blob: 5a91c7b97021c2bf100b69a0613253cdb3b2fcf5 [file] [log] [blame]
Chris Lattner02446fc2010-01-04 07:37:31 +00001//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
Eli Friedman74703252011-07-20 21:57:23 +000016#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner02446fc2010-01-04 07:37:31 +000017#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Target/TargetData.h"
20#include "llvm/Support/ConstantRange.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/PatternMatch.h"
23using namespace llvm;
24using namespace PatternMatch;
25
Chris Lattnerb20c0b52011-02-10 05:23:05 +000026static ConstantInt *getOne(Constant *C) {
27 return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
28}
29
Chris Lattner02446fc2010-01-04 07:37:31 +000030/// AddOne - Add one to a ConstantInt
31static Constant *AddOne(Constant *C) {
32 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
33}
34/// SubOne - Subtract one from a ConstantInt
Chris Lattnerb20c0b52011-02-10 05:23:05 +000035static Constant *SubOne(Constant *C) {
36 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
Chris Lattner02446fc2010-01-04 07:37:31 +000037}
38
39static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
40 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
41}
42
43static bool HasAddOverflow(ConstantInt *Result,
44 ConstantInt *In1, ConstantInt *In2,
45 bool IsSigned) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +000046 if (!IsSigned)
Chris Lattner02446fc2010-01-04 07:37:31 +000047 return Result->getValue().ult(In1->getValue());
Chris Lattnerc73b24d2011-07-15 06:08:15 +000048
49 if (In2->isNegative())
50 return Result->getValue().sgt(In1->getValue());
51 return Result->getValue().slt(In1->getValue());
Chris Lattner02446fc2010-01-04 07:37:31 +000052}
53
54/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
55/// overflowed for this type.
56static bool AddWithOverflow(Constant *&Result, Constant *In1,
57 Constant *In2, bool IsSigned = false) {
58 Result = ConstantExpr::getAdd(In1, In2);
59
Chris Lattnerdb125cf2011-07-18 04:54:35 +000060 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
Chris Lattner02446fc2010-01-04 07:37:31 +000061 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63 if (HasAddOverflow(ExtractElement(Result, Idx),
64 ExtractElement(In1, Idx),
65 ExtractElement(In2, Idx),
66 IsSigned))
67 return true;
68 }
69 return false;
70 }
71
72 return HasAddOverflow(cast<ConstantInt>(Result),
73 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74 IsSigned);
75}
76
77static bool HasSubOverflow(ConstantInt *Result,
78 ConstantInt *In1, ConstantInt *In2,
79 bool IsSigned) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +000080 if (!IsSigned)
Chris Lattner02446fc2010-01-04 07:37:31 +000081 return Result->getValue().ugt(In1->getValue());
Jim Grosbach0cc4a952011-09-30 18:09:53 +000082
Chris Lattnerc73b24d2011-07-15 06:08:15 +000083 if (In2->isNegative())
84 return Result->getValue().slt(In1->getValue());
85
86 return Result->getValue().sgt(In1->getValue());
Chris Lattner02446fc2010-01-04 07:37:31 +000087}
88
89/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
90/// overflowed for this type.
91static bool SubWithOverflow(Constant *&Result, Constant *In1,
92 Constant *In2, bool IsSigned = false) {
93 Result = ConstantExpr::getSub(In1, In2);
94
Chris Lattnerdb125cf2011-07-18 04:54:35 +000095 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
Chris Lattner02446fc2010-01-04 07:37:31 +000096 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98 if (HasSubOverflow(ExtractElement(Result, Idx),
99 ExtractElement(In1, Idx),
100 ExtractElement(In2, Idx),
101 IsSigned))
102 return true;
103 }
104 return false;
105 }
106
107 return HasSubOverflow(cast<ConstantInt>(Result),
108 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109 IsSigned);
110}
111
112/// isSignBitCheck - Given an exploded icmp instruction, return true if the
113/// comparison only checks the sign bit. If it only checks the sign bit, set
114/// TrueIfSigned if the result of the comparison is true when the input value is
115/// signed.
116static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
117 bool &TrueIfSigned) {
118 switch (pred) {
119 case ICmpInst::ICMP_SLT: // True if LHS s< 0
120 TrueIfSigned = true;
121 return RHS->isZero();
122 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
123 TrueIfSigned = true;
124 return RHS->isAllOnesValue();
125 case ICmpInst::ICMP_SGT: // True if LHS s> -1
126 TrueIfSigned = false;
127 return RHS->isAllOnesValue();
128 case ICmpInst::ICMP_UGT:
129 // True if LHS u> RHS and RHS == high-bit-mask - 1
130 TrueIfSigned = true;
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000131 return RHS->isMaxValue(true);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000132 case ICmpInst::ICMP_UGE:
Chris Lattner02446fc2010-01-04 07:37:31 +0000133 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
134 TrueIfSigned = true;
135 return RHS->getValue().isSignBit();
136 default:
137 return false;
138 }
139}
140
141// isHighOnes - Return true if the constant is of the form 1+0+.
142// This is the same as lowones(~X).
143static bool isHighOnes(const ConstantInt *CI) {
144 return (~CI->getValue() + 1).isPowerOf2();
145}
146
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000147/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
Chris Lattner02446fc2010-01-04 07:37:31 +0000148/// set of known zero and one bits, compute the maximum and minimum values that
149/// could have the specified known zero and known one bits, returning them in
150/// min/max.
151static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
152 const APInt& KnownOne,
153 APInt& Min, APInt& Max) {
154 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
155 KnownZero.getBitWidth() == Min.getBitWidth() &&
156 KnownZero.getBitWidth() == Max.getBitWidth() &&
157 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
158 APInt UnknownBits = ~(KnownZero|KnownOne);
159
160 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
161 // bit if it is unknown.
162 Min = KnownOne;
163 Max = KnownOne|UnknownBits;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000164
Chris Lattner02446fc2010-01-04 07:37:31 +0000165 if (UnknownBits.isNegative()) { // Sign bit is unknown
Jay Foad7a874dd2010-12-01 08:53:58 +0000166 Min.setBit(Min.getBitWidth()-1);
167 Max.clearBit(Max.getBitWidth()-1);
Chris Lattner02446fc2010-01-04 07:37:31 +0000168 }
169}
170
171// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
172// a set of known zero and one bits, compute the maximum and minimum values that
173// could have the specified known zero and known one bits, returning them in
174// min/max.
175static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
176 const APInt &KnownOne,
177 APInt &Min, APInt &Max) {
178 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
179 KnownZero.getBitWidth() == Min.getBitWidth() &&
180 KnownZero.getBitWidth() == Max.getBitWidth() &&
181 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
182 APInt UnknownBits = ~(KnownZero|KnownOne);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000183
Chris Lattner02446fc2010-01-04 07:37:31 +0000184 // The minimum value is when the unknown bits are all zeros.
185 Min = KnownOne;
186 // The maximum value is when the unknown bits are all ones.
187 Max = KnownOne|UnknownBits;
188}
189
190
191
192/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
193/// cmp pred (load (gep GV, ...)), cmpcst
194/// where GV is a global variable with a constant initializer. Try to simplify
195/// this into some simple computation that does not need the load. For example
196/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
197///
198/// If AndCst is non-null, then the loaded value is masked with that constant
199/// before doing the comparison. This handles cases like "A[i]&4 == 0".
200Instruction *InstCombiner::
201FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
202 CmpInst &ICI, ConstantInt *AndCst) {
Chris Lattnerd7f5a582010-01-04 18:57:15 +0000203 // We need TD information to know the pointer size unless this is inbounds.
204 if (!GEP->isInBounds() && TD == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000205
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000206 Constant *Init = GV->getInitializer();
207 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
208 return 0;
209
210 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
211 if (ArrayElementCount > 1024) return 0; // Don't blow up on huge arrays.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000212
Chris Lattner02446fc2010-01-04 07:37:31 +0000213 // There are many forms of this optimization we can handle, for now, just do
214 // the simple index into a single-dimensional array.
215 //
216 // Require: GEP GV, 0, i {{, constant indices}}
217 if (GEP->getNumOperands() < 3 ||
218 !isa<ConstantInt>(GEP->getOperand(1)) ||
219 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
220 isa<Constant>(GEP->getOperand(2)))
221 return 0;
222
223 // Check that indices after the variable are constants and in-range for the
224 // type they index. Collect the indices. This is typically for arrays of
225 // structs.
226 SmallVector<unsigned, 4> LaterIndices;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000227
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000228 Type *EltTy = Init->getType()->getArrayElementType();
Chris Lattner02446fc2010-01-04 07:37:31 +0000229 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
230 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
231 if (Idx == 0) return 0; // Variable index.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000232
Chris Lattner02446fc2010-01-04 07:37:31 +0000233 uint64_t IdxVal = Idx->getZExtValue();
234 if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000235
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000236 if (StructType *STy = dyn_cast<StructType>(EltTy))
Chris Lattner02446fc2010-01-04 07:37:31 +0000237 EltTy = STy->getElementType(IdxVal);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000238 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000239 if (IdxVal >= ATy->getNumElements()) return 0;
240 EltTy = ATy->getElementType();
241 } else {
242 return 0; // Unknown type.
243 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000244
Chris Lattner02446fc2010-01-04 07:37:31 +0000245 LaterIndices.push_back(IdxVal);
246 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000247
Chris Lattner02446fc2010-01-04 07:37:31 +0000248 enum { Overdefined = -3, Undefined = -2 };
249
250 // Variables for our state machines.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000251
Chris Lattner02446fc2010-01-04 07:37:31 +0000252 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
253 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
254 // and 87 is the second (and last) index. FirstTrueElement is -2 when
255 // undefined, otherwise set to the first true element. SecondTrueElement is
256 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
257 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
258
259 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
260 // form "i != 47 & i != 87". Same state transitions as for true elements.
261 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000262
Chris Lattner02446fc2010-01-04 07:37:31 +0000263 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
264 /// define a state machine that triggers for ranges of values that the index
265 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
266 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
267 /// index in the range (inclusive). We use -2 for undefined here because we
268 /// use relative comparisons and don't want 0-1 to match -1.
269 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000270
Chris Lattner02446fc2010-01-04 07:37:31 +0000271 // MagicBitvector - This is a magic bitvector where we set a bit if the
272 // comparison is true for element 'i'. If there are 64 elements or less in
273 // the array, this will fully represent all the comparison results.
274 uint64_t MagicBitvector = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000275
276
Chris Lattner02446fc2010-01-04 07:37:31 +0000277 // Scan the array and see if one of our patterns matches.
278 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000279 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
280 Constant *Elt = Init->getAggregateElement(i);
281 if (Elt == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000282
Chris Lattner02446fc2010-01-04 07:37:31 +0000283 // If this is indexing an array of structures, get the structure element.
284 if (!LaterIndices.empty())
Jay Foadfc6d3a42011-07-13 10:26:04 +0000285 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000286
Chris Lattner02446fc2010-01-04 07:37:31 +0000287 // If the element is masked, handle it.
288 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000289
Chris Lattner02446fc2010-01-04 07:37:31 +0000290 // Find out if the comparison would be true or false for the i'th element.
291 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
Chad Rosieraab8e282011-12-02 01:26:24 +0000292 CompareRHS, TD, TLI);
Chris Lattner02446fc2010-01-04 07:37:31 +0000293 // If the result is undef for this element, ignore it.
294 if (isa<UndefValue>(C)) {
295 // Extend range state machines to cover this element in case there is an
296 // undef in the middle of the range.
297 if (TrueRangeEnd == (int)i-1)
298 TrueRangeEnd = i;
299 if (FalseRangeEnd == (int)i-1)
300 FalseRangeEnd = i;
301 continue;
302 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000303
Chris Lattner02446fc2010-01-04 07:37:31 +0000304 // If we can't compute the result for any of the elements, we have to give
305 // up evaluating the entire conditional.
306 if (!isa<ConstantInt>(C)) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000307
Chris Lattner02446fc2010-01-04 07:37:31 +0000308 // Otherwise, we know if the comparison is true or false for this element,
309 // update our state machines.
310 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000311
Chris Lattner02446fc2010-01-04 07:37:31 +0000312 // State machine for single/double/range index comparison.
313 if (IsTrueForElt) {
314 // Update the TrueElement state machine.
315 if (FirstTrueElement == Undefined)
316 FirstTrueElement = TrueRangeEnd = i; // First true element.
317 else {
318 // Update double-compare state machine.
319 if (SecondTrueElement == Undefined)
320 SecondTrueElement = i;
321 else
322 SecondTrueElement = Overdefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000323
Chris Lattner02446fc2010-01-04 07:37:31 +0000324 // Update range state machine.
325 if (TrueRangeEnd == (int)i-1)
326 TrueRangeEnd = i;
327 else
328 TrueRangeEnd = Overdefined;
329 }
330 } else {
331 // Update the FalseElement state machine.
332 if (FirstFalseElement == Undefined)
333 FirstFalseElement = FalseRangeEnd = i; // First false element.
334 else {
335 // Update double-compare state machine.
336 if (SecondFalseElement == Undefined)
337 SecondFalseElement = i;
338 else
339 SecondFalseElement = Overdefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000340
Chris Lattner02446fc2010-01-04 07:37:31 +0000341 // Update range state machine.
342 if (FalseRangeEnd == (int)i-1)
343 FalseRangeEnd = i;
344 else
345 FalseRangeEnd = Overdefined;
346 }
347 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000348
349
Chris Lattner02446fc2010-01-04 07:37:31 +0000350 // If this element is in range, update our magic bitvector.
351 if (i < 64 && IsTrueForElt)
352 MagicBitvector |= 1ULL << i;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000353
Chris Lattner02446fc2010-01-04 07:37:31 +0000354 // If all of our states become overdefined, bail out early. Since the
355 // predicate is expensive, only check it every 8 elements. This is only
356 // really useful for really huge arrays.
357 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
358 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
359 FalseRangeEnd == Overdefined)
360 return 0;
361 }
362
363 // Now that we've scanned the entire array, emit our new comparison(s). We
364 // order the state machines in complexity of the generated code.
