blob: b19c8b903159f27fc2ea1bfe515a317fda5aa580 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030using namespace llvm;
31
Owen Anderson9a184ef2008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000045}
46
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
213 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000214 assert(false && "Duplicated entries?");
215 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
216 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000217 std::make_pair(RegOp,
218 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000219 AmbEntries.push_back(MemOp);
220 }
221
222 // If the third value is 1, then it's folding either a load or a store.
223 static const unsigned OpTbl0[][3] = {
224 { X86::CALL32r, X86::CALL32m, 1 },
225 { X86::CALL64r, X86::CALL64m, 1 },
226 { X86::CMP16ri, X86::CMP16mi, 1 },
227 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000228 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000229 { X86::CMP32ri, X86::CMP32mi, 1 },
230 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000231 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000232 { X86::CMP64ri32, X86::CMP64mi32, 1 },
233 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000234 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000235 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::DIV16r, X86::DIV16m, 1 },
238 { X86::DIV32r, X86::DIV32m, 1 },
239 { X86::DIV64r, X86::DIV64m, 1 },
240 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000241 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000242 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
243 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
244 { X86::IDIV16r, X86::IDIV16m, 1 },
245 { X86::IDIV32r, X86::IDIV32m, 1 },
246 { X86::IDIV64r, X86::IDIV64m, 1 },
247 { X86::IDIV8r, X86::IDIV8m, 1 },
248 { X86::IMUL16r, X86::IMUL16m, 1 },
249 { X86::IMUL32r, X86::IMUL32m, 1 },
250 { X86::IMUL64r, X86::IMUL64m, 1 },
251 { X86::IMUL8r, X86::IMUL8m, 1 },
252 { X86::JMP32r, X86::JMP32m, 1 },
253 { X86::JMP64r, X86::JMP64m, 1 },
254 { X86::MOV16ri, X86::MOV16mi, 0 },
255 { X86::MOV16rr, X86::MOV16mr, 0 },
256 { X86::MOV16to16_, X86::MOV16_mr, 0 },
257 { X86::MOV32ri, X86::MOV32mi, 0 },
258 { X86::MOV32rr, X86::MOV32mr, 0 },
259 { X86::MOV32to32_, X86::MOV32_mr, 0 },
260 { X86::MOV64ri32, X86::MOV64mi32, 0 },
261 { X86::MOV64rr, X86::MOV64mr, 0 },
262 { X86::MOV8ri, X86::MOV8mi, 0 },
263 { X86::MOV8rr, X86::MOV8mr, 0 },
264 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
265 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
266 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
267 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
268 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
269 { X86::MOVSDrr, X86::MOVSDmr, 0 },
270 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
271 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
272 { X86::MOVSSrr, X86::MOVSSmr, 0 },
273 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
274 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
275 { X86::MUL16r, X86::MUL16m, 1 },
276 { X86::MUL32r, X86::MUL32m, 1 },
277 { X86::MUL64r, X86::MUL64m, 1 },
278 { X86::MUL8r, X86::MUL8m, 1 },
279 { X86::SETAEr, X86::SETAEm, 0 },
280 { X86::SETAr, X86::SETAm, 0 },
281 { X86::SETBEr, X86::SETBEm, 0 },
282 { X86::SETBr, X86::SETBm, 0 },
283 { X86::SETEr, X86::SETEm, 0 },
284 { X86::SETGEr, X86::SETGEm, 0 },
285 { X86::SETGr, X86::SETGm, 0 },
286 { X86::SETLEr, X86::SETLEm, 0 },
287 { X86::SETLr, X86::SETLm, 0 },
288 { X86::SETNEr, X86::SETNEm, 0 },
289 { X86::SETNPr, X86::SETNPm, 0 },
290 { X86::SETNSr, X86::SETNSm, 0 },
291 { X86::SETPr, X86::SETPm, 0 },
292 { X86::SETSr, X86::SETSm, 0 },
293 { X86::TAILJMPr, X86::TAILJMPm, 1 },
294 { X86::TEST16ri, X86::TEST16mi, 1 },
295 { X86::TEST32ri, X86::TEST32mi, 1 },
296 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000297 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000298 };
299
300 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
301 unsigned RegOp = OpTbl0[i][0];
302 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000303 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
304 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000305 assert(false && "Duplicated entries?");
306 unsigned FoldedLoad = OpTbl0[i][2];
307 // Index 0, folded load or store.
308 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
309 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
310 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000311 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000312 AmbEntries.push_back(MemOp);
313 }
314
315 static const unsigned OpTbl1[][2] = {
316 { X86::CMP16rr, X86::CMP16rm },
317 { X86::CMP32rr, X86::CMP32rm },
318 { X86::CMP64rr, X86::CMP64rm },
319 { X86::CMP8rr, X86::CMP8rm },
320 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
321 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
322 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
323 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
324 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
325 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
326 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
327 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
328 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
329 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
330 { X86::FsMOVAPDrr, X86::MOVSDrm },
331 { X86::FsMOVAPSrr, X86::MOVSSrm },
332 { X86::IMUL16rri, X86::IMUL16rmi },
333 { X86::IMUL16rri8, X86::IMUL16rmi8 },
334 { X86::IMUL32rri, X86::IMUL32rmi },
335 { X86::IMUL32rri8, X86::IMUL32rmi8 },
336 { X86::IMUL64rri32, X86::IMUL64rmi32 },
337 { X86::IMUL64rri8, X86::IMUL64rmi8 },
338 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
339 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
340 { X86::Int_COMISDrr, X86::Int_COMISDrm },
341 { X86::Int_COMISSrr, X86::Int_COMISSrm },
342 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
343 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
344 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
345 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
346 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
347 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
348 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
349 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
350 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
351 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
352 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
353 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
354 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
355 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
356 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
357 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
358 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
359 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
360 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
361 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
362 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
363 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
364 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
365 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
366 { X86::MOV16rr, X86::MOV16rm },
367 { X86::MOV16to16_, X86::MOV16_rm },
368 { X86::MOV32rr, X86::MOV32rm },
369 { X86::MOV32to32_, X86::MOV32_rm },
370 { X86::MOV64rr, X86::MOV64rm },
371 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
372 { X86::MOV64toSDrr, X86::MOV64toSDrm },
373 { X86::MOV8rr, X86::MOV8rm },
374 { X86::MOVAPDrr, X86::MOVAPDrm },
375 { X86::MOVAPSrr, X86::MOVAPSrm },
376 { X86::MOVDDUPrr, X86::MOVDDUPrm },
377 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
378 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
379 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
380 { X86::MOVSDrr, X86::MOVSDrm },
381 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
382 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
383 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
384 { X86::MOVSSrr, X86::MOVSSrm },
385 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
386 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
387 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
388 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
389 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
390 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
391 { X86::MOVUPDrr, X86::MOVUPDrm },
392 { X86::MOVUPSrr, X86::MOVUPSrm },
393 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
394 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
395 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
396 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
397 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
398 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
399 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000400 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000401 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
402 { X86::PSHUFDri, X86::PSHUFDmi },
403 { X86::PSHUFHWri, X86::PSHUFHWmi },
404 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000405 { X86::RCPPSr, X86::RCPPSm },
406 { X86::RCPPSr_Int, X86::RCPPSm_Int },
407 { X86::RSQRTPSr, X86::RSQRTPSm },
408 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
409 { X86::RSQRTSSr, X86::RSQRTSSm },
410 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
411 { X86::SQRTPDr, X86::SQRTPDm },
412 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
413 { X86::SQRTPSr, X86::SQRTPSm },
414 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
415 { X86::SQRTSDr, X86::SQRTSDm },
416 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
417 { X86::SQRTSSr, X86::SQRTSSm },
418 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
419 { X86::TEST16rr, X86::TEST16rm },
420 { X86::TEST32rr, X86::TEST32rm },
421 { X86::TEST64rr, X86::TEST64rm },
422 { X86::TEST8rr, X86::TEST8rm },
423 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
424 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000425 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000426 };
427
428 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
429 unsigned RegOp = OpTbl1[i][0];
430 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000431 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
432 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000433 assert(false && "Duplicated entries?");
434 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
435 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
436 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000437 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000438 AmbEntries.push_back(MemOp);
439 }
440
441 static const unsigned OpTbl2[][2] = {
442 { X86::ADC32rr, X86::ADC32rm },
443 { X86::ADC64rr, X86::ADC64rm },
444 { X86::ADD16rr, X86::ADD16rm },
445 { X86::ADD32rr, X86::ADD32rm },
446 { X86::ADD64rr, X86::ADD64rm },
447 { X86::ADD8rr, X86::ADD8rm },
448 { X86::ADDPDrr, X86::ADDPDrm },
449 { X86::ADDPSrr, X86::ADDPSrm },
450 { X86::ADDSDrr, X86::ADDSDrm },
451 { X86::ADDSSrr, X86::ADDSSrm },
452 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
453 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
454 { X86::AND16rr, X86::AND16rm },
455 { X86::AND32rr, X86::AND32rm },
456 { X86::AND64rr, X86::AND64rm },
457 { X86::AND8rr, X86::AND8rm },
458 { X86::ANDNPDrr, X86::ANDNPDrm },
