blob: baa41f9a6cf29d3ae0ec8cab805fe9ccce842b00 [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Chris Lattnerabf05b22003-08-03 21:55:55 +000016#include "X86GenInstrInfo.inc"
Evan Chengaa3c1412006-05-30 21:45:53 +000017#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng0488db92007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000028
Brian Gaeked0fde302003-11-11 22:41:34 +000029using namespace llvm;
30
Owen Anderson43dbe052008-01-07 01:35:02 +000031namespace {
32 cl::opt<bool>
33 NoFusing("disable-spill-fusing",
34 cl::desc("Disable fusing of spill code into instructions"));
35 cl::opt<bool>
36 PrintFailedFusing("print-failed-fuse-candidates",
37 cl::desc("Print instructions that the allocator wants to"
38 " fuse, but the X86 backend currently can't"),
39 cl::Hidden);
40}
41
Evan Chengaa3c1412006-05-30 21:45:53 +000042X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattner64105522008-01-01 01:03:04 +000043 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng25ab6902006-09-08 06:48:29 +000044 TM(tm), RI(tm, *this) {
Owen Anderson43dbe052008-01-07 01:35:02 +000045 SmallVector<unsigned,16> AmbEntries;
46 static const unsigned OpTbl2Addr[][2] = {
47 { X86::ADC32ri, X86::ADC32mi },
48 { X86::ADC32ri8, X86::ADC32mi8 },
49 { X86::ADC32rr, X86::ADC32mr },
50 { X86::ADC64ri32, X86::ADC64mi32 },
51 { X86::ADC64ri8, X86::ADC64mi8 },
52 { X86::ADC64rr, X86::ADC64mr },
53 { X86::ADD16ri, X86::ADD16mi },
54 { X86::ADD16ri8, X86::ADD16mi8 },
55 { X86::ADD16rr, X86::ADD16mr },
56 { X86::ADD32ri, X86::ADD32mi },
57 { X86::ADD32ri8, X86::ADD32mi8 },
58 { X86::ADD32rr, X86::ADD32mr },
59 { X86::ADD64ri32, X86::ADD64mi32 },
60 { X86::ADD64ri8, X86::ADD64mi8 },
61 { X86::ADD64rr, X86::ADD64mr },
62 { X86::ADD8ri, X86::ADD8mi },
63 { X86::ADD8rr, X86::ADD8mr },
64 { X86::AND16ri, X86::AND16mi },
65 { X86::AND16ri8, X86::AND16mi8 },
66 { X86::AND16rr, X86::AND16mr },
67 { X86::AND32ri, X86::AND32mi },
68 { X86::AND32ri8, X86::AND32mi8 },
69 { X86::AND32rr, X86::AND32mr },
70 { X86::AND64ri32, X86::AND64mi32 },
71 { X86::AND64ri8, X86::AND64mi8 },
72 { X86::AND64rr, X86::AND64mr },
73 { X86::AND8ri, X86::AND8mi },
74 { X86::AND8rr, X86::AND8mr },
75 { X86::DEC16r, X86::DEC16m },
76 { X86::DEC32r, X86::DEC32m },
77 { X86::DEC64_16r, X86::DEC64_16m },
78 { X86::DEC64_32r, X86::DEC64_32m },
79 { X86::DEC64r, X86::DEC64m },
80 { X86::DEC8r, X86::DEC8m },
81 { X86::INC16r, X86::INC16m },
82 { X86::INC32r, X86::INC32m },
83 { X86::INC64_16r, X86::INC64_16m },
84 { X86::INC64_32r, X86::INC64_32m },
85 { X86::INC64r, X86::INC64m },
86 { X86::INC8r, X86::INC8m },
87 { X86::NEG16r, X86::NEG16m },
88 { X86::NEG32r, X86::NEG32m },
89 { X86::NEG64r, X86::NEG64m },
90 { X86::NEG8r, X86::NEG8m },
91 { X86::NOT16r, X86::NOT16m },
92 { X86::NOT32r, X86::NOT32m },
93 { X86::NOT64r, X86::NOT64m },
94 { X86::NOT8r, X86::NOT8m },
95 { X86::OR16ri, X86::OR16mi },
96 { X86::OR16ri8, X86::OR16mi8 },
97 { X86::OR16rr, X86::OR16mr },
98 { X86::OR32ri, X86::OR32mi },
99 { X86::OR32ri8, X86::OR32mi8 },
100 { X86::OR32rr, X86::OR32mr },
101 { X86::OR64ri32, X86::OR64mi32 },
102 { X86::OR64ri8, X86::OR64mi8 },
103 { X86::OR64rr, X86::OR64mr },
104 { X86::OR8ri, X86::OR8mi },
105 { X86::OR8rr, X86::OR8mr },
106 { X86::ROL16r1, X86::ROL16m1 },
107 { X86::ROL16rCL, X86::ROL16mCL },
108 { X86::ROL16ri, X86::ROL16mi },
109 { X86::ROL32r1, X86::ROL32m1 },
110 { X86::ROL32rCL, X86::ROL32mCL },
111 { X86::ROL32ri, X86::ROL32mi },
112 { X86::ROL64r1, X86::ROL64m1 },
113 { X86::ROL64rCL, X86::ROL64mCL },
114 { X86::ROL64ri, X86::ROL64mi },
115 { X86::ROL8r1, X86::ROL8m1 },
116 { X86::ROL8rCL, X86::ROL8mCL },
117 { X86::ROL8ri, X86::ROL8mi },
118 { X86::ROR16r1, X86::ROR16m1 },
119 { X86::ROR16rCL, X86::ROR16mCL },
120 { X86::ROR16ri, X86::ROR16mi },
121 { X86::ROR32r1, X86::ROR32m1 },
122 { X86::ROR32rCL, X86::ROR32mCL },
123 { X86::ROR32ri, X86::ROR32mi },
124 { X86::ROR64r1, X86::ROR64m1 },
125 { X86::ROR64rCL, X86::ROR64mCL },
126 { X86::ROR64ri, X86::ROR64mi },
127 { X86::ROR8r1, X86::ROR8m1 },
128 { X86::ROR8rCL, X86::ROR8mCL },
129 { X86::ROR8ri, X86::ROR8mi },
130 { X86::SAR16r1, X86::SAR16m1 },
131 { X86::SAR16rCL, X86::SAR16mCL },
132 { X86::SAR16ri, X86::SAR16mi },
133 { X86::SAR32r1, X86::SAR32m1 },
134 { X86::SAR32rCL, X86::SAR32mCL },
135 { X86::SAR32ri, X86::SAR32mi },
136 { X86::SAR64r1, X86::SAR64m1 },
137 { X86::SAR64rCL, X86::SAR64mCL },
138 { X86::SAR64ri, X86::SAR64mi },
139 { X86::SAR8r1, X86::SAR8m1 },
140 { X86::SAR8rCL, X86::SAR8mCL },
141 { X86::SAR8ri, X86::SAR8mi },
142 { X86::SBB32ri, X86::SBB32mi },
143 { X86::SBB32ri8, X86::SBB32mi8 },
144 { X86::SBB32rr, X86::SBB32mr },
145 { X86::SBB64ri32, X86::SBB64mi32 },
146 { X86::SBB64ri8, X86::SBB64mi8 },
147 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson43dbe052008-01-07 01:35:02 +0000148 { X86::SHL16rCL, X86::SHL16mCL },
149 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000150 { X86::SHL32rCL, X86::SHL32mCL },
151 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000152 { X86::SHL64rCL, X86::SHL64mCL },
153 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000154 { X86::SHL8rCL, X86::SHL8mCL },
155 { X86::SHL8ri, X86::SHL8mi },
156 { X86::SHLD16rrCL, X86::SHLD16mrCL },
157 { X86::SHLD16rri8, X86::SHLD16mri8 },
158 { X86::SHLD32rrCL, X86::SHLD32mrCL },
159 { X86::SHLD32rri8, X86::SHLD32mri8 },
160 { X86::SHLD64rrCL, X86::SHLD64mrCL },
161 { X86::SHLD64rri8, X86::SHLD64mri8 },
162 { X86::SHR16r1, X86::SHR16m1 },
163 { X86::SHR16rCL, X86::SHR16mCL },
164 { X86::SHR16ri, X86::SHR16mi },
165 { X86::SHR32r1, X86::SHR32m1 },
166 { X86::SHR32rCL, X86::SHR32mCL },
167 { X86::SHR32ri, X86::SHR32mi },
168 { X86::SHR64r1, X86::SHR64m1 },
169 { X86::SHR64rCL, X86::SHR64mCL },
170 { X86::SHR64ri, X86::SHR64mi },
171 { X86::SHR8r1, X86::SHR8m1 },
172 { X86::SHR8rCL, X86::SHR8mCL },
173 { X86::SHR8ri, X86::SHR8mi },
174 { X86::SHRD16rrCL, X86::SHRD16mrCL },
175 { X86::SHRD16rri8, X86::SHRD16mri8 },
176 { X86::SHRD32rrCL, X86::SHRD32mrCL },
177 { X86::SHRD32rri8, X86::SHRD32mri8 },
178 { X86::SHRD64rrCL, X86::SHRD64mrCL },
179 { X86::SHRD64rri8, X86::SHRD64mri8 },
180 { X86::SUB16ri, X86::SUB16mi },
181 { X86::SUB16ri8, X86::SUB16mi8 },
182 { X86::SUB16rr, X86::SUB16mr },
183 { X86::SUB32ri, X86::SUB32mi },
184 { X86::SUB32ri8, X86::SUB32mi8 },
185 { X86::SUB32rr, X86::SUB32mr },
186 { X86::SUB64ri32, X86::SUB64mi32 },
187 { X86::SUB64ri8, X86::SUB64mi8 },
188 { X86::SUB64rr, X86::SUB64mr },
189 { X86::SUB8ri, X86::SUB8mi },
190 { X86::SUB8rr, X86::SUB8mr },
191 { X86::XOR16ri, X86::XOR16mi },
192 { X86::XOR16ri8, X86::XOR16mi8 },
193 { X86::XOR16rr, X86::XOR16mr },
194 { X86::XOR32ri, X86::XOR32mi },
195 { X86::XOR32ri8, X86::XOR32mi8 },
196 { X86::XOR32rr, X86::XOR32mr },
197 { X86::XOR64ri32, X86::XOR64mi32 },
198 { X86::XOR64ri8, X86::XOR64mi8 },
199 { X86::XOR64rr, X86::XOR64mr },
200 { X86::XOR8ri, X86::XOR8mi },
201 { X86::XOR8rr, X86::XOR8mr }
202 };
203
204 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
205 unsigned RegOp = OpTbl2Addr[i][0];
206 unsigned MemOp = OpTbl2Addr[i][1];
207 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
208 assert(false && "Duplicated entries?");
209 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
210 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
211 std::make_pair(RegOp, AuxInfo))))
212 AmbEntries.push_back(MemOp);
213 }
214
215 // If the third value is 1, then it's folding either a load or a store.