365 Value *Idx = GEP->getOperand(2);
366
Chris Lattnerd7f5a582010-01-04 18:57:15 +0000367 // If the index is larger than the pointer size of the target, truncate the
368 // index down like the GEP would do implicitly. We don't have to do this for
369 // an inbounds GEP because the index can't be out of range.
370 if (!GEP->isInBounds() &&
371 Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
372 Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000373
Chris Lattner02446fc2010-01-04 07:37:31 +0000374 // If the comparison is only true for one or two elements, emit direct
375 // comparisons.
376 if (SecondTrueElement != Overdefined) {
377 // None true -> false.
378 if (FirstTrueElement == Undefined)
379 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000380
Chris Lattner02446fc2010-01-04 07:37:31 +0000381 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000382
Chris Lattner02446fc2010-01-04 07:37:31 +0000383 // True for one element -> 'i == 47'.
384 if (SecondTrueElement == Undefined)
385 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000386
Chris Lattner02446fc2010-01-04 07:37:31 +0000387 // True for two elements -> 'i == 47 | i == 72'.
388 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
389 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
390 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
391 return BinaryOperator::CreateOr(C1, C2);
392 }
393
394 // If the comparison is only false for one or two elements, emit direct
395 // comparisons.
396 if (SecondFalseElement != Overdefined) {
397 // None false -> true.
398 if (FirstFalseElement == Undefined)
399 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000400
Chris Lattner02446fc2010-01-04 07:37:31 +0000401 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
402
403 // False for one element -> 'i != 47'.
404 if (SecondFalseElement == Undefined)
405 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000406
Chris Lattner02446fc2010-01-04 07:37:31 +0000407 // False for two elements -> 'i != 47 & i != 72'.
408 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
409 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
410 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
411 return BinaryOperator::CreateAnd(C1, C2);
412 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000413
Chris Lattner02446fc2010-01-04 07:37:31 +0000414 // If the comparison can be replaced with a range comparison for the elements
415 // where it is true, emit the range check.
416 if (TrueRangeEnd != Overdefined) {
417 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000418
Chris Lattner02446fc2010-01-04 07:37:31 +0000419 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
420 if (FirstTrueElement) {
421 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
422 Idx = Builder->CreateAdd(Idx, Offs);
423 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000424
Chris Lattner02446fc2010-01-04 07:37:31 +0000425 Value *End = ConstantInt::get(Idx->getType(),
426 TrueRangeEnd-FirstTrueElement+1);
427 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
428 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000429
Chris Lattner02446fc2010-01-04 07:37:31 +0000430 // False range check.
431 if (FalseRangeEnd != Overdefined) {
432 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
433 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
434 if (FirstFalseElement) {
435 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
436 Idx = Builder->CreateAdd(Idx, Offs);
437 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000438
Chris Lattner02446fc2010-01-04 07:37:31 +0000439 Value *End = ConstantInt::get(Idx->getType(),
440 FalseRangeEnd-FirstFalseElement);
441 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
442 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000443
444
Chris Lattner02446fc2010-01-04 07:37:31 +0000445 // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
446 // of this load, replace it with computation that does:
447 // ((magic_cst >> i) & 1) != 0
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000448 if (ArrayElementCount <= 32 ||
449 (TD && ArrayElementCount <= 64 && TD->isLegalInteger(64))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000450 Type *Ty;
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000451 if (ArrayElementCount <= 32)
Chris Lattner02446fc2010-01-04 07:37:31 +0000452 Ty = Type::getInt32Ty(Init->getContext());
453 else
454 Ty = Type::getInt64Ty(Init->getContext());
455 Value *V = Builder->CreateIntCast(Idx, Ty, false);
456 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
457 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
458 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
459 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000460
Chris Lattner02446fc2010-01-04 07:37:31 +0000461 return 0;
462}
463
464
465/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
466/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
467/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
468/// be complex, and scales are involved. The above expression would also be
469/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
470/// This later form is less amenable to optimization though, and we are allowed
471/// to generate the first by knowing that pointer arithmetic doesn't overflow.
472///
473/// If we can't emit an optimized form for this expression, this returns null.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000474///
Eli Friedman107ffd52011-05-18 23:11:30 +0000475static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000476 TargetData &TD = *IC.getTargetData();
477 gep_type_iterator GTI = gep_type_begin(GEP);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000478
Chris Lattner02446fc2010-01-04 07:37:31 +0000479 // Check to see if this gep only has a single variable index. If so, and if
480 // any constant indices are a multiple of its scale, then we can compute this
481 // in terms of the scale of the variable index. For example, if the GEP
482 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
483 // because the expression will cross zero at the same point.
484 unsigned i, e = GEP->getNumOperands();
485 int64_t Offset = 0;
486 for (i = 1; i != e; ++i, ++GTI) {
487 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
488 // Compute the aggregate offset of constant indices.
489 if (CI->isZero()) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000490
Chris Lattner02446fc2010-01-04 07:37:31 +0000491 // Handle a struct index, which adds its field offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000492 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000493 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
494 } else {
495 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
496 Offset += Size*CI->getSExtValue();
497 }
498 } else {
499 // Found our variable index.
500 break;
501 }
502 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000503
Chris Lattner02446fc2010-01-04 07:37:31 +0000504 // If there are no variable indices, we must have a constant offset, just
505 // evaluate it the general way.
506 if (i == e) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000507
Chris Lattner02446fc2010-01-04 07:37:31 +0000508 Value *VariableIdx = GEP->getOperand(i);
509 // Determine the scale factor of the variable element. For example, this is
510 // 4 if the variable index is into an array of i32.
511 uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000512
Chris Lattner02446fc2010-01-04 07:37:31 +0000513 // Verify that there are no other variable indices. If so, emit the hard way.
514 for (++i, ++GTI; i != e; ++i, ++GTI) {
515 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
516 if (!CI) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000517
Chris Lattner02446fc2010-01-04 07:37:31 +0000518 // Compute the aggregate offset of constant indices.
519 if (CI->isZero()) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000520
Chris Lattner02446fc2010-01-04 07:37:31 +0000521 // Handle a struct index, which adds its field offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000522 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000523 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
524 } else {
525 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
526 Offset += Size*CI->getSExtValue();
527 }
528 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000529
Chris Lattner02446fc2010-01-04 07:37:31 +0000530 // Okay, we know we have a single variable index, which must be a
531 // pointer/array/vector index. If there is no offset, life is simple, return
532 // the index.
533 unsigned IntPtrWidth = TD.getPointerSizeInBits();
534 if (Offset == 0) {
535 // Cast to intptrty in case a truncation occurs. If an extension is needed,
536 // we don't need to bother extending: the extension won't affect where the
537 // computation crosses zero.
Eli Friedman107ffd52011-05-18 23:11:30 +0000538 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000539 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
Eli Friedman107ffd52011-05-18 23:11:30 +0000540 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
541 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000542 return VariableIdx;
543 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000544
Chris Lattner02446fc2010-01-04 07:37:31 +0000545 // Otherwise, there is an index. The computation we will do will be modulo
546 // the pointer size, so get it.
547 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000548
Chris Lattner02446fc2010-01-04 07:37:31 +0000549 Offset &= PtrSizeMask;
550 VariableScale &= PtrSizeMask;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000551
Chris Lattner02446fc2010-01-04 07:37:31 +0000552 // To do this transformation, any constant index must be a multiple of the
553 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
554 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
555 // multiple of the variable scale.
556 int64_t NewOffs = Offset / (int64_t)VariableScale;
557 if (Offset != NewOffs*(int64_t)VariableScale)
558 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000559
Chris Lattner02446fc2010-01-04 07:37:31 +0000560 // Okay, we can do this evaluation. Start by converting the index to intptr.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000561 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
Chris Lattner02446fc2010-01-04 07:37:31 +0000562 if (VariableIdx->getType() != IntPtrTy)
Eli Friedman107ffd52011-05-18 23:11:30 +0000563 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
564 true /*Signed*/);
Chris Lattner02446fc2010-01-04 07:37:31 +0000565 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Eli Friedman107ffd52011-05-18 23:11:30 +0000566 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
Chris Lattner02446fc2010-01-04 07:37:31 +0000567}
568
569/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
570/// else. At this point we know that the GEP is on the LHS of the comparison.
571Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
572 ICmpInst::Predicate Cond,
573 Instruction &I) {
574 // Look through bitcasts.
575 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
576 RHS = BCI->getOperand(0);
577
578 Value *PtrBase = GEPLHS->getOperand(0);
579 if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
580 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
581 // This transformation (ignoring the base and scales) is valid because we
582 // know pointers can't overflow since the gep is inbounds. See if we can
583 // output an optimized form.
Eli Friedman107ffd52011-05-18 23:11:30 +0000584 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000585
Chris Lattner02446fc2010-01-04 07:37:31 +0000586 // If not, synthesize the offset the hard way.
587 if (Offset == 0)
588 Offset = EmitGEPOffset(GEPLHS);
589 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
590 Constant::getNullValue(Offset->getType()));
591 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
592 // If the base pointers are different, but the indices are the same, just
593 // compare the base pointer.
594 if (PtrBase != GEPRHS->getOperand(0)) {
595 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
596 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
597 GEPRHS->getOperand(0)->getType();
598 if (IndicesTheSame)
599 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
600 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
601 IndicesTheSame = false;
602 break;
603 }
604
605 // If all indices are the same, just compare the base pointers.
606 if (IndicesTheSame)
607 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
608 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
609
Benjamin Kramer9bb40852012-02-20 15:07:47 +0000610 // If we're comparing GEPs with two base pointers that only differ in type
611 // and both GEPs have only constant indices or just one use, then fold
612 // the compare with the adjusted indices.
613 if (TD &&
614 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
615 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
616 PtrBase->stripPointerCasts() ==
617 GEPRHS->getOperand(0)->stripPointerCasts()) {
618 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
619 EmitGEPOffset(GEPLHS),
620 EmitGEPOffset(GEPRHS));
621 return ReplaceInstUsesWith(I, Cmp);
622 }
623
Chris Lattner02446fc2010-01-04 07:37:31 +0000624 // Otherwise, the base pointers are different and the indices are
625 // different, bail out.
626 return 0;
627 }
628
629 // If one of the GEPs has all zero indices, recurse.
630 bool AllZeros = true;
631 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
632 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
633 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
634 AllZeros = false;
635 break;
636 }
637 if (AllZeros)
638 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
639 ICmpInst::getSwappedPredicate(Cond), I);
640
641 // If the other GEP has all zero indices, recurse.
642 AllZeros = true;
643 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
644 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
645 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
646 AllZeros = false;
647 break;
648 }
649 if (AllZeros)
650 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
651
Stuart Hastings67f071e2011-05-14 05:55:10 +0000652 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
Chris Lattner02446fc2010-01-04 07:37:31 +0000653 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
654 // If the GEPs only differ by one index, compare it.
655 unsigned NumDifferences = 0; // Keep track of # differences.
656 unsigned DiffOperand = 0; // The operand that differs.
657 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
658 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
659 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
660 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
661 // Irreconcilable differences.
662 NumDifferences = 2;
663 break;
664 } else {
665 if (NumDifferences++) break;
666 DiffOperand = i;
667 }
668 }
669
670 if (NumDifferences == 0) // SAME GEP?
671 return ReplaceInstUsesWith(I, // No comparison is needed here.
672 ConstantInt::get(Type::getInt1Ty(I.getContext()),
673 ICmpInst::isTrueWhenEqual(Cond)));
674
Stuart Hastings67f071e2011-05-14 05:55:10 +0000675 else if (NumDifferences == 1 && GEPsInBounds) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000676 Value *LHSV = GEPLHS->getOperand(DiffOperand);
677 Value *RHSV = GEPRHS->getOperand(DiffOperand);
678 // Make sure we do a signed comparison here.
679 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
680 }
681 }
682
683 // Only lower this if the icmp is the only user of the GEP or if we expect
684 // the result to fold to a constant!
685 if (TD &&
Stuart Hastings67f071e2011-05-14 05:55:10 +0000686 GEPsInBounds &&
Chris Lattner02446fc2010-01-04 07:37:31 +0000687 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
688 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
689 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
690 Value *L = EmitGEPOffset(GEPLHS);
691 Value *R = EmitGEPOffset(GEPRHS);
692 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
693 }
694 }
695 return 0;
696}
697
698/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
699Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
700 Value *X, ConstantInt *CI,
701 ICmpInst::Predicate Pred,
702 Value *TheAdd) {
703 // If we have X+0, exit early (simplifying logic below) and let it get folded
704 // elsewhere. icmp X+0, X -> icmp X, X
705 if (CI->isZero()) {
706 bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
707 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
708 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000709
Chris Lattner02446fc2010-01-04 07:37:31 +0000710 // (X+4) == X -> false.
711 if (Pred == ICmpInst::ICMP_EQ)
712 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
713
714 // (X+4) != X -> true.
715 if (Pred == ICmpInst::ICMP_NE)
716 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
717
Chris Lattner02446fc2010-01-04 07:37:31 +0000718 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000719 // so the values can never be equal. Similarly for all other "or equals"
Chris Lattner02446fc2010-01-04 07:37:31 +0000720 // operators.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000721
Chris Lattner9aa1e242010-01-08 17:48:19 +0000722 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
Chris Lattner02446fc2010-01-04 07:37:31 +0000723 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
724 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
725 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000726 Value *R =
Chris Lattner9aa1e242010-01-08 17:48:19 +0000727 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
Chris Lattner02446fc2010-01-04 07:37:31 +0000728 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
729 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000730
Chris Lattner02446fc2010-01-04 07:37:31 +0000731 // (X+1) >u X --> X <u (0-1) --> X != 255
732 // (X+2) >u X --> X <u (0-2) --> X <u 254
733 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
Duncan Sandsa7724332011-02-17 07:46:37 +0000734 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
Chris Lattner02446fc2010-01-04 07:37:31 +0000735 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000736
Chris Lattner02446fc2010-01-04 07:37:31 +0000737 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
738 ConstantInt *SMax = ConstantInt::get(X->getContext(),
739 APInt::getSignedMaxValue(BitWidth));
740
741 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
742 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
743 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
744 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
745 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
746 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
Duncan Sandsa7724332011-02-17 07:46:37 +0000747 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
Chris Lattner02446fc2010-01-04 07:37:31 +0000748 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000749
Chris Lattner02446fc2010-01-04 07:37:31 +0000750 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
751 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
752 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
753 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
754 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
755 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000756
Chris Lattner02446fc2010-01-04 07:37:31 +0000757 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
758 Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
759 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
760}
761
762/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
763/// and CmpRHS are both known to be integer constants.
764Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
765 ConstantInt *DivRHS) {
766 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
767 const APInt &CmpRHSV = CmpRHS->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000768
769 // FIXME: If the operand types don't match the type of the divide
Chris Lattner02446fc2010-01-04 07:37:31 +0000770 // then don't attempt this transform. The code below doesn't have the
771 // logic to deal with a signed divide and an unsigned compare (and
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000772 // vice versa). This is because (x /s C1) <s C2 produces different
Chris Lattner02446fc2010-01-04 07:37:31 +0000773 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000774 // (x /u C1) <u C2. Simply casting the operands and result won't
775 // work. :( The if statement below tests that condition and bails
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000776 // if it finds it.
Chris Lattner02446fc2010-01-04 07:37:31 +0000777 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
778 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
779 return 0;
780 if (DivRHS->isZero())
781 return 0; // The ProdOV computation fails on divide by zero.
782 if (DivIsSigned && DivRHS->isAllOnesValue())
783 return 0; // The overflow computation also screws up here
Chris Lattnerbb75d332011-02-13 08:07:21 +0000784 if (DivRHS->isOne()) {
785 // This eliminates some funny cases with INT_MIN.
786 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
787 return &ICI;
788 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000789
790 // Compute Prod = CI * DivRHS. We are essentially solving an equation
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000791 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
792 // C2 (CI). By solving for X we can turn this into a range check
793 // instead of computing a divide.
Chris Lattner02446fc2010-01-04 07:37:31 +0000794 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
795
796 // Determine if the product overflows by seeing if the product is
797 // not equal to the divide. Make sure we do the same kind of divide
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000798 // as in the LHS instruction that we're folding.
Chris Lattner02446fc2010-01-04 07:37:31 +0000799 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
800 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
801
802 // Get the ICmp opcode
803 ICmpInst::Predicate Pred = ICI.getPredicate();
804
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000805 /// If the division is known to be exact, then there is no remainder from the
806 /// divide, so the covered range size is unit, otherwise it is the divisor.
807 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000808
Chris Lattner02446fc2010-01-04 07:37:31 +0000809 // Figure out the interval that is being checked. For example, a comparison
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000810 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
Chris Lattner02446fc2010-01-04 07:37:31 +0000811 // Compute this interval based on the constants involved and the signedness of
812 // the compare/divide. This computes a half-open interval, keeping track of
813 // whether either value in the interval overflows. After analysis each
814 // overflow variable is set to 0 if it's corresponding bound variable is valid
815 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
816 int LoOverflow = 0, HiOverflow = 0;
817 Constant *LoBound = 0, *HiBound = 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000818
Chris Lattner02446fc2010-01-04 07:37:31 +0000819 if (!DivIsSigned) { // udiv
820 // e.g. X/5 op 3 --> [15, 20)
821 LoBound = Prod;
822 HiOverflow = LoOverflow = ProdOV;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000823 if (!HiOverflow) {
824 // If this is not an exact divide, then many values in the range collapse
825 // to the same result value.
826 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
827 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000828
Chris Lattner02446fc2010-01-04 07:37:31 +0000829 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
830 if (CmpRHSV == 0) { // (X / pos) op 0
831 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000832 LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
833 HiBound = RangeSize;
Chris Lattner02446fc2010-01-04 07:37:31 +0000834 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
835 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
836 HiOverflow = LoOverflow = ProdOV;
837 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000838 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000839 } else { // (X / pos) op neg
840 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
841 HiBound = AddOne(Prod);
842 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
843 if (!LoOverflow) {
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000844 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000845 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000846 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000847 }
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000848 } else if (DivRHS->isNegative()) { // Divisor is < 0.
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000849 if (DivI->isExact())
850 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000851 if (CmpRHSV == 0) { // (X / neg) op 0
852 // e.g. X/-5 op 0 --> [-4, 5)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000853 LoBound = AddOne(RangeSize);
854 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000855 if (HiBound == DivRHS) { // -INTMIN = INTMIN
856 HiOverflow = 1; // [INTMIN+1, overflow)
857 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
858 }
859 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
860 // e.g. X/-5 op 3 --> [-19, -14)
861 HiBound = AddOne(Prod);
862 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
863 if (!LoOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000864 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
Chris Lattner02446fc2010-01-04 07:37:31 +0000865 } else { // (X / neg) op neg
866 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
867 LoOverflow = HiOverflow = ProdOV;
868 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000869 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000870 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000871
Chris Lattner02446fc2010-01-04 07:37:31 +0000872 // Dividing by a negative swaps the condition. LT <-> GT
873 Pred = ICmpInst::getSwappedPredicate(Pred);
874 }
875
876 Value *X = DivI->getOperand(0);
877 switch (Pred) {
878 default: llvm_unreachable("Unhandled icmp opcode!");
879 case ICmpInst::ICMP_EQ:
880 if (LoOverflow && HiOverflow)
881 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000882 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000883 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
884 ICmpInst::ICMP_UGE, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000885 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000886 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
887 ICmpInst::ICMP_ULT, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000888 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
889 DivIsSigned, true));
Chris Lattner02446fc2010-01-04 07:37:31 +0000890 case ICmpInst::ICMP_NE:
891 if (LoOverflow && HiOverflow)
892 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000893 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000894 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
895 ICmpInst::ICMP_ULT, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000896 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000897 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
898 ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000899 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
900 DivIsSigned, false));
Chris Lattner02446fc2010-01-04 07:37:31 +0000901 case ICmpInst::ICMP_ULT:
902 case ICmpInst::ICMP_SLT:
903 if (LoOverflow == +1) // Low bound is greater than input range.
904 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
905 if (LoOverflow == -1) // Low bound is less than input range.
906 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
907 return new ICmpInst(Pred, X, LoBound);
908 case ICmpInst::ICMP_UGT:
909 case ICmpInst::ICMP_SGT:
910 if (HiOverflow == +1) // High bound greater than input range.
911 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000912 if (HiOverflow == -1) // High bound less than input range.
Chris Lattner02446fc2010-01-04 07:37:31 +0000913 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
914 if (Pred == ICmpInst::ICMP_UGT)
915 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000916 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
Chris Lattner02446fc2010-01-04 07:37:31 +0000917 }
918}
919
Chris Lattner74542aa2011-02-13 07:43:07 +0000920/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
921Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
922 ConstantInt *ShAmt) {
Chris Lattner74542aa2011-02-13 07:43:07 +0000923 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000924
Chris Lattner74542aa2011-02-13 07:43:07 +0000925 // Check that the shift amount is in range. If not, don't perform
926 // undefined shifts. When the shift is visited it will be
927 // simplified.
928 uint32_t TypeBits = CmpRHSV.getBitWidth();
929 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Chris Lattnerbb75d332011-02-13 08:07:21 +0000930 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
Chris Lattner74542aa2011-02-13 07:43:07 +0000931 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000932
Chris Lattnerbb75d332011-02-13 08:07:21 +0000933 if (!ICI.isEquality()) {
934 // If we have an unsigned comparison and an ashr, we can't simplify this.
935 // Similarly for signed comparisons with lshr.
936 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
937 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000938
Eli Friedmana831a9b2011-05-25 23:26:20 +0000939 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
940 // by a power of 2. Since we already have logic to simplify these,
941 // transform to div and then simplify the resultant comparison.
Chris Lattnerbb75d332011-02-13 08:07:21 +0000942 if (Shr->getOpcode() == Instruction::AShr &&
Eli Friedmana831a9b2011-05-25 23:26:20 +0000943 (!Shr->isExact() || ShAmtVal == TypeBits - 1))
Chris Lattnerbb75d332011-02-13 08:07:21 +0000944 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000945
Chris Lattnerbb75d332011-02-13 08:07:21 +0000946 // Revisit the shift (to delete it).
947 Worklist.Add(Shr);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000948
Chris Lattnerbb75d332011-02-13 08:07:21 +0000949 Constant *DivCst =
950 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000951
Chris Lattnerbb75d332011-02-13 08:07:21 +0000952 Value *Tmp =
953 Shr->getOpcode() == Instruction::AShr ?
954 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
955 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000956
Chris Lattnerbb75d332011-02-13 08:07:21 +0000957 ICI.setOperand(0, Tmp);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000958
Chris Lattnerbb75d332011-02-13 08:07:21 +0000959 // If the builder folded the binop, just return it.
960 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
961 if (TheDiv == 0)
962 return &ICI;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000963
Chris Lattnerbb75d332011-02-13 08:07:21 +0000964 // Otherwise, fold this div/compare.
965 assert(TheDiv->getOpcode() == Instruction::SDiv ||
966 TheDiv->getOpcode() == Instruction::UDiv);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000967
Chris Lattnerbb75d332011-02-13 08:07:21 +0000968 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
969 assert(Res && "This div/cst should have folded!");
970 return Res;
971 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000972
973
Chris Lattner74542aa2011-02-13 07:43:07 +0000974 // If we are comparing against bits always shifted out, the
975 // comparison cannot succeed.
976 APInt Comp = CmpRHSV << ShAmtVal;
977 ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
978 if (Shr->getOpcode() == Instruction::LShr)
979 Comp = Comp.lshr(ShAmtVal);
980 else
981 Comp = Comp.ashr(ShAmtVal);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000982
Chris Lattner74542aa2011-02-13 07:43:07 +0000983 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
984 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
985 Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
986 IsICMP_NE);
987 return ReplaceInstUsesWith(ICI, Cst);
988 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000989
Chris Lattner74542aa2011-02-13 07:43:07 +0000990 // Otherwise, check to see if the bits shifted out are known to be zero.
991 // If so, we can compare against the unshifted value:
992 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Chris Lattnere5116f82011-02-13 18:30:09 +0000993 if (Shr->hasOneUse() && Shr->isExact())
Chris Lattner74542aa2011-02-13 07:43:07 +0000994 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000995
Chris Lattner74542aa2011-02-13 07:43:07 +0000996 if (Shr->hasOneUse()) {
997 // Otherwise strength reduce the shift into an and.
998 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
999 Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001000
Chris Lattner74542aa2011-02-13 07:43:07 +00001001 Value *And = Builder->CreateAnd(Shr->getOperand(0),
1002 Mask, Shr->getName()+".mask");
1003 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1004 }
1005 return 0;
1006}
1007
Chris Lattner02446fc2010-01-04 07:37:31 +00001008
1009/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1010///
1011Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1012 Instruction *LHSI,
1013 ConstantInt *RHS) {
1014 const APInt &RHSV = RHS->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001015
Chris Lattner02446fc2010-01-04 07:37:31 +00001016 switch (LHSI->getOpcode()) {
1017 case Instruction::Trunc:
1018 if (ICI.isEquality() && LHSI->hasOneUse()) {
1019 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1020 // of the high bits truncated out of x are known.
1021 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1022 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1023 APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
1024 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1025 ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001026
Chris Lattner02446fc2010-01-04 07:37:31 +00001027 // If all the high bits are known, we can do this xform.
1028 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1029 // Pull in the high bits from known-ones set.
Jay Foad40f8f622010-12-07 08:25:19 +00001030 APInt NewRHS = RHS->getValue().zext(SrcBits);
Chris Lattner02446fc2010-01-04 07:37:31 +00001031 NewRHS |= KnownOne;
1032 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1033 ConstantInt::get(ICI.getContext(), NewRHS));
1034 }
1035 }
1036 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001037
Chris Lattner02446fc2010-01-04 07:37:31 +00001038 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
1039 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1040 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1041 // fold the xor.
1042 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1043 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1044 Value *CompareVal = LHSI->getOperand(0);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001045
Chris Lattner02446fc2010-01-04 07:37:31 +00001046 // If the sign bit of the XorCST is not set, there is no change to
1047 // the operation, just stop using the Xor.
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001048 if (!XorCST->isNegative()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001049 ICI.setOperand(0, CompareVal);
1050 Worklist.Add(LHSI);
1051 return &ICI;
1052 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001053
Chris Lattner02446fc2010-01-04 07:37:31 +00001054 // Was the old condition true if the operand is positive?
1055 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001056
Chris Lattner02446fc2010-01-04 07:37:31 +00001057 // If so, the new one isn't.
1058 isTrueIfPositive ^= true;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001059
Chris Lattner02446fc2010-01-04 07:37:31 +00001060 if (isTrueIfPositive)
1061 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1062 SubOne(RHS));
1063 else
1064 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1065 AddOne(RHS));
1066 }
1067
1068 if (LHSI->hasOneUse()) {
1069 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1070 if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1071 const APInt &SignBit = XorCST->getValue();
1072 ICmpInst::Predicate Pred = ICI.isSigned()
1073 ? ICI.getUnsignedPredicate()
1074 : ICI.getSignedPredicate();
1075 return new ICmpInst(Pred, LHSI->getOperand(0),
1076 ConstantInt::get(ICI.getContext(),
1077 RHSV ^ SignBit));
1078 }
1079
1080 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001081 if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001082 const APInt &NotSignBit = XorCST->getValue();
1083 ICmpInst::Predicate Pred = ICI.isSigned()
1084 ? ICI.getUnsignedPredicate()
1085 : ICI.getSignedPredicate();
1086 Pred = ICI.getSwappedPredicate(Pred);
1087 return new ICmpInst(Pred, LHSI->getOperand(0),
1088 ConstantInt::get(ICI.getContext(),
1089 RHSV ^ NotSignBit));
1090 }
1091 }
1092 }
1093 break;
1094 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
1095 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1096 LHSI->getOperand(0)->hasOneUse()) {
1097 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001098
Chris Lattner02446fc2010-01-04 07:37:31 +00001099 // If the LHS is an AND of a truncating cast, we can widen the
1100 // and/compare to be the input width without changing the value
1101 // produced, eliminating a cast.
1102 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1103 // We can do this transformation if either the AND constant does not
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001104 // have its sign bit set or if it is an equality comparison.