459 { X86::ANDNPSrr, X86::ANDNPSrm },
460 { X86::ANDPDrr, X86::ANDPDrm },
461 { X86::ANDPSrr, X86::ANDPSrm },
462 { X86::CMOVA16rr, X86::CMOVA16rm },
463 { X86::CMOVA32rr, X86::CMOVA32rm },
464 { X86::CMOVA64rr, X86::CMOVA64rm },
465 { X86::CMOVAE16rr, X86::CMOVAE16rm },
466 { X86::CMOVAE32rr, X86::CMOVAE32rm },
467 { X86::CMOVAE64rr, X86::CMOVAE64rm },
468 { X86::CMOVB16rr, X86::CMOVB16rm },
469 { X86::CMOVB32rr, X86::CMOVB32rm },
470 { X86::CMOVB64rr, X86::CMOVB64rm },
471 { X86::CMOVBE16rr, X86::CMOVBE16rm },
472 { X86::CMOVBE32rr, X86::CMOVBE32rm },
473 { X86::CMOVBE64rr, X86::CMOVBE64rm },
474 { X86::CMOVE16rr, X86::CMOVE16rm },
475 { X86::CMOVE32rr, X86::CMOVE32rm },
476 { X86::CMOVE64rr, X86::CMOVE64rm },
477 { X86::CMOVG16rr, X86::CMOVG16rm },
478 { X86::CMOVG32rr, X86::CMOVG32rm },
479 { X86::CMOVG64rr, X86::CMOVG64rm },
480 { X86::CMOVGE16rr, X86::CMOVGE16rm },
481 { X86::CMOVGE32rr, X86::CMOVGE32rm },
482 { X86::CMOVGE64rr, X86::CMOVGE64rm },
483 { X86::CMOVL16rr, X86::CMOVL16rm },
484 { X86::CMOVL32rr, X86::CMOVL32rm },
485 { X86::CMOVL64rr, X86::CMOVL64rm },
486 { X86::CMOVLE16rr, X86::CMOVLE16rm },
487 { X86::CMOVLE32rr, X86::CMOVLE32rm },
488 { X86::CMOVLE64rr, X86::CMOVLE64rm },
489 { X86::CMOVNE16rr, X86::CMOVNE16rm },
490 { X86::CMOVNE32rr, X86::CMOVNE32rm },
491 { X86::CMOVNE64rr, X86::CMOVNE64rm },
492 { X86::CMOVNP16rr, X86::CMOVNP16rm },
493 { X86::CMOVNP32rr, X86::CMOVNP32rm },
494 { X86::CMOVNP64rr, X86::CMOVNP64rm },
495 { X86::CMOVNS16rr, X86::CMOVNS16rm },
496 { X86::CMOVNS32rr, X86::CMOVNS32rm },
497 { X86::CMOVNS64rr, X86::CMOVNS64rm },
498 { X86::CMOVP16rr, X86::CMOVP16rm },
499 { X86::CMOVP32rr, X86::CMOVP32rm },
500 { X86::CMOVP64rr, X86::CMOVP64rm },
501 { X86::CMOVS16rr, X86::CMOVS16rm },
502 { X86::CMOVS32rr, X86::CMOVS32rm },
503 { X86::CMOVS64rr, X86::CMOVS64rm },
504 { X86::CMPPDrri, X86::CMPPDrmi },
505 { X86::CMPPSrri, X86::CMPPSrmi },
506 { X86::CMPSDrr, X86::CMPSDrm },
507 { X86::CMPSSrr, X86::CMPSSrm },
508 { X86::DIVPDrr, X86::DIVPDrm },
509 { X86::DIVPSrr, X86::DIVPSrm },
510 { X86::DIVSDrr, X86::DIVSDrm },
511 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000512 { X86::FsANDNPDrr, X86::FsANDNPDrm },
513 { X86::FsANDNPSrr, X86::FsANDNPSrm },
514 { X86::FsANDPDrr, X86::FsANDPDrm },
515 { X86::FsANDPSrr, X86::FsANDPSrm },
516 { X86::FsORPDrr, X86::FsORPDrm },
517 { X86::FsORPSrr, X86::FsORPSrm },
518 { X86::FsXORPDrr, X86::FsXORPDrm },
519 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000520 { X86::HADDPDrr, X86::HADDPDrm },
521 { X86::HADDPSrr, X86::HADDPSrm },
522 { X86::HSUBPDrr, X86::HSUBPDrm },
523 { X86::HSUBPSrr, X86::HSUBPSrm },
524 { X86::IMUL16rr, X86::IMUL16rm },
525 { X86::IMUL32rr, X86::IMUL32rm },
526 { X86::IMUL64rr, X86::IMUL64rm },
527 { X86::MAXPDrr, X86::MAXPDrm },
528 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
529 { X86::MAXPSrr, X86::MAXPSrm },
530 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
531 { X86::MAXSDrr, X86::MAXSDrm },
532 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
533 { X86::MAXSSrr, X86::MAXSSrm },
534 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
535 { X86::MINPDrr, X86::MINPDrm },
536 { X86::MINPDrr_Int, X86::MINPDrm_Int },
537 { X86::MINPSrr, X86::MINPSrm },
538 { X86::MINPSrr_Int, X86::MINPSrm_Int },
539 { X86::MINSDrr, X86::MINSDrm },
540 { X86::MINSDrr_Int, X86::MINSDrm_Int },
541 { X86::MINSSrr, X86::MINSSrm },
542 { X86::MINSSrr_Int, X86::MINSSrm_Int },
543 { X86::MULPDrr, X86::MULPDrm },
544 { X86::MULPSrr, X86::MULPSrm },
545 { X86::MULSDrr, X86::MULSDrm },
546 { X86::MULSSrr, X86::MULSSrm },
547 { X86::OR16rr, X86::OR16rm },
548 { X86::OR32rr, X86::OR32rm },
549 { X86::OR64rr, X86::OR64rm },
550 { X86::OR8rr, X86::OR8rm },
551 { X86::ORPDrr, X86::ORPDrm },
552 { X86::ORPSrr, X86::ORPSrm },
553 { X86::PACKSSDWrr, X86::PACKSSDWrm },
554 { X86::PACKSSWBrr, X86::PACKSSWBrm },
555 { X86::PACKUSWBrr, X86::PACKUSWBrm },
556 { X86::PADDBrr, X86::PADDBrm },
557 { X86::PADDDrr, X86::PADDDrm },
558 { X86::PADDQrr, X86::PADDQrm },
559 { X86::PADDSBrr, X86::PADDSBrm },
560 { X86::PADDSWrr, X86::PADDSWrm },
561 { X86::PADDWrr, X86::PADDWrm },
562 { X86::PANDNrr, X86::PANDNrm },
563 { X86::PANDrr, X86::PANDrm },
564 { X86::PAVGBrr, X86::PAVGBrm },
565 { X86::PAVGWrr, X86::PAVGWrm },
566 { X86::PCMPEQBrr, X86::PCMPEQBrm },
567 { X86::PCMPEQDrr, X86::PCMPEQDrm },
568 { X86::PCMPEQWrr, X86::PCMPEQWrm },
569 { X86::PCMPGTBrr, X86::PCMPGTBrm },
570 { X86::PCMPGTDrr, X86::PCMPGTDrm },
571 { X86::PCMPGTWrr, X86::PCMPGTWrm },
572 { X86::PINSRWrri, X86::PINSRWrmi },
573 { X86::PMADDWDrr, X86::PMADDWDrm },
574 { X86::PMAXSWrr, X86::PMAXSWrm },
575 { X86::PMAXUBrr, X86::PMAXUBrm },
576 { X86::PMINSWrr, X86::PMINSWrm },
577 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000578 { X86::PMULDQrr, X86::PMULDQrm },
579 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000580 { X86::PMULHUWrr, X86::PMULHUWrm },
581 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000582 { X86::PMULLDrr, X86::PMULLDrm },
583 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000584 { X86::PMULLWrr, X86::PMULLWrm },
585 { X86::PMULUDQrr, X86::PMULUDQrm },
586 { X86::PORrr, X86::PORrm },
587 { X86::PSADBWrr, X86::PSADBWrm },
588 { X86::PSLLDrr, X86::PSLLDrm },
589 { X86::PSLLQrr, X86::PSLLQrm },
590 { X86::PSLLWrr, X86::PSLLWrm },
591 { X86::PSRADrr, X86::PSRADrm },
592 { X86::PSRAWrr, X86::PSRAWrm },
593 { X86::PSRLDrr, X86::PSRLDrm },
594 { X86::PSRLQrr, X86::PSRLQrm },
595 { X86::PSRLWrr, X86::PSRLWrm },
596 { X86::PSUBBrr, X86::PSUBBrm },
597 { X86::PSUBDrr, X86::PSUBDrm },
598 { X86::PSUBSBrr, X86::PSUBSBrm },
599 { X86::PSUBSWrr, X86::PSUBSWrm },
600 { X86::PSUBWrr, X86::PSUBWrm },
601 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
602 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
603 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
604 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
605 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
606 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
607 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
608 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
609 { X86::PXORrr, X86::PXORrm },
610 { X86::SBB32rr, X86::SBB32rm },
611 { X86::SBB64rr, X86::SBB64rm },
612 { X86::SHUFPDrri, X86::SHUFPDrmi },
613 { X86::SHUFPSrri, X86::SHUFPSrmi },
614 { X86::SUB16rr, X86::SUB16rm },
615 { X86::SUB32rr, X86::SUB32rm },
616 { X86::SUB64rr, X86::SUB64rm },
617 { X86::SUB8rr, X86::SUB8rm },
618 { X86::SUBPDrr, X86::SUBPDrm },
619 { X86::SUBPSrr, X86::SUBPSrm },
620 { X86::SUBSDrr, X86::SUBSDrm },
621 { X86::SUBSSrr, X86::SUBSSrm },
622 // FIXME: TEST*rr -> swapped operand of TEST*mr.
623 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
624 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
625 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
626 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
627 { X86::XOR16rr, X86::XOR16rm },
628 { X86::XOR32rr, X86::XOR32rm },
629 { X86::XOR64rr, X86::XOR64rm },
630 { X86::XOR8rr, X86::XOR8rm },
631 { X86::XORPDrr, X86::XORPDrm },
632 { X86::XORPSrr, X86::XORPSrm }
633 };
634
635 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
636 unsigned RegOp = OpTbl2[i][0];
637 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000638 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
639 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000640 assert(false && "Duplicated entries?");
641 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
642 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000643 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000644 AmbEntries.push_back(MemOp);
645 }
646
647 // Remove ambiguous entries.
648 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649}
650
651bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
652 unsigned& sourceReg,
653 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000654 switch (MI.getOpcode()) {
655 default:
656 return false;
657 case X86::MOV8rr:
658 case X86::MOV16rr:
659 case X86::MOV32rr:
660 case X86::MOV64rr:
661 case X86::MOV16to16_:
662 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000663 case X86::MOVSSrr:
664 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000665
666 // FP Stack register class copies
667 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
668 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
669 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
670
Chris Lattnerff195282008-03-11 19:28:17 +0000671 case X86::FsMOVAPSrr:
672 case X86::FsMOVAPDrr:
673 case X86::MOVAPSrr:
674 case X86::MOVAPDrr:
675 case X86::MOVSS2PSrr:
676 case X86::MOVSD2PDrr:
677 case X86::MOVPS2SSrr:
678 case X86::MOVPD2SDrr:
679 case X86::MMX_MOVD64rr:
680 case X86::MMX_MOVQ64rr:
681 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000682 MI.getOperand(0).isReg() &&
683 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000684 "invalid register-register move instruction");
685 sourceReg = MI.getOperand(1).getReg();
686 destReg = MI.getOperand(0).getReg();
687 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000689}
690
691unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
692 int &FrameIndex) const {
693 switch (MI->getOpcode()) {
694 default: break;
695 case X86::MOV8rm:
696 case X86::MOV16rm:
697 case X86::MOV16_rm:
698 case X86::MOV32rm:
699 case X86::MOV32_rm:
700 case X86::MOV64rm:
701 case X86::LD_Fp64m:
702 case X86::MOVSSrm:
703 case X86::MOVSDrm:
704 case X86::MOVAPSrm:
705 case X86::MOVAPDrm:
706 case X86::MMX_MOVD64rm:
707 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000708 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
709 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000710 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000712 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000713 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 return MI->getOperand(0).getReg();
715 }
716 break;
717 }
718 return 0;
719}
720
721unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
722 int &FrameIndex) const {
723 switch (MI->getOpcode()) {
724 default: break;
725 case X86::MOV8mr:
726 case X86::MOV16mr:
727 case X86::MOV16_mr:
728 case X86::MOV32mr:
729 case X86::MOV32_mr:
730 case X86::MOV64mr:
731 case X86::ST_FpP64m:
732 case X86::MOVSSmr:
733 case X86::MOVSDmr:
734 case X86::MOVAPSmr:
735 case X86::MOVAPDmr:
736 case X86::MMX_MOVD64mr:
737 case X86::MMX_MOVQ64mr:
738 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000739 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
740 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000741 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000743 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000744 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 return MI->getOperand(4).getReg();
746 }
747 break;
748 }
749 return 0;
750}
751
752
Evan Chengb819a512008-03-27 01:45:11 +0000753/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
754/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000755static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000756 bool isPICBase = false;
757 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
758 E = MRI.def_end(); I != E; ++I) {
759 MachineInstr *DefMI = I.getOperand().getParent();
760 if (DefMI->getOpcode() != X86::MOVPC32r)
761 return false;
762 assert(!isPICBase && "More than one PIC base?");
763 isPICBase = true;
764 }
765 return isPICBase;
766}
Evan Chenge9caab52008-03-31 07:54:19 +0000767
768/// isGVStub - Return true if the GV requires an extra load to get the
769/// real address.
