blob: 555b4428d2e8f7d9b55eb5a61b8d2cad93bf2f10 [file] [log] [blame]
Chris Lattner80f43d32010-01-04 07:53:58 +00001//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
Eli Friedman74703252011-07-20 21:57:23 +000015#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner80f43d32010-01-04 07:53:58 +000016#include "llvm/Target/TargetData.h"
Chad Rosier3d925d22011-11-29 23:57:10 +000017#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner80f43d32010-01-04 07:53:58 +000018#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000022/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
23/// expression. If so, decompose it, returning some value X, such that Val is
24/// X*Scale+Offset.
25///
26static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Dan Gohman28d2e0a2010-05-28 04:33:04 +000027 uint64_t &Offset) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000028 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
29 Offset = CI->getZExtValue();
30 Scale = 0;
Dan Gohman28d2e0a2010-05-28 04:33:04 +000031 return ConstantInt::get(Val->getType(), 0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000032 }
33
34 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
Bob Wilsone2e86f62011-07-08 22:09:33 +000035 // Cannot look past anything that might overflow.
36 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
Stepan Dyatkovskiy3f71cf12012-05-05 07:09:40 +000037 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
Bob Wilsone2e86f62011-07-08 22:09:33 +000038 Scale = 1;
39 Offset = 0;
40 return Val;
41 }
42
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000043 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
44 if (I->getOpcode() == Instruction::Shl) {
45 // This is a value scaled by '1 << the shift amt'.
Dan Gohman28d2e0a2010-05-28 04:33:04 +000046 Scale = UINT64_C(1) << RHS->getZExtValue();
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000047 Offset = 0;
48 return I->getOperand(0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000049 }
50
51 if (I->getOpcode() == Instruction::Mul) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000052 // This value is scaled by 'RHS'.
53 Scale = RHS->getZExtValue();
54 Offset = 0;
55 return I->getOperand(0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000056 }
57
58 if (I->getOpcode() == Instruction::Add) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000059 // We have X+C. Check to see if we really have (X*C2)+C1,
60 // where C1 is divisible by C2.
61 unsigned SubScale;
62 Value *SubVal =
63 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
64 Offset += RHS->getZExtValue();
65 Scale = SubScale;
66 return SubVal;
67 }
68 }
69 }
70
71 // Otherwise, we can't look past this.
72 Scale = 1;
73 Offset = 0;
74 return Val;
75}
76
77/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
78/// try to eliminate the cast by moving the type information into the alloc.
79Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
80 AllocaInst &AI) {
81 // This requires TargetData to get the alloca alignment and size information.
82 if (!TD) return 0;
83
Chris Lattnerdb125cf2011-07-18 04:54:35 +000084 PointerType *PTy = cast<PointerType>(CI.getType());
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000085
86 BuilderTy AllocaBuilder(*Builder);
87 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
88
89 // Get the type really allocated and the type casted to.
Chris Lattnerdb125cf2011-07-18 04:54:35 +000090 Type *AllocElTy = AI.getAllocatedType();
91 Type *CastElTy = PTy->getElementType();
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000092 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
93
94 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
95 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
96 if (CastElTyAlign < AllocElTyAlign) return 0;
97
98 // If the allocation has multiple uses, only promote it if we are strictly
99 // increasing the alignment of the resultant allocation. If we keep it the
Devang Patel5aa3fa62011-03-08 22:12:11 +0000100 // same, we open the door to infinite loops of various kinds.
101 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000102
103 uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
104 uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
105 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
106
107 // See if we can satisfy the modulus by pulling a scale out of the array
108 // size argument.
109 unsigned ArraySizeScale;
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000110 uint64_t ArrayOffset;
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000111 Value *NumElements = // See if the array size is a decomposable linear expr.
112 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
113
114 // If we can now satisfy the modulus, by using a non-1 scale, we really can
115 // do the xform.
116 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
117 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
118
119 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
120 Value *Amt = 0;
121 if (Scale == 1) {
122 Amt = NumElements;
123 } else {
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000124 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000125 // Insert before the alloca, not before the cast.
Benjamin Kramera9390a42011-09-27 20:39:19 +0000126 Amt = AllocaBuilder.CreateMul(Amt, NumElements);
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000127 }
128
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000129 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
130 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000131 Offset, true);
Benjamin Kramera9390a42011-09-27 20:39:19 +0000132 Amt = AllocaBuilder.CreateAdd(Amt, Off);
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000133 }
134
135 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
136 New->setAlignment(AI.getAlignment());
137 New->takeName(&AI);
138
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000139 // If the allocation has multiple real uses, insert a cast and change all
140 // things that used it to use the new cast. This will also hack on CI, but it
141 // will die soon.
Devang Patel5aa3fa62011-03-08 22:12:11 +0000142 if (!AI.hasOneUse()) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000143 // New is the allocation instruction, pointer typed. AI is the original
144 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
145 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
Eli Friedman3e22cb92011-05-18 00:32:01 +0000146 ReplaceInstUsesWith(AI, NewCast);
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000147 }
148 return ReplaceInstUsesWith(CI, New);
149}
150
Chris Lattner5f0290e2010-01-04 07:54:59 +0000151/// EvaluateInDifferentType - Given an expression that
Chris Lattner14bf8f02010-01-08 19:19:23 +0000152/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000153/// insert the code to evaluate the expression.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000154Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
Chris Lattner5f0290e2010-01-04 07:54:59 +0000155 bool isSigned) {
Chris Lattnerc8b3fce2010-01-08 19:28:47 +0000156 if (Constant *C = dyn_cast<Constant>(V)) {
157 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
158 // If we got a constantexpr back, try to simplify it with TD info.
159 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosier00737bd2011-12-01 21:29:16 +0000160 C = ConstantFoldConstantExpression(CE, TD, TLI);
Chris Lattnerc8b3fce2010-01-08 19:28:47 +0000161 return C;
162 }
Chris Lattner5f0290e2010-01-04 07:54:59 +0000163
164 // Otherwise, it must be an instruction.
165 Instruction *I = cast<Instruction>(V);
166 Instruction *Res = 0;
167 unsigned Opc = I->getOpcode();
168 switch (Opc) {
169 case Instruction::Add:
170 case Instruction::Sub:
171 case Instruction::Mul:
172 case Instruction::And:
173 case Instruction::Or:
174 case Instruction::Xor:
175 case Instruction::AShr:
176 case Instruction::LShr:
177 case Instruction::Shl:
178 case Instruction::UDiv:
179 case Instruction::URem: {
180 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
181 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
182 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
183 break;
184 }
185 case Instruction::Trunc:
186 case Instruction::ZExt:
187 case Instruction::SExt:
188 // If the source type of the cast is the type we're trying for then we can
189 // just return the source. There's no need to insert it because it is not
190 // new.
191 if (I->getOperand(0)->getType() == Ty)
192 return I->getOperand(0);
193
194 // Otherwise, must be the same type of cast, so just reinsert a new one.
Chris Lattner9ee947c2010-01-10 20:25:54 +0000195 // This also handles the case of zext(trunc(x)) -> zext(x).
196 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
197 Opc == Instruction::SExt);
Chris Lattner5f0290e2010-01-04 07:54:59 +0000198 break;
199 case Instruction::Select: {
200 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
201 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
202 Res = SelectInst::Create(I->getOperand(0), True, False);
203 break;
204 }
205 case Instruction::PHI: {
206 PHINode *OPN = cast<PHINode>(I);
Jay Foad3ecfc862011-03-30 11:28:46 +0000207 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
Chris Lattner5f0290e2010-01-04 07:54:59 +0000208 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
209 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
210 NPN->addIncoming(V, OPN->getIncomingBlock(i));
211 }
212 Res = NPN;
213 break;
214 }
215 default:
216 // TODO: Can handle more cases here.
217 llvm_unreachable("Unreachable!");
Chris Lattner5f0290e2010-01-04 07:54:59 +0000218 }
219
220 Res->takeName(I);
Eli Friedmana311c342011-05-27 00:19:40 +0000221 return InsertNewInstWith(Res, *I);
Chris Lattner5f0290e2010-01-04 07:54:59 +0000222}
Chris Lattner80f43d32010-01-04 07:53:58 +0000223
224
225/// This function is a wrapper around CastInst::isEliminableCastPair. It
226/// simply extracts arguments and returns what that function returns.
227static Instruction::CastOps
228isEliminableCastPair(
229 const CastInst *CI, ///< The first cast instruction
230 unsigned opcode, ///< The opcode of the second cast instruction
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000231 Type *DstTy, ///< The target type for the second cast instruction
Chris Lattner80f43d32010-01-04 07:53:58 +0000232 TargetData *TD ///< The target data for pointer size
233) {
234
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000235 Type *SrcTy = CI->getOperand(0)->getType(); // A from above
236 Type *MidTy = CI->getType(); // B from above
Chris Lattner80f43d32010-01-04 07:53:58 +0000237
238 // Get the opcodes of the two Cast instructions
239 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
240 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
241
242 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
243 DstTy,
244 TD ? TD->getIntPtrType(CI->getContext()) : 0);
245
246 // We don't want to form an inttoptr or ptrtoint that converts to an integer
247 // type that differs from the pointer size.