Chris Lattner02446fc2010-01-04 07:37:31 +00001105 // Extending a relational comparison when we're checking the sign
1106 // bit would not work.
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001107 if (ICI.isEquality() ||
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001108 (!AndCST->isNegative() && RHSV.isNonNegative())) {
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001109 Value *NewAnd =
Chris Lattner02446fc2010-01-04 07:37:31 +00001110 Builder->CreateAnd(Cast->getOperand(0),
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001111 ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
1112 NewAnd->takeName(LHSI);
Chris Lattner02446fc2010-01-04 07:37:31 +00001113 return new ICmpInst(ICI.getPredicate(), NewAnd,
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001114 ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
Chris Lattner02446fc2010-01-04 07:37:31 +00001115 }
1116 }
Benjamin Kramerffd0ae62011-06-12 22:48:00 +00001117
1118 // If the LHS is an AND of a zext, and we have an equality compare, we can
1119 // shrink the and/compare to the smaller type, eliminating the cast.
1120 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001121 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
Benjamin Kramerffd0ae62011-06-12 22:48:00 +00001122 // Make sure we don't compare the upper bits, SimplifyDemandedBits
1123 // should fold the icmp to true/false in that case.
1124 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1125 Value *NewAnd =
1126 Builder->CreateAnd(Cast->getOperand(0),
1127 ConstantExpr::getTrunc(AndCST, Ty));
1128 NewAnd->takeName(LHSI);
1129 return new ICmpInst(ICI.getPredicate(), NewAnd,
1130 ConstantExpr::getTrunc(RHS, Ty));
1131 }
1132 }
1133
Chris Lattner02446fc2010-01-04 07:37:31 +00001134 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1135 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1136 // happens a LOT in code produced by the C front-end, for bitfield
1137 // access.
1138 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1139 if (Shift && !Shift->isShift())
1140 Shift = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001141
Chris Lattner02446fc2010-01-04 07:37:31 +00001142 ConstantInt *ShAmt;
1143 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001144 Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
1145 Type *AndTy = AndCST->getType(); // Type of the and.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001146
Chris Lattner02446fc2010-01-04 07:37:31 +00001147 // We can fold this as long as we can't shift unknown bits
1148 // into the mask. This can only happen with signed shift
1149 // rights, as they sign-extend.
1150 if (ShAmt) {
1151 bool CanFold = Shift->isLogicalShift();
1152 if (!CanFold) {
1153 // To test for the bad case of the signed shr, see if any
1154 // of the bits shifted in could be tested after the mask.
1155 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1156 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001157
Chris Lattner02446fc2010-01-04 07:37:31 +00001158 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001159 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
Chris Lattner02446fc2010-01-04 07:37:31 +00001160 AndCST->getValue()) == 0)
1161 CanFold = true;
1162 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001163
Chris Lattner02446fc2010-01-04 07:37:31 +00001164 if (CanFold) {
1165 Constant *NewCst;
1166 if (Shift->getOpcode() == Instruction::Shl)
1167 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1168 else
1169 NewCst = ConstantExpr::getShl(RHS, ShAmt);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001170
Chris Lattner02446fc2010-01-04 07:37:31 +00001171 // Check to see if we are shifting out any of the bits being
1172 // compared.
1173 if (ConstantExpr::get(Shift->getOpcode(),
1174 NewCst, ShAmt) != RHS) {
1175 // If we shifted bits out, the fold is not going to work out.
1176 // As a special case, check to see if this means that the
1177 // result is always true or false now.
1178 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1179 return ReplaceInstUsesWith(ICI,
1180 ConstantInt::getFalse(ICI.getContext()));
1181 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1182 return ReplaceInstUsesWith(ICI,
1183 ConstantInt::getTrue(ICI.getContext()));
1184 } else {
1185 ICI.setOperand(1, NewCst);
1186 Constant *NewAndCST;
1187 if (Shift->getOpcode() == Instruction::Shl)
1188 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1189 else
1190 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1191 LHSI->setOperand(1, NewAndCST);
1192 LHSI->setOperand(0, Shift->getOperand(0));
1193 Worklist.Add(Shift); // Shift is dead.
1194 return &ICI;
1195 }
1196 }
1197 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001198
Chris Lattner02446fc2010-01-04 07:37:31 +00001199 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1200 // preferable because it allows the C<<Y expression to be hoisted out
1201 // of a loop if Y is invariant and X is not.
1202 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1203 ICI.isEquality() && !Shift->isArithmeticShift() &&
1204 !isa<Constant>(Shift->getOperand(0))) {
1205 // Compute C << Y.
1206 Value *NS;
1207 if (Shift->getOpcode() == Instruction::LShr) {
Benjamin Kramera9390a42011-09-27 20:39:19 +00001208 NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001209 } else {
1210 // Insert a logical shift.
Benjamin Kramera9390a42011-09-27 20:39:19 +00001211 NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001212 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001213
Chris Lattner02446fc2010-01-04 07:37:31 +00001214 // Compute X & (C << Y).
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001215 Value *NewAnd =
Chris Lattner02446fc2010-01-04 07:37:31 +00001216 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001217
Chris Lattner02446fc2010-01-04 07:37:31 +00001218 ICI.setOperand(0, NewAnd);
1219 return &ICI;
1220 }
1221 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001222
Chris Lattner02446fc2010-01-04 07:37:31 +00001223 // Try to optimize things like "A[i]&42 == 0" to index computations.
1224 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1225 if (GetElementPtrInst *GEP =
1226 dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1227 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1228 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1229 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1230 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1231 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1232 return Res;
1233 }
1234 }
1235 break;
1236
1237 case Instruction::Or: {
1238 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1239 break;
1240 Value *P, *Q;
1241 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1242 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1243 // -> and (icmp eq P, null), (icmp eq Q, null).
Chris Lattner02446fc2010-01-04 07:37:31 +00001244 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1245 Constant::getNullValue(P->getType()));
1246 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1247 Constant::getNullValue(Q->getType()));
1248 Instruction *Op;
1249 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1250 Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1251 else
1252 Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1253 return Op;
1254 }
1255 break;
1256 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001257
Chris Lattner02446fc2010-01-04 07:37:31 +00001258 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
1259 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1260 if (!ShAmt) break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001261
Chris Lattner02446fc2010-01-04 07:37:31 +00001262 uint32_t TypeBits = RHSV.getBitWidth();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001263
Chris Lattner02446fc2010-01-04 07:37:31 +00001264 // Check that the shift amount is in range. If not, don't perform
1265 // undefined shifts. When the shift is visited it will be
1266 // simplified.
1267 if (ShAmt->uge(TypeBits))
1268 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001269
Chris Lattner02446fc2010-01-04 07:37:31 +00001270 if (ICI.isEquality()) {
1271 // If we are comparing against bits always shifted out, the
1272 // comparison cannot succeed.
1273 Constant *Comp =
1274 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1275 ShAmt);
1276 if (Comp != RHS) {// Comparing against a bit that we know is zero.
1277 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1278 Constant *Cst =
1279 ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1280 return ReplaceInstUsesWith(ICI, Cst);
1281 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001282
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001283 // If the shift is NUW, then it is just shifting out zeros, no need for an
1284 // AND.
1285 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1286 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1287 ConstantExpr::getLShr(RHS, ShAmt));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001288
Chris Lattner02446fc2010-01-04 07:37:31 +00001289 if (LHSI->hasOneUse()) {
1290 // Otherwise strength reduce the shift into an and.
1291 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1292 Constant *Mask =
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001293 ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
Chris Lattner02446fc2010-01-04 07:37:31 +00001294 TypeBits-ShAmtVal));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001295
Chris Lattner02446fc2010-01-04 07:37:31 +00001296 Value *And =
1297 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1298 return new ICmpInst(ICI.getPredicate(), And,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001299 ConstantExpr::getLShr(RHS, ShAmt));
Chris Lattner02446fc2010-01-04 07:37:31 +00001300 }
1301 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001302
Chris Lattner02446fc2010-01-04 07:37:31 +00001303 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1304 bool TrueIfSigned = false;
1305 if (LHSI->hasOneUse() &&
1306 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1307 // (X << 31) <s 0 --> (X&1) != 0
Chris Lattnerbb75d332011-02-13 08:07:21 +00001308 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001309 APInt::getOneBitSet(TypeBits,
Chris Lattnerbb75d332011-02-13 08:07:21 +00001310 TypeBits-ShAmt->getZExtValue()-1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001311 Value *And =
1312 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1313 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1314 And, Constant::getNullValue(And->getType()));
1315 }
1316 break;
1317 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001318
Chris Lattner02446fc2010-01-04 07:37:31 +00001319 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001320 case Instruction::AShr: {
1321 // Handle equality comparisons of shift-by-constant.
1322 BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1323 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1324 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
Chris Lattner74542aa2011-02-13 07:43:07 +00001325 return Res;
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001326 }
1327
1328 // Handle exact shr's.
1329 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1330 if (RHSV.isMinValue())
1331 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1332 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001333 break;
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001334 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001335
Chris Lattner02446fc2010-01-04 07:37:31 +00001336 case Instruction::SDiv:
1337 case Instruction::UDiv:
1338 // Fold: icmp pred ([us]div X, C1), C2 -> range test
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001339 // Fold this div into the comparison, producing a range check.
1340 // Determine, based on the divide type, what the range is being
1341 // checked. If there is an overflow on the low or high side, remember
Chris Lattner02446fc2010-01-04 07:37:31 +00001342 // it, otherwise compute the range [low, hi) bounding the new value.
1343 // See: InsertRangeTest above for the kinds of replacements possible.
1344 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1345 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1346 DivRHS))
1347 return R;
1348 break;
1349
1350 case Instruction::Add:
1351 // Fold: icmp pred (add X, C1), C2
1352 if (!ICI.isEquality()) {
1353 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1354 if (!LHSC) break;
1355 const APInt &LHSV = LHSC->getValue();
1356
1357 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1358 .subtract(LHSV);
1359
1360 if (ICI.isSigned()) {
1361 if (CR.getLower().isSignBit()) {
1362 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1363 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1364 } else if (CR.getUpper().isSignBit()) {
1365 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1366 ConstantInt::get(ICI.getContext(),CR.getLower()));
1367 }
1368 } else {
1369 if (CR.getLower().isMinValue()) {
1370 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1371 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1372 } else if (CR.getUpper().isMinValue()) {
1373 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1374 ConstantInt::get(ICI.getContext(),CR.getLower()));
1375 }
1376 }
1377 }
1378 break;
1379 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001380
Chris Lattner02446fc2010-01-04 07:37:31 +00001381 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1382 if (ICI.isEquality()) {
1383 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001384
1385 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
Chris Lattner02446fc2010-01-04 07:37:31 +00001386 // the second operand is a constant, simplify a bit.
1387 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1388 switch (BO->getOpcode()) {
1389 case Instruction::SRem:
1390 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1391 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1392 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
Dan Gohmane0567812010-04-08 23:03:40 +00001393 if (V.sgt(1) && V.isPowerOf2()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001394 Value *NewRem =
1395 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1396 BO->getName());
1397 return new ICmpInst(ICI.getPredicate(), NewRem,
1398 Constant::getNullValue(BO->getType()));
1399 }
1400 }
1401 break;
1402 case Instruction::Add:
1403 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1404 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1405 if (BO->hasOneUse())
1406 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1407 ConstantExpr::getSub(RHS, BOp1C));
1408 } else if (RHSV == 0) {
1409 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1410 // efficiently invertible, or if the add has just this one use.
1411 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001412
Chris Lattner02446fc2010-01-04 07:37:31 +00001413 if (Value *NegVal = dyn_castNegVal(BOp1))
1414 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
Chris Lattner5036ce42011-04-26 20:02:45 +00001415 if (Value *NegVal = dyn_castNegVal(BOp0))
Chris Lattner02446fc2010-01-04 07:37:31 +00001416 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
Chris Lattner5036ce42011-04-26 20:02:45 +00001417 if (BO->hasOneUse()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001418 Value *Neg = Builder->CreateNeg(BOp1);
1419 Neg->takeName(BO);
1420 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1421 }
1422 }
1423 break;
1424 case Instruction::Xor:
1425 // For the xor case, we can xor two constants together, eliminating
1426 // the explicit xor.
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001427 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1428 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
Chris Lattner02446fc2010-01-04 07:37:31 +00001429 ConstantExpr::getXor(RHS, BOC));
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001430 } else if (RHSV == 0) {
1431 // Replace ((xor A, B) != 0) with (A != B)
Chris Lattner02446fc2010-01-04 07:37:31 +00001432 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1433 BO->getOperand(1));
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001434 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001435 break;
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001436 case Instruction::Sub:
1437 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1438 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1439 if (BO->hasOneUse())
1440 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1441 ConstantExpr::getSub(BOp0C, RHS));
1442 } else if (RHSV == 0) {
1443 // Replace ((sub A, B) != 0) with (A != B)
1444 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1445 BO->getOperand(1));
1446 }
1447 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001448 case Instruction::Or:
1449 // If bits are being or'd in that are not present in the constant we
1450 // are comparing against, then the comparison could never succeed!
Eli Friedman618898e2010-07-29 18:03:33 +00001451 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001452 Constant *NotCI = ConstantExpr::getNot(RHS);
1453 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1454 return ReplaceInstUsesWith(ICI,
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001455 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
Chris Lattner02446fc2010-01-04 07:37:31 +00001456 isICMP_NE));
1457 }
1458 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001459
Chris Lattner02446fc2010-01-04 07:37:31 +00001460 case Instruction::And:
1461 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1462 // If bits are being compared against that are and'd out, then the
1463 // comparison can never succeed!
1464 if ((RHSV & ~BOC->getValue()) != 0)
1465 return ReplaceInstUsesWith(ICI,
1466 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1467 isICMP_NE));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001468
Chris Lattner02446fc2010-01-04 07:37:31 +00001469 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1470 if (RHS == BOC && RHSV.isPowerOf2())
1471 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1472 ICmpInst::ICMP_NE, LHSI,
1473 Constant::getNullValue(RHS->getType()));
Benjamin Kramerfc87cdc2011-07-04 20:16:36 +00001474
1475 // Don't perform the following transforms if the AND has multiple uses
1476 if (!BO->hasOneUse())
1477 break;
1478
Chris Lattner02446fc2010-01-04 07:37:31 +00001479 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1480 if (BOC->getValue().isSignBit()) {
1481 Value *X = BO->getOperand(0);
1482 Constant *Zero = Constant::getNullValue(X->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001483 ICmpInst::Predicate pred = isICMP_NE ?