770static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
771 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
772}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000773
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000774bool
775X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776 switch (MI->getOpcode()) {
777 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000778 case X86::MOV8rm:
779 case X86::MOV16rm:
780 case X86::MOV16_rm:
781 case X86::MOV32rm:
782 case X86::MOV32_rm:
783 case X86::MOV64rm:
784 case X86::LD_Fp64m:
785 case X86::MOVSSrm:
786 case X86::MOVSDrm:
787 case X86::MOVAPSrm:
788 case X86::MOVAPDrm:
789 case X86::MMX_MOVD64rm:
790 case X86::MMX_MOVQ64rm: {
791 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000792 if (MI->getOperand(1).isReg() &&
793 MI->getOperand(2).isImm() &&
794 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
795 (MI->getOperand(4).isCPI() ||
796 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000797 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000798 unsigned BaseReg = MI->getOperand(1).getReg();
799 if (BaseReg == 0)
800 return true;
801 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000802 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000803 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000804 const MachineFunction &MF = *MI->getParent()->getParent();
805 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000806 bool isPICBase = false;
807 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
808 E = MRI.def_end(); I != E; ++I) {
809 MachineInstr *DefMI = I.getOperand().getParent();
810 if (DefMI->getOpcode() != X86::MOVPC32r)
811 return false;
812 assert(!isPICBase && "More than one PIC base?");
813 isPICBase = true;
814 }
815 return isPICBase;
816 }
817 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000818 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000819
820 case X86::LEA32r:
821 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000822 if (MI->getOperand(2).isImm() &&
823 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
824 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000825 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000826 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000827 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000828 unsigned BaseReg = MI->getOperand(1).getReg();
829 if (BaseReg == 0)
830 return true;
831 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000832 const MachineFunction &MF = *MI->getParent()->getParent();
833 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000834 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000835 }
836 return false;
837 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000838 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000839
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840 // All other instructions marked M_REMATERIALIZABLE are always trivially
841 // rematerializable.
842 return true;
843}
844
Evan Chengc564ded2008-06-24 07:10:51 +0000845/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
846/// would clobber the EFLAGS condition register. Note the result may be
847/// conservative. If it cannot definitely determine the safety after visiting
848/// two instructions it assumes it's not safe.
849static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
850 MachineBasicBlock::iterator I) {
851 // For compile time consideration, if we are not able to determine the
852 // safety after visiting 2 instructions, we will assume it's not safe.
853 for (unsigned i = 0; i < 2; ++i) {
854 if (I == MBB.end())
855 // Reached end of block, it's safe.
856 return true;
857 bool SeenDef = false;
858 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
859 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000860 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000861 continue;
862 if (MO.getReg() == X86::EFLAGS) {
863 if (MO.isUse())
864 return false;
865 SeenDef = true;
866 }
867 }
868
869 if (SeenDef)
870 // This instruction defines EFLAGS, no need to look any further.
871 return true;
872 ++I;
873 }
874
875 // Conservative answer.
876 return false;
877}
878
Evan Cheng7d73efc2008-03-31 20:40:39 +0000879void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
880 MachineBasicBlock::iterator I,
881 unsigned DestReg,
882 const MachineInstr *Orig) const {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000883 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000884 ? Orig->getOperand(0).getSubReg() : 0;
885 bool ChangeSubIdx = SubIdx != 0;
886 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
887 DestReg = RI.getSubReg(DestReg, SubIdx);
888 SubIdx = 0;
889 }
890
Evan Cheng7d73efc2008-03-31 20:40:39 +0000891 // MOV32r0 etc. are implemented with xor which clobbers condition code.
892 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000893 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000894 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000895 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000896 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000897 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000898 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000899 case X86::MOV64r0: {
900 if (!isSafeToClobberEFLAGS(MBB, I)) {
901 unsigned Opc = 0;
902 switch (Orig->getOpcode()) {
903 default: break;
904 case X86::MOV8r0: Opc = X86::MOV8ri; break;
905 case X86::MOV16r0: Opc = X86::MOV16ri; break;
906 case X86::MOV32r0: Opc = X86::MOV32ri; break;
907 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
908 }
909 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
910 Emitted = true;
911 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000912 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000913 }
914 }
915
916 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000917 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000918 MI->getOperand(0).setReg(DestReg);
919 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000920 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000921
922 if (ChangeSubIdx) {
923 MachineInstr *NewMI = prior(I);
924 NewMI->getOperand(0).setSubReg(SubIdx);
925 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000926}
927
Chris Lattnerea3a1812008-01-10 23:08:24 +0000928/// isInvariantLoad - Return true if the specified instruction (which is marked
929/// mayLoad) is loading from a location whose value is invariant across the
930/// function. For example, loading a value from the constant pool or from
931/// from the argument area of a function if it does not change. This should
932/// only return true of *all* loads the instruction does are invariant (if it
933/// does multiple loads).
934bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000935 // This code cares about loads from three cases: constant pool entries,
936 // invariant argument slots, and global stubs. In order to handle these cases
937 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000938 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000939 // none of these three cases is ever used as anything other than a load base
940 // and X86 doesn't have any instructions that load from multiple places.
941
942 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
943 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000944 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000945 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000946 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000947
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000948 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000949 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000950
951 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000952 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000953 const MachineFrameInfo &MFI =
954 *MI->getParent()->getParent()->getFrameInfo();
955 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000956 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
957 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000958 }
Chris Lattner0875b572008-01-12 00:35:08 +0000959
Chris Lattnerea3a1812008-01-10 23:08:24 +0000960 // All other instances of these instructions are presumed to have other
961 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000962 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000963}
964
Evan Chengfa1a4952007-10-05 08:04:01 +0000965/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
966/// is not marked dead.
967static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000968 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
969 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000970 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000971 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
972 return true;
973 }
974 }
975 return false;
976}
977
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000978/// convertToThreeAddress - This method must be implemented by targets that
979/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
980/// may be able to convert a two-address instruction into a true
981/// three-address instruction on demand. This allows the X86 target (for
982/// example) to convert ADD and SHL instructions into LEA instructions if they
983/// would require register copies due to two-addressness.
984///
985/// This method returns a null pointer if the transformation cannot be
986/// performed, otherwise it returns the new instruction.
987///
988MachineInstr *
989X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
990 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000991 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000992 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +0000993 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000994 // All instructions input are two-addr instructions. Get the known operands.
995 unsigned Dest = MI->getOperand(0).getReg();
996 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +0000997 bool isDead = MI->getOperand(0).isDead();
998 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000999
1000 MachineInstr *NewMI = NULL;
1001 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1002 // we have better subtarget support, enable the 16-bit LEA generation here.
1003 bool DisableLEA16 = true;
1004
Evan Cheng6b96ed32007-10-05 20:34:26 +00001005 unsigned MIOpc = MI->getOpcode();
1006 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001007 case X86::SHUFPSrri: {
1008 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1009 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1010
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 unsigned B = MI->getOperand(1).getReg();
1012 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001014 unsigned A = MI->getOperand(0).getReg();
1015 unsigned M = MI->getOperand(3).getImm();
Dan Gohman221a4372008-07-07 23:14:23 +00001016 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001017 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 break;
1019 }
1020 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001021 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001022 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1023 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001024 unsigned ShAmt = MI->getOperand(2).getImm();
1025 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001026
Dan Gohman221a4372008-07-07 23:14:23 +00001027 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001028 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 break;
1030 }
1031 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001032 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1034 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 unsigned ShAmt = MI->getOperand(2).getImm();
1036 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001037
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1039 X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001040 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001041 .addReg(0).addImm(1 << ShAmt)
1042 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043 break;
1044 }
1045 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001046 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001047 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1048 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001049 unsigned ShAmt = MI->getOperand(2).getImm();
1050 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001051
Christopher Lamb380c6272007-08-10 21:18:25 +00001052 if (DisableLEA16) {
1053 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001054 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001055 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1056 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001057 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1058 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001059
Christopher Lamb8d226a22008-03-11 10:27:36 +00001060 // Build and insert into an implicit UNDEF value. This is OK because
1061 // well be shifting and then extracting the lower 16-bits.
Dan Gohman221a4372008-07-07 23:14:23 +00001062 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1063 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001064 .addReg(leaInReg).addReg(Src, false, false, isKill)
1065 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001066
Dan Gohman221a4372008-07-07 23:14:23 +00001067 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001068 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001069
Dan Gohman221a4372008-07-07 23:14:23 +00001070 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001071 .addReg(Dest, true, false, false, isDead)
1072 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonc6959722008-07-02 23:41:07 +00001073 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001074 // Update live variables
1075 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1076 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1077 if (isKill)
1078 LV->replaceKillInstruction(Src, MI, InsMI);
1079 if (isDead)
1080 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001081 }
Evan Chenge52c1912008-07-03 09:09:37 +00001082 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001083 } else {
Dan Gohman221a4372008-07-07 23:14:23 +00001084 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001085 .addReg(0).addImm(1 << ShAmt)
1086 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001087 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001088 break;
1089 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001090 default: {
1091 // The following opcodes also sets the condition code register(s). Only
1092 // convert them to equivalent lea if the condition code register def's
1093 // are dead!
