597 return BinaryOperator::getNotArgument(V);
598
599 // Constants can be considered to be not'ed values...
600 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
601 return ConstantInt::get(~C->getValue());
602 return 0;
603}
604
605// dyn_castFoldableMul - If this value is a multiply that can be folded into
606// other computations (because it has a constant operand), return the
607// non-constant operand of the multiply, and set CST to point to the multiplier.
608// Otherwise, return null.
609//
610static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
611 if (V->hasOneUse() && V->getType()->isInteger())
612 if (Instruction *I = dyn_cast<Instruction>(V)) {
613 if (I->getOpcode() == Instruction::Mul)
614 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
615 return I->getOperand(0);
616 if (I->getOpcode() == Instruction::Shl)
617 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
618 // The multiplier is really 1 << CST.
619 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
620 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
621 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
622 return I->getOperand(0);
623 }
624 }
625 return 0;
626}
627
628/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
629/// expression, return it.
630static User *dyn_castGetElementPtr(Value *V) {
631 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
633 if (CE->getOpcode() == Instruction::GetElementPtr)
634 return cast<User>(V);
635 return false;
636}
637
Dan Gohman2d648bb2008-04-10 18:43:06 +0000638/// getOpcode - If this is an Instruction or a ConstantExpr, return the
639/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000640static unsigned getOpcode(const Value *V) {
641 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000642 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000643 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000644 return CE->getOpcode();
645 // Use UserOp1 to mean there's no opcode.
646 return Instruction::UserOp1;
647}
648
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649/// AddOne - Add one to a ConstantInt
650static ConstantInt *AddOne(ConstantInt *C) {
651 APInt Val(C->getValue());
652 return ConstantInt::get(++Val);
653}
654/// SubOne - Subtract one from a ConstantInt
655static ConstantInt *SubOne(ConstantInt *C) {
656 APInt Val(C->getValue());
657 return ConstantInt::get(--Val);
658}
659/// Add - Add two ConstantInts together
660static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
661 return ConstantInt::get(C1->getValue() + C2->getValue());
662}
663/// And - Bitwise AND two ConstantInts together
664static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
665 return ConstantInt::get(C1->getValue() & C2->getValue());
666}
667/// Subtract - Subtract one ConstantInt from another
668static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
669 return ConstantInt::get(C1->getValue() - C2->getValue());
670}
671/// Multiply - Multiply two ConstantInts together
672static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
673 return ConstantInt::get(C1->getValue() * C2->getValue());
674}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000675/// MultiplyOverflows - True if the multiply can not be expressed in an int
676/// this size.
677static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
678 uint32_t W = C1->getBitWidth();
679 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
680 if (sign) {
681 LHSExt.sext(W * 2);
682 RHSExt.sext(W * 2);
683 } else {
684 LHSExt.zext(W * 2);
685 RHSExt.zext(W * 2);
686 }
687
688 APInt MulExt = LHSExt * RHSExt;
689
690 if (sign) {
691 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
692 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
693 return MulExt.slt(Min) || MulExt.sgt(Max);
694 } else
695 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
696}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000697
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698
699/// ShrinkDemandedConstant - Check to see if the specified operand of the
700/// specified instruction is a constant integer. If so, check to see if there
701/// are any bits set in the constant that are not demanded. If so, shrink the
702/// constant and return true.
703static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
704 APInt Demanded) {
705 assert(I && "No instruction?");
706 assert(OpNo < I->getNumOperands() && "Operand index too large");
707
708 // If the operand is not a constant integer, nothing to do.
709 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
710 if (!OpC) return false;
711
712 // If there are no bits set that aren't demanded, nothing to do.
713 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
714 if ((~Demanded & OpC->getValue()) == 0)
715 return false;
716
717 // This instruction is producing bits that are not demanded. Shrink the RHS.
718 Demanded &= OpC->getValue();
719 I->setOperand(OpNo, ConstantInt::get(Demanded));
720 return true;
721}
722
723// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
724// set of known zero and one bits, compute the maximum and minimum values that
725// could have the specified known zero and known one bits, returning them in
726// min/max.
727static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
728 const APInt& KnownZero,
729 const APInt& KnownOne,
730 APInt& Min, APInt& Max) {
731 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
732 assert(KnownZero.getBitWidth() == BitWidth &&
733 KnownOne.getBitWidth() == BitWidth &&
734 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
735 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
736 APInt UnknownBits = ~(KnownZero|KnownOne);
737
738 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
739 // bit if it is unknown.
740 Min = KnownOne;
741 Max = KnownOne|UnknownBits;
742
743 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
744 Min.set(BitWidth-1);
745 Max.clear(BitWidth-1);
746 }
747}
748
749// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
750// a set of known zero and one bits, compute the maximum and minimum values that
751// could have the specified known zero and known one bits, returning them in
752// min/max.
753static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000754 const APInt &KnownZero,
755 const APInt &KnownOne,
756 APInt &Min, APInt &Max) {
757 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758 assert(KnownZero.getBitWidth() == BitWidth &&
759 KnownOne.getBitWidth() == BitWidth &&
760 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
761 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
762 APInt UnknownBits = ~(KnownZero|KnownOne);
763
764 // The minimum value is when the unknown bits are all zeros.
765 Min = KnownOne;
766 // The maximum value is when the unknown bits are all ones.
767 Max = KnownOne|UnknownBits;
768}
769
770/// SimplifyDemandedBits - This function attempts to replace V with a simpler
771/// value based on the demanded bits. When this function is called, it is known
772/// that only the bits set in DemandedMask of the result of V are ever used
773/// downstream. Consequently, depending on the mask and V, it may be possible
774/// to replace V with a constant or one of its operands. In such cases, this
775/// function does the replacement and returns true. In all other cases, it
776/// returns false after analyzing the expression and setting KnownOne and known
777/// to be one in the expression. KnownZero contains all the bits that are known
778/// to be zero in the expression. These are provided to potentially allow the
779/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
780/// the expression. KnownOne and KnownZero always follow the invariant that
781/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
782/// the bits in KnownOne and KnownZero may only be accurate for those bits set
783/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
784/// and KnownOne must all be the same.
785bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
786 APInt& KnownZero, APInt& KnownOne,
787 unsigned Depth) {
788 assert(V != 0 && "Null pointer of Value???");
789 assert(Depth <= 6 && "Limit Search Depth");
790 uint32_t BitWidth = DemandedMask.getBitWidth();
791 const IntegerType *VTy = cast<IntegerType>(V->getType());
792 assert(VTy->getBitWidth() == BitWidth &&
793 KnownZero.getBitWidth() == BitWidth &&
794 KnownOne.getBitWidth() == BitWidth &&
795 "Value *V, DemandedMask, KnownZero and KnownOne \
796 must have same BitWidth");
797 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
798 // We know all of the bits for a constant!
799 KnownOne = CI->getValue() & DemandedMask;
800 KnownZero = ~KnownOne & DemandedMask;
801 return false;
802 }
803
804 KnownZero.clear();
805 KnownOne.clear();
806 if (!V->hasOneUse()) { // Other users may use these bits.
807 if (Depth != 0) { // Not at the root.
808 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
809 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
810 return false;
811 }
812 // If this is the root being simplified, allow it to have multiple uses,
813 // just set the DemandedMask to all bits.
814 DemandedMask = APInt::getAllOnesValue(BitWidth);
815 } else if (DemandedMask == 0) { // Not demanding any bits from V.
816 if (V != UndefValue::get(VTy))
817 return UpdateValueUsesWith(V, UndefValue::get(VTy));
818 return false;
819 } else if (Depth == 6) { // Limit search depth.
820 return false;
821 }
822
823 Instruction *I = dyn_cast<Instruction>(V);
824 if (!I) return false; // Only analyze instructions.
825
826 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
827 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
828 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000829 default:
830 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
831 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000832 case Instruction::And:
833 // If either the LHS or the RHS are Zero, the result is zero.
834 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
835 RHSKnownZero, RHSKnownOne, Depth+1))
836 return true;
837 assert((RHSKnownZero & RHSKnownOne) == 0 &&
838 "Bits known to be one AND zero?");
839
840 // If something is known zero on the RHS, the bits aren't demanded on the
841 // LHS.
842 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
843 LHSKnownZero, LHSKnownOne, Depth+1))
844 return true;
845 assert((LHSKnownZero & LHSKnownOne) == 0 &&
846 "Bits known to be one AND zero?");
847
848 // If all of the demanded bits are known 1 on one side, return the other.
849 // These bits cannot contribute to the result of the 'and'.
850 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
851 (DemandedMask & ~LHSKnownZero))
852 return UpdateValueUsesWith(I, I->getOperand(0));
853 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
854 (DemandedMask & ~RHSKnownZero))
855 return UpdateValueUsesWith(I, I->getOperand(1));
856
857 // If all of the demanded bits in the inputs are known zeros, return zero.
858 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
859 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
860
861 // If the RHS is a constant, see if we can simplify it.
862 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
863 return UpdateValueUsesWith(I, I);
864
865 // Output known-1 bits are only known if set in both the LHS & RHS.
866 RHSKnownOne &= LHSKnownOne;
867 // Output known-0 are known to be clear if zero in either the LHS | RHS.
868 RHSKnownZero |= LHSKnownZero;
869 break;
870 case Instruction::Or:
871 // If either the LHS or the RHS are One, the result is One.
872 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
873 RHSKnownZero, RHSKnownOne, Depth+1))
874 return true;
875 assert((RHSKnownZero & RHSKnownOne) == 0 &&
876 "Bits known to be one AND zero?");
877 // If something is known one on the RHS, the bits aren't demanded on the
878 // LHS.
879 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
880 LHSKnownZero, LHSKnownOne, Depth+1))
881 return true;
882 assert((LHSKnownZero & LHSKnownOne) == 0 &&
883 "Bits known to be one AND zero?");
884
885 // If all of the demanded bits are known zero on one side, return the other.
886 // These bits cannot contribute to the result of the 'or'.
887 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
888 (DemandedMask & ~LHSKnownOne))
889 return UpdateValueUsesWith(I, I->getOperand(0));
890 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
891 (DemandedMask & ~RHSKnownOne))
892 return UpdateValueUsesWith(I, I->getOperand(1));
893
894 // If all of the potentially set bits on one side are known to be set on
895 // the other side, just use the 'other' side.
896 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
897 (DemandedMask & (~RHSKnownZero)))
898 return UpdateValueUsesWith(I, I->getOperand(0));
899 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
900 (DemandedMask & (~LHSKnownZero)))
901 return UpdateValueUsesWith(I, I->getOperand(1));
902
903 // If the RHS is a constant, see if we can simplify it.
904 if (ShrinkDemandedConstant(I, 1, DemandedMask))
905 return UpdateValueUsesWith(I, I);
906
907 // Output known-0 bits are only known if clear in both the LHS & RHS.
908 RHSKnownZero &= LHSKnownZero;
909 // Output known-1 are known to be set if set in either the LHS | RHS.
910 RHSKnownOne |= LHSKnownOne;
911 break;
912 case Instruction::Xor: {
913 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
914 RHSKnownZero, RHSKnownOne, Depth+1))
915 return true;
916 assert((RHSKnownZero & RHSKnownOne) == 0 &&
917 "Bits known to be one AND zero?");
918 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
919 LHSKnownZero, LHSKnownOne, Depth+1))
920 return true;
921 assert((LHSKnownZero & LHSKnownOne) == 0 &&
922 "Bits known to be one AND zero?");
923
924 // If all of the demanded bits are known zero on one side, return the other.
925 // These bits cannot contribute to the result of the 'xor'.
926 if ((DemandedMask & RHSKnownZero) == DemandedMask)
927 return UpdateValueUsesWith(I, I->getOperand(0));
928 if ((DemandedMask & LHSKnownZero) == DemandedMask)
929 return UpdateValueUsesWith(I, I->getOperand(1));
930
931 // Output known-0 bits are known if clear or set in both the LHS & RHS.
932 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
933 (RHSKnownOne & LHSKnownOne);
934 // Output known-1 are known to be set if set in only one of the LHS, RHS.
935 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
936 (RHSKnownOne & LHSKnownZero);
937
938 // If all of the demanded bits are known to be zero on one side or the
939 // other, turn this into an *inclusive* or.
940 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
941 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
942 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000943 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944 I->getName());
945 InsertNewInstBefore(Or, *I);
946 return UpdateValueUsesWith(I, Or);
947 }
948
949 // If all of the demanded bits on one side are known, and all of the set
950 // bits on that side are also known to be set on the other side, turn this
951 // into an AND, as we know the bits will be cleared.
952 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
953 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
954 // all known
955 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
956 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
957 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000958 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959 InsertNewInstBefore(And, *I);
960 return UpdateValueUsesWith(I, And);
961 }
962 }
963
964 // If the RHS is a constant, see if we can simplify it.
965 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
966 if (ShrinkDemandedConstant(I, 1, DemandedMask))
967 return UpdateValueUsesWith(I, I);
968
969 RHSKnownZero = KnownZeroOut;
970 RHSKnownOne = KnownOneOut;
971 break;
972 }
973 case Instruction::Select:
974 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
975 RHSKnownZero, RHSKnownOne, Depth+1))
976 return true;
977 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
978 LHSKnownZero, LHSKnownOne, Depth+1))
979 return true;
980 assert((RHSKnownZero & RHSKnownOne) == 0 &&
981 "Bits known to be one AND zero?");
982 assert((LHSKnownZero & LHSKnownOne) == 0 &&
983 "Bits known to be one AND zero?");
984
985 // If the operands are constants, see if we can simplify them.
986 if (ShrinkDemandedConstant(I, 1, DemandedMask))
987 return UpdateValueUsesWith(I, I);
988 if (ShrinkDemandedConstant(I, 2, DemandedMask))
989 return UpdateValueUsesWith(I, I);
990
991 // Only known if known in both the LHS and RHS.
992 RHSKnownOne &= LHSKnownOne;
993 RHSKnownZero &= LHSKnownZero;
994 break;
995 case Instruction::Trunc: {
996 uint32_t truncBf =
997 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
998 DemandedMask.zext(truncBf);
999 RHSKnownZero.zext(truncBf);
1000 RHSKnownOne.zext(truncBf);
1001 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1002 RHSKnownZero, RHSKnownOne, Depth+1))
1003 return true;
1004 DemandedMask.trunc(BitWidth);
1005 RHSKnownZero.trunc(BitWidth);
1006 RHSKnownOne.trunc(BitWidth);
1007 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1008 "Bits known to be one AND zero?");
1009 break;
1010 }
1011 case Instruction::BitCast:
1012 if (!I->getOperand(0)->getType()->isInteger())
1013 return false;
1014
1015 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1016 RHSKnownZero, RHSKnownOne, Depth+1))
1017 return true;
1018 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1019 "Bits known to be one AND zero?");
1020 break;
1021 case Instruction::ZExt: {
1022 // Compute the bits in the result that are not present in the input.
1023 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1024 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1025
1026 DemandedMask.trunc(SrcBitWidth);
1027 RHSKnownZero.trunc(SrcBitWidth);
1028 RHSKnownOne.trunc(SrcBitWidth);
1029 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1030 RHSKnownZero, RHSKnownOne, Depth+1))
1031 return true;
1032 DemandedMask.zext(BitWidth);
1033 RHSKnownZero.zext(BitWidth);
1034 RHSKnownOne.zext(BitWidth);
1035 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1036 "Bits known to be one AND zero?");
1037 // The top bits are known to be zero.
1038 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1039 break;
1040 }
1041 case Instruction::SExt: {
1042 // Compute the bits in the result that are not present in the input.
1043 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1044 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1045
1046 APInt InputDemandedBits = DemandedMask &
1047 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1048
1049 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1050 // If any of the sign extended bits are demanded, we know that the sign
1051 // bit is demanded.
1052 if ((NewBits & DemandedMask) != 0)
1053 InputDemandedBits.set(SrcBitWidth-1);
1054
1055 InputDemandedBits.trunc(SrcBitWidth);
1056 RHSKnownZero.trunc(SrcBitWidth);
1057 RHSKnownOne.trunc(SrcBitWidth);
1058 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1059 RHSKnownZero, RHSKnownOne, Depth+1))
1060 return true;
1061 InputDemandedBits.zext(BitWidth);
1062 RHSKnownZero.zext(BitWidth);
1063 RHSKnownOne.zext(BitWidth);
1064 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1065 "Bits known to be one AND zero?");
1066
1067 // If the sign bit of the input is known set or clear, then we know the
1068 // top bits of the result.
1069
1070 // If the input sign bit is known zero, or if the NewBits are not demanded
1071 // convert this into a zero extension.
1072 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1073 {
1074 // Convert to ZExt cast
1075 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1076 return UpdateValueUsesWith(I, NewCast);
1077 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1078 RHSKnownOne |= NewBits;
1079 }
1080 break;
1081 }
1082 case Instruction::Add: {
1083 // Figure out what the input bits are. If the top bits of the and result
1084 // are not demanded, then the add doesn't demand them from its input
1085 // either.
1086 uint32_t NLZ = DemandedMask.countLeadingZeros();
1087
1088 // If there is a constant on the RHS, there are a variety of xformations
1089 // we can do.
1090 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1091 // If null, this should be simplified elsewhere. Some of the xforms here
1092 // won't work if the RHS is zero.
1093 if (RHS->isZero())
1094 break;
1095
1096 // If the top bit of the output is demanded, demand everything from the
1097 // input. Otherwise, we demand all the input bits except NLZ top bits.
1098 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1099
1100 // Find information about known zero/one bits in the input.
1101 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1102 LHSKnownZero, LHSKnownOne, Depth+1))
1103 return true;
1104
1105 // If the RHS of the add has bits set that can't affect the input, reduce
1106 // the constant.
1107 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1108 return UpdateValueUsesWith(I, I);
1109
1110 // Avoid excess work.
1111 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1112 break;
1113
1114 // Turn it into OR if input bits are zero.
1115 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1116 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001117 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118 I->getName());
1119 InsertNewInstBefore(Or, *I);
1120 return UpdateValueUsesWith(I, Or);
1121 }
1122
1123 // We can say something about the output known-zero and known-one bits,
1124 // depending on potential carries from the input constant and the
1125 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1126 // bits set and the RHS constant is 0x01001, then we know we have a known
1127 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1128
1129 // To compute this, we first compute the potential carry bits. These are
1130 // the bits which may be modified. I'm not aware of a better way to do
1131 // this scan.
1132 const APInt& RHSVal = RHS->getValue();
1133 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1134
1135 // Now that we know which bits have carries, compute the known-1/0 sets.
1136
1137 // Bits are known one if they are known zero in one operand and one in the
1138 // other, and there is no input carry.
1139 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1140 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1141
1142 // Bits are known zero if they are known zero in both operands and there
1143 // is no input carry.
1144 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1145 } else {
1146 // If the high-bits of this ADD are not demanded, then it does not demand
1147 // the high bits of its LHS or RHS.
1148 if (DemandedMask[BitWidth-1] == 0) {
1149 // Right fill the mask of bits for this ADD to demand the most
1150 // significant bit and all those below it.
1151 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1152 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1153 LHSKnownZero, LHSKnownOne, Depth+1))
1154 return true;
1155 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1156 LHSKnownZero, LHSKnownOne, Depth+1))
1157 return true;
1158 }
1159 }
1160 break;
1161 }
1162 case Instruction::Sub:
1163 // If the high-bits of this SUB are not demanded, then it does not demand
1164 // the high bits of its LHS or RHS.
1165 if (DemandedMask[BitWidth-1] == 0) {
1166 // Right fill the mask of bits for this SUB to demand the most
1167 // significant bit and all those below it.
1168 uint32_t NLZ = DemandedMask.countLeadingZeros();
1169 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1170 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1171 LHSKnownZero, LHSKnownOne, Depth+1))
1172 return true;
1173 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1174 LHSKnownZero, LHSKnownOne, Depth+1))
1175 return true;
1176 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001177 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1178 // the known zeros and ones.
1179 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180 break;
1181 case Instruction::Shl:
1182 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1183 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1184 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1185 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1186 RHSKnownZero, RHSKnownOne, Depth+1))
1187 return true;
1188 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1189 "Bits known to be one AND zero?");
1190 RHSKnownZero <<= ShiftAmt;
1191 RHSKnownOne <<= ShiftAmt;
1192 // low bits known zero.
1193 if (ShiftAmt)
1194 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1195 }
1196 break;
1197 case Instruction::LShr:
1198 // For a logical shift right
1199 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1200 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1201
1202 // Unsigned shift right.
1203 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1204 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1205 RHSKnownZero, RHSKnownOne, Depth+1))
1206 return true;
1207 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1208 "Bits known to be one AND zero?");
1209 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1210 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1211 if (ShiftAmt) {
1212 // Compute the new bits that are at the top now.
1213 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1214 RHSKnownZero |= HighBits; // high bits known zero.
1215 }
1216 }
1217 break;
1218 case Instruction::AShr:
1219 // If this is an arithmetic shift right and only the low-bit is set, we can
1220 // always convert this into a logical shr, even if the shift amount is
1221 // variable. The low bit of the shift cannot be an input sign bit unless
1222 // the shift amount is >= the size of the datatype, which is undefined.
1223 if (DemandedMask == 1) {
1224 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001225 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001226 I->getOperand(0), I->getOperand(1), I->getName());
1227 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1228 return UpdateValueUsesWith(I, NewVal);
1229 }
1230
1231 // If the sign bit is the only bit demanded by this ashr, then there is no
1232 // need to do it, the shift doesn't change the high bit.
1233 if (DemandedMask.isSignBit())
1234 return UpdateValueUsesWith(I, I->getOperand(0));
1235
1236 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1237 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1238
1239 // Signed shift right.
1240 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1241 // If any of the "high bits" are demanded, we should set the sign bit as
1242 // demanded.
1243 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1244 DemandedMaskIn.set(BitWidth-1);
1245 if (SimplifyDemandedBits(I->getOperand(0),
1246 DemandedMaskIn,
1247 RHSKnownZero, RHSKnownOne, Depth+1))
1248 return true;
1249 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1250 "Bits known to be one AND zero?");
1251 // Compute the new bits that are at the top now.
1252 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1253 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1254 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1255
1256 // Handle the sign bits.
1257 APInt SignBit(APInt::getSignBit(BitWidth));
1258 // Adjust to where it is now in the mask.
1259 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1260
1261 // If the input sign bit is known to be zero, or if none of the top bits
1262 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001263 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264 (HighBits & ~DemandedMask) == HighBits) {
1265 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001266 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 I->getOperand(0), SA, I->getName());
1268 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1269 return UpdateValueUsesWith(I, NewVal);
1270 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1271 RHSKnownOne |= HighBits;
1272 }
1273 }
1274 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001275 case Instruction::SRem:
1276 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001277 APInt RA = Rem->getValue().abs();
1278 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001279 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1280 return UpdateValueUsesWith(I, I->getOperand(0));
1281
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001282 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001283 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1284 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1285 LHSKnownZero, LHSKnownOne, Depth+1))
1286 return true;
1287
1288 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1289 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001290
1291 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001292
1293 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1294 }
1295 }
1296 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001297 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001298 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1299 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001300 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1301 KnownZero2, KnownOne2, Depth+1))
1302 return true;
1303
Dan Gohmanbec16052008-04-28 17:02:21 +00001304 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001305 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001306 KnownZero2, KnownOne2, Depth+1))
1307 return true;
1308
1309 Leaders = std::max(Leaders,
1310 KnownZero2.countLeadingOnes());
1311 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001312 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313 }
Chris Lattner989ba312008-06-18 04:33:20 +00001314 case Instruction::Call:
1315 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1316 switch (II->getIntrinsicID()) {
1317 default: break;
1318 case Intrinsic::bswap: {
1319 // If the only bits demanded come from one byte of the bswap result,
1320 // just shift the input byte into position to eliminate the bswap.
1321 unsigned NLZ = DemandedMask.countLeadingZeros();
1322 unsigned NTZ = DemandedMask.countTrailingZeros();
1323
1324 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1325 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1326 // have 14 leading zeros, round to 8.
1327 NLZ &= ~7;
1328 NTZ &= ~7;
1329 // If we need exactly one byte, we can do this transformation.
1330 if (BitWidth-NLZ-NTZ == 8) {
1331 unsigned ResultBit = NTZ;
1332 unsigned InputBit = BitWidth-NTZ-8;
1333
1334 // Replace this with either a left or right shift to get the byte into
1335 // the right place.
1336 Instruction *NewVal;
1337 if (InputBit > ResultBit)
1338 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1339 ConstantInt::get(I->getType(), InputBit-ResultBit));
1340 else
1341 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1342 ConstantInt::get(I->getType(), ResultBit-InputBit));
1343 NewVal->takeName(I);
1344 InsertNewInstBefore(NewVal, *I);
1345 return UpdateValueUsesWith(I, NewVal);
1346 }
1347
1348 // TODO: Could compute known zero/one bits based on the input.
1349 break;
1350 }
1351 }
1352 }
Chris Lattner4946e222008-06-18 18:11:55 +00001353 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001354 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001355 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001356
1357 // If the client is only demanding bits that we know, return the known
1358 // constant.
1359 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1360 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1361 return false;
1362}
1363
1364
1365/// SimplifyDemandedVectorElts - The specified value producecs a vector with
1366/// 64 or fewer elements. DemandedElts contains the set of elements that are
1367/// actually used by the caller. This method analyzes which elements of the
1368/// operand are undef and returns that information in UndefElts.
1369///
1370/// If the information about demanded elements can be used to simplify the
1371/// operation, the operation is simplified, then the resultant value is
1372/// returned. This returns null if no change was made.
1373Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1374 uint64_t &UndefElts,
1375 unsigned Depth) {
1376 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1377 assert(VWidth <= 64 && "Vector too wide to analyze!");
1378 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001379 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001380
1381 if (isa<UndefValue>(V)) {
1382 // If the entire vector is undefined, just return this info.
1383 UndefElts = EltMask;
1384 return 0;
1385 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1386 UndefElts = EltMask;
1387 return UndefValue::get(V->getType());
1388 }
1389
1390 UndefElts = 0;
1391 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1392 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1393 Constant *Undef = UndefValue::get(EltTy);
1394
1395 std::vector<Constant*> Elts;
1396 for (unsigned i = 0; i != VWidth; ++i)
1397 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1398 Elts.push_back(Undef);
1399 UndefElts |= (1ULL << i);
1400 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1401 Elts.push_back(Undef);
1402 UndefElts |= (1ULL << i);
1403 } else { // Otherwise, defined.
1404 Elts.push_back(CP->getOperand(i));
1405 }
1406
1407 // If we changed the constant, return it.
1408 Constant *NewCP = ConstantVector::get(Elts);
1409 return NewCP != CP ? NewCP : 0;
1410 } else if (isa<ConstantAggregateZero>(V)) {
1411 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1412 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001413
1414 // Check if this is identity. If so, return 0 since we are not simplifying
1415 // anything.
1416 if (DemandedElts == ((1ULL << VWidth) -1))
1417 return 0;
1418
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001419 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1420 Constant *Zero = Constant::getNullValue(EltTy);
1421 Constant *Undef = UndefValue::get(EltTy);
1422 std::vector<Constant*> Elts;
1423 for (unsigned i = 0; i != VWidth; ++i)
1424 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1425 UndefElts = DemandedElts ^ EltMask;
1426 return ConstantVector::get(Elts);
1427 }
1428
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001429 // Limit search depth.
1430 if (Depth == 10)
1431 return false;
1432
1433 // If multiple users are using the root value, procede with
1434 // simplification conservatively assuming that all elements
1435 // are needed.
1436 if (!V->hasOneUse()) {
1437 // Quit if we find multiple users of a non-root value though.
1438 // They'll be handled when it's their turn to be visited by
1439 // the main instcombine process.
1440 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001441 // TODO: Just compute the UndefElts information recursively.
1442 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001443
1444 // Conservatively assume that all elements are needed.
1445 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001446 }
1447
1448 Instruction *I = dyn_cast<Instruction>(V);
1449 if (!I) return false; // Only analyze instructions.
1450
1451 bool MadeChange = false;
1452 uint64_t UndefElts2;
1453 Value *TmpV;
1454 switch (I->getOpcode()) {
1455 default: break;
1456
1457 case Instruction::InsertElement: {
1458 // If this is a variable index, we don't know which element it overwrites.
1459 // demand exactly the same input as we produce.
1460 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1461 if (Idx == 0) {
1462 // Note that we can't propagate undef elt info, because we don't know
1463 // which elt is getting updated.
1464 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1465 UndefElts2, Depth+1);
1466 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1467 break;
1468 }
1469
1470 // If this is inserting an element that isn't demanded, remove this
1471 // insertelement.
1472 unsigned IdxNo = Idx->getZExtValue();
1473 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1474 return AddSoonDeadInstToWorklist(*I, 0);
1475
1476 // Otherwise, the element inserted overwrites whatever was there, so the
1477 // input demanded set is simpler than the output set.
1478 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1479 DemandedElts & ~(1ULL << IdxNo),
1480 UndefElts, Depth+1);
1481 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1482
1483 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001484 UndefElts &= ~(1ULL << IdxNo);
1485 break;
1486 }
1487 case Instruction::ShuffleVector: {
1488 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1489 uint64_t LeftDemanded = 0, RightDemanded = 0;
1490 for (unsigned i = 0; i < VWidth; i++) {
1491 if (DemandedElts & (1ULL << i)) {
1492 unsigned MaskVal = Shuffle->getMaskValue(i);
1493 if (MaskVal != -1u) {
1494 assert(MaskVal < VWidth * 2 &&
1495 "shufflevector mask index out of range!");
1496 if (MaskVal < VWidth)
1497 LeftDemanded |= 1ULL << MaskVal;
1498 else
1499 RightDemanded |= 1ULL << (MaskVal - VWidth);
1500 }
1501 }
1502 }
1503
1504 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1505 UndefElts2, Depth+1);
1506 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1507
1508 uint64_t UndefElts3;
1509 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1510 UndefElts3, Depth+1);
1511 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1512
1513 bool NewUndefElts = false;
1514 for (unsigned i = 0; i < VWidth; i++) {
1515 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001516 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001517 uint64_t NewBit = 1ULL << i;
1518 UndefElts |= NewBit;
1519 } else if (MaskVal < VWidth) {
1520 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1521 NewUndefElts |= NewBit;
1522 UndefElts |= NewBit;
1523 } else {
1524 uint64_t NewBit = ((UndefElts3 >> (MaskVal - VWidth)) & 1) << i;
1525 NewUndefElts |= NewBit;
1526 UndefElts |= NewBit;
1527 }
1528 }
1529
1530 if (NewUndefElts) {
1531 // Add additional discovered undefs.
1532 std::vector<Constant*> Elts;
1533 for (unsigned i = 0; i < VWidth; ++i) {
1534 if (UndefElts & (1ULL << i))
1535 Elts.push_back(UndefValue::get(Type::Int32Ty));
1536 else
1537 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1538 Shuffle->getMaskValue(i)));
1539 }
1540 I->setOperand(2, ConstantVector::get(Elts));
1541 MadeChange = true;
1542 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001543 break;
1544 }
1545 case Instruction::BitCast: {
1546 // Vector->vector casts only.
1547 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1548 if (!VTy) break;
1549 unsigned InVWidth = VTy->getNumElements();
1550 uint64_t InputDemandedElts = 0;
1551 unsigned Ratio;
1552
1553 if (VWidth == InVWidth) {
1554 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1555 // elements as are demanded of us.
1556 Ratio = 1;
1557 InputDemandedElts = DemandedElts;
1558 } else if (VWidth > InVWidth) {
1559 // Untested so far.
1560 break;
1561
1562 // If there are more elements in the result than there are in the source,
1563 // then an input element is live if any of the corresponding output
1564 // elements are live.
1565 Ratio = VWidth/InVWidth;
1566 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1567 if (DemandedElts & (1ULL << OutIdx))
1568 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1569 }
1570 } else {
1571 // Untested so far.
1572 break;
1573
1574 // If there are more elements in the source than there are in the result,
1575 // then an input element is live if the corresponding output element is
1576 // live.
1577 Ratio = InVWidth/VWidth;
1578 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1579 if (DemandedElts & (1ULL << InIdx/Ratio))
1580 InputDemandedElts |= 1ULL << InIdx;
1581 }
1582
1583 // div/rem demand all inputs, because they don't want divide by zero.
1584 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1585 UndefElts2, Depth+1);
1586 if (TmpV) {
1587 I->setOperand(0, TmpV);
1588 MadeChange = true;
1589 }
1590
1591 UndefElts = UndefElts2;
1592 if (VWidth > InVWidth) {
1593 assert(0 && "Unimp");
1594 // If there are more elements in the result than there are in the source,
1595 // then an output element is undef if the corresponding input element is
1596 // undef.
1597 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1598 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1599 UndefElts |= 1ULL << OutIdx;
1600 } else if (VWidth < InVWidth) {
1601 assert(0 && "Unimp");
1602 // If there are more elements in the source than there are in the result,
1603 // then a result element is undef if all of the corresponding input
1604 // elements are undef.
1605 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1606 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1607 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1608 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1609 }
1610 break;
1611 }
1612 case Instruction::And:
1613 case Instruction::Or:
1614 case Instruction::Xor:
1615 case Instruction::Add:
1616 case Instruction::Sub:
1617 case Instruction::Mul:
1618 // div/rem demand all inputs, because they don't want divide by zero.
1619 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1620 UndefElts, Depth+1);
1621 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1622 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1623 UndefElts2, Depth+1);
1624 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1625
1626 // Output elements are undefined if both are undefined. Consider things
1627 // like undef&0. The result is known zero, not undef.
1628 UndefElts &= UndefElts2;
1629 break;
1630
1631 case Instruction::Call: {
1632 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1633 if (!II) break;
1634 switch (II->getIntrinsicID()) {
1635 default: break;
1636
1637 // Binary vector operations that work column-wise. A dest element is a
1638 // function of the corresponding input elements from the two inputs.
1639 case Intrinsic::x86_sse_sub_ss:
1640 case Intrinsic::x86_sse_mul_ss:
1641 case Intrinsic::x86_sse_min_ss:
1642 case Intrinsic::x86_sse_max_ss:
1643 case Intrinsic::x86_sse2_sub_sd:
1644 case Intrinsic::x86_sse2_mul_sd:
1645 case Intrinsic::x86_sse2_min_sd:
1646 case Intrinsic::x86_sse2_max_sd:
1647 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1648 UndefElts, Depth+1);
1649 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1650 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1651 UndefElts2, Depth+1);
1652 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1653
1654 // If only the low elt is demanded and this is a scalarizable intrinsic,
1655 // scalarize it now.
1656 if (DemandedElts == 1) {
1657 switch (II->getIntrinsicID()) {
1658 default: break;
1659 case Intrinsic::x86_sse_sub_ss:
1660 case Intrinsic::x86_sse_mul_ss:
1661 case Intrinsic::x86_sse2_sub_sd:
1662 case Intrinsic::x86_sse2_mul_sd:
1663 // TODO: Lower MIN/MAX/ABS/etc
1664 Value *LHS = II->getOperand(1);
1665 Value *RHS = II->getOperand(2);
1666 // Extract the element as scalars.
1667 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1668 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1669
1670 switch (II->getIntrinsicID()) {
1671 default: assert(0 && "Case stmts out of sync!");
1672 case Intrinsic::x86_sse_sub_ss:
1673 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001674 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001675 II->getName()), *II);
1676 break;
1677 case Intrinsic::x86_sse_mul_ss:
1678 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001679 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001680 II->getName()), *II);
1681 break;
1682 }
1683
1684 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001685 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1686 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001687 InsertNewInstBefore(New, *II);
1688 AddSoonDeadInstToWorklist(*II, 0);
1689 return New;
1690 }
1691 }
1692
1693 // Output elements are undefined if both are undefined. Consider things
1694 // like undef&0. The result is known zero, not undef.
1695 UndefElts &= UndefElts2;
1696 break;
1697 }
1698 break;
1699 }
1700 }
1701 return MadeChange ? I : 0;
1702}
1703
Dan Gohman5d56fd42008-05-19 22:14:15 +00001704
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001705/// AssociativeOpt - Perform an optimization on an associative operator. This
1706/// function is designed to check a chain of associative operators for a
1707/// potential to apply a certain optimization. Since the optimization may be
1708/// applicable if the expression was reassociated, this checks the chain, then
1709/// reassociates the expression as necessary to expose the optimization
1710/// opportunity. This makes use of a special Functor, which must define
1711/// 'shouldApply' and 'apply' methods.
1712///
1713template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001714static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001715 unsigned Opcode = Root.getOpcode();
1716 Value *LHS = Root.getOperand(0);
1717
1718 // Quick check, see if the immediate LHS matches...
1719 if (F.shouldApply(LHS))
1720 return F.apply(Root);
1721
1722 // Otherwise, if the LHS is not of the same opcode as the root, return.
1723 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1724 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1725 // Should we apply this transform to the RHS?
1726 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1727
1728 // If not to the RHS, check to see if we should apply to the LHS...
1729 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1730 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1731 ShouldApply = true;
1732 }
1733
1734 // If the functor wants to apply the optimization to the RHS of LHSI,
1735 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1736 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001737 // Now all of the instructions are in the current basic block, go ahead
1738 // and perform the reassociation.
1739 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1740
1741 // First move the selected RHS to the LHS of the root...
1742 Root.setOperand(0, LHSI->getOperand(1));
1743
1744 // Make what used to be the LHS of the root be the user of the root...
1745 Value *ExtraOperand = TmpLHSI->getOperand(1);
1746 if (&Root == TmpLHSI) {
1747 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1748 return 0;
1749 }
1750 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1751 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001752 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001753 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001754 ARI = Root;
1755
1756 // Now propagate the ExtraOperand down the chain of instructions until we
1757 // get to LHSI.
1758 while (TmpLHSI != LHSI) {
1759 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1760 // Move the instruction to immediately before the chain we are
1761 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001762 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001763 ARI = NextLHSI;
1764
1765 Value *NextOp = NextLHSI->getOperand(1);
1766 NextLHSI->setOperand(1, ExtraOperand);
1767 TmpLHSI = NextLHSI;
1768 ExtraOperand = NextOp;
1769 }
1770
1771 // Now that the instructions are reassociated, have the functor perform
1772 // the transformation...
1773 return F.apply(Root);
1774 }
1775
1776 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1777 }
1778 return 0;
1779}
1780
Dan Gohman089efff2008-05-13 00:00:25 +00001781namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001782
Nick Lewycky27f6c132008-05-23 04:34:58 +00001783// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784struct AddRHS {
1785 Value *RHS;
1786 AddRHS(Value *rhs) : RHS(rhs) {}
1787 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1788 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001789 return BinaryOperator::CreateShl(Add.getOperand(0),
1790 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791 }
1792};
1793
1794// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1795// iff C1&C2 == 0
1796struct AddMaskingAnd {
1797 Constant *C2;
1798 AddMaskingAnd(Constant *c) : C2(c) {}
1799 bool shouldApply(Value *LHS) const {
1800 ConstantInt *C1;
1801 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1802 ConstantExpr::getAnd(C1, C2)->isNullValue();
1803 }
1804 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001805 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001806 }
1807};
1808
Dan Gohman089efff2008-05-13 00:00:25 +00001809}
1810
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001811static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1812 InstCombiner *IC) {
1813 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1814 if (Constant *SOC = dyn_cast<Constant>(SO))
1815 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1816
Gabor Greifa645dd32008-05-16 19:29:10 +00001817 return IC->InsertNewInstBefore(CastInst::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001818 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1819 }
1820
1821 // Figure out if the constant is the left or the right argument.
1822 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1823 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1824
1825 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1826 if (ConstIsRHS)
1827 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1828 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1829 }
1830
1831 Value *Op0 = SO, *Op1 = ConstOperand;
1832 if (!ConstIsRHS)
1833 std::swap(Op0, Op1);
1834 Instruction *New;
1835 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001836 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001837 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001838 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001839 SO->getName()+".cmp");
1840 else {
1841 assert(0 && "Unknown binary instruction type!");
1842 abort();
1843 }
1844 return IC->InsertNewInstBefore(New, I);
1845}
1846
1847// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1848// constant as the other operand, try to fold the binary operator into the
1849// select arguments. This also works for Cast instructions, which obviously do
1850// not have a second operand.
1851static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1852 InstCombiner *IC) {
1853 // Don't modify shared select instructions
1854 if (!SI->hasOneUse()) return 0;
1855 Value *TV = SI->getOperand(1);
1856 Value *FV = SI->getOperand(2);
1857
1858 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1859 // Bool selects with constant operands can be folded to logical ops.
1860 if (SI->getType() == Type::Int1Ty) return 0;
1861
1862 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1863 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1864
Gabor Greifd6da1d02008-04-06 20:25:17 +00001865 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1866 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001867 }
1868 return 0;
1869}
1870
1871
1872/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1873/// node as operand #0, see if we can fold the instruction into the PHI (which
1874/// is only possible if all operands to the PHI are constants).
1875Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1876 PHINode *PN = cast<PHINode>(I.getOperand(0));
1877 unsigned NumPHIValues = PN->getNumIncomingValues();
1878 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1879
1880 // Check to see if all of the operands of the PHI are constants. If there is
1881 // one non-constant value, remember the BB it is. If there is more than one
1882 // or if *it* is a PHI, bail out.
1883 BasicBlock *NonConstBB = 0;
1884 for (unsigned i = 0; i != NumPHIValues; ++i)
1885 if (!isa<Constant>(PN->getIncomingValue(i))) {
1886 if (NonConstBB) return 0; // More than one non-const value.