216 static const unsigned OpTbl0[][3] = {
217 { X86::CALL32r, X86::CALL32m, 1 },
218 { X86::CALL64r, X86::CALL64m, 1 },
219 { X86::CMP16ri, X86::CMP16mi, 1 },
220 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000221 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000222 { X86::CMP32ri, X86::CMP32mi, 1 },
223 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000224 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000225 { X86::CMP64ri32, X86::CMP64mi32, 1 },
226 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000227 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000228 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000229 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000230 { X86::DIV16r, X86::DIV16m, 1 },
231 { X86::DIV32r, X86::DIV32m, 1 },
232 { X86::DIV64r, X86::DIV64m, 1 },
233 { X86::DIV8r, X86::DIV8m, 1 },
234 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
235 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
236 { X86::IDIV16r, X86::IDIV16m, 1 },
237 { X86::IDIV32r, X86::IDIV32m, 1 },
238 { X86::IDIV64r, X86::IDIV64m, 1 },
239 { X86::IDIV8r, X86::IDIV8m, 1 },
240 { X86::IMUL16r, X86::IMUL16m, 1 },
241 { X86::IMUL32r, X86::IMUL32m, 1 },
242 { X86::IMUL64r, X86::IMUL64m, 1 },
243 { X86::IMUL8r, X86::IMUL8m, 1 },
244 { X86::JMP32r, X86::JMP32m, 1 },
245 { X86::JMP64r, X86::JMP64m, 1 },
246 { X86::MOV16ri, X86::MOV16mi, 0 },
247 { X86::MOV16rr, X86::MOV16mr, 0 },
248 { X86::MOV16to16_, X86::MOV16_mr, 0 },
249 { X86::MOV32ri, X86::MOV32mi, 0 },
250 { X86::MOV32rr, X86::MOV32mr, 0 },
251 { X86::MOV32to32_, X86::MOV32_mr, 0 },
252 { X86::MOV64ri32, X86::MOV64mi32, 0 },
253 { X86::MOV64rr, X86::MOV64mr, 0 },
254 { X86::MOV8ri, X86::MOV8mi, 0 },
255 { X86::MOV8rr, X86::MOV8mr, 0 },
256 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
257 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
258 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
259 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
260 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
261 { X86::MOVSDrr, X86::MOVSDmr, 0 },
262 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
263 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
264 { X86::MOVSSrr, X86::MOVSSmr, 0 },
265 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
266 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
267 { X86::MUL16r, X86::MUL16m, 1 },
268 { X86::MUL32r, X86::MUL32m, 1 },
269 { X86::MUL64r, X86::MUL64m, 1 },
270 { X86::MUL8r, X86::MUL8m, 1 },
271 { X86::SETAEr, X86::SETAEm, 0 },
272 { X86::SETAr, X86::SETAm, 0 },
273 { X86::SETBEr, X86::SETBEm, 0 },
274 { X86::SETBr, X86::SETBm, 0 },
275 { X86::SETEr, X86::SETEm, 0 },
276 { X86::SETGEr, X86::SETGEm, 0 },
277 { X86::SETGr, X86::SETGm, 0 },
278 { X86::SETLEr, X86::SETLEm, 0 },
279 { X86::SETLr, X86::SETLm, 0 },
280 { X86::SETNEr, X86::SETNEm, 0 },
281 { X86::SETNPr, X86::SETNPm, 0 },
282 { X86::SETNSr, X86::SETNSm, 0 },
283 { X86::SETPr, X86::SETPm, 0 },
284 { X86::SETSr, X86::SETSm, 0 },
285 { X86::TAILJMPr, X86::TAILJMPm, 1 },
286 { X86::TEST16ri, X86::TEST16mi, 1 },
287 { X86::TEST32ri, X86::TEST32mi, 1 },
288 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000289 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000290 };
291
292 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
293 unsigned RegOp = OpTbl0[i][0];
294 unsigned MemOp = OpTbl0[i][1];
295 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
296 assert(false && "Duplicated entries?");
297 unsigned FoldedLoad = OpTbl0[i][2];
298 // Index 0, folded load or store.
299 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
300 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
301 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
302 std::make_pair(RegOp, AuxInfo))))
303 AmbEntries.push_back(MemOp);
304 }
305
306 static const unsigned OpTbl1[][2] = {
307 { X86::CMP16rr, X86::CMP16rm },
308 { X86::CMP32rr, X86::CMP32rm },
309 { X86::CMP64rr, X86::CMP64rm },
310 { X86::CMP8rr, X86::CMP8rm },
311 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
312 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
313 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
314 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
315 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
316 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
317 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
318 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
319 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
320 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
321 { X86::FsMOVAPDrr, X86::MOVSDrm },
322 { X86::FsMOVAPSrr, X86::MOVSSrm },
323 { X86::IMUL16rri, X86::IMUL16rmi },
324 { X86::IMUL16rri8, X86::IMUL16rmi8 },
325 { X86::IMUL32rri, X86::IMUL32rmi },
326 { X86::IMUL32rri8, X86::IMUL32rmi8 },
327 { X86::IMUL64rri32, X86::IMUL64rmi32 },
328 { X86::IMUL64rri8, X86::IMUL64rmi8 },
329 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
330 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
331 { X86::Int_COMISDrr, X86::Int_COMISDrm },
332 { X86::Int_COMISSrr, X86::Int_COMISSrm },
333 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
334 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
335 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
336 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
337 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
338 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
339 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
340 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
341 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
342 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
343 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
344 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
345 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
346 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
347 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
348 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
349 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
350 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
351 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
352 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
353 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
354 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
355 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
356 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
357 { X86::MOV16rr, X86::MOV16rm },
358 { X86::MOV16to16_, X86::MOV16_rm },
359 { X86::MOV32rr, X86::MOV32rm },
360 { X86::MOV32to32_, X86::MOV32_rm },
361 { X86::MOV64rr, X86::MOV64rm },
362 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
363 { X86::MOV64toSDrr, X86::MOV64toSDrm },
364 { X86::MOV8rr, X86::MOV8rm },
365 { X86::MOVAPDrr, X86::MOVAPDrm },
366 { X86::MOVAPSrr, X86::MOVAPSrm },
367 { X86::MOVDDUPrr, X86::MOVDDUPrm },
368 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
369 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
370 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
371 { X86::MOVSDrr, X86::MOVSDrm },
372 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
373 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
374 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
375 { X86::MOVSSrr, X86::MOVSSrm },
376 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
377 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
378 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
379 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
380 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
381 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
382 { X86::MOVUPDrr, X86::MOVUPDrm },
383 { X86::MOVUPSrr, X86::MOVUPSrm },
384 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
385 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
386 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
387 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
388 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
389 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
390 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
391 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
392 { X86::PSHUFDri, X86::PSHUFDmi },
393 { X86::PSHUFHWri, X86::PSHUFHWmi },
394 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000395 { X86::RCPPSr, X86::RCPPSm },
396 { X86::RCPPSr_Int, X86::RCPPSm_Int },
397 { X86::RSQRTPSr, X86::RSQRTPSm },
398 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
399 { X86::RSQRTSSr, X86::RSQRTSSm },
400 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
401 { X86::SQRTPDr, X86::SQRTPDm },
402 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
403 { X86::SQRTPSr, X86::SQRTPSm },
404 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
405 { X86::SQRTSDr, X86::SQRTSDm },
406 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
407 { X86::SQRTSSr, X86::SQRTSSm },