248 if ((Res == Instruction::IntToPtr &&
249 (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
250 (Res == Instruction::PtrToInt &&
251 (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
252 Res = 0;
253
254 return Instruction::CastOps(Res);
255}
256
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000257/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
258/// results in any code being generated and is interesting to optimize out. If
259/// the cast can be eliminated by some other simple transformation, we prefer
260/// to do the simplification first.
261bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000262 Type *Ty) {
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000263 // Noop casts and casts of constants should be eliminated trivially.
Chris Lattner80f43d32010-01-04 07:53:58 +0000264 if (V->getType() == Ty || isa<Constant>(V)) return false;
265
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000266 // If this is another cast that can be eliminated, we prefer to have it
267 // eliminated.
Chris Lattner80f43d32010-01-04 07:53:58 +0000268 if (const CastInst *CI = dyn_cast<CastInst>(V))
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000269 if (isEliminableCastPair(CI, opc, Ty, TD))
Chris Lattner80f43d32010-01-04 07:53:58 +0000270 return false;
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000271
272 // If this is a vector sext from a compare, then we don't want to break the
273 // idiom where each element of the extended vector is either zero or all ones.
Duncan Sands1df98592010-02-16 11:11:14 +0000274 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000275 return false;
276
Chris Lattner80f43d32010-01-04 07:53:58 +0000277 return true;
278}
279
280
281/// @brief Implement the transforms common to all CastInst visitors.
282Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
283 Value *Src = CI.getOperand(0);
284
285 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
286 // eliminate it now.
287 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
288 if (Instruction::CastOps opc =
289 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
290 // The first cast (CSrc) is eliminable so we need to fix up or replace
291 // the second cast (CI). CSrc will then have a good chance of being dead.
292 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
293 }
294 }
295
296 // If we are casting a select then fold the cast into the select
297 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
298 if (Instruction *NV = FoldOpIntoSelect(CI, SI))
299 return NV;
300
301 // If we are casting a PHI then fold the cast into the PHI
302 if (isa<PHINode>(Src)) {
303 // We don't do this if this would create a PHI node with an illegal type if
304 // it is currently legal.
Duncan Sands1df98592010-02-16 11:11:14 +0000305 if (!Src->getType()->isIntegerTy() ||
306 !CI.getType()->isIntegerTy() ||
Chris Lattner80f43d32010-01-04 07:53:58 +0000307 ShouldChangeType(CI.getType(), Src->getType()))
308 if (Instruction *NV = FoldOpIntoPhi(CI))
309 return NV;
310 }
311
312 return 0;
313}
314
Chris Lattner75215c92010-01-10 00:58:42 +0000315/// CanEvaluateTruncated - Return true if we can evaluate the specified
316/// expression tree as type Ty instead of its larger type, and arrive with the
317/// same value. This is used by code that tries to eliminate truncates.
318///
319/// Ty will always be a type smaller than V. We should return true if trunc(V)
320/// can be computed by computing V in the smaller type. If V is an instruction,
321/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
322/// makes sense if x and y can be efficiently truncated.
323///
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000324/// This function works on both vectors and scalars.
325///
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000326static bool CanEvaluateTruncated(Value *V, Type *Ty) {
Chris Lattner75215c92010-01-10 00:58:42 +0000327 // We can always evaluate constants in another type.
328 if (isa<Constant>(V))
329 return true;
Chris Lattner68c6e892010-01-05 23:00:30 +0000330
Chris Lattner75215c92010-01-10 00:58:42 +0000331 Instruction *I = dyn_cast<Instruction>(V);
332 if (!I) return false;
333
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000334 Type *OrigTy = V->getType();
Chris Lattner75215c92010-01-10 00:58:42 +0000335
Chris Lattnera958cbf2010-01-11 22:45:25 +0000336 // If this is an extension from the dest type, we can eliminate it, even if it
337 // has multiple uses.
Chris Lattner53af2d12010-01-11 22:49:40 +0000338 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
Chris Lattner75215c92010-01-10 00:58:42 +0000339 I->getOperand(0)->getType() == Ty)
340 return true;
341
342 // We can't extend or shrink something that has multiple uses: doing so would
343 // require duplicating the instruction in general, which isn't profitable.
344 if (!I->hasOneUse()) return false;
345
346 unsigned Opc = I->getOpcode();
347 switch (Opc) {
348 case Instruction::Add:
349 case Instruction::Sub:
350 case Instruction::Mul:
351 case Instruction::And:
352 case Instruction::Or:
353 case Instruction::Xor:
354 // These operators can all arbitrarily be extended or truncated.
355 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
356 CanEvaluateTruncated(I->getOperand(1), Ty);
357
358 case Instruction::UDiv:
359 case Instruction::URem: {
360 // UDiv and URem can be truncated if all the truncated bits are zero.
361 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
362 uint32_t BitWidth = Ty->getScalarSizeInBits();
363 if (BitWidth < OrigBitWidth) {
364 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
365 if (MaskedValueIsZero(I->getOperand(0), Mask) &&
366 MaskedValueIsZero(I->getOperand(1), Mask)) {
367 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
368 CanEvaluateTruncated(I->getOperand(1), Ty);
369 }
370 }
371 break;
372 }
373 case Instruction::Shl:
374 // If we are truncating the result of this SHL, and if it's a shift of a
375 // constant amount, we can always perform a SHL in a smaller type.
376 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
377 uint32_t BitWidth = Ty->getScalarSizeInBits();
378 if (CI->getLimitedValue(BitWidth) < BitWidth)
379 return CanEvaluateTruncated(I->getOperand(0), Ty);
380 }
381 break;
382 case Instruction::LShr:
383 // If this is a truncate of a logical shr, we can truncate it to a smaller
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000384 // lshr iff we know that the bits we would otherwise be shifting in are
Chris Lattner75215c92010-01-10 00:58:42 +0000385 // already zeros.
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
387 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
388 uint32_t BitWidth = Ty->getScalarSizeInBits();
389 if (MaskedValueIsZero(I->getOperand(0),
390 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
391 CI->getLimitedValue(BitWidth) < BitWidth) {
392 return CanEvaluateTruncated(I->getOperand(0), Ty);
393 }
394 }
395 break;
396 case Instruction::Trunc:
397 // trunc(trunc(x)) -> trunc(x)
398 return true;
Chris Lattnerf9d05ab2010-08-27 20:32:06 +0000399 case Instruction::ZExt:
400 case Instruction::SExt:
401 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
402 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
403 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000404 case Instruction::Select: {
405 SelectInst *SI = cast<SelectInst>(I);
406 return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
407 CanEvaluateTruncated(SI->getFalseValue(), Ty);
408 }
409 case Instruction::PHI: {
410 // We can change a phi if we can change all operands. Note that we never
411 // get into trouble with cyclic PHIs here because we only consider
412 // instructions with a single use.
413 PHINode *PN = cast<PHINode>(I);
414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
415 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
416 return false;
417 return true;
418 }
419 default:
420 // TODO: Can handle more cases here.
421 break;
422 }
423
424 return false;
425}
426
427Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000428 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner75215c92010-01-10 00:58:42 +0000429 return Result;
430
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000431 // See if we can simplify any instructions used by the input whose sole
432 // purpose is to compute bits we don't care about.
433 if (SimplifyDemandedInstructionBits(CI))
434 return &CI;
435
Chris Lattner75215c92010-01-10 00:58:42 +0000436 Value *Src = CI.getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000437 Type *DestTy = CI.getType(), *SrcTy = Src->getType();
Chris Lattner75215c92010-01-10 00:58:42 +0000438
439 // Attempt to truncate the entire input expression tree to the destination
440 // type. Only do this if the dest type is a simple type, don't convert the
Chris Lattner80f43d32010-01-04 07:53:58 +0000441 // expression tree to something weird like i93 unless the source is also
442 // strange.
Duncan Sands1df98592010-02-16 11:11:14 +0000443 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner75215c92010-01-10 00:58:42 +0000444 CanEvaluateTruncated(Src, DestTy)) {
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000445
Chris Lattner80f43d32010-01-04 07:53:58 +0000446 // If this cast is a truncate, evaluting in a different type always
Chris Lattner68c6e892010-01-05 23:00:30 +0000447 // eliminates the cast, so it is always a win.
Chris Lattner075f6922010-01-07 23:41:00 +0000448 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
Dan Gohman5b71dce2010-05-25 21:50:35 +0000449 " to avoid cast: " << CI << '\n');
Chris Lattner075f6922010-01-07 23:41:00 +0000450 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
451 assert(Res->getType() == DestTy);
452 return ReplaceInstUsesWith(CI, Res);
453 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000454
Chris Lattner7a34d6c2010-01-05 22:21:18 +0000455 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
456 if (DestTy->getScalarSizeInBits() == 1) {
Chris Lattner80f43d32010-01-04 07:53:58 +0000457 Constant *One = ConstantInt::get(Src->getType(), 1);
Benjamin Kramera9390a42011-09-27 20:39:19 +0000458 Src = Builder->CreateAnd(Src, One);
Chris Lattner80f43d32010-01-04 07:53:58 +0000459 Value *Zero = Constant::getNullValue(Src->getType());
460 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
461 }
Chris Lattner784f3332010-08-27 18:31:05 +0000462
463 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
464 Value *A = 0; ConstantInt *Cst = 0;
Chris Lattner62fe4062011-01-15 06:32:33 +0000465 if (Src->hasOneUse() &&
466 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
Chris Lattner784f3332010-08-27 18:31:05 +0000467 // We have three types to worry about here, the type of A, the source of
468 // the truncate (MidSize), and the destination of the truncate. We know that
469 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
470 // between ASize and ResultSize.