1887 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1888 NonConstBB = PN->getIncomingBlock(i);
1889
1890 // If the incoming non-constant value is in I's block, we have an infinite
1891 // loop.
1892 if (NonConstBB == I.getParent())
1893 return 0;
1894 }
1895
1896 // If there is exactly one non-constant value, we can insert a copy of the
1897 // operation in that block. However, if this is a critical edge, we would be
1898 // inserting the computation one some other paths (e.g. inside a loop). Only
1899 // do this if the pred block is unconditionally branching into the phi block.
1900 if (NonConstBB) {
1901 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1902 if (!BI || !BI->isUnconditional()) return 0;
1903 }
1904
1905 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001906 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001907 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1908 InsertNewInstBefore(NewPN, *PN);
1909 NewPN->takeName(PN);
1910
1911 // Next, add all of the operands to the PHI.
1912 if (I.getNumOperands() == 2) {
1913 Constant *C = cast<Constant>(I.getOperand(1));
1914 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001915 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001916 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1917 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1918 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1919 else
1920 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1921 } else {
1922 assert(PN->getIncomingBlock(i) == NonConstBB);
1923 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001924 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001925 PN->getIncomingValue(i), C, "phitmp",
1926 NonConstBB->getTerminator());
1927 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001928 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929 CI->getPredicate(),
1930 PN->getIncomingValue(i), C, "phitmp",
1931 NonConstBB->getTerminator());
1932 else
1933 assert(0 && "Unknown binop!");
1934
1935 AddToWorkList(cast<Instruction>(InV));
1936 }
1937 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1938 }
1939 } else {
1940 CastInst *CI = cast<CastInst>(&I);
1941 const Type *RetTy = CI->getType();
1942 for (unsigned i = 0; i != NumPHIValues; ++i) {
1943 Value *InV;
1944 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1945 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1946 } else {
1947 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001948 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001949 I.getType(), "phitmp",
1950 NonConstBB->getTerminator());
1951 AddToWorkList(cast<Instruction>(InV));
1952 }
1953 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1954 }
1955 }
1956 return ReplaceInstUsesWith(I, NewPN);
1957}
1958
Chris Lattner55476162008-01-29 06:52:45 +00001959
Chris Lattner3554f972008-05-20 05:46:13 +00001960/// WillNotOverflowSignedAdd - Return true if we can prove that:
1961/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1962/// This basically requires proving that the add in the original type would not
1963/// overflow to change the sign bit or have a carry out.
1964bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1965 // There are different heuristics we can use for this. Here are some simple
1966 // ones.
1967
1968 // Add has the property that adding any two 2's complement numbers can only
1969 // have one carry bit which can change a sign. As such, if LHS and RHS each
1970 // have at least two sign bits, we know that the addition of the two values will
1971 // sign extend fine.
1972 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1973 return true;
1974
1975
1976 // If one of the operands only has one non-zero bit, and if the other operand
1977 // has a known-zero bit in a more significant place than it (not including the
1978 // sign bit) the ripple may go up to and fill the zero, but won't change the
1979 // sign. For example, (X & ~4) + 1.
1980
1981 // TODO: Implement.
1982
1983 return false;
1984}
1985
Chris Lattner55476162008-01-29 06:52:45 +00001986
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001987Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1988 bool Changed = SimplifyCommutative(I);
1989 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1990
1991 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1992 // X + undef -> undef
1993 if (isa<UndefValue>(RHS))
1994 return ReplaceInstUsesWith(I, RHS);
1995
1996 // X + 0 --> X
1997 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1998 if (RHSC->isNullValue())
1999 return ReplaceInstUsesWith(I, LHS);
2000 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00002001 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2002 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002003 return ReplaceInstUsesWith(I, LHS);
2004 }
2005
2006 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
2007 // X + (signbit) --> X ^ signbit
2008 const APInt& Val = CI->getValue();
2009 uint32_t BitWidth = Val.getBitWidth();
2010 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00002011 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002012
2013 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2014 // (X & 254)+1 -> (X&254)|1
2015 if (!isa<VectorType>(I.getType())) {
2016 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2017 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2018 KnownZero, KnownOne))
2019 return &I;
2020 }
Dan Gohman35b76162008-10-30 20:40:10 +00002021
2022 // zext(i1) - 1 -> select i1, 0, -1
2023 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2024 if (CI->isAllOnesValue() &&
2025 ZI->getOperand(0)->getType() == Type::Int1Ty)
2026 return SelectInst::Create(ZI->getOperand(0),
2027 Constant::getNullValue(I.getType()),
2028 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002029 }
2030
2031 if (isa<PHINode>(LHS))
2032 if (Instruction *NV = FoldOpIntoPhi(I))
2033 return NV;
2034
2035 ConstantInt *XorRHS = 0;
2036 Value *XorLHS = 0;
2037 if (isa<ConstantInt>(RHSC) &&
2038 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2039 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2040 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2041
2042 uint32_t Size = TySizeBits / 2;
2043 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2044 APInt CFF80Val(-C0080Val);
2045 do {
2046 if (TySizeBits > Size) {
2047 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2048 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2049 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2050 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2051 // This is a sign extend if the top bits are known zero.
2052 if (!MaskedValueIsZero(XorLHS,
2053 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2054 Size = 0; // Not a sign ext, but can't be any others either.
2055 break;
2056 }
2057 }
2058 Size >>= 1;
2059 C0080Val = APIntOps::lshr(C0080Val, Size);
2060 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2061 } while (Size >= 1);
2062
2063 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002064 // with funny bit widths then this switch statement should be removed. It
2065 // is just here to get the size of the "middle" type back up to something
2066 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002067 const Type *MiddleType = 0;
2068 switch (Size) {
2069 default: break;
2070 case 32: MiddleType = Type::Int32Ty; break;
2071 case 16: MiddleType = Type::Int16Ty; break;
2072 case 8: MiddleType = Type::Int8Ty; break;
2073 }
2074 if (MiddleType) {
2075 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2076 InsertNewInstBefore(NewTrunc, I);
2077 return new SExtInst(NewTrunc, I.getType(), I.getName());
2078 }
2079 }
2080 }
2081
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002082 if (I.getType() == Type::Int1Ty)
2083 return BinaryOperator::CreateXor(LHS, RHS);
2084
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002085 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002086 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002087 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2088
2089 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2090 if (RHSI->getOpcode() == Instruction::Sub)
2091 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2092 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2093 }
2094 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2095 if (LHSI->getOpcode() == Instruction::Sub)
2096 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2097 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2098 }
2099 }
2100
2101 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002102 // -A + -B --> -(A + B)
2103 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002104 if (LHS->getType()->isIntOrIntVector()) {
2105 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002106 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002107 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002108 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002109 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002110 }
2111
Gabor Greifa645dd32008-05-16 19:29:10 +00002112 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002113 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002114
2115 // A + -B --> A - B
2116 if (!isa<Constant>(RHS))
2117 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002118 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002119
2120
2121 ConstantInt *C2;
2122 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2123 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002124 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002125
2126 // X*C1 + X*C2 --> X * (C1+C2)
2127 ConstantInt *C1;
2128 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002129 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002130 }
2131
2132 // X + X*C --> X * (C+1)
2133 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002134 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002135
2136 // X + ~X --> -1 since ~X = -X-1
2137 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2138 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2139
2140
2141 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2142 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2143 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2144 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002145
2146 // A+B --> A|B iff A and B have no bits set in common.
2147 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2148 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2149 APInt LHSKnownOne(IT->getBitWidth(), 0);
2150 APInt LHSKnownZero(IT->getBitWidth(), 0);
2151 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2152 if (LHSKnownZero != 0) {
2153 APInt RHSKnownOne(IT->getBitWidth(), 0);
2154 APInt RHSKnownZero(IT->getBitWidth(), 0);
2155 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2156
2157 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002158 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002159 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002160 }
2161 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002162
Nick Lewycky83598a72008-02-03 07:42:09 +00002163 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002164 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002165 Value *W, *X, *Y, *Z;
2166 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2167 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2168 if (W != Y) {
2169 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002170 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002171 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002172 std::swap(W, X);
2173 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002174 std::swap(Y, Z);
2175 std::swap(W, X);
2176 }
2177 }
2178
2179 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002180 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002181 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002182 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002183 }
2184 }
2185 }
2186
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002187 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2188 Value *X = 0;
2189 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002190 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191
2192 // (X & FF00) + xx00 -> (X+xx00) & FF00
2193 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2194 Constant *Anded = And(CRHS, C2);
2195 if (Anded == CRHS) {
2196 // See if all bits from the first bit set in the Add RHS up are included
2197 // in the mask. First, get the rightmost bit.
2198 const APInt& AddRHSV = CRHS->getValue();
2199
2200 // Form a mask of all bits from the lowest bit added through the top.
2201 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2202
2203 // See if the and mask includes all of these bits.
2204 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2205
2206 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2207 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002208 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002209 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002210 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002211 }
2212 }
2213 }
2214
2215 // Try to fold constant add into select arguments.
2216 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2217 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2218 return R;
2219 }
2220
2221 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002222 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002223 {
2224 CastInst *CI = dyn_cast<CastInst>(LHS);
2225 Value *Other = RHS;
2226 if (!CI) {
2227 CI = dyn_cast<CastInst>(RHS);
2228 Other = LHS;
2229 }
2230 if (CI && CI->getType()->isSized() &&
2231 (CI->getType()->getPrimitiveSizeInBits() ==
2232 TD->getIntPtrType()->getPrimitiveSizeInBits())
2233 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002234 unsigned AS =
2235 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002236 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2237 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002238 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002239 return new PtrToIntInst(I2, CI->getType());
2240 }
2241 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002242
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002243 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002244 {
2245 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2246 Value *Other = RHS;
2247 if (!SI) {
2248 SI = dyn_cast<SelectInst>(RHS);
2249 Other = LHS;
2250 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002251 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002252 Value *TV = SI->getTrueValue();
2253 Value *FV = SI->getFalseValue();
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002254 Value *A, *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002255
2256 // Can we fold the add into the argument of the select?
2257 // We check both true and false select arguments for a matching subtract.
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002258 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
2259 A == Other) // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002260 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002261 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) &&
2262 A == Other) // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002263 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002264 }
2265 }
Chris Lattner55476162008-01-29 06:52:45 +00002266
2267 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2268 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2269 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2270 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002271
Chris Lattner3554f972008-05-20 05:46:13 +00002272 // Check for (add (sext x), y), see if we can merge this into an
2273 // integer add followed by a sext.
2274 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2275 // (add (sext x), cst) --> (sext (add x, cst'))
2276 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2277 Constant *CI =
2278 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2279 if (LHSConv->hasOneUse() &&
2280 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2281 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2282 // Insert the new, smaller add.
2283 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2284 CI, "addconv");
2285 InsertNewInstBefore(NewAdd, I);
2286 return new SExtInst(NewAdd, I.getType());
2287 }
2288 }
2289
2290 // (add (sext x), (sext y)) --> (sext (add int x, y))
2291 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2292 // Only do this if x/y have the same type, if at last one of them has a
2293 // single use (so we don't increase the number of sexts), and if the
2294 // integer add will not overflow.
2295 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2296 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2297 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2298 RHSConv->getOperand(0))) {
2299 // Insert the new integer add.
2300 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2301 RHSConv->getOperand(0),
2302 "addconv");
2303 InsertNewInstBefore(NewAdd, I);
2304 return new SExtInst(NewAdd, I.getType());
2305 }
2306 }
2307 }
2308
2309 // Check for (add double (sitofp x), y), see if we can merge this into an
2310 // integer add followed by a promotion.
2311 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2312 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2313 // ... if the constant fits in the integer value. This is useful for things
2314 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2315 // requires a constant pool load, and generally allows the add to be better
2316 // instcombined.
2317 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2318 Constant *CI =
2319 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2320 if (LHSConv->hasOneUse() &&
2321 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2322 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2323 // Insert the new integer add.
2324 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2325 CI, "addconv");
2326 InsertNewInstBefore(NewAdd, I);
2327 return new SIToFPInst(NewAdd, I.getType());
2328 }
2329 }
2330
2331 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2332 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2333 // Only do this if x/y have the same type, if at last one of them has a
2334 // single use (so we don't increase the number of int->fp conversions),
2335 // and if the integer add will not overflow.
2336 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2337 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2338 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2339 RHSConv->getOperand(0))) {
2340 // Insert the new integer add.
2341 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2342 RHSConv->getOperand(0),
2343 "addconv");
2344 InsertNewInstBefore(NewAdd, I);
2345 return new SIToFPInst(NewAdd, I.getType());
2346 }
2347 }
2348 }
2349
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002350 return Changed ? &I : 0;
2351}
2352
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002353Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2354 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2355
Chris Lattner27fbef42008-07-17 06:07:20 +00002356 if (Op0 == Op1 && // sub X, X -> 0
2357 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002358 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2359
2360 // If this is a 'B = x-(-A)', change to B = x+A...
2361 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002362 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002363
2364 if (isa<UndefValue>(Op0))
2365 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2366 if (isa<UndefValue>(Op1))
2367 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2368
2369 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2370 // Replace (-1 - A) with (~A)...
2371 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002372 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002373
2374 // C - ~X == X + (1+C)
2375 Value *X = 0;
2376 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002377 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002378
2379 // -(X >>u 31) -> (X >>s 31)
2380 // -(X >>s 31) -> (X >>u 31)
2381 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002382 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002383 if (SI->getOpcode() == Instruction::LShr) {
2384 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2385 // Check to see if we are shifting out everything but the sign bit.
2386 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2387 SI->getType()->getPrimitiveSizeInBits()-1) {
2388 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002389 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002390 SI->getOperand(0), CU, SI->getName());
2391 }
2392 }
2393 }
2394 else if (SI->getOpcode() == Instruction::AShr) {
2395 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2396 // Check to see if we are shifting out everything but the sign bit.
2397 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2398 SI->getType()->getPrimitiveSizeInBits()-1) {
2399 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002400 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002401 SI->getOperand(0), CU, SI->getName());
2402 }
2403 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002404 }
2405 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002406 }
2407
2408 // Try to fold constant sub into select arguments.
2409 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2410 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2411 return R;
2412
2413 if (isa<PHINode>(Op0))
2414 if (Instruction *NV = FoldOpIntoPhi(I))
2415 return NV;
2416 }
2417
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002418 if (I.getType() == Type::Int1Ty)
2419 return BinaryOperator::CreateXor(Op0, Op1);
2420
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002421 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2422 if (Op1I->getOpcode() == Instruction::Add &&
2423 !Op0->getType()->isFPOrFPVector()) {
2424 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002425 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002426 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002427 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002428 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2429 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2430 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002431 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002432 Op1I->getOperand(0));
2433 }
2434 }
2435
2436 if (Op1I->hasOneUse()) {
2437 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2438 // is not used by anyone else...
2439 //
2440 if (Op1I->getOpcode() == Instruction::Sub &&
2441 !Op1I->getType()->isFPOrFPVector()) {
2442 // Swap the two operands of the subexpr...
2443 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2444 Op1I->setOperand(0, IIOp1);
2445 Op1I->setOperand(1, IIOp0);
2446
2447 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002448 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002449 }
2450
2451 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2452 //
2453 if (Op1I->getOpcode() == Instruction::And &&
2454 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2455 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2456
2457 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002458 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2459 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002460 }
2461
2462 // 0 - (X sdiv C) -> (X sdiv -C)
2463 if (Op1I->getOpcode() == Instruction::SDiv)
2464 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2465 if (CSI->isZero())
2466 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002467 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002468 ConstantExpr::getNeg(DivRHS));
2469
2470 // X - X*C --> X * (1-C)
2471 ConstantInt *C2 = 0;
2472 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2473 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002474 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002475 }
Dan Gohmanda338742007-09-17 17:31:57 +00002476
2477 // X - ((X / Y) * Y) --> X % Y
2478 if (Op1I->getOpcode() == Instruction::Mul)
2479 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2480 if (Op0 == I->getOperand(0) &&
2481 Op1I->getOperand(1) == I->getOperand(1)) {
2482 if (I->getOpcode() == Instruction::SDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002483 return BinaryOperator::CreateSRem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002484 if (I->getOpcode() == Instruction::UDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002485 return BinaryOperator::CreateURem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002486 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002487 }
2488 }
2489
2490 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002491 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002492 if (Op0I->getOpcode() == Instruction::Add) {
2493 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2494 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2495 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2496 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2497 } else if (Op0I->getOpcode() == Instruction::Sub) {
2498 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002499 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002500 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002501 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002502
2503 ConstantInt *C1;
2504 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2505 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002506 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002507
2508 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2509 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002510 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002511 }
2512 return 0;
2513}
2514
2515/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2516/// comparison only checks the sign bit. If it only checks the sign bit, set
2517/// TrueIfSigned if the result of the comparison is true when the input value is
2518/// signed.
2519static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2520 bool &TrueIfSigned) {
2521 switch (pred) {
2522 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2523 TrueIfSigned = true;
2524 return RHS->isZero();
2525 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2526 TrueIfSigned = true;
2527 return RHS->isAllOnesValue();
2528 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2529 TrueIfSigned = false;
2530 return RHS->isAllOnesValue();
2531 case ICmpInst::ICMP_UGT:
2532 // True if LHS u> RHS and RHS == high-bit-mask - 1
2533 TrueIfSigned = true;
2534 return RHS->getValue() ==
2535 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2536 case ICmpInst::ICMP_UGE:
2537 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2538 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002539 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002540 default:
2541 return false;
2542 }
2543}
2544
2545Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2546 bool Changed = SimplifyCommutative(I);
2547 Value *Op0 = I.getOperand(0);
2548
2549 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2550 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2551
2552 // Simplify mul instructions with a constant RHS...
2553 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2554 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2555
2556 // ((X << C1)*C2) == (X * (C2 << C1))
2557 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2558 if (SI->getOpcode() == Instruction::Shl)
2559 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002560 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002561 ConstantExpr::getShl(CI, ShOp));
2562
2563 if (CI->isZero())
2564 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2565 if (CI->equalsInt(1)) // X * 1 == X
2566 return ReplaceInstUsesWith(I, Op0);
2567 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002568 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002569
2570 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2571 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002572 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573 ConstantInt::get(Op0->getType(), Val.logBase2()));
2574 }
2575 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2576 if (Op1F->isNullValue())
2577 return ReplaceInstUsesWith(I, Op1);
2578
2579 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2580 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002581 if (Op1F->isExactlyValue(1.0))
2582 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2583 } else if (isa<VectorType>(Op1->getType())) {
2584 if (isa<ConstantAggregateZero>(Op1))
2585 return ReplaceInstUsesWith(I, Op1);
2586
2587 // As above, vector X*splat(1.0) -> X in all defined cases.
2588 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1))
2589 if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
2590 if (F->isExactlyValue(1.0))
2591 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002592 }
2593
2594 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2595 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002596 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002597 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002598 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002599 Op1, "tmp");
2600 InsertNewInstBefore(Add, I);
2601 Value *C1C2 = ConstantExpr::getMul(Op1,
2602 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002603 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002604
2605 }
2606
2607 // Try to fold constant mul into select arguments.
2608 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2609 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2610 return R;
2611
2612 if (isa<PHINode>(Op0))
2613 if (Instruction *NV = FoldOpIntoPhi(I))
2614 return NV;
2615 }
2616
2617 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2618 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002619 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002620
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002621 if (I.getType() == Type::Int1Ty)
2622 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2623
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002624 // If one of the operands of the multiply is a cast from a boolean value, then
2625 // we know the bool is either zero or one, so this is a 'masking' multiply.
2626 // See if we can simplify things based on how the boolean was originally
2627 // formed.
2628 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002629 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002630 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2631 BoolCast = CI;
2632 if (!BoolCast)
2633 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2634 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2635 BoolCast = CI;
2636 if (BoolCast) {
2637 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2638 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2639 const Type *SCOpTy = SCIOp0->getType();
2640 bool TIS = false;
2641
2642 // If the icmp is true iff the sign bit of X is set, then convert this
2643 // multiply into a shift/and combination.
2644 if (isa<ConstantInt>(SCIOp1) &&
2645 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2646 TIS) {
2647 // Shift the X value right to turn it into "all signbits".
2648 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2649 SCOpTy->getPrimitiveSizeInBits()-1);
2650 Value *V =
2651 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002652 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002653 BoolCast->getOperand(0)->getName()+
2654 ".mask"), I);
2655
2656 // If the multiply type is not the same as the source type, sign extend
2657 // or truncate to the multiply type.
2658 if (I.getType() != V->getType()) {
2659 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2660 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2661 Instruction::CastOps opcode =
2662 (SrcBits == DstBits ? Instruction::BitCast :
2663 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2664 V = InsertCastBefore(opcode, V, I.getType(), I);
2665 }
2666
2667 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002668 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002669 }
2670 }
2671 }
2672
2673 return Changed ? &I : 0;
2674}
2675
Chris Lattner76972db2008-07-14 00:15:52 +00002676/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2677/// instruction.
2678bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2679 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2680
2681 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2682 int NonNullOperand = -1;
2683 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2684 if (ST->isNullValue())
2685 NonNullOperand = 2;
2686 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2687 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2688 if (ST->isNullValue())
2689 NonNullOperand = 1;
2690
2691 if (NonNullOperand == -1)
2692 return false;
2693
2694 Value *SelectCond = SI->getOperand(0);
2695
2696 // Change the div/rem to use 'Y' instead of the select.
2697 I.setOperand(1, SI->getOperand(NonNullOperand));
2698
2699 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2700 // problem. However, the select, or the condition of the select may have
2701 // multiple uses. Based on our knowledge that the operand must be non-zero,
2702 // propagate the known value for the select into other uses of it, and
2703 // propagate a known value of the condition into its other users.
2704
2705 // If the select and condition only have a single use, don't bother with this,
2706 // early exit.
2707 if (SI->use_empty() && SelectCond->hasOneUse())
2708 return true;
2709
2710 // Scan the current block backward, looking for other uses of SI.
2711 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2712
2713 while (BBI != BBFront) {
2714 --BBI;
2715 // If we found a call to a function, we can't assume it will return, so
2716 // information from below it cannot be propagated above it.
2717 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2718 break;
2719
2720 // Replace uses of the select or its condition with the known values.
2721 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2722 I != E; ++I) {
2723 if (*I == SI) {
2724 *I = SI->getOperand(NonNullOperand);
2725 AddToWorkList(BBI);
2726 } else if (*I == SelectCond) {
2727 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2728 ConstantInt::getFalse();
2729 AddToWorkList(BBI);
2730 }
2731 }
2732
2733 // If we past the instruction, quit looking for it.
2734 if (&*BBI == SI)
2735 SI = 0;
2736 if (&*BBI == SelectCond)
2737 SelectCond = 0;
2738
2739 // If we ran out of things to eliminate, break out of the loop.
2740 if (SelectCond == 0 && SI == 0)
2741 break;
2742
2743 }
2744 return true;
2745}
2746
2747
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002748/// This function implements the transforms on div instructions that work
2749/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2750/// used by the visitors to those instructions.
2751/// @brief Transforms common to all three div instructions
2752Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2753 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2754
Chris Lattner653ef3c2008-02-19 06:12:18 +00002755 // undef / X -> 0 for integer.
2756 // undef / X -> undef for FP (the undef could be a snan).
2757 if (isa<UndefValue>(Op0)) {
2758 if (Op0->getType()->isFPOrFPVector())
2759 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002760 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002761 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002762
2763 // X / undef -> undef
2764 if (isa<UndefValue>(Op1))
2765 return ReplaceInstUsesWith(I, Op1);
2766
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002767 return 0;
2768}
2769
2770/// This function implements the transforms common to both integer division
2771/// instructions (udiv and sdiv). It is called by the visitors to those integer
2772/// division instructions.
2773/// @brief Common integer divide transforms
2774Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2775 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2776
Chris Lattnercefb36c2008-05-16 02:59:42 +00002777 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002778 if (Op0 == Op1) {
2779 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2780 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2781 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2782 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2783 }
2784
2785 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2786 return ReplaceInstUsesWith(I, CI);
2787 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002788
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002789 if (Instruction *Common = commonDivTransforms(I))
2790 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002791
2792 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2793 // This does not apply for fdiv.
2794 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2795 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002796
2797 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2798 // div X, 1 == X
2799 if (RHS->equalsInt(1))
2800 return ReplaceInstUsesWith(I, Op0);
2801
2802 // (X / C1) / C2 -> X / (C1*C2)
2803 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2804 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2805 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002806 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2807 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2808 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002809 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002810 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002811 }
2812
2813 if (!RHS->isZero()) { // avoid X udiv 0
2814 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2815 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2816 return R;
2817 if (isa<PHINode>(Op0))
2818 if (Instruction *NV = FoldOpIntoPhi(I))
2819 return NV;
2820 }
2821 }
2822
2823 // 0 / X == 0, we don't need to preserve faults!
2824 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2825 if (LHS->equalsInt(0))
2826 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2827
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002828 // It can't be division by zero, hence it must be division by one.
2829 if (I.getType() == Type::Int1Ty)
2830 return ReplaceInstUsesWith(I, Op0);
2831
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002832 return 0;
2833}
2834
2835Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2836 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2837
2838 // Handle the integer div common cases
2839 if (Instruction *Common = commonIDivTransforms(I))
2840 return Common;
2841
2842 // X udiv C^2 -> X >> C
2843 // Check to see if this is an unsigned division with an exact power of 2,
2844 // if so, convert to a right shift.
2845 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2846 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002847 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002848 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2849 }
2850
2851 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2852 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2853 if (RHSI->getOpcode() == Instruction::Shl &&
2854 isa<ConstantInt>(RHSI->getOperand(0))) {
2855 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2856 if (C1.isPowerOf2()) {
2857 Value *N = RHSI->getOperand(1);
2858 const Type *NTy = N->getType();
2859 if (uint32_t C2 = C1.logBase2()) {
2860 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002861 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002862 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002863 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002864 }
2865 }
2866 }
2867
2868 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2869 // where C1&C2 are powers of two.
2870 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2871 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2872 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2873 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2874 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2875 // Compute the shift amounts
2876 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2877 // Construct the "on true" case of the select
2878 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002879 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002880 Op0, TC, SI->getName()+".t");
2881 TSI = InsertNewInstBefore(TSI, I);
2882
2883 // Construct the "on false" case of the select
2884 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002885 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002886 Op0, FC, SI->getName()+".f");
2887 FSI = InsertNewInstBefore(FSI, I);
2888
2889 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002890 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002891 }
2892 }
2893 return 0;
2894}
2895
2896Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2897 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2898
2899 // Handle the integer div common cases
2900 if (Instruction *Common = commonIDivTransforms(I))
2901 return Common;
2902
2903 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2904 // sdiv X, -1 == -X
2905 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002906 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002907
2908 // -X/C -> X/-C
2909 if (Value *LHSNeg = dyn_castNegVal(Op0))
Gabor Greifa645dd32008-05-16 19:29:10 +00002910 return BinaryOperator::CreateSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002911 }
2912
2913 // If the sign bits of both operands are zero (i.e. we can prove they are
2914 // unsigned inputs), turn this into a udiv.
2915 if (I.getType()->isInteger()) {
2916 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2917 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002918 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002919 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002920 }
2921 }
2922
2923 return 0;
2924}
2925
2926Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2927 return commonDivTransforms(I);
2928}
2929
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002930/// This function implements the transforms on rem instructions that work
2931/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2932/// is used by the visitors to those instructions.
2933/// @brief Transforms common to all three rem instructions
2934Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2935 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2936
Chris Lattner653ef3c2008-02-19 06:12:18 +00002937 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002938 if (Constant *LHS = dyn_cast<Constant>(Op0))
2939 if (LHS->isNullValue())
2940 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2941
Chris Lattner653ef3c2008-02-19 06:12:18 +00002942 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2943 if (I.getType()->isFPOrFPVector())
2944 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002945 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002946 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002947 if (isa<UndefValue>(Op1))
2948 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2949
2950 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002951 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2952 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002953
2954 return 0;
2955}
2956
2957/// This function implements the transforms common to both integer remainder
2958/// instructions (urem and srem). It is called by the visitors to those integer
2959/// remainder instructions.
2960/// @brief Common integer remainder transforms
2961Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2962 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2963
2964 if (Instruction *common = commonRemTransforms(I))
2965 return common;
2966
2967 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2968 // X % 0 == undef, we don't need to preserve faults!
2969 if (RHS->equalsInt(0))
2970 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2971
2972 if (RHS->equalsInt(1)) // X % 1 == 0
2973 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2974
2975 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2976 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2977 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2978 return R;
2979 } else if (isa<PHINode>(Op0I)) {
2980 if (Instruction *NV = FoldOpIntoPhi(I))
2981 return NV;
2982 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00002983
2984 // See if we can fold away this rem instruction.
2985 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
2986 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2987 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2988 KnownZero, KnownOne))
2989 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002990 }
2991 }
2992
2993 return 0;
2994}
2995
2996Instruction *InstCombiner::visitURem(BinaryOperator &I) {
2997 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2998
2999 if (Instruction *common = commonIRemTransforms(I))
3000 return common;
3001
3002 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3003 // X urem C^2 -> X and C
3004 // Check to see if this is an unsigned remainder with an exact power of 2,
3005 // if so, convert to a bitwise and.
3006 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3007 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003008 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003009 }
3010
3011 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3012 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3013 if (RHSI->getOpcode() == Instruction::Shl &&
3014 isa<ConstantInt>(RHSI->getOperand(0))) {
3015 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3016 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003017 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003018 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003019 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003020 }
3021 }
3022 }
3023
3024 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3025 // where C1&C2 are powers of two.
3026 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3027 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3028 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3029 // STO == 0 and SFO == 0 handled above.
3030 if ((STO->getValue().isPowerOf2()) &&
3031 (SFO->getValue().isPowerOf2())) {
3032 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003033 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003034 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003035 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003036 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003037 }
3038 }
3039 }
3040
3041 return 0;
3042}
3043
3044Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3045 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3046
Dan Gohmandb3dd962007-11-05 23:16:33 +00003047 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003048 if (Instruction *common = commonIRemTransforms(I))
3049 return common;
3050
3051 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003052 if (!isa<Constant>(RHSNeg) ||
3053 (isa<ConstantInt>(RHSNeg) &&
3054 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003055 // X % -Y -> X % Y
3056 AddUsesToWorkList(I);
3057 I.setOperand(1, RHSNeg);
3058 return &I;
3059 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003060
Dan Gohmandb3dd962007-11-05 23:16:33 +00003061 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003062 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003063 if (I.getType()->isInteger()) {
3064 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3065 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3066 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003067 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003068 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003069 }
3070
3071 return 0;
3072}
3073
3074Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3075 return commonRemTransforms(I);
3076}
3077
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003078// isOneBitSet - Return true if there is exactly one bit set in the specified
3079// constant.
3080static bool isOneBitSet(const ConstantInt *CI) {
3081 return CI->getValue().isPowerOf2();
3082}
3083
3084// isHighOnes - Return true if the constant is of the form 1+0+.
3085// This is the same as lowones(~X).
3086static bool isHighOnes(const ConstantInt *CI) {
3087 return (~CI->getValue() + 1).isPowerOf2();
3088}
3089
3090/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3091/// are carefully arranged to allow folding of expressions such as:
3092///
3093/// (A < B) | (A > B) --> (A != B)
3094///
3095/// Note that this is only valid if the first and second predicates have the
3096/// same sign. Is illegal to do: (A u< B) | (A s> B)
3097///
3098/// Three bits are used to represent the condition, as follows:
3099/// 0 A > B
3100/// 1 A == B
3101/// 2 A < B
3102///
3103/// <=> Value Definition
3104/// 000 0 Always false
3105/// 001 1 A > B
3106/// 010 2 A == B
3107/// 011 3 A >= B
3108/// 100 4 A < B
3109/// 101 5 A != B
3110/// 110 6 A <= B
3111/// 111 7 Always true
3112///
3113static unsigned getICmpCode(const ICmpInst *ICI) {
3114 switch (ICI->getPredicate()) {
3115 // False -> 0
3116 case ICmpInst::ICMP_UGT: return 1; // 001
3117 case ICmpInst::ICMP_SGT: return 1; // 001
3118 case ICmpInst::ICMP_EQ: return 2; // 010
3119 case ICmpInst::ICMP_UGE: return 3; // 011
3120 case ICmpInst::ICMP_SGE: return 3; // 011
3121 case ICmpInst::ICMP_ULT: return 4; // 100
3122 case ICmpInst::ICMP_SLT: return 4; // 100
3123 case ICmpInst::ICMP_NE: return 5; // 101
3124 case ICmpInst::ICMP_ULE: return 6; // 110
3125 case ICmpInst::ICMP_SLE: return 6; // 110
3126 // True -> 7
3127 default:
3128 assert(0 && "Invalid ICmp predicate!");
3129 return 0;
3130 }
3131}
3132
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003133/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3134/// predicate into a three bit mask. It also returns whether it is an ordered
3135/// predicate by reference.
3136static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3137 isOrdered = false;
3138 switch (CC) {
3139 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3140 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003141 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3142 case FCmpInst::FCMP_UGT: return 1; // 001
3143 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3144 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003145 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3146 case FCmpInst::FCMP_UGE: return 3; // 011
3147 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3148 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003149 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3150 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003151 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3152 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003153 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003154 default:
3155 // Not expecting FCMP_FALSE and FCMP_TRUE;
3156 assert(0 && "Unexpected FCmp predicate!");
3157 return 0;
3158 }
3159}
3160
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003161/// getICmpValue - This is the complement of getICmpCode, which turns an
3162/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003163/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003164/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003165static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3166 switch (code) {
3167 default: assert(0 && "Illegal ICmp code!");
3168 case 0: return ConstantInt::getFalse();
3169 case 1:
3170 if (sign)
3171 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3172 else
3173 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3174 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3175 case 3:
3176 if (sign)
3177 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3178 else
3179 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3180 case 4:
3181 if (sign)
3182 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3183 else
3184 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3185 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3186 case 6:
3187 if (sign)
3188 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3189 else
3190 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3191 case 7: return ConstantInt::getTrue();
3192 }
3193}
3194
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003195/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3196/// opcode and two operands into either a FCmp instruction. isordered is passed
3197/// in to determine which kind of predicate to use in the new fcmp instruction.
3198static Value *getFCmpValue(bool isordered, unsigned code,
3199 Value *LHS, Value *RHS) {
3200 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003201 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003202 case 0:
3203 if (isordered)
3204 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3205 else
3206 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3207 case 1:
3208 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003209 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3210 else
3211 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003212 case 2:
3213 if (isordered)
3214 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3215 else
3216 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003217 case 3:
3218 if (isordered)
3219 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3220 else
3221 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3222 case 4:
3223 if (isordered)
3224 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3225 else
3226 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3227 case 5:
3228 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003229 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3230 else
3231 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3232 case 6:
3233 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003234 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3235 else
3236 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003237 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003238 }
3239}
3240
3241
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003242static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3243 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3244 (ICmpInst::isSignedPredicate(p1) &&
3245 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3246 (ICmpInst::isSignedPredicate(p2) &&
3247 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3248}
3249
3250namespace {
3251// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3252struct FoldICmpLogical {
3253 InstCombiner &IC;
3254 Value *LHS, *RHS;
3255 ICmpInst::Predicate pred;
3256 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3257 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3258 pred(ICI->getPredicate()) {}
3259 bool shouldApply(Value *V) const {
3260 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3261 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003262 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3263 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003264 return false;
3265 }
3266 Instruction *apply(Instruction &Log) const {
3267 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3268 if (ICI->getOperand(0) != LHS) {
3269 assert(ICI->getOperand(1) == LHS);
3270 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3271 }
3272
3273 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3274 unsigned LHSCode = getICmpCode(ICI);
3275 unsigned RHSCode = getICmpCode(RHSICI);
3276 unsigned Code;
3277 switch (Log.getOpcode()) {
3278 case Instruction::And: Code = LHSCode & RHSCode; break;
3279 case Instruction::Or: Code = LHSCode | RHSCode; break;
3280 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3281 default: assert(0 && "Illegal logical opcode!"); return 0;
3282 }
3283
3284 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3285 ICmpInst::isSignedPredicate(ICI->getPredicate());
3286
3287 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3288 if (Instruction *I = dyn_cast<Instruction>(RV))
3289 return I;
3290 // Otherwise, it's a constant boolean value...
3291 return IC.ReplaceInstUsesWith(Log, RV);
3292 }
3293};
3294} // end anonymous namespace
3295
3296// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3297// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3298// guaranteed to be a binary operator.
3299Instruction *InstCombiner::OptAndOp(Instruction *Op,
3300 ConstantInt *OpRHS,
3301 ConstantInt *AndRHS,
3302 BinaryOperator &TheAnd) {
3303 Value *X = Op->getOperand(0);
3304 Constant *Together = 0;
3305 if (!Op->isShift())
3306 Together = And(AndRHS, OpRHS);
3307
3308 switch (Op->getOpcode()) {
3309 case Instruction::Xor:
3310 if (Op->hasOneUse()) {
3311 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003312 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003313 InsertNewInstBefore(And, TheAnd);
3314 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003315 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003316 }
3317 break;
3318 case Instruction::Or:
3319 if (Together == AndRHS) // (X | C) & C --> C
3320 return ReplaceInstUsesWith(TheAnd, AndRHS);
3321
3322 if (Op->hasOneUse() && Together != OpRHS) {
3323 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003324 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003325 InsertNewInstBefore(Or, TheAnd);
3326 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003327 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003328 }
3329 break;
3330 case Instruction::Add:
3331 if (Op->hasOneUse()) {
3332 // Adding a one to a single bit bit-field should be turned into an XOR
3333 // of the bit. First thing to check is to see if this AND is with a
3334 // single bit constant.
3335 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3336
3337 // If there is only one bit set...
3338 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3339 // Ok, at this point, we know that we are masking the result of the
3340 // ADD down to exactly one bit. If the constant we are adding has
3341 // no bits set below this bit, then we can eliminate the ADD.
3342 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3343
3344 // Check to see if any bits below the one bit set in AndRHSV are set.
3345 if ((AddRHS & (AndRHSV-1)) == 0) {
3346 // If not, the only thing that can effect the output of the AND is
3347 // the bit specified by AndRHSV. If that bit is set, the effect of
3348 // the XOR is to toggle the bit. If it is clear, then the ADD has
3349 // no effect.
3350 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3351 TheAnd.setOperand(0, X);
3352 return &TheAnd;
3353 } else {
3354 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003355 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003356 InsertNewInstBefore(NewAnd, TheAnd);
3357 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003358 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003359 }
3360 }
3361 }
3362 }
3363 break;
3364
3365 case Instruction::Shl: {
3366 // We know that the AND will not produce any of the bits shifted in, so if
3367 // the anded constant includes them, clear them now!
3368 //
3369 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3370 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3371 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3372 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3373
3374 if (CI->getValue() == ShlMask) {
3375 // Masking out bits that the shift already masks
3376 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3377 } else if (CI != AndRHS) { // Reducing bits set in and.
3378 TheAnd.setOperand(1, CI);
3379 return &TheAnd;
3380 }
3381 break;
3382 }
3383 case Instruction::LShr:
3384 {
3385 // We know that the AND will not produce any of the bits shifted in, so if
3386 // the anded constant includes them, clear them now! This only applies to
3387 // unsigned shifts, because a signed shr may bring in set bits!
3388 //
3389 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3390 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3391 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3392 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3393
3394 if (CI->getValue() == ShrMask) {
3395 // Masking out bits that the shift already masks.
3396 return ReplaceInstUsesWith(TheAnd, Op);
3397 } else if (CI != AndRHS) {
3398 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3399 return &TheAnd;
3400 }
3401 break;
3402 }
3403 case Instruction::AShr:
3404 // Signed shr.
3405 // See if this is shifting in some sign extension, then masking it out
3406 // with an and.
3407 if (Op->hasOneUse()) {
3408 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3409 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3410 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3411 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3412 if (C == AndRHS) { // Masking out bits shifted in.
3413 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3414 // Make the argument unsigned.
3415 Value *ShVal = Op->getOperand(0);
3416 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003417 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003418 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003419 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003420 }
3421 }
3422 break;
3423 }
3424 return 0;
3425}
3426
3427
3428/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3429/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3430/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3431/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3432/// insert new instructions.
3433Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3434 bool isSigned, bool Inside,
3435 Instruction &IB) {
3436 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3437 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3438 "Lo is not <= Hi in range emission code!");
3439
3440 if (Inside) {
3441 if (Lo == Hi) // Trivially false.
3442 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3443
3444 // V >= Min && V < Hi --> V < Hi
3445 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3446 ICmpInst::Predicate pred = (isSigned ?
3447 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3448 return new ICmpInst(pred, V, Hi);
3449 }
3450
3451 // Emit V-Lo <u Hi-Lo
3452 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003453 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003454 InsertNewInstBefore(Add, IB);
3455 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3456 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3457 }
3458
3459 if (Lo == Hi) // Trivially true.
3460 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3461
3462 // V < Min || V >= Hi -> V > Hi-1
3463 Hi = SubOne(cast<ConstantInt>(Hi));
3464 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3465 ICmpInst::Predicate pred = (isSigned ?
3466 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3467 return new ICmpInst(pred, V, Hi);
3468 }
3469
3470 // Emit V-Lo >u Hi-1-Lo
3471 // Note that Hi has already had one subtracted from it, above.
3472 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003473 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003474 InsertNewInstBefore(Add, IB);
3475 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3476 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3477}
3478
3479// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3480// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3481// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3482// not, since all 1s are not contiguous.