408 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
409 { X86::TEST16rr, X86::TEST16rm },
410 { X86::TEST32rr, X86::TEST32rm },
411 { X86::TEST64rr, X86::TEST64rm },
412 { X86::TEST8rr, X86::TEST8rm },
413 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
414 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000415 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson43dbe052008-01-07 01:35:02 +0000416 };
417
418 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
419 unsigned RegOp = OpTbl1[i][0];
420 unsigned MemOp = OpTbl1[i][1];
421 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
422 assert(false && "Duplicated entries?");
423 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
424 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
425 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
426 std::make_pair(RegOp, AuxInfo))))
427 AmbEntries.push_back(MemOp);
428 }
429
430 static const unsigned OpTbl2[][2] = {
431 { X86::ADC32rr, X86::ADC32rm },
432 { X86::ADC64rr, X86::ADC64rm },
433 { X86::ADD16rr, X86::ADD16rm },
434 { X86::ADD32rr, X86::ADD32rm },
435 { X86::ADD64rr, X86::ADD64rm },
436 { X86::ADD8rr, X86::ADD8rm },
437 { X86::ADDPDrr, X86::ADDPDrm },
438 { X86::ADDPSrr, X86::ADDPSrm },
439 { X86::ADDSDrr, X86::ADDSDrm },
440 { X86::ADDSSrr, X86::ADDSSrm },
441 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
442 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
443 { X86::AND16rr, X86::AND16rm },
444 { X86::AND32rr, X86::AND32rm },
445 { X86::AND64rr, X86::AND64rm },
446 { X86::AND8rr, X86::AND8rm },
447 { X86::ANDNPDrr, X86::ANDNPDrm },
448 { X86::ANDNPSrr, X86::ANDNPSrm },
449 { X86::ANDPDrr, X86::ANDPDrm },
450 { X86::ANDPSrr, X86::ANDPSrm },
451 { X86::CMOVA16rr, X86::CMOVA16rm },
452 { X86::CMOVA32rr, X86::CMOVA32rm },
453 { X86::CMOVA64rr, X86::CMOVA64rm },
454 { X86::CMOVAE16rr, X86::CMOVAE16rm },
455 { X86::CMOVAE32rr, X86::CMOVAE32rm },
456 { X86::CMOVAE64rr, X86::CMOVAE64rm },
457 { X86::CMOVB16rr, X86::CMOVB16rm },
458 { X86::CMOVB32rr, X86::CMOVB32rm },
459 { X86::CMOVB64rr, X86::CMOVB64rm },
460 { X86::CMOVBE16rr, X86::CMOVBE16rm },
461 { X86::CMOVBE32rr, X86::CMOVBE32rm },
462 { X86::CMOVBE64rr, X86::CMOVBE64rm },
463 { X86::CMOVE16rr, X86::CMOVE16rm },
464 { X86::CMOVE32rr, X86::CMOVE32rm },
465 { X86::CMOVE64rr, X86::CMOVE64rm },
466 { X86::CMOVG16rr, X86::CMOVG16rm },
467 { X86::CMOVG32rr, X86::CMOVG32rm },
468 { X86::CMOVG64rr, X86::CMOVG64rm },
469 { X86::CMOVGE16rr, X86::CMOVGE16rm },
470 { X86::CMOVGE32rr, X86::CMOVGE32rm },
471 { X86::CMOVGE64rr, X86::CMOVGE64rm },
472 { X86::CMOVL16rr, X86::CMOVL16rm },
473 { X86::CMOVL32rr, X86::CMOVL32rm },
474 { X86::CMOVL64rr, X86::CMOVL64rm },
475 { X86::CMOVLE16rr, X86::CMOVLE16rm },
476 { X86::CMOVLE32rr, X86::CMOVLE32rm },
477 { X86::CMOVLE64rr, X86::CMOVLE64rm },
478 { X86::CMOVNE16rr, X86::CMOVNE16rm },
479 { X86::CMOVNE32rr, X86::CMOVNE32rm },
480 { X86::CMOVNE64rr, X86::CMOVNE64rm },
481 { X86::CMOVNP16rr, X86::CMOVNP16rm },
482 { X86::CMOVNP32rr, X86::CMOVNP32rm },
483 { X86::CMOVNP64rr, X86::CMOVNP64rm },
484 { X86::CMOVNS16rr, X86::CMOVNS16rm },
485 { X86::CMOVNS32rr, X86::CMOVNS32rm },
486 { X86::CMOVNS64rr, X86::CMOVNS64rm },
487 { X86::CMOVP16rr, X86::CMOVP16rm },
488 { X86::CMOVP32rr, X86::CMOVP32rm },
489 { X86::CMOVP64rr, X86::CMOVP64rm },
490 { X86::CMOVS16rr, X86::CMOVS16rm },
491 { X86::CMOVS32rr, X86::CMOVS32rm },
492 { X86::CMOVS64rr, X86::CMOVS64rm },
493 { X86::CMPPDrri, X86::CMPPDrmi },
494 { X86::CMPPSrri, X86::CMPPSrmi },
495 { X86::CMPSDrr, X86::CMPSDrm },
496 { X86::CMPSSrr, X86::CMPSSrm },
497 { X86::DIVPDrr, X86::DIVPDrm },
498 { X86::DIVPSrr, X86::DIVPSrm },
499 { X86::DIVSDrr, X86::DIVSDrm },
500 { X86::DIVSSrr, X86::DIVSSrm },
Evan Cheng33663fc2008-02-08 00:12:56 +0000501 { X86::FsANDNPDrr, X86::FsANDNPDrm },
502 { X86::FsANDNPSrr, X86::FsANDNPSrm },
503 { X86::FsANDPDrr, X86::FsANDPDrm },
504 { X86::FsANDPSrr, X86::FsANDPSrm },
505 { X86::FsORPDrr, X86::FsORPDrm },
506 { X86::FsORPSrr, X86::FsORPSrm },
507 { X86::FsXORPDrr, X86::FsXORPDrm },
508 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson43dbe052008-01-07 01:35:02 +0000509 { X86::HADDPDrr, X86::HADDPDrm },
510 { X86::HADDPSrr, X86::HADDPSrm },
511 { X86::HSUBPDrr, X86::HSUBPDrm },
512 { X86::HSUBPSrr, X86::HSUBPSrm },
513 { X86::IMUL16rr, X86::IMUL16rm },
514 { X86::IMUL32rr, X86::IMUL32rm },
515 { X86::IMUL64rr, X86::IMUL64rm },
516 { X86::MAXPDrr, X86::MAXPDrm },
517 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
518 { X86::MAXPSrr, X86::MAXPSrm },
519 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
520 { X86::MAXSDrr, X86::MAXSDrm },
521 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
522 { X86::MAXSSrr, X86::MAXSSrm },
523 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
524 { X86::MINPDrr, X86::MINPDrm },
525 { X86::MINPDrr_Int, X86::MINPDrm_Int },
526 { X86::MINPSrr, X86::MINPSrm },
527 { X86::MINPSrr_Int, X86::MINPSrm_Int },
528 { X86::MINSDrr, X86::MINSDrm },
529 { X86::MINSDrr_Int, X86::MINSDrm_Int },
530 { X86::MINSSrr, X86::MINSSrm },
531 { X86::MINSSrr_Int, X86::MINSSrm_Int },
532 { X86::MULPDrr, X86::MULPDrm },
533 { X86::MULPSrr, X86::MULPSrm },
534 { X86::MULSDrr, X86::MULSDrm },
535 { X86::MULSSrr, X86::MULSSrm },
536 { X86::OR16rr, X86::OR16rm },
537 { X86::OR32rr, X86::OR32rm },
538 { X86::OR64rr, X86::OR64rm },
539 { X86::OR8rr, X86::OR8rm },
540 { X86::ORPDrr, X86::ORPDrm },
541 { X86::ORPSrr, X86::ORPSrm },
542 { X86::PACKSSDWrr, X86::PACKSSDWrm },
543 { X86::PACKSSWBrr, X86::PACKSSWBrm },
544 { X86::PACKUSWBrr, X86::PACKUSWBrm },
545 { X86::PADDBrr, X86::PADDBrm },
546 { X86::PADDDrr, X86::PADDDrm },
547 { X86::PADDQrr, X86::PADDQrm },
548 { X86::PADDSBrr, X86::PADDSBrm },
549 { X86::PADDSWrr, X86::PADDSWrm },
550 { X86::PADDWrr, X86::PADDWrm },
551 { X86::PANDNrr, X86::PANDNrm },
552 { X86::PANDrr, X86::PANDrm },
553 { X86::PAVGBrr, X86::PAVGBrm },
554 { X86::PAVGWrr, X86::PAVGWrm },
555 { X86::PCMPEQBrr, X86::PCMPEQBrm },
556 { X86::PCMPEQDrr, X86::PCMPEQDrm },
557 { X86::PCMPEQWrr, X86::PCMPEQWrm },
558 { X86::PCMPGTBrr, X86::PCMPGTBrm },
559 { X86::PCMPGTDrr, X86::PCMPGTDrm },
560 { X86::PCMPGTWrr, X86::PCMPGTWrm },
561 { X86::PINSRWrri, X86::PINSRWrmi },
562 { X86::PMADDWDrr, X86::PMADDWDrm },
563 { X86::PMAXSWrr, X86::PMAXSWrm },
564 { X86::PMAXUBrr, X86::PMAXUBrm },
565 { X86::PMINSWrr, X86::PMINSWrm },
566 { X86::PMINUBrr, X86::PMINUBrm },
567 { X86::PMULHUWrr, X86::PMULHUWrm },
568 { X86::PMULHWrr, X86::PMULHWrm },
569 { X86::PMULLWrr, X86::PMULLWrm },
570 { X86::PMULUDQrr, X86::PMULUDQrm },
571 { X86::PORrr, X86::PORrm },
572 { X86::PSADBWrr, X86::PSADBWrm },
573 { X86::PSLLDrr, X86::PSLLDrm },
574 { X86::PSLLQrr, X86::PSLLQrm },
575 { X86::PSLLWrr, X86::PSLLWrm },
576 { X86::PSRADrr, X86::PSRADrm },
577 { X86::PSRAWrr, X86::PSRAWrm },
578 { X86::PSRLDrr, X86::PSRLDrm },
579 { X86::PSRLQrr, X86::PSRLQrm },
580 { X86::PSRLWrr, X86::PSRLWrm },
581 { X86::PSUBBrr, X86::PSUBBrm },
582 { X86::PSUBDrr, X86::PSUBDrm },
583 { X86::PSUBSBrr, X86::PSUBSBrm },
584 { X86::PSUBSWrr, X86::PSUBSWrm },
585 { X86::PSUBWrr, X86::PSUBWrm },
586 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
587 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
588 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
589 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
590 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
591 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
592 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
593 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
594 { X86::PXORrr, X86::PXORrm },
595 { X86::SBB32rr, X86::SBB32rm },
596 { X86::SBB64rr, X86::SBB64rm },
597 { X86::SHUFPDrri, X86::SHUFPDrmi },
598 { X86::SHUFPSrri, X86::SHUFPSrmi },
599 { X86::SUB16rr, X86::SUB16rm },
600 { X86::SUB32rr, X86::SUB32rm },
601 { X86::SUB64rr, X86::SUB64rm },
602 { X86::SUB8rr, X86::SUB8rm },
603 { X86::SUBPDrr, X86::SUBPDrm },
604 { X86::SUBPSrr, X86::SUBPSrm },
605 { X86::SUBSDrr, X86::SUBSDrm },
606 { X86::SUBSSrr, X86::SUBSSrm },
607 // FIXME: TEST*rr -> swapped operand of TEST*mr.
608 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
609 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
610 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
611 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
612 { X86::XOR16rr, X86::XOR16rm },
613 { X86::XOR32rr, X86::XOR32rm },
614 { X86::XOR64rr, X86::XOR64rm },
615 { X86::XOR8rr, X86::XOR8rm },
616 { X86::XORPDrr, X86::XORPDrm },
617 { X86::XORPSrr, X86::XORPSrm }
618 };
619
620 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
621 unsigned RegOp = OpTbl2[i][0];
622 unsigned MemOp = OpTbl2[i][1];
623 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
624 assert(false && "Duplicated entries?");
625 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
626 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
627 std::make_pair(RegOp, AuxInfo))))
628 AmbEntries.push_back(MemOp);
629 }
630
631 // Remove ambiguous entries.