471 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
472
473 // If the shift amount is larger than the size of A, then the result is
474 // known to be zero because all the input bits got shifted out.
475 if (Cst->getZExtValue() >= ASize)
476 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
477
478 // Since we're doing an lshr and a zero extend, and know that the shift
479 // amount is smaller than ASize, it is always safe to do the shift in A's
480 // type, then zero extend or truncate to the result.
481 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
482 Shift->takeName(Src);
483 return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
484 }
Chris Lattner62fe4062011-01-15 06:32:33 +0000485
486 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
487 // type isn't non-native.
488 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
489 ShouldChangeType(Src->getType(), CI.getType()) &&
490 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
491 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
492 return BinaryOperator::CreateAnd(NewTrunc,
493 ConstantExpr::getTrunc(Cst, CI.getType()));
494 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000495
Chris Lattner80f43d32010-01-04 07:53:58 +0000496 return 0;
497}
498
499/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
500/// in order to eliminate the icmp.
501Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
502 bool DoXform) {
503 // If we are just checking for a icmp eq of a single bit and zext'ing it
504 // to an integer, then shift the bit to the appropriate place and then
505 // cast to integer to avoid the comparison.
506 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
507 const APInt &Op1CV = Op1C->getValue();
508
509 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
510 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
511 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
512 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
513 if (!DoXform) return ICI;
514
515 Value *In = ICI->getOperand(0);
516 Value *Sh = ConstantInt::get(In->getType(),
517 In->getType()->getScalarSizeInBits()-1);
518 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
519 if (In->getType() != CI.getType())
Benjamin Kramera9390a42011-09-27 20:39:19 +0000520 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
Chris Lattner80f43d32010-01-04 07:53:58 +0000521
522 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
523 Constant *One = ConstantInt::get(In->getType(), 1);
524 In = Builder->CreateXor(In, One, In->getName()+".not");
525 }
526
527 return ReplaceInstUsesWith(CI, In);
528 }
Chad Rosiercaebb1e2011-11-30 01:59:59 +0000529
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000530 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
531 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
532 // zext (X == 1) to i32 --> X iff X has only the low bit set.
533 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
534 // zext (X != 0) to i32 --> X iff X has only the low bit set.
535 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
536 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
537 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
Chris Lattner80f43d32010-01-04 07:53:58 +0000538 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
539 // This only works for EQ and NE
540 ICI->isEquality()) {
541 // If Op1C some other power of two, convert:
542 uint32_t BitWidth = Op1C->getType()->getBitWidth();
543 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000544 ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
Chris Lattner80f43d32010-01-04 07:53:58 +0000545
546 APInt KnownZeroMask(~KnownZero);
547 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
548 if (!DoXform) return ICI;
549
550 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
551 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
552 // (X&4) == 2 --> false
553 // (X&4) != 2 --> true
554 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
555 isNE);
556 Res = ConstantExpr::getZExt(Res, CI.getType());
557 return ReplaceInstUsesWith(CI, Res);
558 }
559
560 uint32_t ShiftAmt = KnownZeroMask.logBase2();
561 Value *In = ICI->getOperand(0);
562 if (ShiftAmt) {
563 // Perform a logical shr by shiftamt.
564 // Insert the shift to put the result in the low bit.
565 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
566 In->getName()+".lobit");
567 }
568
569 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
570 Constant *One = ConstantInt::get(In->getType(), 1);
Benjamin Kramera9390a42011-09-27 20:39:19 +0000571 In = Builder->CreateXor(In, One);
Chris Lattner80f43d32010-01-04 07:53:58 +0000572 }
573
574 if (CI.getType() == In->getType())
575 return ReplaceInstUsesWith(CI, In);
Chris Lattner29cc0b32010-08-27 22:24:38 +0000576 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Chris Lattner80f43d32010-01-04 07:53:58 +0000577 }
578 }
579 }
580
581 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
582 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
583 // may lead to additional simplifications.
584 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000585 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
Chris Lattner80f43d32010-01-04 07:53:58 +0000586 uint32_t BitWidth = ITy->getBitWidth();
587 Value *LHS = ICI->getOperand(0);
588 Value *RHS = ICI->getOperand(1);
589
590 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
591 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000592 ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
593 ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
Chris Lattner80f43d32010-01-04 07:53:58 +0000594
595 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
596 APInt KnownBits = KnownZeroLHS | KnownOneLHS;
597 APInt UnknownBit = ~KnownBits;
598 if (UnknownBit.countPopulation() == 1) {
599 if (!DoXform) return ICI;
600
601 Value *Result = Builder->CreateXor(LHS, RHS);
602
603 // Mask off any bits that are set and won't be shifted away.
604 if (KnownOneLHS.uge(UnknownBit))
605 Result = Builder->CreateAnd(Result,
606 ConstantInt::get(ITy, UnknownBit));
607
608 // Shift the bit we're testing down to the lsb.
609 Result = Builder->CreateLShr(
610 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
611
612 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
613 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
614 Result->takeName(ICI);
615 return ReplaceInstUsesWith(CI, Result);
616 }
617 }
618 }
619 }
620
621 return 0;
622}
623
Chris Lattner75215c92010-01-10 00:58:42 +0000624/// CanEvaluateZExtd - Determine if the specified value can be computed in the
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000625/// specified wider type and produce the same low bits. If not, return false.
626///
Chris Lattner789162a2010-01-11 03:32:00 +0000627/// If this function returns true, it can also return a non-zero number of bits
628/// (in BitsToClear) which indicates that the value it computes is correct for
629/// the zero extend, but that the additional BitsToClear bits need to be zero'd
630/// out. For example, to promote something like:
631///
632/// %B = trunc i64 %A to i32
633/// %C = lshr i32 %B, 8
634/// %E = zext i32 %C to i64
635///
636/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
637/// set to 8 to indicate that the promoted value needs to have bits 24-31
638/// cleared in addition to bits 32-63. Since an 'and' will be generated to
639/// clear the top bits anyway, doing this has no extra cost.
640///
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000641/// This function works on both vectors and scalars.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000642static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
Chris Lattner789162a2010-01-11 03:32:00 +0000643 BitsToClear = 0;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000644 if (isa<Constant>(V))
645 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000646
647 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner9e390dd2010-01-10 02:50:04 +0000648 if (!I) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000649
650 // If the input is a truncate from the destination type, we can trivially
Jakob Stoklund Olesen7ee3ca12012-06-22 16:36:43 +0000651 // eliminate it.
652 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattner9e390dd2010-01-10 02:50:04 +0000653 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000654
655 // We can't extend or shrink something that has multiple uses: doing so would
656 // require duplicating the instruction in general, which isn't profitable.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000657 if (!I->hasOneUse()) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000658
Chris Lattner789162a2010-01-11 03:32:00 +0000659 unsigned Opc = I->getOpcode(), Tmp;
Chris Lattner75215c92010-01-10 00:58:42 +0000660 switch (Opc) {
Chris Lattner9ee947c2010-01-10 20:25:54 +0000661 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
662 case Instruction::SExt: // zext(sext(x)) -> sext(x).
663 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
664 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000665 case Instruction::And:
Chris Lattner75215c92010-01-10 00:58:42 +0000666 case Instruction::Or:
667 case Instruction::Xor:
Chris Lattner75215c92010-01-10 00:58:42 +0000668 case Instruction::Add:
669 case Instruction::Sub:
670 case Instruction::Mul:
Chris Lattnerd26c9e12010-01-10 02:22:12 +0000671 case Instruction::Shl:
Chris Lattner789162a2010-01-11 03:32:00 +0000672 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
673 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
674 return false;
675 // These can all be promoted if neither operand has 'bits to clear'.
676 if (BitsToClear == 0 && Tmp == 0)
677 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000678
Chris Lattner7acc4b12010-01-11 04:05:13 +0000679 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
680 // other side, BitsToClear is ok.
681 if (Tmp == 0 &&
682 (Opc == Instruction::And || Opc == Instruction::Or ||
683 Opc == Instruction::Xor)) {
684 // We use MaskedValueIsZero here for generality, but the case we care
685 // about the most is constant RHS.
686 unsigned VSize = V->getType()->getScalarSizeInBits();
687 if (MaskedValueIsZero(I->getOperand(1),
688 APInt::getHighBitsSet(VSize, BitsToClear)))
689 return true;
690 }
691
692 // Otherwise, we don't know how to analyze this BitsToClear case yet.