3483static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3484 const APInt& V = Val->getValue();
3485 uint32_t BitWidth = Val->getType()->getBitWidth();
3486 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3487
3488 // look for the first zero bit after the run of ones
3489 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3490 // look for the first non-zero bit
3491 ME = V.getActiveBits();
3492 return true;
3493}
3494
3495/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3496/// where isSub determines whether the operator is a sub. If we can fold one of
3497/// the following xforms:
3498///
3499/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3500/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3501/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3502///
3503/// return (A +/- B).
3504///
3505Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3506 ConstantInt *Mask, bool isSub,
3507 Instruction &I) {
3508 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3509 if (!LHSI || LHSI->getNumOperands() != 2 ||
3510 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3511
3512 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3513
3514 switch (LHSI->getOpcode()) {
3515 default: return 0;
3516 case Instruction::And:
3517 if (And(N, Mask) == Mask) {
3518 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3519 if ((Mask->getValue().countLeadingZeros() +
3520 Mask->getValue().countPopulation()) ==
3521 Mask->getValue().getBitWidth())
3522 break;
3523
3524 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3525 // part, we don't need any explicit masks to take them out of A. If that
3526 // is all N is, ignore it.
3527 uint32_t MB = 0, ME = 0;
3528 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3529 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3530 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3531 if (MaskedValueIsZero(RHS, Mask))
3532 break;
3533 }
3534 }
3535 return 0;
3536 case Instruction::Or:
3537 case Instruction::Xor:
3538 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3539 if ((Mask->getValue().countLeadingZeros() +
3540 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3541 && And(N, Mask)->isZero())
3542 break;
3543 return 0;
3544 }
3545
3546 Instruction *New;
3547 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003548 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003549 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003550 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003551 return InsertNewInstBefore(New, I);
3552}
3553
3554Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3555 bool Changed = SimplifyCommutative(I);
3556 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3557
3558 if (isa<UndefValue>(Op1)) // X & undef -> 0
3559 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3560
3561 // and X, X = X
3562 if (Op0 == Op1)
3563 return ReplaceInstUsesWith(I, Op1);
3564
3565 // See if we can simplify any instructions used by the instruction whose sole
3566 // purpose is to compute bits we don't care about.
3567 if (!isa<VectorType>(I.getType())) {
3568 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3569 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3570 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3571 KnownZero, KnownOne))
3572 return &I;
3573 } else {
3574 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3575 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3576 return ReplaceInstUsesWith(I, I.getOperand(0));
3577 } else if (isa<ConstantAggregateZero>(Op1)) {
3578 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3579 }
3580 }
3581
3582 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3583 const APInt& AndRHSMask = AndRHS->getValue();
3584 APInt NotAndRHS(~AndRHSMask);
3585
3586 // Optimize a variety of ((val OP C1) & C2) combinations...
3587 if (isa<BinaryOperator>(Op0)) {
3588 Instruction *Op0I = cast<Instruction>(Op0);
3589 Value *Op0LHS = Op0I->getOperand(0);
3590 Value *Op0RHS = Op0I->getOperand(1);
3591 switch (Op0I->getOpcode()) {
3592 case Instruction::Xor:
3593 case Instruction::Or:
3594 // If the mask is only needed on one incoming arm, push it up.
3595 if (Op0I->hasOneUse()) {
3596 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3597 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003598 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003599 Op0RHS->getName()+".masked");
3600 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003601 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003602 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3603 }
3604 if (!isa<Constant>(Op0RHS) &&
3605 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3606 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003607 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003608 Op0LHS->getName()+".masked");
3609 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003610 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003611 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3612 }
3613 }
3614
3615 break;
3616 case Instruction::Add:
3617 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3618 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3619 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3620 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003621 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003622 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003623 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003624 break;
3625
3626 case Instruction::Sub:
3627 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3628 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3629 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3630 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003631 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003632
Nick Lewyckya349ba42008-07-10 05:51:40 +00003633 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3634 // has 1's for all bits that the subtraction with A might affect.
3635 if (Op0I->hasOneUse()) {
3636 uint32_t BitWidth = AndRHSMask.getBitWidth();
3637 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3638 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3639
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003640 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003641 if (!(A && A->isZero()) && // avoid infinite recursion.
3642 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003643 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3644 InsertNewInstBefore(NewNeg, I);
3645 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3646 }
3647 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003648 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003649
3650 case Instruction::Shl:
3651 case Instruction::LShr:
3652 // (1 << x) & 1 --> zext(x == 0)
3653 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003654 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003655 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3656 Constant::getNullValue(I.getType()));
3657 InsertNewInstBefore(NewICmp, I);
3658 return new ZExtInst(NewICmp, I.getType());
3659 }
3660 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003661 }
3662
3663 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3664 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3665 return Res;
3666 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3667 // If this is an integer truncation or change from signed-to-unsigned, and
3668 // if the source is an and/or with immediate, transform it. This
3669 // frequently occurs for bitfield accesses.
3670 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3671 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3672 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003673 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003674 if (CastOp->getOpcode() == Instruction::And) {
3675 // Change: and (cast (and X, C1) to T), C2
3676 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3677 // This will fold the two constants together, which may allow
3678 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003679 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003680 CastOp->getOperand(0), I.getType(),
3681 CastOp->getName()+".shrunk");
3682 NewCast = InsertNewInstBefore(NewCast, I);
3683 // trunc_or_bitcast(C1)&C2
3684 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3685 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003686 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003687 } else if (CastOp->getOpcode() == Instruction::Or) {
3688 // Change: and (cast (or X, C1) to T), C2
3689 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3690 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3691 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3692 return ReplaceInstUsesWith(I, AndRHS);
3693 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003694 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003695 }
3696 }
3697
3698 // Try to fold constant and into select arguments.
3699 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3700 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3701 return R;
3702 if (isa<PHINode>(Op0))
3703 if (Instruction *NV = FoldOpIntoPhi(I))
3704 return NV;
3705 }
3706
3707 Value *Op0NotVal = dyn_castNotVal(Op0);
3708 Value *Op1NotVal = dyn_castNotVal(Op1);
3709
3710 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3711 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3712
3713 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3714 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003715 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003716 I.getName()+".demorgan");
3717 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003718 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003719 }
3720
3721 {
3722 Value *A = 0, *B = 0, *C = 0, *D = 0;
3723 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3724 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3725 return ReplaceInstUsesWith(I, Op1);
3726
3727 // (A|B) & ~(A&B) -> A^B
3728 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3729 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003730 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003731 }
3732 }
3733
3734 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3735 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3736 return ReplaceInstUsesWith(I, Op0);
3737
3738 // ~(A&B) & (A|B) -> A^B
3739 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3740 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003741 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003742 }
3743 }
3744
3745 if (Op0->hasOneUse() &&
3746 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3747 if (A == Op1) { // (A^B)&A -> A&(A^B)
3748 I.swapOperands(); // Simplify below
3749 std::swap(Op0, Op1);
3750 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3751 cast<BinaryOperator>(Op0)->swapOperands();
3752 I.swapOperands(); // Simplify below
3753 std::swap(Op0, Op1);
3754 }
3755 }
3756 if (Op1->hasOneUse() &&
3757 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3758 if (B == Op0) { // B&(A^B) -> B&(B^A)
3759 cast<BinaryOperator>(Op1)->swapOperands();
3760 std::swap(A, B);
3761 }
3762 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003763 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003764 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003765 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003766 }
3767 }
3768 }
3769
Nick Lewycky771d6052008-08-06 04:54:03 +00003770 { // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3771 // where C is a power of 2
3772 Value *A, *B;
3773 ConstantInt *C1, *C2;
Evan Cheng94fd9742008-08-20 23:36:48 +00003774 ICmpInst::Predicate LHSCC = ICmpInst::BAD_ICMP_PREDICATE;
3775 ICmpInst::Predicate RHSCC = ICmpInst::BAD_ICMP_PREDICATE;
Nick Lewycky771d6052008-08-06 04:54:03 +00003776 if (match(&I, m_And(m_ICmp(LHSCC, m_Value(A), m_ConstantInt(C1)),
3777 m_ICmp(RHSCC, m_Value(B), m_ConstantInt(C2)))))
3778 if (C1 == C2 && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3779 C1->getValue().isPowerOf2()) {
3780 Instruction *NewOr = BinaryOperator::CreateOr(A, B);
3781 InsertNewInstBefore(NewOr, I);
3782 return new ICmpInst(LHSCC, NewOr, C1);
3783 }
3784 }
3785
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003786 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3787 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3788 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3789 return R;
3790
3791 Value *LHSVal, *RHSVal;
3792 ConstantInt *LHSCst, *RHSCst;
3793 ICmpInst::Predicate LHSCC, RHSCC;
3794 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3795 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3796 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3797 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3798 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3799 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3800 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattner205ad1d2007-11-22 23:47:13 +00003801 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3802
3803 // Don't try to fold ICMP_SLT + ICMP_ULT.
3804 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3805 ICmpInst::isSignedPredicate(LHSCC) ==
3806 ICmpInst::isSignedPredicate(RHSCC))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003807 // Ensure that the larger constant is on the RHS.
Chris Lattnerda628ca2008-01-13 20:59:02 +00003808 ICmpInst::Predicate GT;
3809 if (ICmpInst::isSignedPredicate(LHSCC) ||
3810 (ICmpInst::isEquality(LHSCC) &&
3811 ICmpInst::isSignedPredicate(RHSCC)))
3812 GT = ICmpInst::ICMP_SGT;
3813 else
3814 GT = ICmpInst::ICMP_UGT;
3815
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003816 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3817 ICmpInst *LHS = cast<ICmpInst>(Op0);
3818 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3819 std::swap(LHS, RHS);
3820 std::swap(LHSCst, RHSCst);
3821 std::swap(LHSCC, RHSCC);
3822 }
3823
3824 // At this point, we know we have have two icmp instructions
3825 // comparing a value against two constants and and'ing the result
3826 // together. Because of the above check, we know that we only have
3827 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3828 // (from the FoldICmpLogical check above), that the two constants
3829 // are not equal and that the larger constant is on the RHS
3830 assert(LHSCst != RHSCst && "Compares not folded above?");
3831
3832 switch (LHSCC) {
3833 default: assert(0 && "Unknown integer condition code!");
3834 case ICmpInst::ICMP_EQ:
3835 switch (RHSCC) {
3836 default: assert(0 && "Unknown integer condition code!");
3837 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3838 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3839 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3840 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3841 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3842 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3843 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3844 return ReplaceInstUsesWith(I, LHS);
3845 }
3846 case ICmpInst::ICMP_NE:
3847 switch (RHSCC) {
3848 default: assert(0 && "Unknown integer condition code!");
3849 case ICmpInst::ICMP_ULT:
3850 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3851 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3852 break; // (X != 13 & X u< 15) -> no change
3853 case ICmpInst::ICMP_SLT:
3854 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3855 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3856 break; // (X != 13 & X s< 15) -> no change
3857 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3858 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3859 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3860 return ReplaceInstUsesWith(I, RHS);
3861 case ICmpInst::ICMP_NE:
3862 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3863 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00003864 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003865 LHSVal->getName()+".off");
3866 InsertNewInstBefore(Add, I);
3867 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3868 ConstantInt::get(Add->getType(), 1));
3869 }
3870 break; // (X != 13 & X != 15) -> no change
3871 }
3872 break;
3873 case ICmpInst::ICMP_ULT:
3874 switch (RHSCC) {
3875 default: assert(0 && "Unknown integer condition code!");
3876 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3877 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3878 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3879 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3880 break;
3881 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3882 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3883 return ReplaceInstUsesWith(I, LHS);
3884 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3885 break;
3886 }
3887 break;
3888 case ICmpInst::ICMP_SLT:
3889 switch (RHSCC) {
3890 default: assert(0 && "Unknown integer condition code!");
3891 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3892 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3893 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3894 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3895 break;
3896 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3897 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3898 return ReplaceInstUsesWith(I, LHS);
3899 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3900 break;
3901 }
3902 break;
3903 case ICmpInst::ICMP_UGT:
3904 switch (RHSCC) {
3905 default: assert(0 && "Unknown integer condition code!");
Eli Friedman22b85622008-06-21 23:36:13 +00003906 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003907 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3908 return ReplaceInstUsesWith(I, RHS);
3909 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3910 break;
3911 case ICmpInst::ICMP_NE:
3912 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3913 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3914 break; // (X u> 13 & X != 15) -> no change
3915 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3916 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3917 true, I);
3918 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3919 break;
3920 }
3921 break;
3922 case ICmpInst::ICMP_SGT:
3923 switch (RHSCC) {
3924 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerab0fc252007-11-16 06:04:17 +00003925 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003926 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3927 return ReplaceInstUsesWith(I, RHS);
3928 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3929 break;
3930 case ICmpInst::ICMP_NE:
3931 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3932 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3933 break; // (X s> 13 & X != 15) -> no change
3934 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
3935 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
3936 true, I);
3937 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3938 break;
3939 }
3940 break;
3941 }
3942 }
3943 }
3944
3945 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3946 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3947 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3948 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3949 const Type *SrcTy = Op0C->getOperand(0)->getType();
3950 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3951 // Only do this if the casts both really cause code to be generated.
3952 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3953 I.getType(), TD) &&
3954 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3955 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003956 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003957 Op1C->getOperand(0),
3958 I.getName());
3959 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003960 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003961 }
3962 }
3963
3964 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3965 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3966 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3967 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3968 SI0->getOperand(1) == SI1->getOperand(1) &&
3969 (SI0->hasOneUse() || SI1->hasOneUse())) {
3970 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00003971 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003972 SI1->getOperand(0),
3973 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003974 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003975 SI1->getOperand(1));
3976 }
3977 }
3978
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003979 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00003980 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
3981 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
3982 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003983 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
3984 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00003985 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3986 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3987 // If either of the constants are nans, then the whole thing returns
3988 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00003989 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00003990 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3991 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
3992 RHS->getOperand(0));
3993 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003994 } else {
3995 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
3996 FCmpInst::Predicate Op0CC, Op1CC;
3997 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
3998 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003999 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4000 // Swap RHS operands to match LHS.
4001 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4002 std::swap(Op1LHS, Op1RHS);
4003 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004004 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4005 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4006 if (Op0CC == Op1CC)
4007 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4008 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4009 Op1CC == FCmpInst::FCMP_FALSE)
4010 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4011 else if (Op0CC == FCmpInst::FCMP_TRUE)
4012 return ReplaceInstUsesWith(I, Op1);
4013 else if (Op1CC == FCmpInst::FCMP_TRUE)
4014 return ReplaceInstUsesWith(I, Op0);
4015 bool Op0Ordered;
4016 bool Op1Ordered;
4017 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4018 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4019 if (Op1Pred == 0) {
4020 std::swap(Op0, Op1);
4021 std::swap(Op0Pred, Op1Pred);
4022 std::swap(Op0Ordered, Op1Ordered);
4023 }
4024 if (Op0Pred == 0) {
4025 // uno && ueq -> uno && (uno || eq) -> ueq
4026 // ord && olt -> ord && (ord && lt) -> olt
4027 if (Op0Ordered == Op1Ordered)
4028 return ReplaceInstUsesWith(I, Op1);
4029 // uno && oeq -> uno && (ord && eq) -> false
4030 // uno && ord -> false
4031 if (!Op0Ordered)
4032 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4033 // ord && ueq -> ord && (uno || eq) -> oeq
4034 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4035 Op0LHS, Op0RHS));
4036 }
4037 }
4038 }
4039 }
Chris Lattner91882432007-10-24 05:38:08 +00004040 }
4041 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004042
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004043 return Changed ? &I : 0;
4044}
4045
Chris Lattner567f5112008-10-05 02:13:19 +00004046/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4047/// capable of providing pieces of a bswap. The subexpression provides pieces
4048/// of a bswap if it is proven that each of the non-zero bytes in the output of
4049/// the expression came from the corresponding "byte swapped" byte in some other
4050/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4051/// we know that the expression deposits the low byte of %X into the high byte
4052/// of the bswap result and that all other bytes are zero. This expression is
4053/// accepted, the high byte of ByteValues is set to X to indicate a correct
4054/// match.
4055///
4056/// This function returns true if the match was unsuccessful and false if so.
4057/// On entry to the function the "OverallLeftShift" is a signed integer value
4058/// indicating the number of bytes that the subexpression is later shifted. For
4059/// example, if the expression is later right shifted by 16 bits, the
4060/// OverallLeftShift value would be -2 on entry. This is used to specify which
4061/// byte of ByteValues is actually being set.
4062///
4063/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4064/// byte is masked to zero by a user. For example, in (X & 255), X will be
4065/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4066/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4067/// always in the local (OverallLeftShift) coordinate space.
4068///
4069static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4070 SmallVector<Value*, 8> &ByteValues) {
4071 if (Instruction *I = dyn_cast<Instruction>(V)) {
4072 // If this is an or instruction, it may be an inner node of the bswap.
4073 if (I->getOpcode() == Instruction::Or) {
4074 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4075 ByteValues) ||
4076 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4077 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004078 }
Chris Lattner567f5112008-10-05 02:13:19 +00004079
4080 // If this is a logical shift by a constant multiple of 8, recurse with
4081 // OverallLeftShift and ByteMask adjusted.
4082 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4083 unsigned ShAmt =
4084 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4085 // Ensure the shift amount is defined and of a byte value.
4086 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4087 return true;
4088
4089 unsigned ByteShift = ShAmt >> 3;
4090 if (I->getOpcode() == Instruction::Shl) {
4091 // X << 2 -> collect(X, +2)
4092 OverallLeftShift += ByteShift;
4093 ByteMask >>= ByteShift;
4094 } else {
4095 // X >>u 2 -> collect(X, -2)
4096 OverallLeftShift -= ByteShift;
4097 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004098 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004099 }
4100
4101 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4102 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4103
4104 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4105 ByteValues);
4106 }
4107
4108 // If this is a logical 'and' with a mask that clears bytes, clear the
4109 // corresponding bytes in ByteMask.
4110 if (I->getOpcode() == Instruction::And &&
4111 isa<ConstantInt>(I->getOperand(1))) {
4112 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4113 unsigned NumBytes = ByteValues.size();
4114 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4115 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4116
4117 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4118 // If this byte is masked out by a later operation, we don't care what
4119 // the and mask is.
4120 if ((ByteMask & (1 << i)) == 0)
4121 continue;
4122
4123 // If the AndMask is all zeros for this byte, clear the bit.
4124 APInt MaskB = AndMask & Byte;
4125 if (MaskB == 0) {
4126 ByteMask &= ~(1U << i);
4127 continue;
4128 }
4129
4130 // If the AndMask is not all ones for this byte, it's not a bytezap.
4131 if (MaskB != Byte)
4132 return true;
4133
4134 // Otherwise, this byte is kept.
4135 }
4136
4137 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4138 ByteValues);
4139 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004140 }
4141
Chris Lattner567f5112008-10-05 02:13:19 +00004142 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4143 // the input value to the bswap. Some observations: 1) if more than one byte
4144 // is demanded from this input, then it could not be successfully assembled
4145 // into a byteswap. At least one of the two bytes would not be aligned with
4146 // their ultimate destination.
4147 if (!isPowerOf2_32(ByteMask)) return true;
4148 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004149
Chris Lattner567f5112008-10-05 02:13:19 +00004150 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4151 // is demanded, it needs to go into byte 0 of the result. This means that the
4152 // byte needs to be shifted until it lands in the right byte bucket. The
4153 // shift amount depends on the position: if the byte is coming from the high
4154 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4155 // low part, it must be shifted left.
4156 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4157 if (InputByteNo < ByteValues.size()/2) {
4158 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4159 return true;
4160 } else {
4161 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4162 return true;
4163 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004164
4165 // If the destination byte value is already defined, the values are or'd
4166 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004167 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004168 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004169 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004170 return false;
4171}
4172
4173/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4174/// If so, insert the new bswap intrinsic and return it.
4175Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4176 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004177 if (!ITy || ITy->getBitWidth() % 16 ||
4178 // ByteMask only allows up to 32-byte values.
4179 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004180 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4181
4182 /// ByteValues - For each byte of the result, we keep track of which value
4183 /// defines each byte.
4184 SmallVector<Value*, 8> ByteValues;
4185 ByteValues.resize(ITy->getBitWidth()/8);
4186
4187 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004188 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4189 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004190 return 0;
4191
4192 // Check to see if all of the bytes come from the same value.
4193 Value *V = ByteValues[0];
4194 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4195
4196 // Check to make sure that all of the bytes come from the same value.
4197 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4198 if (ByteValues[i] != V)
4199 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004200 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004201 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004202 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004203 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004204}
4205
4206
4207Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4208 bool Changed = SimplifyCommutative(I);
4209 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4210
4211 if (isa<UndefValue>(Op1)) // X | undef -> -1
4212 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4213
4214 // or X, X = X
4215 if (Op0 == Op1)
4216 return ReplaceInstUsesWith(I, Op0);
4217
4218 // See if we can simplify any instructions used by the instruction whose sole
4219 // purpose is to compute bits we don't care about.
4220 if (!isa<VectorType>(I.getType())) {
4221 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4222 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4223 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4224 KnownZero, KnownOne))
4225 return &I;
4226 } else if (isa<ConstantAggregateZero>(Op1)) {
4227 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4228 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4229 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4230 return ReplaceInstUsesWith(I, I.getOperand(1));
4231 }
4232
4233
4234
4235 // or X, -1 == -1
4236 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4237 ConstantInt *C1 = 0; Value *X = 0;
4238 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4239 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004240 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004241 InsertNewInstBefore(Or, I);
4242 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004243 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004244 ConstantInt::get(RHS->getValue() | C1->getValue()));
4245 }
4246
4247 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4248 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004249 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004250 InsertNewInstBefore(Or, I);
4251 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004252 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004253 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4254 }
4255
4256 // Try to fold constant and into select arguments.
4257 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4258 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4259 return R;
4260 if (isa<PHINode>(Op0))
4261 if (Instruction *NV = FoldOpIntoPhi(I))
4262 return NV;
4263 }
4264
4265 Value *A = 0, *B = 0;
4266 ConstantInt *C1 = 0, *C2 = 0;
4267
4268 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4269 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4270 return ReplaceInstUsesWith(I, Op1);
4271 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4272 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4273 return ReplaceInstUsesWith(I, Op0);
4274
4275 // (A | B) | C and A | (B | C) -> bswap if possible.
4276 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4277 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4278 match(Op1, m_Or(m_Value(), m_Value())) ||
4279 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4280 match(Op1, m_Shift(m_Value(), m_Value())))) {
4281 if (Instruction *BSwap = MatchBSwap(I))
4282 return BSwap;
4283 }
4284
4285 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4286 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4287 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004288 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004289 InsertNewInstBefore(NOr, I);
4290 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004291 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004292 }
4293
4294 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4295 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4296 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004297 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004298 InsertNewInstBefore(NOr, I);
4299 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004300 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004301 }
4302
4303 // (A & C)|(B & D)
4304 Value *C = 0, *D = 0;
4305 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4306 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4307 Value *V1 = 0, *V2 = 0, *V3 = 0;
4308 C1 = dyn_cast<ConstantInt>(C);
4309 C2 = dyn_cast<ConstantInt>(D);
4310 if (C1 && C2) { // (A & C1)|(B & C2)
4311 // If we have: ((V + N) & C1) | (V & C2)
4312 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4313 // replace with V+N.
4314 if (C1->getValue() == ~C2->getValue()) {
4315 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4316 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4317 // Add commutes, try both ways.
4318 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4319 return ReplaceInstUsesWith(I, A);
4320 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4321 return ReplaceInstUsesWith(I, A);
4322 }
4323 // Or commutes, try both ways.
4324 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4325 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4326 // Add commutes, try both ways.
4327 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4328 return ReplaceInstUsesWith(I, B);
4329 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4330 return ReplaceInstUsesWith(I, B);
4331 }
4332 }
4333 V1 = 0; V2 = 0; V3 = 0;
4334 }
4335
4336 // Check to see if we have any common things being and'ed. If so, find the
4337 // terms for V1 & (V2|V3).
4338 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4339 if (A == B) // (A & C)|(A & D) == A & (C|D)
4340 V1 = A, V2 = C, V3 = D;
4341 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4342 V1 = A, V2 = B, V3 = C;
4343 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4344 V1 = C, V2 = A, V3 = D;
4345 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4346 V1 = C, V2 = A, V3 = B;
4347
4348 if (V1) {
4349 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004350 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4351 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004352 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004353 }
Dan Gohman279952c2008-10-28 22:38:57 +00004354
Dan Gohman35b76162008-10-30 20:40:10 +00004355 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
4356 if (match(A, m_Select(m_Value(), m_ConstantInt(-1), m_ConstantInt(0)))) {
4357 if (match(D, m_Not(m_Value(A))))
4358 return SelectInst::Create(cast<User>(A)->getOperand(0), C, B);
4359 if (match(B, m_Not(m_Value(A))))
4360 return SelectInst::Create(cast<User>(A)->getOperand(0), C, D);
4361 }
4362 if (match(B, m_Select(m_Value(), m_ConstantInt(-1), m_ConstantInt(0)))) {
4363 if (match(C, m_Not(m_Value(B))))
4364 return SelectInst::Create(cast<User>(B)->getOperand(0), A, D);
4365 if (match(A, m_Not(m_Value(B))))
4366 return SelectInst::Create(cast<User>(B)->getOperand(0), C, D);
4367 }
4368 if (match(C, m_Select(m_Value(), m_ConstantInt(-1), m_ConstantInt(0)))) {
Dan Gohman279952c2008-10-28 22:38:57 +00004369 if (match(D, m_Not(m_Value(C))))
4370 return SelectInst::Create(cast<User>(C)->getOperand(0), A, B);
Dan Gohman279952c2008-10-28 22:38:57 +00004371 if (match(B, m_Not(m_Value(C))))
4372 return SelectInst::Create(cast<User>(C)->getOperand(0), A, D);
4373 }
Dan Gohman35b76162008-10-30 20:40:10 +00004374 if (match(D, m_Select(m_Value(), m_ConstantInt(-1), m_ConstantInt(0)))) {
Dan Gohman279952c2008-10-28 22:38:57 +00004375 if (match(C, m_Not(m_Value(D))))
4376 return SelectInst::Create(cast<User>(D)->getOperand(0), A, B);
Dan Gohman279952c2008-10-28 22:38:57 +00004377 if (match(A, m_Not(m_Value(D))))
4378 return SelectInst::Create(cast<User>(D)->getOperand(0), C, B);
4379 }
Dan Gohman35b76162008-10-30 20:40:10 +00004380 if (match(A, m_Select(m_Value(), m_ConstantInt(0), m_ConstantInt(-1)))) {
4381 if (match(D, m_Not(m_Value(A))))
4382 return SelectInst::Create(cast<User>(A)->getOperand(0), B, C);
4383 if (match(B, m_Not(m_Value(A))))
4384 return SelectInst::Create(cast<User>(A)->getOperand(0), D, C);
4385 }
4386 if (match(B, m_Select(m_Value(), m_ConstantInt(0), m_ConstantInt(-1)))) {
4387 if (match(C, m_Not(m_Value(B))))
4388 return SelectInst::Create(cast<User>(B)->getOperand(0), D, A);
4389 if (match(A, m_Not(m_Value(B))))
4390 return SelectInst::Create(cast<User>(B)->getOperand(0), D, C);
4391 }
4392 if (match(C, m_Select(m_Value(), m_ConstantInt(0), m_ConstantInt(-1)))) {
4393 if (match(D, m_Not(m_Value(C))))
4394 return SelectInst::Create(cast<User>(C)->getOperand(0), B, A);
4395 if (match(B, m_Not(m_Value(C))))
4396 return SelectInst::Create(cast<User>(C)->getOperand(0), D, A);
4397 }
4398 if (match(D, m_Select(m_Value(), m_ConstantInt(0), m_ConstantInt(-1)))) {
4399 if (match(C, m_Not(m_Value(D))))
4400 return SelectInst::Create(cast<User>(D)->getOperand(0), B, A);
4401 if (match(A, m_Not(m_Value(D))))
4402 return SelectInst::Create(cast<User>(D)->getOperand(0), B, C);
4403 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004404 }
4405
4406 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4407 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4408 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4409 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4410 SI0->getOperand(1) == SI1->getOperand(1) &&
4411 (SI0->hasOneUse() || SI1->hasOneUse())) {
4412 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004413 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004414 SI1->getOperand(0),
4415 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004416 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004417 SI1->getOperand(1));
4418 }
4419 }
4420
4421 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4422 if (A == Op1) // ~A | A == -1
4423 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4424 } else {
4425 A = 0;
4426 }
4427 // Note, A is still live here!
4428 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4429 if (Op0 == B)
4430 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4431
4432 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4433 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004434 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004435 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004436 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004437 }
4438 }
4439
4440 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4441 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4442 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4443 return R;
4444
4445 Value *LHSVal, *RHSVal;
4446 ConstantInt *LHSCst, *RHSCst;
4447 ICmpInst::Predicate LHSCC, RHSCC;
4448 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4449 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4450 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4451 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4452 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4453 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4454 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4455 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4456 // We can't fold (ugt x, C) | (sgt x, C2).
4457 PredicatesFoldable(LHSCC, RHSCC)) {
4458 // Ensure that the larger constant is on the RHS.
4459 ICmpInst *LHS = cast<ICmpInst>(Op0);
4460 bool NeedsSwap;
Nick Lewycky5515c7a2008-09-30 06:08:34 +00004461 if (ICmpInst::isEquality(LHSCC) ? ICmpInst::isSignedPredicate(RHSCC)
4462 : ICmpInst::isSignedPredicate(LHSCC))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004463 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4464 else
4465 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4466
4467 if (NeedsSwap) {
4468 std::swap(LHS, RHS);
4469 std::swap(LHSCst, RHSCst);
4470 std::swap(LHSCC, RHSCC);
4471 }
4472
4473 // At this point, we know we have have two icmp instructions
4474 // comparing a value against two constants and or'ing the result
4475 // together. Because of the above check, we know that we only have
4476 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4477 // FoldICmpLogical check above), that the two constants are not
4478 // equal.
4479 assert(LHSCst != RHSCst && "Compares not folded above?");
4480
4481 switch (LHSCC) {
4482 default: assert(0 && "Unknown integer condition code!");
4483 case ICmpInst::ICMP_EQ:
4484 switch (RHSCC) {
4485 default: assert(0 && "Unknown integer condition code!");
4486 case ICmpInst::ICMP_EQ:
4487 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4488 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00004489 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004490 LHSVal->getName()+".off");
4491 InsertNewInstBefore(Add, I);
4492 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4493 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4494 }
4495 break; // (X == 13 | X == 15) -> no change
4496 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4497 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4498 break;
4499 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4500 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4501 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4502 return ReplaceInstUsesWith(I, RHS);
4503 }
4504 break;
4505 case ICmpInst::ICMP_NE:
4506 switch (RHSCC) {
4507 default: assert(0 && "Unknown integer condition code!");
4508 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4509 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4510 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4511 return ReplaceInstUsesWith(I, LHS);
4512 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4513 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4514 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4515 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4516 }
4517 break;
4518 case ICmpInst::ICMP_ULT:
4519 switch (RHSCC) {
4520 default: assert(0 && "Unknown integer condition code!");
4521 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4522 break;
4523 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
Chris Lattner26376862007-11-01 02:18:41 +00004524 // If RHSCst is [us]MAXINT, it is always false. Not handling
4525 // this can cause overflow.
4526 if (RHSCst->isMaxValue(false))
4527 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004528 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4529 false, I);
4530 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4531 break;
4532 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4533 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4534 return ReplaceInstUsesWith(I, RHS);
4535 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4536 break;
4537 }
4538 break;
4539 case ICmpInst::ICMP_SLT:
4540 switch (RHSCC) {
4541 default: assert(0 && "Unknown integer condition code!");
4542 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4543 break;
4544 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
Chris Lattner26376862007-11-01 02:18:41 +00004545 // If RHSCst is [us]MAXINT, it is always false. Not handling
4546 // this can cause overflow.
4547 if (RHSCst->isMaxValue(true))
4548 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004549 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4550 false, I);
4551 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4552 break;
4553 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4554 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4555 return ReplaceInstUsesWith(I, RHS);
4556 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4557 break;
4558 }
4559 break;
4560 case ICmpInst::ICMP_UGT:
4561 switch (RHSCC) {
4562 default: assert(0 && "Unknown integer condition code!");
4563 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4564 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4565 return ReplaceInstUsesWith(I, LHS);
4566 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4567 break;
4568 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4569 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4570 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4571 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4572 break;
4573 }
4574 break;
4575 case ICmpInst::ICMP_SGT:
4576 switch (RHSCC) {
4577 default: assert(0 && "Unknown integer condition code!");
4578 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4579 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4580 return ReplaceInstUsesWith(I, LHS);
4581 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4582 break;
4583 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4584 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4585 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4586 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4587 break;
4588 }
4589 break;
4590 }
4591 }
4592 }
4593
4594 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004595 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004596 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4597 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004598 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4599 !isa<ICmpInst>(Op1C->getOperand(0))) {
4600 const Type *SrcTy = Op0C->getOperand(0)->getType();
4601 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4602 // Only do this if the casts both really cause code to be
4603 // generated.
4604 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4605 I.getType(), TD) &&
4606 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4607 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004608 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004609 Op1C->getOperand(0),
4610 I.getName());
4611 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004612 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004613 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004614 }
4615 }
Chris Lattner91882432007-10-24 05:38:08 +00004616 }
4617
4618
4619 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4620 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4621 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4622 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004623 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004624 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004625 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4626 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4627 // If either of the constants are nans, then the whole thing returns
4628 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004629 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004630 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4631
4632 // Otherwise, no need to compare the two constants, compare the
4633 // rest.
4634 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4635 RHS->getOperand(0));
4636 }
Evan Cheng72988052008-10-14 18:44:08 +00004637 } else {
4638 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4639 FCmpInst::Predicate Op0CC, Op1CC;
4640 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4641 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4642 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4643 // Swap RHS operands to match LHS.
4644 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4645 std::swap(Op1LHS, Op1RHS);
4646 }
4647 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4648 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4649 if (Op0CC == Op1CC)
4650 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4651 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4652 Op1CC == FCmpInst::FCMP_TRUE)
4653 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4654 else if (Op0CC == FCmpInst::FCMP_FALSE)
4655 return ReplaceInstUsesWith(I, Op1);
4656 else if (Op1CC == FCmpInst::FCMP_FALSE)
4657 return ReplaceInstUsesWith(I, Op0);
4658 bool Op0Ordered;
4659 bool Op1Ordered;
4660 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4661 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4662 if (Op0Ordered == Op1Ordered) {
4663 // If both are ordered or unordered, return a new fcmp with
4664 // or'ed predicates.
4665 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4666 Op0LHS, Op0RHS);
4667 if (Instruction *I = dyn_cast<Instruction>(RV))
4668 return I;
4669 // Otherwise, it's a constant boolean value...
4670 return ReplaceInstUsesWith(I, RV);
4671 }
4672 }
4673 }
4674 }
Chris Lattner91882432007-10-24 05:38:08 +00004675 }
4676 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004677
4678 return Changed ? &I : 0;
4679}
4680
Dan Gohman089efff2008-05-13 00:00:25 +00004681namespace {
4682
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004683// XorSelf - Implements: X ^ X --> 0
4684struct XorSelf {
4685 Value *RHS;
4686 XorSelf(Value *rhs) : RHS(rhs) {}
4687 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4688 Instruction *apply(BinaryOperator &Xor) const {
4689 return &Xor;
4690 }
4691};
4692
Dan Gohman089efff2008-05-13 00:00:25 +00004693}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004694
4695Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4696 bool Changed = SimplifyCommutative(I);
4697 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4698
Evan Chenge5cd8032008-03-25 20:07:13 +00004699 if (isa<UndefValue>(Op1)) {
4700 if (isa<UndefValue>(Op0))
4701 // Handle undef ^ undef -> 0 special case. This is a common
4702 // idiom (misuse).
4703 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004704 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004705 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004706
4707 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4708 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004709 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004710 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4711 }
4712
4713 // See if we can simplify any instructions used by the instruction whose sole
4714 // purpose is to compute bits we don't care about.
4715 if (!isa<VectorType>(I.getType())) {
4716 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4717 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4718 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4719 KnownZero, KnownOne))
4720 return &I;
4721 } else if (isa<ConstantAggregateZero>(Op1)) {
4722 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4723 }
4724
4725 // Is this a ~ operation?
4726 if (Value *NotOp = dyn_castNotVal(&I)) {
4727 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4728 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4729 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4730 if (Op0I->getOpcode() == Instruction::And ||
4731 Op0I->getOpcode() == Instruction::Or) {
4732 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4733 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4734 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004735 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004736 Op0I->getOperand(1)->getName()+".not");
4737 InsertNewInstBefore(NotY, I);
4738 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004739 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004740 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004741 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004742 }
4743 }
4744 }
4745 }
4746
4747
4748 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004749 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4750 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4751 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004752 return new ICmpInst(ICI->getInversePredicate(),
4753 ICI->getOperand(0), ICI->getOperand(1));
4754
Nick Lewycky1405e922007-08-06 20:04:16 +00004755 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4756 return new FCmpInst(FCI->getInversePredicate(),
4757 FCI->getOperand(0), FCI->getOperand(1));
4758 }
4759
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004760 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4761 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4762 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4763 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4764 Instruction::CastOps Opcode = Op0C->getOpcode();
4765 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4766 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4767 Op0C->getDestTy())) {
4768 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4769 CI->getOpcode(), CI->getInversePredicate(),
4770 CI->getOperand(0), CI->getOperand(1)), I);
4771 NewCI->takeName(CI);
4772 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4773 }
4774 }
4775 }
4776 }
4777 }
4778
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004779 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4780 // ~(c-X) == X-c-1 == X+(-c-1)
4781 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4782 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4783 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4784 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4785 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004786 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004787 }
4788
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004789 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004790 if (Op0I->getOpcode() == Instruction::Add) {
4791 // ~(X-c) --> (-c-1)-X
4792 if (RHS->isAllOnesValue()) {
4793 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004794 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004795 ConstantExpr::getSub(NegOp0CI,
4796 ConstantInt::get(I.getType(), 1)),
4797 Op0I->getOperand(0));
4798 } else if (RHS->getValue().isSignBit()) {
4799 // (X + C) ^ signbit -> (X + C + signbit)
4800 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004801 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004802
4803 }
4804 } else if (Op0I->getOpcode() == Instruction::Or) {
4805 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4806 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4807 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4808 // Anything in both C1 and C2 is known to be zero, remove it from
4809 // NewRHS.
4810 Constant *CommonBits = And(Op0CI, RHS);
4811 NewRHS = ConstantExpr::getAnd(NewRHS,
4812 ConstantExpr::getNot(CommonBits));
4813 AddToWorkList(Op0I);
4814 I.setOperand(0, Op0I->getOperand(0));
4815 I.setOperand(1, NewRHS);
4816 return &I;
4817 }
4818 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004819 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004820 }
4821
4822 // Try to fold constant and into select arguments.
4823 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4824 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4825 return R;
4826 if (isa<PHINode>(Op0))
4827 if (Instruction *NV = FoldOpIntoPhi(I))
4828 return NV;
4829 }
4830
4831 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4832 if (X == Op1)
4833 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4834
4835 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4836 if (X == Op0)
4837 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4838
4839
4840 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4841 if (Op1I) {
4842 Value *A, *B;
4843 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4844 if (A == Op0) { // B^(B|A) == (A|B)^B
4845 Op1I->swapOperands();
4846 I.swapOperands();
4847 std::swap(Op0, Op1);
4848 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4849 I.swapOperands(); // Simplified below.
4850 std::swap(Op0, Op1);
4851 }
4852 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4853 if (Op0 == A) // A^(A^B) == B
4854 return ReplaceInstUsesWith(I, B);
4855 else if (Op0 == B) // A^(B^A) == B
4856 return ReplaceInstUsesWith(I, A);
4857 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4858 if (A == Op0) { // A^(A&B) -> A^(B&A)
4859 Op1I->swapOperands();
4860 std::swap(A, B);
4861 }
4862 if (B == Op0) { // A^(B&A) -> (B&A)^A
4863 I.swapOperands(); // Simplified below.
4864 std::swap(Op0, Op1);
4865 }
4866 }
4867 }
4868
4869 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4870 if (Op0I) {
4871 Value *A, *B;
4872 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4873 if (A == Op1) // (B|A)^B == (A|B)^B
4874 std::swap(A, B);
4875 if (B == Op1) { // (A|B)^B == A & ~B
4876 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004877 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4878 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004879 }
4880 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4881 if (Op1 == A) // (A^B)^A == B
4882 return ReplaceInstUsesWith(I, B);
4883 else if (Op1 == B) // (B^A)^A == B
4884 return ReplaceInstUsesWith(I, A);
4885 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4886 if (A == Op1) // (A&B)^A -> (B&A)^A
4887 std::swap(A, B);
4888 if (B == Op1 && // (B&A)^A == ~B & A
4889 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4890 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00004891 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4892 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004893 }
4894 }
4895 }
4896
4897 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4898 if (Op0I && Op1I && Op0I->isShift() &&
4899 Op0I->getOpcode() == Op1I->getOpcode() &&
4900 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4901 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4902 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004903 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004904 Op1I->getOperand(0),
4905 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004906 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004907 Op1I->getOperand(1));
4908 }
4909
4910 if (Op0I && Op1I) {
4911 Value *A, *B, *C, *D;
4912 // (A & B)^(A | B) -> A ^ B
4913 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4914 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4915 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004916 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004917 }
4918 // (A | B)^(A & B) -> A ^ B
4919 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4920 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4921 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004922 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004923 }
4924
4925 // (A & B)^(C & D)
4926 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4927 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4928 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4929 // (X & Y)^(X & Y) -> (Y^Z) & X
4930 Value *X = 0, *Y = 0, *Z = 0;
4931 if (A == C)
4932 X = A, Y = B, Z = D;
4933 else if (A == D)
4934 X = A, Y = B, Z = C;
4935 else if (B == C)
4936 X = B, Y = A, Z = D;
4937 else if (B == D)
4938 X = B, Y = A, Z = C;
4939
4940 if (X) {
4941 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004942 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
4943 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004944 }
4945 }
4946 }
4947
4948 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4949 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4950 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4951 return R;
4952
4953 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004954 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004955 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4956 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4957 const Type *SrcTy = Op0C->getOperand(0)->getType();
4958 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4959 // Only do this if the casts both really cause code to be generated.