632 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Chris Lattner72614082002-10-25 22:55:53 +0000633}
634
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000635bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
636 unsigned& sourceReg,
637 unsigned& destReg) const {
Chris Lattner07f7cc32008-03-11 19:28:17 +0000638 switch (MI.getOpcode()) {
639 default:
640 return false;
641 case X86::MOV8rr:
642 case X86::MOV16rr:
643 case X86::MOV32rr:
644 case X86::MOV64rr:
645 case X86::MOV16to16_:
646 case X86::MOV32to32_:
Chris Lattner07f7cc32008-03-11 19:28:17 +0000647 case X86::MOVSSrr:
648 case X86::MOVSDrr:
Chris Lattner1d386772008-03-11 19:30:09 +0000649
650 // FP Stack register class copies
651 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
652 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
653 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
654
Chris Lattner07f7cc32008-03-11 19:28:17 +0000655 case X86::FsMOVAPSrr:
656 case X86::FsMOVAPDrr:
657 case X86::MOVAPSrr:
658 case X86::MOVAPDrr:
659 case X86::MOVSS2PSrr:
660 case X86::MOVSD2PDrr:
661 case X86::MOVPS2SSrr:
662 case X86::MOVPD2SDrr:
663 case X86::MMX_MOVD64rr:
664 case X86::MMX_MOVQ64rr:
665 assert(MI.getNumOperands() >= 2 &&
666 MI.getOperand(0).isRegister() &&
667 MI.getOperand(1).isRegister() &&
668 "invalid register-register move instruction");
669 sourceReg = MI.getOperand(1).getReg();
670 destReg = MI.getOperand(0).getReg();
671 return true;
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000672 }
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000673}
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000674
Chris Lattner40839602006-02-02 20:12:32 +0000675unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
676 int &FrameIndex) const {
677 switch (MI->getOpcode()) {
678 default: break;
679 case X86::MOV8rm:
680 case X86::MOV16rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000681 case X86::MOV16_rm:
Chris Lattner40839602006-02-02 20:12:32 +0000682 case X86::MOV32rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000683 case X86::MOV32_rm:
Evan Cheng25ab6902006-09-08 06:48:29 +0000684 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000685 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +0000686 case X86::MOVSSrm:
687 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +0000688 case X86::MOVAPSrm:
689 case X86::MOVAPDrm:
Bill Wendling823efee2007-04-03 06:00:37 +0000690 case X86::MMX_MOVD64rm:
691 case X86::MMX_MOVQ64rm:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000692 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
693 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000694 MI->getOperand(2).getImm() == 1 &&
Chris Lattner40839602006-02-02 20:12:32 +0000695 MI->getOperand(3).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000696 MI->getOperand(4).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000697 FrameIndex = MI->getOperand(1).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000698 return MI->getOperand(0).getReg();
699 }
700 break;
701 }
702 return 0;
703}
704
705unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
706 int &FrameIndex) const {
707 switch (MI->getOpcode()) {
708 default: break;
709 case X86::MOV8mr:
710 case X86::MOV16mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000711 case X86::MOV16_mr:
Chris Lattner40839602006-02-02 20:12:32 +0000712 case X86::MOV32mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000713 case X86::MOV32_mr:
Evan Cheng25ab6902006-09-08 06:48:29 +0000714 case X86::MOV64mr:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000715 case X86::ST_FpP64m:
Chris Lattner40839602006-02-02 20:12:32 +0000716 case X86::MOVSSmr:
717 case X86::MOVSDmr:
Chris Lattner993c8972006-04-18 16:44:51 +0000718 case X86::MOVAPSmr:
719 case X86::MOVAPDmr:
Bill Wendling823efee2007-04-03 06:00:37 +0000720 case X86::MMX_MOVD64mr:
721 case X86::MMX_MOVQ64mr:
Bill Wendling71bfd112007-04-03 23:48:32 +0000722 case X86::MMX_MOVNTQmr:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000723 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
724 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000725 MI->getOperand(1).getImm() == 1 &&
Chris Lattner1c07e722006-02-02 20:38:12 +0000726 MI->getOperand(2).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000727 MI->getOperand(3).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000728 FrameIndex = MI->getOperand(0).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000729 return MI->getOperand(4).getReg();
730 }
731 break;
732 }
733 return 0;
734}
735
736
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000737/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
738/// X86::MOVPC32r.
739static bool regIsPICBase(unsigned BaseReg, MachineRegisterInfo &MRI) {
740 bool isPICBase = false;
741 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
742 E = MRI.def_end(); I != E; ++I) {
743 MachineInstr *DefMI = I.getOperand().getParent();
744 if (DefMI->getOpcode() != X86::MOVPC32r)
745 return false;
746 assert(!isPICBase && "More than one PIC base?");
747 isPICBase = true;
748 }
749 return isPICBase;
750}
Evan Chenge771ebd2008-03-27 01:41:09 +0000751
Bill Wendling041b3f82007-12-08 23:58:46 +0000752bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
Dan Gohmanc101e952007-06-14 20:50:44 +0000753 switch (MI->getOpcode()) {
754 default: break;
Evan Chenge771ebd2008-03-27 01:41:09 +0000755 case X86::MOV8rm:
756 case X86::MOV16rm:
757 case X86::MOV16_rm:
758 case X86::MOV32rm:
759 case X86::MOV32_rm:
760 case X86::MOV64rm:
761 case X86::LD_Fp64m:
762 case X86::MOVSSrm:
763 case X86::MOVSDrm:
764 case X86::MOVAPSrm:
765 case X86::MOVAPDrm:
766 case X86::MMX_MOVD64rm:
767 case X86::MMX_MOVQ64rm: {
768 // Loads from constant pools are trivially rematerializable.
769 if (MI->getOperand(1).isReg() &&
770 MI->getOperand(2).isImm() &&
771 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Evan Cheng4db4f1c2008-03-28 17:49:06 +0000772 MI->getOperand(4).isCPI()) {
Evan Chenge771ebd2008-03-27 01:41:09 +0000773 unsigned BaseReg = MI->getOperand(1).getReg();
774 if (BaseReg == 0)
775 return true;
776 // Allow re-materialization of PIC load.
777 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
778 bool isPICBase = false;
779 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
780 E = MRI.def_end(); I != E; ++I) {
781 MachineInstr *DefMI = I.getOperand().getParent();
782 if (DefMI->getOpcode() != X86::MOVPC32r)
783 return false;
784 assert(!isPICBase && "More than one PIC base?");
785 isPICBase = true;
786 }
787 return isPICBase;
788 }
789 return false;
Evan Chengd8850a52008-02-22 09:25:47 +0000790 }
Evan Chenge771ebd2008-03-27 01:41:09 +0000791
792 case X86::LEA32r:
793 case X86::LEA64r: {
794 if (MI->getOperand(1).isReg() &&
795 MI->getOperand(2).isImm() &&
796 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
797 !MI->getOperand(4).isReg()) {
798 // lea fi#, lea GV, etc. are all rematerializable.
799 unsigned BaseReg = MI->getOperand(1).getReg();
800 if (BaseReg == 0)
801 return true;
802 // Allow re-materialization of lea PICBase + x.
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000803 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
804 return regIsPICBase(BaseReg, MRI);
Evan Chenge771ebd2008-03-27 01:41:09 +0000805 }
806 return false;
807 }
Dan Gohmanc101e952007-06-14 20:50:44 +0000808 }
Evan Chenge771ebd2008-03-27 01:41:09 +0000809
Dan Gohmand45eddd2007-06-26 00:48:07 +0000810 // All other instructions marked M_REMATERIALIZABLE are always trivially
811 // rematerializable.
812 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +0000813}
814
Chris Lattnera22edc82008-01-10 23:08:24 +0000815/// isInvariantLoad - Return true if the specified instruction (which is marked
816/// mayLoad) is loading from a location whose value is invariant across the
817/// function. For example, loading a value from the constant pool or from
818/// from the argument area of a function if it does not change. This should
819/// only return true of *all* loads the instruction does are invariant (if it
820/// does multiple loads).
821bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner828bb6c2008-01-12 00:35:08 +0000822 // This code cares about loads from three cases: constant pool entries,
823 // invariant argument slots, and global stubs. In order to handle these cases
824 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner144ad582008-01-12 00:53:16 +0000825 // operand and base our analysis on it. This is safe because the address of
Chris Lattner828bb6c2008-01-12 00:35:08 +0000826 // none of these three cases is ever used as anything other than a load base
827 // and X86 doesn't have any instructions that load from multiple places.
828
829 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
830 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnera22edc82008-01-10 23:08:24 +0000831 // Loads from constant pools are trivially invariant.
Chris Lattner828bb6c2008-01-12 00:35:08 +0000832 if (MO.isCPI())
Chris Lattner3b5a2212008-01-05 05:28:30 +0000833 return true;
Evan Cheng4db4f1c2008-03-28 17:49:06 +0000834
835 if (MO.isGlobal()) {
836 if (TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(MO.getGlobal(),
837 TM, false))
838 return true;
839 return false;
840 }
Chris Lattner828bb6c2008-01-12 00:35:08 +0000841
842 // If this is a load from an invariant stack slot, the load is a constant.
843 if (MO.isFI()) {
844 const MachineFrameInfo &MFI =
845 *MI->getParent()->getParent()->getFrameInfo();
846 int Idx = MO.getIndex();
Chris Lattner87943902008-01-10 04:16:31 +0000847 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
848 }
Bill Wendling627c00b2007-12-17 23:07:56 +0000849 }
Chris Lattner828bb6c2008-01-12 00:35:08 +0000850
Chris Lattnera22edc82008-01-10 23:08:24 +0000851 // All other instances of these instructions are presumed to have other
852 // issues.
Chris Lattnera83b34b2008-01-05 05:26:26 +0000853 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000854}
855
Evan Cheng3f411c72007-10-05 08:04:01 +0000856/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
857/// is not marked dead.
858static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +0000859 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
860 MachineOperand &MO = MI->getOperand(i);
861 if (MO.isRegister() && MO.isDef() &&
862 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
863 return true;
864 }
865 }
866 return false;
867}
868
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000869/// convertToThreeAddress - This method must be implemented by targets that
870/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
871/// may be able to convert a two-address instruction into a true
872/// three-address instruction on demand. This allows the X86 target (for
873/// example) to convert ADD and SHL instructions into LEA instructions if they
874/// would require register copies due to two-addressness.
875///
876/// This method returns a null pointer if the transformation cannot be
877/// performed, otherwise it returns the new instruction.
878///
Evan Cheng258ff672006-12-01 21:52:41 +0000879MachineInstr *
880X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
881 MachineBasicBlock::iterator &MBBI,
882 LiveVariables &LV) const {
883 MachineInstr *MI = MBBI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000884 // All instructions input are two-addr instructions. Get the known operands.