1094 if (hasLiveCondCodeDef(MI))
1095 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001096
Evan Chenga28a9562007-10-09 07:14:53 +00001097 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001098 switch (MIOpc) {
1099 default: return 0;
1100 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001101 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001102 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001103 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1104 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001105 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001106 .addReg(Dest, true, false, false, isDead),
1107 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001108 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001109 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001110 case X86::INC16r:
1111 case X86::INC64_16r:
1112 if (DisableLEA16) return 0;
1113 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001114 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001115 .addReg(Dest, true, false, false, isDead),
1116 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001117 break;
1118 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001119 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001120 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001121 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1122 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001123 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001124 .addReg(Dest, true, false, false, isDead),
1125 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001126 break;
1127 }
1128 case X86::DEC16r:
1129 case X86::DEC64_16r:
1130 if (DisableLEA16) return 0;
1131 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001132 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001133 .addReg(Dest, true, false, false, isDead),
1134 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001135 break;
1136 case X86::ADD64rr:
1137 case X86::ADD32rr: {
1138 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001139 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1140 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001141 unsigned Src2 = MI->getOperand(2).getReg();
1142 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001143 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001144 .addReg(Dest, true, false, false, isDead),
1145 Src, isKill, Src2, isKill2);
1146 if (LV && isKill2)
1147 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001148 break;
1149 }
Evan Chenge52c1912008-07-03 09:09:37 +00001150 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001151 if (DisableLEA16) return 0;
1152 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001153 unsigned Src2 = MI->getOperand(2).getReg();
1154 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001155 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001156 .addReg(Dest, true, false, false, isDead),
1157 Src, isKill, Src2, isKill2);
1158 if (LV && isKill2)
1159 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001160 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001161 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001162 case X86::ADD64ri32:
1163 case X86::ADD64ri8:
1164 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001165 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001166 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001167 .addReg(Dest, true, false, false, isDead),
1168 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001169 break;
1170 case X86::ADD32ri:
1171 case X86::ADD32ri8:
1172 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001173 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001174 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001175 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001176 .addReg(Dest, true, false, false, isDead),
1177 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001178 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001179 break;
1180 case X86::ADD16ri:
1181 case X86::ADD16ri8:
1182 if (DisableLEA16) return 0;
1183 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001184 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001185 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001186 .addReg(Dest, true, false, false, isDead),
1187 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001188 break;
1189 case X86::SHL16ri:
1190 if (DisableLEA16) return 0;
1191 case X86::SHL32ri:
1192 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001193 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001194 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001195 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001196 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1197 X86AddressMode AM;
1198 AM.Scale = 1 << ShAmt;
1199 AM.IndexReg = Src;
1200 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001201 : (MIOpc == X86::SHL32ri
1202 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman221a4372008-07-07 23:14:23 +00001203 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001204 .addReg(Dest, true, false, false, isDead), AM);
1205 if (isKill)
1206 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001207 }
1208 break;
1209 }
1210 }
1211 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001212 }
1213
Evan Chengc3cb24d2008-02-07 08:29:53 +00001214 if (!NewMI) return 0;
1215
Evan Chenge52c1912008-07-03 09:09:37 +00001216 if (LV) { // Update live variables
1217 if (isKill)
1218 LV->replaceKillInstruction(Src, MI, NewMI);
1219 if (isDead)
1220 LV->replaceKillInstruction(Dest, MI, NewMI);
1221 }
1222
Evan Cheng6b96ed32007-10-05 20:34:26 +00001223 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001224 return NewMI;
1225}
1226
1227/// commuteInstruction - We have a few instructions that must be hacked on to
1228/// commute them.
1229///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001230MachineInstr *
1231X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001232 switch (MI->getOpcode()) {
1233 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1234 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1235 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001236 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1237 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1238 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001239 unsigned Opc;
1240 unsigned Size;
1241 switch (MI->getOpcode()) {
1242 default: assert(0 && "Unreachable!");
1243 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1244 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1245 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1246 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001247 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1248 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001250 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001251 if (NewMI) {
1252 MachineFunction &MF = *MI->getParent()->getParent();
1253 MI = MF.CloneMachineInstr(MI);
1254 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001255 }
Dan Gohman921581d2008-10-17 01:23:35 +00001256 MI->setDesc(get(Opc));
1257 MI->getOperand(3).setImm(Size-Amt);
1258 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259 }
Evan Cheng926658c2007-10-05 23:13:21 +00001260 case X86::CMOVB16rr:
1261 case X86::CMOVB32rr:
1262 case X86::CMOVB64rr:
1263 case X86::CMOVAE16rr:
1264 case X86::CMOVAE32rr:
1265 case X86::CMOVAE64rr:
1266 case X86::CMOVE16rr:
1267 case X86::CMOVE32rr:
1268 case X86::CMOVE64rr:
1269 case X86::CMOVNE16rr:
1270 case X86::CMOVNE32rr:
1271 case X86::CMOVNE64rr:
1272 case X86::CMOVBE16rr:
1273 case X86::CMOVBE32rr:
1274 case X86::CMOVBE64rr:
1275 case X86::CMOVA16rr:
1276 case X86::CMOVA32rr:
1277 case X86::CMOVA64rr:
1278 case X86::CMOVL16rr:
1279 case X86::CMOVL32rr:
1280 case X86::CMOVL64rr:
1281 case X86::CMOVGE16rr:
1282 case X86::CMOVGE32rr:
1283 case X86::CMOVGE64rr:
1284 case X86::CMOVLE16rr:
1285 case X86::CMOVLE32rr:
1286 case X86::CMOVLE64rr:
1287 case X86::CMOVG16rr:
1288 case X86::CMOVG32rr:
1289 case X86::CMOVG64rr:
1290 case X86::CMOVS16rr:
1291 case X86::CMOVS32rr:
1292 case X86::CMOVS64rr:
1293 case X86::CMOVNS16rr:
1294 case X86::CMOVNS32rr:
1295 case X86::CMOVNS64rr:
1296 case X86::CMOVP16rr:
1297 case X86::CMOVP32rr:
1298 case X86::CMOVP64rr:
1299 case X86::CMOVNP16rr:
1300 case X86::CMOVNP32rr:
1301 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001302 unsigned Opc = 0;
1303 switch (MI->getOpcode()) {
1304 default: break;
1305 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1306 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1307 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1308 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1309 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1310 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1311 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1312 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1313 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1314 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1315 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1316 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1317 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1318 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1319 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1320 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1321 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1322 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1323 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1324 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1325 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1326 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1327 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1328 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1329 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1330 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1331 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1332 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1333 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1334 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1335 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1336 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1337 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1338 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1339 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1340 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1341 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1342 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1343 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1344 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1345 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1346 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1347 }
Dan Gohman921581d2008-10-17 01:23:35 +00001348 if (NewMI) {
1349 MachineFunction &MF = *MI->getParent()->getParent();
1350 MI = MF.CloneMachineInstr(MI);
1351 NewMI = false;
1352 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001353 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001354 // Fallthrough intended.
1355 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001356 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001357 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001358 }
1359}
1360
1361static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1362 switch (BrOpc) {
1363 default: return X86::COND_INVALID;
1364 case X86::JE: return X86::COND_E;
1365 case X86::JNE: return X86::COND_NE;
1366 case X86::JL: return X86::COND_L;
1367 case X86::JLE: return X86::COND_LE;
1368 case X86::JG: return X86::COND_G;
1369 case X86::JGE: return X86::COND_GE;
1370 case X86::JB: return X86::COND_B;
1371 case X86::JBE: return X86::COND_BE;
1372 case X86::JA: return X86::COND_A;
1373 case X86::JAE: return X86::COND_AE;
1374 case X86::JS: return X86::COND_S;
1375 case X86::JNS: return X86::COND_NS;
1376 case X86::JP: return X86::COND_P;
1377 case X86::JNP: return X86::COND_NP;
1378 case X86::JO: return X86::COND_O;
1379 case X86::JNO: return X86::COND_NO;
1380 }
1381}
1382
1383unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1384 switch (CC) {
1385 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001386 case X86::COND_E: return X86::JE;
1387 case X86::COND_NE: return X86::JNE;
1388 case X86::COND_L: return X86::JL;
1389 case X86::COND_LE: return X86::JLE;
1390 case X86::COND_G: return X86::JG;
1391 case X86::COND_GE: return X86::JGE;
1392 case X86::COND_B: return X86::JB;
1393 case X86::COND_BE: return X86::JBE;
1394 case X86::COND_A: return X86::JA;
1395 case X86::COND_AE: return X86::JAE;
1396 case X86::COND_S: return X86::JS;
1397 case X86::COND_NS: return X86::JNS;
1398 case X86::COND_P: return X86::JP;
1399 case X86::COND_NP: return X86::JNP;
1400 case X86::COND_O: return X86::JO;
1401 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001402 }
1403}
1404
1405/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1406/// e.g. turning COND_E to COND_NE.
1407X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1408 switch (CC) {
1409 default: assert(0 && "Illegal condition code!");
1410 case X86::COND_E: return X86::COND_NE;
1411 case X86::COND_NE: return X86::COND_E;
1412 case X86::COND_L: return X86::COND_GE;
1413 case X86::COND_LE: return X86::COND_G;
1414 case X86::COND_G: return X86::COND_LE;
1415 case X86::COND_GE: return X86::COND_L;
1416 case X86::COND_B: return X86::COND_AE;
1417 case X86::COND_BE: return X86::COND_A;
1418 case X86::COND_A: return X86::COND_BE;
1419 case X86::COND_AE: return X86::COND_B;
1420 case X86::COND_S: return X86::COND_NS;
1421 case X86::COND_NS: return X86::COND_S;
1422 case X86::COND_P: return X86::COND_NP;
1423 case X86::COND_NP: return X86::COND_P;
1424 case X86::COND_O: return X86::COND_NO;
1425 case X86::COND_NO: return X86::COND_O;
1426 }
1427}
1428
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001429bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001430 const TargetInstrDesc &TID = MI->getDesc();
1431 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001432
1433 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001434 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001435 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001436 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001437 return true;
1438 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001439}
1440
Evan Cheng12515792007-07-26 17:32:14 +00001441// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1442static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1443 const X86InstrInfo &TII) {
1444 if (MI->getOpcode() == X86::FP_REG_KILL)
1445 return false;
1446 return TII.isUnpredicatedTerminator(MI);
1447}
1448
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001449bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1450 MachineBasicBlock *&TBB,
1451 MachineBasicBlock *&FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001452 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001453 // If the block has no terminators, it just falls into the block after it.
1454 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +00001455 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001456 return false;
1457
1458 // Get the last instruction in the block.
1459 MachineInstr *LastInst = I;
1460
1461 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +00001462 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner5b930372008-01-07 07:27:27 +00001463 if (!LastInst->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001464 return true;
1465
1466 // If the block ends with a branch there are 3 possibilities:
1467 // it's an unconditional, conditional, or indirect branch.
1468
1469 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001470 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001471 return false;
1472 }
1473 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1474 if (BranchCode == X86::COND_INVALID)
1475 return true; // Can't handle indirect branch.
1476
1477 // Otherwise, block ends with fall-through condbranch.
Chris Lattner6017d482007-12-30 23:10:15 +00001478 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001479 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1480 return false;
1481 }
1482
1483 // Get the instruction before it if it's a terminator.
1484 MachineInstr *SecondLastInst = I;
1485
1486 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +00001487 if (SecondLastInst && I != MBB.begin() &&
1488 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001489 return true;
1490
1491 // If the block ends with X86::JMP and a conditional branch, handle it.
1492 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1493 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001494 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001495 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner6017d482007-12-30 23:10:15 +00001496 FBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001497 return false;
1498 }
1499
1500 // If the block ends with two X86::JMPs, handle it. The second one is not
1501 // executed, so remove it.
1502 if (SecondLastInst->getOpcode() == X86::JMP &&
1503 LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001504 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001505 I = LastInst;
1506 I->eraseFromParent();
1507 return false;
1508 }
1509
1510 // Otherwise, can't handle this.
1511 return true;
1512}
1513
1514unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1515 MachineBasicBlock::iterator I = MBB.end();
1516 if (I == MBB.begin()) return 0;
1517 --I;
1518 if (I->getOpcode() != X86::JMP &&
1519 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1520 return 0;
1521
1522 // Remove the branch.