4960 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4961 I.getType(), TD) &&
4962 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4963 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004964 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004965 Op1C->getOperand(0),
4966 I.getName());
4967 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004968 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004969 }
4970 }
Chris Lattner91882432007-10-24 05:38:08 +00004971 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004972
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004973 return Changed ? &I : 0;
4974}
4975
4976/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4977/// overflowed for this type.
4978static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4979 ConstantInt *In2, bool IsSigned = false) {
4980 Result = cast<ConstantInt>(Add(In1, In2));
4981
4982 if (IsSigned)
4983 if (In2->getValue().isNegative())
4984 return Result->getValue().sgt(In1->getValue());
4985 else
4986 return Result->getValue().slt(In1->getValue());
4987 else
4988 return Result->getValue().ult(In1->getValue());
4989}
4990
Dan Gohmanb80d5612008-09-10 23:30:57 +00004991/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
4992/// overflowed for this type.
4993static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4994 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00004995 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00004996
4997 if (IsSigned)
4998 if (In2->getValue().isNegative())
4999 return Result->getValue().slt(In1->getValue());
5000 else
5001 return Result->getValue().sgt(In1->getValue());
5002 else
5003 return Result->getValue().ugt(In1->getValue());
5004}
5005
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005006/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5007/// code necessary to compute the offset from the base pointer (without adding
5008/// in the base pointer). Return the result as a signed integer of intptr size.
5009static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5010 TargetData &TD = IC.getTargetData();
5011 gep_type_iterator GTI = gep_type_begin(GEP);
5012 const Type *IntPtrTy = TD.getIntPtrType();
5013 Value *Result = Constant::getNullValue(IntPtrTy);
5014
5015 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005016 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005017 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5018
Gabor Greif17396002008-06-12 21:37:33 +00005019 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5020 ++i, ++GTI) {
5021 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00005022 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005023 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5024 if (OpC->isZero()) continue;
5025
5026 // Handle a struct index, which adds its field offset to the pointer.
5027 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5028 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5029
5030 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5031 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5032 else
5033 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005034 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005035 ConstantInt::get(IntPtrTy, Size),
5036 GEP->getName()+".offs"), I);
5037 continue;
5038 }
5039
5040 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5041 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5042 Scale = ConstantExpr::getMul(OC, Scale);
5043 if (Constant *RC = dyn_cast<Constant>(Result))
5044 Result = ConstantExpr::getAdd(RC, Scale);
5045 else {
5046 // Emit an add instruction.
5047 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005048 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005049 GEP->getName()+".offs"), I);
5050 }
5051 continue;
5052 }
5053 // Convert to correct type.
5054 if (Op->getType() != IntPtrTy) {
5055 if (Constant *OpC = dyn_cast<Constant>(Op))
5056 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5057 else
5058 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5059 Op->getName()+".c"), I);
5060 }
5061 if (Size != 1) {
5062 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5063 if (Constant *OpC = dyn_cast<Constant>(Op))
5064 Op = ConstantExpr::getMul(OpC, Scale);
5065 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005066 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005067 GEP->getName()+".idx"), I);
5068 }
5069
5070 // Emit an add instruction.
5071 if (isa<Constant>(Op) && isa<Constant>(Result))
5072 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5073 cast<Constant>(Result));
5074 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005075 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005076 GEP->getName()+".offs"), I);
5077 }
5078 return Result;
5079}
5080
Chris Lattnereba75862008-04-22 02:53:33 +00005081
5082/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5083/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5084/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5085/// complex, and scales are involved. The above expression would also be legal
5086/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5087/// later form is less amenable to optimization though, and we are allowed to
5088/// generate the first by knowing that pointer arithmetic doesn't overflow.
5089///
5090/// If we can't emit an optimized form for this expression, this returns null.
5091///
5092static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5093 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005094 TargetData &TD = IC.getTargetData();
5095 gep_type_iterator GTI = gep_type_begin(GEP);
5096
5097 // Check to see if this gep only has a single variable index. If so, and if
5098 // any constant indices are a multiple of its scale, then we can compute this
5099 // in terms of the scale of the variable index. For example, if the GEP
5100 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5101 // because the expression will cross zero at the same point.
5102 unsigned i, e = GEP->getNumOperands();
5103 int64_t Offset = 0;
5104 for (i = 1; i != e; ++i, ++GTI) {
5105 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5106 // Compute the aggregate offset of constant indices.
5107 if (CI->isZero()) continue;
5108
5109 // Handle a struct index, which adds its field offset to the pointer.
5110 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5111 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5112 } else {
5113 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5114 Offset += Size*CI->getSExtValue();
5115 }
5116 } else {
5117 // Found our variable index.
5118 break;
5119 }
5120 }
5121
5122 // If there are no variable indices, we must have a constant offset, just
5123 // evaluate it the general way.
5124 if (i == e) return 0;
5125
5126 Value *VariableIdx = GEP->getOperand(i);
5127 // Determine the scale factor of the variable element. For example, this is
5128 // 4 if the variable index is into an array of i32.
5129 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5130
5131 // Verify that there are no other variable indices. If so, emit the hard way.
5132 for (++i, ++GTI; i != e; ++i, ++GTI) {
5133 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5134 if (!CI) return 0;
5135
5136 // Compute the aggregate offset of constant indices.
5137 if (CI->isZero()) continue;
5138
5139 // Handle a struct index, which adds its field offset to the pointer.
5140 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5141 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5142 } else {
5143 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5144 Offset += Size*CI->getSExtValue();
5145 }
5146 }
5147
5148 // Okay, we know we have a single variable index, which must be a
5149 // pointer/array/vector index. If there is no offset, life is simple, return
5150 // the index.
5151 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5152 if (Offset == 0) {
5153 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5154 // we don't need to bother extending: the extension won't affect where the
5155 // computation crosses zero.
5156 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5157 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5158 VariableIdx->getNameStart(), &I);
5159 return VariableIdx;
5160 }
5161
5162 // Otherwise, there is an index. The computation we will do will be modulo
5163 // the pointer size, so get it.
5164 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5165
5166 Offset &= PtrSizeMask;
5167 VariableScale &= PtrSizeMask;
5168
5169 // To do this transformation, any constant index must be a multiple of the
5170 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5171 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5172 // multiple of the variable scale.
5173 int64_t NewOffs = Offset / (int64_t)VariableScale;
5174 if (Offset != NewOffs*(int64_t)VariableScale)
5175 return 0;
5176
5177 // Okay, we can do this evaluation. Start by converting the index to intptr.
5178 const Type *IntPtrTy = TD.getIntPtrType();
5179 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005180 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005181 true /*SExt*/,
5182 VariableIdx->getNameStart(), &I);
5183 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005184 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005185}
5186
5187
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005188/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5189/// else. At this point we know that the GEP is on the LHS of the comparison.
5190Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5191 ICmpInst::Predicate Cond,
5192 Instruction &I) {
5193 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5194
Chris Lattnereba75862008-04-22 02:53:33 +00005195 // Look through bitcasts.
5196 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5197 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005198
5199 Value *PtrBase = GEPLHS->getOperand(0);
5200 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005201 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005202 // This transformation (ignoring the base and scales) is valid because we
5203 // know pointers can't overflow. See if we can output an optimized form.
5204 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5205
5206 // If not, synthesize the offset the hard way.
5207 if (Offset == 0)
5208 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005209 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5210 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005211 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5212 // If the base pointers are different, but the indices are the same, just
5213 // compare the base pointer.
5214 if (PtrBase != GEPRHS->getOperand(0)) {
5215 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5216 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5217 GEPRHS->getOperand(0)->getType();
5218 if (IndicesTheSame)
5219 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5220 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5221 IndicesTheSame = false;
5222 break;
5223 }
5224
5225 // If all indices are the same, just compare the base pointers.
5226 if (IndicesTheSame)
5227 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5228 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5229
5230 // Otherwise, the base pointers are different and the indices are
5231 // different, bail out.
5232 return 0;
5233 }
5234
5235 // If one of the GEPs has all zero indices, recurse.
5236 bool AllZeros = true;
5237 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5238 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5239 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5240 AllZeros = false;
5241 break;
5242 }
5243 if (AllZeros)
5244 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5245 ICmpInst::getSwappedPredicate(Cond), I);
5246
5247 // If the other GEP has all zero indices, recurse.
5248 AllZeros = true;
5249 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5250 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5251 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5252 AllZeros = false;
5253 break;
5254 }
5255 if (AllZeros)
5256 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5257
5258 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5259 // If the GEPs only differ by one index, compare it.
5260 unsigned NumDifferences = 0; // Keep track of # differences.
5261 unsigned DiffOperand = 0; // The operand that differs.
5262 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5263 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5264 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5265 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5266 // Irreconcilable differences.
5267 NumDifferences = 2;
5268 break;
5269 } else {
5270 if (NumDifferences++) break;
5271 DiffOperand = i;
5272 }
5273 }
5274
5275 if (NumDifferences == 0) // SAME GEP?
5276 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005277 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005278 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005279
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005280 else if (NumDifferences == 1) {
5281 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5282 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5283 // Make sure we do a signed comparison here.
5284 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5285 }
5286 }
5287
5288 // Only lower this if the icmp is the only user of the GEP or if we expect
5289 // the result to fold to a constant!
5290 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5291 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5292 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5293 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5294 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5295 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5296 }
5297 }
5298 return 0;
5299}
5300
Chris Lattnere6b62d92008-05-19 20:18:56 +00005301/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5302///
5303Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5304 Instruction *LHSI,
5305 Constant *RHSC) {
5306 if (!isa<ConstantFP>(RHSC)) return 0;
5307 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5308
5309 // Get the width of the mantissa. We don't want to hack on conversions that
5310 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005311 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005312 if (MantissaWidth == -1) return 0; // Unknown.
5313
5314 // Check to see that the input is converted from an integer type that is small
5315 // enough that preserves all bits. TODO: check here for "known" sign bits.
5316 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5317 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5318
5319 // If this is a uitofp instruction, we need an extra bit to hold the sign.
5320 if (isa<UIToFPInst>(LHSI))
5321 ++InputSize;
5322
5323 // If the conversion would lose info, don't hack on this.
5324 if ((int)InputSize > MantissaWidth)
5325 return 0;
5326
5327 // Otherwise, we can potentially simplify the comparison. We know that it
5328 // will always come through as an integer value and we know the constant is
5329 // not a NAN (it would have been previously simplified).
5330 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5331
5332 ICmpInst::Predicate Pred;
5333 switch (I.getPredicate()) {
5334 default: assert(0 && "Unexpected predicate!");
5335 case FCmpInst::FCMP_UEQ:
5336 case FCmpInst::FCMP_OEQ: Pred = ICmpInst::ICMP_EQ; break;
5337 case FCmpInst::FCMP_UGT:
5338 case FCmpInst::FCMP_OGT: Pred = ICmpInst::ICMP_SGT; break;
5339 case FCmpInst::FCMP_UGE:
5340 case FCmpInst::FCMP_OGE: Pred = ICmpInst::ICMP_SGE; break;
5341 case FCmpInst::FCMP_ULT:
5342 case FCmpInst::FCMP_OLT: Pred = ICmpInst::ICMP_SLT; break;
5343 case FCmpInst::FCMP_ULE:
5344 case FCmpInst::FCMP_OLE: Pred = ICmpInst::ICMP_SLE; break;
5345 case FCmpInst::FCMP_UNE:
5346 case FCmpInst::FCMP_ONE: Pred = ICmpInst::ICMP_NE; break;
5347 case FCmpInst::FCMP_ORD:
5348 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5349 case FCmpInst::FCMP_UNO:
5350 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5351 }
5352
5353 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5354
5355 // Now we know that the APFloat is a normal number, zero or inf.
5356
Chris Lattnerf13ff492008-05-20 03:50:52 +00005357 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005358 // comparing an i8 to 300.0.
5359 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5360
5361 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5362 // and large values.
5363 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5364 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5365 APFloat::rmNearestTiesToEven);
5366 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
Chris Lattner82a80002008-05-24 04:06:28 +00005367 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5368 Pred == ICmpInst::ICMP_SLE)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005369 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5370 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5371 }
5372
5373 // See if the RHS value is < SignedMin.
5374 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5375 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5376 APFloat::rmNearestTiesToEven);
5377 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
Chris Lattner82a80002008-05-24 04:06:28 +00005378 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5379 Pred == ICmpInst::ICMP_SGE)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005380 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5381 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5382 }
5383
5384 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] but
5385 // it may still be fractional. See if it is fractional by casting the FP
5386 // value to the integer value and back, checking for equality. Don't do this
5387 // for zero, because -0.0 is not fractional.
5388 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5389 if (!RHS.isZero() &&
5390 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
5391 // If we had a comparison against a fractional value, we have to adjust
5392 // the compare predicate and sometimes the value. RHSC is rounded towards
5393 // zero at this point.
5394 switch (Pred) {
5395 default: assert(0 && "Unexpected integer comparison!");
5396 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5397 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5398 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5399 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5400 case ICmpInst::ICMP_SLE:
5401 // (float)int <= 4.4 --> int <= 4
5402 // (float)int <= -4.4 --> int < -4
5403 if (RHS.isNegative())
5404 Pred = ICmpInst::ICMP_SLT;
5405 break;
5406 case ICmpInst::ICMP_SLT:
5407 // (float)int < -4.4 --> int < -4
5408 // (float)int < 4.4 --> int <= 4
5409 if (!RHS.isNegative())
5410 Pred = ICmpInst::ICMP_SLE;
5411 break;
5412 case ICmpInst::ICMP_SGT:
5413 // (float)int > 4.4 --> int > 4
5414 // (float)int > -4.4 --> int >= -4
5415 if (RHS.isNegative())
5416 Pred = ICmpInst::ICMP_SGE;
5417 break;
5418 case ICmpInst::ICMP_SGE:
5419 // (float)int >= -4.4 --> int >= -4
5420 // (float)int >= 4.4 --> int > 4
5421 if (!RHS.isNegative())
5422 Pred = ICmpInst::ICMP_SGT;
5423 break;
5424 }
5425 }
5426
5427 // Lower this FP comparison into an appropriate integer version of the
5428 // comparison.
5429 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5430}
5431
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005432Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5433 bool Changed = SimplifyCompare(I);
5434 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5435
5436 // Fold trivial predicates.
5437 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5438 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5439 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5440 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5441
5442 // Simplify 'fcmp pred X, X'
5443 if (Op0 == Op1) {
5444 switch (I.getPredicate()) {
5445 default: assert(0 && "Unknown predicate!");
5446 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5447 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5448 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5449 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5450 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5451 case FCmpInst::FCMP_OLT: // True if ordered and less than
5452 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5453 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5454
5455 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5456 case FCmpInst::FCMP_ULT: // True if unordered or less than
5457 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5458 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5459 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5460 I.setPredicate(FCmpInst::FCMP_UNO);
5461 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5462 return &I;
5463
5464 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5465 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5466 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5467 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5468 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5469 I.setPredicate(FCmpInst::FCMP_ORD);
5470 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5471 return &I;
5472 }
5473 }
5474
5475 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5476 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5477
5478 // Handle fcmp with constant RHS
5479 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005480 // If the constant is a nan, see if we can fold the comparison based on it.
5481 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5482 if (CFP->getValueAPF().isNaN()) {
5483 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
5484 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Chris Lattnerf13ff492008-05-20 03:50:52 +00005485 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5486 "Comparison must be either ordered or unordered!");
5487 // True if unordered.
5488 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
Chris Lattnere6b62d92008-05-19 20:18:56 +00005489 }
5490 }
5491
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005492 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5493 switch (LHSI->getOpcode()) {
5494 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005495 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5496 // block. If in the same block, we're encouraging jump threading. If
5497 // not, we are just pessimizing the code by making an i1 phi.
5498 if (LHSI->getParent() == I.getParent())
5499 if (Instruction *NV = FoldOpIntoPhi(I))
5500 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005501 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005502 case Instruction::SIToFP:
5503 case Instruction::UIToFP:
5504 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5505 return NV;
5506 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005507 case Instruction::Select:
5508 // If either operand of the select is a constant, we can fold the
5509 // comparison into the select arms, which will cause one to be
5510 // constant folded and the select turned into a bitwise or.
5511 Value *Op1 = 0, *Op2 = 0;
5512 if (LHSI->hasOneUse()) {
5513 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5514 // Fold the known value into the constant operand.
5515 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5516 // Insert a new FCmp of the other select operand.
5517 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5518 LHSI->getOperand(2), RHSC,
5519 I.getName()), I);
5520 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5521 // Fold the known value into the constant operand.
5522 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5523 // Insert a new FCmp of the other select operand.
5524 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5525 LHSI->getOperand(1), RHSC,
5526 I.getName()), I);
5527 }
5528 }
5529
5530 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005531 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005532 break;
5533 }
5534 }
5535
5536 return Changed ? &I : 0;
5537}
5538
5539Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5540 bool Changed = SimplifyCompare(I);
5541 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5542 const Type *Ty = Op0->getType();
5543
5544 // icmp X, X
5545 if (Op0 == Op1)
5546 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005547 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005548
5549 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5550 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005551
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005552 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5553 // addresses never equal each other! We already know that Op0 != Op1.
5554 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5555 isa<ConstantPointerNull>(Op0)) &&
5556 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5557 isa<ConstantPointerNull>(Op1)))
5558 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005559 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005560
5561 // icmp's with boolean values can always be turned into bitwise operations
5562 if (Ty == Type::Int1Ty) {
5563 switch (I.getPredicate()) {
5564 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005565 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005566 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005567 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005568 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005569 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005570 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005571 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005572
5573 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005574 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005575 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005576 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005577 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005578 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005579 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005580 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005581 case ICmpInst::ICMP_SGT:
5582 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005583 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005584 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5585 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5586 InsertNewInstBefore(Not, I);
5587 return BinaryOperator::CreateAnd(Not, Op0);
5588 }
5589 case ICmpInst::ICMP_UGE:
5590 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5591 // FALL THROUGH
5592 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005593 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005594 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005595 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005596 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005597 case ICmpInst::ICMP_SGE:
5598 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5599 // FALL THROUGH
5600 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5601 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5602 InsertNewInstBefore(Not, I);
5603 return BinaryOperator::CreateOr(Not, Op0);
5604 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005605 }
5606 }
5607
Dan Gohman58c09632008-09-16 18:46:06 +00005608 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005609 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005610 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005611
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005612 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5613 if (I.isEquality() && CI->isNullValue() &&
5614 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5615 // (icmp cond A B) if cond is equality
5616 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005617 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005618
Dan Gohman58c09632008-09-16 18:46:06 +00005619 // If we have an icmp le or icmp ge instruction, turn it into the
5620 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5621 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005622 switch (I.getPredicate()) {
5623 default: break;
5624 case ICmpInst::ICMP_ULE:
5625 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5626 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5627 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5628 case ICmpInst::ICMP_SLE:
5629 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5630 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5631 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5632 case ICmpInst::ICMP_UGE:
5633 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5634 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5635 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5636 case ICmpInst::ICMP_SGE:
5637 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5638 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5639 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5640 }
5641
Chris Lattnera1308652008-07-11 05:40:05 +00005642 // See if we can fold the comparison based on range information we can get
5643 // by checking whether bits are known to be zero or one in the input.
5644 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5645 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5646
5647 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005648 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005649 bool UnusedBit;
5650 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5651
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005652 if (SimplifyDemandedBits(Op0,
5653 isSignBit ? APInt::getSignBit(BitWidth)
5654 : APInt::getAllOnesValue(BitWidth),
5655 KnownZero, KnownOne, 0))
5656 return &I;
5657
5658 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005659 // in. Compute the Min, Max and RHS values based on the known bits. For the
5660 // EQ and NE we use unsigned values.
5661 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005662 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5663 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5664 else
5665 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5666
Chris Lattnera1308652008-07-11 05:40:05 +00005667 // If Min and Max are known to be the same, then SimplifyDemandedBits
5668 // figured out that the LHS is a constant. Just constant fold this now so
5669 // that code below can assume that Min != Max.
5670 if (Min == Max)
5671 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5672 ConstantInt::get(Min),
5673 CI));
5674
5675 // Based on the range information we know about the LHS, see if we can
5676 // simplify this comparison. For example, (x&4) < 8 is always true.
5677 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005678 switch (I.getPredicate()) { // LE/GE have been folded already.
5679 default: assert(0 && "Unknown icmp opcode!");
5680 case ICmpInst::ICMP_EQ:
5681 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5682 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5683 break;
5684 case ICmpInst::ICMP_NE:
5685 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5686 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5687 break;
5688 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005689 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005690 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005691 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005692 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005693 if (RHSVal == Max) // A <u MAX -> A != MAX
5694 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5695 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5696 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5697
5698 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5699 if (CI->isMinValue(true))
5700 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5701 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005702 break;
5703 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005704 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005705 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005706 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005707 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005708
5709 if (RHSVal == Min) // A >u MIN -> A != MIN
5710 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5711 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5712 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5713
5714 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5715 if (CI->isMaxValue(true))
5716 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5717 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005718 break;
5719 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005720 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005721 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005722 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005723 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005724 if (RHSVal == Max) // A <s MAX -> A != MAX
5725 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005726 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005727 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005728 break;
5729 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005730 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005731 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005732 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005733 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005734
5735 if (RHSVal == Min) // A >s MIN -> A != MIN
5736 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5737 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5738 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005739 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005740 }
Dan Gohman58c09632008-09-16 18:46:06 +00005741 }
5742
5743 // Test if the ICmpInst instruction is used exclusively by a select as
5744 // part of a minimum or maximum operation. If so, refrain from doing
5745 // any other folding. This helps out other analyses which understand
5746 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5747 // and CodeGen. And in this case, at least one of the comparison
5748 // operands has at least one user besides the compare (the select),
5749 // which would often largely negate the benefit of folding anyway.
5750 if (I.hasOneUse())
5751 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5752 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5753 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5754 return 0;
5755
5756 // See if we are doing a comparison between a constant and an instruction that
5757 // can be folded into the comparison.
5758 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005759 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5760 // instruction, see if that instruction also has constants so that the
5761 // instruction can be folded into the icmp
5762 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5763 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5764 return Res;
5765 }
5766
5767 // Handle icmp with constant (but not simple integer constant) RHS
5768 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5769 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5770 switch (LHSI->getOpcode()) {
5771 case Instruction::GetElementPtr:
5772 if (RHSC->isNullValue()) {
5773 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5774 bool isAllZeros = true;
5775 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5776 if (!isa<Constant>(LHSI->getOperand(i)) ||
5777 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5778 isAllZeros = false;
5779 break;
5780 }
5781 if (isAllZeros)
5782 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5783 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5784 }
5785 break;
5786
5787 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005788 // Only fold icmp into the PHI if the phi and fcmp are in the same
5789 // block. If in the same block, we're encouraging jump threading. If
5790 // not, we are just pessimizing the code by making an i1 phi.
5791 if (LHSI->getParent() == I.getParent())
5792 if (Instruction *NV = FoldOpIntoPhi(I))
5793 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005794 break;
5795 case Instruction::Select: {
5796 // If either operand of the select is a constant, we can fold the
5797 // comparison into the select arms, which will cause one to be
5798 // constant folded and the select turned into a bitwise or.
5799 Value *Op1 = 0, *Op2 = 0;
5800 if (LHSI->hasOneUse()) {
5801 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5802 // Fold the known value into the constant operand.
5803 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5804 // Insert a new ICmp of the other select operand.
5805 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5806 LHSI->getOperand(2), RHSC,
5807 I.getName()), I);
5808 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5809 // Fold the known value into the constant operand.
5810 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5811 // Insert a new ICmp of the other select operand.
5812 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5813 LHSI->getOperand(1), RHSC,
5814 I.getName()), I);
5815 }
5816 }
5817
5818 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005819 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005820 break;
5821 }
5822 case Instruction::Malloc:
5823 // If we have (malloc != null), and if the malloc has a single use, we
5824 // can assume it is successful and remove the malloc.
5825 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5826 AddToWorkList(LHSI);
5827 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005828 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005829 }
5830 break;
5831 }
5832 }
5833
5834 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5835 if (User *GEP = dyn_castGetElementPtr(Op0))
5836 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5837 return NI;
5838 if (User *GEP = dyn_castGetElementPtr(Op1))
5839 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5840 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5841 return NI;
5842
5843 // Test to see if the operands of the icmp are casted versions of other
5844 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5845 // now.
5846 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5847 if (isa<PointerType>(Op0->getType()) &&
5848 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5849 // We keep moving the cast from the left operand over to the right
5850 // operand, where it can often be eliminated completely.
5851 Op0 = CI->getOperand(0);
5852
5853 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5854 // so eliminate it as well.
5855 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5856 Op1 = CI2->getOperand(0);
5857
5858 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005859 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005860 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5861 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5862 } else {
5863 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00005864 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005865 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005866 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005867 return new ICmpInst(I.getPredicate(), Op0, Op1);
5868 }
5869 }
5870
5871 if (isa<CastInst>(Op0)) {
5872 // Handle the special case of: icmp (cast bool to X), <cst>
5873 // This comes up when you have code like
5874 // int X = A < B;
5875 // if (X) ...
5876 // For generality, we handle any zero-extension of any operand comparison
5877 // with a constant or another cast from the same type.
5878 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5879 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5880 return R;
5881 }
5882
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005883 // See if it's the same type of instruction on the left and right.
5884 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
5885 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005886 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
5887 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
5888 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00005889 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005890 default: break;
5891 case Instruction::Add:
5892 case Instruction::Sub:
5893 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005894 // a+x icmp eq/ne b+x --> a icmp b
5895 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
5896 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005897 break;
5898 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005899 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
5900 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
5901 // Mask = -1 >> count-trailing-zeros(Cst).
5902 if (!CI->isZero() && !CI->isOne()) {
5903 const APInt &AP = CI->getValue();
5904 ConstantInt *Mask = ConstantInt::get(
5905 APInt::getLowBitsSet(AP.getBitWidth(),
5906 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005907 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005908 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
5909 Mask);
5910 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
5911 Mask);
5912 InsertNewInstBefore(And1, I);
5913 InsertNewInstBefore(And2, I);
5914 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005915 }
5916 }
5917 break;
5918 }
5919 }
5920 }
5921 }
5922
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005923 // ~x < ~y --> y < x
5924 { Value *A, *B;
5925 if (match(Op0, m_Not(m_Value(A))) &&
5926 match(Op1, m_Not(m_Value(B))))
5927 return new ICmpInst(I.getPredicate(), B, A);
5928 }
5929
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005930 if (I.isEquality()) {
5931 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005932
5933 // -x == -y --> x == y
5934 if (match(Op0, m_Neg(m_Value(A))) &&
5935 match(Op1, m_Neg(m_Value(B))))
5936 return new ICmpInst(I.getPredicate(), A, B);
5937
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005938 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5939 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5940 Value *OtherVal = A == Op1 ? B : A;
5941 return new ICmpInst(I.getPredicate(), OtherVal,
5942 Constant::getNullValue(A->getType()));
5943 }
5944
5945 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5946 // A^c1 == C^c2 --> A == C^(c1^c2)
5947 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5948 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5949 if (Op1->hasOneUse()) {
5950 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00005951 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005952 return new ICmpInst(I.getPredicate(), A,
5953 InsertNewInstBefore(Xor, I));
5954 }
5955
5956 // A^B == A^D -> B == D
5957 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5958 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5959 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5960 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5961 }
5962 }
5963
5964 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5965 (A == Op0 || B == Op0)) {
5966 // A == (A^B) -> B == 0
5967 Value *OtherVal = A == Op0 ? B : A;
5968 return new ICmpInst(I.getPredicate(), OtherVal,
5969 Constant::getNullValue(A->getType()));
5970 }
5971 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
5972 // (A-B) == A -> B == 0
5973 return new ICmpInst(I.getPredicate(), B,
5974 Constant::getNullValue(B->getType()));
5975 }
5976 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
5977 // A == (A-B) -> B == 0
5978 return new ICmpInst(I.getPredicate(), B,
5979 Constant::getNullValue(B->getType()));
5980 }
5981
5982 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5983 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5984 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5985 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5986 Value *X = 0, *Y = 0, *Z = 0;
5987
5988 if (A == C) {
5989 X = B; Y = D; Z = A;
5990 } else if (A == D) {
5991 X = B; Y = C; Z = A;
5992 } else if (B == C) {
5993 X = A; Y = D; Z = B;
5994 } else if (B == D) {
5995 X = A; Y = C; Z = B;
5996 }
5997
5998 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00005999 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6000 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006001 I.setOperand(0, Op1);
6002 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6003 return &I;
6004 }
6005 }
6006 }
6007 return Changed ? &I : 0;
6008}
6009
6010
6011/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6012/// and CmpRHS are both known to be integer constants.
6013Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6014 ConstantInt *DivRHS) {
6015 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6016 const APInt &CmpRHSV = CmpRHS->getValue();
6017
6018 // FIXME: If the operand types don't match the type of the divide
6019 // then don't attempt this transform. The code below doesn't have the
6020 // logic to deal with a signed divide and an unsigned compare (and
6021 // vice versa). This is because (x /s C1) <s C2 produces different
6022 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6023 // (x /u C1) <u C2. Simply casting the operands and result won't
6024 // work. :( The if statement below tests that condition and bails
6025 // if it finds it.
6026 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6027 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6028 return 0;
6029 if (DivRHS->isZero())
6030 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006031 if (DivIsSigned && DivRHS->isAllOnesValue())
6032 return 0; // The overflow computation also screws up here
6033 if (DivRHS->isOne())
6034 return 0; // Not worth bothering, and eliminates some funny cases
6035 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006036
6037 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6038 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6039 // C2 (CI). By solving for X we can turn this into a range check
6040 // instead of computing a divide.
6041 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6042
6043 // Determine if the product overflows by seeing if the product is
6044 // not equal to the divide. Make sure we do the same kind of divide
6045 // as in the LHS instruction that we're folding.
6046 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6047 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6048
6049 // Get the ICmp opcode
6050 ICmpInst::Predicate Pred = ICI.getPredicate();
6051
6052 // Figure out the interval that is being checked. For example, a comparison
6053 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6054 // Compute this interval based on the constants involved and the signedness of
6055 // the compare/divide. This computes a half-open interval, keeping track of
6056 // whether either value in the interval overflows. After analysis each
6057 // overflow variable is set to 0 if it's corresponding bound variable is valid
6058 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6059 int LoOverflow = 0, HiOverflow = 0;
6060 ConstantInt *LoBound = 0, *HiBound = 0;
6061
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006062 if (!DivIsSigned) { // udiv
6063 // e.g. X/5 op 3 --> [15, 20)
6064 LoBound = Prod;
6065 HiOverflow = LoOverflow = ProdOV;
6066 if (!HiOverflow)
6067 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006068 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006069 if (CmpRHSV == 0) { // (X / pos) op 0
6070 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6071 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6072 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006073 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006074 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6075 HiOverflow = LoOverflow = ProdOV;
6076 if (!HiOverflow)
6077 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6078 } else { // (X / pos) op neg
6079 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006080 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006081 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6082 if (!LoOverflow) {
6083 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6084 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6085 true) ? -1 : 0;
6086 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006087 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006088 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006089 if (CmpRHSV == 0) { // (X / neg) op 0
6090 // e.g. X/-5 op 0 --> [-4, 5)
6091 LoBound = AddOne(DivRHS);
6092 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6093 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6094 HiOverflow = 1; // [INTMIN+1, overflow)
6095 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6096 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006097 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006098 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006099 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006100 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6101 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006102 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006103 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006104 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6105 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006106 if (!HiOverflow)
6107 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006108 }
6109
6110 // Dividing by a negative swaps the condition. LT <-> GT
6111 Pred = ICmpInst::getSwappedPredicate(Pred);
6112 }
6113
6114 Value *X = DivI->getOperand(0);
6115 switch (Pred) {
6116 default: assert(0 && "Unhandled icmp opcode!");
6117 case ICmpInst::ICMP_EQ:
6118 if (LoOverflow && HiOverflow)
6119 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6120 else if (HiOverflow)
6121 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6122 ICmpInst::ICMP_UGE, X, LoBound);
6123 else if (LoOverflow)
6124 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6125 ICmpInst::ICMP_ULT, X, HiBound);
6126 else
6127 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6128 case ICmpInst::ICMP_NE:
6129 if (LoOverflow && HiOverflow)
6130 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6131 else if (HiOverflow)
6132 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6133 ICmpInst::ICMP_ULT, X, LoBound);
6134 else if (LoOverflow)
6135 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6136 ICmpInst::ICMP_UGE, X, HiBound);
6137 else
6138 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6139 case ICmpInst::ICMP_ULT:
6140 case ICmpInst::ICMP_SLT:
6141 if (LoOverflow == +1) // Low bound is greater than input range.
6142 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6143 if (LoOverflow == -1) // Low bound is less than input range.
6144 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6145 return new ICmpInst(Pred, X, LoBound);
6146 case ICmpInst::ICMP_UGT:
6147 case ICmpInst::ICMP_SGT:
6148 if (HiOverflow == +1) // High bound greater than input range.
6149 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6150 else if (HiOverflow == -1) // High bound less than input range.
6151 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6152 if (Pred == ICmpInst::ICMP_UGT)
6153 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6154 else
6155 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6156 }
6157}
6158
6159
6160/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6161///
6162Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6163 Instruction *LHSI,
6164 ConstantInt *RHS) {
6165 const APInt &RHSV = RHS->getValue();
6166
6167 switch (LHSI->getOpcode()) {
6168 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6169 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6170 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6171 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006172 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6173 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006174 Value *CompareVal = LHSI->getOperand(0);
6175
6176 // If the sign bit of the XorCST is not set, there is no change to
6177 // the operation, just stop using the Xor.
6178 if (!XorCST->getValue().isNegative()) {
6179 ICI.setOperand(0, CompareVal);
6180 AddToWorkList(LHSI);
6181 return &ICI;
6182 }
6183
6184 // Was the old condition true if the operand is positive?
6185 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6186
6187 // If so, the new one isn't.
6188 isTrueIfPositive ^= true;
6189
6190 if (isTrueIfPositive)
6191 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6192 else
6193 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6194 }
6195 }
6196 break;
6197 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6198 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6199 LHSI->getOperand(0)->hasOneUse()) {
6200 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6201
6202 // If the LHS is an AND of a truncating cast, we can widen the
6203 // and/compare to be the input width without changing the value
6204 // produced, eliminating a cast.
6205 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6206 // We can do this transformation if either the AND constant does not
6207 // have its sign bit set or if it is an equality comparison.
6208 // Extending a relational comparison when we're checking the sign
6209 // bit would not work.
6210 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006211 (ICI.isEquality() ||
6212 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006213 uint32_t BitWidth =
6214 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6215 APInt NewCST = AndCST->getValue();
6216 NewCST.zext(BitWidth);
6217 APInt NewCI = RHSV;
6218 NewCI.zext(BitWidth);
6219 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006220 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006221 ConstantInt::get(NewCST),LHSI->getName());
6222 InsertNewInstBefore(NewAnd, ICI);
6223 return new ICmpInst(ICI.getPredicate(), NewAnd,
6224 ConstantInt::get(NewCI));
6225 }
6226 }
6227
6228 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6229 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6230 // happens a LOT in code produced by the C front-end, for bitfield
6231 // access.
6232 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6233 if (Shift && !Shift->isShift())
6234 Shift = 0;
6235
6236 ConstantInt *ShAmt;
6237 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6238 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6239 const Type *AndTy = AndCST->getType(); // Type of the and.
6240
6241 // We can fold this as long as we can't shift unknown bits
6242 // into the mask. This can only happen with signed shift
6243 // rights, as they sign-extend.
6244 if (ShAmt) {
6245 bool CanFold = Shift->isLogicalShift();
6246 if (!CanFold) {
6247 // To test for the bad case of the signed shr, see if any
6248 // of the bits shifted in could be tested after the mask.
6249 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6250 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6251
6252 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6253 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6254 AndCST->getValue()) == 0)
6255 CanFold = true;
6256 }
6257
6258 if (CanFold) {
6259 Constant *NewCst;
6260 if (Shift->getOpcode() == Instruction::Shl)
6261 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6262 else
6263 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6264
6265 // Check to see if we are shifting out any of the bits being
6266 // compared.
6267 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6268 // If we shifted bits out, the fold is not going to work out.
6269 // As a special case, check to see if this means that the
6270 // result is always true or false now.
6271 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6272 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6273 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6274 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6275 } else {
6276 ICI.setOperand(1, NewCst);
6277 Constant *NewAndCST;
6278 if (Shift->getOpcode() == Instruction::Shl)
6279 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6280 else
6281 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6282 LHSI->setOperand(1, NewAndCST);
6283 LHSI->setOperand(0, Shift->getOperand(0));
6284 AddToWorkList(Shift); // Shift is dead.
6285 AddUsesToWorkList(ICI);
6286 return &ICI;
6287 }
6288 }
6289 }
6290
6291 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6292 // preferable because it allows the C<<Y expression to be hoisted out
6293 // of a loop if Y is invariant and X is not.
6294 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6295 ICI.isEquality() && !Shift->isArithmeticShift() &&
6296 isa<Instruction>(Shift->getOperand(0))) {
6297 // Compute C << Y.
6298 Value *NS;
6299 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006300 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006301 Shift->getOperand(1), "tmp");
6302 } else {
6303 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006304 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006305 Shift->getOperand(1), "tmp");
6306 }
6307 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6308
6309 // Compute X & (C << Y).
6310 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006311 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006312 InsertNewInstBefore(NewAnd, ICI);
6313
6314 ICI.setOperand(0, NewAnd);
6315 return &ICI;
6316 }
6317 }
6318 break;
6319
6320 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6321 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6322 if (!ShAmt) break;
6323
6324 uint32_t TypeBits = RHSV.getBitWidth();
6325
6326 // Check that the shift amount is in range. If not, don't perform
6327 // undefined shifts. When the shift is visited it will be
6328 // simplified.
6329 if (ShAmt->uge(TypeBits))
6330 break;
6331
6332 if (ICI.isEquality()) {
6333 // If we are comparing against bits always shifted out, the
6334 // comparison cannot succeed.
6335 Constant *Comp =
6336 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6337 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6338 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6339 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6340 return ReplaceInstUsesWith(ICI, Cst);
6341 }
6342
6343 if (LHSI->hasOneUse()) {
6344 // Otherwise strength reduce the shift into an and.
6345 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6346 Constant *Mask =
6347 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6348
6349 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006350 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006351 Mask, LHSI->getName()+".mask");
6352 Value *And = InsertNewInstBefore(AndI, ICI);
6353 return new ICmpInst(ICI.getPredicate(), And,
6354 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6355 }
6356 }
6357
6358 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6359 bool TrueIfSigned = false;
6360 if (LHSI->hasOneUse() &&
6361 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6362 // (X << 31) <s 0 --> (X&1) != 0
6363 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6364 (TypeBits-ShAmt->getZExtValue()-1));
6365 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006366 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006367 Mask, LHSI->getName()+".mask");
6368 Value *And = InsertNewInstBefore(AndI, ICI);
6369
6370 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6371 And, Constant::getNullValue(And->getType()));
6372 }
6373 break;
6374 }
6375
6376 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6377 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006378 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006379 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006380 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006381
Chris Lattner5ee84f82008-03-21 05:19:58 +00006382 // Check that the shift amount is in range. If not, don't perform
6383 // undefined shifts. When the shift is visited it will be
6384 // simplified.
6385 uint32_t TypeBits = RHSV.getBitWidth();
6386 if (ShAmt->uge(TypeBits))
6387 break;
6388
6389 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006390
Chris Lattner5ee84f82008-03-21 05:19:58 +00006391 // If we are comparing against bits always shifted out, the
6392 // comparison cannot succeed.
6393 APInt Comp = RHSV << ShAmtVal;
6394 if (LHSI->getOpcode() == Instruction::LShr)
6395 Comp = Comp.lshr(ShAmtVal);
6396 else
6397 Comp = Comp.ashr(ShAmtVal);
6398
6399 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6400 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6401 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6402 return ReplaceInstUsesWith(ICI, Cst);
6403 }
6404
6405 // Otherwise, check to see if the bits shifted out are known to be zero.
6406 // If so, we can compare against the unshifted value:
6407 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006408 if (LHSI->hasOneUse() &&
6409 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006410 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6411 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6412 ConstantExpr::getShl(RHS, ShAmt));
6413 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006414
Evan Chengfb9292a2008-04-23 00:38:06 +00006415 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006416 // Otherwise strength reduce the shift into an and.