Chris Lattner789162a2010-01-11 03:32:00 +0000693 return false;
Chris Lattnerd26c9e12010-01-10 02:22:12 +0000694
Chris Lattner789162a2010-01-11 03:32:00 +0000695 case Instruction::LShr:
696 // We can promote lshr(x, cst) if we can promote x. This requires the
697 // ultimate 'and' to clear out the high zero bits we're clearing out though.
698 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
699 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
700 return false;
701 BitsToClear += Amt->getZExtValue();
702 if (BitsToClear > V->getType()->getScalarSizeInBits())
703 BitsToClear = V->getType()->getScalarSizeInBits();
704 return true;
705 }
706 // Cannot promote variable LSHR.
707 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000708 case Instruction::Select:
Chris Lattner789162a2010-01-11 03:32:00 +0000709 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
710 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
Chris Lattner7acc4b12010-01-11 04:05:13 +0000711 // TODO: If important, we could handle the case when the BitsToClear are
712 // known zero in the disagreeing side.
Chris Lattner789162a2010-01-11 03:32:00 +0000713 Tmp != BitsToClear)
714 return false;
715 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000716
717 case Instruction::PHI: {
718 // We can change a phi if we can change all operands. Note that we never
719 // get into trouble with cyclic PHIs here because we only consider
720 // instructions with a single use.
721 PHINode *PN = cast<PHINode>(I);
Chris Lattner789162a2010-01-11 03:32:00 +0000722 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
723 return false;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000724 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner789162a2010-01-11 03:32:00 +0000725 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
Chris Lattner7acc4b12010-01-11 04:05:13 +0000726 // TODO: If important, we could handle the case when the BitsToClear
727 // are known zero in the disagreeing input.
Chris Lattner789162a2010-01-11 03:32:00 +0000728 Tmp != BitsToClear)
729 return false;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000730 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000731 }
732 default:
733 // TODO: Can handle more cases here.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000734 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000735 }
736}
737
Chris Lattner80f43d32010-01-04 07:53:58 +0000738Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Chris Lattner5324d802010-01-10 02:39:31 +0000739 // If this zero extend is only used by a truncate, let the truncate by
740 // eliminated before we try to optimize this zext.
741 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
742 return 0;
743
Chris Lattner80f43d32010-01-04 07:53:58 +0000744 // If one of the common conversion will work, do it.
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000745 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner80f43d32010-01-04 07:53:58 +0000746 return Result;
747
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000748 // See if we can simplify any instructions used by the input whose sole
749 // purpose is to compute bits we don't care about.
750 if (SimplifyDemandedInstructionBits(CI))
751 return &CI;
Chris Lattner75215c92010-01-10 00:58:42 +0000752
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000753 Value *Src = CI.getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000754 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
Chris Lattner75215c92010-01-10 00:58:42 +0000755
756 // Attempt to extend the entire input expression tree to the destination
757 // type. Only do this if the dest type is a simple type, don't convert the
758 // expression tree to something weird like i93 unless the source is also
759 // strange.
Chris Lattner789162a2010-01-11 03:32:00 +0000760 unsigned BitsToClear;
Duncan Sands1df98592010-02-16 11:11:14 +0000761 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner789162a2010-01-11 03:32:00 +0000762 CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
763 assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
764 "Unreasonable BitsToClear");
765
Chris Lattner5324d802010-01-10 02:39:31 +0000766 // Okay, we can transform this! Insert the new expression now.
767 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
768 " to avoid zero extend: " << CI);
769 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
770 assert(Res->getType() == DestTy);
771
Chris Lattner789162a2010-01-11 03:32:00 +0000772 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
773 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
774
Chris Lattner5324d802010-01-10 02:39:31 +0000775 // If the high bits are already filled with zeros, just replace this
776 // cast with the result.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000777 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
Chris Lattner789162a2010-01-11 03:32:00 +0000778 DestBitSize-SrcBitsKept)))
Chris Lattner5324d802010-01-10 02:39:31 +0000779 return ReplaceInstUsesWith(CI, Res);
780
781 // We need to emit an AND to clear the high bits.
Chris Lattner9ee947c2010-01-10 20:25:54 +0000782 Constant *C = ConstantInt::get(Res->getType(),
Chris Lattner789162a2010-01-11 03:32:00 +0000783 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
Chris Lattner5324d802010-01-10 02:39:31 +0000784 return BinaryOperator::CreateAnd(Res, C);
Chris Lattner75215c92010-01-10 00:58:42 +0000785 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000786
787 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
788 // types and if the sizes are just right we can convert this into a logical
789 // 'and' which will be much cheaper than the pair of casts.
790 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000791 // TODO: Subsume this into EvaluateInDifferentType.
792
Chris Lattner80f43d32010-01-04 07:53:58 +0000793 // Get the sizes of the types involved. We know that the intermediate type
794 // will be smaller than A or C, but don't know the relation between A and C.
795 Value *A = CSrc->getOperand(0);
796 unsigned SrcSize = A->getType()->getScalarSizeInBits();
797 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
798 unsigned DstSize = CI.getType()->getScalarSizeInBits();
799 // If we're actually extending zero bits, then if
800 // SrcSize < DstSize: zext(a & mask)
801 // SrcSize == DstSize: a & mask
802 // SrcSize > DstSize: trunc(a) & mask
803 if (SrcSize < DstSize) {
804 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
805 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
806 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
807 return new ZExtInst(And, CI.getType());
808 }
809
810 if (SrcSize == DstSize) {
811 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
812 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
813 AndValue));
814 }
815 if (SrcSize > DstSize) {
Benjamin Kramera9390a42011-09-27 20:39:19 +0000816 Value *Trunc = Builder->CreateTrunc(A, CI.getType());
Chris Lattner80f43d32010-01-04 07:53:58 +0000817 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
818 return BinaryOperator::CreateAnd(Trunc,
819 ConstantInt::get(Trunc->getType(),
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000820 AndValue));
Chris Lattner80f43d32010-01-04 07:53:58 +0000821 }
822 }
823
824 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
825 return transformZExtICmp(ICI, CI);
826
827 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
828 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
829 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
830 // of the (zext icmp) will be transformed.
831 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
832 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
833 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
834 (transformZExtICmp(LHS, CI, false) ||
835 transformZExtICmp(RHS, CI, false))) {
836 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
837 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
838 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
839 }
840 }
841
842 // zext(trunc(t) & C) -> (t & zext(C)).
843 if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
844 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
845 if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
846 Value *TI0 = TI->getOperand(0);
847 if (TI0->getType() == CI.getType())
848 return
849 BinaryOperator::CreateAnd(TI0,
850 ConstantExpr::getZExt(C, CI.getType()));
851 }
852
853 // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
854 if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
855 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
856 if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
857 if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
858 And->getOperand(1) == C)
859 if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
860 Value *TI0 = TI->getOperand(0);
861 if (TI0->getType() == CI.getType()) {
862 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
Benjamin Kramera9390a42011-09-27 20:39:19 +0000863 Value *NewAnd = Builder->CreateAnd(TI0, ZC);
Chris Lattner80f43d32010-01-04 07:53:58 +0000864 return BinaryOperator::CreateXor(NewAnd, ZC);
865 }
866 }
867
Chris Lattner718bf3f2010-01-05 21:04:47 +0000868 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
869 Value *X;
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000870 if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
Chris Lattner49bdfef2010-01-05 21:11:17 +0000871 match(SrcI, m_Not(m_Value(X))) &&
Chris Lattner718bf3f2010-01-05 21:04:47 +0000872 (!X->hasOneUse() || !isa<CmpInst>(X))) {
873 Value *New = Builder->CreateZExt(X, CI.getType());
874 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
875 }
876
Chris Lattner80f43d32010-01-04 07:53:58 +0000877 return 0;
878}
879
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000880/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
881/// in order to eliminate the icmp.
882Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
883 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
884 ICmpInst::Predicate Pred = ICI->getPredicate();
885
886 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Benjamin Kramer406a6502011-04-01 22:29:18 +0000887 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
888 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000889 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
890 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
891
892 Value *Sh = ConstantInt::get(Op0->getType(),
893 Op0->getType()->getScalarSizeInBits()-1);
894 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
895 if (In->getType() != CI.getType())
Benjamin Kramera9390a42011-09-27 20:39:19 +0000896 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000897
898 if (Pred == ICmpInst::ICMP_SGT)
899 In = Builder->CreateNot(In, In->getName()+".not");
900 return ReplaceInstUsesWith(CI, In);
901 }
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000902
903 // If we know that only one bit of the LHS of the icmp can be set and we
904 // have an equality comparison with zero or a power of 2, we can transform
905 // the icmp and sext into bitwise/integer operations.
Benjamin Kramer5337fab2011-04-01 22:22:11 +0000906 if (ICI->hasOneUse() &&
907 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000908 unsigned BitWidth = Op1C->getType()->getBitWidth();
909 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000910 ComputeMaskedBits(Op0, KnownZero, KnownOne);
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000911
Benjamin Kramerce1498b2011-04-01 20:15:16 +0000912 APInt KnownZeroMask(~KnownZero);
913 if (KnownZeroMask.isPowerOf2()) {
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000914 Value *In = ICI->getOperand(0);
915
Benjamin Kramerf5b75932011-04-02 18:50:58 +0000916 // If the icmp tests for a known zero bit we can constant fold it.