1523 I->eraseFromParent();
1524
1525 I = MBB.end();
1526
1527 if (I == MBB.begin()) return 1;
1528 --I;
1529 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1530 return 1;
1531
1532 // Remove the branch.
1533 I->eraseFromParent();
1534 return 2;
1535}
1536
Owen Anderson81875432008-01-01 21:11:32 +00001537static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman46b948e2008-10-16 01:49:15 +00001538 const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001539 if (MO.isReg())
Owen Anderson81875432008-01-01 21:11:32 +00001540 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001541 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001542 else if (MO.isImm())
Owen Anderson81875432008-01-01 21:11:32 +00001543 MIB = MIB.addImm(MO.getImm());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001544 else if (MO.isFI())
Owen Anderson81875432008-01-01 21:11:32 +00001545 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001546 else if (MO.isGlobal())
Owen Anderson81875432008-01-01 21:11:32 +00001547 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001548 else if (MO.isCPI())
Owen Anderson81875432008-01-01 21:11:32 +00001549 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001550 else if (MO.isJTI())
Owen Anderson81875432008-01-01 21:11:32 +00001551 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001552 else if (MO.isSymbol())
Owen Anderson81875432008-01-01 21:11:32 +00001553 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1554 else
1555 assert(0 && "Unknown operand for X86InstrAddOperand!");
1556
1557 return MIB;
1558}
1559
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001560unsigned
1561X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1562 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001563 const SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001564 // Shouldn't be a fall through.
1565 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1566 assert((Cond.size() == 1 || Cond.size() == 0) &&
1567 "X86 branch conditions have one component!");
1568
1569 if (FBB == 0) { // One way branch.
1570 if (Cond.empty()) {
1571 // Unconditional branch?
1572 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1573 } else {
1574 // Conditional branch.
1575 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1576 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1577 }
1578 return 1;
1579 }
1580
1581 // Two-way Conditional branch.
1582 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1583 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1584 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1585 return 2;
1586}
1587
Owen Anderson9fa72d92008-08-26 18:03:31 +00001588bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001589 MachineBasicBlock::iterator MI,
1590 unsigned DestReg, unsigned SrcReg,
1591 const TargetRegisterClass *DestRC,
1592 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001593 if (DestRC == SrcRC) {
1594 unsigned Opc;
1595 if (DestRC == &X86::GR64RegClass) {
1596 Opc = X86::MOV64rr;
1597 } else if (DestRC == &X86::GR32RegClass) {
1598 Opc = X86::MOV32rr;
1599 } else if (DestRC == &X86::GR16RegClass) {
1600 Opc = X86::MOV16rr;
1601 } else if (DestRC == &X86::GR8RegClass) {
1602 Opc = X86::MOV8rr;
1603 } else if (DestRC == &X86::GR32_RegClass) {
1604 Opc = X86::MOV32_rr;
1605 } else if (DestRC == &X86::GR16_RegClass) {
1606 Opc = X86::MOV16_rr;
1607 } else if (DestRC == &X86::RFP32RegClass) {
1608 Opc = X86::MOV_Fp3232;
1609 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1610 Opc = X86::MOV_Fp6464;
1611 } else if (DestRC == &X86::RFP80RegClass) {
1612 Opc = X86::MOV_Fp8080;
1613 } else if (DestRC == &X86::FR32RegClass) {
1614 Opc = X86::FsMOVAPSrr;
1615 } else if (DestRC == &X86::FR64RegClass) {
1616 Opc = X86::FsMOVAPDrr;
1617 } else if (DestRC == &X86::VR128RegClass) {
1618 Opc = X86::MOVAPSrr;
1619 } else if (DestRC == &X86::VR64RegClass) {
1620 Opc = X86::MMX_MOVQ64rr;
1621 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001622 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001623 }
Chris Lattner59707122008-03-09 07:58:04 +00001624 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001625 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001626 }
Chris Lattner59707122008-03-09 07:58:04 +00001627
1628 // Moving EFLAGS to / from another register requires a push and a pop.
1629 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001630 if (SrcReg != X86::EFLAGS)
1631 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001632 if (DestRC == &X86::GR64RegClass) {
1633 BuildMI(MBB, MI, get(X86::PUSHFQ));
1634 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001635 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001636 } else if (DestRC == &X86::GR32RegClass) {
1637 BuildMI(MBB, MI, get(X86::PUSHFD));
1638 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001639 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001640 }
1641 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001642 if (DestReg != X86::EFLAGS)
1643 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001644 if (SrcRC == &X86::GR64RegClass) {
1645 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1646 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001647 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001648 } else if (SrcRC == &X86::GR32RegClass) {
1649 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1650 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001651 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001652 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001653 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001654
Chris Lattner0d128722008-03-09 09:15:31 +00001655 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001656 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001657 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001658 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1659 // Can only copy from ST(0)/ST(1) right now
1660 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001661 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001662 unsigned Opc;
1663 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001664 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001665 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001666 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001667 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001668 if (DestRC != &X86::RFP80RegClass)
1669 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001670 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001671 }
1672 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001673 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001674 }
Chris Lattner0d128722008-03-09 09:15:31 +00001675
1676 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1677 if (DestRC == &X86::RSTRegClass) {
1678 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson9fa72d92008-08-26 18:03:31 +00001679 if (DestReg != X86::ST0)
1680 // Can only copy to TOS right now
1681 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001682 unsigned Opc;
1683 if (SrcRC == &X86::RFP32RegClass)
1684 Opc = X86::FpSET_ST0_32;
1685 else if (SrcRC == &X86::RFP64RegClass)
1686 Opc = X86::FpSET_ST0_64;
1687 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001688 if (SrcRC != &X86::RFP80RegClass)
1689 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001690 Opc = X86::FpSET_ST0_80;
1691 }
1692 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001693 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001694 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001695
Owen Anderson9fa72d92008-08-26 18:03:31 +00001696 // Not yet supported!
1697 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001698}
1699
Owen Anderson81875432008-01-01 21:11:32 +00001700static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001701 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001702 unsigned Opc = 0;
1703 if (RC == &X86::GR64RegClass) {
1704 Opc = X86::MOV64mr;
1705 } else if (RC == &X86::GR32RegClass) {
1706 Opc = X86::MOV32mr;
1707 } else if (RC == &X86::GR16RegClass) {
1708 Opc = X86::MOV16mr;
1709 } else if (RC == &X86::GR8RegClass) {
1710 Opc = X86::MOV8mr;
1711 } else if (RC == &X86::GR32_RegClass) {
1712 Opc = X86::MOV32_mr;
1713 } else if (RC == &X86::GR16_RegClass) {
1714 Opc = X86::MOV16_mr;
1715 } else if (RC == &X86::RFP80RegClass) {
1716 Opc = X86::ST_FpP80m; // pops
1717 } else if (RC == &X86::RFP64RegClass) {
1718 Opc = X86::ST_Fp64m;
1719 } else if (RC == &X86::RFP32RegClass) {
1720 Opc = X86::ST_Fp32m;
1721 } else if (RC == &X86::FR32RegClass) {
1722 Opc = X86::MOVSSmr;
1723 } else if (RC == &X86::FR64RegClass) {
1724 Opc = X86::MOVSDmr;
1725 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001726 // If stack is realigned we can use aligned stores.
1727 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001728 } else if (RC == &X86::VR64RegClass) {
1729 Opc = X86::MMX_MOVQ64mr;
1730 } else {
1731 assert(0 && "Unknown regclass");
1732 abort();
1733 }
1734
1735 return Opc;
1736}
1737
1738void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1739 MachineBasicBlock::iterator MI,
1740 unsigned SrcReg, bool isKill, int FrameIdx,
1741 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001742 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001743 bool isAligned = (RI.getStackAlignment() >= 16) ||
1744 RI.needsStackRealignment(MF);
1745 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001746 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1747 .addReg(SrcReg, false, false, isKill);
1748}
1749
1750void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1751 bool isKill,
1752 SmallVectorImpl<MachineOperand> &Addr,
1753 const TargetRegisterClass *RC,
1754 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001755 bool isAligned = (RI.getStackAlignment() >= 16) ||
1756 RI.needsStackRealignment(MF);
1757 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001758 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001759 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1760 MIB = X86InstrAddOperand(MIB, Addr[i]);
1761 MIB.addReg(SrcReg, false, false, isKill);
1762 NewMIs.push_back(MIB);
1763}
1764
1765static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001766 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001767 unsigned Opc = 0;
1768 if (RC == &X86::GR64RegClass) {
1769 Opc = X86::MOV64rm;
1770 } else if (RC == &X86::GR32RegClass) {
1771 Opc = X86::MOV32rm;
1772 } else if (RC == &X86::GR16RegClass) {
1773 Opc = X86::MOV16rm;
1774 } else if (RC == &X86::GR8RegClass) {
1775 Opc = X86::MOV8rm;
1776 } else if (RC == &X86::GR32_RegClass) {
1777 Opc = X86::MOV32_rm;
1778 } else if (RC == &X86::GR16_RegClass) {
1779 Opc = X86::MOV16_rm;
1780 } else if (RC == &X86::RFP80RegClass) {
1781 Opc = X86::LD_Fp80m;
1782 } else if (RC == &X86::RFP64RegClass) {
1783 Opc = X86::LD_Fp64m;
1784 } else if (RC == &X86::RFP32RegClass) {
1785 Opc = X86::LD_Fp32m;
1786 } else if (RC == &X86::FR32RegClass) {
1787 Opc = X86::MOVSSrm;
1788 } else if (RC == &X86::FR64RegClass) {
1789 Opc = X86::MOVSDrm;
1790 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001791 // If stack is realigned we can use aligned loads.
1792 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001793 } else if (RC == &X86::VR64RegClass) {
1794 Opc = X86::MMX_MOVQ64rm;
1795 } else {
1796 assert(0 && "Unknown regclass");
1797 abort();
1798 }
1799
1800 return Opc;
1801}
1802
1803void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001804 MachineBasicBlock::iterator MI,
1805 unsigned DestReg, int FrameIdx,
1806 const TargetRegisterClass *RC) const{
1807 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001808 bool isAligned = (RI.getStackAlignment() >= 16) ||
1809 RI.needsStackRealignment(MF);
1810 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001811 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1812}
1813
1814void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001815 SmallVectorImpl<MachineOperand> &Addr,
1816 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001817 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001818 bool isAligned = (RI.getStackAlignment() >= 16) ||
1819 RI.needsStackRealignment(MF);
1820 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001821 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001822 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1823 MIB = X86InstrAddOperand(MIB, Addr[i]);
1824 NewMIs.push_back(MIB);
1825}
1826
Owen Anderson6690c7f2008-01-04 23:57:37 +00001827bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001828 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001829 const std::vector<CalleeSavedInfo> &CSI) const {
1830 if (CSI.empty())
1831 return false;
1832
Evan Chengc275cf62008-09-26 19:14:21 +00001833 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001834 unsigned SlotSize = is64Bit ? 8 : 4;
1835
1836 MachineFunction &MF = *MBB.getParent();
1837 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1838 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1839
Owen Anderson6690c7f2008-01-04 23:57:37 +00001840 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1841 for (unsigned i = CSI.size(); i != 0; --i) {
1842 unsigned Reg = CSI[i-1].getReg();
1843 // Add the callee-saved register as live-in. It's killed at the spill.