6417 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6418 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006419
Chris Lattner5ee84f82008-03-21 05:19:58 +00006420 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006421 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006422 Mask, LHSI->getName()+".mask");
6423 Value *And = InsertNewInstBefore(AndI, ICI);
6424 return new ICmpInst(ICI.getPredicate(), And,
6425 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006426 }
6427 break;
6428 }
6429
6430 case Instruction::SDiv:
6431 case Instruction::UDiv:
6432 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6433 // Fold this div into the comparison, producing a range check.
6434 // Determine, based on the divide type, what the range is being
6435 // checked. If there is an overflow on the low or high side, remember
6436 // it, otherwise compute the range [low, hi) bounding the new value.
6437 // See: InsertRangeTest above for the kinds of replacements possible.
6438 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6439 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6440 DivRHS))
6441 return R;
6442 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006443
6444 case Instruction::Add:
6445 // Fold: icmp pred (add, X, C1), C2
6446
6447 if (!ICI.isEquality()) {
6448 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6449 if (!LHSC) break;
6450 const APInt &LHSV = LHSC->getValue();
6451
6452 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6453 .subtract(LHSV);
6454
6455 if (ICI.isSignedPredicate()) {
6456 if (CR.getLower().isSignBit()) {
6457 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6458 ConstantInt::get(CR.getUpper()));
6459 } else if (CR.getUpper().isSignBit()) {
6460 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6461 ConstantInt::get(CR.getLower()));
6462 }
6463 } else {
6464 if (CR.getLower().isMinValue()) {
6465 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6466 ConstantInt::get(CR.getUpper()));
6467 } else if (CR.getUpper().isMinValue()) {
6468 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6469 ConstantInt::get(CR.getLower()));
6470 }
6471 }
6472 }
6473 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006474 }
6475
6476 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6477 if (ICI.isEquality()) {
6478 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6479
6480 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6481 // the second operand is a constant, simplify a bit.
6482 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6483 switch (BO->getOpcode()) {
6484 case Instruction::SRem:
6485 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6486 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6487 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6488 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6489 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006490 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006491 BO->getName());
6492 InsertNewInstBefore(NewRem, ICI);
6493 return new ICmpInst(ICI.getPredicate(), NewRem,
6494 Constant::getNullValue(BO->getType()));
6495 }
6496 }
6497 break;
6498 case Instruction::Add:
6499 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6500 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6501 if (BO->hasOneUse())
6502 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6503 Subtract(RHS, BOp1C));
6504 } else if (RHSV == 0) {
6505 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6506 // efficiently invertible, or if the add has just this one use.
6507 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6508
6509 if (Value *NegVal = dyn_castNegVal(BOp1))
6510 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6511 else if (Value *NegVal = dyn_castNegVal(BOp0))
6512 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6513 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006514 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006515 InsertNewInstBefore(Neg, ICI);
6516 Neg->takeName(BO);
6517 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6518 }
6519 }
6520 break;
6521 case Instruction::Xor:
6522 // For the xor case, we can xor two constants together, eliminating
6523 // the explicit xor.
6524 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6525 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6526 ConstantExpr::getXor(RHS, BOC));
6527
6528 // FALLTHROUGH
6529 case Instruction::Sub:
6530 // Replace (([sub|xor] A, B) != 0) with (A != B)
6531 if (RHSV == 0)
6532 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6533 BO->getOperand(1));
6534 break;
6535
6536 case Instruction::Or:
6537 // If bits are being or'd in that are not present in the constant we
6538 // are comparing against, then the comparison could never succeed!
6539 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6540 Constant *NotCI = ConstantExpr::getNot(RHS);
6541 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6542 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6543 isICMP_NE));
6544 }
6545 break;
6546
6547 case Instruction::And:
6548 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6549 // If bits are being compared against that are and'd out, then the
6550 // comparison can never succeed!
6551 if ((RHSV & ~BOC->getValue()) != 0)
6552 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6553 isICMP_NE));
6554
6555 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6556 if (RHS == BOC && RHSV.isPowerOf2())
6557 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6558 ICmpInst::ICMP_NE, LHSI,
6559 Constant::getNullValue(RHS->getType()));
6560
6561 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006562 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006563 Value *X = BO->getOperand(0);
6564 Constant *Zero = Constant::getNullValue(X->getType());
6565 ICmpInst::Predicate pred = isICMP_NE ?
6566 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6567 return new ICmpInst(pred, X, Zero);
6568 }
6569
6570 // ((X & ~7) == 0) --> X < 8
6571 if (RHSV == 0 && isHighOnes(BOC)) {
6572 Value *X = BO->getOperand(0);
6573 Constant *NegX = ConstantExpr::getNeg(BOC);
6574 ICmpInst::Predicate pred = isICMP_NE ?
6575 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6576 return new ICmpInst(pred, X, NegX);
6577 }
6578 }
6579 default: break;
6580 }
6581 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6582 // Handle icmp {eq|ne} <intrinsic>, intcst.
6583 if (II->getIntrinsicID() == Intrinsic::bswap) {
6584 AddToWorkList(II);
6585 ICI.setOperand(0, II->getOperand(1));
6586 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6587 return &ICI;
6588 }
6589 }
6590 } else { // Not a ICMP_EQ/ICMP_NE
6591 // If the LHS is a cast from an integral value of the same size,
6592 // then since we know the RHS is a constant, try to simlify.
6593 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6594 Value *CastOp = Cast->getOperand(0);
6595 const Type *SrcTy = CastOp->getType();
6596 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6597 if (SrcTy->isInteger() &&
6598 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6599 // If this is an unsigned comparison, try to make the comparison use
6600 // smaller constant values.
6601 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6602 // X u< 128 => X s> -1
6603 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6604 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6605 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6606 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6607 // X u> 127 => X s< 0
6608 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6609 Constant::getNullValue(SrcTy));
6610 }
6611 }
6612 }
6613 }
6614 return 0;
6615}
6616
6617/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6618/// We only handle extending casts so far.
6619///
6620Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6621 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6622 Value *LHSCIOp = LHSCI->getOperand(0);
6623 const Type *SrcTy = LHSCIOp->getType();
6624 const Type *DestTy = LHSCI->getType();
6625 Value *RHSCIOp;
6626
6627 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6628 // integer type is the same size as the pointer type.
6629 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6630 getTargetData().getPointerSizeInBits() ==
6631 cast<IntegerType>(DestTy)->getBitWidth()) {
6632 Value *RHSOp = 0;
6633 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6634 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6635 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6636 RHSOp = RHSC->getOperand(0);
6637 // If the pointer types don't match, insert a bitcast.
6638 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006639 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006640 }
6641
6642 if (RHSOp)
6643 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6644 }
6645
6646 // The code below only handles extension cast instructions, so far.
6647 // Enforce this.
6648 if (LHSCI->getOpcode() != Instruction::ZExt &&
6649 LHSCI->getOpcode() != Instruction::SExt)
6650 return 0;
6651
6652 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6653 bool isSignedCmp = ICI.isSignedPredicate();
6654
6655 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6656 // Not an extension from the same type?
6657 RHSCIOp = CI->getOperand(0);
6658 if (RHSCIOp->getType() != LHSCIOp->getType())
6659 return 0;
6660
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006661 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006662 // and the other is a zext), then we can't handle this.
6663 if (CI->getOpcode() != LHSCI->getOpcode())
6664 return 0;
6665
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006666 // Deal with equality cases early.
6667 if (ICI.isEquality())
6668 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6669
6670 // A signed comparison of sign extended values simplifies into a
6671 // signed comparison.
6672 if (isSignedCmp && isSignedExt)
6673 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6674
6675 // The other three cases all fold into an unsigned comparison.
6676 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006677 }
6678
6679 // If we aren't dealing with a constant on the RHS, exit early
6680 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6681 if (!CI)
6682 return 0;
6683
6684 // Compute the constant that would happen if we truncated to SrcTy then
6685 // reextended to DestTy.
6686 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6687 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6688
6689 // If the re-extended constant didn't change...
6690 if (Res2 == CI) {
6691 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6692 // For example, we might have:
6693 // %A = sext short %X to uint
6694 // %B = icmp ugt uint %A, 1330
6695 // It is incorrect to transform this into
6696 // %B = icmp ugt short %X, 1330
6697 // because %A may have negative value.
6698 //
Chris Lattner3d816532008-07-11 04:09:09 +00006699 // However, we allow this when the compare is EQ/NE, because they are
6700 // signless.
6701 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006702 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006703 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006704 }
6705
6706 // The re-extended constant changed so the constant cannot be represented
6707 // in the shorter type. Consequently, we cannot emit a simple comparison.
6708
6709 // First, handle some easy cases. We know the result cannot be equal at this
6710 // point so handle the ICI.isEquality() cases
6711 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6712 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6713 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6714 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6715
6716 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6717 // should have been folded away previously and not enter in here.
6718 Value *Result;
6719 if (isSignedCmp) {
6720 // We're performing a signed comparison.
6721 if (cast<ConstantInt>(CI)->getValue().isNegative())
6722 Result = ConstantInt::getFalse(); // X < (small) --> false
6723 else
6724 Result = ConstantInt::getTrue(); // X < (large) --> true
6725 } else {
6726 // We're performing an unsigned comparison.
6727 if (isSignedExt) {
6728 // We're performing an unsigned comp with a sign extended value.
6729 // This is true if the input is >= 0. [aka >s -1]
6730 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6731 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6732 NegOne, ICI.getName()), ICI);
6733 } else {
6734 // Unsigned extend & unsigned compare -> always true.
6735 Result = ConstantInt::getTrue();
6736 }
6737 }
6738
6739 // Finally, return the value computed.
6740 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006741 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006742 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006743
6744 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6745 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6746 "ICmp should be folded!");
6747 if (Constant *CI = dyn_cast<Constant>(Result))
6748 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6749 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006750}
6751
6752Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6753 return commonShiftTransforms(I);
6754}
6755
6756Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6757 return commonShiftTransforms(I);
6758}
6759
6760Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006761 if (Instruction *R = commonShiftTransforms(I))
6762 return R;
6763
6764 Value *Op0 = I.getOperand(0);
6765
6766 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6767 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6768 if (CSI->isAllOnesValue())
6769 return ReplaceInstUsesWith(I, CSI);
6770
6771 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006772 if (!isa<VectorType>(I.getType()) &&
6773 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006774 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006775 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006776
6777 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006778}
6779
6780Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6781 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6782 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6783
6784 // shl X, 0 == X and shr X, 0 == X
6785 // shl 0, X == 0 and shr 0, X == 0
6786 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6787 Op0 == Constant::getNullValue(Op0->getType()))
6788 return ReplaceInstUsesWith(I, Op0);
6789
6790 if (isa<UndefValue>(Op0)) {
6791 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6792 return ReplaceInstUsesWith(I, Op0);
6793 else // undef << X -> 0, undef >>u X -> 0
6794 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6795 }
6796 if (isa<UndefValue>(Op1)) {
6797 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6798 return ReplaceInstUsesWith(I, Op0);
6799 else // X << undef, X >>u undef -> 0
6800 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6801 }
6802
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006803 // Try to fold constant and into select arguments.
6804 if (isa<Constant>(Op0))
6805 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6806 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6807 return R;
6808
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006809 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6810 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6811 return Res;
6812 return 0;
6813}
6814
6815Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6816 BinaryOperator &I) {
6817 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6818
6819 // See if we can simplify any instructions used by the instruction whose sole
6820 // purpose is to compute bits we don't care about.
6821 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6822 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6823 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6824 KnownZero, KnownOne))
6825 return &I;
6826
6827 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6828 // of a signed value.
6829 //
6830 if (Op1->uge(TypeBits)) {
6831 if (I.getOpcode() != Instruction::AShr)
6832 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6833 else {
6834 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6835 return &I;
6836 }
6837 }
6838
6839 // ((X*C1) << C2) == (X * (C1 << C2))
6840 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6841 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6842 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00006843 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006844 ConstantExpr::getShl(BOOp, Op1));
6845
6846 // Try to fold constant and into select arguments.
6847 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6848 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6849 return R;
6850 if (isa<PHINode>(Op0))
6851 if (Instruction *NV = FoldOpIntoPhi(I))
6852 return NV;
6853
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006854 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6855 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6856 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6857 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6858 // place. Don't try to do this transformation in this case. Also, we
6859 // require that the input operand is a shift-by-constant so that we have
6860 // confidence that the shifts will get folded together. We could do this
6861 // xform in more cases, but it is unlikely to be profitable.
6862 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6863 isa<ConstantInt>(TrOp->getOperand(1))) {
6864 // Okay, we'll do this xform. Make the shift of shift.
6865 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00006866 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006867 I.getName());
6868 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6869
6870 // For logical shifts, the truncation has the effect of making the high
6871 // part of the register be zeros. Emulate this by inserting an AND to
6872 // clear the top bits as needed. This 'and' will usually be zapped by
6873 // other xforms later if dead.
6874 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6875 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6876 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6877
6878 // The mask we constructed says what the trunc would do if occurring
6879 // between the shifts. We want to know the effect *after* the second
6880 // shift. We know that it is a logical shift by a constant, so adjust the
6881 // mask as appropriate.
6882 if (I.getOpcode() == Instruction::Shl)
6883 MaskV <<= Op1->getZExtValue();
6884 else {
6885 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6886 MaskV = MaskV.lshr(Op1->getZExtValue());
6887 }
6888
Gabor Greifa645dd32008-05-16 19:29:10 +00006889 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006890 TI->getName());
6891 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6892
6893 // Return the value truncated to the interesting size.
6894 return new TruncInst(And, I.getType());
6895 }
6896 }
6897
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006898 if (Op0->hasOneUse()) {
6899 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6900 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6901 Value *V1, *V2;
6902 ConstantInt *CC;
6903 switch (Op0BO->getOpcode()) {
6904 default: break;
6905 case Instruction::Add:
6906 case Instruction::And:
6907 case Instruction::Or:
6908 case Instruction::Xor: {
6909 // These operators commute.
6910 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6911 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6912 match(Op0BO->getOperand(1),
6913 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006914 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006915 Op0BO->getOperand(0), Op1,
6916 Op0BO->getName());
6917 InsertNewInstBefore(YS, I); // (Y << C)
6918 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006919 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006920 Op0BO->getOperand(1)->getName());
6921 InsertNewInstBefore(X, I); // (X + (Y << C))
6922 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006923 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006924 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6925 }
6926
6927 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6928 Value *Op0BOOp1 = Op0BO->getOperand(1);
6929 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6930 match(Op0BOOp1,
6931 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
6932 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6933 V2 == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006934 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006935 Op0BO->getOperand(0), Op1,
6936 Op0BO->getName());
6937 InsertNewInstBefore(YS, I); // (Y << C)
6938 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006939 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006940 V1->getName()+".mask");
6941 InsertNewInstBefore(XM, I); // X & (CC << C)
6942
Gabor Greifa645dd32008-05-16 19:29:10 +00006943 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006944 }
6945 }
6946
6947 // FALL THROUGH.
6948 case Instruction::Sub: {
6949 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6950 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6951 match(Op0BO->getOperand(0),
6952 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006953 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006954 Op0BO->getOperand(1), Op1,
6955 Op0BO->getName());
6956 InsertNewInstBefore(YS, I); // (Y << C)
6957 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006958 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006959 Op0BO->getOperand(0)->getName());
6960 InsertNewInstBefore(X, I); // (X + (Y << C))
6961 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006962 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006963 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6964 }
6965
6966 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
6967 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6968 match(Op0BO->getOperand(0),
6969 m_And(m_Shr(m_Value(V1), m_Value(V2)),
6970 m_ConstantInt(CC))) && V2 == Op1 &&
6971 cast<BinaryOperator>(Op0BO->getOperand(0))
6972 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006973 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006974 Op0BO->getOperand(1), Op1,
6975 Op0BO->getName());
6976 InsertNewInstBefore(YS, I); // (Y << C)
6977 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006978 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006979 V1->getName()+".mask");
6980 InsertNewInstBefore(XM, I); // X & (CC << C)
6981
Gabor Greifa645dd32008-05-16 19:29:10 +00006982 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006983 }
6984
6985 break;
6986 }
6987 }
6988
6989
6990 // If the operand is an bitwise operator with a constant RHS, and the
6991 // shift is the only use, we can pull it out of the shift.
6992 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6993 bool isValid = true; // Valid only for And, Or, Xor
6994 bool highBitSet = false; // Transform if high bit of constant set?
6995
6996 switch (Op0BO->getOpcode()) {
6997 default: isValid = false; break; // Do not perform transform!
6998 case Instruction::Add:
6999 isValid = isLeftShift;
7000 break;
7001 case Instruction::Or:
7002 case Instruction::Xor:
7003 highBitSet = false;
7004 break;
7005 case Instruction::And:
7006 highBitSet = true;
7007 break;
7008 }
7009
7010 // If this is a signed shift right, and the high bit is modified
7011 // by the logical operation, do not perform the transformation.
7012 // The highBitSet boolean indicates the value of the high bit of
7013 // the constant which would cause it to be modified for this
7014 // operation.
7015 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007016 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007017 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007018
7019 if (isValid) {
7020 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7021
7022 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007023 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007024 InsertNewInstBefore(NewShift, I);
7025 NewShift->takeName(Op0BO);
7026
Gabor Greifa645dd32008-05-16 19:29:10 +00007027 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007028 NewRHS);
7029 }
7030 }
7031 }
7032 }
7033
7034 // Find out if this is a shift of a shift by a constant.
7035 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7036 if (ShiftOp && !ShiftOp->isShift())
7037 ShiftOp = 0;
7038
7039 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7040 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7041 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7042 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7043 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7044 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7045 Value *X = ShiftOp->getOperand(0);
7046
7047 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7048 if (AmtSum > TypeBits)
7049 AmtSum = TypeBits;
7050
7051 const IntegerType *Ty = cast<IntegerType>(I.getType());
7052
7053 // Check for (X << c1) << c2 and (X >> c1) >> c2
7054 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007055 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007056 ConstantInt::get(Ty, AmtSum));
7057 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7058 I.getOpcode() == Instruction::AShr) {
7059 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007060 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007061 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7062 I.getOpcode() == Instruction::LShr) {
7063 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7064 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007065 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007066 InsertNewInstBefore(Shift, I);
7067
7068 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007069 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007070 }
7071
7072 // Okay, if we get here, one shift must be left, and the other shift must be
7073 // right. See if the amounts are equal.
7074 if (ShiftAmt1 == ShiftAmt2) {
7075 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7076 if (I.getOpcode() == Instruction::Shl) {
7077 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007078 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007079 }
7080 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7081 if (I.getOpcode() == Instruction::LShr) {
7082 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007083 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007084 }
7085 // We can simplify ((X << C) >>s C) into a trunc + sext.
7086 // NOTE: we could do this for any C, but that would make 'unusual' integer
7087 // types. For now, just stick to ones well-supported by the code
7088 // generators.
7089 const Type *SExtType = 0;
7090 switch (Ty->getBitWidth() - ShiftAmt1) {
7091 case 1 :
7092 case 8 :
7093 case 16 :
7094 case 32 :
7095 case 64 :
7096 case 128:
7097 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7098 break;
7099 default: break;
7100 }
7101 if (SExtType) {
7102 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7103 InsertNewInstBefore(NewTrunc, I);
7104 return new SExtInst(NewTrunc, Ty);
7105 }
7106 // Otherwise, we can't handle it yet.
7107 } else if (ShiftAmt1 < ShiftAmt2) {
7108 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7109
7110 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7111 if (I.getOpcode() == Instruction::Shl) {
7112 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7113 ShiftOp->getOpcode() == Instruction::AShr);
7114 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007115 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007116 InsertNewInstBefore(Shift, I);
7117
7118 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007119 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007120 }
7121
7122 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7123 if (I.getOpcode() == Instruction::LShr) {
7124 assert(ShiftOp->getOpcode() == Instruction::Shl);
7125 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007126 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007127 InsertNewInstBefore(Shift, I);
7128
7129 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007130 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007131 }
7132
7133 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7134 } else {
7135 assert(ShiftAmt2 < ShiftAmt1);
7136 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7137
7138 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7139 if (I.getOpcode() == Instruction::Shl) {
7140 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7141 ShiftOp->getOpcode() == Instruction::AShr);
7142 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007143 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007144 ConstantInt::get(Ty, ShiftDiff));
7145 InsertNewInstBefore(Shift, I);
7146
7147 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007148 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007149 }
7150
7151 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7152 if (I.getOpcode() == Instruction::LShr) {
7153 assert(ShiftOp->getOpcode() == Instruction::Shl);
7154 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007155 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007156 InsertNewInstBefore(Shift, I);
7157
7158 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007159 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007160 }
7161
7162 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7163 }
7164 }
7165 return 0;
7166}
7167
7168
7169/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7170/// expression. If so, decompose it, returning some value X, such that Val is
7171/// X*Scale+Offset.
7172///
7173static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7174 int &Offset) {
7175 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7176 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7177 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007178 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007179 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007180 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7181 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7182 if (I->getOpcode() == Instruction::Shl) {
7183 // This is a value scaled by '1 << the shift amt'.
7184 Scale = 1U << RHS->getZExtValue();
7185 Offset = 0;
7186 return I->getOperand(0);
7187 } else if (I->getOpcode() == Instruction::Mul) {
7188 // This value is scaled by 'RHS'.
7189 Scale = RHS->getZExtValue();
7190 Offset = 0;
7191 return I->getOperand(0);
7192 } else if (I->getOpcode() == Instruction::Add) {
7193 // We have X+C. Check to see if we really have (X*C2)+C1,
7194 // where C1 is divisible by C2.
7195 unsigned SubScale;
7196 Value *SubVal =
7197 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7198 Offset += RHS->getZExtValue();
7199 Scale = SubScale;
7200 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007201 }
7202 }
7203 }
7204
7205 // Otherwise, we can't look past this.
7206 Scale = 1;
7207 Offset = 0;
7208 return Val;
7209}
7210
7211
7212/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7213/// try to eliminate the cast by moving the type information into the alloc.
7214Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7215 AllocationInst &AI) {
7216 const PointerType *PTy = cast<PointerType>(CI.getType());
7217
7218 // Remove any uses of AI that are dead.
7219 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7220
7221 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7222 Instruction *User = cast<Instruction>(*UI++);
7223 if (isInstructionTriviallyDead(User)) {
7224 while (UI != E && *UI == User)
7225 ++UI; // If this instruction uses AI more than once, don't break UI.
7226
7227 ++NumDeadInst;
7228 DOUT << "IC: DCE: " << *User;
7229 EraseInstFromFunction(*User);
7230 }
7231 }
7232
7233 // Get the type really allocated and the type casted to.
7234 const Type *AllocElTy = AI.getAllocatedType();
7235 const Type *CastElTy = PTy->getElementType();
7236 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7237
7238 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7239 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7240 if (CastElTyAlign < AllocElTyAlign) return 0;
7241
7242 // If the allocation has multiple uses, only promote it if we are strictly
7243 // increasing the alignment of the resultant allocation. If we keep it the
7244 // same, we open the door to infinite loops of various kinds.
7245 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7246
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007247 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7248 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007249 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7250
7251 // See if we can satisfy the modulus by pulling a scale out of the array
7252 // size argument.
7253 unsigned ArraySizeScale;
7254 int ArrayOffset;
7255 Value *NumElements = // See if the array size is a decomposable linear expr.
7256 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7257
7258 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7259 // do the xform.
7260 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7261 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7262
7263 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7264 Value *Amt = 0;
7265 if (Scale == 1) {
7266 Amt = NumElements;
7267 } else {
7268 // If the allocation size is constant, form a constant mul expression
7269 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7270 if (isa<ConstantInt>(NumElements))
7271 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7272 // otherwise multiply the amount and the number of elements
7273 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007274 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007275 Amt = InsertNewInstBefore(Tmp, AI);
7276 }
7277 }
7278
7279 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7280 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007281 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007282 Amt = InsertNewInstBefore(Tmp, AI);
7283 }
7284
7285 AllocationInst *New;
7286 if (isa<MallocInst>(AI))
7287 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7288 else
7289 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7290 InsertNewInstBefore(New, AI);
7291 New->takeName(&AI);
7292
7293 // If the allocation has multiple uses, insert a cast and change all things
7294 // that used it to use the new cast. This will also hack on CI, but it will
7295 // die soon.
7296 if (!AI.hasOneUse()) {
7297 AddUsesToWorkList(AI);
7298 // New is the allocation instruction, pointer typed. AI is the original
7299 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7300 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7301 InsertNewInstBefore(NewCast, AI);
7302 AI.replaceAllUsesWith(NewCast);
7303 }
7304 return ReplaceInstUsesWith(CI, New);
7305}
7306
7307/// CanEvaluateInDifferentType - Return true if we can take the specified value
7308/// and return it as type Ty without inserting any new casts and without
7309/// changing the computed value. This is used by code that tries to decide
7310/// whether promoting or shrinking integer operations to wider or smaller types
7311/// will allow us to eliminate a truncate or extend.
7312///
7313/// This is a truncation operation if Ty is smaller than V->getType(), or an
7314/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007315///
7316/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7317/// should return true if trunc(V) can be computed by computing V in the smaller
7318/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7319/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7320/// efficiently truncated.
7321///
7322/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7323/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7324/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007325bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7326 unsigned CastOpc,
7327 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007328 // We can always evaluate constants in another type.
7329 if (isa<ConstantInt>(V))
7330 return true;
7331
7332 Instruction *I = dyn_cast<Instruction>(V);
7333 if (!I) return false;
7334
7335 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7336
Chris Lattneref70bb82007-08-02 06:11:14 +00007337 // If this is an extension or truncate, we can often eliminate it.
7338 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7339 // If this is a cast from the destination type, we can trivially eliminate
7340 // it, and this will remove a cast overall.
7341 if (I->getOperand(0)->getType() == Ty) {
7342 // If the first operand is itself a cast, and is eliminable, do not count
7343 // this as an eliminable cast. We would prefer to eliminate those two
7344 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007345 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007346 ++NumCastsRemoved;
7347 return true;
7348 }
7349 }
7350
7351 // We can't extend or shrink something that has multiple uses: doing so would
7352 // require duplicating the instruction in general, which isn't profitable.
7353 if (!I->hasOneUse()) return false;
7354
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007355 switch (I->getOpcode()) {
7356 case Instruction::Add:
7357 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007358 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007359 case Instruction::And:
7360 case Instruction::Or:
7361 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007362 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007363 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7364 NumCastsRemoved) &&
7365 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7366 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007367
7368 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007369 // If we are truncating the result of this SHL, and if it's a shift of a
7370 // constant amount, we can always perform a SHL in a smaller type.
7371 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7372 uint32_t BitWidth = Ty->getBitWidth();
7373 if (BitWidth < OrigTy->getBitWidth() &&
7374 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007375 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7376 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007377 }
7378 break;
7379 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007380 // If this is a truncate of a logical shr, we can truncate it to a smaller
7381 // lshr iff we know that the bits we would otherwise be shifting in are
7382 // already zeros.
7383 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7384 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7385 uint32_t BitWidth = Ty->getBitWidth();
7386 if (BitWidth < OrigBitWidth &&
7387 MaskedValueIsZero(I->getOperand(0),
7388 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7389 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007390 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7391 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007392 }
7393 }
7394 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007395 case Instruction::ZExt:
7396 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007397 case Instruction::Trunc:
7398 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007399 // can safely replace it. Note that replacing it does not reduce the number
7400 // of casts in the input.
7401 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007402 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007403 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007404 case Instruction::Select: {
7405 SelectInst *SI = cast<SelectInst>(I);
7406 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7407 NumCastsRemoved) &&
7408 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7409 NumCastsRemoved);
7410 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007411 case Instruction::PHI: {
7412 // We can change a phi if we can change all operands.
7413 PHINode *PN = cast<PHINode>(I);
7414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7415 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7416 NumCastsRemoved))
7417 return false;
7418 return true;
7419 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007420 default:
7421 // TODO: Can handle more cases here.
7422 break;
7423 }
7424
7425 return false;
7426}
7427
7428/// EvaluateInDifferentType - Given an expression that
7429/// CanEvaluateInDifferentType returns true for, actually insert the code to
7430/// evaluate the expression.
7431Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7432 bool isSigned) {
7433 if (Constant *C = dyn_cast<Constant>(V))
7434 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7435
7436 // Otherwise, it must be an instruction.
7437 Instruction *I = cast<Instruction>(V);
7438 Instruction *Res = 0;
7439 switch (I->getOpcode()) {
7440 case Instruction::Add:
7441 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007442 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007443 case Instruction::And:
7444 case Instruction::Or:
7445 case Instruction::Xor:
7446 case Instruction::AShr:
7447 case Instruction::LShr:
7448 case Instruction::Shl: {
7449 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7450 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007451 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007452 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007453 break;
7454 }
7455 case Instruction::Trunc:
7456 case Instruction::ZExt:
7457 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007458 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007459 // just return the source. There's no need to insert it because it is not
7460 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007461 if (I->getOperand(0)->getType() == Ty)
7462 return I->getOperand(0);
7463
Chris Lattner4200c2062008-06-18 04:00:49 +00007464 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007465 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007466 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007467 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007468 case Instruction::Select: {
7469 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7470 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7471 Res = SelectInst::Create(I->getOperand(0), True, False);
7472 break;
7473 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007474 case Instruction::PHI: {
7475 PHINode *OPN = cast<PHINode>(I);
7476 PHINode *NPN = PHINode::Create(Ty);
7477 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7478 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7479 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7480 }
7481 Res = NPN;
7482 break;
7483 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007484 default:
7485 // TODO: Can handle more cases here.
7486 assert(0 && "Unreachable!");
7487 break;
7488 }
7489
Chris Lattner4200c2062008-06-18 04:00:49 +00007490 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007491 return InsertNewInstBefore(Res, *I);
7492}
7493
7494/// @brief Implement the transforms common to all CastInst visitors.
7495Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7496 Value *Src = CI.getOperand(0);
7497
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007498 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7499 // eliminate it now.
7500 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7501 if (Instruction::CastOps opc =
7502 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7503 // The first cast (CSrc) is eliminable so we need to fix up or replace
7504 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007505 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007506 }
7507 }
7508
7509 // If we are casting a select then fold the cast into the select
7510 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7511 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7512 return NV;
7513
7514 // If we are casting a PHI then fold the cast into the PHI
7515 if (isa<PHINode>(Src))
7516 if (Instruction *NV = FoldOpIntoPhi(CI))
7517 return NV;
7518
7519 return 0;
7520}
7521
7522/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7523Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7524 Value *Src = CI.getOperand(0);
7525
7526 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7527 // If casting the result of a getelementptr instruction with no offset, turn
7528 // this into a cast of the original pointer!
7529 if (GEP->hasAllZeroIndices()) {
7530 // Changing the cast operand is usually not a good idea but it is safe
7531 // here because the pointer operand is being replaced with another
7532 // pointer operand so the opcode doesn't need to change.
7533 AddToWorkList(GEP);
7534 CI.setOperand(0, GEP->getOperand(0));
7535 return &CI;
7536 }
7537
7538 // If the GEP has a single use, and the base pointer is a bitcast, and the
7539 // GEP computes a constant offset, see if we can convert these three
7540 // instructions into fewer. This typically happens with unions and other
7541 // non-type-safe code.
7542 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7543 if (GEP->hasAllConstantIndices()) {
7544 // We are guaranteed to get a constant from EmitGEPOffset.
7545 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7546 int64_t Offset = OffsetV->getSExtValue();
7547
7548 // Get the base pointer input of the bitcast, and the type it points to.
7549 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7550 const Type *GEPIdxTy =
7551 cast<PointerType>(OrigBase->getType())->getElementType();
7552 if (GEPIdxTy->isSized()) {
7553 SmallVector<Value*, 8> NewIndices;
7554
7555 // Start with the index over the outer type. Note that the type size
7556 // might be zero (even if the offset isn't zero) if the indexed type
7557 // is something like [0 x {int, int}]
7558 const Type *IntPtrTy = TD->getIntPtrType();
7559 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007560 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007561 FirstIdx = Offset/TySize;
7562 Offset %= TySize;
7563
7564 // Handle silly modulus not returning values values [0..TySize).
7565 if (Offset < 0) {
7566 --FirstIdx;
7567 Offset += TySize;
7568 assert(Offset >= 0);
7569 }
7570 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7571 }
7572
7573 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7574
7575 // Index into the types. If we fail, set OrigBase to null.
7576 while (Offset) {
7577 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7578 const StructLayout *SL = TD->getStructLayout(STy);
7579 if (Offset < (int64_t)SL->getSizeInBytes()) {
7580 unsigned Elt = SL->getElementContainingOffset(Offset);
7581 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7582
7583 Offset -= SL->getElementOffset(Elt);
7584 GEPIdxTy = STy->getElementType(Elt);
7585 } else {
7586 // Otherwise, we can't index into this, bail out.
7587 Offset = 0;
7588 OrigBase = 0;
7589 }
7590 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7591 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007592 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007593 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7594 Offset %= EltSize;
7595 } else {
7596 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7597 }
7598 GEPIdxTy = STy->getElementType();
7599 } else {
7600 // Otherwise, we can't index into this, bail out.
7601 Offset = 0;
7602 OrigBase = 0;
7603 }
7604 }
7605 if (OrigBase) {
7606 // If we were able to index down into an element, create the GEP
7607 // and bitcast the result. This eliminates one bitcast, potentially
7608 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007609 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7610 NewIndices.begin(),
7611 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007612 InsertNewInstBefore(NGEP, CI);
7613 NGEP->takeName(GEP);
7614
7615 if (isa<BitCastInst>(CI))
7616 return new BitCastInst(NGEP, CI.getType());
7617 assert(isa<PtrToIntInst>(CI));
7618 return new PtrToIntInst(NGEP, CI.getType());
7619 }
7620 }
7621 }
7622 }
7623 }
7624
7625 return commonCastTransforms(CI);
7626}
7627
7628
7629
7630/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7631/// integer types. This function implements the common transforms for all those
7632/// cases.
7633/// @brief Implement the transforms common to CastInst with integer operands
7634Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7635 if (Instruction *Result = commonCastTransforms(CI))
7636 return Result;
7637
7638 Value *Src = CI.getOperand(0);
7639 const Type *SrcTy = Src->getType();
7640 const Type *DestTy = CI.getType();
7641 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7642 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7643
7644 // See if we can simplify any instructions used by the LHS whose sole
7645 // purpose is to compute bits we don't care about.
7646 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7647 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7648 KnownZero, KnownOne))
7649 return &CI;
7650
7651 // If the source isn't an instruction or has more than one use then we
7652 // can't do anything more.
7653 Instruction *SrcI = dyn_cast<Instruction>(Src);
7654 if (!SrcI || !Src->hasOneUse())
7655 return 0;
7656
7657 // Attempt to propagate the cast into the instruction for int->int casts.
7658 int NumCastsRemoved = 0;
7659 if (!isa<BitCastInst>(CI) &&
7660 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007661 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007662 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007663 // eliminates the cast, so it is always a win. If this is a zero-extension,
7664 // we need to do an AND to maintain the clear top-part of the computation,
7665 // so we require that the input have eliminated at least one cast. If this
7666 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007667 // require that two casts have been eliminated.
7668 bool DoXForm;
7669 switch (CI.getOpcode()) {
7670 default:
7671 // All the others use floating point so we shouldn't actually
7672 // get here because of the check above.
7673 assert(0 && "Unknown cast type");
7674 case Instruction::Trunc:
7675 DoXForm = true;
7676 break;
7677 case Instruction::ZExt:
7678 DoXForm = NumCastsRemoved >= 1;
7679 break;
7680 case Instruction::SExt:
7681 DoXForm = NumCastsRemoved >= 2;
7682 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007683 }
7684
7685 if (DoXForm) {
7686 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7687 CI.getOpcode() == Instruction::SExt);
7688 assert(Res->getType() == DestTy);
7689 switch (CI.getOpcode()) {
7690 default: assert(0 && "Unknown cast type!");
7691 case Instruction::Trunc:
7692 case Instruction::BitCast:
7693 // Just replace this cast with the result.
7694 return ReplaceInstUsesWith(CI, Res);
7695 case Instruction::ZExt: {
7696 // We need to emit an AND to clear the high bits.
7697 assert(SrcBitSize < DestBitSize && "Not a zext?");
7698 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7699 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007700 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007701 }
7702 case Instruction::SExt:
7703 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007704 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007705 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7706 CI), DestTy);
7707 }
7708 }
7709 }
7710
7711 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7712 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7713
7714 switch (SrcI->getOpcode()) {
7715 case Instruction::Add:
7716 case Instruction::Mul:
7717 case Instruction::And:
7718 case Instruction::Or:
7719 case Instruction::Xor:
7720 // If we are discarding information, rewrite.
7721 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7722 // Don't insert two casts if they cannot be eliminated. We allow
7723 // two casts to be inserted if the sizes are the same. This could
7724 // only be converting signedness, which is a noop.
7725 if (DestBitSize == SrcBitSize ||
7726 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7727 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7728 Instruction::CastOps opcode = CI.getOpcode();
7729 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7730 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007731 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007732 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7733 }
7734 }
7735
7736 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7737 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7738 SrcI->getOpcode() == Instruction::Xor &&
7739 Op1 == ConstantInt::getTrue() &&
7740 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7741 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007742 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007743 }
7744 break;
7745 case Instruction::SDiv:
7746 case Instruction::UDiv:
7747 case Instruction::SRem:
7748 case Instruction::URem:
7749 // If we are just changing the sign, rewrite.
7750 if (DestBitSize == SrcBitSize) {
7751 // Don't insert two casts if they cannot be eliminated. We allow
7752 // two casts to be inserted if the sizes are the same. This could
7753 // only be converting signedness, which is a noop.
7754 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7755 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7756 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7757 Op0, DestTy, SrcI);
7758 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7759 Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007760 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007761 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7762 }
7763 }
7764 break;
7765
7766 case Instruction::Shl:
7767 // Allow changing the sign of the source operand. Do not allow
7768 // changing the size of the shift, UNLESS the shift amount is a
7769 // constant. We must not change variable sized shifts to a smaller
7770 // size, because it is undefined to shift more bits out than exist
7771 // in the value.
7772 if (DestBitSize == SrcBitSize ||
7773 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7774 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7775 Instruction::BitCast : Instruction::Trunc);
7776 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7777 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007778 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007779 }
7780 break;
7781 case Instruction::AShr:
7782 // If this is a signed shr, and if all bits shifted in are about to be
7783 // truncated off, turn it into an unsigned shr to allow greater
7784 // simplifications.
7785 if (DestBitSize < SrcBitSize &&
7786 isa<ConstantInt>(Op1)) {
7787 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7788 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7789 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007790 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007791 }
7792 }
7793 break;
7794 }
7795 return 0;
7796}
7797
7798Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7799 if (Instruction *Result = commonIntCastTransforms(CI))
7800 return Result;
7801
7802 Value *Src = CI.getOperand(0);
7803 const Type *Ty = CI.getType();
7804 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7805 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7806
7807 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7808 switch (SrcI->getOpcode()) {
7809 default: break;
7810 case Instruction::LShr:
7811 // We can shrink lshr to something smaller if we know the bits shifted in
7812 // are already zeros.
7813 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7814 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7815
7816 // Get a mask for the bits shifting in.
7817 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7818 Value* SrcIOp0 = SrcI->getOperand(0);
7819 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7820 if (ShAmt >= DestBitWidth) // All zeros.
7821 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7822
7823 // Okay, we can shrink this. Truncate the input, then return a new
7824 // shift.
7825 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7826 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7827 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007828 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007829 }
7830 } else { // This is a variable shr.
7831
7832 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7833 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7834 // loop-invariant and CSE'd.
7835 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7836 Value *One = ConstantInt::get(SrcI->getType(), 1);
7837
7838 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00007839 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007840 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007841 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007842 SrcI->getOperand(0),
7843 "tmp"), CI);
7844 Value *Zero = Constant::getNullValue(V->getType());
7845 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7846 }
7847 }
7848 break;
7849 }
7850 }
7851
7852 return 0;
7853}
7854
Evan Chenge3779cf2008-03-24 00:21:34 +00007855/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7856/// in order to eliminate the icmp.
7857Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7858 bool DoXform) {
7859 // If we are just checking for a icmp eq of a single bit and zext'ing it
7860 // to an integer, then shift the bit to the appropriate place and then
7861 // cast to integer to avoid the comparison.
7862 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7863 const APInt &Op1CV = Op1C->getValue();
7864
7865 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7866 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7867 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7868 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7869 if (!DoXform) return ICI;
7870
7871 Value *In = ICI->getOperand(0);
7872 Value *Sh = ConstantInt::get(In->getType(),
7873 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007874 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00007875 In->getName()+".lobit"),
7876 CI);
7877 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007878 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00007879 false/*ZExt*/, "tmp", &CI);
7880
7881 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7882 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007883 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00007884 In->getName()+".not"),
7885 CI);
7886 }
7887
7888 return ReplaceInstUsesWith(CI, In);
7889 }
7890
7891
7892
7893 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7894 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7895 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7896 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7897 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7898 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7899 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7900 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7901 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7902 // This only works for EQ and NE
7903 ICI->isEquality()) {
7904 // If Op1C some other power of two, convert:
7905 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7906 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7907 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7908 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7909
7910 APInt KnownZeroMask(~KnownZero);
7911 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7912 if (!DoXform) return ICI;
7913
7914 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7915 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7916 // (X&4) == 2 --> false
7917 // (X&4) != 2 --> true
7918 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7919 Res = ConstantExpr::getZExt(Res, CI.getType());
7920 return ReplaceInstUsesWith(CI, Res);
7921 }
7922
7923 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7924 Value *In = ICI->getOperand(0);
7925 if (ShiftAmt) {
7926 // Perform a logical shr by shiftamt.