917 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
918 Value *V = Pred == ICmpInst::ICMP_NE ?
919 ConstantInt::getAllOnesValue(CI.getType()) :
920 ConstantInt::getNullValue(CI.getType());
921 return ReplaceInstUsesWith(CI, V);
922 }
Benjamin Kramer5337fab2011-04-01 22:22:11 +0000923
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000924 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
925 // sext ((x & 2^n) == 0) -> (x >> n) - 1
926 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
927 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
928 // Perform a right shift to place the desired bit in the LSB.
929 if (ShiftAmt)
930 In = Builder->CreateLShr(In,
931 ConstantInt::get(In->getType(), ShiftAmt));
932
933 // At this point "In" is either 1 or 0. Subtract 1 to turn
934 // {1, 0} -> {0, -1}.
935 In = Builder->CreateAdd(In,
936 ConstantInt::getAllOnesValue(In->getType()),
937 "sext");
938 } else {
939 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
Benjamin Kramer5337fab2011-04-01 22:22:11 +0000940 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000941 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
942 // Perform a left shift to place the desired bit in the MSB.
943 if (ShiftAmt)
944 In = Builder->CreateShl(In,
945 ConstantInt::get(In->getType(), ShiftAmt));
946
947 // Distribute the bit over the whole bit width.
948 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
949 BitWidth - 1), "sext");
950 }
951
952 if (CI.getType() == In->getType())
953 return ReplaceInstUsesWith(CI, In);
954 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
955 }
956 }
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000957 }
958
959 // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000960 if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000961 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
962 Op0->getType() == CI.getType()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000963 Type *EltTy = VTy->getElementType();
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000964
965 // splat the shift constant to a constant vector.
966 Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
967 Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
968 return ReplaceInstUsesWith(CI, In);
969 }
970 }
971
972 return 0;
973}
974
Chris Lattner75215c92010-01-10 00:58:42 +0000975/// CanEvaluateSExtd - Return true if we can take the specified value
976/// and return it as type Ty without inserting any new casts and without
977/// changing the value of the common low bits. This is used by code that tries
978/// to promote integer operations to a wider types will allow us to eliminate
979/// the extension.
980///
Chris Lattneraa9c8942010-01-10 07:57:20 +0000981/// This function works on both vectors and scalars.
Chris Lattner75215c92010-01-10 00:58:42 +0000982///
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000983static bool CanEvaluateSExtd(Value *V, Type *Ty) {
Chris Lattner75215c92010-01-10 00:58:42 +0000984 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
985 "Can't sign extend type to a smaller type");
Chris Lattneraa9c8942010-01-10 07:57:20 +0000986 // If this is a constant, it can be trivially promoted.
987 if (isa<Constant>(V))
988 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000989
990 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattneraa9c8942010-01-10 07:57:20 +0000991 if (!I) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000992
Jakob Stoklund Olesen7ee3ca12012-06-22 16:36:43 +0000993 // If this is a truncate from the dest type, we can trivially eliminate it.
994 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattneraa9c8942010-01-10 07:57:20 +0000995 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000996
997 // We can't extend or shrink something that has multiple uses: doing so would
998 // require duplicating the instruction in general, which isn't profitable.
Chris Lattneraa9c8942010-01-10 07:57:20 +0000999 if (!I->hasOneUse()) return false;
Chris Lattner75215c92010-01-10 00:58:42 +00001000
Chris Lattneraa9c8942010-01-10 07:57:20 +00001001 switch (I->getOpcode()) {
Chris Lattner11ea8122010-01-10 20:30:41 +00001002 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1003 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1004 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1005 return true;
Chris Lattner75215c92010-01-10 00:58:42 +00001006 case Instruction::And:
1007 case Instruction::Or:
1008 case Instruction::Xor:
Chris Lattner75215c92010-01-10 00:58:42 +00001009 case Instruction::Add:
1010 case Instruction::Sub:
Chris Lattner75215c92010-01-10 00:58:42 +00001011 case Instruction::Mul:
Chris Lattneraa9c8942010-01-10 07:57:20 +00001012 // These operators can all arbitrarily be extended if their inputs can.
Chris Lattner8cf4f6f2010-01-11 02:43:35 +00001013 return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1014 CanEvaluateSExtd(I->getOperand(1), Ty);
Chris Lattner75215c92010-01-10 00:58:42 +00001015
1016 //case Instruction::Shl: TODO
1017 //case Instruction::LShr: TODO
Chris Lattner75215c92010-01-10 00:58:42 +00001018
Chris Lattneraa9c8942010-01-10 07:57:20 +00001019 case Instruction::Select:
Chris Lattner8cf4f6f2010-01-11 02:43:35 +00001020 return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1021 CanEvaluateSExtd(I->getOperand(2), Ty);
Chris Lattner9ee947c2010-01-10 20:25:54 +00001022
Chris Lattner75215c92010-01-10 00:58:42 +00001023 case Instruction::PHI: {
1024 // We can change a phi if we can change all operands. Note that we never
1025 // get into trouble with cyclic PHIs here because we only consider
1026 // instructions with a single use.
1027 PHINode *PN = cast<PHINode>(I);
Chris Lattner9ee947c2010-01-10 20:25:54 +00001028 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner8cf4f6f2010-01-11 02:43:35 +00001029 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
Chris Lattneraa9c8942010-01-10 07:57:20 +00001030 return true;
Chris Lattner75215c92010-01-10 00:58:42 +00001031 }
1032 default:
1033 // TODO: Can handle more cases here.
1034 break;
1035 }
1036
Chris Lattneraa9c8942010-01-10 07:57:20 +00001037 return false;
Chris Lattner75215c92010-01-10 00:58:42 +00001038}
1039
Chris Lattner80f43d32010-01-04 07:53:58 +00001040Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Chris Lattner5324d802010-01-10 02:39:31 +00001041 // If this sign extend is only used by a truncate, let the truncate by
1042 // eliminated before we try to optimize this zext.
1043 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
1044 return 0;
1045
Chris Lattnerd84dfa42010-01-10 01:00:46 +00001046 if (Instruction *I = commonCastTransforms(CI))
Chris Lattner80f43d32010-01-04 07:53:58 +00001047 return I;
1048
Chris Lattnerd84dfa42010-01-10 01:00:46 +00001049 // See if we can simplify any instructions used by the input whose sole
1050 // purpose is to compute bits we don't care about.
1051 if (SimplifyDemandedInstructionBits(CI))
1052 return &CI;
1053
Chris Lattner80f43d32010-01-04 07:53:58 +00001054 Value *Src = CI.getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001055 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
Chris Lattner75215c92010-01-10 00:58:42 +00001056
Chris Lattner75215c92010-01-10 00:58:42 +00001057 // Attempt to extend the entire input expression tree to the destination
1058 // type. Only do this if the dest type is a simple type, don't convert the
1059 // expression tree to something weird like i93 unless the source is also
1060 // strange.
Duncan Sands1df98592010-02-16 11:11:14 +00001061 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner8cf4f6f2010-01-11 02:43:35 +00001062 CanEvaluateSExtd(Src, DestTy)) {
Chris Lattnerdde5ee52010-01-10 07:40:50 +00001063 // Okay, we can transform this! Insert the new expression now.
1064 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1065 " to avoid sign extend: " << CI);
1066 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1067 assert(Res->getType() == DestTy);
1068
Chris Lattner75215c92010-01-10 00:58:42 +00001069 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1070 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Chris Lattnerdde5ee52010-01-10 07:40:50 +00001071
1072 // If the high bits are already filled with sign bit, just replace this
1073 // cast with the result.
Chris Lattneraa9c8942010-01-10 07:57:20 +00001074 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
Chris Lattnerdde5ee52010-01-10 07:40:50 +00001075 return ReplaceInstUsesWith(CI, Res);
Chris Lattner75215c92010-01-10 00:58:42 +00001076
Chris Lattnerdde5ee52010-01-10 07:40:50 +00001077 // We need to emit a shl + ashr to do the sign extend.
1078 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1079 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1080 ShAmt);
Chris Lattner75215c92010-01-10 00:58:42 +00001081 }
Chris Lattner80f43d32010-01-04 07:53:58 +00001082
Chris Lattnercd5adbb2010-01-18 22:19:16 +00001083 // If this input is a trunc from our destination, then turn sext(trunc(x))
1084 // into shifts.
1085 if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1086 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1087 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1088 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1089
1090 // We need to emit a shl + ashr to do the sign extend.