1844 MBB.addLiveIn(Reg);
1845 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1846 }
1847 return true;
1848}
1849
1850bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001851 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001852 const std::vector<CalleeSavedInfo> &CSI) const {
1853 if (CSI.empty())
1854 return false;
1855
1856 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1857
1858 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1859 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1860 unsigned Reg = CSI[i].getReg();
1861 BuildMI(MBB, MI, get(Opc), Reg);
1862 }
1863 return true;
1864}
1865
Dan Gohman221a4372008-07-07 23:14:23 +00001866static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohman46b948e2008-10-16 01:49:15 +00001867 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001868 MachineInstr *MI, const TargetInstrInfo &TII) {
1869 // Create the base instruction with the memory operand as the first part.
Dan Gohman221a4372008-07-07 23:14:23 +00001870 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001871 MachineInstrBuilder MIB(NewMI);
1872 unsigned NumAddrOps = MOs.size();
1873 for (unsigned i = 0; i != NumAddrOps; ++i)
1874 MIB = X86InstrAddOperand(MIB, MOs[i]);
1875 if (NumAddrOps < 4) // FrameIndex only
1876 MIB.addImm(1).addReg(0).addImm(0);
1877
1878 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001879 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001880 for (unsigned i = 0; i != NumOps; ++i) {
1881 MachineOperand &MO = MI->getOperand(i+2);
1882 MIB = X86InstrAddOperand(MIB, MO);
1883 }
1884 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1885 MachineOperand &MO = MI->getOperand(i);
1886 MIB = X86InstrAddOperand(MIB, MO);
1887 }
1888 return MIB;
1889}
1890
Dan Gohman221a4372008-07-07 23:14:23 +00001891static MachineInstr *FuseInst(MachineFunction &MF,
1892 unsigned Opcode, unsigned OpNo,
Dan Gohman46b948e2008-10-16 01:49:15 +00001893 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001894 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman221a4372008-07-07 23:14:23 +00001895 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001896 MachineInstrBuilder MIB(NewMI);
1897
1898 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1899 MachineOperand &MO = MI->getOperand(i);
1900 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001901 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00001902 unsigned NumAddrOps = MOs.size();
1903 for (unsigned i = 0; i != NumAddrOps; ++i)
1904 MIB = X86InstrAddOperand(MIB, MOs[i]);
1905 if (NumAddrOps < 4) // FrameIndex only
1906 MIB.addImm(1).addReg(0).addImm(0);
1907 } else {
1908 MIB = X86InstrAddOperand(MIB, MO);
1909 }
1910 }
1911 return MIB;
1912}
1913
1914static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohman46b948e2008-10-16 01:49:15 +00001915 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001916 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00001917 MachineFunction &MF = *MI->getParent()->getParent();
1918 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001919
1920 unsigned NumAddrOps = MOs.size();
1921 for (unsigned i = 0; i != NumAddrOps; ++i)
1922 MIB = X86InstrAddOperand(MIB, MOs[i]);
1923 if (NumAddrOps < 4) // FrameIndex only
1924 MIB.addImm(1).addReg(0).addImm(0);
1925 return MIB.addImm(0);
1926}
1927
1928MachineInstr*
Dan Gohman221a4372008-07-07 23:14:23 +00001929X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1930 MachineInstr *MI, unsigned i,
Dan Gohman46b948e2008-10-16 01:49:15 +00001931 const SmallVector<MachineOperand,4> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00001932 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1933 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001934 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001935 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001936 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001937
1938 MachineInstr *NewMI = NULL;
1939 // Folding a memory location into the two-address part of a two-address
1940 // instruction is different than folding it other places. It requires
1941 // replacing the *two* registers with the memory location.
1942 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001943 MI->getOperand(0).isReg() &&
1944 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00001945 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1946 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1947 isTwoAddrFold = true;
1948 } else if (i == 0) { // If operand 0
1949 if (MI->getOpcode() == X86::MOV16r0)
1950 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1951 else if (MI->getOpcode() == X86::MOV32r0)
1952 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1953 else if (MI->getOpcode() == X86::MOV64r0)
1954 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1955 else if (MI->getOpcode() == X86::MOV8r0)
1956 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00001957 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00001958 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001959
1960 OpcodeTablePtr = &RegOp2MemOpTable0;
1961 } else if (i == 1) {
1962 OpcodeTablePtr = &RegOp2MemOpTable1;
1963 } else if (i == 2) {
1964 OpcodeTablePtr = &RegOp2MemOpTable2;
1965 }
1966
1967 // If table selected...
1968 if (OpcodeTablePtr) {
1969 // Find the Opcode to fuse
1970 DenseMap<unsigned*, unsigned>::iterator I =
1971 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1972 if (I != OpcodeTablePtr->end()) {
1973 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00001974 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001975 else
Dan Gohman221a4372008-07-07 23:14:23 +00001976 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001977 return NewMI;
1978 }
1979 }
1980
1981 // No fusion
1982 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001983 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001984 return NULL;
1985}
1986
1987
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001988MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1989 MachineInstr *MI,
Dan Gohman46b948e2008-10-16 01:49:15 +00001990 const SmallVectorImpl<unsigned> &Ops,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001991 int FrameIndex) const {
1992 // Check switch flag
1993 if (NoFusing) return NULL;
1994
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001995 const MachineFrameInfo *MFI = MF.getFrameInfo();
1996 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1997 // FIXME: Move alignment requirement into tables?
1998 if (Alignment < 16) {
1999 switch (MI->getOpcode()) {
2000 default: break;
2001 // Not always safe to fold movsd into these instructions since their load
2002 // folding variants expects the address to be 16 byte aligned.
2003 case X86::FsANDNPDrr:
2004 case X86::FsANDNPSrr:
2005 case X86::FsANDPDrr:
2006 case X86::FsANDPSrr:
2007 case X86::FsORPDrr:
2008 case X86::FsORPSrr:
2009 case X86::FsXORPDrr:
2010 case X86::FsXORPSrr:
2011 return NULL;
2012 }
2013 }
2014
Owen Anderson9a184ef2008-01-07 01:35:02 +00002015 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2016 unsigned NewOpc = 0;
2017 switch (MI->getOpcode()) {
2018 default: return NULL;
2019 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2020 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2021 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2022 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2023 }
2024 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002025 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002026 MI->getOperand(1).ChangeToImmediate(0);
2027 } else if (Ops.size() != 1)
2028 return NULL;
2029
2030 SmallVector<MachineOperand,4> MOs;
2031 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohman221a4372008-07-07 23:14:23 +00002032 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002033}
2034
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002035MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2036 MachineInstr *MI,
Dan Gohman46b948e2008-10-16 01:49:15 +00002037 const SmallVectorImpl<unsigned> &Ops,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002038 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002039 // Check switch flag
2040 if (NoFusing) return NULL;
2041
Dan Gohmand0e8c752008-07-12 00:10:52 +00002042 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002043 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002044 if (LoadMI->hasOneMemOperand())
2045 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002046
2047 // FIXME: Move alignment requirement into tables?
2048 if (Alignment < 16) {
2049 switch (MI->getOpcode()) {
2050 default: break;
2051 // Not always safe to fold movsd into these instructions since their load
2052 // folding variants expects the address to be 16 byte aligned.
2053 case X86::FsANDNPDrr:
2054 case X86::FsANDNPSrr:
2055 case X86::FsANDPDrr:
2056 case X86::FsANDPSrr:
2057 case X86::FsORPDrr:
2058 case X86::FsORPSrr:
2059 case X86::FsXORPDrr:
2060 case X86::FsXORPSrr:
2061 return NULL;
2062 }
2063 }
2064
Owen Anderson9a184ef2008-01-07 01:35:02 +00002065 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2066 unsigned NewOpc = 0;
2067 switch (MI->getOpcode()) {
2068 default: return NULL;
2069 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2070 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2071 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2072 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2073 }
2074 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002075 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002076 MI->getOperand(1).ChangeToImmediate(0);
2077 } else if (Ops.size() != 1)
2078 return NULL;
2079
2080 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00002081 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002082 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2083 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman221a4372008-07-07 23:14:23 +00002084 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002085}
2086
2087
Dan Gohman46b948e2008-10-16 01:49:15 +00002088bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2089 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002090 // Check switch flag
2091 if (NoFusing) return 0;
2092
2093 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2094 switch (MI->getOpcode()) {
2095 default: return false;
2096 case X86::TEST8rr:
2097 case X86::TEST16rr:
2098 case X86::TEST32rr:
2099 case X86::TEST64rr:
2100 return true;
2101 }
2102 }
2103
2104 if (Ops.size() != 1)
2105 return false;
2106
2107 unsigned OpNum = Ops[0];
2108 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002109 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002110 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002111 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002112
2113 // Folding a memory location into the two-address part of a two-address
2114 // instruction is different than folding it other places. It requires
2115 // replacing the *two* registers with the memory location.
2116 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2117 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2118 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2119 } else if (OpNum == 0) { // If operand 0
2120 switch (Opc) {
2121 case X86::MOV16r0:
2122 case X86::MOV32r0:
2123 case X86::MOV64r0:
2124 case X86::MOV8r0:
2125 return true;
2126 default: break;
2127 }
2128 OpcodeTablePtr = &RegOp2MemOpTable0;
2129 } else if (OpNum == 1) {
2130 OpcodeTablePtr = &RegOp2MemOpTable1;
2131 } else if (OpNum == 2) {
2132 OpcodeTablePtr = &RegOp2MemOpTable2;
2133 }
2134
2135 if (OpcodeTablePtr) {
2136 // Find the Opcode to fuse
2137 DenseMap<unsigned*, unsigned>::iterator I =
2138 OpcodeTablePtr->find((unsigned*)Opc);
2139 if (I != OpcodeTablePtr->end())
2140 return true;
2141 }
2142 return false;
2143}
2144
2145bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2146 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2147 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2148 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2149 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2150 if (I == MemOp2RegOpTable.end())
2151 return false;
2152 unsigned Opc = I->second.first;
2153 unsigned Index = I->second.second & 0xf;
2154 bool FoldedLoad = I->second.second & (1 << 4);
2155 bool FoldedStore = I->second.second & (1 << 5);
2156 if (UnfoldLoad && !FoldedLoad)
2157 return false;
2158 UnfoldLoad &= FoldedLoad;
2159 if (UnfoldStore && !FoldedStore)
2160 return false;
2161 UnfoldStore &= FoldedStore;
2162
Chris Lattner5b930372008-01-07 07:27:27 +00002163 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002164 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002165 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002166 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2167 SmallVector<MachineOperand,4> AddrOps;
2168 SmallVector<MachineOperand,2> BeforeOps;
2169 SmallVector<MachineOperand,2> AfterOps;
2170 SmallVector<MachineOperand,4> ImpOps;
2171 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2172 MachineOperand &Op = MI->getOperand(i);
2173 if (i >= Index && i < Index+4)
2174 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002175 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002176 ImpOps.push_back(Op);
2177 else if (i < Index)
2178 BeforeOps.push_back(Op);
2179 else if (i > Index)
2180 AfterOps.push_back(Op);
2181 }
2182
2183 // Emit the load instruction.