7927 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00007928 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00007929 ConstantInt::get(In->getType(), ShiftAmt),
7930 In->getName()+".lobit"), CI);
7931 }
7932
7933 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7934 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007935 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00007936 InsertNewInstBefore(cast<Instruction>(In), CI);
7937 }
7938
7939 if (CI.getType() == In->getType())
7940 return ReplaceInstUsesWith(CI, In);
7941 else
Gabor Greifa645dd32008-05-16 19:29:10 +00007942 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00007943 }
7944 }
7945 }
7946
7947 return 0;
7948}
7949
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007950Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
7951 // If one of the common conversion will work ..
7952 if (Instruction *Result = commonIntCastTransforms(CI))
7953 return Result;
7954
7955 Value *Src = CI.getOperand(0);
7956
7957 // If this is a cast of a cast
7958 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7959 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7960 // types and if the sizes are just right we can convert this into a logical
7961 // 'and' which will be much cheaper than the pair of casts.
7962 if (isa<TruncInst>(CSrc)) {
7963 // Get the sizes of the types involved
7964 Value *A = CSrc->getOperand(0);
7965 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
7966 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
7967 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
7968 // If we're actually extending zero bits and the trunc is a no-op
7969 if (MidSize < DstSize && SrcSize == DstSize) {
7970 // Replace both of the casts with an And of the type mask.
7971 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
7972 Constant *AndConst = ConstantInt::get(AndValue);
7973 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00007974 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007975 // Unfortunately, if the type changed, we need to cast it back.
7976 if (And->getType() != CI.getType()) {
7977 And->setName(CSrc->getName()+".mask");
7978 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007979 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007980 }
7981 return And;
7982 }
7983 }
7984 }
7985
Evan Chenge3779cf2008-03-24 00:21:34 +00007986 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
7987 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007988
Evan Chenge3779cf2008-03-24 00:21:34 +00007989 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
7990 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
7991 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
7992 // of the (zext icmp) will be transformed.
7993 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
7994 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
7995 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
7996 (transformZExtICmp(LHS, CI, false) ||
7997 transformZExtICmp(RHS, CI, false))) {
7998 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
7999 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008000 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008001 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008002 }
8003
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008004 return 0;
8005}
8006
8007Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8008 if (Instruction *I = commonIntCastTransforms(CI))
8009 return I;
8010
8011 Value *Src = CI.getOperand(0);
8012
Dan Gohman35b76162008-10-30 20:40:10 +00008013 // Canonicalize sign-extend from i1 to a select.
8014 if (Src->getType() == Type::Int1Ty)
8015 return SelectInst::Create(Src,
8016 ConstantInt::getAllOnesValue(CI.getType()),
8017 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008018
8019 // See if the value being truncated is already sign extended. If so, just
8020 // eliminate the trunc/sext pair.
8021 if (getOpcode(Src) == Instruction::Trunc) {
8022 Value *Op = cast<User>(Src)->getOperand(0);
8023 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8024 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8025 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8026 unsigned NumSignBits = ComputeNumSignBits(Op);
8027
8028 if (OpBits == DestBits) {
8029 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8030 // bits, it is already ready.
8031 if (NumSignBits > DestBits-MidBits)
8032 return ReplaceInstUsesWith(CI, Op);
8033 } else if (OpBits < DestBits) {
8034 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8035 // bits, just sext from i32.
8036 if (NumSignBits > OpBits-MidBits)
8037 return new SExtInst(Op, CI.getType(), "tmp");
8038 } else {
8039 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8040 // bits, just truncate to i32.
8041 if (NumSignBits > OpBits-MidBits)
8042 return new TruncInst(Op, CI.getType(), "tmp");
8043 }
8044 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008045
8046 // If the input is a shl/ashr pair of a same constant, then this is a sign
8047 // extension from a smaller value. If we could trust arbitrary bitwidth
8048 // integers, we could turn this into a truncate to the smaller bit and then
8049 // use a sext for the whole extension. Since we don't, look deeper and check
8050 // for a truncate. If the source and dest are the same type, eliminate the
8051 // trunc and extend and just do shifts. For example, turn:
8052 // %a = trunc i32 %i to i8
8053 // %b = shl i8 %a, 6
8054 // %c = ashr i8 %b, 6
8055 // %d = sext i8 %c to i32
8056 // into:
8057 // %a = shl i32 %i, 30
8058 // %d = ashr i32 %a, 30
8059 Value *A = 0;
8060 ConstantInt *BA = 0, *CA = 0;
8061 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8062 m_ConstantInt(CA))) &&
8063 BA == CA && isa<TruncInst>(A)) {
8064 Value *I = cast<TruncInst>(A)->getOperand(0);
8065 if (I->getType() == CI.getType()) {
8066 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8067 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8068 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8069 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8070 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8071 CI.getName()), CI);
8072 return BinaryOperator::CreateAShr(I, ShAmtV);
8073 }
8074 }
8075
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008076 return 0;
8077}
8078
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008079/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8080/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008081static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008082 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008083 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008084 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8085 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008086 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008087 return 0;
8088}
8089
8090/// LookThroughFPExtensions - If this is an fp extension instruction, look
8091/// through it until we get the source value.
8092static Value *LookThroughFPExtensions(Value *V) {
8093 if (Instruction *I = dyn_cast<Instruction>(V))
8094 if (I->getOpcode() == Instruction::FPExt)
8095 return LookThroughFPExtensions(I->getOperand(0));
8096
8097 // If this value is a constant, return the constant in the smallest FP type
8098 // that can accurately represent it. This allows us to turn
8099 // (float)((double)X+2.0) into x+2.0f.
8100 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8101 if (CFP->getType() == Type::PPC_FP128Ty)
8102 return V; // No constant folding of this.
8103 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008104 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008105 return V;
8106 if (CFP->getType() == Type::DoubleTy)
8107 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008108 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008109 return V;
8110 // Don't try to shrink to various long double types.
8111 }
8112
8113 return V;
8114}
8115
8116Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8117 if (Instruction *I = commonCastTransforms(CI))
8118 return I;
8119
8120 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8121 // smaller than the destination type, we can eliminate the truncate by doing
8122 // the add as the smaller type. This applies to add/sub/mul/div as well as
8123 // many builtins (sqrt, etc).
8124 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8125 if (OpI && OpI->hasOneUse()) {
8126 switch (OpI->getOpcode()) {
8127 default: break;
8128 case Instruction::Add:
8129 case Instruction::Sub:
8130 case Instruction::Mul:
8131 case Instruction::FDiv:
8132 case Instruction::FRem:
8133 const Type *SrcTy = OpI->getType();
8134 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8135 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8136 if (LHSTrunc->getType() != SrcTy &&
8137 RHSTrunc->getType() != SrcTy) {
8138 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8139 // If the source types were both smaller than the destination type of
8140 // the cast, do this xform.
8141 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8142 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8143 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8144 CI.getType(), CI);
8145 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8146 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008147 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008148 }
8149 }
8150 break;
8151 }
8152 }
8153 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008154}
8155
8156Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8157 return commonCastTransforms(CI);
8158}
8159
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008160Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008161 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8162 if (OpI == 0)
8163 return commonCastTransforms(FI);
8164
8165 // fptoui(uitofp(X)) --> X
8166 // fptoui(sitofp(X)) --> X
8167 // This is safe if the intermediate type has enough bits in its mantissa to
8168 // accurately represent all values of X. For example, do not do this with
8169 // i64->float->i64. This is also safe for sitofp case, because any negative
8170 // 'X' value would cause an undefined result for the fptoui.
8171 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8172 OpI->getOperand(0)->getType() == FI.getType() &&
8173 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8174 OpI->getType()->getFPMantissaWidth())
8175 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008176
8177 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008178}
8179
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008180Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008181 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8182 if (OpI == 0)
8183 return commonCastTransforms(FI);
8184
8185 // fptosi(sitofp(X)) --> X
8186 // fptosi(uitofp(X)) --> X
8187 // This is safe if the intermediate type has enough bits in its mantissa to
8188 // accurately represent all values of X. For example, do not do this with
8189 // i64->float->i64. This is also safe for sitofp case, because any negative
8190 // 'X' value would cause an undefined result for the fptoui.
8191 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8192 OpI->getOperand(0)->getType() == FI.getType() &&
8193 (int)FI.getType()->getPrimitiveSizeInBits() <=
8194 OpI->getType()->getFPMantissaWidth())
8195 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008196
8197 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008198}
8199
8200Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8201 return commonCastTransforms(CI);
8202}
8203
8204Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8205 return commonCastTransforms(CI);
8206}
8207
8208Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8209 return commonPointerCastTransforms(CI);
8210}
8211
Chris Lattner7c1626482008-01-08 07:23:51 +00008212Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8213 if (Instruction *I = commonCastTransforms(CI))
8214 return I;
8215
8216 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8217 if (!DestPointee->isSized()) return 0;
8218
8219 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8220 ConstantInt *Cst;
8221 Value *X;
8222 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8223 m_ConstantInt(Cst)))) {
8224 // If the source and destination operands have the same type, see if this
8225 // is a single-index GEP.
8226 if (X->getType() == CI.getType()) {
8227 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008228 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008229
8230 // Convert the constant to intptr type.
8231 APInt Offset = Cst->getValue();
8232 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8233
8234 // If Offset is evenly divisible by Size, we can do this xform.
8235 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8236 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008237 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008238 }
8239 }
8240 // TODO: Could handle other cases, e.g. where add is indexing into field of
8241 // struct etc.
8242 } else if (CI.getOperand(0)->hasOneUse() &&
8243 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8244 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8245 // "inttoptr+GEP" instead of "add+intptr".
8246
8247 // Get the size of the pointee type.
8248 uint64_t Size = TD->getABITypeSize(DestPointee);
8249
8250 // Convert the constant to intptr type.
8251 APInt Offset = Cst->getValue();
8252 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8253
8254 // If Offset is evenly divisible by Size, we can do this xform.
8255 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8256 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8257
8258 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8259 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008260 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008261 }
8262 }
8263 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008264}
8265
8266Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8267 // If the operands are integer typed then apply the integer transforms,
8268 // otherwise just apply the common ones.
8269 Value *Src = CI.getOperand(0);
8270 const Type *SrcTy = Src->getType();
8271 const Type *DestTy = CI.getType();
8272
8273 if (SrcTy->isInteger() && DestTy->isInteger()) {
8274 if (Instruction *Result = commonIntCastTransforms(CI))
8275 return Result;
8276 } else if (isa<PointerType>(SrcTy)) {
8277 if (Instruction *I = commonPointerCastTransforms(CI))
8278 return I;
8279 } else {
8280 if (Instruction *Result = commonCastTransforms(CI))
8281 return Result;
8282 }
8283
8284
8285 // Get rid of casts from one type to the same type. These are useless and can
8286 // be replaced by the operand.
8287 if (DestTy == Src->getType())
8288 return ReplaceInstUsesWith(CI, Src);
8289
8290 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8291 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8292 const Type *DstElTy = DstPTy->getElementType();
8293 const Type *SrcElTy = SrcPTy->getElementType();
8294
Nate Begemandf5b3612008-03-31 00:22:16 +00008295 // If the address spaces don't match, don't eliminate the bitcast, which is
8296 // required for changing types.
8297 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8298 return 0;
8299
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008300 // If we are casting a malloc or alloca to a pointer to a type of the same
8301 // size, rewrite the allocation instruction to allocate the "right" type.
8302 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8303 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8304 return V;
8305
8306 // If the source and destination are pointers, and this cast is equivalent
8307 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8308 // This can enhance SROA and other transforms that want type-safe pointers.
8309 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8310 unsigned NumZeros = 0;
8311 while (SrcElTy != DstElTy &&
8312 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8313 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8314 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8315 ++NumZeros;
8316 }
8317
8318 // If we found a path from the src to dest, create the getelementptr now.
8319 if (SrcElTy == DstElTy) {
8320 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008321 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8322 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008323 }
8324 }
8325
8326 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8327 if (SVI->hasOneUse()) {
8328 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8329 // a bitconvert to a vector with the same # elts.
8330 if (isa<VectorType>(DestTy) &&
8331 cast<VectorType>(DestTy)->getNumElements() ==
8332 SVI->getType()->getNumElements()) {
8333 CastInst *Tmp;
8334 // If either of the operands is a cast from CI.getType(), then
8335 // evaluating the shuffle in the casted destination's type will allow
8336 // us to eliminate at least one cast.
8337 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8338 Tmp->getOperand(0)->getType() == DestTy) ||
8339 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8340 Tmp->getOperand(0)->getType() == DestTy)) {
8341 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
8342 SVI->getOperand(0), DestTy, &CI);
8343 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
8344 SVI->getOperand(1), DestTy, &CI);
8345 // Return a new shuffle vector. Use the same element ID's, as we
8346 // know the vector types match #elts.
8347 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8348 }
8349 }
8350 }
8351 }
8352 return 0;
8353}
8354
8355/// GetSelectFoldableOperands - We want to turn code that looks like this:
8356/// %C = or %A, %B
8357/// %D = select %cond, %C, %A
8358/// into:
8359/// %C = select %cond, %B, 0
8360/// %D = or %A, %C
8361///
8362/// Assuming that the specified instruction is an operand to the select, return
8363/// a bitmask indicating which operands of this instruction are foldable if they
8364/// equal the other incoming value of the select.
8365///
8366static unsigned GetSelectFoldableOperands(Instruction *I) {
8367 switch (I->getOpcode()) {
8368 case Instruction::Add:
8369 case Instruction::Mul:
8370 case Instruction::And:
8371 case Instruction::Or:
8372 case Instruction::Xor:
8373 return 3; // Can fold through either operand.
8374 case Instruction::Sub: // Can only fold on the amount subtracted.
8375 case Instruction::Shl: // Can only fold on the shift amount.
8376 case Instruction::LShr:
8377 case Instruction::AShr:
8378 return 1;
8379 default:
8380 return 0; // Cannot fold
8381 }
8382}
8383
8384/// GetSelectFoldableConstant - For the same transformation as the previous
8385/// function, return the identity constant that goes into the select.
8386static Constant *GetSelectFoldableConstant(Instruction *I) {
8387 switch (I->getOpcode()) {
8388 default: assert(0 && "This cannot happen!"); abort();
8389 case Instruction::Add:
8390 case Instruction::Sub:
8391 case Instruction::Or:
8392 case Instruction::Xor:
8393 case Instruction::Shl:
8394 case Instruction::LShr:
8395 case Instruction::AShr:
8396 return Constant::getNullValue(I->getType());
8397 case Instruction::And:
8398 return Constant::getAllOnesValue(I->getType());
8399 case Instruction::Mul:
8400 return ConstantInt::get(I->getType(), 1);
8401 }
8402}
8403
8404/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8405/// have the same opcode and only one use each. Try to simplify this.
8406Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8407 Instruction *FI) {
8408 if (TI->getNumOperands() == 1) {
8409 // If this is a non-volatile load or a cast from the same type,
8410 // merge.
8411 if (TI->isCast()) {
8412 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8413 return 0;
8414 } else {
8415 return 0; // unknown unary op.
8416 }
8417
8418 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008419 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8420 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008421 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008422 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008423 TI->getType());
8424 }
8425
8426 // Only handle binary operators here.
8427 if (!isa<BinaryOperator>(TI))
8428 return 0;
8429
8430 // Figure out if the operations have any operands in common.
8431 Value *MatchOp, *OtherOpT, *OtherOpF;
8432 bool MatchIsOpZero;
8433 if (TI->getOperand(0) == FI->getOperand(0)) {
8434 MatchOp = TI->getOperand(0);
8435 OtherOpT = TI->getOperand(1);
8436 OtherOpF = FI->getOperand(1);
8437 MatchIsOpZero = true;
8438 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8439 MatchOp = TI->getOperand(1);
8440 OtherOpT = TI->getOperand(0);
8441 OtherOpF = FI->getOperand(0);
8442 MatchIsOpZero = false;
8443 } else if (!TI->isCommutative()) {
8444 return 0;
8445 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8446 MatchOp = TI->getOperand(0);
8447 OtherOpT = TI->getOperand(1);
8448 OtherOpF = FI->getOperand(0);
8449 MatchIsOpZero = true;
8450 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8451 MatchOp = TI->getOperand(1);
8452 OtherOpT = TI->getOperand(0);
8453 OtherOpF = FI->getOperand(1);
8454 MatchIsOpZero = true;
8455 } else {
8456 return 0;
8457 }
8458
8459 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008460 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8461 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008462 InsertNewInstBefore(NewSI, SI);
8463
8464 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8465 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008466 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008467 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008468 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008469 }
8470 assert(0 && "Shouldn't get here");
8471 return 0;
8472}
8473
Dan Gohman58c09632008-09-16 18:46:06 +00008474/// visitSelectInstWithICmp - Visit a SelectInst that has an
8475/// ICmpInst as its first operand.
8476///
8477Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8478 ICmpInst *ICI) {
8479 bool Changed = false;
8480 ICmpInst::Predicate Pred = ICI->getPredicate();
8481 Value *CmpLHS = ICI->getOperand(0);
8482 Value *CmpRHS = ICI->getOperand(1);
8483 Value *TrueVal = SI.getTrueValue();
8484 Value *FalseVal = SI.getFalseValue();
8485
8486 // Check cases where the comparison is with a constant that
8487 // can be adjusted to fit the min/max idiom. We may edit ICI in
8488 // place here, so make sure the select is the only user.
8489 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008490 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008491 switch (Pred) {
8492 default: break;
8493 case ICmpInst::ICMP_ULT:
8494 case ICmpInst::ICMP_SLT: {
8495 // X < MIN ? T : F --> F
8496 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8497 return ReplaceInstUsesWith(SI, FalseVal);
8498 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8499 Constant *AdjustedRHS = SubOne(CI);
8500 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8501 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8502 Pred = ICmpInst::getSwappedPredicate(Pred);
8503 CmpRHS = AdjustedRHS;
8504 std::swap(FalseVal, TrueVal);
8505 ICI->setPredicate(Pred);
8506 ICI->setOperand(1, CmpRHS);
8507 SI.setOperand(1, TrueVal);
8508 SI.setOperand(2, FalseVal);
8509 Changed = true;
8510 }
8511 break;
8512 }
8513 case ICmpInst::ICMP_UGT:
8514 case ICmpInst::ICMP_SGT: {
8515 // X > MAX ? T : F --> F
8516 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8517 return ReplaceInstUsesWith(SI, FalseVal);
8518 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8519 Constant *AdjustedRHS = AddOne(CI);
8520 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8521 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8522 Pred = ICmpInst::getSwappedPredicate(Pred);
8523 CmpRHS = AdjustedRHS;
8524 std::swap(FalseVal, TrueVal);
8525 ICI->setPredicate(Pred);
8526 ICI->setOperand(1, CmpRHS);
8527 SI.setOperand(1, TrueVal);
8528 SI.setOperand(2, FalseVal);
8529 Changed = true;
8530 }
8531 break;
8532 }
8533 }
8534
Dan Gohman35b76162008-10-30 20:40:10 +00008535 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8536 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
8537 CmpInst::Predicate Pred = ICI->getPredicate();
8538 if (match(TrueVal, m_ConstantInt(0)) &&
8539 match(FalseVal, m_ConstantInt(-1)))
8540 Pred = CmpInst::getInversePredicate(Pred);
8541 else if (!match(TrueVal, m_ConstantInt(-1)) ||
8542 !match(FalseVal, m_ConstantInt(0)))
8543 Pred = CmpInst::BAD_ICMP_PREDICATE;
8544 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8545 // If we are just checking for a icmp eq of a single bit and zext'ing it
8546 // to an integer, then shift the bit to the appropriate place and then
8547 // cast to integer to avoid the comparison.
8548 const APInt &Op1CV = CI->getValue();
8549
8550 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8551 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8552 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8553 (Pred == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8554 Value *In = ICI->getOperand(0);
8555 Value *Sh = ConstantInt::get(In->getType(),
8556 In->getType()->getPrimitiveSizeInBits()-1);
8557 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8558 In->getName()+".lobit"),
8559 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008560 if (In->getType() != SI.getType())
8561 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008562 true/*SExt*/, "tmp", ICI);
8563
8564 if (Pred == ICmpInst::ICMP_SGT)
8565 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8566 In->getName()+".not"), *ICI);
8567
8568 return ReplaceInstUsesWith(SI, In);
8569 }
8570 }
8571 }
8572
Dan Gohman58c09632008-09-16 18:46:06 +00008573 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8574 // Transform (X == Y) ? X : Y -> Y
8575 if (Pred == ICmpInst::ICMP_EQ)
8576 return ReplaceInstUsesWith(SI, FalseVal);
8577 // Transform (X != Y) ? X : Y -> X
8578 if (Pred == ICmpInst::ICMP_NE)
8579 return ReplaceInstUsesWith(SI, TrueVal);
8580 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8581
8582 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8583 // Transform (X == Y) ? Y : X -> X
8584 if (Pred == ICmpInst::ICMP_EQ)
8585 return ReplaceInstUsesWith(SI, FalseVal);
8586 // Transform (X != Y) ? Y : X -> Y
8587 if (Pred == ICmpInst::ICMP_NE)
8588 return ReplaceInstUsesWith(SI, TrueVal);
8589 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8590 }
8591
8592 /// NOTE: if we wanted to, this is where to detect integer ABS
8593
8594 return Changed ? &SI : 0;
8595}
8596
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008597Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8598 Value *CondVal = SI.getCondition();
8599 Value *TrueVal = SI.getTrueValue();
8600 Value *FalseVal = SI.getFalseValue();
8601
8602 // select true, X, Y -> X
8603 // select false, X, Y -> Y
8604 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8605 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8606
8607 // select C, X, X -> X
8608 if (TrueVal == FalseVal)
8609 return ReplaceInstUsesWith(SI, TrueVal);
8610
8611 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8612 return ReplaceInstUsesWith(SI, FalseVal);
8613 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8614 return ReplaceInstUsesWith(SI, TrueVal);
8615 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8616 if (isa<Constant>(TrueVal))
8617 return ReplaceInstUsesWith(SI, TrueVal);
8618 else
8619 return ReplaceInstUsesWith(SI, FalseVal);
8620 }
8621
8622 if (SI.getType() == Type::Int1Ty) {
8623 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8624 if (C->getZExtValue()) {
8625 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008626 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008627 } else {
8628 // Change: A = select B, false, C --> A = and !B, C
8629 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008630 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008631 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008632 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008633 }
8634 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8635 if (C->getZExtValue() == false) {
8636 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008637 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008638 } else {
8639 // Change: A = select B, C, true --> A = or !B, C
8640 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008641 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008642 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008643 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008644 }
8645 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008646
8647 // select a, b, a -> a&b
8648 // select a, a, b -> a|b
8649 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008650 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008651 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008652 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008653 }
8654
8655 // Selecting between two integer constants?
8656 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8657 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8658 // select C, 1, 0 -> zext C to int
8659 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008660 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008661 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8662 // select C, 0, 1 -> zext !C to int
8663 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008664 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008665 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008666 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008667 }
8668
8669 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8670
8671 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8672
8673 // (x <s 0) ? -1 : 0 -> ashr x, 31
8674 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8675 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8676 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8677 // The comparison constant and the result are not neccessarily the
8678 // same width. Make an all-ones value by inserting a AShr.
8679 Value *X = IC->getOperand(0);
8680 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8681 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008682 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008683 ShAmt, "ones");
8684 InsertNewInstBefore(SRA, SI);
8685
8686 // Finally, convert to the type of the select RHS. We figure out
8687 // if this requires a SExt, Trunc or BitCast based on the sizes.
8688 Instruction::CastOps opc = Instruction::BitCast;
8689 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8690 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8691 if (SRASize < SISize)
8692 opc = Instruction::SExt;
8693 else if (SRASize > SISize)
8694 opc = Instruction::Trunc;
Gabor Greifa645dd32008-05-16 19:29:10 +00008695 return CastInst::Create(opc, SRA, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008696 }
8697 }
8698
8699
8700 // If one of the constants is zero (we know they can't both be) and we
8701 // have an icmp instruction with zero, and we have an 'and' with the
8702 // non-constant value, eliminate this whole mess. This corresponds to
8703 // cases like this: ((X & 27) ? 27 : 0)
8704 if (TrueValC->isZero() || FalseValC->isZero())
8705 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8706 cast<Constant>(IC->getOperand(1))->isNullValue())
8707 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8708 if (ICA->getOpcode() == Instruction::And &&
8709 isa<ConstantInt>(ICA->getOperand(1)) &&
8710 (ICA->getOperand(1) == TrueValC ||
8711 ICA->getOperand(1) == FalseValC) &&
8712 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8713 // Okay, now we know that everything is set up, we just don't
8714 // know whether we have a icmp_ne or icmp_eq and whether the
8715 // true or false val is the zero.
8716 bool ShouldNotVal = !TrueValC->isZero();
8717 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8718 Value *V = ICA;
8719 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008720 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008721 Instruction::Xor, V, ICA->getOperand(1)), SI);
8722 return ReplaceInstUsesWith(SI, V);
8723 }
8724 }
8725 }
8726
8727 // See if we are selecting two values based on a comparison of the two values.
8728 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8729 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8730 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008731 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8732 // This is not safe in general for floating point:
8733 // consider X== -0, Y== +0.
8734 // It becomes safe if either operand is a nonzero constant.
8735 ConstantFP *CFPt, *CFPf;
8736 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8737 !CFPt->getValueAPF().isZero()) ||
8738 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8739 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008740 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008741 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008742 // Transform (X != Y) ? X : Y -> X
8743 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8744 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008745 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008746
8747 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8748 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008749 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8750 // This is not safe in general for floating point:
8751 // consider X== -0, Y== +0.
8752 // It becomes safe if either operand is a nonzero constant.
8753 ConstantFP *CFPt, *CFPf;
8754 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8755 !CFPt->getValueAPF().isZero()) ||
8756 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8757 !CFPf->getValueAPF().isZero()))
8758 return ReplaceInstUsesWith(SI, FalseVal);
8759 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008760 // Transform (X != Y) ? Y : X -> Y
8761 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8762 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008763 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008764 }
Dan Gohman58c09632008-09-16 18:46:06 +00008765 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008766 }
8767
8768 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008769 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8770 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8771 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008772
8773 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8774 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8775 if (TI->hasOneUse() && FI->hasOneUse()) {
8776 Instruction *AddOp = 0, *SubOp = 0;
8777
8778 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8779 if (TI->getOpcode() == FI->getOpcode())
8780 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8781 return IV;
8782
8783 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8784 // even legal for FP.
8785 if (TI->getOpcode() == Instruction::Sub &&
8786 FI->getOpcode() == Instruction::Add) {
8787 AddOp = FI; SubOp = TI;
8788 } else if (FI->getOpcode() == Instruction::Sub &&
8789 TI->getOpcode() == Instruction::Add) {
8790 AddOp = TI; SubOp = FI;
8791 }
8792
8793 if (AddOp) {
8794 Value *OtherAddOp = 0;
8795 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8796 OtherAddOp = AddOp->getOperand(1);
8797 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8798 OtherAddOp = AddOp->getOperand(0);
8799 }
8800
8801 if (OtherAddOp) {
8802 // So at this point we know we have (Y -> OtherAddOp):
8803 // select C, (add X, Y), (sub X, Z)
8804 Value *NegVal; // Compute -Z
8805 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8806 NegVal = ConstantExpr::getNeg(C);
8807 } else {
8808 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008809 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008810 }
8811
8812 Value *NewTrueOp = OtherAddOp;
8813 Value *NewFalseOp = NegVal;
8814 if (AddOp != TI)
8815 std::swap(NewTrueOp, NewFalseOp);
8816 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008817 SelectInst::Create(CondVal, NewTrueOp,
8818 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008819
8820 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008821 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008822 }
8823 }
8824 }
8825
8826 // See if we can fold the select into one of our operands.
8827 if (SI.getType()->isInteger()) {
8828 // See the comment above GetSelectFoldableOperands for a description of the
8829 // transformation we are doing here.
8830 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8831 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8832 !isa<Constant>(FalseVal))
8833 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8834 unsigned OpToFold = 0;
8835 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8836 OpToFold = 1;
8837 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8838 OpToFold = 2;
8839 }
8840
8841 if (OpToFold) {
8842 Constant *C = GetSelectFoldableConstant(TVI);
8843 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008844 SelectInst::Create(SI.getCondition(),
8845 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008846 InsertNewInstBefore(NewSel, SI);
8847 NewSel->takeName(TVI);
8848 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008849 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008850 else {
8851 assert(0 && "Unknown instruction!!");
8852 }
8853 }
8854 }
8855
8856 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8857 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8858 !isa<Constant>(TrueVal))
8859 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8860 unsigned OpToFold = 0;
8861 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8862 OpToFold = 1;
8863 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8864 OpToFold = 2;
8865 }
8866
8867 if (OpToFold) {
8868 Constant *C = GetSelectFoldableConstant(FVI);
8869 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008870 SelectInst::Create(SI.getCondition(), C,
8871 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008872 InsertNewInstBefore(NewSel, SI);
8873 NewSel->takeName(FVI);
8874 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008875 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008876 else
8877 assert(0 && "Unknown instruction!!");
8878 }
8879 }
8880 }
8881
8882 if (BinaryOperator::isNot(CondVal)) {
8883 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8884 SI.setOperand(1, FalseVal);
8885 SI.setOperand(2, TrueVal);
8886 return &SI;
8887 }
8888
8889 return 0;
8890}
8891
Dan Gohman2d648bb2008-04-10 18:43:06 +00008892/// EnforceKnownAlignment - If the specified pointer points to an object that
8893/// we control, modify the object's alignment to PrefAlign. This isn't
8894/// often possible though. If alignment is important, a more reliable approach
8895/// is to simply align all global variables and allocation instructions to
8896/// their preferred alignment from the beginning.
8897///
8898static unsigned EnforceKnownAlignment(Value *V,
8899 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00008900
Dan Gohman2d648bb2008-04-10 18:43:06 +00008901 User *U = dyn_cast<User>(V);
8902 if (!U) return Align;
8903
8904 switch (getOpcode(U)) {
8905 default: break;
8906 case Instruction::BitCast:
8907 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8908 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008909 // If all indexes are zero, it is just the alignment of the base pointer.
8910 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00008911 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00008912 if (!isa<Constant>(*i) ||
8913 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008914 AllZeroOperands = false;
8915 break;
8916 }
Chris Lattner47cf3452007-08-09 19:05:49 +00008917
8918 if (AllZeroOperands) {
8919 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008920 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00008921 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008922 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008923 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008924 }
8925
8926 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8927 // If there is a large requested alignment and we can, bump up the alignment
8928 // of the global.
8929 if (!GV->isDeclaration()) {
8930 GV->setAlignment(PrefAlign);
8931 Align = PrefAlign;
8932 }
8933 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8934 // If there is a requested alignment and if this is an alloca, round up. We
8935 // don't do this for malloc, because some systems can't respect the request.
8936 if (isa<AllocaInst>(AI)) {
8937 AI->setAlignment(PrefAlign);
8938 Align = PrefAlign;
8939 }
8940 }
8941
8942 return Align;
8943}
8944
8945/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
8946/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
8947/// and it is more than the alignment of the ultimate object, see if we can
8948/// increase the alignment of the ultimate object, making this check succeed.
8949unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
8950 unsigned PrefAlign) {
8951 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
8952 sizeof(PrefAlign) * CHAR_BIT;
8953 APInt Mask = APInt::getAllOnesValue(BitWidth);
8954 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8955 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
8956 unsigned TrailZ = KnownZero.countTrailingOnes();
8957 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
8958
8959 if (PrefAlign > Align)
8960 Align = EnforceKnownAlignment(V, Align, PrefAlign);
8961
8962 // We don't need to make any adjustment.
8963 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008964}
8965
Chris Lattner00ae5132008-01-13 23:50:23 +00008966Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00008967 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
8968 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00008969 unsigned MinAlign = std::min(DstAlign, SrcAlign);
8970 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
8971
8972 if (CopyAlign < MinAlign) {
8973 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
8974 return MI;
8975 }
8976
8977 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
8978 // load/store.
8979 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
8980 if (MemOpLength == 0) return 0;
8981
Chris Lattnerc669fb62008-01-14 00:28:35 +00008982 // Source and destination pointer types are always "i8*" for intrinsic. See
8983 // if the size is something we can handle with a single primitive load/store.
8984 // A single load+store correctly handles overlapping memory in the memmove
8985 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00008986 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00008987 if (Size == 0) return MI; // Delete this mem transfer.
8988
8989 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00008990 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00008991
Chris Lattnerc669fb62008-01-14 00:28:35 +00008992 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00008993 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00008994
8995 // Memcpy forces the use of i8* for the source and destination. That means
8996 // that if you're using memcpy to move one double around, you'll get a cast
8997 // from double* to i8*. We'd much rather use a double load+store rather than
8998 // an i64 load+store, here because this improves the odds that the source or
8999 // dest address will be promotable. See if we can find a better type than the
9000 // integer datatype.
9001 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9002 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9003 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9004 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9005 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009006 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009007 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9008 if (STy->getNumElements() == 1)
9009 SrcETy = STy->getElementType(0);
9010 else
9011 break;
9012 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9013 if (ATy->getNumElements() == 1)
9014 SrcETy = ATy->getElementType();
9015 else
9016 break;
9017 } else
9018 break;
9019 }
9020
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009021 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009022 NewPtrTy = PointerType::getUnqual(SrcETy);
9023 }
9024 }
9025
9026
Chris Lattner00ae5132008-01-13 23:50:23 +00009027 // If the memcpy/memmove provides better alignment info than we can
9028 // infer, use it.
9029 SrcAlign = std::max(SrcAlign, CopyAlign);
9030 DstAlign = std::max(DstAlign, CopyAlign);
9031
9032 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9033 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009034 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9035 InsertNewInstBefore(L, *MI);
9036 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9037
9038 // Set the size of the copy to 0, it will be deleted on the next iteration.
9039 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9040 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009041}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009042
Chris Lattner5af8a912008-04-30 06:39:11 +00009043Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9044 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9045 if (MI->getAlignment()->getZExtValue() < Alignment) {
9046 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9047 return MI;
9048 }
9049
9050 // Extract the length and alignment and fill if they are constant.
9051 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9052 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9053 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9054 return 0;
9055 uint64_t Len = LenC->getZExtValue();
9056 Alignment = MI->getAlignment()->getZExtValue();
9057
9058 // If the length is zero, this is a no-op
9059 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9060
9061 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9062 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9063 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9064
9065 Value *Dest = MI->getDest();
9066 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9067
9068 // Alignment 0 is identity for alignment 1 for memset, but not store.
9069 if (Alignment == 0) Alignment = 1;
9070
9071 // Extract the fill value and store.
9072 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9073 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9074 Alignment), *MI);
9075
9076 // Set the size of the copy to 0, it will be deleted on the next iteration.
9077 MI->setLength(Constant::getNullValue(LenC->getType()));
9078 return MI;
9079 }
9080
9081 return 0;
9082}
9083
9084
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009085/// visitCallInst - CallInst simplification. This mostly only handles folding
9086/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9087/// the heavy lifting.
9088///
9089Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9090 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9091 if (!II) return visitCallSite(&CI);
9092
9093 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9094 // visitCallSite.
9095 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9096 bool Changed = false;
9097
9098 // memmove/cpy/set of zero bytes is a noop.
9099 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9100 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9101
9102 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9103 if (CI->getZExtValue() == 1) {
9104 // Replace the instruction with just byte operations. We would
9105 // transform other cases to loads/stores, but we don't know if
9106 // alignment is sufficient.
9107 }
9108 }
9109
9110 // If we have a memmove and the source operation is a constant global,
9111 // then the source and dest pointers can't alias, so we can change this
9112 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009113 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009114 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9115 if (GVSrc->isConstant()) {
9116 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009117 Intrinsic::ID MemCpyID;
9118 if (CI.getOperand(3)->getType() == Type::Int32Ty)
9119 MemCpyID = Intrinsic::memcpy_i32;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009120 else
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009121 MemCpyID = Intrinsic::memcpy_i64;
9122 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009123 Changed = true;
9124 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009125
9126 // memmove(x,x,size) -> noop.
9127 if (MMI->getSource() == MMI->getDest())
9128 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009129 }
9130
9131 // If we can determine a pointer alignment that is bigger than currently
9132 // set, update the alignment.
9133 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009134 if (Instruction *I = SimplifyMemTransfer(MI))
9135 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009136 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9137 if (Instruction *I = SimplifyMemSet(MSI))
9138 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009139 }
9140
9141 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009142 }
9143
9144 switch (II->getIntrinsicID()) {
9145 default: break;
9146 case Intrinsic::bswap:
9147 // bswap(bswap(x)) -> x
9148 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9149 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9150 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9151 break;
9152 case Intrinsic::ppc_altivec_lvx:
9153 case Intrinsic::ppc_altivec_lvxl:
9154 case Intrinsic::x86_sse_loadu_ps:
9155 case Intrinsic::x86_sse2_loadu_pd:
9156 case Intrinsic::x86_sse2_loadu_dq:
9157 // Turn PPC lvx -> load if the pointer is known aligned.
9158 // Turn X86 loadups -> load if the pointer is known aligned.
9159 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9160 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9161 PointerType::getUnqual(II->getType()),
9162 CI);
9163 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009164 }
Chris Lattner989ba312008-06-18 04:33:20 +00009165 break;
9166 case Intrinsic::ppc_altivec_stvx:
9167 case Intrinsic::ppc_altivec_stvxl:
9168 // Turn stvx -> store if the pointer is known aligned.
9169 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9170 const Type *OpPtrTy =
9171 PointerType::getUnqual(II->getOperand(1)->getType());
9172 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9173 return new StoreInst(II->getOperand(1), Ptr);
9174 }
9175 break;
9176 case Intrinsic::x86_sse_storeu_ps:
9177 case Intrinsic::x86_sse2_storeu_pd:
9178 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009179 // Turn X86 storeu -> store if the pointer is known aligned.
9180 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9181 const Type *OpPtrTy =
9182 PointerType::getUnqual(II->getOperand(2)->getType());
9183 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9184 return new StoreInst(II->getOperand(2), Ptr);
9185 }
9186 break;
9187
9188 case Intrinsic::x86_sse_cvttss2si: {
9189 // These intrinsics only demands the 0th element of its input vector. If
9190 // we can simplify the input based on that, do so now.
9191 uint64_t UndefElts;
9192 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9193 UndefElts)) {
9194 II->setOperand(1, V);
9195 return II;
9196 }
9197 break;
9198 }
9199
9200 case Intrinsic::ppc_altivec_vperm:
9201 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9202 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9203 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009204
Chris Lattner989ba312008-06-18 04:33:20 +00009205 // Check that all of the elements are integer constants or undefs.
9206 bool AllEltsOk = true;
9207 for (unsigned i = 0; i != 16; ++i) {
9208 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9209 !isa<UndefValue>(Mask->getOperand(i))) {
9210 AllEltsOk = false;
9211 break;
9212 }
9213 }
9214
9215 if (AllEltsOk) {
9216 // Cast the input vectors to byte vectors.
9217 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9218 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9219 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009220
Chris Lattner989ba312008-06-18 04:33:20 +00009221 // Only extract each element once.
9222 Value *ExtractedElts[32];
9223 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9224
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009225 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009226 if (isa<UndefValue>(Mask->getOperand(i)))
9227 continue;
9228 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9229 Idx &= 31; // Match the hardware behavior.
9230
9231 if (ExtractedElts[Idx] == 0) {
9232 Instruction *Elt =
9233 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9234 InsertNewInstBefore(Elt, CI);
9235 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009236 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009237
Chris Lattner989ba312008-06-18 04:33:20 +00009238 // Insert this value into the result vector.
9239 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9240 i, "tmp");
9241 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009242 }
Chris Lattner989ba312008-06-18 04:33:20 +00009243 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009244 }
Chris Lattner989ba312008-06-18 04:33:20 +00009245 }
9246 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009247
Chris Lattner989ba312008-06-18 04:33:20 +00009248 case Intrinsic::stackrestore: {
9249 // If the save is right next to the restore, remove the restore. This can
9250 // happen when variable allocas are DCE'd.
9251 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9252 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9253 BasicBlock::iterator BI = SS;
9254 if (&*++BI == II)
9255 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009256 }
Chris Lattner989ba312008-06-18 04:33:20 +00009257 }
9258
9259 // Scan down this block to see if there is another stack restore in the
9260 // same block without an intervening call/alloca.
9261 BasicBlock::iterator BI = II;
9262 TerminatorInst *TI = II->getParent()->getTerminator();
9263 bool CannotRemove = false;
9264 for (++BI; &*BI != TI; ++BI) {
9265 if (isa<AllocaInst>(BI)) {
9266 CannotRemove = true;
9267 break;
9268 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009269 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9270 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9271 // If there is a stackrestore below this one, remove this one.
9272 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9273 return EraseInstFromFunction(CI);
9274 // Otherwise, ignore the intrinsic.
9275 } else {
9276 // If we found a non-intrinsic call, we can't remove the stack
9277 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009278 CannotRemove = true;
9279 break;
9280 }
Chris Lattner989ba312008-06-18 04:33:20 +00009281 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009282 }
Chris Lattner989ba312008-06-18 04:33:20 +00009283
9284 // If the stack restore is in a return/unwind block and if there are no
9285 // allocas or calls between the restore and the return, nuke the restore.