1091 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1092 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1093 return BinaryOperator::CreateAShr(Res, ShAmt);
1094 }
Nate Begeman9a3dc552010-12-17 23:12:19 +00001095
Benjamin Kramer0a30c422011-04-01 20:09:03 +00001096 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1097 return transformSExtICmp(ICI, CI);
Bill Wendling2d0537c2010-12-17 23:27:41 +00001098
Chris Lattner80f43d32010-01-04 07:53:58 +00001099 // If the input is a shl/ashr pair of a same constant, then this is a sign
1100 // extension from a smaller value. If we could trust arbitrary bitwidth
1101 // integers, we could turn this into a truncate to the smaller bit and then
1102 // use a sext for the whole extension. Since we don't, look deeper and check
1103 // for a truncate. If the source and dest are the same type, eliminate the
1104 // trunc and extend and just do shifts. For example, turn:
1105 // %a = trunc i32 %i to i8
1106 // %b = shl i8 %a, 6
1107 // %c = ashr i8 %b, 6
1108 // %d = sext i8 %c to i32
1109 // into:
1110 // %a = shl i32 %i, 30
1111 // %d = ashr i32 %a, 30
1112 Value *A = 0;
Chris Lattner4f379782010-01-10 01:04:31 +00001113 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
Chris Lattner80f43d32010-01-04 07:53:58 +00001114 ConstantInt *BA = 0, *CA = 0;
Chris Lattner4f379782010-01-10 01:04:31 +00001115 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
Chris Lattner80f43d32010-01-04 07:53:58 +00001116 m_ConstantInt(CA))) &&
Chris Lattner4f379782010-01-10 01:04:31 +00001117 BA == CA && A->getType() == CI.getType()) {
1118 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1119 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1120 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1121 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1122 A = Builder->CreateShl(A, ShAmtV, CI.getName());
1123 return BinaryOperator::CreateAShr(A, ShAmtV);
Chris Lattner80f43d32010-01-04 07:53:58 +00001124 }
1125
1126 return 0;
1127}
1128
1129
1130/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1131/// in the specified FP type without changing its value.
1132static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1133 bool losesInfo;
1134 APFloat F = CFP->getValueAPF();
1135 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1136 if (!losesInfo)
1137 return ConstantFP::get(CFP->getContext(), F);
1138 return 0;
1139}
1140
1141/// LookThroughFPExtensions - If this is an fp extension instruction, look
1142/// through it until we get the source value.
1143static Value *LookThroughFPExtensions(Value *V) {
1144 if (Instruction *I = dyn_cast<Instruction>(V))
1145 if (I->getOpcode() == Instruction::FPExt)
1146 return LookThroughFPExtensions(I->getOperand(0));
1147
1148 // If this value is a constant, return the constant in the smallest FP type
1149 // that can accurately represent it. This allows us to turn
1150 // (float)((double)X+2.0) into x+2.0f.
1151 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1152 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1153 return V; // No constant folding of this.
Dan Gohmance163392011-12-17 00:04:22 +00001154 // See if the value can be truncated to half and then reextended.
1155 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1156 return V;
Chris Lattner80f43d32010-01-04 07:53:58 +00001157 // See if the value can be truncated to float and then reextended.
1158 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1159 return V;
Benjamin Kramerf0127052010-01-05 13:12:22 +00001160 if (CFP->getType()->isDoubleTy())
Chris Lattner80f43d32010-01-04 07:53:58 +00001161 return V; // Won't shrink.
1162 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1163 return V;
1164 // Don't try to shrink to various long double types.
1165 }
1166
1167 return V;
1168}
1169
1170Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1171 if (Instruction *I = commonCastTransforms(CI))
1172 return I;
1173
1174 // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1175 // smaller than the destination type, we can eliminate the truncate by doing
1176 // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
1177 // as many builtins (sqrt, etc).
1178 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1179 if (OpI && OpI->hasOneUse()) {
1180 switch (OpI->getOpcode()) {
1181 default: break;
1182 case Instruction::FAdd:
1183 case Instruction::FSub:
1184 case Instruction::FMul:
1185 case Instruction::FDiv:
1186 case Instruction::FRem:
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001187 Type *SrcTy = OpI->getType();
Chris Lattner80f43d32010-01-04 07:53:58 +00001188 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1189 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1190 if (LHSTrunc->getType() != SrcTy &&
1191 RHSTrunc->getType() != SrcTy) {
1192 unsigned DstSize = CI.getType()->getScalarSizeInBits();
1193 // If the source types were both smaller than the destination type of
1194 // the cast, do this xform.
1195 if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1196 RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1197 LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1198 RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1199 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1200 }
1201 }
1202 break;
1203 }
1204 }
Owen Andersond9029012010-07-19 08:09:34 +00001205
1206 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
Owen Andersond9029012010-07-19 08:09:34 +00001207 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
Chad Rosier00737bd2011-12-01 21:29:16 +00001208 if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
1209 Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) &&
Evan Cheng93a635c2011-07-13 19:08:16 +00001210 Call->getNumArgOperands() == 1 &&
1211 Call->hasOneUse()) {
Owen Andersond9029012010-07-19 08:09:34 +00001212 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1213 if (Arg && Arg->getOpcode() == Instruction::FPExt &&
Owen Anderson5f23a932010-07-19 19:23:32 +00001214 CI.getType()->isFloatTy() &&
1215 Call->getType()->isDoubleTy() &&
1216 Arg->getType()->isDoubleTy() &&
1217 Arg->getOperand(0)->getType()->isFloatTy()) {
1218 Function *Callee = Call->getCalledFunction();
1219 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner979ed442010-09-07 20:01:38 +00001220 Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
Owen Anderson5f23a932010-07-19 19:23:32 +00001221 Callee->getAttributes(),
Owen Andersond9029012010-07-19 08:09:34 +00001222 Builder->getFloatTy(),
1223 Builder->getFloatTy(),
1224 NULL);
1225 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1226 "sqrtfcall");
Owen Anderson5f23a932010-07-19 19:23:32 +00001227 ret->setAttributes(Callee->getAttributes());
Chris Lattner979ed442010-09-07 20:01:38 +00001228
1229
1230 // Remove the old Call. With -fmath-errno, it won't get marked readnone.
Eli Friedman3e22cb92011-05-18 00:32:01 +00001231 ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
Chris Lattner979ed442010-09-07 20:01:38 +00001232 EraseInstFromFunction(*Call);
Owen Andersond9029012010-07-19 08:09:34 +00001233 return ret;
1234 }
1235 }
1236
Chris Lattner80f43d32010-01-04 07:53:58 +00001237 return 0;
1238}
1239
1240Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1241 return commonCastTransforms(CI);
1242}
1243
1244Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1245 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1246 if (OpI == 0)
1247 return commonCastTransforms(FI);
1248
1249 // fptoui(uitofp(X)) --> X
1250 // fptoui(sitofp(X)) --> X
1251 // This is safe if the intermediate type has enough bits in its mantissa to
1252 // accurately represent all values of X. For example, do not do this with
1253 // i64->float->i64. This is also safe for sitofp case, because any negative
1254 // 'X' value would cause an undefined result for the fptoui.
1255 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1256 OpI->getOperand(0)->getType() == FI.getType() &&
1257 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1258 OpI->getType()->getFPMantissaWidth())
1259 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1260
1261 return commonCastTransforms(FI);
1262}
1263
1264Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1265 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1266 if (OpI == 0)
1267 return commonCastTransforms(FI);
1268
1269 // fptosi(sitofp(X)) --> X
1270 // fptosi(uitofp(X)) --> X
1271 // This is safe if the intermediate type has enough bits in its mantissa to
1272 // accurately represent all values of X. For example, do not do this with
1273 // i64->float->i64. This is also safe for sitofp case, because any negative
1274 // 'X' value would cause an undefined result for the fptoui.
1275 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1276 OpI->getOperand(0)->getType() == FI.getType() &&
1277 (int)FI.getType()->getScalarSizeInBits() <=
1278 OpI->getType()->getFPMantissaWidth())
1279 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1280
1281 return commonCastTransforms(FI);
1282}
1283
1284Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1285 return commonCastTransforms(CI);
1286}
1287
1288Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1289 return commonCastTransforms(CI);
1290}
1291
Chris Lattner80f43d32010-01-04 07:53:58 +00001292Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
Dan Gohman3b5487e2010-02-02 01:44:02 +00001293 // If the source integer type is not the intptr_t type for this target, do a
1294 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1295 // cast to be exposed to other transforms.
1296 if (TD) {
1297 if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1298 TD->getPointerSizeInBits()) {
1299 Value *P = Builder->CreateTrunc(CI.getOperand(0),
Benjamin Kramera9390a42011-09-27 20:39:19 +00001300 TD->getIntPtrType(CI.getContext()));
Dan Gohman3b5487e2010-02-02 01:44:02 +00001301 return new IntToPtrInst(P, CI.getType());
1302 }
1303 if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1304 TD->getPointerSizeInBits()) {
1305 Value *P = Builder->CreateZExt(CI.getOperand(0),
Benjamin Kramera9390a42011-09-27 20:39:19 +00001306 TD->getIntPtrType(CI.getContext()));
Dan Gohman3b5487e2010-02-02 01:44:02 +00001307 return new IntToPtrInst(P, CI.getType());
1308 }
Chris Lattner80f43d32010-01-04 07:53:58 +00001309 }
1310
1311 if (Instruction *I = commonCastTransforms(CI))
1312 return I;
1313
1314 return 0;
1315}
1316
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001317/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1318Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1319 Value *Src = CI.getOperand(0);
1320
1321 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1322 // If casting the result of a getelementptr instruction with no offset, turn
1323 // this into a cast of the original pointer!