885 unsigned Dest = MI->getOperand(0).getReg();
886 unsigned Src = MI->getOperand(1).getReg();
887
Evan Cheng6ce7dc22006-11-15 20:58:11 +0000888 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +0000889 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000890 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng258ff672006-12-01 21:52:41 +0000891 bool DisableLEA16 = true;
892
Evan Cheng559dc462007-10-05 20:34:26 +0000893 unsigned MIOpc = MI->getOpcode();
894 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +0000895 case X86::SHUFPSrri: {
896 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000897 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
898
Evan Chengaa3c1412006-05-30 21:45:53 +0000899 unsigned A = MI->getOperand(0).getReg();
900 unsigned B = MI->getOperand(1).getReg();
901 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000902 unsigned M = MI->getOperand(3).getImm();
903 if (B != C) return 0;
Evan Chengc0f64ff2006-11-27 23:37:22 +0000904 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000905 break;
906 }
Chris Lattner995f5502007-03-28 18:12:31 +0000907 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000908 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +0000909 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
910 // the flags produced by a shift yet, so this is safe.
911 unsigned Dest = MI->getOperand(0).getReg();
912 unsigned Src = MI->getOperand(1).getReg();
913 unsigned ShAmt = MI->getOperand(2).getImm();
914 if (ShAmt == 0 || ShAmt >= 4) return 0;
915
916 NewMI = BuildMI(get(X86::LEA64r), Dest)
917 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
918 break;
919 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000920 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000921 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000922 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
923 // the flags produced by a shift yet, so this is safe.
924 unsigned Dest = MI->getOperand(0).getReg();
925 unsigned Src = MI->getOperand(1).getReg();
926 unsigned ShAmt = MI->getOperand(2).getImm();
927 if (ShAmt == 0 || ShAmt >= 4) return 0;
928
Chris Lattnerf2177b82007-03-28 00:58:40 +0000929 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
930 X86::LEA64_32r : X86::LEA32r;
931 NewMI = BuildMI(get(Opc), Dest)
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000932 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
933 break;
934 }
935 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000936 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +0000937 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
938 // the flags produced by a shift yet, so this is safe.
939 unsigned Dest = MI->getOperand(0).getReg();
940 unsigned Src = MI->getOperand(1).getReg();
941 unsigned ShAmt = MI->getOperand(2).getImm();
942 if (ShAmt == 0 || ShAmt >= 4) return 0;
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000943
Christopher Lambb8133712007-08-10 21:18:25 +0000944 if (DisableLEA16) {
945 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner84bc5422007-12-31 04:13:23 +0000946 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng61d9c862007-09-06 00:14:41 +0000947 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
948 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner84bc5422007-12-31 04:13:23 +0000949 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
950 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Cheng4499e492008-03-10 19:31:26 +0000951
Christopher Lamb1bc10082008-03-11 10:27:36 +0000952 // Build and insert into an implicit UNDEF value. This is OK because
953 // well be shifting and then extracting the lower 16-bits.
Christopher Lambc9298232008-03-16 03:12:01 +0000954 MachineInstr *Undef = BuildMI(get(X86::IMPLICIT_DEF), leaInReg);
955
Christopher Lamb1bc10082008-03-11 10:27:36 +0000956 MachineInstr *Ins =
Christopher Lamb6634e262008-03-13 05:47:01 +0000957 BuildMI(get(X86::INSERT_SUBREG),leaInReg)
Christopher Lambc9298232008-03-16 03:12:01 +0000958 .addReg(leaInReg).addReg(Src).addImm(X86::SUBREG_16BIT);
Christopher Lambb8133712007-08-10 21:18:25 +0000959
960 NewMI = BuildMI(get(Opc), leaOutReg)
961 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
962
Evan Cheng61d9c862007-09-06 00:14:41 +0000963 MachineInstr *Ext =
Christopher Lamb1bc10082008-03-11 10:27:36 +0000964 BuildMI(get(X86::EXTRACT_SUBREG), Dest)
965 .addReg(leaOutReg).addImm(X86::SUBREG_16BIT);
Christopher Lambb8133712007-08-10 21:18:25 +0000966 Ext->copyKillDeadInfo(MI);
967
Christopher Lambc9298232008-03-16 03:12:01 +0000968 MFI->insert(MBBI, Undef);
Christopher Lambb8133712007-08-10 21:18:25 +0000969 MFI->insert(MBBI, Ins); // Insert the insert_subreg
970 LV.instructionChanged(MI, NewMI); // Update live variables
971 LV.addVirtualRegisterKilled(leaInReg, NewMI);
972 MFI->insert(MBBI, NewMI); // Insert the new inst
973 LV.addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng61d9c862007-09-06 00:14:41 +0000974 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lambb8133712007-08-10 21:18:25 +0000975 return Ext;
976 } else {
977 NewMI = BuildMI(get(X86::LEA16r), Dest)
978 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
979 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000980 break;
Evan Chengccba76b2006-05-30 20:26:50 +0000981 }
Evan Cheng559dc462007-10-05 20:34:26 +0000982 default: {
983 // The following opcodes also sets the condition code register(s). Only
984 // convert them to equivalent lea if the condition code register def's
985 // are dead!
986 if (hasLiveCondCodeDef(MI))
987 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +0000988
Evan Chengb76143c2007-10-09 07:14:53 +0000989 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng559dc462007-10-05 20:34:26 +0000990 switch (MIOpc) {
991 default: return 0;
992 case X86::INC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000993 case X86::INC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000994 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000995 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
996 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000997 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
998 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000999 }
Evan Cheng559dc462007-10-05 20:34:26 +00001000 case X86::INC16r:
1001 case X86::INC64_16r:
1002 if (DisableLEA16) return 0;
1003 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1004 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
1005 break;
1006 case X86::DEC64r:
Evan Chengb75ed322007-10-05 21:55:32 +00001007 case X86::DEC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001008 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001009 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1010 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +00001011 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
1012 break;
1013 }
1014 case X86::DEC16r:
1015 case X86::DEC64_16r:
1016 if (DisableLEA16) return 0;
1017 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1018 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
1019 break;
1020 case X86::ADD64rr:
1021 case X86::ADD32rr: {
1022 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001023 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1024 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +00001025 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
1026 MI->getOperand(2).getReg());
1027 break;
1028 }
1029 case X86::ADD16rr:
1030 if (DisableLEA16) return 0;
1031 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1032 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
1033 MI->getOperand(2).getReg());
1034 break;
1035 case X86::ADD64ri32:
1036 case X86::ADD64ri8:
1037 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1038 if (MI->getOperand(2).isImmediate())
1039 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001040 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001041 break;
1042 case X86::ADD32ri:
1043 case X86::ADD32ri8:
1044 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001045 if (MI->getOperand(2).isImmediate()) {
1046 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1047 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001048 MI->getOperand(2).getImm());
Evan Chengb76143c2007-10-09 07:14:53 +00001049 }
Evan Cheng559dc462007-10-05 20:34:26 +00001050 break;
1051 case X86::ADD16ri:
1052 case X86::ADD16ri8:
1053 if (DisableLEA16) return 0;
1054 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1055 if (MI->getOperand(2).isImmediate())
1056 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001057 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001058 break;
1059 case X86::SHL16ri:
1060 if (DisableLEA16) return 0;
1061 case X86::SHL32ri:
1062 case X86::SHL64ri: {
1063 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1064 "Unknown shl instruction!");
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001065 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng559dc462007-10-05 20:34:26 +00001066 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1067 X86AddressMode AM;
1068 AM.Scale = 1 << ShAmt;
1069 AM.IndexReg = Src;
1070 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chengb76143c2007-10-09 07:14:53 +00001071 : (MIOpc == X86::SHL32ri
1072 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng559dc462007-10-05 20:34:26 +00001073 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1074 }
1075 break;
1076 }
1077 }
1078 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001079 }
1080
Evan Cheng15246732008-02-07 08:29:53 +00001081 if (!NewMI) return 0;
1082
Evan Cheng559dc462007-10-05 20:34:26 +00001083 NewMI->copyKillDeadInfo(MI);
1084 LV.instructionChanged(MI, NewMI); // Update live variables
1085 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001086 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001087}
1088
Chris Lattner41e431b2005-01-19 07:11:01 +00001089/// commuteInstruction - We have a few instructions that must be hacked on to
1090/// commute them.
1091///
1092MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
1093 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001094 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1095 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001096 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001097 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1098 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1099 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001100 unsigned Opc;
1101 unsigned Size;
1102 switch (MI->getOpcode()) {
1103 default: assert(0 && "Unreachable!");
1104 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1105 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1106 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1107 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001108 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1109 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001110 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001111 unsigned Amt = MI->getOperand(3).getImm();
Chris Lattner41e431b2005-01-19 07:11:01 +00001112 unsigned A = MI->getOperand(0).getReg();
1113 unsigned B = MI->getOperand(1).getReg();
1114 unsigned C = MI->getOperand(2).getReg();
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001115 bool BisKill = MI->getOperand(1).isKill();
1116 bool CisKill = MI->getOperand(2).isKill();
Evan Chenga4d16a12008-02-13 02:46:49 +00001117 // If machine instrs are no longer in two-address forms, update
1118 // destination register as well.
1119 if (A == B) {
1120 // Must be two address instruction!