9286 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9287 return EraseInstFromFunction(CI);
9288 break;
9289 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009290 }
9291
9292 return visitCallSite(II);
9293}
9294
9295// InvokeInst simplification
9296//
9297Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9298 return visitCallSite(&II);
9299}
9300
Dale Johannesen96021832008-04-25 21:16:07 +00009301/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9302/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009303static bool isSafeToEliminateVarargsCast(const CallSite CS,
9304 const CastInst * const CI,
9305 const TargetData * const TD,
9306 const int ix) {
9307 if (!CI->isLosslessCast())
9308 return false;
9309
9310 // The size of ByVal arguments is derived from the type, so we
9311 // can't change to a type with a different size. If the size were
9312 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009313 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009314 return true;
9315
9316 const Type* SrcTy =
9317 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9318 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9319 if (!SrcTy->isSized() || !DstTy->isSized())
9320 return false;
9321 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9322 return false;
9323 return true;
9324}
9325
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009326// visitCallSite - Improvements for call and invoke instructions.
9327//
9328Instruction *InstCombiner::visitCallSite(CallSite CS) {
9329 bool Changed = false;
9330
9331 // If the callee is a constexpr cast of a function, attempt to move the cast
9332 // to the arguments of the call/invoke.
9333 if (transformConstExprCastCall(CS)) return 0;
9334
9335 Value *Callee = CS.getCalledValue();
9336
9337 if (Function *CalleeF = dyn_cast<Function>(Callee))
9338 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9339 Instruction *OldCall = CS.getInstruction();
9340 // If the call and callee calling conventions don't match, this call must
9341 // be unreachable, as the call is undefined.
9342 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009343 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9344 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009345 if (!OldCall->use_empty())
9346 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9347 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9348 return EraseInstFromFunction(*OldCall);
9349 return 0;
9350 }
9351
9352 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9353 // This instruction is not reachable, just remove it. We insert a store to
9354 // undef so that we know that this code is not reachable, despite the fact
9355 // that we can't modify the CFG here.
9356 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009357 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009358 CS.getInstruction());
9359
9360 if (!CS.getInstruction()->use_empty())
9361 CS.getInstruction()->
9362 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9363
9364 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9365 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009366 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9367 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009368 }
9369 return EraseInstFromFunction(*CS.getInstruction());
9370 }
9371
Duncan Sands74833f22007-09-17 10:26:40 +00009372 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9373 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9374 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9375 return transformCallThroughTrampoline(CS);
9376
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009377 const PointerType *PTy = cast<PointerType>(Callee->getType());
9378 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9379 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009380 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009381 // See if we can optimize any arguments passed through the varargs area of
9382 // the call.
9383 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009384 E = CS.arg_end(); I != E; ++I, ++ix) {
9385 CastInst *CI = dyn_cast<CastInst>(*I);
9386 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9387 *I = CI->getOperand(0);
9388 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009389 }
Dale Johannesen35615462008-04-23 18:34:37 +00009390 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009391 }
9392
Duncan Sands2937e352007-12-19 21:13:37 +00009393 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009394 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009395 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009396 Changed = true;
9397 }
9398
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009399 return Changed ? CS.getInstruction() : 0;
9400}
9401
9402// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9403// attempt to move the cast to the arguments of the call/invoke.
9404//
9405bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9406 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9407 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9408 if (CE->getOpcode() != Instruction::BitCast ||
9409 !isa<Function>(CE->getOperand(0)))
9410 return false;
9411 Function *Callee = cast<Function>(CE->getOperand(0));
9412 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009413 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009414
9415 // Okay, this is a cast from a function to a different type. Unless doing so
9416 // would cause a type conversion of one of our arguments, change this call to
9417 // be a direct call with arguments casted to the appropriate types.
9418 //
9419 const FunctionType *FT = Callee->getFunctionType();
9420 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009421 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009422
Duncan Sands7901ce12008-06-01 07:38:42 +00009423 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009424 return false; // TODO: Handle multiple return values.
9425
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009426 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009427 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009428 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009429 // Conversion is ok if changing from one pointer type to another or from
9430 // a pointer to an integer of the same size.
9431 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009432 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009433 return false; // Cannot transform this return value.
9434
Duncan Sands5c489582008-01-06 10:12:28 +00009435 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009436 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009437 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009438 return false; // Cannot transform this return value.
9439
Chris Lattner1c8733e2008-03-12 17:45:29 +00009440 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009441 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009442 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009443 return false; // Attribute not compatible with transformed value.
9444 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009445
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009446 // If the callsite is an invoke instruction, and the return value is used by
9447 // a PHI node in a successor, we cannot change the return type of the call
9448 // because there is no place to put the cast instruction (without breaking
9449 // the critical edge). Bail out in this case.
9450 if (!Caller->use_empty())
9451 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9452 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9453 UI != E; ++UI)
9454 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9455 if (PN->getParent() == II->getNormalDest() ||
9456 PN->getParent() == II->getUnwindDest())
9457 return false;
9458 }
9459
9460 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9461 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9462
9463 CallSite::arg_iterator AI = CS.arg_begin();
9464 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9465 const Type *ParamTy = FT->getParamType(i);
9466 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009467
9468 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009469 return false; // Cannot transform this parameter value.
9470
Devang Patelf2a4a922008-09-26 22:53:05 +00009471 if (CallerPAL.getParamAttributes(i + 1)
9472 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009473 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009474
Duncan Sands7901ce12008-06-01 07:38:42 +00009475 // Converting from one pointer type to another or between a pointer and an
9476 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009477 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009478 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9479 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009480 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009481 }
9482
9483 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9484 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009485 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009486
Chris Lattner1c8733e2008-03-12 17:45:29 +00009487 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9488 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009489 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009490 // won't be dropping them. Check that these extra arguments have attributes
9491 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009492 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9493 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009494 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009495 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009496 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009497 return false;
9498 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009499
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009500 // Okay, we decided that this is a safe thing to do: go ahead and start
9501 // inserting cast instructions as necessary...
9502 std::vector<Value*> Args;
9503 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009504 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009505 attrVec.reserve(NumCommonArgs);
9506
9507 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009508 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009509
9510 // If the return value is not being used, the type may not be compatible
9511 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009512 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009513
9514 // Add the new return attributes.
9515 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009516 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009517
9518 AI = CS.arg_begin();
9519 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9520 const Type *ParamTy = FT->getParamType(i);
9521 if ((*AI)->getType() == ParamTy) {
9522 Args.push_back(*AI);
9523 } else {
9524 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9525 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009526 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009527 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9528 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009529
9530 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009531 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009532 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009533 }
9534
9535 // If the function takes more arguments than the call was taking, add them
9536 // now...
9537 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9538 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9539
9540 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009541 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009542 if (!FT->isVarArg()) {
9543 cerr << "WARNING: While resolving call to function '"
9544 << Callee->getName() << "' arguments were dropped!\n";
9545 } else {
9546 // Add all of the arguments in their promoted form to the arg list...
9547 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9548 const Type *PTy = getPromotedType((*AI)->getType());
9549 if (PTy != (*AI)->getType()) {
9550 // Must promote to pass through va_arg area!
9551 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9552 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009553 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009554 InsertNewInstBefore(Cast, *Caller);
9555 Args.push_back(Cast);
9556 } else {
9557 Args.push_back(*AI);
9558 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009559
Duncan Sands4ced1f82008-01-13 08:02:44 +00009560 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009561 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009562 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009563 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009564 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009565 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009566
Devang Patelf2a4a922008-09-26 22:53:05 +00009567 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9568 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9569
Duncan Sands7901ce12008-06-01 07:38:42 +00009570 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009571 Caller->setName(""); // Void type should not have a name.
9572
Devang Pateld222f862008-09-25 21:00:45 +00009573 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009574
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009575 Instruction *NC;
9576 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009577 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009578 Args.begin(), Args.end(),
9579 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009580 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009581 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009582 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009583 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9584 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009585 CallInst *CI = cast<CallInst>(Caller);
9586 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009587 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009588 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009589 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009590 }
9591
9592 // Insert a cast of the return type as necessary.
9593 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009594 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009595 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009596 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009597 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009598 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009599
9600 // If this is an invoke instruction, we should insert it after the first
9601 // non-phi, instruction in the normal successor block.
9602 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009603 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009604 InsertNewInstBefore(NC, *I);
9605 } else {
9606 // Otherwise, it's a call, just insert cast right after the call instr
9607 InsertNewInstBefore(NC, *Caller);
9608 }
9609 AddUsersToWorkList(*Caller);
9610 } else {
9611 NV = UndefValue::get(Caller->getType());
9612 }
9613 }
9614
9615 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9616 Caller->replaceAllUsesWith(NV);
9617 Caller->eraseFromParent();
9618 RemoveFromWorkList(Caller);
9619 return true;
9620}
9621
Duncan Sands74833f22007-09-17 10:26:40 +00009622// transformCallThroughTrampoline - Turn a call to a function created by the
9623// init_trampoline intrinsic into a direct call to the underlying function.
9624//
9625Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9626 Value *Callee = CS.getCalledValue();
9627 const PointerType *PTy = cast<PointerType>(Callee->getType());
9628 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009629 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009630
9631 // If the call already has the 'nest' attribute somewhere then give up -
9632 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009633 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009634 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009635
9636 IntrinsicInst *Tramp =
9637 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9638
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009639 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009640 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9641 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9642
Devang Pateld222f862008-09-25 21:00:45 +00009643 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009644 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009645 unsigned NestIdx = 1;
9646 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009647 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009648
9649 // Look for a parameter marked with the 'nest' attribute.
9650 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9651 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009652 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009653 // Record the parameter type and any other attributes.
9654 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009655 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009656 break;
9657 }
9658
9659 if (NestTy) {
9660 Instruction *Caller = CS.getInstruction();
9661 std::vector<Value*> NewArgs;
9662 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9663
Devang Pateld222f862008-09-25 21:00:45 +00009664 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009665 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009666
Duncan Sands74833f22007-09-17 10:26:40 +00009667 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009668 // mean appending it. Likewise for attributes.
9669
Devang Patelf2a4a922008-09-26 22:53:05 +00009670 // Add any result attributes.
9671 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009672 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009673
Duncan Sands74833f22007-09-17 10:26:40 +00009674 {
9675 unsigned Idx = 1;
9676 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9677 do {
9678 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009679 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009680 Value *NestVal = Tramp->getOperand(3);
9681 if (NestVal->getType() != NestTy)
9682 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9683 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009684 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009685 }
9686
9687 if (I == E)
9688 break;
9689
Duncan Sands48b81112008-01-14 19:52:09 +00009690 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009691 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009692 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009693 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009694 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009695
9696 ++Idx, ++I;
9697 } while (1);
9698 }
9699
Devang Patelf2a4a922008-09-26 22:53:05 +00009700 // Add any function attributes.
9701 if (Attributes Attr = Attrs.getFnAttributes())
9702 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9703
Duncan Sands74833f22007-09-17 10:26:40 +00009704 // The trampoline may have been bitcast to a bogus type (FTy).
9705 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009706 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009707
Duncan Sands74833f22007-09-17 10:26:40 +00009708 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009709 NewTypes.reserve(FTy->getNumParams()+1);
9710
Duncan Sands74833f22007-09-17 10:26:40 +00009711 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009712 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009713 {
9714 unsigned Idx = 1;
9715 FunctionType::param_iterator I = FTy->param_begin(),
9716 E = FTy->param_end();
9717
9718 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009719 if (Idx == NestIdx)
9720 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009721 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009722
9723 if (I == E)
9724 break;
9725
Duncan Sands48b81112008-01-14 19:52:09 +00009726 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009727 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009728
9729 ++Idx, ++I;
9730 } while (1);
9731 }
9732
9733 // Replace the trampoline call with a direct call. Let the generic
9734 // code sort out any function type mismatches.
9735 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009736 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009737 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9738 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009739 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009740
9741 Instruction *NewCaller;
9742 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009743 NewCaller = InvokeInst::Create(NewCallee,
9744 II->getNormalDest(), II->getUnwindDest(),
9745 NewArgs.begin(), NewArgs.end(),
9746 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009747 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009748 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009749 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009750 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9751 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009752 if (cast<CallInst>(Caller)->isTailCall())
9753 cast<CallInst>(NewCaller)->setTailCall();
9754 cast<CallInst>(NewCaller)->
9755 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009756 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009757 }
9758 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9759 Caller->replaceAllUsesWith(NewCaller);
9760 Caller->eraseFromParent();
9761 RemoveFromWorkList(Caller);
9762 return 0;
9763 }
9764 }
9765
9766 // Replace the trampoline call with a direct call. Since there is no 'nest'
9767 // parameter, there is no need to adjust the argument list. Let the generic
9768 // code sort out any function type mismatches.
9769 Constant *NewCallee =
9770 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9771 CS.setCalledFunction(NewCallee);
9772 return CS.getInstruction();
9773}
9774
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009775/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9776/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9777/// and a single binop.
9778Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9779 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9780 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9781 isa<CmpInst>(FirstInst));
9782 unsigned Opc = FirstInst->getOpcode();
9783 Value *LHSVal = FirstInst->getOperand(0);
9784 Value *RHSVal = FirstInst->getOperand(1);
9785
9786 const Type *LHSType = LHSVal->getType();
9787 const Type *RHSType = RHSVal->getType();
9788
9789 // Scan to see if all operands are the same opcode, all have one use, and all
9790 // kill their operands (i.e. the operands have one use).
9791 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9792 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9793 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9794 // Verify type of the LHS matches so we don't fold cmp's of different
9795 // types or GEP's with different index types.
9796 I->getOperand(0)->getType() != LHSType ||
9797 I->getOperand(1)->getType() != RHSType)
9798 return 0;
9799
9800 // If they are CmpInst instructions, check their predicates
9801 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9802 if (cast<CmpInst>(I)->getPredicate() !=
9803 cast<CmpInst>(FirstInst)->getPredicate())
9804 return 0;
9805
9806 // Keep track of which operand needs a phi node.
9807 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9808 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9809 }
9810
9811 // Otherwise, this is safe to transform, determine if it is profitable.
9812
9813 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9814 // Indexes are often folded into load/store instructions, so we don't want to
9815 // hide them behind a phi.
9816 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9817 return 0;
9818
9819 Value *InLHS = FirstInst->getOperand(0);
9820 Value *InRHS = FirstInst->getOperand(1);
9821 PHINode *NewLHS = 0, *NewRHS = 0;
9822 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009823 NewLHS = PHINode::Create(LHSType,
9824 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009825 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9826 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9827 InsertNewInstBefore(NewLHS, PN);
9828 LHSVal = NewLHS;
9829 }
9830
9831 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009832 NewRHS = PHINode::Create(RHSType,
9833 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009834 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9835 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9836 InsertNewInstBefore(NewRHS, PN);
9837 RHSVal = NewRHS;
9838 }
9839
9840 // Add all operands to the new PHIs.
9841 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9842 if (NewLHS) {
9843 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9844 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9845 }
9846 if (NewRHS) {
9847 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9848 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9849 }
9850 }
9851
9852 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009853 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009854 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009855 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009856 RHSVal);
9857 else {
9858 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greifd6da1d02008-04-06 20:25:17 +00009859 return GetElementPtrInst::Create(LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009860 }
9861}
9862
9863/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9864/// of the block that defines it. This means that it must be obvious the value
9865/// of the load is not changed from the point of the load to the end of the
9866/// block it is in.
9867///
9868/// Finally, it is safe, but not profitable, to sink a load targetting a
9869/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9870/// to a register.
9871static bool isSafeToSinkLoad(LoadInst *L) {
9872 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9873
9874 for (++BBI; BBI != E; ++BBI)
9875 if (BBI->mayWriteToMemory())
9876 return false;
9877
9878 // Check for non-address taken alloca. If not address-taken already, it isn't
9879 // profitable to do this xform.
9880 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9881 bool isAddressTaken = false;
9882 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9883 UI != E; ++UI) {
9884 if (isa<LoadInst>(UI)) continue;
9885 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9886 // If storing TO the alloca, then the address isn't taken.
9887 if (SI->getOperand(1) == AI) continue;
9888 }
9889 isAddressTaken = true;
9890 break;
9891 }
9892
9893 if (!isAddressTaken)
9894 return false;
9895 }
9896
9897 return true;
9898}
9899
9900
9901// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9902// operator and they all are only used by the PHI, PHI together their
9903// inputs, and do the operation once, to the result of the PHI.
9904Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9905 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9906
9907 // Scan the instruction, looking for input operations that can be folded away.
9908 // If all input operands to the phi are the same instruction (e.g. a cast from
9909 // the same type or "+42") we can pull the operation through the PHI, reducing
9910 // code size and simplifying code.
9911 Constant *ConstantOp = 0;
9912 const Type *CastSrcTy = 0;
9913 bool isVolatile = false;
9914 if (isa<CastInst>(FirstInst)) {
9915 CastSrcTy = FirstInst->getOperand(0)->getType();
9916 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9917 // Can fold binop, compare or shift here if the RHS is a constant,
9918 // otherwise call FoldPHIArgBinOpIntoPHI.
9919 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9920 if (ConstantOp == 0)
9921 return FoldPHIArgBinOpIntoPHI(PN);
9922 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9923 isVolatile = LI->isVolatile();
9924 // We can't sink the load if the loaded value could be modified between the
9925 // load and the PHI.
9926 if (LI->getParent() != PN.getIncomingBlock(0) ||
9927 !isSafeToSinkLoad(LI))
9928 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009929
9930 // If the PHI is of volatile loads and the load block has multiple
9931 // successors, sinking it would remove a load of the volatile value from
9932 // the path through the other successor.
9933 if (isVolatile &&
9934 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9935 return 0;
9936
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009937 } else if (isa<GetElementPtrInst>(FirstInst)) {
9938 if (FirstInst->getNumOperands() == 2)
9939 return FoldPHIArgBinOpIntoPHI(PN);
9940 // Can't handle general GEPs yet.
9941 return 0;
9942 } else {
9943 return 0; // Cannot fold this operation.
9944 }
9945
9946 // Check to see if all arguments are the same operation.
9947 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9948 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
9949 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
9950 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
9951 return 0;
9952 if (CastSrcTy) {
9953 if (I->getOperand(0)->getType() != CastSrcTy)
9954 return 0; // Cast operation must match.
9955 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9956 // We can't sink the load if the loaded value could be modified between
9957 // the load and the PHI.
9958 if (LI->isVolatile() != isVolatile ||
9959 LI->getParent() != PN.getIncomingBlock(i) ||
9960 !isSafeToSinkLoad(LI))
9961 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +00009962
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009963 // If the PHI is of volatile loads and the load block has multiple
9964 // successors, sinking it would remove a load of the volatile value from
9965 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +00009966 if (isVolatile &&
9967 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9968 return 0;
9969
9970
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009971 } else if (I->getOperand(1) != ConstantOp) {
9972 return 0;
9973 }
9974 }
9975
9976 // Okay, they are all the same operation. Create a new PHI node of the
9977 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009978 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
9979 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009980 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
9981
9982 Value *InVal = FirstInst->getOperand(0);
9983 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
9984
9985 // Add all operands to the new PHI.
9986 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9987 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9988 if (NewInVal != InVal)
9989 InVal = 0;
9990 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
9991 }
9992
9993 Value *PhiVal;
9994 if (InVal) {
9995 // The new PHI unions all of the same values together. This is really
9996 // common, so we handle it intelligently here for compile-time speed.
9997 PhiVal = InVal;
9998 delete NewPN;
9999 } else {
10000 InsertNewInstBefore(NewPN, PN);
10001 PhiVal = NewPN;
10002 }
10003
10004 // Insert and return the new operation.
10005 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010006 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010007 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010008 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010009 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010010 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010011 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010012 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10013
10014 // If this was a volatile load that we are merging, make sure to loop through
10015 // and mark all the input loads as non-volatile. If we don't do this, we will
10016 // insert a new volatile load and the old ones will not be deletable.
10017 if (isVolatile)
10018 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10019 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10020
10021 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010022}
10023
10024/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10025/// that is dead.
10026static bool DeadPHICycle(PHINode *PN,
10027 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10028 if (PN->use_empty()) return true;
10029 if (!PN->hasOneUse()) return false;
10030
10031 // Remember this node, and if we find the cycle, return.
10032 if (!PotentiallyDeadPHIs.insert(PN))
10033 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010034
10035 // Don't scan crazily complex things.
10036 if (PotentiallyDeadPHIs.size() == 16)
10037 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010038
10039 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10040 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10041
10042 return false;
10043}
10044
Chris Lattner27b695d2007-11-06 21:52:06 +000010045/// PHIsEqualValue - Return true if this phi node is always equal to
10046/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10047/// z = some value; x = phi (y, z); y = phi (x, z)
10048static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10049 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10050 // See if we already saw this PHI node.
10051 if (!ValueEqualPHIs.insert(PN))
10052 return true;
10053
10054 // Don't scan crazily complex things.
10055 if (ValueEqualPHIs.size() == 16)
10056 return false;
10057
10058 // Scan the operands to see if they are either phi nodes or are equal to
10059 // the value.
10060 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10061 Value *Op = PN->getIncomingValue(i);
10062 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10063 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10064 return false;
10065 } else if (Op != NonPhiInVal)
10066 return false;
10067 }
10068
10069 return true;
10070}
10071
10072
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010073// PHINode simplification
10074//
10075Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10076 // If LCSSA is around, don't mess with Phi nodes
10077 if (MustPreserveLCSSA) return 0;
10078
10079 if (Value *V = PN.hasConstantValue())
10080 return ReplaceInstUsesWith(PN, V);
10081
10082 // If all PHI operands are the same operation, pull them through the PHI,
10083 // reducing code size.
10084 if (isa<Instruction>(PN.getIncomingValue(0)) &&
10085 PN.getIncomingValue(0)->hasOneUse())
10086 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10087 return Result;
10088
10089 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10090 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10091 // PHI)... break the cycle.
10092 if (PN.hasOneUse()) {
10093 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10094 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10095 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10096 PotentiallyDeadPHIs.insert(&PN);
10097 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10098 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10099 }
10100
10101 // If this phi has a single use, and if that use just computes a value for
10102 // the next iteration of a loop, delete the phi. This occurs with unused
10103 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10104 // common case here is good because the only other things that catch this
10105 // are induction variable analysis (sometimes) and ADCE, which is only run
10106 // late.
10107 if (PHIUser->hasOneUse() &&
10108 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10109 PHIUser->use_back() == &PN) {
10110 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10111 }
10112 }
10113
Chris Lattner27b695d2007-11-06 21:52:06 +000010114 // We sometimes end up with phi cycles that non-obviously end up being the
10115 // same value, for example:
10116 // z = some value; x = phi (y, z); y = phi (x, z)
10117 // where the phi nodes don't necessarily need to be in the same block. Do a
10118 // quick check to see if the PHI node only contains a single non-phi value, if
10119 // so, scan to see if the phi cycle is actually equal to that value.
10120 {
10121 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10122 // Scan for the first non-phi operand.
10123 while (InValNo != NumOperandVals &&
10124 isa<PHINode>(PN.getIncomingValue(InValNo)))
10125 ++InValNo;
10126
10127 if (InValNo != NumOperandVals) {
10128 Value *NonPhiInVal = PN.getOperand(InValNo);
10129
10130 // Scan the rest of the operands to see if there are any conflicts, if so
10131 // there is no need to recursively scan other phis.
10132 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10133 Value *OpVal = PN.getIncomingValue(InValNo);
10134 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10135 break;
10136 }
10137
10138 // If we scanned over all operands, then we have one unique value plus
10139 // phi values. Scan PHI nodes to see if they all merge in each other or
10140 // the value.
10141 if (InValNo == NumOperandVals) {
10142 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10143 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10144 return ReplaceInstUsesWith(PN, NonPhiInVal);
10145 }
10146 }
10147 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010148 return 0;
10149}
10150
10151static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10152 Instruction *InsertPoint,
10153 InstCombiner *IC) {
10154 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10155 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10156 // We must cast correctly to the pointer type. Ensure that we
10157 // sign extend the integer value if it is smaller as this is
10158 // used for address computation.
10159 Instruction::CastOps opcode =
10160 (VTySize < PtrSize ? Instruction::SExt :
10161 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10162 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10163}
10164
10165
10166Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10167 Value *PtrOp = GEP.getOperand(0);
10168 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10169 // If so, eliminate the noop.
10170 if (GEP.getNumOperands() == 1)
10171 return ReplaceInstUsesWith(GEP, PtrOp);
10172
10173 if (isa<UndefValue>(GEP.getOperand(0)))
10174 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10175
10176 bool HasZeroPointerIndex = false;
10177 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10178 HasZeroPointerIndex = C->isNullValue();
10179
10180 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10181 return ReplaceInstUsesWith(GEP, PtrOp);
10182
10183 // Eliminate unneeded casts for indices.
10184 bool MadeChange = false;
10185
10186 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010187 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10188 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010189 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010190 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010191 if (CI->getOpcode() == Instruction::ZExt ||
10192 CI->getOpcode() == Instruction::SExt) {
10193 const Type *SrcTy = CI->getOperand(0)->getType();
10194 // We can eliminate a cast from i32 to i64 iff the target
10195 // is a 32-bit pointer target.
10196 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10197 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010198 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010199 }
10200 }
10201 }
10202 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010203 // to what we need. If narrower, sign-extend it to what we need.
10204 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010205 // insert it. This explicit cast can make subsequent optimizations more
10206 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010207 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010208 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010209 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010210 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010211 MadeChange = true;
10212 } else {
10213 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10214 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010215 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010216 MadeChange = true;
10217 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010218 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10219 if (Constant *C = dyn_cast<Constant>(Op)) {
10220 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10221 MadeChange = true;
10222 } else {
10223 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10224 GEP);
10225 *i = Op;
10226 MadeChange = true;
10227 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010228 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010229 }
10230 }
10231 if (MadeChange) return &GEP;
10232
10233 // If this GEP instruction doesn't move the pointer, and if the input operand
10234 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10235 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010236 if (GEP.hasAllZeroIndices()) {
10237 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10238 // If the bitcast is of an allocation, and the allocation will be
10239 // converted to match the type of the cast, don't touch this.
10240 if (isa<AllocationInst>(BCI->getOperand(0))) {
10241 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010242 if (Instruction *I = visitBitCast(*BCI)) {
10243 if (I != BCI) {
10244 I->takeName(BCI);
10245 BCI->getParent()->getInstList().insert(BCI, I);
10246 ReplaceInstUsesWith(*BCI, I);
10247 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010248 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010249 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010250 }
10251 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10252 }
10253 }
10254
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010255 // Combine Indices - If the source pointer to this getelementptr instruction
10256 // is a getelementptr instruction, combine the indices of the two
10257 // getelementptr instructions into a single instruction.
10258 //
10259 SmallVector<Value*, 8> SrcGEPOperands;
10260 if (User *Src = dyn_castGetElementPtr(PtrOp))
10261 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10262
10263 if (!SrcGEPOperands.empty()) {
10264 // Note that if our source is a gep chain itself that we wait for that
10265 // chain to be resolved before we perform this transformation. This
10266 // avoids us creating a TON of code in some cases.
10267 //
10268 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10269 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10270 return 0; // Wait until our source is folded to completion.
10271
10272 SmallVector<Value*, 8> Indices;
10273
10274 // Find out whether the last index in the source GEP is a sequential idx.
10275 bool EndsWithSequential = false;
10276 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10277 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10278 EndsWithSequential = !isa<StructType>(*I);
10279
10280 // Can we combine the two pointer arithmetics offsets?
10281 if (EndsWithSequential) {
10282 // Replace: gep (gep %P, long B), long A, ...
10283 // With: T = long A+B; gep %P, T, ...
10284 //
10285 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10286 if (SO1 == Constant::getNullValue(SO1->getType())) {
10287 Sum = GO1;
10288 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10289 Sum = SO1;
10290 } else {
10291 // If they aren't the same type, convert both to an integer of the
10292 // target's pointer size.
10293 if (SO1->getType() != GO1->getType()) {
10294 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10295 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10296 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10297 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10298 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010299 unsigned PS = TD->getPointerSizeInBits();
10300 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010301 // Convert GO1 to SO1's type.
10302 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10303
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010304 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010305 // Convert SO1 to GO1's type.
10306 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10307 } else {
10308 const Type *PT = TD->getIntPtrType();
10309 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10310 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10311 }
10312 }
10313 }
10314 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10315 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10316 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010317 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010318 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10319 }
10320 }
10321
10322 // Recycle the GEP we already have if possible.
10323 if (SrcGEPOperands.size() == 2) {
10324 GEP.setOperand(0, SrcGEPOperands[0]);
10325 GEP.setOperand(1, Sum);
10326 return &GEP;
10327 } else {
10328 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10329 SrcGEPOperands.end()-1);
10330 Indices.push_back(Sum);
10331 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10332 }
10333 } else if (isa<Constant>(*GEP.idx_begin()) &&
10334 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10335 SrcGEPOperands.size() != 1) {
10336 // Otherwise we can do the fold if the first index of the GEP is a zero
10337 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10338 SrcGEPOperands.end());
10339 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10340 }
10341
10342 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010343 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10344 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010345
10346 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10347 // GEP of global variable. If all of the indices for this GEP are
10348 // constants, we can promote this to a constexpr instead of an instruction.
10349
10350 // Scan for nonconstants...
10351 SmallVector<Constant*, 8> Indices;
10352 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10353 for (; I != E && isa<Constant>(*I); ++I)
10354 Indices.push_back(cast<Constant>(*I));
10355
10356 if (I == E) { // If they are all constants...
10357 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10358 &Indices[0],Indices.size());
10359
10360 // Replace all uses of the GEP with the new constexpr...
10361 return ReplaceInstUsesWith(GEP, CE);
10362 }
10363 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10364 if (!isa<PointerType>(X->getType())) {
10365 // Not interesting. Source pointer must be a cast from pointer.
10366 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010367 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10368 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010369 //
10370 // This occurs when the program declares an array extern like "int X[];"
10371 //
10372 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10373 const PointerType *XTy = cast<PointerType>(X->getType());
10374 if (const ArrayType *XATy =
10375 dyn_cast<ArrayType>(XTy->getElementType()))
10376 if (const ArrayType *CATy =
10377 dyn_cast<ArrayType>(CPTy->getElementType()))
10378 if (CATy->getElementType() == XATy->getElementType()) {
10379 // At this point, we know that the cast source type is a pointer
10380 // to an array of the same type as the destination pointer
10381 // array. Because the array type is never stepped over (there
10382 // is a leading zero) we can fold the cast into this GEP.
10383 GEP.setOperand(0, X);
10384 return &GEP;
10385 }
10386 } else if (GEP.getNumOperands() == 2) {
10387 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010388 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10389 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010390 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10391 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10392 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010393 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10394 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010395 Value *Idx[2];
10396 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10397 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010398 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010399 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010400 // V and GEP are both pointer types --> BitCast
10401 return new BitCastInst(V, GEP.getType());
10402 }
10403
10404 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010405 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010406 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010407 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010408
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010409 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010410 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010411 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010412
10413 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10414 // allow either a mul, shift, or constant here.
10415 Value *NewIdx = 0;
10416 ConstantInt *Scale = 0;
10417 if (ArrayEltSize == 1) {
10418 NewIdx = GEP.getOperand(1);
10419 Scale = ConstantInt::get(NewIdx->getType(), 1);
10420 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10421 NewIdx = ConstantInt::get(CI->getType(), 1);
10422 Scale = CI;
10423 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10424 if (Inst->getOpcode() == Instruction::Shl &&
10425 isa<ConstantInt>(Inst->getOperand(1))) {
10426 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10427 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10428 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10429 NewIdx = Inst->getOperand(0);
10430 } else if (Inst->getOpcode() == Instruction::Mul &&
10431 isa<ConstantInt>(Inst->getOperand(1))) {
10432 Scale = cast<ConstantInt>(Inst->getOperand(1));
10433 NewIdx = Inst->getOperand(0);
10434 }
10435 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010436
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010437 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010438 // out, perform the transformation. Note, we don't know whether Scale is
10439 // signed or not. We'll use unsigned version of division/modulo
10440 // operation after making sure Scale doesn't have the sign bit set.
10441 if (Scale && Scale->getSExtValue() >= 0LL &&
10442 Scale->getZExtValue() % ArrayEltSize == 0) {
10443 Scale = ConstantInt::get(Scale->getType(),
10444 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010445 if (Scale->getZExtValue() != 1) {
10446 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010447 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010448 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010449 NewIdx = InsertNewInstBefore(Sc, GEP);
10450 }
10451
10452 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010453 Value *Idx[2];
10454 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10455 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010456 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010457 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010458 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10459 // The NewGEP must be pointer typed, so must the old one -> BitCast
10460 return new BitCastInst(NewGEP, GEP.getType());
10461 }
10462 }
10463 }
10464 }
10465
10466 return 0;
10467}
10468
10469Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10470 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010471 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010472 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10473 const Type *NewTy =
10474 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10475 AllocationInst *New = 0;
10476
10477 // Create and insert the replacement instruction...
10478 if (isa<MallocInst>(AI))
10479 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10480 else {
10481 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10482 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10483 }
10484
10485 InsertNewInstBefore(New, AI);
10486
10487 // Scan to the end of the allocation instructions, to skip over a block of
10488 // allocas if possible...
10489 //
10490 BasicBlock::iterator It = New;
10491 while (isa<AllocationInst>(*It)) ++It;
10492
10493 // Now that I is pointing to the first non-allocation-inst in the block,
10494 // insert our getelementptr instruction...
10495 //
10496 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010497 Value *Idx[2];
10498 Idx[0] = NullIdx;
10499 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010500 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10501 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010502
10503 // Now make everything use the getelementptr instead of the original
10504 // allocation.
10505 return ReplaceInstUsesWith(AI, V);
10506 } else if (isa<UndefValue>(AI.getArraySize())) {
10507 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10508 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010509 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010510
10511 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10512 // Note that we only do this for alloca's, because malloc should allocate and
10513 // return a unique pointer, even for a zero byte allocation.
10514 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010515 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010516 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10517
10518 return 0;
10519}
10520
10521Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10522 Value *Op = FI.getOperand(0);
10523
10524 // free undef -> unreachable.
10525 if (isa<UndefValue>(Op)) {
10526 // Insert a new store to null because we cannot modify the CFG here.
10527 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010528 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010529 return EraseInstFromFunction(FI);
10530 }
10531
10532 // If we have 'free null' delete the instruction. This can happen in stl code
10533 // when lots of inlining happens.
10534 if (isa<ConstantPointerNull>(Op))
10535 return EraseInstFromFunction(FI);
10536
10537 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10538 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10539 FI.setOperand(0, CI->getOperand(0));
10540 return &FI;
10541 }
10542
10543 // Change free (gep X, 0,0,0,0) into free(X)
10544 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10545 if (GEPI->hasAllZeroIndices()) {
10546 AddToWorkList(GEPI);
10547 FI.setOperand(0, GEPI->getOperand(0));
10548 return &FI;
10549 }
10550 }
10551
10552 // Change free(malloc) into nothing, if the malloc has a single use.
10553 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10554 if (MI->hasOneUse()) {
10555 EraseInstFromFunction(FI);
10556 return EraseInstFromFunction(*MI);
10557 }
10558
10559 return 0;
10560}
10561
10562
10563/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010564static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010565 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010566 User *CI = cast<User>(LI.getOperand(0));
10567 Value *CastOp = CI->getOperand(0);
10568
Devang Patela0f8ea82007-10-18 19:52:32 +000010569 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10570 // Instead of loading constant c string, use corresponding integer value
10571 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010572 std::string Str;
10573 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010574 unsigned len = Str.length();
10575 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10576 unsigned numBits = Ty->getPrimitiveSizeInBits();
10577 // Replace LI with immediate integer store.
10578 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010579 APInt StrVal(numBits, 0);
10580 APInt SingleChar(numBits, 0);
10581 if (TD->isLittleEndian()) {
10582 for (signed i = len-1; i >= 0; i--) {
10583 SingleChar = (uint64_t) Str[i];
10584 StrVal = (StrVal << 8) | SingleChar;
10585 }
10586 } else {
10587 for (unsigned i = 0; i < len; i++) {
10588 SingleChar = (uint64_t) Str[i];
10589 StrVal = (StrVal << 8) | SingleChar;
10590 }
10591 // Append NULL at the end.
10592 SingleChar = 0;
10593 StrVal = (StrVal << 8) | SingleChar;
10594 }
10595 Value *NL = ConstantInt::get(StrVal);
10596 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010597 }
10598 }
10599 }
10600
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010601 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10602 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10603 const Type *SrcPTy = SrcTy->getElementType();
10604
10605 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10606 isa<VectorType>(DestPTy)) {
10607 // If the source is an array, the code below will not succeed. Check to
10608 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10609 // constants.
10610 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10611 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10612 if (ASrcTy->getNumElements() != 0) {
10613 Value *Idxs[2];
10614 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10615 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10616 SrcTy = cast<PointerType>(CastOp->getType());
10617 SrcPTy = SrcTy->getElementType();
10618 }
10619
10620 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10621 isa<VectorType>(SrcPTy)) &&
10622 // Do not allow turning this into a load of an integer, which is then
10623 // casted to a pointer, this pessimizes pointer analysis a lot.
10624 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10625 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10626 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10627
10628 // Okay, we are casting from one integer or pointer type to another of
10629 // the same size. Instead of casting the pointer before the load, cast
10630 // the result of the loaded value.
10631 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10632 CI->getName(),
10633 LI.isVolatile()),LI);
10634 // Now cast the result of the load.
10635 return new BitCastInst(NewLoad, LI.getType());
10636 }
10637 }
10638 }
10639 return 0;
10640}
10641
10642/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10643/// from this value cannot trap. If it is not obviously safe to load from the
10644/// specified pointer, we do a quick local scan of the basic block containing
10645/// ScanFrom, to determine if the address is already accessed.
10646static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010647 // If it is an alloca it is always safe to load from.
10648 if (isa<AllocaInst>(V)) return true;
10649
Duncan Sandse40a94a2007-09-19 10:25:38 +000010650 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010651 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010652 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010653 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010654
10655 // Otherwise, be a little bit agressive by scanning the local block where we
10656 // want to check to see if the pointer is already being loaded or stored
10657 // from/to. If so, the previous load or store would have already trapped,
10658 // so there is no harm doing an extra load (also, CSE will later eliminate
10659 // the load entirely).
10660 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10661
10662 while (BBI != E) {
10663 --BBI;
10664
Chris Lattner476983a2008-06-20 05:12:56 +000010665 // If we see a free or a call (which might do a free) the pointer could be
10666 // marked invalid.
10667 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10668 return false;
10669
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010670 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10671 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010672 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010673 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010674 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010675
10676 }
10677 return false;
10678}
10679
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010680/// equivalentAddressValues - Test if A and B will obviously have the same
10681/// value. This includes recognizing that %t0 and %t1 will have the same
10682/// value in code like this:
10683/// %t0 = getelementptr @a, 0, 3
10684/// store i32 0, i32* %t0
10685/// %t1 = getelementptr @a, 0, 3
10686/// %t2 = load i32* %t1
10687///
10688static bool equivalentAddressValues(Value *A, Value *B) {
10689 // Test if the values are trivially equivalent.
10690 if (A == B) return true;
10691
10692 // Test if the values come form identical arithmetic instructions.
10693 if (isa<BinaryOperator>(A) ||
10694 isa<CastInst>(A) ||
10695 isa<PHINode>(A) ||
10696 isa<GetElementPtrInst>(A))
10697 if (Instruction *BI = dyn_cast<Instruction>(B))
10698 if (cast<Instruction>(A)->isIdenticalTo(BI))
10699 return true;
10700
10701 // Otherwise they may not be equivalent.
10702 return false;
10703}
10704
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010705Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10706 Value *Op = LI.getOperand(0);
10707
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010708 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010709 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10710 if (KnownAlign >
10711 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10712 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010713 LI.setAlignment(KnownAlign);
10714
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010715 // load (cast X) --> cast (load X) iff safe
10716 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010717 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010718 return Res;
10719
10720 // None of the following transforms are legal for volatile loads.
10721 if (LI.isVolatile()) return 0;
10722
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010723 // Do really simple store-to-load forwarding and load CSE, to catch cases
10724 // where there are several consequtive memory accesses to the same location,
10725 // separated by a few arithmetic operations.
10726 BasicBlock::iterator BBI = &LI;
10727 for (unsigned ScanInsts = 6; BBI != LI.getParent()->begin() && ScanInsts;
10728 --ScanInsts) {
10729 --BBI;
10730
10731 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
10732 if (equivalentAddressValues(SI->getOperand(1), LI.getOperand(0)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010733 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010734 } else if (LoadInst *LIB = dyn_cast<LoadInst>(BBI)) {
10735 if (equivalentAddressValues(LIB->getOperand(0), LI.getOperand(0)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010736 return ReplaceInstUsesWith(LI, LIB);
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010737 }
10738
10739 // Don't skip over things that can modify memory.
10740 if (BBI->mayWriteToMemory())
10741 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010742 }
10743
Christopher Lamb2c175392007-12-29 07:56:53 +000010744 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10745 const Value *GEPI0 = GEPI->getOperand(0);
10746 // TODO: Consider a target hook for valid address spaces for this xform.
10747 if (isa<ConstantPointerNull>(GEPI0) &&
10748 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010749 // Insert a new store to null instruction before the load to indicate
10750 // that this code is not reachable. We do this instead of inserting
10751 // an unreachable instruction directly because we cannot modify the
10752 // CFG.
10753 new StoreInst(UndefValue::get(LI.getType()),
10754 Constant::getNullValue(Op->getType()), &LI);
10755 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10756 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010757 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010758
10759 if (Constant *C = dyn_cast<Constant>(Op)) {
10760 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010761 // TODO: Consider a target hook for valid address spaces for this xform.