1324 if (GEP->hasAllZeroIndices()) {
1325 // Changing the cast operand is usually not a good idea but it is safe
1326 // here because the pointer operand is being replaced with another
1327 // pointer operand so the opcode doesn't need to change.
1328 Worklist.Add(GEP);
1329 CI.setOperand(0, GEP->getOperand(0));
1330 return &CI;
1331 }
1332
1333 // If the GEP has a single use, and the base pointer is a bitcast, and the
1334 // GEP computes a constant offset, see if we can convert these three
1335 // instructions into fewer. This typically happens with unions and other
1336 // non-type-safe code.
1337 if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1338 GEP->hasAllConstantIndices()) {
Nuno Lopesb47f3ea2012-06-20 17:30:51 +00001339 SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
1340 int64_t Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
1341
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001342 // Get the base pointer input of the bitcast, and the type it points to.
1343 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001344 Type *GEPIdxTy =
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001345 cast<PointerType>(OrigBase->getType())->getElementType();
1346 SmallVector<Value*, 8> NewIndices;
1347 if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1348 // If we were able to index down into an element, create the GEP
1349 // and bitcast the result. This eliminates one bitcast, potentially
1350 // two.
1351 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
Jay Foad0a2a60a2011-07-22 08:16:57 +00001352 Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
1353 Builder->CreateGEP(OrigBase, NewIndices);
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001354 NGEP->takeName(GEP);
1355
1356 if (isa<BitCastInst>(CI))
1357 return new BitCastInst(NGEP, CI.getType());
1358 assert(isa<PtrToIntInst>(CI));
1359 return new PtrToIntInst(NGEP, CI.getType());
1360 }
1361 }
1362 }
1363
1364 return commonCastTransforms(CI);
1365}
1366
1367Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
Dan Gohman3b5487e2010-02-02 01:44:02 +00001368 // If the destination integer type is not the intptr_t type for this target,
1369 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1370 // to be exposed to other transforms.
1371 if (TD) {
1372 if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1373 Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
Benjamin Kramera9390a42011-09-27 20:39:19 +00001374 TD->getIntPtrType(CI.getContext()));
Dan Gohman3b5487e2010-02-02 01:44:02 +00001375 return new TruncInst(P, CI.getType());
1376 }
1377 if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1378 Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
Benjamin Kramera9390a42011-09-27 20:39:19 +00001379 TD->getIntPtrType(CI.getContext()));
Dan Gohman3b5487e2010-02-02 01:44:02 +00001380 return new ZExtInst(P, CI.getType());
1381 }
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001382 }
1383
1384 return commonPointerCastTransforms(CI);
1385}
1386
Chris Lattner67451912010-05-08 21:50:26 +00001387/// OptimizeVectorResize - This input value (which is known to have vector type)
1388/// is being zero extended or truncated to the specified vector type. Try to
1389/// replace it with a shuffle (and vector/vector bitcast) if possible.
1390///
1391/// The source and destination vector types may have different element types.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001392static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
Chris Lattner67451912010-05-08 21:50:26 +00001393 InstCombiner &IC) {
1394 // We can only do this optimization if the output is a multiple of the input
1395 // element size, or the input is a multiple of the output element size.
1396 // Convert the input type to have the same element type as the output.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001397 VectorType *SrcTy = cast<VectorType>(InVal->getType());
Chris Lattner67451912010-05-08 21:50:26 +00001398
1399 if (SrcTy->getElementType() != DestTy->getElementType()) {
1400 // The input types don't need to be identical, but for now they must be the
1401 // same size. There is no specific reason we couldn't handle things like
1402 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1403 // there yet.
1404 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1405 DestTy->getElementType()->getPrimitiveSizeInBits())
1406 return 0;
1407
1408 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1409 InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1410 }
1411
1412 // Now that the element types match, get the shuffle mask and RHS of the
1413 // shuffle to use, which depends on whether we're increasing or decreasing the
1414 // size of the input.
Chris Lattner7302d802012-02-06 21:56:39 +00001415 SmallVector<uint32_t, 16> ShuffleMask;
Chris Lattner67451912010-05-08 21:50:26 +00001416 Value *V2;
Chris Lattner67451912010-05-08 21:50:26 +00001417
1418 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1419 // If we're shrinking the number of elements, just shuffle in the low
1420 // elements from the input and use undef as the second shuffle input.
1421 V2 = UndefValue::get(SrcTy);
1422 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
Chris Lattner7302d802012-02-06 21:56:39 +00001423 ShuffleMask.push_back(i);
Chris Lattner67451912010-05-08 21:50:26 +00001424
1425 } else {
1426 // If we're increasing the number of elements, shuffle in all of the
1427 // elements from InVal and fill the rest of the result elements with zeros
1428 // from a constant zero.
1429 V2 = Constant::getNullValue(SrcTy);
1430 unsigned SrcElts = SrcTy->getNumElements();
1431 for (unsigned i = 0, e = SrcElts; i != e; ++i)
Chris Lattner7302d802012-02-06 21:56:39 +00001432 ShuffleMask.push_back(i);
Chris Lattner67451912010-05-08 21:50:26 +00001433
1434 // The excess elements reference the first element of the zero input.
Chris Lattner7302d802012-02-06 21:56:39 +00001435 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1436 ShuffleMask.push_back(SrcElts);
Chris Lattner67451912010-05-08 21:50:26 +00001437 }
1438
Chris Lattner7302d802012-02-06 21:56:39 +00001439 return new ShuffleVectorInst(InVal, V2,
1440 ConstantDataVector::get(V2->getContext(),
1441 ShuffleMask));
Chris Lattner67451912010-05-08 21:50:26 +00001442}
1443
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001444static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
Chris Lattner3dd08732010-08-28 01:20:38 +00001445 return Value % Ty->getPrimitiveSizeInBits() == 0;
1446}
1447
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001448static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
Chris Lattner3dd08732010-08-28 01:20:38 +00001449 return Value / Ty->getPrimitiveSizeInBits();
1450}
1451
1452/// CollectInsertionElements - V is a value which is inserted into a vector of
1453/// VecEltTy. Look through the value to see if we can decompose it into
1454/// insertions into the vector. See the example in the comment for
1455/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1456/// The type of V is always a non-zero multiple of VecEltTy's size.
1457///
1458/// This returns false if the pattern can't be matched or true if it can,
1459/// filling in Elements with the elements found here.
1460static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1461 SmallVectorImpl<Value*> &Elements,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001462 Type *VecEltTy) {
Chris Lattner157d4ea2010-08-28 03:36:51 +00001463 // Undef values never contribute useful bits to the result.
1464 if (isa<UndefValue>(V)) return true;
1465
Chris Lattner3dd08732010-08-28 01:20:38 +00001466 // If we got down to a value of the right type, we win, try inserting into the
1467 // right element.
1468 if (V->getType() == VecEltTy) {
Chris Lattner79007792010-08-28 01:50:57 +00001469 // Inserting null doesn't actually insert any elements.
1470 if (Constant *C = dyn_cast<Constant>(V))
1471 if (C->isNullValue())
1472 return true;
1473
Chris Lattner3dd08732010-08-28 01:20:38 +00001474 // Fail if multiple elements are inserted into this slot.
1475 if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1476 return false;
1477
1478 Elements[ElementIndex] = V;
1479 return true;
1480 }
1481
Chris Lattner79007792010-08-28 01:50:57 +00001482 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner3dd08732010-08-28 01:20:38 +00001483 // Figure out the # elements this provides, and bitcast it or slice it up
1484 // as required.
Chris Lattner79007792010-08-28 01:50:57 +00001485 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1486 VecEltTy);
1487 // If the constant is the size of a vector element, we just need to bitcast
1488 // it to the right type so it gets properly inserted.
1489 if (NumElts == 1)
1490 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1491 ElementIndex, Elements, VecEltTy);
1492
1493 // Okay, this is a constant that covers multiple elements. Slice it up into
1494 // pieces and insert each element-sized piece into the vector.
1495 if (!isa<IntegerType>(C->getType()))
1496 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1497 C->getType()->getPrimitiveSizeInBits()));
1498 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001499 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
Chris Lattner79007792010-08-28 01:50:57 +00001500
1501 for (unsigned i = 0; i != NumElts; ++i) {
1502 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1503 i*ElementSize));
1504 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1505 if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
1506 return false;
1507 }
1508 return true;
1509 }
Chris Lattner3dd08732010-08-28 01:20:38 +00001510
1511 if (!V->hasOneUse()) return false;
1512
1513 Instruction *I = dyn_cast<Instruction>(V);
1514 if (I == 0) return false;
1515 switch (I->getOpcode()) {
1516 default: return false; // Unhandled case.
1517 case Instruction::BitCast:
1518 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1519 Elements, VecEltTy);
1520 case Instruction::ZExt:
1521 if (!isMultipleOfTypeSize(
1522 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1523 VecEltTy))
1524 return false;
1525 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1526 Elements, VecEltTy);
1527 case Instruction::Or:
1528 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1529 Elements, VecEltTy) &&
1530 CollectInsertionElements(I->getOperand(1), ElementIndex,
1531 Elements, VecEltTy);
1532 case Instruction::Shl: {
1533 // Must be shifting by a constant that is a multiple of the element size.