1121 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1122 "Expecting a two-address instruction!");
1123 A = C;
1124 CisKill = false;
1125 }
Evan Chengc0f64ff2006-11-27 23:37:22 +00001126 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001127 .addReg(B, false, false, BisKill).addImm(Size-Amt);
Chris Lattner41e431b2005-01-19 07:11:01 +00001128 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001129 case X86::CMOVB16rr:
1130 case X86::CMOVB32rr:
1131 case X86::CMOVB64rr:
1132 case X86::CMOVAE16rr:
1133 case X86::CMOVAE32rr:
1134 case X86::CMOVAE64rr:
1135 case X86::CMOVE16rr:
1136 case X86::CMOVE32rr:
1137 case X86::CMOVE64rr:
1138 case X86::CMOVNE16rr:
1139 case X86::CMOVNE32rr:
1140 case X86::CMOVNE64rr:
1141 case X86::CMOVBE16rr:
1142 case X86::CMOVBE32rr:
1143 case X86::CMOVBE64rr:
1144 case X86::CMOVA16rr:
1145 case X86::CMOVA32rr:
1146 case X86::CMOVA64rr:
1147 case X86::CMOVL16rr:
1148 case X86::CMOVL32rr:
1149 case X86::CMOVL64rr:
1150 case X86::CMOVGE16rr:
1151 case X86::CMOVGE32rr:
1152 case X86::CMOVGE64rr:
1153 case X86::CMOVLE16rr:
1154 case X86::CMOVLE32rr:
1155 case X86::CMOVLE64rr:
1156 case X86::CMOVG16rr:
1157 case X86::CMOVG32rr:
1158 case X86::CMOVG64rr:
1159 case X86::CMOVS16rr:
1160 case X86::CMOVS32rr:
1161 case X86::CMOVS64rr:
1162 case X86::CMOVNS16rr:
1163 case X86::CMOVNS32rr:
1164 case X86::CMOVNS64rr:
1165 case X86::CMOVP16rr:
1166 case X86::CMOVP32rr:
1167 case X86::CMOVP64rr:
1168 case X86::CMOVNP16rr:
1169 case X86::CMOVNP32rr:
1170 case X86::CMOVNP64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001171 unsigned Opc = 0;
1172 switch (MI->getOpcode()) {
1173 default: break;
1174 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1175 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1176 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1177 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1178 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1179 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1180 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1181 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1182 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1183 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1184 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1185 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1186 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1187 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1188 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1189 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1190 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1191 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1192 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1193 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1194 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1195 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1196 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1197 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1198 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1199 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1200 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1201 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1202 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1203 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1204 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1205 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1206 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1207 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1208 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1209 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1210 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1211 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1212 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1213 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1214 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1215 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1216 }
1217
Chris Lattner5080f4d2008-01-11 18:10:50 +00001218 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00001219 // Fallthrough intended.
1220 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001221 default:
Chris Lattner264e6fe2008-01-01 01:05:34 +00001222 return TargetInstrInfoImpl::commuteInstruction(MI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001223 }
1224}
1225
Chris Lattner7fbe9722006-10-20 17:42:20 +00001226static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1227 switch (BrOpc) {
1228 default: return X86::COND_INVALID;
1229 case X86::JE: return X86::COND_E;
1230 case X86::JNE: return X86::COND_NE;
1231 case X86::JL: return X86::COND_L;
1232 case X86::JLE: return X86::COND_LE;
1233 case X86::JG: return X86::COND_G;
1234 case X86::JGE: return X86::COND_GE;
1235 case X86::JB: return X86::COND_B;
1236 case X86::JBE: return X86::COND_BE;
1237 case X86::JA: return X86::COND_A;
1238 case X86::JAE: return X86::COND_AE;
1239 case X86::JS: return X86::COND_S;
1240 case X86::JNS: return X86::COND_NS;
1241 case X86::JP: return X86::COND_P;
1242 case X86::JNP: return X86::COND_NP;
1243 case X86::JO: return X86::COND_O;
1244 case X86::JNO: return X86::COND_NO;
1245 }
1246}
1247
1248unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1249 switch (CC) {
1250 default: assert(0 && "Illegal condition code!");
Evan Chenge5f62042007-09-29 00:00:36 +00001251 case X86::COND_E: return X86::JE;
1252 case X86::COND_NE: return X86::JNE;
1253 case X86::COND_L: return X86::JL;
1254 case X86::COND_LE: return X86::JLE;
1255 case X86::COND_G: return X86::JG;
1256 case X86::COND_GE: return X86::JGE;
1257 case X86::COND_B: return X86::JB;
1258 case X86::COND_BE: return X86::JBE;
1259 case X86::COND_A: return X86::JA;
1260 case X86::COND_AE: return X86::JAE;
1261 case X86::COND_S: return X86::JS;
1262 case X86::COND_NS: return X86::JNS;
1263 case X86::COND_P: return X86::JP;
1264 case X86::COND_NP: return X86::JNP;
1265 case X86::COND_O: return X86::JO;
1266 case X86::COND_NO: return X86::JNO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001267 }
1268}
1269
Chris Lattner9cd68752006-10-21 05:52:40 +00001270/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1271/// e.g. turning COND_E to COND_NE.
1272X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1273 switch (CC) {
1274 default: assert(0 && "Illegal condition code!");
1275 case X86::COND_E: return X86::COND_NE;
1276 case X86::COND_NE: return X86::COND_E;
1277 case X86::COND_L: return X86::COND_GE;
1278 case X86::COND_LE: return X86::COND_G;
1279 case X86::COND_G: return X86::COND_LE;
1280 case X86::COND_GE: return X86::COND_L;
1281 case X86::COND_B: return X86::COND_AE;
1282 case X86::COND_BE: return X86::COND_A;
1283 case X86::COND_A: return X86::COND_BE;
1284 case X86::COND_AE: return X86::COND_B;
1285 case X86::COND_S: return X86::COND_NS;
1286 case X86::COND_NS: return X86::COND_S;
1287 case X86::COND_P: return X86::COND_NP;
1288 case X86::COND_NP: return X86::COND_P;
1289 case X86::COND_O: return X86::COND_NO;
1290 case X86::COND_NO: return X86::COND_O;
1291 }
1292}
1293
Dale Johannesen318093b2007-06-14 22:03:45 +00001294bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner749c6f62008-01-07 07:27:27 +00001295 const TargetInstrDesc &TID = MI->getDesc();
1296 if (!TID.isTerminator()) return false;
Chris Lattner69244302008-01-07 01:56:04 +00001297
1298 // Conditional branch is a special case.
Chris Lattner749c6f62008-01-07 07:27:27 +00001299 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00001300 return true;
Chris Lattner749c6f62008-01-07 07:27:27 +00001301 if (!TID.isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00001302 return true;
1303 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00001304}
Chris Lattner9cd68752006-10-21 05:52:40 +00001305
Evan Cheng85dce6c2007-07-26 17:32:14 +00001306// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1307static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1308 const X86InstrInfo &TII) {
1309 if (MI->getOpcode() == X86::FP_REG_KILL)
1310 return false;
1311 return TII.isUnpredicatedTerminator(MI);
1312}
1313
Chris Lattner7fbe9722006-10-20 17:42:20 +00001314bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1315 MachineBasicBlock *&TBB,
1316 MachineBasicBlock *&FBB,
1317 std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001318 // If the block has no terminators, it just falls into the block after it.
1319 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng85dce6c2007-07-26 17:32:14 +00001320 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001321 return false;
1322
1323 // Get the last instruction in the block.
1324 MachineInstr *LastInst = I;
1325
1326 // If there is only one terminator instruction, process it.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001327 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner749c6f62008-01-07 07:27:27 +00001328 if (!LastInst->getDesc().isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00001329 return true;
1330
1331 // If the block ends with a branch there are 3 possibilities:
1332 // it's an unconditional, conditional, or indirect branch.
1333
1334 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001335 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001336 return false;
1337 }
1338 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1339 if (BranchCode == X86::COND_INVALID)
1340 return true; // Can't handle indirect branch.
1341
1342 // Otherwise, block ends with fall-through condbranch.
Chris Lattner8aa797a2007-12-30 23:10:15 +00001343 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001344 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1345 return false;
1346 }
1347
1348 // Get the instruction before it if it's a terminator.
1349 MachineInstr *SecondLastInst = I;
1350
1351 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001352 if (SecondLastInst && I != MBB.begin() &&
1353 isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001354 return true;
1355
Chris Lattner6ce64432006-10-30 22:27:23 +00001356 // If the block ends with X86::JMP and a conditional branch, handle it.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001357 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1358 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001359 TBB = SecondLastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001360 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner8aa797a2007-12-30 23:10:15 +00001361 FBB = LastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001362 return false;
1363 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001364
Dale Johannesen13e8b512007-06-13 17:59:52 +00001365 // If the block ends with two X86::JMPs, handle it. The second one is not
1366 // executed, so remove it.
1367 if (SecondLastInst->getOpcode() == X86::JMP &&
1368 LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001369 TBB = SecondLastInst->getOperand(0).getMBB();
Dale Johannesen13e8b512007-06-13 17:59:52 +00001370 I = LastInst;
1371 I->eraseFromParent();
1372 return false;
1373 }
1374
Chris Lattner7fbe9722006-10-20 17:42:20 +00001375 // Otherwise, can't handle this.
1376 return true;
1377}
1378
Evan Cheng6ae36262007-05-18 00:18:17 +00001379unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001380 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng6ae36262007-05-18 00:18:17 +00001381 if (I == MBB.begin()) return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001382 --I;
1383 if (I->getOpcode() != X86::JMP &&
1384 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001385 return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001386
1387 // Remove the branch.
1388 I->eraseFromParent();
1389
1390 I = MBB.end();
1391
Evan Cheng6ae36262007-05-18 00:18:17 +00001392 if (I == MBB.begin()) return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001393 --I;
1394 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001395 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001396
1397 // Remove the branch.
1398 I->eraseFromParent();
Evan Cheng6ae36262007-05-18 00:18:17 +00001399 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001400}
1401
Owen Andersonf6372aa2008-01-01 21:11:32 +00001402static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1403 MachineOperand &MO) {
1404 if (MO.isRegister())
1405 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1406 false, false, MO.getSubReg());
1407 else if (MO.isImmediate())
1408 MIB = MIB.addImm(MO.getImm());
1409 else if (MO.isFrameIndex())
1410 MIB = MIB.addFrameIndex(MO.getIndex());
1411 else if (MO.isGlobalAddress())
1412 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1413 else if (MO.isConstantPoolIndex())
1414 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1415 else if (MO.isJumpTableIndex())
1416 MIB = MIB.addJumpTableIndex(MO.getIndex());
1417 else if (MO.isExternalSymbol())
1418 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1419 else
1420 assert(0 && "Unknown operand for X86InstrAddOperand!");
1421
1422 return MIB;
1423}
1424
Evan Cheng6ae36262007-05-18 00:18:17 +00001425unsigned
1426X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1427 MachineBasicBlock *FBB,
1428 const std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001429 // Shouldn't be a fall through.
1430 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00001431 assert((Cond.size() == 1 || Cond.size() == 0) &&
1432 "X86 branch conditions have one component!");
1433
1434 if (FBB == 0) { // One way branch.
1435 if (Cond.empty()) {
1436 // Unconditional branch?
Evan Chengc0f64ff2006-11-27 23:37:22 +00001437 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001438 } else {
1439 // Conditional branch.