2184 if (UnfoldLoad) {
2185 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2186 if (UnfoldStore) {
2187 // Address operands cannot be marked isKill.
2188 for (unsigned i = 1; i != 5; ++i) {
2189 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002190 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002191 MO.setIsKill(false);
2192 }
2193 }
2194 }
2195
2196 // Emit the data processing instruction.
Dan Gohman221a4372008-07-07 23:14:23 +00002197 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002198 MachineInstrBuilder MIB(DataMI);
2199
2200 if (FoldedStore)
2201 MIB.addReg(Reg, true);
2202 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2203 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2204 if (FoldedLoad)
2205 MIB.addReg(Reg);
2206 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2207 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2208 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2209 MachineOperand &MO = ImpOps[i];
2210 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2211 }
2212 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2213 unsigned NewOpc = 0;
2214 switch (DataMI->getOpcode()) {
2215 default: break;
2216 case X86::CMP64ri32:
2217 case X86::CMP32ri:
2218 case X86::CMP16ri:
2219 case X86::CMP8ri: {
2220 MachineOperand &MO0 = DataMI->getOperand(0);
2221 MachineOperand &MO1 = DataMI->getOperand(1);
2222 if (MO1.getImm() == 0) {
2223 switch (DataMI->getOpcode()) {
2224 default: break;
2225 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2226 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2227 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2228 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2229 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002230 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002231 MO1.ChangeToRegister(MO0.getReg(), false);
2232 }
2233 }
2234 }
2235 NewMIs.push_back(DataMI);
2236
2237 // Emit the store instruction.
2238 if (UnfoldStore) {
2239 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002240 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002241 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2242 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2243 }
2244
2245 return true;
2246}
2247
2248bool
2249X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2250 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002251 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002252 return false;
2253
2254 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002255 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002256 if (I == MemOp2RegOpTable.end())
2257 return false;
2258 unsigned Opc = I->second.first;
2259 unsigned Index = I->second.second & 0xf;
2260 bool FoldedLoad = I->second.second & (1 << 4);
2261 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002262 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002263 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002264 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002265 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002266 std::vector<SDValue> AddrOps;
2267 std::vector<SDValue> BeforeOps;
2268 std::vector<SDValue> AfterOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002269 unsigned NumOps = N->getNumOperands();
2270 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002271 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002272 if (i >= Index && i < Index+4)
2273 AddrOps.push_back(Op);
2274 else if (i < Index)
2275 BeforeOps.push_back(Op);
2276 else if (i > Index)
2277 AfterOps.push_back(Op);
2278 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002279 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002280 AddrOps.push_back(Chain);
2281
2282 // Emit the load instruction.
2283 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002284 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002285 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002286 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002287 bool isAligned = (RI.getStackAlignment() >= 16) ||
2288 RI.needsStackRealignment(MF);
2289 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002290 VT, MVT::Other,
2291 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002292 NewNodes.push_back(Load);
2293 }
2294
2295 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002296 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002297 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002298 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002299 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002300 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002301 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2302 VTs.push_back(*DstRC->vt_begin());
2303 }
2304 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002305 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002306 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002307 VTs.push_back(VT);
2308 }
2309 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002310 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002311 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2312 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2313 NewNodes.push_back(NewNode);
2314
2315 // Emit the store instruction.
2316 if (FoldedStore) {
2317 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002318 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002319 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002320 bool isAligned = (RI.getStackAlignment() >= 16) ||
2321 RI.needsStackRealignment(MF);
2322 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2323 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002324 NewNodes.push_back(Store);
2325 }
2326
2327 return true;
2328}
2329
2330unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2331 bool UnfoldLoad, bool UnfoldStore) const {
2332 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2333 MemOp2RegOpTable.find((unsigned*)Opc);
2334 if (I == MemOp2RegOpTable.end())
2335 return 0;
2336 bool FoldedLoad = I->second.second & (1 << 4);
2337 bool FoldedStore = I->second.second & (1 << 5);
2338 if (UnfoldLoad && !FoldedLoad)
2339 return 0;
2340 if (UnfoldStore && !FoldedStore)
2341 return 0;
2342 return I->second.first;
2343}
2344
Dan Gohman46b948e2008-10-16 01:49:15 +00002345bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002346 if (MBB.empty()) return false;
2347
2348 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002349 case X86::TCRETURNri:
2350 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002351 case X86::RET: // Return.
2352 case X86::RETI:
2353 case X86::TAILJMPd:
2354 case X86::TAILJMPr:
2355 case X86::TAILJMPm:
2356 case X86::JMP: // Uncond branch.
2357 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002358 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002359 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002360 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002361 return true;
2362 default: return false;
2363 }
2364}
2365
2366bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002367ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002368 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002369 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2370 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002371 return false;
2372}
2373
2374const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2375 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2376 if (Subtarget->is64Bit())
2377 return &X86::GR64RegClass;
2378 else
2379 return &X86::GR32RegClass;
2380}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002381
2382unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2383 switch (Desc->TSFlags & X86II::ImmMask) {
2384 case X86II::Imm8: return 1;
2385 case X86II::Imm16: return 2;
2386 case X86II::Imm32: return 4;
2387 case X86II::Imm64: return 8;
2388 default: assert(0 && "Immediate size not set!");
2389 return 0;
2390 }
2391}
2392
2393/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2394/// e.g. r8, xmm8, etc.
2395bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002396 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002397 switch (MO.getReg()) {
2398 default: break;
2399 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2400 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2401 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2402 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2403 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2404 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2405 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2406 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2407 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2408 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2409 return true;
2410 }
2411 return false;
2412}
2413
2414
2415/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2416/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2417/// size, and 3) use of X86-64 extended registers.
2418unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2419 unsigned REX = 0;
2420 const TargetInstrDesc &Desc = MI.getDesc();
2421
2422 // Pseudo instructions do not need REX prefix byte.
2423 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2424 return 0;
2425 if (Desc.TSFlags & X86II::REX_W)
2426 REX |= 1 << 3;
2427
2428 unsigned NumOps = Desc.getNumOperands();
2429 if (NumOps) {
2430 bool isTwoAddr = NumOps > 1 &&
2431 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2432
2433 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2434 unsigned i = isTwoAddr ? 1 : 0;
2435 for (unsigned e = NumOps; i != e; ++i) {
2436 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002437 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002438 unsigned Reg = MO.getReg();
2439 if (isX86_64NonExtLowByteReg(Reg))
2440 REX |= 0x40;
2441 }
2442 }
2443
2444 switch (Desc.TSFlags & X86II::FormMask) {
2445 case X86II::MRMInitReg:
2446 if (isX86_64ExtendedReg(MI.getOperand(0)))
2447 REX |= (1 << 0) | (1 << 2);
2448 break;
2449 case X86II::MRMSrcReg: {
2450 if (isX86_64ExtendedReg(MI.getOperand(0)))
2451 REX |= 1 << 2;
2452 i = isTwoAddr ? 2 : 1;
2453 for (unsigned e = NumOps; i != e; ++i) {
2454 const MachineOperand& MO = MI.getOperand(i);
2455 if (isX86_64ExtendedReg(MO))
2456 REX |= 1 << 0;
2457 }
2458 break;
2459 }
2460 case X86II::MRMSrcMem: {
2461 if (isX86_64ExtendedReg(MI.getOperand(0)))
2462 REX |= 1 << 2;
2463 unsigned Bit = 0;
2464 i = isTwoAddr ? 2 : 1;
2465 for (; i != NumOps; ++i) {
2466 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002467 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002468 if (isX86_64ExtendedReg(MO))
2469 REX |= 1 << Bit;
2470 Bit++;
2471 }
2472 }
2473 break;
2474 }
2475 case X86II::MRM0m: case X86II::MRM1m:
2476 case X86II::MRM2m: case X86II::MRM3m:
2477 case X86II::MRM4m: case X86II::MRM5m:
2478 case X86II::MRM6m: case X86II::MRM7m:
2479 case X86II::MRMDestMem: {
2480 unsigned e = isTwoAddr ? 5 : 4;
2481 i = isTwoAddr ? 1 : 0;
2482 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2483 REX |= 1 << 2;
2484 unsigned Bit = 0;
2485 for (; i != e; ++i) {
2486 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002487 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002488 if (isX86_64ExtendedReg(MO))
2489 REX |= 1 << Bit;
2490 Bit++;
2491 }
2492 }
2493 break;
2494 }
2495 default: {
2496 if (isX86_64ExtendedReg(MI.getOperand(0)))
2497 REX |= 1 << 0;
2498 i = isTwoAddr ? 2 : 1;
2499 for (unsigned e = NumOps; i != e; ++i) {
2500 const MachineOperand& MO = MI.getOperand(i);
2501 if (isX86_64ExtendedReg(MO))
2502 REX |= 1 << 2;
2503 }
2504 break;
2505 }
2506 }
2507 }
2508 return REX;
2509}
2510
2511/// sizePCRelativeBlockAddress - This method returns the size of a PC
2512/// relative block address instruction
2513///
2514static unsigned sizePCRelativeBlockAddress() {
2515 return 4;
2516}
2517
2518/// sizeGlobalAddress - Give the size of the emission of this global address
2519///
2520static unsigned sizeGlobalAddress(bool dword) {
2521 return dword ? 8 : 4;
2522}
2523
2524/// sizeConstPoolAddress - Give the size of the emission of this constant
2525/// pool address
2526///
2527static unsigned sizeConstPoolAddress(bool dword) {
2528 return dword ? 8 : 4;
2529}
2530
2531/// sizeExternalSymbolAddress - Give the size of the emission of this external
2532/// symbol
2533///
2534static unsigned sizeExternalSymbolAddress(bool dword) {
2535 return dword ? 8 : 4;
2536}
2537
2538/// sizeJumpTableAddress - Give the size of the emission of this jump
2539/// table address
2540///
2541static unsigned sizeJumpTableAddress(bool dword) {
2542 return dword ? 8 : 4;
2543}
2544
2545static unsigned sizeConstant(unsigned Size) {
2546 return Size;
2547}
2548
2549static unsigned sizeRegModRMByte(){
2550 return 1;
2551}
2552
2553static unsigned sizeSIBByte(){
2554 return 1;
2555}
2556
2557static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2558 unsigned FinalSize = 0;
2559 // If this is a simple integer displacement that doesn't require a relocation.