10762 if (isa<UndefValue>(C) || (C->isNullValue() &&
10763 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010764 // Insert a new store to null instruction before the load to indicate that
10765 // this code is not reachable. We do this instead of inserting an
10766 // unreachable instruction directly because we cannot modify the CFG.
10767 new StoreInst(UndefValue::get(LI.getType()),
10768 Constant::getNullValue(Op->getType()), &LI);
10769 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10770 }
10771
10772 // Instcombine load (constant global) into the value loaded.
10773 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10774 if (GV->isConstant() && !GV->isDeclaration())
10775 return ReplaceInstUsesWith(LI, GV->getInitializer());
10776
10777 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010778 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010779 if (CE->getOpcode() == Instruction::GetElementPtr) {
10780 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10781 if (GV->isConstant() && !GV->isDeclaration())
10782 if (Constant *V =
10783 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10784 return ReplaceInstUsesWith(LI, V);
10785 if (CE->getOperand(0)->isNullValue()) {
10786 // Insert a new store to null instruction before the load to indicate
10787 // that this code is not reachable. We do this instead of inserting
10788 // an unreachable instruction directly because we cannot modify the
10789 // CFG.
10790 new StoreInst(UndefValue::get(LI.getType()),
10791 Constant::getNullValue(Op->getType()), &LI);
10792 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10793 }
10794
10795 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010796 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010797 return Res;
10798 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010799 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010800 }
Chris Lattner0270a112007-08-11 18:48:48 +000010801
10802 // If this load comes from anywhere in a constant global, and if the global
10803 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000010804 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000010805 if (GV->isConstant() && GV->hasInitializer()) {
10806 if (GV->getInitializer()->isNullValue())
10807 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10808 else if (isa<UndefValue>(GV->getInitializer()))
10809 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10810 }
10811 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010812
10813 if (Op->hasOneUse()) {
10814 // Change select and PHI nodes to select values instead of addresses: this
10815 // helps alias analysis out a lot, allows many others simplifications, and
10816 // exposes redundancy in the code.
10817 //
10818 // Note that we cannot do the transformation unless we know that the
10819 // introduced loads cannot trap! Something like this is valid as long as
10820 // the condition is always false: load (select bool %C, int* null, int* %G),
10821 // but it would not be valid if we transformed it to load from null
10822 // unconditionally.
10823 //
10824 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10825 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10826 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10827 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10828 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10829 SI->getOperand(1)->getName()+".val"), LI);
10830 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10831 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000010832 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010833 }
10834
10835 // load (select (cond, null, P)) -> load P
10836 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10837 if (C->isNullValue()) {
10838 LI.setOperand(0, SI->getOperand(2));
10839 return &LI;
10840 }
10841
10842 // load (select (cond, P, null)) -> load P
10843 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10844 if (C->isNullValue()) {
10845 LI.setOperand(0, SI->getOperand(1));
10846 return &LI;
10847 }
10848 }
10849 }
10850 return 0;
10851}
10852
10853/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10854/// when possible.
10855static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10856 User *CI = cast<User>(SI.getOperand(1));
10857 Value *CastOp = CI->getOperand(0);
10858
10859 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10860 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10861 const Type *SrcPTy = SrcTy->getElementType();
10862
10863 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10864 // If the source is an array, the code below will not succeed. Check to
10865 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10866 // constants.
10867 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10868 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10869 if (ASrcTy->getNumElements() != 0) {
10870 Value* Idxs[2];
10871 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10872 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10873 SrcTy = cast<PointerType>(CastOp->getType());
10874 SrcPTy = SrcTy->getElementType();
10875 }
10876
10877 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10878 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10879 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10880
10881 // Okay, we are casting from one integer or pointer type to another of
10882 // the same size. Instead of casting the pointer before
10883 // the store, cast the value to be stored.
10884 Value *NewCast;
10885 Value *SIOp0 = SI.getOperand(0);
10886 Instruction::CastOps opcode = Instruction::BitCast;
10887 const Type* CastSrcTy = SIOp0->getType();
10888 const Type* CastDstTy = SrcPTy;
10889 if (isa<PointerType>(CastDstTy)) {
10890 if (CastSrcTy->isInteger())
10891 opcode = Instruction::IntToPtr;
10892 } else if (isa<IntegerType>(CastDstTy)) {
10893 if (isa<PointerType>(SIOp0->getType()))
10894 opcode = Instruction::PtrToInt;
10895 }
10896 if (Constant *C = dyn_cast<Constant>(SIOp0))
10897 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10898 else
10899 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000010900 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010901 SI);
10902 return new StoreInst(NewCast, CastOp);
10903 }
10904 }
10905 }
10906 return 0;
10907}
10908
10909Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10910 Value *Val = SI.getOperand(0);
10911 Value *Ptr = SI.getOperand(1);
10912
10913 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10914 EraseInstFromFunction(SI);
10915 ++NumCombined;
10916 return 0;
10917 }
10918
10919 // If the RHS is an alloca with a single use, zapify the store, making the
10920 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000010921 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010922 if (isa<AllocaInst>(Ptr)) {
10923 EraseInstFromFunction(SI);
10924 ++NumCombined;
10925 return 0;
10926 }
10927
10928 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10929 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10930 GEP->getOperand(0)->hasOneUse()) {
10931 EraseInstFromFunction(SI);
10932 ++NumCombined;
10933 return 0;
10934 }
10935 }
10936
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010937 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010938 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
10939 if (KnownAlign >
10940 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
10941 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010942 SI.setAlignment(KnownAlign);
10943
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010944 // Do really simple DSE, to catch cases where there are several consequtive
10945 // stores to the same location, separated by a few arithmetic operations. This
10946 // situation often occurs with bitfield accesses.
10947 BasicBlock::iterator BBI = &SI;
10948 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
10949 --ScanInsts) {
10950 --BBI;
10951
10952 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
10953 // Prev store isn't volatile, and stores to the same location?
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010954 if (!PrevSI->isVolatile() && equivalentAddressValues(PrevSI->getOperand(1),
10955 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010956 ++NumDeadStore;
10957 ++BBI;
10958 EraseInstFromFunction(*PrevSI);
10959 continue;
10960 }
10961 break;
10962 }
10963
10964 // If this is a load, we have to stop. However, if the loaded value is from
10965 // the pointer we're loading and is producing the pointer we're storing,
10966 // then *this* store is dead (X = load P; store X -> P).
10967 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010968 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
10969 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010970 EraseInstFromFunction(SI);
10971 ++NumCombined;
10972 return 0;
10973 }
10974 // Otherwise, this is a load from some other location. Stores before it
10975 // may not be dead.
10976 break;
10977 }
10978
10979 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000010980 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010981 break;
10982 }
10983
10984
10985 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
10986
10987 // store X, null -> turns into 'unreachable' in SimplifyCFG
10988 if (isa<ConstantPointerNull>(Ptr)) {
10989 if (!isa<UndefValue>(Val)) {
10990 SI.setOperand(0, UndefValue::get(Val->getType()));
10991 if (Instruction *U = dyn_cast<Instruction>(Val))
10992 AddToWorkList(U); // Dropped a use.
10993 ++NumCombined;
10994 }
10995 return 0; // Do not modify these!
10996 }
10997
10998 // store undef, Ptr -> noop
10999 if (isa<UndefValue>(Val)) {
11000 EraseInstFromFunction(SI);
11001 ++NumCombined;
11002 return 0;
11003 }
11004
11005 // If the pointer destination is a cast, see if we can fold the cast into the
11006 // source instead.
11007 if (isa<CastInst>(Ptr))
11008 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11009 return Res;
11010 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11011 if (CE->isCast())
11012 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11013 return Res;
11014
11015
11016 // If this store is the last instruction in the basic block, and if the block
11017 // ends with an unconditional branch, try to move it to the successor block.
11018 BBI = &SI; ++BBI;
11019 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11020 if (BI->isUnconditional())
11021 if (SimplifyStoreAtEndOfBlock(SI))
11022 return 0; // xform done!
11023
11024 return 0;
11025}
11026
11027/// SimplifyStoreAtEndOfBlock - Turn things like:
11028/// if () { *P = v1; } else { *P = v2 }
11029/// into a phi node with a store in the successor.
11030///
11031/// Simplify things like:
11032/// *P = v1; if () { *P = v2; }
11033/// into a phi node with a store in the successor.
11034///
11035bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11036 BasicBlock *StoreBB = SI.getParent();
11037
11038 // Check to see if the successor block has exactly two incoming edges. If
11039 // so, see if the other predecessor contains a store to the same location.
11040 // if so, insert a PHI node (if needed) and move the stores down.
11041 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11042
11043 // Determine whether Dest has exactly two predecessors and, if so, compute
11044 // the other predecessor.
11045 pred_iterator PI = pred_begin(DestBB);
11046 BasicBlock *OtherBB = 0;
11047 if (*PI != StoreBB)
11048 OtherBB = *PI;
11049 ++PI;
11050 if (PI == pred_end(DestBB))
11051 return false;
11052
11053 if (*PI != StoreBB) {
11054 if (OtherBB)
11055 return false;
11056 OtherBB = *PI;
11057 }
11058 if (++PI != pred_end(DestBB))
11059 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011060
11061 // Bail out if all the relevant blocks aren't distinct (this can happen,
11062 // for example, if SI is in an infinite loop)
11063 if (StoreBB == DestBB || OtherBB == DestBB)
11064 return false;
11065
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011066 // Verify that the other block ends in a branch and is not otherwise empty.
11067 BasicBlock::iterator BBI = OtherBB->getTerminator();
11068 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11069 if (!OtherBr || BBI == OtherBB->begin())
11070 return false;
11071
11072 // If the other block ends in an unconditional branch, check for the 'if then
11073 // else' case. there is an instruction before the branch.
11074 StoreInst *OtherStore = 0;
11075 if (OtherBr->isUnconditional()) {
11076 // If this isn't a store, or isn't a store to the same location, bail out.
11077 --BBI;
11078 OtherStore = dyn_cast<StoreInst>(BBI);
11079 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11080 return false;
11081 } else {
11082 // Otherwise, the other block ended with a conditional branch. If one of the
11083 // destinations is StoreBB, then we have the if/then case.
11084 if (OtherBr->getSuccessor(0) != StoreBB &&
11085 OtherBr->getSuccessor(1) != StoreBB)
11086 return false;
11087
11088 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11089 // if/then triangle. See if there is a store to the same ptr as SI that
11090 // lives in OtherBB.
11091 for (;; --BBI) {
11092 // Check to see if we find the matching store.
11093 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11094 if (OtherStore->getOperand(1) != SI.getOperand(1))
11095 return false;
11096 break;
11097 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011098 // If we find something that may be using or overwriting the stored
11099 // value, or if we run out of instructions, we can't do the xform.
11100 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011101 BBI == OtherBB->begin())
11102 return false;
11103 }
11104
11105 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011106 // make sure nothing reads or overwrites the stored value in
11107 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011108 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11109 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011110 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011111 return false;
11112 }
11113 }
11114
11115 // Insert a PHI node now if we need it.
11116 Value *MergedVal = OtherStore->getOperand(0);
11117 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011118 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011119 PN->reserveOperandSpace(2);
11120 PN->addIncoming(SI.getOperand(0), SI.getParent());
11121 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11122 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11123 }
11124
11125 // Advance to a place where it is safe to insert the new store and
11126 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011127 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011128 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11129 OtherStore->isVolatile()), *BBI);
11130
11131 // Nuke the old stores.
11132 EraseInstFromFunction(SI);
11133 EraseInstFromFunction(*OtherStore);
11134 ++NumCombined;
11135 return true;
11136}
11137
11138
11139Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11140 // Change br (not X), label True, label False to: br X, label False, True
11141 Value *X = 0;
11142 BasicBlock *TrueDest;
11143 BasicBlock *FalseDest;
11144 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11145 !isa<Constant>(X)) {
11146 // Swap Destinations and condition...
11147 BI.setCondition(X);
11148 BI.setSuccessor(0, FalseDest);
11149 BI.setSuccessor(1, TrueDest);
11150 return &BI;
11151 }
11152
11153 // Cannonicalize fcmp_one -> fcmp_oeq
11154 FCmpInst::Predicate FPred; Value *Y;
11155 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11156 TrueDest, FalseDest)))
11157 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11158 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11159 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11160 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11161 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11162 NewSCC->takeName(I);
11163 // Swap Destinations and condition...
11164 BI.setCondition(NewSCC);
11165 BI.setSuccessor(0, FalseDest);
11166 BI.setSuccessor(1, TrueDest);
11167 RemoveFromWorkList(I);
11168 I->eraseFromParent();
11169 AddToWorkList(NewSCC);
11170 return &BI;
11171 }
11172
11173 // Cannonicalize icmp_ne -> icmp_eq
11174 ICmpInst::Predicate IPred;
11175 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11176 TrueDest, FalseDest)))
11177 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11178 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11179 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11180 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11181 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11182 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11183 NewSCC->takeName(I);
11184 // Swap Destinations and condition...
11185 BI.setCondition(NewSCC);
11186 BI.setSuccessor(0, FalseDest);
11187 BI.setSuccessor(1, TrueDest);
11188 RemoveFromWorkList(I);
11189 I->eraseFromParent();;
11190 AddToWorkList(NewSCC);
11191 return &BI;
11192 }
11193
11194 return 0;
11195}
11196
11197Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11198 Value *Cond = SI.getCondition();
11199 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11200 if (I->getOpcode() == Instruction::Add)
11201 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11202 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11203 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11204 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11205 AddRHS));
11206 SI.setOperand(0, I->getOperand(0));
11207 AddToWorkList(I);
11208 return &SI;
11209 }
11210 }
11211 return 0;
11212}
11213
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011214Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011215 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011216
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011217 if (!EV.hasIndices())
11218 return ReplaceInstUsesWith(EV, Agg);
11219
11220 if (Constant *C = dyn_cast<Constant>(Agg)) {
11221 if (isa<UndefValue>(C))
11222 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11223
11224 if (isa<ConstantAggregateZero>(C))
11225 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11226
11227 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11228 // Extract the element indexed by the first index out of the constant
11229 Value *V = C->getOperand(*EV.idx_begin());
11230 if (EV.getNumIndices() > 1)
11231 // Extract the remaining indices out of the constant indexed by the
11232 // first index
11233 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11234 else
11235 return ReplaceInstUsesWith(EV, V);
11236 }
11237 return 0; // Can't handle other constants
11238 }
11239 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11240 // We're extracting from an insertvalue instruction, compare the indices
11241 const unsigned *exti, *exte, *insi, *inse;
11242 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11243 exte = EV.idx_end(), inse = IV->idx_end();
11244 exti != exte && insi != inse;
11245 ++exti, ++insi) {
11246 if (*insi != *exti)
11247 // The insert and extract both reference distinctly different elements.
11248 // This means the extract is not influenced by the insert, and we can
11249 // replace the aggregate operand of the extract with the aggregate
11250 // operand of the insert. i.e., replace
11251 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11252 // %E = extractvalue { i32, { i32 } } %I, 0
11253 // with
11254 // %E = extractvalue { i32, { i32 } } %A, 0
11255 return ExtractValueInst::Create(IV->getAggregateOperand(),
11256 EV.idx_begin(), EV.idx_end());
11257 }
11258 if (exti == exte && insi == inse)
11259 // Both iterators are at the end: Index lists are identical. Replace
11260 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11261 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11262 // with "i32 42"
11263 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11264 if (exti == exte) {
11265 // The extract list is a prefix of the insert list. i.e. replace
11266 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11267 // %E = extractvalue { i32, { i32 } } %I, 1
11268 // with
11269 // %X = extractvalue { i32, { i32 } } %A, 1
11270 // %E = insertvalue { i32 } %X, i32 42, 0
11271 // by switching the order of the insert and extract (though the
11272 // insertvalue should be left in, since it may have other uses).
11273 Value *NewEV = InsertNewInstBefore(
11274 ExtractValueInst::Create(IV->getAggregateOperand(),
11275 EV.idx_begin(), EV.idx_end()),
11276 EV);
11277 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11278 insi, inse);
11279 }
11280 if (insi == inse)
11281 // The insert list is a prefix of the extract list
11282 // We can simply remove the common indices from the extract and make it
11283 // operate on the inserted value instead of the insertvalue result.
11284 // i.e., replace
11285 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11286 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11287 // with
11288 // %E extractvalue { i32 } { i32 42 }, 0
11289 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11290 exti, exte);
11291 }
11292 // Can't simplify extracts from other values. Note that nested extracts are
11293 // already simplified implicitely by the above (extract ( extract (insert) )
11294 // will be translated into extract ( insert ( extract ) ) first and then just
11295 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011296 return 0;
11297}
11298
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011299/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11300/// is to leave as a vector operation.
11301static bool CheapToScalarize(Value *V, bool isConstant) {
11302 if (isa<ConstantAggregateZero>(V))
11303 return true;
11304 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11305 if (isConstant) return true;
11306 // If all elts are the same, we can extract.
11307 Constant *Op0 = C->getOperand(0);
11308 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11309 if (C->getOperand(i) != Op0)
11310 return false;
11311 return true;
11312 }
11313 Instruction *I = dyn_cast<Instruction>(V);
11314 if (!I) return false;
11315
11316 // Insert element gets simplified to the inserted element or is deleted if
11317 // this is constant idx extract element and its a constant idx insertelt.
11318 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11319 isa<ConstantInt>(I->getOperand(2)))
11320 return true;
11321 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11322 return true;
11323 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11324 if (BO->hasOneUse() &&
11325 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11326 CheapToScalarize(BO->getOperand(1), isConstant)))
11327 return true;
11328 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11329 if (CI->hasOneUse() &&
11330 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11331 CheapToScalarize(CI->getOperand(1), isConstant)))
11332 return true;
11333
11334 return false;
11335}
11336
11337/// Read and decode a shufflevector mask.
11338///
11339/// It turns undef elements into values that are larger than the number of
11340/// elements in the input.
11341static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11342 unsigned NElts = SVI->getType()->getNumElements();
11343 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11344 return std::vector<unsigned>(NElts, 0);
11345 if (isa<UndefValue>(SVI->getOperand(2)))
11346 return std::vector<unsigned>(NElts, 2*NElts);
11347
11348 std::vector<unsigned> Result;
11349 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011350 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11351 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011352 Result.push_back(NElts*2); // undef -> 8
11353 else
Gabor Greif17396002008-06-12 21:37:33 +000011354 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011355 return Result;
11356}
11357
11358/// FindScalarElement - Given a vector and an element number, see if the scalar
11359/// value is already around as a register, for example if it were inserted then
11360/// extracted from the vector.
11361static Value *FindScalarElement(Value *V, unsigned EltNo) {
11362 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11363 const VectorType *PTy = cast<VectorType>(V->getType());
11364 unsigned Width = PTy->getNumElements();
11365 if (EltNo >= Width) // Out of range access.
11366 return UndefValue::get(PTy->getElementType());
11367
11368 if (isa<UndefValue>(V))
11369 return UndefValue::get(PTy->getElementType());
11370 else if (isa<ConstantAggregateZero>(V))
11371 return Constant::getNullValue(PTy->getElementType());
11372 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11373 return CP->getOperand(EltNo);
11374 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11375 // If this is an insert to a variable element, we don't know what it is.
11376 if (!isa<ConstantInt>(III->getOperand(2)))
11377 return 0;
11378 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11379
11380 // If this is an insert to the element we are looking for, return the
11381 // inserted value.
11382 if (EltNo == IIElt)
11383 return III->getOperand(1);
11384
11385 // Otherwise, the insertelement doesn't modify the value, recurse on its
11386 // vector input.
11387 return FindScalarElement(III->getOperand(0), EltNo);
11388 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
11389 unsigned InEl = getShuffleMask(SVI)[EltNo];
11390 if (InEl < Width)
11391 return FindScalarElement(SVI->getOperand(0), InEl);
11392 else if (InEl < Width*2)
11393 return FindScalarElement(SVI->getOperand(1), InEl - Width);
11394 else
11395 return UndefValue::get(PTy->getElementType());
11396 }
11397
11398 // Otherwise, we don't know.
11399 return 0;
11400}
11401
11402Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011403 // If vector val is undef, replace extract with scalar undef.
11404 if (isa<UndefValue>(EI.getOperand(0)))
11405 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11406
11407 // If vector val is constant 0, replace extract with scalar 0.
11408 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11409 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11410
11411 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011412 // If vector val is constant with all elements the same, replace EI with
11413 // that element. When the elements are not identical, we cannot replace yet
11414 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011415 Constant *op0 = C->getOperand(0);
11416 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11417 if (C->getOperand(i) != op0) {
11418 op0 = 0;
11419 break;
11420 }
11421 if (op0)
11422 return ReplaceInstUsesWith(EI, op0);
11423 }
11424
11425 // If extracting a specified index from the vector, see if we can recursively
11426 // find a previously computed scalar that was inserted into the vector.
11427 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11428 unsigned IndexVal = IdxC->getZExtValue();
11429 unsigned VectorWidth =
11430 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11431
11432 // If this is extracting an invalid index, turn this into undef, to avoid
11433 // crashing the code below.
11434 if (IndexVal >= VectorWidth)
11435 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11436
11437 // This instruction only demands the single element from the input vector.
11438 // If the input vector has a single use, simplify it based on this use
11439 // property.
11440 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11441 uint64_t UndefElts;
11442 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11443 1 << IndexVal,
11444 UndefElts)) {
11445 EI.setOperand(0, V);
11446 return &EI;
11447 }
11448 }
11449
11450 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11451 return ReplaceInstUsesWith(EI, Elt);
11452
11453 // If the this extractelement is directly using a bitcast from a vector of
11454 // the same number of elements, see if we can find the source element from
11455 // it. In this case, we will end up needing to bitcast the scalars.
11456 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11457 if (const VectorType *VT =
11458 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11459 if (VT->getNumElements() == VectorWidth)
11460 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11461 return new BitCastInst(Elt, EI.getType());
11462 }
11463 }
11464
11465 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11466 if (I->hasOneUse()) {
11467 // Push extractelement into predecessor operation if legal and
11468 // profitable to do so
11469 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11470 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11471 if (CheapToScalarize(BO, isConstantElt)) {
11472 ExtractElementInst *newEI0 =
11473 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11474 EI.getName()+".lhs");
11475 ExtractElementInst *newEI1 =
11476 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11477 EI.getName()+".rhs");
11478 InsertNewInstBefore(newEI0, EI);
11479 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011480 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011481 }
11482 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011483 unsigned AS =
11484 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011485 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11486 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011487 GetElementPtrInst *GEP =
11488 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011489 InsertNewInstBefore(GEP, EI);
11490 return new LoadInst(GEP);
11491 }
11492 }
11493 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11494 // Extracting the inserted element?
11495 if (IE->getOperand(2) == EI.getOperand(1))
11496 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11497 // If the inserted and extracted elements are constants, they must not
11498 // be the same value, extract from the pre-inserted value instead.
11499 if (isa<Constant>(IE->getOperand(2)) &&
11500 isa<Constant>(EI.getOperand(1))) {
11501 AddUsesToWorkList(EI);
11502 EI.setOperand(0, IE->getOperand(0));
11503 return &EI;
11504 }
11505 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11506 // If this is extracting an element from a shufflevector, figure out where
11507 // it came from and extract from the appropriate input element instead.
11508 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11509 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11510 Value *Src;
11511 if (SrcIdx < SVI->getType()->getNumElements())
11512 Src = SVI->getOperand(0);
11513 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
11514 SrcIdx -= SVI->getType()->getNumElements();
11515 Src = SVI->getOperand(1);
11516 } else {
11517 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11518 }
11519 return new ExtractElementInst(Src, SrcIdx);
11520 }
11521 }
11522 }
11523 return 0;
11524}
11525
11526/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11527/// elements from either LHS or RHS, return the shuffle mask and true.
11528/// Otherwise, return false.
11529static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11530 std::vector<Constant*> &Mask) {
11531 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11532 "Invalid CollectSingleShuffleElements");
11533 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11534
11535 if (isa<UndefValue>(V)) {
11536 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11537 return true;
11538 } else if (V == LHS) {
11539 for (unsigned i = 0; i != NumElts; ++i)
11540 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11541 return true;
11542 } else if (V == RHS) {
11543 for (unsigned i = 0; i != NumElts; ++i)
11544 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11545 return true;
11546 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11547 // If this is an insert of an extract from some other vector, include it.
11548 Value *VecOp = IEI->getOperand(0);
11549 Value *ScalarOp = IEI->getOperand(1);
11550 Value *IdxOp = IEI->getOperand(2);
11551
11552 if (!isa<ConstantInt>(IdxOp))
11553 return false;
11554 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11555
11556 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11557 // Okay, we can handle this if the vector we are insertinting into is
11558 // transitively ok.
11559 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11560 // If so, update the mask to reflect the inserted undef.
11561 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11562 return true;
11563 }
11564 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11565 if (isa<ConstantInt>(EI->getOperand(1)) &&
11566 EI->getOperand(0)->getType() == V->getType()) {
11567 unsigned ExtractedIdx =
11568 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11569
11570 // This must be extracting from either LHS or RHS.
11571 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11572 // Okay, we can handle this if the vector we are insertinting into is
11573 // transitively ok.
11574 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11575 // If so, update the mask to reflect the inserted value.
11576 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011577 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011578 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11579 } else {
11580 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011581 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011582 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11583
11584 }
11585 return true;
11586 }
11587 }
11588 }
11589 }
11590 }
11591 // TODO: Handle shufflevector here!
11592
11593 return false;
11594}
11595
11596/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11597/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11598/// that computes V and the LHS value of the shuffle.
11599static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11600 Value *&RHS) {
11601 assert(isa<VectorType>(V->getType()) &&
11602 (RHS == 0 || V->getType() == RHS->getType()) &&
11603 "Invalid shuffle!");
11604 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11605
11606 if (isa<UndefValue>(V)) {
11607 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11608 return V;
11609 } else if (isa<ConstantAggregateZero>(V)) {
11610 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11611 return V;
11612 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11613 // If this is an insert of an extract from some other vector, include it.
11614 Value *VecOp = IEI->getOperand(0);
11615 Value *ScalarOp = IEI->getOperand(1);
11616 Value *IdxOp = IEI->getOperand(2);
11617
11618 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11619 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11620 EI->getOperand(0)->getType() == V->getType()) {
11621 unsigned ExtractedIdx =
11622 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11623 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11624
11625 // Either the extracted from or inserted into vector must be RHSVec,
11626 // otherwise we'd end up with a shuffle of three inputs.
11627 if (EI->getOperand(0) == RHS || RHS == 0) {
11628 RHS = EI->getOperand(0);
11629 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011630 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011631 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11632 return V;
11633 }
11634
11635 if (VecOp == RHS) {
11636 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11637 // Everything but the extracted element is replaced with the RHS.
11638 for (unsigned i = 0; i != NumElts; ++i) {
11639 if (i != InsertedIdx)
11640 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11641 }
11642 return V;
11643 }
11644
11645 // If this insertelement is a chain that comes from exactly these two
11646 // vectors, return the vector and the effective shuffle.
11647 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11648 return EI->getOperand(0);
11649
11650 }
11651 }
11652 }
11653 // TODO: Handle shufflevector here!
11654
11655 // Otherwise, can't do anything fancy. Return an identity vector.
11656 for (unsigned i = 0; i != NumElts; ++i)
11657 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11658 return V;
11659}
11660
11661Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11662 Value *VecOp = IE.getOperand(0);
11663 Value *ScalarOp = IE.getOperand(1);
11664 Value *IdxOp = IE.getOperand(2);
11665
11666 // Inserting an undef or into an undefined place, remove this.
11667 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11668 ReplaceInstUsesWith(IE, VecOp);
11669
11670 // If the inserted element was extracted from some other vector, and if the
11671 // indexes are constant, try to turn this into a shufflevector operation.
11672 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11673 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11674 EI->getOperand(0)->getType() == IE.getType()) {
11675 unsigned NumVectorElts = IE.getType()->getNumElements();
11676 unsigned ExtractedIdx =
11677 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11678 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11679
11680 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11681 return ReplaceInstUsesWith(IE, VecOp);
11682
11683 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11684 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11685
11686 // If we are extracting a value from a vector, then inserting it right
11687 // back into the same place, just use the input vector.
11688 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11689 return ReplaceInstUsesWith(IE, VecOp);
11690
11691 // We could theoretically do this for ANY input. However, doing so could
11692 // turn chains of insertelement instructions into a chain of shufflevector
11693 // instructions, and right now we do not merge shufflevectors. As such,
11694 // only do this in a situation where it is clear that there is benefit.
11695 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11696 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11697 // the values of VecOp, except then one read from EIOp0.
11698 // Build a new shuffle mask.
11699 std::vector<Constant*> Mask;
11700 if (isa<UndefValue>(VecOp))
11701 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11702 else {
11703 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11704 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11705 NumVectorElts));
11706 }
11707 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11708 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11709 ConstantVector::get(Mask));
11710 }
11711
11712 // If this insertelement isn't used by some other insertelement, turn it
11713 // (and any insertelements it points to), into one big shuffle.
11714 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11715 std::vector<Constant*> Mask;
11716 Value *RHS = 0;
11717 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11718 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11719 // We now have a shuffle of LHS, RHS, Mask.
11720 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11721 }
11722 }
11723 }
11724
11725 return 0;
11726}
11727
11728
11729Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11730 Value *LHS = SVI.getOperand(0);
11731 Value *RHS = SVI.getOperand(1);
11732 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11733
11734 bool MadeChange = false;
11735
11736 // Undefined shuffle mask -> undefined value.
11737 if (isa<UndefValue>(SVI.getOperand(2)))
11738 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011739
11740 uint64_t UndefElts;
11741 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
11742 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11743 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011744 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11745 LHS = SVI.getOperand(0);
11746 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011747 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011748 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011749
11750 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11751 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11752 if (LHS == RHS || isa<UndefValue>(LHS)) {
11753 if (isa<UndefValue>(LHS) && LHS == RHS) {
11754 // shuffle(undef,undef,mask) -> undef.
11755 return ReplaceInstUsesWith(SVI, LHS);
11756 }
11757
11758 // Remap any references to RHS to use LHS.
11759 std::vector<Constant*> Elts;
11760 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11761 if (Mask[i] >= 2*e)
11762 Elts.push_back(UndefValue::get(Type::Int32Ty));
11763 else {
11764 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000011765 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011766 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011767 Elts.push_back(UndefValue::get(Type::Int32Ty));
11768 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011769 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011770 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11771 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011772 }
11773 }
11774 SVI.setOperand(0, SVI.getOperand(1));
11775 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11776 SVI.setOperand(2, ConstantVector::get(Elts));
11777 LHS = SVI.getOperand(0);
11778 RHS = SVI.getOperand(1);
11779 MadeChange = true;
11780 }
11781
11782 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11783 bool isLHSID = true, isRHSID = true;
11784
11785 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11786 if (Mask[i] >= e*2) continue; // Ignore undef values.
11787 // Is this an identity shuffle of the LHS value?
11788 isLHSID &= (Mask[i] == i);
11789
11790 // Is this an identity shuffle of the RHS value?
11791 isRHSID &= (Mask[i]-e == i);
11792 }
11793
11794 // Eliminate identity shuffles.
11795 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11796 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11797
11798 // If the LHS is a shufflevector itself, see if we can combine it with this
11799 // one without producing an unusual shuffle. Here we are really conservative:
11800 // we are absolutely afraid of producing a shuffle mask not in the input
11801 // program, because the code gen may not be smart enough to turn a merged
11802 // shuffle into two specific shuffles: it may produce worse code. As such,
11803 // we only merge two shuffles if the result is one of the two input shuffle
11804 // masks. In this case, merging the shuffles just removes one instruction,
11805 // which we know is safe. This is good for things like turning:
11806 // (splat(splat)) -> splat.
11807 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11808 if (isa<UndefValue>(RHS)) {
11809 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11810
11811 std::vector<unsigned> NewMask;
11812 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11813 if (Mask[i] >= 2*e)
11814 NewMask.push_back(2*e);
11815 else
11816 NewMask.push_back(LHSMask[Mask[i]]);
11817
11818 // If the result mask is equal to the src shuffle or this shuffle mask, do
11819 // the replacement.
11820 if (NewMask == LHSMask || NewMask == Mask) {
11821 std::vector<Constant*> Elts;
11822 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11823 if (NewMask[i] >= e*2) {
11824 Elts.push_back(UndefValue::get(Type::Int32Ty));
11825 } else {
11826 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11827 }
11828 }
11829 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11830 LHSSVI->getOperand(1),
11831 ConstantVector::get(Elts));
11832 }
11833 }
11834 }
11835
11836 return MadeChange ? &SVI : 0;
11837}
11838
11839
11840
11841
11842/// TryToSinkInstruction - Try to move the specified instruction from its
11843/// current block into the beginning of DestBlock, which can only happen if it's
11844/// safe to move the instruction past all of the instructions between it and the
11845/// end of its block.
11846static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11847 assert(I->hasOneUse() && "Invariants didn't hold!");
11848
11849 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000011850 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
11851 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011852
11853 // Do not sink alloca instructions out of the entry block.
11854 if (isa<AllocaInst>(I) && I->getParent() ==
11855 &DestBlock->getParent()->getEntryBlock())
11856 return false;
11857
11858 // We can only sink load instructions if there is nothing between the load and
11859 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000011860 if (I->mayReadFromMemory()) {
11861 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011862 Scan != E; ++Scan)
11863 if (Scan->mayWriteToMemory())
11864 return false;
11865 }
11866
Dan Gohman514277c2008-05-23 21:05:58 +000011867 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011868
11869 I->moveBefore(InsertPos);
11870 ++NumSunkInst;
11871 return true;
11872}
11873
11874
11875/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11876/// all reachable code to the worklist.
11877///
11878/// This has a couple of tricks to make the code faster and more powerful. In
11879/// particular, we constant fold and DCE instructions as we go, to avoid adding
11880/// them to the worklist (this significantly speeds up instcombine on code where
11881/// many instructions are dead or constant). Additionally, if we find a branch
11882/// whose condition is a known constant, we only visit the reachable successors.
11883///
11884static void AddReachableCodeToWorklist(BasicBlock *BB,
11885 SmallPtrSet<BasicBlock*, 64> &Visited,
11886 InstCombiner &IC,
11887 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000011888 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011889 Worklist.push_back(BB);
11890
11891 while (!Worklist.empty()) {
11892 BB = Worklist.back();
11893 Worklist.pop_back();
11894
11895 // We have now visited this block! If we've already been here, ignore it.
11896 if (!Visited.insert(BB)) continue;
11897
11898 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11899 Instruction *Inst = BBI++;
11900
11901 // DCE instruction if trivially dead.
11902 if (isInstructionTriviallyDead(Inst)) {
11903 ++NumDeadInst;
11904 DOUT << "IC: DCE: " << *Inst;
11905 Inst->eraseFromParent();
11906 continue;
11907 }
11908
11909 // ConstantProp instruction if trivially constant.
11910 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11911 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11912 Inst->replaceAllUsesWith(C);
11913 ++NumConstProp;
11914 Inst->eraseFromParent();
11915 continue;
11916 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000011917
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011918 IC.AddToWorkList(Inst);
11919 }
11920
11921 // Recursively visit successors. If this is a branch or switch on a
11922 // constant, only visit the reachable successor.
11923 TerminatorInst *TI = BB->getTerminator();
11924 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
11925 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
11926 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011927 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011928 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011929 continue;
11930 }
11931 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
11932 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
11933 // See if this is an explicit destination.
11934 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
11935 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011936 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011937 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011938 continue;
11939 }
11940
11941 // Otherwise it is the default destination.
11942 Worklist.push_back(SI->getSuccessor(0));
11943 continue;
11944 }
11945 }
11946
11947 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
11948 Worklist.push_back(TI->getSuccessor(i));
11949 }
11950}
11951
11952bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
11953 bool Changed = false;
11954 TD = &getAnalysis<TargetData>();
11955
11956 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
11957 << F.getNameStr() << "\n");
11958
11959 {
11960 // Do a depth-first traversal of the function, populate the worklist with
11961 // the reachable instructions. Ignore blocks that are not reachable. Keep
11962 // track of which blocks we visit.
11963 SmallPtrSet<BasicBlock*, 64> Visited;
11964 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
11965
11966 // Do a quick scan over the function. If we find any blocks that are
11967 // unreachable, remove any instructions inside of them. This prevents
11968 // the instcombine code from having to deal with some bad special cases.
11969 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
11970 if (!Visited.count(BB)) {
11971 Instruction *Term = BB->getTerminator();
11972 while (Term != BB->begin()) { // Remove instrs bottom-up
11973 BasicBlock::iterator I = Term; --I;
11974
11975 DOUT << "IC: DCE: " << *I;
11976 ++NumDeadInst;
11977
11978 if (!I->use_empty())
11979 I->replaceAllUsesWith(UndefValue::get(I->getType()));
11980 I->eraseFromParent();
11981 }
11982 }
11983 }
11984
11985 while (!Worklist.empty()) {
11986 Instruction *I = RemoveOneFromWorkList();
11987 if (I == 0) continue; // skip null values.
11988
11989 // Check to see if we can DCE the instruction.
11990 if (isInstructionTriviallyDead(I)) {
11991 // Add operands to the worklist.
11992 if (I->getNumOperands() < 4)
11993 AddUsesToWorkList(*I);
11994 ++NumDeadInst;
11995
11996 DOUT << "IC: DCE: " << *I;
11997
11998 I->eraseFromParent();
11999 RemoveFromWorkList(I);
12000 continue;
12001 }
12002
12003 // Instruction isn't dead, see if we can constant propagate it.
12004 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12005 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12006
12007 // Add operands to the worklist.
12008 AddUsesToWorkList(*I);
12009 ReplaceInstUsesWith(*I, C);
12010
12011 ++NumConstProp;
12012 I->eraseFromParent();
12013 RemoveFromWorkList(I);
12014 continue;
12015 }
12016
Nick Lewyckyadb67922008-05-25 20:56:15 +000012017 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12018 // See if we can constant fold its operands.
12019 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12020 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12021 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12022 i->set(NewC);
12023 }
12024 }
12025 }
12026
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012027 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012028 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012029 BasicBlock *BB = I->getParent();
12030 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12031 if (UserParent != BB) {
12032 bool UserIsSuccessor = false;
12033 // See if the user is one of our successors.
12034 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12035 if (*SI == UserParent) {
12036 UserIsSuccessor = true;
12037 break;
12038 }
12039
12040 // If the user is one of our immediate successors, and if that successor
12041 // only has us as a predecessors (we'd have to split the critical edge
12042 // otherwise), we can keep going.
12043 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12044 next(pred_begin(UserParent)) == pred_end(UserParent))
12045 // Okay, the CFG is simple enough, try to sink this instruction.
12046 Changed |= TryToSinkInstruction(I, UserParent);
12047 }
12048 }
12049
12050 // Now that we have an instruction, try combining it to simplify it...
12051#ifndef NDEBUG
12052 std::string OrigI;
12053#endif
12054 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12055 if (Instruction *Result = visit(*I)) {
12056 ++NumCombined;
12057 // Should we replace the old instruction with a new one?
12058 if (Result != I) {
12059 DOUT << "IC: Old = " << *I
12060 << " New = " << *Result;
12061
12062 // Everything uses the new instruction now.
12063 I->replaceAllUsesWith(Result);
12064
12065 // Push the new instruction and any users onto the worklist.
12066 AddToWorkList(Result);
12067 AddUsersToWorkList(*Result);
12068
12069 // Move the name to the new instruction first.
12070 Result->takeName(I);
12071
12072 // Insert the new instruction into the basic block...
12073 BasicBlock *InstParent = I->getParent();
12074 BasicBlock::iterator InsertPos = I;
12075
12076 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12077 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12078 ++InsertPos;
12079
12080 InstParent->getInstList().insert(InsertPos, Result);
12081
12082 // Make sure that we reprocess all operands now that we reduced their
12083 // use counts.
12084 AddUsesToWorkList(*I);
12085
12086 // Instructions can end up on the worklist more than once. Make sure
12087 // we do not process an instruction that has been deleted.
12088 RemoveFromWorkList(I);
12089
12090 // Erase the old instruction.
12091 InstParent->getInstList().erase(I);
12092 } else {
12093#ifndef NDEBUG
12094 DOUT << "IC: Mod = " << OrigI
12095 << " New = " << *I;
12096#endif
12097
12098 // If the instruction was modified, it's possible that it is now dead.
12099 // if so, remove it.
12100 if (isInstructionTriviallyDead(I)) {
12101 // Make sure we process all operands now that we are reducing their
12102 // use counts.
12103 AddUsesToWorkList(*I);
12104
12105 // Instructions may end up in the worklist more than once. Erase all
12106 // occurrences of this instruction.
12107 RemoveFromWorkList(I);
12108 I->eraseFromParent();
12109 } else {
12110 AddToWorkList(I);
12111 AddUsersToWorkList(*I);
12112 }
12113 }
12114 Changed = true;
12115 }
12116 }
12117
12118 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012119
12120 // Do an explicit clear, this shrinks the map if needed.
12121 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012122 return Changed;
12123}
12124
12125
12126bool InstCombiner::runOnFunction(Function &F) {
12127 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12128
12129 bool EverMadeChange = false;
12130
12131 // Iterate while there is work to do.
12132 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012133 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012134 EverMadeChange = true;
12135 return EverMadeChange;
12136}
12137
12138FunctionPass *llvm::createInstructionCombiningPass() {
12139 return new InstCombiner();
12140}
12141
Chris Lattner6297fc72008-08-11 22:06:05 +000012142