1534 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1535 if (CI == 0) return false;
1536 if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1537 unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1538
1539 return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1540 Elements, VecEltTy);
1541 }
1542
1543 }
1544}
1545
1546
1547/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1548/// may be doing shifts and ors to assemble the elements of the vector manually.
1549/// Try to rip the code out and replace it with insertelements. This is to
1550/// optimize code like this:
1551///
1552/// %tmp37 = bitcast float %inc to i32
1553/// %tmp38 = zext i32 %tmp37 to i64
1554/// %tmp31 = bitcast float %inc5 to i32
1555/// %tmp32 = zext i32 %tmp31 to i64
1556/// %tmp33 = shl i64 %tmp32, 32
1557/// %ins35 = or i64 %tmp33, %tmp38
1558/// %tmp43 = bitcast i64 %ins35 to <2 x float>
1559///
1560/// Into two insertelements that do "buildvector{%inc, %inc5}".
1561static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1562 InstCombiner &IC) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001563 VectorType *DestVecTy = cast<VectorType>(CI.getType());
Chris Lattner3dd08732010-08-28 01:20:38 +00001564 Value *IntInput = CI.getOperand(0);
1565
1566 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1567 if (!CollectInsertionElements(IntInput, 0, Elements,
1568 DestVecTy->getElementType()))
1569 return 0;
1570
1571 // If we succeeded, we know that all of the element are specified by Elements
1572 // or are zero if Elements has a null entry. Recast this as a set of
1573 // insertions.
1574 Value *Result = Constant::getNullValue(CI.getType());
1575 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1576 if (Elements[i] == 0) continue; // Unset element.
1577
1578 Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1579 IC.Builder->getInt32(i));
1580 }
1581
1582 return Result;
1583}
1584
1585
Chris Lattnere5a14262010-08-26 21:55:42 +00001586/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1587/// bitcast. The various long double bitcasts can't get in here.
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001588static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
Chris Lattnere5a14262010-08-26 21:55:42 +00001589 Value *Src = CI.getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001590 Type *DestTy = CI.getType();
Chris Lattnere5a14262010-08-26 21:55:42 +00001591
1592 // If this is a bitcast from int to float, check to see if the int is an
1593 // extraction from a vector.
1594 Value *VecInput = 0;
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001595 // bitcast(trunc(bitcast(somevector)))
Chris Lattnere5a14262010-08-26 21:55:42 +00001596 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1597 isa<VectorType>(VecInput->getType())) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001598 VectorType *VecTy = cast<VectorType>(VecInput->getType());
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001599 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1600
1601 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1602 // If the element type of the vector doesn't match the result type,
1603 // bitcast it to be a vector type we can extract from.
1604 if (VecTy->getElementType() != DestTy) {
1605 VecTy = VectorType::get(DestTy,
1606 VecTy->getPrimitiveSizeInBits() / DestWidth);
1607 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1608 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001609
Chris Lattnere5a14262010-08-26 21:55:42 +00001610 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001611 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001612 }
1613
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001614 // bitcast(trunc(lshr(bitcast(somevector), cst))
1615 ConstantInt *ShAmt = 0;
1616 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1617 m_ConstantInt(ShAmt)))) &&
1618 isa<VectorType>(VecInput->getType())) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001619 VectorType *VecTy = cast<VectorType>(VecInput->getType());
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001620 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1621 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1622 ShAmt->getZExtValue() % DestWidth == 0) {
1623 // If the element type of the vector doesn't match the result type,
1624 // bitcast it to be a vector type we can extract from.
1625 if (VecTy->getElementType() != DestTy) {
1626 VecTy = VectorType::get(DestTy,
1627 VecTy->getPrimitiveSizeInBits() / DestWidth);
1628 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1629 }
1630
1631 unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1632 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1633 }
1634 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001635 return 0;
1636}
Chris Lattner67451912010-05-08 21:50:26 +00001637
Chris Lattner80f43d32010-01-04 07:53:58 +00001638Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1639 // If the operands are integer typed then apply the integer transforms,
1640 // otherwise just apply the common ones.
1641 Value *Src = CI.getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001642 Type *SrcTy = Src->getType();
1643 Type *DestTy = CI.getType();
Chris Lattner80f43d32010-01-04 07:53:58 +00001644
Chris Lattner80f43d32010-01-04 07:53:58 +00001645 // Get rid of casts from one type to the same type. These are useless and can
1646 // be replaced by the operand.
1647 if (DestTy == Src->getType())
1648 return ReplaceInstUsesWith(CI, Src);
1649
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001650 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1651 PointerType *SrcPTy = cast<PointerType>(SrcTy);
1652 Type *DstElTy = DstPTy->getElementType();
1653 Type *SrcElTy = SrcPTy->getElementType();
Chris Lattner80f43d32010-01-04 07:53:58 +00001654
1655 // If the address spaces don't match, don't eliminate the bitcast, which is
1656 // required for changing types.
1657 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1658 return 0;
1659
1660 // If we are casting a alloca to a pointer to a type of the same
1661 // size, rewrite the allocation instruction to allocate the "right" type.
1662 // There is no need to modify malloc calls because it is their bitcast that
1663 // needs to be cleaned up.
1664 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1665 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1666 return V;
1667
1668 // If the source and destination are pointers, and this cast is equivalent
1669 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
1670 // This can enhance SROA and other transforms that want type-safe pointers.
1671 Constant *ZeroUInt =
1672 Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1673 unsigned NumZeros = 0;
1674 while (SrcElTy != DstElTy &&
Duncan Sands1df98592010-02-16 11:11:14 +00001675 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
Chris Lattner80f43d32010-01-04 07:53:58 +00001676 SrcElTy->getNumContainedTypes() /* not "{}" */) {
1677 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1678 ++NumZeros;
1679 }
1680
1681 // If we found a path from the src to dest, create the getelementptr now.
1682 if (SrcElTy == DstElTy) {
1683 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Jay Foada9203102011-07-25 09:48:08 +00001684 return GetElementPtrInst::CreateInBounds(Src, Idxs);
Chris Lattner80f43d32010-01-04 07:53:58 +00001685 }
1686 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001687
1688 // Try to optimize int -> float bitcasts.
1689 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1690 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1691 return I;
Chris Lattner80f43d32010-01-04 07:53:58 +00001692
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001693 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
Duncan Sands1df98592010-02-16 11:11:14 +00001694 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001695 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1696 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Chris Lattner80f43d32010-01-04 07:53:58 +00001697 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
Chris Lattner80f43d32010-01-04 07:53:58 +00001698 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1699 }
Chris Lattner67451912010-05-08 21:50:26 +00001700
Chris Lattner3dd08732010-08-28 01:20:38 +00001701 if (isa<IntegerType>(SrcTy)) {
1702 // If this is a cast from an integer to vector, check to see if the input
1703 // is a trunc or zext of a bitcast from vector. If so, we can replace all
1704 // the casts with a shuffle and (potentially) a bitcast.
1705 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1706 CastInst *SrcCast = cast<CastInst>(Src);
1707 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1708 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1709 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
Chris Lattner67451912010-05-08 21:50:26 +00001710 cast<VectorType>(DestTy), *this))
Chris Lattner3dd08732010-08-28 01:20:38 +00001711 return I;
1712 }
1713
1714 // If the input is an 'or' instruction, we may be doing shifts and ors to
1715 // assemble the elements of the vector manually. Try to rip the code out
1716 // and replace it with insertelements.
1717 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1718 return ReplaceInstUsesWith(CI, V);
Chris Lattner67451912010-05-08 21:50:26 +00001719 }
Chris Lattner80f43d32010-01-04 07:53:58 +00001720 }
1721
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001722 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
Duncan Sands1df98592010-02-16 11:11:14 +00001723 if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001724 Value *Elem =
1725 Builder->CreateExtractElement(Src,
1726 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1727 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
Chris Lattner80f43d32010-01-04 07:53:58 +00001728 }
1729 }
1730
1731 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001732 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
Dan Gohmana5ced592010-04-07 23:22:42 +00001733 // a bitcast to a vector with the same # elts.
Duncan Sands1df98592010-02-16 11:11:14 +00001734 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001735 cast<VectorType>(DestTy)->getNumElements() ==
1736 SVI->getType()->getNumElements() &&
1737 SVI->getType()->getNumElements() ==
1738 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1739 BitCastInst *Tmp;
1740 // If either of the operands is a cast from CI.getType(), then
1741 // evaluating the shuffle in the casted destination's type will allow
1742 // us to eliminate at least one cast.
1743 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1744 Tmp->getOperand(0)->getType() == DestTy) ||
1745 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1746 Tmp->getOperand(0)->getType() == DestTy)) {
1747 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1748 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1749 // Return a new shuffle vector. Use the same element ID's, as we
1750 // know the vector types match #elts.
1751 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner80f43d32010-01-04 07:53:58 +00001752 }
1753 }
1754 }
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001755
Duncan Sands1df98592010-02-16 11:11:14 +00001756 if (SrcTy->isPointerTy())
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001757 return commonPointerCastTransforms(CI);
1758 return commonCastTransforms(CI);
Chris Lattner80f43d32010-01-04 07:53:58 +00001759}