Chris Lattner02446fc2010-01-04 07:37:31 +00001484 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1485 return new ICmpInst(pred, X, Zero);
1486 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001487
Chris Lattner02446fc2010-01-04 07:37:31 +00001488 // ((X & ~7) == 0) --> X < 8
1489 if (RHSV == 0 && isHighOnes(BOC)) {
1490 Value *X = BO->getOperand(0);
1491 Constant *NegX = ConstantExpr::getNeg(BOC);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001492 ICmpInst::Predicate pred = isICMP_NE ?
Chris Lattner02446fc2010-01-04 07:37:31 +00001493 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1494 return new ICmpInst(pred, X, NegX);
1495 }
1496 }
1497 default: break;
1498 }
1499 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1500 // Handle icmp {eq|ne} <intrinsic>, intcst.
Chris Lattner03357402010-01-05 18:09:56 +00001501 switch (II->getIntrinsicID()) {
1502 case Intrinsic::bswap:
Chris Lattner02446fc2010-01-04 07:37:31 +00001503 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001504 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner02446fc2010-01-04 07:37:31 +00001505 ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1506 return &ICI;
Chris Lattner03357402010-01-05 18:09:56 +00001507 case Intrinsic::ctlz:
1508 case Intrinsic::cttz:
1509 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1510 if (RHSV == RHS->getType()->getBitWidth()) {
1511 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001512 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001513 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1514 return &ICI;
1515 }
1516 break;
1517 case Intrinsic::ctpop:
1518 // popcount(A) == 0 -> A == 0 and likewise for !=
1519 if (RHS->isZero()) {
1520 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001521 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001522 ICI.setOperand(1, RHS);
1523 return &ICI;
1524 }
1525 break;
1526 default:
Duncan Sands34727662010-07-12 08:16:59 +00001527 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001528 }
1529 }
1530 }
1531 return 0;
1532}
1533
1534/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1535/// We only handle extending casts so far.
1536///
1537Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1538 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1539 Value *LHSCIOp = LHSCI->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001540 Type *SrcTy = LHSCIOp->getType();
1541 Type *DestTy = LHSCI->getType();
Chris Lattner02446fc2010-01-04 07:37:31 +00001542 Value *RHSCIOp;
1543
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001544 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
Chris Lattner02446fc2010-01-04 07:37:31 +00001545 // integer type is the same size as the pointer type.
1546 if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1547 TD->getPointerSizeInBits() ==
1548 cast<IntegerType>(DestTy)->getBitWidth()) {
1549 Value *RHSOp = 0;
1550 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1551 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1552 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1553 RHSOp = RHSC->getOperand(0);
1554 // If the pointer types don't match, insert a bitcast.
1555 if (LHSCIOp->getType() != RHSOp->getType())
1556 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1557 }
1558
1559 if (RHSOp)
1560 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1561 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001562
Chris Lattner02446fc2010-01-04 07:37:31 +00001563 // The code below only handles extension cast instructions, so far.
1564 // Enforce this.
1565 if (LHSCI->getOpcode() != Instruction::ZExt &&
1566 LHSCI->getOpcode() != Instruction::SExt)
1567 return 0;
1568
1569 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1570 bool isSignedCmp = ICI.isSigned();
1571
1572 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1573 // Not an extension from the same type?
1574 RHSCIOp = CI->getOperand(0);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001575 if (RHSCIOp->getType() != LHSCIOp->getType())
Chris Lattner02446fc2010-01-04 07:37:31 +00001576 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001577
Chris Lattner02446fc2010-01-04 07:37:31 +00001578 // If the signedness of the two casts doesn't agree (i.e. one is a sext
1579 // and the other is a zext), then we can't handle this.
1580 if (CI->getOpcode() != LHSCI->getOpcode())
1581 return 0;
1582
1583 // Deal with equality cases early.
1584 if (ICI.isEquality())
1585 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1586
1587 // A signed comparison of sign extended values simplifies into a
1588 // signed comparison.
1589 if (isSignedCmp && isSignedExt)
1590 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1591
1592 // The other three cases all fold into an unsigned comparison.
1593 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1594 }
1595
1596 // If we aren't dealing with a constant on the RHS, exit early
1597 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1598 if (!CI)
1599 return 0;
1600
1601 // Compute the constant that would happen if we truncated to SrcTy then
1602 // reextended to DestTy.
1603 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1604 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1605 Res1, DestTy);
1606
1607 // If the re-extended constant didn't change...
1608 if (Res2 == CI) {
1609 // Deal with equality cases early.
1610 if (ICI.isEquality())
1611 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1612
1613 // A signed comparison of sign extended values simplifies into a
1614 // signed comparison.
1615 if (isSignedExt && isSignedCmp)
1616 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1617
1618 // The other three cases all fold into an unsigned comparison.
1619 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1620 }
1621
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001622 // The re-extended constant changed so the constant cannot be represented
Chris Lattner02446fc2010-01-04 07:37:31 +00001623 // in the shorter type. Consequently, we cannot emit a simple comparison.
Duncan Sands9d32f602011-01-20 13:21:55 +00001624 // All the cases that fold to true or false will have already been handled
1625 // by SimplifyICmpInst, so only deal with the tricky case.
Chris Lattner02446fc2010-01-04 07:37:31 +00001626
Duncan Sands9d32f602011-01-20 13:21:55 +00001627 if (isSignedCmp || !isSignedExt)
1628 return 0;
Chris Lattner02446fc2010-01-04 07:37:31 +00001629
1630 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1631 // should have been folded away previously and not enter in here.
Duncan Sands9d32f602011-01-20 13:21:55 +00001632
1633 // We're performing an unsigned comp with a sign extended value.
1634 // This is true if the input is >= 0. [aka >s -1]
1635 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1636 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
Chris Lattner02446fc2010-01-04 07:37:31 +00001637
1638 // Finally, return the value computed.
Duncan Sands9d32f602011-01-20 13:21:55 +00001639 if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
Chris Lattner02446fc2010-01-04 07:37:31 +00001640 return ReplaceInstUsesWith(ICI, Result);
1641
Duncan Sands9d32f602011-01-20 13:21:55 +00001642 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
Chris Lattner02446fc2010-01-04 07:37:31 +00001643 return BinaryOperator::CreateNot(Result);
1644}
1645
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001646/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1647/// I = icmp ugt (add (add A, B), CI2), CI1
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001648/// If this is of the form:
1649/// sum = a + b
1650/// if (sum+128 >u 255)
1651/// Then replace it with llvm.sadd.with.overflow.i8.
1652///
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001653static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1654 ConstantInt *CI2, ConstantInt *CI1,
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001655 InstCombiner &IC) {
Chris Lattner368397b2010-12-19 17:59:02 +00001656 // The transformation we're trying to do here is to transform this into an
1657 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1658 // with a narrower add, and discard the add-with-constant that is part of the
1659 // range check (if we can't eliminate it, this isn't profitable).
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001660
Chris Lattner368397b2010-12-19 17:59:02 +00001661 // In order to eliminate the add-with-constant, the compare can be its only
1662 // use.
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001663 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
Chris Lattner368397b2010-12-19 17:59:02 +00001664 if (!AddWithCst->hasOneUse()) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001665
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001666 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1667 if (!CI2->getValue().isPowerOf2()) return 0;
1668 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1669 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001670
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001671 // The width of the new add formed is 1 more than the bias.
1672 ++NewWidth;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001673
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001674 // Check to see that CI1 is an all-ones value with NewWidth bits.
1675 if (CI1->getBitWidth() == NewWidth ||
1676 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1677 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001678
Eli Friedman54b92112011-11-28 23:32:19 +00001679 // This is only really a signed overflow check if the inputs have been
1680 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1681 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1682 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1683 if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1684 IC.ComputeNumSignBits(B) < NeededSignBits)
1685 return 0;
1686
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001687 // In order to replace the original add with a narrower
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001688 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1689 // and truncates that discard the high bits of the add. Verify that this is
1690 // the case.
1691 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1692 for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1693 UI != E; ++UI) {
1694 if (*UI == AddWithCst) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001695
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001696 // Only accept truncates for now. We would really like a nice recursive
1697 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1698 // chain to see which bits of a value are actually demanded. If the
1699 // original add had another add which was then immediately truncated, we
1700 // could still do the transformation.
1701 TruncInst *TI = dyn_cast<TruncInst>(*UI);
1702 if (TI == 0 ||
1703 TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1704 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001705
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001706 // If the pattern matches, truncate the inputs to the narrower type and
1707 // use the sadd_with_overflow intrinsic to efficiently compute both the
1708 // result and the overflow bit.
Chris Lattner0a624742010-12-19 18:35:09 +00001709 Module *M = I.getParent()->getParent()->getParent();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001710
Jay Foad5fdd6c82011-07-12 14:06:48 +00001711 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
Chris Lattner0a624742010-12-19 18:35:09 +00001712 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
Benjamin Kramereb9a85f2011-07-14 17:45:39 +00001713 NewType);
Chris Lattner0a624742010-12-19 18:35:09 +00001714
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001715 InstCombiner::BuilderTy *Builder = IC.Builder;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001716
Chris Lattner0a624742010-12-19 18:35:09 +00001717 // Put the new code above the original add, in case there are any uses of the
1718 // add between the add and the compare.
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001719 Builder->SetInsertPoint(OrigAdd);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001720
Chris Lattner0a624742010-12-19 18:35:09 +00001721 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1722 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1723 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1724 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1725 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001726
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001727 // The inner add was the result of the narrow add, zero extended to the
1728 // wider type. Replace it with the result computed by the intrinsic.
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001729 IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001730
Chris Lattner0a624742010-12-19 18:35:09 +00001731 // The original icmp gets replaced with the overflow value.
1732 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001733}
Chris Lattner02446fc2010-01-04 07:37:31 +00001734
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001735static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1736 InstCombiner &IC) {
1737 // Don't bother doing this transformation for pointers, don't do it for
1738 // vectors.
1739 if (!isa<IntegerType>(OrigAddV->getType())) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001740
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001741 // If the add is a constant expr, then we don't bother transforming it.
1742 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1743 if (OrigAdd == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001744
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001745 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001746
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001747 // Put the new code above the original add, in case there are any uses of the
1748 // add between the add and the compare.
1749 InstCombiner::BuilderTy *Builder = IC.Builder;
1750 Builder->SetInsertPoint(OrigAdd);
1751
1752 Module *M = I.getParent()->getParent()->getParent();
Jay Foad5fdd6c82011-07-12 14:06:48 +00001753 Type *Ty = LHS->getType();
Benjamin Kramereb9a85f2011-07-14 17:45:39 +00001754 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001755 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1756 Value *Add = Builder->CreateExtractValue(Call, 0);
1757
1758 IC.ReplaceInstUsesWith(*OrigAdd, Add);
1759
1760 // The original icmp gets replaced with the overflow value.
1761 return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1762}
1763
Owen Andersonda1c1222011-01-11 00:36:45 +00001764// DemandedBitsLHSMask - When performing a comparison against a constant,
1765// it is possible that not all the bits in the LHS are demanded. This helper
1766// method computes the mask that IS demanded.
1767static APInt DemandedBitsLHSMask(ICmpInst &I,
1768 unsigned BitWidth, bool isSignCheck) {
1769 if (isSignCheck)
1770 return APInt::getSignBit(BitWidth);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001771
Owen Andersonda1c1222011-01-11 00:36:45 +00001772 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1773 if (!CI) return APInt::getAllOnesValue(BitWidth);
Owen Andersona33b6252011-01-11 18:26:37 +00001774 const APInt &RHS = CI->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001775
Owen Andersonda1c1222011-01-11 00:36:45 +00001776 switch (I.getPredicate()) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001777 // For a UGT comparison, we don't care about any bits that
Owen Andersonda1c1222011-01-11 00:36:45 +00001778 // correspond to the trailing ones of the comparand. The value of these
1779 // bits doesn't impact the outcome of the comparison, because any value
1780 // greater than the RHS must differ in a bit higher than these due to carry.
1781 case ICmpInst::ICMP_UGT: {
1782 unsigned trailingOnes = RHS.countTrailingOnes();
1783 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1784 return ~lowBitsSet;
1785 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001786
Owen Andersonda1c1222011-01-11 00:36:45 +00001787 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1788 // Any value less than the RHS must differ in a higher bit because of carries.
1789 case ICmpInst::ICMP_ULT: {
1790 unsigned trailingZeros = RHS.countTrailingZeros();
1791 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1792 return ~lowBitsSet;
1793 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001794
Owen Andersonda1c1222011-01-11 00:36:45 +00001795 default:
1796 return APInt::getAllOnesValue(BitWidth);
1797 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001798
Owen Andersonda1c1222011-01-11 00:36:45 +00001799}
Chris Lattner02446fc2010-01-04 07:37:31 +00001800
1801Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1802 bool Changed = false;
Chris Lattner5f670d42010-02-01 19:54:45 +00001803 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001804
Chris Lattner02446fc2010-01-04 07:37:31 +00001805 /// Orders the operands of the compare so that they are listed from most
1806 /// complex to least complex. This puts constants before unary operators,
1807 /// before binary operators.