2560 if (!RelocOp) {
2561 FinalSize += sizeConstant(4);
2562 return FinalSize;
2563 }
2564
2565 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002566 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002567 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002568 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002569 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002570 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002571 FinalSize += sizeJumpTableAddress(false);
2572 } else {
2573 assert(0 && "Unknown value to relocate!");
2574 }
2575 return FinalSize;
2576}
2577
2578static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2579 bool IsPIC, bool Is64BitMode) {
2580 const MachineOperand &Op3 = MI.getOperand(Op+3);
2581 int DispVal = 0;
2582 const MachineOperand *DispForReloc = 0;
2583 unsigned FinalSize = 0;
2584
2585 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002586 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002587 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002588 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002589 if (Is64BitMode || IsPIC) {
2590 DispForReloc = &Op3;
2591 } else {
2592 DispVal = 1;
2593 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002594 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002595 if (Is64BitMode || IsPIC) {
2596 DispForReloc = &Op3;
2597 } else {
2598 DispVal = 1;
2599 }
2600 } else {
2601 DispVal = 1;
2602 }
2603
2604 const MachineOperand &Base = MI.getOperand(Op);
2605 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2606
2607 unsigned BaseReg = Base.getReg();
2608
2609 // Is a SIB byte needed?
2610 if (IndexReg.getReg() == 0 &&
2611 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2612 if (BaseReg == 0) { // Just a displacement?
2613 // Emit special case [disp32] encoding
2614 ++FinalSize;
2615 FinalSize += getDisplacementFieldSize(DispForReloc);
2616 } else {
2617 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2618 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2619 // Emit simple indirect register encoding... [EAX] f.e.
2620 ++FinalSize;
2621 // Be pessimistic and assume it's a disp32, not a disp8
2622 } else {
2623 // Emit the most general non-SIB encoding: [REG+disp32]
2624 ++FinalSize;
2625 FinalSize += getDisplacementFieldSize(DispForReloc);
2626 }
2627 }
2628
2629 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2630 assert(IndexReg.getReg() != X86::ESP &&
2631 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2632
2633 bool ForceDisp32 = false;
2634 if (BaseReg == 0 || DispForReloc) {
2635 // Emit the normal disp32 encoding.
2636 ++FinalSize;
2637 ForceDisp32 = true;
2638 } else {
2639 ++FinalSize;
2640 }
2641
2642 FinalSize += sizeSIBByte();
2643
2644 // Do we need to output a displacement?
2645 if (DispVal != 0 || ForceDisp32) {
2646 FinalSize += getDisplacementFieldSize(DispForReloc);
2647 }
2648 }
2649 return FinalSize;
2650}
2651
2652
2653static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2654 const TargetInstrDesc *Desc,
2655 bool IsPIC, bool Is64BitMode) {
2656
2657 unsigned Opcode = Desc->Opcode;
2658 unsigned FinalSize = 0;
2659
2660 // Emit the lock opcode prefix as needed.
2661 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2662
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002663 // Emit segment overrid opcode prefix as needed.
2664 switch (Desc->TSFlags & X86II::SegOvrMask) {
2665 case X86II::FS:
2666 case X86II::GS:
2667 ++FinalSize;
2668 break;
2669 default: assert(0 && "Invalid segment!");
2670 case 0: break; // No segment override!
2671 }
2672
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002673 // Emit the repeat opcode prefix as needed.
2674 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2675
2676 // Emit the operand size opcode prefix as needed.
2677 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2678
2679 // Emit the address size opcode prefix as needed.
2680 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2681
2682 bool Need0FPrefix = false;
2683 switch (Desc->TSFlags & X86II::Op0Mask) {
2684 case X86II::TB: // Two-byte opcode prefix
2685 case X86II::T8: // 0F 38
2686 case X86II::TA: // 0F 3A
2687 Need0FPrefix = true;
2688 break;
2689 case X86II::REP: break; // already handled.
2690 case X86II::XS: // F3 0F
2691 ++FinalSize;
2692 Need0FPrefix = true;
2693 break;
2694 case X86II::XD: // F2 0F
2695 ++FinalSize;
2696 Need0FPrefix = true;
2697 break;
2698 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2699 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2700 ++FinalSize;
2701 break; // Two-byte opcode prefix
2702 default: assert(0 && "Invalid prefix!");
2703 case 0: break; // No prefix!
2704 }
2705
2706 if (Is64BitMode) {
2707 // REX prefix
2708 unsigned REX = X86InstrInfo::determineREX(MI);
2709 if (REX)
2710 ++FinalSize;
2711 }
2712
2713 // 0x0F escape code must be emitted just before the opcode.
2714 if (Need0FPrefix)
2715 ++FinalSize;
2716
2717 switch (Desc->TSFlags & X86II::Op0Mask) {
2718 case X86II::T8: // 0F 38
2719 ++FinalSize;
2720 break;
2721 case X86II::TA: // 0F 3A
2722 ++FinalSize;
2723 break;
2724 }
2725
2726 // If this is a two-address instruction, skip one of the register operands.
2727 unsigned NumOps = Desc->getNumOperands();
2728 unsigned CurOp = 0;
2729 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2730 CurOp++;
2731
2732 switch (Desc->TSFlags & X86II::FormMask) {
2733 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2734 case X86II::Pseudo:
2735 // Remember the current PC offset, this is the PIC relocation
2736 // base address.
2737 switch (Opcode) {
2738 default:
2739 break;
2740 case TargetInstrInfo::INLINEASM: {
2741 const MachineFunction *MF = MI.getParent()->getParent();
2742 const char *AsmStr = MI.getOperand(0).getSymbolName();
2743 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2744 FinalSize += AI->getInlineAsmLength(AsmStr);
2745 break;
2746 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002747 case TargetInstrInfo::DBG_LABEL:
2748 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002749 break;
2750 case TargetInstrInfo::IMPLICIT_DEF:
2751 case TargetInstrInfo::DECLARE:
2752 case X86::DWARF_LOC:
2753 case X86::FP_REG_KILL:
2754 break;
2755 case X86::MOVPC32r: {
2756 // This emits the "call" portion of this pseudo instruction.
2757 ++FinalSize;
2758 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2759 break;
2760 }
2761 }
2762 CurOp = NumOps;
2763 break;
2764 case X86II::RawFrm:
2765 ++FinalSize;
2766
2767 if (CurOp != NumOps) {
2768 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002769 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002770 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002771 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002772 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002773 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002774 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002775 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002776 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2777 } else {
2778 assert(0 && "Unknown RawFrm operand!");
2779 }
2780 }
2781 break;
2782
2783 case X86II::AddRegFrm:
2784 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002785 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002786
2787 if (CurOp != NumOps) {
2788 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2789 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002790 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002791 FinalSize += sizeConstant(Size);
2792 else {
2793 bool dword = false;
2794 if (Opcode == X86::MOV64ri)
2795 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002796 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002797 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002798 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002799 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002800 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002801 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002802 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002803 FinalSize += sizeJumpTableAddress(dword);
2804 }
2805 }
2806 break;
2807
2808 case X86II::MRMDestReg: {
2809 ++FinalSize;
2810 FinalSize += sizeRegModRMByte();
2811 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002812 if (CurOp != NumOps) {
2813 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002814 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002815 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002816 break;
2817 }
2818 case X86II::MRMDestMem: {
2819 ++FinalSize;
2820 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2821 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002822 if (CurOp != NumOps) {
2823 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002824 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002825 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002826 break;
2827 }
2828
2829 case X86II::MRMSrcReg:
2830 ++FinalSize;
2831 FinalSize += sizeRegModRMByte();
2832 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002833 if (CurOp != NumOps) {
2834 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002835 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002836 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002837 break;
2838
2839 case X86II::MRMSrcMem: {
2840
2841 ++FinalSize;
2842 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2843 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002844 if (CurOp != NumOps) {
2845 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002846 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002847 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002848 break;
2849 }
2850
2851 case X86II::MRM0r: case X86II::MRM1r:
2852 case X86II::MRM2r: case X86II::MRM3r:
2853 case X86II::MRM4r: case X86II::MRM5r:
2854 case X86II::MRM6r: case X86II::MRM7r:
2855 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002856 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002857 FinalSize += sizeRegModRMByte();
2858
2859 if (CurOp != NumOps) {
2860 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2861 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002862 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002863 FinalSize += sizeConstant(Size);
2864 else {
2865 bool dword = false;
2866 if (Opcode == X86::MOV64ri32)
2867 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002868 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002869 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002870 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002871 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002872 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002873 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002874 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002875 FinalSize += sizeJumpTableAddress(dword);
2876 }
2877 }
2878 break;
2879
2880 case X86II::MRM0m: case X86II::MRM1m:
2881 case X86II::MRM2m: case X86II::MRM3m:
2882 case X86II::MRM4m: case X86II::MRM5m:
2883 case X86II::MRM6m: case X86II::MRM7m: {
2884
2885 ++FinalSize;
2886 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2887 CurOp += 4;
2888
2889 if (CurOp != NumOps) {
2890 const MachineOperand &MO = MI.getOperand(CurOp++);
2891 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002892 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002893 FinalSize += sizeConstant(Size);
2894 else {
2895 bool dword = false;
2896 if (Opcode == X86::MOV64mi32)
2897 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002898 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002899 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002900 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002901 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002902 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002903 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002904 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002905 FinalSize += sizeJumpTableAddress(dword);
2906 }
2907 }
2908 break;
2909 }
2910
2911 case X86II::MRMInitReg:
2912 ++FinalSize;
2913 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2914 FinalSize += sizeRegModRMByte();
2915 ++CurOp;
2916 break;
2917 }
2918
2919 if (!Desc->isVariadic() && CurOp != NumOps) {
2920 cerr << "Cannot determine size: ";
2921 MI.dump();
2922 cerr << '\n';
2923 abort();
2924 }
2925
2926
2927 return FinalSize;
2928}
2929
2930
2931unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2932 const TargetInstrDesc &Desc = MI->getDesc();
2933 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00002934 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002935 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2936 if (Desc.getOpcode() == X86::MOVPC32r) {
2937 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2938 }
2939 return Size;
2940}
Dan Gohmanb60482f2008-09-23 18:22:58 +00002941
Dan Gohman882ab732008-09-30 00:58:23 +00002942/// getGlobalBaseReg - Return a virtual register initialized with the
2943/// the global base register value. Output instructions required to
2944/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00002945///
Dan Gohman882ab732008-09-30 00:58:23 +00002946unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
2947 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
2948 "X86-64 PIC uses RIP relative addressing");
2949
2950 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2951 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
2952 if (GlobalBaseReg != 0)
2953 return GlobalBaseReg;
2954
Dan Gohmanb60482f2008-09-23 18:22:58 +00002955 // Insert the set of GlobalBaseReg into the first MBB of the function
2956 MachineBasicBlock &FirstMBB = MF->front();
2957 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
2958 MachineRegisterInfo &RegInfo = MF->getRegInfo();
2959 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
2960
2961 const TargetInstrInfo *TII = TM.getInstrInfo();
2962 // Operand of MovePCtoStack is completely ignored by asm printer. It's
2963 // only used in JIT code emission as displacement to pc.
2964 BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
2965
2966 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
2967 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
2968 if (TM.getRelocationModel() == Reloc::PIC_ &&
2969 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00002970 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00002971 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
2972 BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
2973 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00002974 } else {
2975 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00002976 }
2977
Dan Gohman882ab732008-09-30 00:58:23 +00002978 X86FI->setGlobalBaseReg(GlobalBaseReg);
2979 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00002980}