1440 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001441 BuildMI(&MBB, get(Opc)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001442 }
Evan Cheng6ae36262007-05-18 00:18:17 +00001443 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001444 }
1445
Chris Lattner879d09c2006-10-21 05:42:09 +00001446 // Two-way Conditional branch.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001447 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001448 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1449 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00001450 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001451}
1452
Owen Andersond10fd972007-12-31 06:32:00 +00001453void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner5c927502008-03-09 08:46:19 +00001454 MachineBasicBlock::iterator MI,
1455 unsigned DestReg, unsigned SrcReg,
1456 const TargetRegisterClass *DestRC,
1457 const TargetRegisterClass *SrcRC) const {
Chris Lattner90b347d2008-03-09 07:58:04 +00001458 if (DestRC == SrcRC) {
1459 unsigned Opc;
1460 if (DestRC == &X86::GR64RegClass) {
1461 Opc = X86::MOV64rr;
1462 } else if (DestRC == &X86::GR32RegClass) {
1463 Opc = X86::MOV32rr;
1464 } else if (DestRC == &X86::GR16RegClass) {
1465 Opc = X86::MOV16rr;
1466 } else if (DestRC == &X86::GR8RegClass) {
1467 Opc = X86::MOV8rr;
1468 } else if (DestRC == &X86::GR32_RegClass) {
1469 Opc = X86::MOV32_rr;
1470 } else if (DestRC == &X86::GR16_RegClass) {
1471 Opc = X86::MOV16_rr;
1472 } else if (DestRC == &X86::RFP32RegClass) {
1473 Opc = X86::MOV_Fp3232;
1474 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1475 Opc = X86::MOV_Fp6464;
1476 } else if (DestRC == &X86::RFP80RegClass) {
1477 Opc = X86::MOV_Fp8080;
1478 } else if (DestRC == &X86::FR32RegClass) {
1479 Opc = X86::FsMOVAPSrr;
1480 } else if (DestRC == &X86::FR64RegClass) {
1481 Opc = X86::FsMOVAPDrr;
1482 } else if (DestRC == &X86::VR128RegClass) {
1483 Opc = X86::MOVAPSrr;
1484 } else if (DestRC == &X86::VR64RegClass) {
1485 Opc = X86::MMX_MOVQ64rr;
1486 } else {
1487 assert(0 && "Unknown regclass");
1488 abort();
Owen Andersond10fd972007-12-31 06:32:00 +00001489 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001490 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1491 return;
Owen Andersond10fd972007-12-31 06:32:00 +00001492 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001493
1494 // Moving EFLAGS to / from another register requires a push and a pop.
1495 if (SrcRC == &X86::CCRRegClass) {
1496 assert(SrcReg == X86::EFLAGS);
1497 if (DestRC == &X86::GR64RegClass) {
1498 BuildMI(MBB, MI, get(X86::PUSHFQ));
1499 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1500 return;
1501 } else if (DestRC == &X86::GR32RegClass) {
1502 BuildMI(MBB, MI, get(X86::PUSHFD));
1503 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1504 return;
1505 }
1506 } else if (DestRC == &X86::CCRRegClass) {
1507 assert(DestReg == X86::EFLAGS);
1508 if (SrcRC == &X86::GR64RegClass) {
1509 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1510 BuildMI(MBB, MI, get(X86::POPFQ));
1511 return;
1512 } else if (SrcRC == &X86::GR32RegClass) {
1513 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1514 BuildMI(MBB, MI, get(X86::POPFD));
1515 return;
1516 }
Owen Andersond10fd972007-12-31 06:32:00 +00001517 }
Chris Lattner5c927502008-03-09 08:46:19 +00001518
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001519 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner5c927502008-03-09 08:46:19 +00001520 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner24e0a542008-03-21 06:38:26 +00001521 // Copying from ST(0)/ST(1).
1522 assert((SrcReg == X86::ST0 || SrcReg == X86::ST1) &&
1523 "Can only copy from ST(0)/ST(1) right now");
1524 bool isST0 = SrcReg == X86::ST0;
Chris Lattner5c927502008-03-09 08:46:19 +00001525 unsigned Opc;
1526 if (DestRC == &X86::RFP32RegClass)
Chris Lattner24e0a542008-03-21 06:38:26 +00001527 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner5c927502008-03-09 08:46:19 +00001528 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner24e0a542008-03-21 06:38:26 +00001529 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner5c927502008-03-09 08:46:19 +00001530 else {
1531 assert(DestRC == &X86::RFP80RegClass);
Chris Lattner24e0a542008-03-21 06:38:26 +00001532 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner5c927502008-03-09 08:46:19 +00001533 }
1534 BuildMI(MBB, MI, get(Opc), DestReg);
1535 return;
1536 }
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001537
1538 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1539 if (DestRC == &X86::RSTRegClass) {
1540 // Copying to ST(0). FIXME: handle ST(1) also
1541 assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1542 unsigned Opc;
1543 if (SrcRC == &X86::RFP32RegClass)
1544 Opc = X86::FpSET_ST0_32;
1545 else if (SrcRC == &X86::RFP64RegClass)
1546 Opc = X86::FpSET_ST0_64;
1547 else {
1548 assert(SrcRC == &X86::RFP80RegClass);
1549 Opc = X86::FpSET_ST0_80;
1550 }
1551 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1552 return;
1553 }
Chris Lattner5c927502008-03-09 08:46:19 +00001554
Chris Lattner183275a2008-03-10 23:56:08 +00001555 assert(0 && "Not yet supported!");
Chris Lattner90b347d2008-03-09 07:58:04 +00001556 abort();
Owen Andersond10fd972007-12-31 06:32:00 +00001557}
1558
Owen Andersonf6372aa2008-01-01 21:11:32 +00001559static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1560 unsigned StackAlign) {
1561 unsigned Opc = 0;
1562 if (RC == &X86::GR64RegClass) {
1563 Opc = X86::MOV64mr;
1564 } else if (RC == &X86::GR32RegClass) {
1565 Opc = X86::MOV32mr;
1566 } else if (RC == &X86::GR16RegClass) {
1567 Opc = X86::MOV16mr;
1568 } else if (RC == &X86::GR8RegClass) {
1569 Opc = X86::MOV8mr;
1570 } else if (RC == &X86::GR32_RegClass) {
1571 Opc = X86::MOV32_mr;
1572 } else if (RC == &X86::GR16_RegClass) {
1573 Opc = X86::MOV16_mr;
1574 } else if (RC == &X86::RFP80RegClass) {
1575 Opc = X86::ST_FpP80m; // pops
1576 } else if (RC == &X86::RFP64RegClass) {
1577 Opc = X86::ST_Fp64m;
1578 } else if (RC == &X86::RFP32RegClass) {
1579 Opc = X86::ST_Fp32m;
1580 } else if (RC == &X86::FR32RegClass) {
1581 Opc = X86::MOVSSmr;
1582 } else if (RC == &X86::FR64RegClass) {
1583 Opc = X86::MOVSDmr;
1584 } else if (RC == &X86::VR128RegClass) {
1585 // FIXME: Use movaps once we are capable of selectively
1586 // aligning functions that spill SSE registers on 16-byte boundaries.
1587 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1588 } else if (RC == &X86::VR64RegClass) {
1589 Opc = X86::MMX_MOVQ64mr;
1590 } else {
1591 assert(0 && "Unknown regclass");
1592 abort();
1593 }
1594
1595 return Opc;
1596}
1597
1598void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1599 MachineBasicBlock::iterator MI,
1600 unsigned SrcReg, bool isKill, int FrameIdx,
1601 const TargetRegisterClass *RC) const {
1602 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1603 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1604 .addReg(SrcReg, false, false, isKill);
1605}
1606
1607void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1608 bool isKill,
1609 SmallVectorImpl<MachineOperand> &Addr,
1610 const TargetRegisterClass *RC,
1611 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1612 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1613 MachineInstrBuilder MIB = BuildMI(get(Opc));
1614 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1615 MIB = X86InstrAddOperand(MIB, Addr[i]);
1616 MIB.addReg(SrcReg, false, false, isKill);
1617 NewMIs.push_back(MIB);
1618}
1619
1620static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1621 unsigned StackAlign) {
1622 unsigned Opc = 0;
1623 if (RC == &X86::GR64RegClass) {
1624 Opc = X86::MOV64rm;
1625 } else if (RC == &X86::GR32RegClass) {
1626 Opc = X86::MOV32rm;
1627 } else if (RC == &X86::GR16RegClass) {
1628 Opc = X86::MOV16rm;
1629 } else if (RC == &X86::GR8RegClass) {
1630 Opc = X86::MOV8rm;
1631 } else if (RC == &X86::GR32_RegClass) {
1632 Opc = X86::MOV32_rm;
1633 } else if (RC == &X86::GR16_RegClass) {
1634 Opc = X86::MOV16_rm;
1635 } else if (RC == &X86::RFP80RegClass) {
1636 Opc = X86::LD_Fp80m;
1637 } else if (RC == &X86::RFP64RegClass) {
1638 Opc = X86::LD_Fp64m;
1639 } else if (RC == &X86::RFP32RegClass) {
1640 Opc = X86::LD_Fp32m;
1641 } else if (RC == &X86::FR32RegClass) {
1642 Opc = X86::MOVSSrm;
1643 } else if (RC == &X86::FR64RegClass) {
1644 Opc = X86::MOVSDrm;
1645 } else if (RC == &X86::VR128RegClass) {
1646 // FIXME: Use movaps once we are capable of selectively
1647 // aligning functions that spill SSE registers on 16-byte boundaries.
1648 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1649 } else if (RC == &X86::VR64RegClass) {
1650 Opc = X86::MMX_MOVQ64rm;
1651 } else {
1652 assert(0 && "Unknown regclass");
1653 abort();
1654 }
1655
1656 return Opc;
1657}
1658
1659void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1660 MachineBasicBlock::iterator MI,
1661 unsigned DestReg, int FrameIdx,
1662 const TargetRegisterClass *RC) const{
1663 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1664 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1665}
1666
1667void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1668 SmallVectorImpl<MachineOperand> &Addr,
1669 const TargetRegisterClass *RC,
1670 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1671 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1672 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1673 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1674 MIB = X86InstrAddOperand(MIB, Addr[i]);
1675 NewMIs.push_back(MIB);
1676}
1677
Owen Andersond94b6a12008-01-04 23:57:37 +00001678bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1679 MachineBasicBlock::iterator MI,
1680 const std::vector<CalleeSavedInfo> &CSI) const {
1681 if (CSI.empty())
1682 return false;
1683
1684 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1685 unsigned SlotSize = is64Bit ? 8 : 4;
1686
1687 MachineFunction &MF = *MBB.getParent();
1688 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1689 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1690
1691 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1692 for (unsigned i = CSI.size(); i != 0; --i) {
1693 unsigned Reg = CSI[i-1].getReg();
1694 // Add the callee-saved register as live-in. It's killed at the spill.