Chris Lattner5f670d42010-02-01 19:54:45 +00001808 if (getComplexity(Op0) < getComplexity(Op1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001809 I.swapOperands();
Chris Lattner5f670d42010-02-01 19:54:45 +00001810 std::swap(Op0, Op1);
Chris Lattner02446fc2010-01-04 07:37:31 +00001811 Changed = true;
1812 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001813
Chris Lattner02446fc2010-01-04 07:37:31 +00001814 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1815 return ReplaceInstUsesWith(I, V);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001816
Pete Cooper65a6b572011-12-01 03:58:40 +00001817 // comparing -val or val with non-zero is the same as just comparing val
Pete Cooper165695d2011-12-01 19:13:26 +00001818 // ie, abs(val) != 0 -> val != 0
Pete Cooper65a6b572011-12-01 03:58:40 +00001819 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
1820 {
Pete Cooper165695d2011-12-01 19:13:26 +00001821 Value *Cond, *SelectTrue, *SelectFalse;
1822 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
Pete Cooper65a6b572011-12-01 03:58:40 +00001823 m_Value(SelectFalse)))) {
Pete Cooper165695d2011-12-01 19:13:26 +00001824 if (Value *V = dyn_castNegVal(SelectTrue)) {
1825 if (V == SelectFalse)
1826 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
1827 }
1828 else if (Value *V = dyn_castNegVal(SelectFalse)) {
1829 if (V == SelectTrue)
1830 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
Pete Cooper65a6b572011-12-01 03:58:40 +00001831 }
1832 }
1833 }
1834
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001835 Type *Ty = Op0->getType();
Chris Lattner02446fc2010-01-04 07:37:31 +00001836
1837 // icmp's with boolean values can always be turned into bitwise operations
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001838 if (Ty->isIntegerTy(1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001839 switch (I.getPredicate()) {
1840 default: llvm_unreachable("Invalid icmp instruction!");
1841 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
1842 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1843 return BinaryOperator::CreateNot(Xor);
1844 }
1845 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
1846 return BinaryOperator::CreateXor(Op0, Op1);
1847
1848 case ICmpInst::ICMP_UGT:
1849 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
1850 // FALL THROUGH
1851 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
1852 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1853 return BinaryOperator::CreateAnd(Not, Op1);
1854 }
1855 case ICmpInst::ICMP_SGT:
1856 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
1857 // FALL THROUGH
1858 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
1859 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1860 return BinaryOperator::CreateAnd(Not, Op0);
1861 }
1862 case ICmpInst::ICMP_UGE:
1863 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
1864 // FALL THROUGH
1865 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
1866 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1867 return BinaryOperator::CreateOr(Not, Op1);
1868 }
1869 case ICmpInst::ICMP_SGE:
1870 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
1871 // FALL THROUGH
1872 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
1873 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1874 return BinaryOperator::CreateOr(Not, Op0);
1875 }
1876 }
1877 }
1878
1879 unsigned BitWidth = 0;
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001880 if (Ty->isIntOrIntVectorTy())
Chris Lattner02446fc2010-01-04 07:37:31 +00001881 BitWidth = Ty->getScalarSizeInBits();
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001882 else if (TD) // Pointers require TD info to get their size.
1883 BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001884
Chris Lattner02446fc2010-01-04 07:37:31 +00001885 bool isSignBit = false;
1886
1887 // See if we are doing a comparison with a constant.
1888 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1889 Value *A = 0, *B = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001890
Owen Andersone63dda52010-12-17 18:08:00 +00001891 // Match the following pattern, which is a common idiom when writing
1892 // overflow-safe integer arithmetic function. The source performs an
1893 // addition in wider type, and explicitly checks for overflow using
1894 // comparisons against INT_MIN and INT_MAX. Simplify this by using the
1895 // sadd_with_overflow intrinsic.
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001896 //
1897 // TODO: This could probably be generalized to handle other overflow-safe
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001898 // operations if we worked out the formulas to compute the appropriate
Owen Andersone63dda52010-12-17 18:08:00 +00001899 // magic constants.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001900 //
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001901 // sum = a + b
1902 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
Owen Andersone63dda52010-12-17 18:08:00 +00001903 {
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001904 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
Owen Andersone63dda52010-12-17 18:08:00 +00001905 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001906 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001907 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001908 return Res;
Owen Andersone63dda52010-12-17 18:08:00 +00001909 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001910
Chris Lattner02446fc2010-01-04 07:37:31 +00001911 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1912 if (I.isEquality() && CI->isZero() &&
1913 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1914 // (icmp cond A B) if cond is equality
1915 return new ICmpInst(I.getPredicate(), A, B);
1916 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001917
Chris Lattner02446fc2010-01-04 07:37:31 +00001918 // If we have an icmp le or icmp ge instruction, turn it into the
1919 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
1920 // them being folded in the code below. The SimplifyICmpInst code has
1921 // already handled the edge cases for us, so we just assert on them.
1922 switch (I.getPredicate()) {
1923 default: break;
1924 case ICmpInst::ICMP_ULE:
1925 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
1926 return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1927 ConstantInt::get(CI->getContext(), CI->getValue()+1));
1928 case ICmpInst::ICMP_SLE:
1929 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
1930 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1931 ConstantInt::get(CI->getContext(), CI->getValue()+1));
1932 case ICmpInst::ICMP_UGE:
Nick Lewyckyd8d15842011-02-28 06:20:05 +00001933 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
Chris Lattner02446fc2010-01-04 07:37:31 +00001934 return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1935 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1936 case ICmpInst::ICMP_SGE:
Nick Lewyckyd8d15842011-02-28 06:20:05 +00001937 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
Chris Lattner02446fc2010-01-04 07:37:31 +00001938 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1939 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1940 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001941
Chris Lattner02446fc2010-01-04 07:37:31 +00001942 // If this comparison is a normal comparison, it demands all
1943 // bits, if it is a sign bit comparison, it only demands the sign bit.
1944 bool UnusedBit;
1945 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1946 }
1947
1948 // See if we can fold the comparison based on range information we can get
1949 // by checking whether bits are known to be zero or one in the input.
1950 if (BitWidth != 0) {
1951 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1952 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1953
1954 if (SimplifyDemandedBits(I.getOperandUse(0),
Owen Andersonda1c1222011-01-11 00:36:45 +00001955 DemandedBitsLHSMask(I, BitWidth, isSignBit),
Chris Lattner02446fc2010-01-04 07:37:31 +00001956 Op0KnownZero, Op0KnownOne, 0))
1957 return &I;
1958 if (SimplifyDemandedBits(I.getOperandUse(1),
1959 APInt::getAllOnesValue(BitWidth),
1960 Op1KnownZero, Op1KnownOne, 0))
1961 return &I;
1962
1963 // Given the known and unknown bits, compute a range that the LHS could be
1964 // in. Compute the Min, Max and RHS values based on the known bits. For the
1965 // EQ and NE we use unsigned values.
1966 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1967 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1968 if (I.isSigned()) {
1969 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1970 Op0Min, Op0Max);
1971 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1972 Op1Min, Op1Max);
1973 } else {
1974 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1975 Op0Min, Op0Max);
1976 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1977 Op1Min, Op1Max);
1978 }
1979
1980 // If Min and Max are known to be the same, then SimplifyDemandedBits
1981 // figured out that the LHS is a constant. Just constant fold this now so
1982 // that code below can assume that Min != Max.
1983 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1984 return new ICmpInst(I.getPredicate(),
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00001985 ConstantInt::get(Op0->getType(), Op0Min), Op1);
Chris Lattner02446fc2010-01-04 07:37:31 +00001986 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1987 return new ICmpInst(I.getPredicate(), Op0,
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00001988 ConstantInt::get(Op1->getType(), Op1Min));
Chris Lattner02446fc2010-01-04 07:37:31 +00001989
1990 // Based on the range information we know about the LHS, see if we can
Nick Lewyckyd8d15842011-02-28 06:20:05 +00001991 // simplify this comparison. For example, (x&4) < 8 is always true.
Chris Lattner02446fc2010-01-04 07:37:31 +00001992 switch (I.getPredicate()) {
1993 default: llvm_unreachable("Unknown icmp opcode!");
Chris Lattner75d8f592010-11-21 06:44:42 +00001994 case ICmpInst::ICMP_EQ: {
Chris Lattner02446fc2010-01-04 07:37:31 +00001995 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00001996 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001997
Chris Lattner75d8f592010-11-21 06:44:42 +00001998 // If all bits are known zero except for one, then we know at most one
1999 // bit is set. If the comparison is against zero, then this is a check
2000 // to see if *that* bit is set.
2001 APInt Op0KnownZeroInverted = ~Op0KnownZero;
2002 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2003 // If the LHS is an AND with the same constant, look through it.
2004 Value *LHS = 0;
2005 ConstantInt *LHSC = 0;
2006 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2007 LHSC->getValue() != Op0KnownZeroInverted)
2008 LHS = Op0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002009
Chris Lattner75d8f592010-11-21 06:44:42 +00002010 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00002011 // then turn "((1 << x)&8) == 0" into "x != 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00002012 Value *X = 0;
2013 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2014 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00002015 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00002016 ConstantInt::get(X->getType(), CmpVal));
2017 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002018
Chris Lattner75d8f592010-11-21 06:44:42 +00002019 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00002020 // then turn "((8 >>u x)&1) == 0" into "x != 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002021 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00002022 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002023 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00002024 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002025 ConstantInt::get(X->getType(),
2026 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00002027 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002028
Chris Lattner02446fc2010-01-04 07:37:31 +00002029 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00002030 }
2031 case ICmpInst::ICMP_NE: {
Chris Lattner02446fc2010-01-04 07:37:31 +00002032 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002033 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002034
Chris Lattner75d8f592010-11-21 06:44:42 +00002035 // If all bits are known zero except for one, then we know at most one
2036 // bit is set. If the comparison is against zero, then this is a check
2037 // to see if *that* bit is set.
2038 APInt Op0KnownZeroInverted = ~Op0KnownZero;
2039 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2040 // If the LHS is an AND with the same constant, look through it.
2041 Value *LHS = 0;
2042 ConstantInt *LHSC = 0;
2043 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2044 LHSC->getValue() != Op0KnownZeroInverted)
2045 LHS = Op0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002046
Chris Lattner75d8f592010-11-21 06:44:42 +00002047 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00002048 // then turn "((1 << x)&8) != 0" into "x == 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00002049 Value *X = 0;
2050 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2051 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00002052 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00002053 ConstantInt::get(X->getType(), CmpVal));
2054 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002055
Chris Lattner75d8f592010-11-21 06:44:42 +00002056 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00002057 // then turn "((8 >>u x)&1) != 0" into "x == 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002058 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00002059 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002060 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00002061 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002062 ConstantInt::get(X->getType(),
2063 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00002064 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002065
Chris Lattner02446fc2010-01-04 07:37:31 +00002066 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00002067 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002068 case ICmpInst::ICMP_ULT:
2069 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002070 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002071 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002072 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002073 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
2074 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2075 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2076 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
2077 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2078 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2079
2080 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
2081 if (CI->isMinValue(true))
2082 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2083 Constant::getAllOnesValue(Op0->getType()));
2084 }
2085 break;
2086 case ICmpInst::ICMP_UGT:
2087 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002088 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002089 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002090 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002091
2092 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
2093 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2094 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2095 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
2096 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2097 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2098
2099 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
2100 if (CI->isMaxValue(true))
2101 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2102 Constant::getNullValue(Op0->getType()));
2103 }
2104 break;
2105 case ICmpInst::ICMP_SLT:
2106 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002107 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002108 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002109 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002110 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
2111 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2112 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2113 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
2114 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2115 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2116 }
2117 break;
2118 case ICmpInst::ICMP_SGT:
2119 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002120 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002121 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002122 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002123
2124 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
2125 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2126 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2127 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
2128 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2129 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2130 }
2131 break;
2132 case ICmpInst::ICMP_SGE:
2133 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2134 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002135 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002136 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002137 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002138 break;
2139 case ICmpInst::ICMP_SLE:
2140 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2141 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002142 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002143 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002144 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002145 break;
2146 case ICmpInst::ICMP_UGE:
2147 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2148 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002149 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002150 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002151 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002152 break;
2153 case ICmpInst::ICMP_ULE:
2154 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2155 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002156 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002157 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002158 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002159 break;
2160 }
2161
2162 // Turn a signed comparison into an unsigned one if both operands
2163 // are known to have the same sign.
2164 if (I.isSigned() &&
2165 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2166 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2167 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2168 }
2169
2170 // Test if the ICmpInst instruction is used exclusively by a select as
2171 // part of a minimum or maximum operation. If so, refrain from doing
2172 // any other folding. This helps out other analyses which understand
2173 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2174 // and CodeGen. And in this case, at least one of the comparison
2175 // operands has at least one user besides the compare (the select),
2176 // which would often largely negate the benefit of folding anyway.
2177 if (I.hasOneUse())
2178 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2179 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2180 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2181 return 0;
2182
2183 // See if we are doing a comparison between a constant and an instruction that
2184 // can be folded into the comparison.
2185 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002186 // Since the RHS is a ConstantInt (CI), if the left hand side is an
2187 // instruction, see if that instruction also has constants so that the
2188 // instruction can be folded into the icmp
Chris Lattner02446fc2010-01-04 07:37:31 +00002189 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2190 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2191 return Res;
2192 }
2193
2194 // Handle icmp with constant (but not simple integer constant) RHS
2195 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2196 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2197 switch (LHSI->getOpcode()) {
2198 case Instruction::GetElementPtr:
2199 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2200 if (RHSC->isNullValue() &&
2201 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2202 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2203 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2204 break;
2205 case Instruction::PHI:
2206 // Only fold icmp into the PHI if the phi and icmp are in the same
2207 // block. If in the same block, we're encouraging jump threading. If
2208 // not, we are just pessimizing the code by making an i1 phi.
2209 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00002210 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00002211 return NV;
2212 break;
2213 case Instruction::Select: {
2214 // If either operand of the select is a constant, we can fold the
2215 // comparison into the select arms, which will cause one to be
2216 // constant folded and the select turned into a bitwise or.
2217 Value *Op1 = 0, *Op2 = 0;
2218 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2219 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2220 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2221 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2222
2223 // We only want to perform this transformation if it will not lead to
2224 // additional code. This is true if either both sides of the select
2225 // fold to a constant (in which case the icmp is replaced with a select
2226 // which will usually simplify) or this is the only user of the
2227 // select (in which case we are trading a select+icmp for a simpler
2228 // select+icmp).
2229 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2230 if (!Op1)
2231 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2232 RHSC, I.getName());
2233 if (!Op2)
2234 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2235 RHSC, I.getName());
2236 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2237 }
2238 break;
2239 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002240 case Instruction::IntToPtr:
2241 // icmp pred inttoptr(X), null -> icmp pred X, 0
2242 if (RHSC->isNullValue() && TD &&
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002243 TD->getIntPtrType(RHSC->getContext()) ==
Chris Lattner02446fc2010-01-04 07:37:31 +00002244 LHSI->getOperand(0)->getType())
2245 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2246 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2247 break;
2248
2249 case Instruction::Load:
2250 // Try to optimize things like "A[i] > 4" to index computations.
2251 if (GetElementPtrInst *GEP =
2252 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2253 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2254 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2255 !cast<LoadInst>(LHSI)->isVolatile())
2256 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2257 return Res;
2258 }
2259 break;
2260 }
2261 }
2262
2263 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2264 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2265 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2266 return NI;
2267 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2268 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2269 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2270 return NI;
2271
2272 // Test to see if the operands of the icmp are casted versions of other
2273 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
2274 // now.
2275 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002276 if (Op0->getType()->isPointerTy() &&
2277 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00002278 // We keep moving the cast from the left operand over to the right
2279 // operand, where it can often be eliminated completely.
2280 Op0 = CI->getOperand(0);
2281
2282 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2283 // so eliminate it as well.
2284 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2285 Op1 = CI2->getOperand(0);
2286
2287 // If Op1 is a constant, we can fold the cast into the constant.
2288 if (Op0->getType() != Op1->getType()) {
2289 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2290 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2291 } else {
2292 // Otherwise, cast the RHS right before the icmp
2293 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2294 }
2295 }
2296 return new ICmpInst(I.getPredicate(), Op0, Op1);
2297 }
2298 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002299
Chris Lattner02446fc2010-01-04 07:37:31 +00002300 if (isa<CastInst>(Op0)) {
2301 // Handle the special case of: icmp (cast bool to X), <cst>
2302 // This comes up when you have code like
2303 // int X = A < B;
2304 // if (X) ...
2305 // For generality, we handle any zero-extension of any operand comparison
2306 // with a constant or another cast from the same type.
2307 if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2308 if (Instruction *R = visitICmpInstWithCastAndCast(I))
2309 return R;
2310 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002311
Duncan Sandsa7724332011-02-17 07:46:37 +00002312 // Special logic for binary operators.
2313 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2314 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2315 if (BO0 || BO1) {
2316 CmpInst::Predicate Pred = I.getPredicate();
2317 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2318 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2319 NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2320 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2321 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2322 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2323 NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2324 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2325 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2326
2327 // Analyze the case when either Op0 or Op1 is an add instruction.
2328 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2329 Value *A = 0, *B = 0, *C = 0, *D = 0;
2330 if (BO0 && BO0->getOpcode() == Instruction::Add)
2331 A = BO0->getOperand(0), B = BO0->getOperand(1);
2332 if (BO1 && BO1->getOpcode() == Instruction::Add)
2333 C = BO1->getOperand(0), D = BO1->getOperand(1);
2334
2335 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2336 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2337 return new ICmpInst(Pred, A == Op1 ? B : A,
2338 Constant::getNullValue(Op1->getType()));
2339
2340 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2341 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2342 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2343 C == Op0 ? D : C);
2344
Duncan Sands39a7de72011-02-18 16:25:37 +00002345 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
Duncan Sandsa7724332011-02-17 07:46:37 +00002346 if (A && C && (A == C || A == D || B == C || B == D) &&
2347 NoOp0WrapProblem && NoOp1WrapProblem &&
2348 // Try not to increase register pressure.
2349 BO0->hasOneUse() && BO1->hasOneUse()) {
2350 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2351 Value *Y = (A == C || A == D) ? B : A;
2352 Value *Z = (C == A || C == B) ? D : C;
2353 return new ICmpInst(Pred, Y, Z);
2354 }
2355
2356 // Analyze the case when either Op0 or Op1 is a sub instruction.
2357 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2358 A = 0; B = 0; C = 0; D = 0;
2359 if (BO0 && BO0->getOpcode() == Instruction::Sub)
2360 A = BO0->getOperand(0), B = BO0->getOperand(1);
2361 if (BO1 && BO1->getOpcode() == Instruction::Sub)
2362 C = BO1->getOperand(0), D = BO1->getOperand(1);
2363
Duncan Sands39a7de72011-02-18 16:25:37 +00002364 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2365 if (A == Op1 && NoOp0WrapProblem)
2366 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2367
2368 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2369 if (C == Op0 && NoOp1WrapProblem)
2370 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2371
2372 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
Duncan Sandsa7724332011-02-17 07:46:37 +00002373 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2374 // Try not to increase register pressure.
2375 BO0->hasOneUse() && BO1->hasOneUse())
2376 return new ICmpInst(Pred, A, C);
2377
Duncan Sands39a7de72011-02-18 16:25:37 +00002378 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2379 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2380 // Try not to increase register pressure.
2381 BO0->hasOneUse() && BO1->hasOneUse())
2382 return new ICmpInst(Pred, D, B);
2383
Nick Lewycky9feda172011-03-05 04:28:48 +00002384 BinaryOperator *SRem = NULL;
Nick Lewyckydcf77572011-03-08 06:29:47 +00002385 // icmp (srem X, Y), Y
Nick Lewycky9feda172011-03-05 04:28:48 +00002386 if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2387 Op1 == BO0->getOperand(1))
2388 SRem = BO0;
Nick Lewyckydcf77572011-03-08 06:29:47 +00002389 // icmp Y, (srem X, Y)
Nick Lewycky9feda172011-03-05 04:28:48 +00002390 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2391 Op0 == BO1->getOperand(1))
2392 SRem = BO1;
2393 if (SRem) {
2394 // We don't check hasOneUse to avoid increasing register pressure because
2395 // the value we use is the same value this instruction was already using.
2396 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2397 default: break;
2398 case ICmpInst::ICMP_EQ:
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002399 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Nick Lewycky9feda172011-03-05 04:28:48 +00002400 case ICmpInst::ICMP_NE:
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002401 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Nick Lewycky9feda172011-03-05 04:28:48 +00002402 case ICmpInst::ICMP_SGT:
2403 case ICmpInst::ICMP_SGE:
2404 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2405 Constant::getAllOnesValue(SRem->getType()));
2406 case ICmpInst::ICMP_SLT:
2407 case ICmpInst::ICMP_SLE:
2408 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2409 Constant::getNullValue(SRem->getType()));
2410 }
2411 }
2412
Duncan Sandsa7724332011-02-17 07:46:37 +00002413 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2414 BO0->hasOneUse() && BO1->hasOneUse() &&
2415 BO0->getOperand(1) == BO1->getOperand(1)) {
2416 switch (BO0->getOpcode()) {
2417 default: break;
2418 case Instruction::Add:
2419 case Instruction::Sub:
2420 case Instruction::Xor:
2421 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2422 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2423 BO1->getOperand(0));
2424 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2425 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2426 if (CI->getValue().isSignBit()) {
2427 ICmpInst::Predicate Pred = I.isSigned()
2428 ? I.getUnsignedPredicate()
2429 : I.getSignedPredicate();
2430 return new ICmpInst(Pred, BO0->getOperand(0),
2431 BO1->getOperand(0));
Chris Lattner02446fc2010-01-04 07:37:31 +00002432 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002433
Chris Lattnerc73b24d2011-07-15 06:08:15 +00002434 if (CI->isMaxValue(true)) {
Duncan Sandsa7724332011-02-17 07:46:37 +00002435 ICmpInst::Predicate Pred = I.isSigned()
2436 ? I.getUnsignedPredicate()
2437 : I.getSignedPredicate();
2438 Pred = I.getSwappedPredicate(Pred);
2439 return new ICmpInst(Pred, BO0->getOperand(0),
2440 BO1->getOperand(0));
2441 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002442 }
Duncan Sandsa7724332011-02-17 07:46:37 +00002443 break;
2444 case Instruction::Mul:
2445 if (!I.isEquality())
2446 break;
2447
2448 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2449 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2450 // Mask = -1 >> count-trailing-zeros(Cst).
2451 if (!CI->isZero() && !CI->isOne()) {
2452 const APInt &AP = CI->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002453 ConstantInt *Mask = ConstantInt::get(I.getContext(),
Duncan Sandsa7724332011-02-17 07:46:37 +00002454 APInt::getLowBitsSet(AP.getBitWidth(),
2455 AP.getBitWidth() -
2456 AP.countTrailingZeros()));
2457 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2458 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2459 return new ICmpInst(I.getPredicate(), And1, And2);
2460 }
2461 }
2462 break;
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002463 case Instruction::UDiv:
2464 case Instruction::LShr:
2465 if (I.isSigned())
2466 break;
2467 // fall-through
2468 case Instruction::SDiv:
2469 case Instruction::AShr:
Eli Friedmanb6e7cd62011-05-05 21:59:18 +00002470 if (!BO0->isExact() || !BO1->isExact())
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002471 break;
2472 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2473 BO1->getOperand(0));
2474 case Instruction::Shl: {
2475 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2476 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2477 if (!NUW && !NSW)
2478 break;
2479 if (!NSW && I.isSigned())
2480 break;
2481 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2482 BO1->getOperand(0));
2483 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002484 }
2485 }
2486 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002487
Chris Lattner02446fc2010-01-04 07:37:31 +00002488 { Value *A, *B;
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002489 // ~x < ~y --> y < x
2490 // ~x < cst --> ~cst < x
2491 if (match(Op0, m_Not(m_Value(A)))) {
2492 if (match(Op1, m_Not(m_Value(B))))
2493 return new ICmpInst(I.getPredicate(), B, A);
Chris Lattner27a98482011-01-15 05:42:47 +00002494 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002495 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2496 }
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002497
2498 // (a+b) <u a --> llvm.uadd.with.overflow.
2499 // (a+b) <u b --> llvm.uadd.with.overflow.
2500 if (I.getPredicate() == ICmpInst::ICMP_ULT &&
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002501 match(Op0, m_Add(m_Value(A), m_Value(B))) &&
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002502 (Op1 == A || Op1 == B))
2503 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2504 return R;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002505
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002506 // a >u (a+b) --> llvm.uadd.with.overflow.
2507 // b >u (a+b) --> llvm.uadd.with.overflow.
2508 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2509 match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2510 (Op0 == A || Op0 == B))
2511 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2512 return R;
Chris Lattner02446fc2010-01-04 07:37:31 +00002513 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002514
Chris Lattner02446fc2010-01-04 07:37:31 +00002515 if (I.isEquality()) {
2516 Value *A, *B, *C, *D;
Duncan Sands39a7de72011-02-18 16:25:37 +00002517
Chris Lattner02446fc2010-01-04 07:37:31 +00002518 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2519 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
2520 Value *OtherVal = A == Op1 ? B : A;
2521 return new ICmpInst(I.getPredicate(), OtherVal,
2522 Constant::getNullValue(A->getType()));
2523 }
2524
2525 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2526 // A^c1 == C^c2 --> A == C^(c1^c2)
2527 ConstantInt *C1, *C2;
2528 if (match(B, m_ConstantInt(C1)) &&
2529 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2530 Constant *NC = ConstantInt::get(I.getContext(),
2531 C1->getValue() ^ C2->getValue());
Benjamin Kramera9390a42011-09-27 20:39:19 +00002532 Value *Xor = Builder->CreateXor(C, NC);
Chris Lattner02446fc2010-01-04 07:37:31 +00002533 return new ICmpInst(I.getPredicate(), A, Xor);
2534 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002535
Chris Lattner02446fc2010-01-04 07:37:31 +00002536 // A^B == A^D -> B == D
2537 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2538 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2539 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2540 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2541 }
2542 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002543
Chris Lattner02446fc2010-01-04 07:37:31 +00002544 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2545 (A == Op0 || B == Op0)) {
2546 // A == (A^B) -> B == 0
2547 Value *OtherVal = A == Op0 ? B : A;
2548 return new ICmpInst(I.getPredicate(), OtherVal,
2549 Constant::getNullValue(A->getType()));
2550 }
2551
Chris Lattner02446fc2010-01-04 07:37:31 +00002552 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002553 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
Chris Lattner5036ce42011-04-26 20:02:45 +00002554 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00002555 Value *X = 0, *Y = 0, *Z = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002556
Chris Lattner02446fc2010-01-04 07:37:31 +00002557 if (A == C) {
2558 X = B; Y = D; Z = A;
2559 } else if (A == D) {
2560 X = B; Y = C; Z = A;
2561 } else if (B == C) {
2562 X = A; Y = D; Z = B;
2563 } else if (B == D) {
2564 X = A; Y = C; Z = B;
2565 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002566
Chris Lattner02446fc2010-01-04 07:37:31 +00002567 if (X) { // Build (X^Y) & Z
Benjamin Kramera9390a42011-09-27 20:39:19 +00002568 Op1 = Builder->CreateXor(X, Y);
2569 Op1 = Builder->CreateAnd(Op1, Z);
Chris Lattner02446fc2010-01-04 07:37:31 +00002570 I.setOperand(0, Op1);
2571 I.setOperand(1, Constant::getNullValue(Op1->getType()));
2572 return &I;
2573 }
2574 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002575
Chris Lattner325eeb12011-04-26 20:18:20 +00002576 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2577 // "icmp (and X, mask), cst"
2578 uint64_t ShAmt = 0;
2579 ConstantInt *Cst1;
2580 if (Op0->hasOneUse() &&
2581 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
2582 m_ConstantInt(ShAmt))))) &&
2583 match(Op1, m_ConstantInt(Cst1)) &&
2584 // Only do this when A has multiple uses. This is most important to do
2585 // when it exposes other optimizations.
2586 !A->hasOneUse()) {
2587 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002588
Chris Lattner325eeb12011-04-26 20:18:20 +00002589 if (ShAmt < ASize) {
2590 APInt MaskV =
2591 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
2592 MaskV <<= ShAmt;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002593
Chris Lattner325eeb12011-04-26 20:18:20 +00002594 APInt CmpV = Cst1->getValue().zext(ASize);
2595 CmpV <<= ShAmt;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002596
Chris Lattner325eeb12011-04-26 20:18:20 +00002597 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
2598 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
2599 }
2600 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002601 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002602
Chris Lattner02446fc2010-01-04 07:37:31 +00002603 {
2604 Value *X; ConstantInt *Cst;
2605 // icmp X+Cst, X
2606 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2607 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2608
2609 // icmp X, X+Cst
2610 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2611 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2612 }
2613 return Changed ? &I : 0;
2614}
2615
2616
2617
2618
2619
2620
2621/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2622///
2623Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2624 Instruction *LHSI,
2625 Constant *RHSC) {
2626 if (!isa<ConstantFP>(RHSC)) return 0;
2627 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002628
Chris Lattner02446fc2010-01-04 07:37:31 +00002629 // Get the width of the mantissa. We don't want to hack on conversions that
2630 // might lose information from the integer, e.g. "i64 -> float"
2631 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2632 if (MantissaWidth == -1) return 0; // Unknown.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002633
Chris Lattner02446fc2010-01-04 07:37:31 +00002634 // Check to see that the input is converted from an integer type that is small
2635 // enough that preserves all bits. TODO: check here for "known" sign bits.
2636 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2637 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002638
Chris Lattner02446fc2010-01-04 07:37:31 +00002639 // If this is a uitofp instruction, we need an extra bit to hold the sign.
2640 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2641 if (LHSUnsigned)
2642 ++InputSize;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002643
Chris Lattner02446fc2010-01-04 07:37:31 +00002644 // If the conversion would lose info, don't hack on this.
2645 if ((int)InputSize > MantissaWidth)
2646 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002647
Chris Lattner02446fc2010-01-04 07:37:31 +00002648 // Otherwise, we can potentially simplify the comparison. We know that it
2649 // will always come through as an integer value and we know the constant is
2650 // not a NAN (it would have been previously simplified).
2651 assert(!RHS.isNaN() && "NaN comparison not already folded!");
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002652
Chris Lattner02446fc2010-01-04 07:37:31 +00002653 ICmpInst::Predicate Pred;
2654 switch (I.getPredicate()) {
2655 default: llvm_unreachable("Unexpected predicate!");
2656 case FCmpInst::FCMP_UEQ:
2657 case FCmpInst::FCMP_OEQ:
2658 Pred = ICmpInst::ICMP_EQ;
2659 break;
2660 case FCmpInst::FCMP_UGT:
2661 case FCmpInst::FCMP_OGT:
2662 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2663 break;
2664 case FCmpInst::FCMP_UGE:
2665 case FCmpInst::FCMP_OGE:
2666 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2667 break;
2668 case FCmpInst::FCMP_ULT:
2669 case FCmpInst::FCMP_OLT:
2670 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2671 break;
2672 case FCmpInst::FCMP_ULE:
2673 case FCmpInst::FCMP_OLE:
2674 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2675 break;
2676 case FCmpInst::FCMP_UNE:
2677 case FCmpInst::FCMP_ONE:
2678 Pred = ICmpInst::ICMP_NE;
2679 break;
2680 case FCmpInst::FCMP_ORD:
2681 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2682 case FCmpInst::FCMP_UNO:
2683 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2684 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002685
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002686 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002687
Chris Lattner02446fc2010-01-04 07:37:31 +00002688 // Now we know that the APFloat is a normal number, zero or inf.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002689
Chris Lattner02446fc2010-01-04 07:37:31 +00002690 // See if the FP constant is too large for the integer. For example,
2691 // comparing an i8 to 300.0.
2692 unsigned IntWidth = IntTy->getScalarSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002693
Chris Lattner02446fc2010-01-04 07:37:31 +00002694 if (!LHSUnsigned) {
2695 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
2696 // and large values.
2697 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2698 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2699 APFloat::rmNearestTiesToEven);
2700 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
2701 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
2702 Pred == ICmpInst::ICMP_SLE)
2703 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2704 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2705 }
2706 } else {
2707 // If the RHS value is > UnsignedMax, fold the comparison. This handles
2708 // +INF and large values.
2709 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2710 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2711 APFloat::rmNearestTiesToEven);
2712 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
2713 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
2714 Pred == ICmpInst::ICMP_ULE)
2715 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2716 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2717 }
2718 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002719
Chris Lattner02446fc2010-01-04 07:37:31 +00002720 if (!LHSUnsigned) {
2721 // See if the RHS value is < SignedMin.
2722 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2723 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2724 APFloat::rmNearestTiesToEven);
2725 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2726 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2727 Pred == ICmpInst::ICMP_SGE)
2728 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2729 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2730 }
Devang Patela2e0f6b2012-02-13 23:05:18 +00002731 } else {
2732 // See if the RHS value is < UnsignedMin.
2733 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2734 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
2735 APFloat::rmNearestTiesToEven);
2736 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
2737 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
2738 Pred == ICmpInst::ICMP_UGE)
2739 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2740 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2741 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002742 }
2743
2744 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2745 // [0, UMAX], but it may still be fractional. See if it is fractional by
2746 // casting the FP value to the integer value and back, checking for equality.
2747 // Don't do this for zero, because -0.0 is not fractional.
2748 Constant *RHSInt = LHSUnsigned
2749 ? ConstantExpr::getFPToUI(RHSC, IntTy)
2750 : ConstantExpr::getFPToSI(RHSC, IntTy);
2751 if (!RHS.isZero()) {
2752 bool Equal = LHSUnsigned
2753 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2754 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2755 if (!Equal) {
2756 // If we had a comparison against a fractional value, we have to adjust
2757 // the compare predicate and sometimes the value. RHSC is rounded towards
2758 // zero at this point.
2759 switch (Pred) {
2760 default: llvm_unreachable("Unexpected integer comparison!");
2761 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
2762 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2763 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
2764 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2765 case ICmpInst::ICMP_ULE:
2766 // (float)int <= 4.4 --> int <= 4
2767 // (float)int <= -4.4 --> false
2768 if (RHS.isNegative())
2769 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2770 break;
2771 case ICmpInst::ICMP_SLE:
2772 // (float)int <= 4.4 --> int <= 4
2773 // (float)int <= -4.4 --> int < -4
2774 if (RHS.isNegative())
2775 Pred = ICmpInst::ICMP_SLT;
2776 break;
2777 case ICmpInst::ICMP_ULT:
2778 // (float)int < -4.4 --> false
2779 // (float)int < 4.4 --> int <= 4
2780 if (RHS.isNegative())
2781 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2782 Pred = ICmpInst::ICMP_ULE;
2783 break;
2784 case ICmpInst::ICMP_SLT:
2785 // (float)int < -4.4 --> int < -4
2786 // (float)int < 4.4 --> int <= 4
2787 if (!RHS.isNegative())
2788 Pred = ICmpInst::ICMP_SLE;
2789 break;
2790 case ICmpInst::ICMP_UGT:
2791 // (float)int > 4.4 --> int > 4
2792 // (float)int > -4.4 --> true
2793 if (RHS.isNegative())
2794 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2795 break;
2796 case ICmpInst::ICMP_SGT:
2797 // (float)int > 4.4 --> int > 4
2798 // (float)int > -4.4 --> int >= -4
2799 if (RHS.isNegative())
2800 Pred = ICmpInst::ICMP_SGE;
2801 break;
2802 case ICmpInst::ICMP_UGE:
2803 // (float)int >= -4.4 --> true
2804 // (float)int >= 4.4 --> int > 4
2805 if (!RHS.isNegative())
2806 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2807 Pred = ICmpInst::ICMP_UGT;
2808 break;
2809 case ICmpInst::ICMP_SGE:
2810 // (float)int >= -4.4 --> int >= -4
2811 // (float)int >= 4.4 --> int > 4
2812 if (!RHS.isNegative())
2813 Pred = ICmpInst::ICMP_SGT;
2814 break;
2815 }
2816 }
2817 }
2818
2819 // Lower this FP comparison into an appropriate integer version of the
2820 // comparison.
2821 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2822}
2823
2824Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2825 bool Changed = false;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002826
Chris Lattner02446fc2010-01-04 07:37:31 +00002827 /// Orders the operands of the compare so that they are listed from most
2828 /// complex to least complex. This puts constants before unary operators,
2829 /// before binary operators.
2830 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2831 I.swapOperands();
2832 Changed = true;
2833 }
2834
2835 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002836
Chris Lattner02446fc2010-01-04 07:37:31 +00002837 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2838 return ReplaceInstUsesWith(I, V);
2839
2840 // Simplify 'fcmp pred X, X'
2841 if (Op0 == Op1) {
2842 switch (I.getPredicate()) {
2843 default: llvm_unreachable("Unknown predicate!");
2844 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
2845 case FCmpInst::FCMP_ULT: // True if unordered or less than
2846 case FCmpInst::FCMP_UGT: // True if unordered or greater than
2847 case FCmpInst::FCMP_UNE: // True if unordered or not equal
2848 // Canonicalize these to be 'fcmp uno %X, 0.0'.
2849 I.setPredicate(FCmpInst::FCMP_UNO);
2850 I.setOperand(1, Constant::getNullValue(Op0->getType()));
2851 return &I;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002852
Chris Lattner02446fc2010-01-04 07:37:31 +00002853 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
2854 case FCmpInst::FCMP_OEQ: // True if ordered and equal
2855 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
2856 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
2857 // Canonicalize these to be 'fcmp ord %X, 0.0'.
2858 I.setPredicate(FCmpInst::FCMP_ORD);
2859 I.setOperand(1, Constant::getNullValue(Op0->getType()));
2860 return &I;
2861 }
2862 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002863
Chris Lattner02446fc2010-01-04 07:37:31 +00002864 // Handle fcmp with constant RHS
2865 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2866 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2867 switch (LHSI->getOpcode()) {
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002868 case Instruction::FPExt: {
2869 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
2870 FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
2871 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
2872 if (!RHSF)
2873 break;
2874
Benjamin Kramer7ebdc372011-03-31 21:35:49 +00002875 // We can't convert a PPC double double.
2876 if (RHSF->getType()->isPPC_FP128Ty())
2877 break;
2878
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002879 const fltSemantics *Sem;
2880 // FIXME: This shouldn't be here.
Dan Gohmance163392011-12-17 00:04:22 +00002881 if (LHSExt->getSrcTy()->isHalfTy())
2882 Sem = &APFloat::IEEEhalf;
2883 else if (LHSExt->getSrcTy()->isFloatTy())
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002884 Sem = &APFloat::IEEEsingle;
2885 else if (LHSExt->getSrcTy()->isDoubleTy())
2886 Sem = &APFloat::IEEEdouble;
2887 else if (LHSExt->getSrcTy()->isFP128Ty())
2888 Sem = &APFloat::IEEEquad;
2889 else if (LHSExt->getSrcTy()->isX86_FP80Ty())
2890 Sem = &APFloat::x87DoubleExtended;
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002891 else
2892 break;
2893
2894 bool Lossy;
2895 APFloat F = RHSF->getValueAPF();
2896 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
2897
Jim Grosbachcbf676b2011-09-30 18:45:50 +00002898 // Avoid lossy conversions and denormals. Zero is a special case
2899 // that's OK to convert.
Jim Grosbach68e05fb2011-09-30 19:58:46 +00002900 APFloat Fabs = F;
2901 Fabs.clearSign();
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002902 if (!Lossy &&
Jim Grosbach68e05fb2011-09-30 19:58:46 +00002903 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
2904 APFloat::cmpLessThan) || Fabs.isZero()))
Jim Grosbachcbf676b2011-09-30 18:45:50 +00002905
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002906 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
2907 ConstantFP::get(RHSC->getContext(), F));
2908 break;
2909 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002910 case Instruction::PHI:
2911 // Only fold fcmp into the PHI if the phi and fcmp are in the same
2912 // block. If in the same block, we're encouraging jump threading. If
2913 // not, we are just pessimizing the code by making an i1 phi.
2914 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00002915 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00002916 return NV;
2917 break;
2918 case Instruction::SIToFP:
2919 case Instruction::UIToFP:
2920 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2921 return NV;
2922 break;
2923 case Instruction::Select: {
2924 // If either operand of the select is a constant, we can fold the
2925 // comparison into the select arms, which will cause one to be
2926 // constant folded and the select turned into a bitwise or.
2927 Value *Op1 = 0, *Op2 = 0;
2928 if (LHSI->hasOneUse()) {
2929 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2930 // Fold the known value into the constant operand.
2931 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2932 // Insert a new FCmp of the other select operand.
2933 Op2 = Builder->CreateFCmp(I.getPredicate(),
2934 LHSI->getOperand(2), RHSC, I.getName());
2935 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2936 // Fold the known value into the constant operand.
2937 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2938 // Insert a new FCmp of the other select operand.
2939 Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2940 RHSC, I.getName());
2941 }
2942 }
2943
2944 if (Op1)
2945 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2946 break;
2947 }
Benjamin Kramer0db50182011-03-31 10:12:15 +00002948 case Instruction::FSub: {
2949 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
2950 Value *Op;
2951 if (match(LHSI, m_FNeg(m_Value(Op))))
2952 return new FCmpInst(I.getSwappedPredicate(), Op,
2953 ConstantExpr::getFNeg(RHSC));
2954 break;
2955 }
Dan Gohman39516a62010-02-24 06:46:09 +00002956 case Instruction::Load:
2957 if (GetElementPtrInst *GEP =
2958 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2959 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2960 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2961 !cast<LoadInst>(LHSI)->isVolatile())
2962 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2963 return Res;
2964 }
2965 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00002966 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002967 }
2968
Benjamin Kramer00e00d62011-03-31 10:46:03 +00002969 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
Benjamin Kramer68b4bd02011-03-31 10:12:22 +00002970 Value *X, *Y;
2971 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
Benjamin Kramer00e00d62011-03-31 10:46:03 +00002972 return new FCmpInst(I.getSwappedPredicate(), X, Y);
Benjamin Kramer68b4bd02011-03-31 10:12:22 +00002973
Benjamin Kramercd0274c2011-03-31 10:11:58 +00002974 // fcmp (fpext x), (fpext y) -> fcmp x, y
2975 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
2976 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
2977 if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
2978 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
2979 RHSExt->getOperand(0));
2980
Chris Lattner02446fc2010-01-04 07:37:31 +00002981 return Changed ? &I : 0;
2982}