1695 MBB.addLiveIn(Reg);
1696 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1697 }
1698 return true;
1699}
1700
1701bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1702 MachineBasicBlock::iterator MI,
1703 const std::vector<CalleeSavedInfo> &CSI) const {
1704 if (CSI.empty())
1705 return false;
1706
1707 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1708
1709 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1710 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1711 unsigned Reg = CSI[i].getReg();
1712 BuildMI(MBB, MI, get(Opc), Reg);
1713 }
1714 return true;
1715}
1716
Owen Anderson43dbe052008-01-07 01:35:02 +00001717static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1718 SmallVector<MachineOperand,4> &MOs,
1719 MachineInstr *MI, const TargetInstrInfo &TII) {
1720 // Create the base instruction with the memory operand as the first part.
1721 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1722 MachineInstrBuilder MIB(NewMI);
1723 unsigned NumAddrOps = MOs.size();
1724 for (unsigned i = 0; i != NumAddrOps; ++i)
1725 MIB = X86InstrAddOperand(MIB, MOs[i]);
1726 if (NumAddrOps < 4) // FrameIndex only
1727 MIB.addImm(1).addReg(0).addImm(0);
1728
1729 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00001730 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00001731 for (unsigned i = 0; i != NumOps; ++i) {
1732 MachineOperand &MO = MI->getOperand(i+2);
1733 MIB = X86InstrAddOperand(MIB, MO);
1734 }
1735 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1736 MachineOperand &MO = MI->getOperand(i);
1737 MIB = X86InstrAddOperand(MIB, MO);
1738 }
1739 return MIB;
1740}
1741
1742static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1743 SmallVector<MachineOperand,4> &MOs,
1744 MachineInstr *MI, const TargetInstrInfo &TII) {
1745 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1746 MachineInstrBuilder MIB(NewMI);
1747
1748 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1749 MachineOperand &MO = MI->getOperand(i);
1750 if (i == OpNo) {
1751 assert(MO.isRegister() && "Expected to fold into reg operand!");
1752 unsigned NumAddrOps = MOs.size();
1753 for (unsigned i = 0; i != NumAddrOps; ++i)
1754 MIB = X86InstrAddOperand(MIB, MOs[i]);
1755 if (NumAddrOps < 4) // FrameIndex only
1756 MIB.addImm(1).addReg(0).addImm(0);
1757 } else {
1758 MIB = X86InstrAddOperand(MIB, MO);
1759 }
1760 }
1761 return MIB;
1762}
1763
1764static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1765 SmallVector<MachineOperand,4> &MOs,
1766 MachineInstr *MI) {
1767 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1768
1769 unsigned NumAddrOps = MOs.size();
1770 for (unsigned i = 0; i != NumAddrOps; ++i)
1771 MIB = X86InstrAddOperand(MIB, MOs[i]);
1772 if (NumAddrOps < 4) // FrameIndex only
1773 MIB.addImm(1).addReg(0).addImm(0);
1774 return MIB.addImm(0);
1775}
1776
1777MachineInstr*
1778X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng5fd79d02008-02-08 21:20:40 +00001779 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001780 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1781 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00001782 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001783 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001784 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001785
1786 MachineInstr *NewMI = NULL;
1787 // Folding a memory location into the two-address part of a two-address
1788 // instruction is different than folding it other places. It requires
1789 // replacing the *two* registers with the memory location.
1790 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1791 MI->getOperand(0).isRegister() &&
1792 MI->getOperand(1).isRegister() &&
1793 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1794 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1795 isTwoAddrFold = true;
1796 } else if (i == 0) { // If operand 0
1797 if (MI->getOpcode() == X86::MOV16r0)
1798 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1799 else if (MI->getOpcode() == X86::MOV32r0)
1800 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1801 else if (MI->getOpcode() == X86::MOV64r0)
1802 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1803 else if (MI->getOpcode() == X86::MOV8r0)
1804 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1805 if (NewMI) {
1806 NewMI->copyKillDeadInfo(MI);
1807 return NewMI;
1808 }
1809
1810 OpcodeTablePtr = &RegOp2MemOpTable0;
1811 } else if (i == 1) {
1812 OpcodeTablePtr = &RegOp2MemOpTable1;
1813 } else if (i == 2) {
1814 OpcodeTablePtr = &RegOp2MemOpTable2;
1815 }
1816
1817 // If table selected...
1818 if (OpcodeTablePtr) {
1819 // Find the Opcode to fuse
1820 DenseMap<unsigned*, unsigned>::iterator I =
1821 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1822 if (I != OpcodeTablePtr->end()) {
1823 if (isTwoAddrFold)
1824 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1825 else
1826 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1827 NewMI->copyKillDeadInfo(MI);
1828 return NewMI;
1829 }
1830 }
1831
1832 // No fusion
1833 if (PrintFailedFusing)
Chris Lattner269f0592008-01-09 00:37:18 +00001834 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00001835 return NULL;
1836}
1837
1838
Evan Cheng5fd79d02008-02-08 21:20:40 +00001839MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1840 MachineInstr *MI,
Owen Anderson43dbe052008-01-07 01:35:02 +00001841 SmallVectorImpl<unsigned> &Ops,
1842 int FrameIndex) const {
1843 // Check switch flag
1844 if (NoFusing) return NULL;
1845
Evan Cheng5fd79d02008-02-08 21:20:40 +00001846 const MachineFrameInfo *MFI = MF.getFrameInfo();
1847 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1848 // FIXME: Move alignment requirement into tables?
1849 if (Alignment < 16) {
1850 switch (MI->getOpcode()) {
1851 default: break;
1852 // Not always safe to fold movsd into these instructions since their load
1853 // folding variants expects the address to be 16 byte aligned.
1854 case X86::FsANDNPDrr:
1855 case X86::FsANDNPSrr:
1856 case X86::FsANDPDrr:
1857 case X86::FsANDPSrr:
1858 case X86::FsORPDrr:
1859 case X86::FsORPSrr:
1860 case X86::FsXORPDrr:
1861 case X86::FsXORPSrr:
1862 return NULL;
1863 }
1864 }
1865
Owen Anderson43dbe052008-01-07 01:35:02 +00001866 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1867 unsigned NewOpc = 0;
1868 switch (MI->getOpcode()) {
1869 default: return NULL;
1870 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1871 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1872 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1873 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1874 }
1875 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001876 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00001877 MI->getOperand(1).ChangeToImmediate(0);
1878 } else if (Ops.size() != 1)
1879 return NULL;
1880
1881 SmallVector<MachineOperand,4> MOs;
1882 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1883 return foldMemoryOperand(MI, Ops[0], MOs);
1884}
1885
Evan Cheng5fd79d02008-02-08 21:20:40 +00001886MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1887 MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001888 SmallVectorImpl<unsigned> &Ops,
1889 MachineInstr *LoadMI) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001890 // Check switch flag
1891 if (NoFusing) return NULL;
1892
Evan Cheng5fd79d02008-02-08 21:20:40 +00001893 unsigned Alignment = 0;
1894 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
1895 const MemOperand &MRO = LoadMI->getMemOperand(i);
1896 unsigned Align = MRO.getAlignment();
1897 if (Align > Alignment)
1898 Alignment = Align;
1899 }
1900
1901 // FIXME: Move alignment requirement into tables?
1902 if (Alignment < 16) {
1903 switch (MI->getOpcode()) {
1904 default: break;
1905 // Not always safe to fold movsd into these instructions since their load
1906 // folding variants expects the address to be 16 byte aligned.
1907 case X86::FsANDNPDrr:
1908 case X86::FsANDNPSrr:
1909 case X86::FsANDPDrr:
1910 case X86::FsANDPSrr:
1911 case X86::FsORPDrr:
1912 case X86::FsORPSrr:
1913 case X86::FsXORPDrr:
1914 case X86::FsXORPSrr:
1915 return NULL;
1916 }
1917 }
1918
Owen Anderson43dbe052008-01-07 01:35:02 +00001919 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1920 unsigned NewOpc = 0;
1921 switch (MI->getOpcode()) {
1922 default: return NULL;
1923 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1924 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1925 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1926 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1927 }
1928 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001929 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00001930 MI->getOperand(1).ChangeToImmediate(0);
1931 } else if (Ops.size() != 1)
1932 return NULL;
1933
1934 SmallVector<MachineOperand,4> MOs;
Chris Lattner749c6f62008-01-07 07:27:27 +00001935 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001936 for (unsigned i = NumOps - 4; i != NumOps; ++i)
1937 MOs.push_back(LoadMI->getOperand(i));
1938 return foldMemoryOperand(MI, Ops[0], MOs);
1939}
1940
1941
1942bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001943 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001944 // Check switch flag
1945 if (NoFusing) return 0;
1946
1947 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1948 switch (MI->getOpcode()) {
1949 default: return false;
1950 case X86::TEST8rr:
1951 case X86::TEST16rr:
1952 case X86::TEST32rr:
1953 case X86::TEST64rr:
1954 return true;
1955 }
1956 }
1957
1958 if (Ops.size() != 1)
1959 return false;
1960
1961 unsigned OpNum = Ops[0];
1962 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00001963 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001964 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001965 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001966
1967 // Folding a memory location into the two-address part of a two-address
1968 // instruction is different than folding it other places. It requires
1969 // replacing the *two* registers with the memory location.
1970 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1971 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
1972 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1973 } else if (OpNum == 0) { // If operand 0
1974 switch (Opc) {
1975 case X86::MOV16r0:
1976 case X86::MOV32r0:
1977 case X86::MOV64r0:
1978 case X86::MOV8r0:
1979 return true;
1980 default: break;
1981 }
1982 OpcodeTablePtr = &RegOp2MemOpTable0;
1983 } else if (OpNum == 1) {
1984 OpcodeTablePtr = &RegOp2MemOpTable1;
1985 } else if (OpNum == 2) {
1986 OpcodeTablePtr = &RegOp2MemOpTable2;
1987 }
1988
1989 if (OpcodeTablePtr) {
1990 // Find the Opcode to fuse
1991 DenseMap<unsigned*, unsigned>::iterator I =
1992 OpcodeTablePtr->find((unsigned*)Opc);
1993 if (I != OpcodeTablePtr->end())
1994 return true;
1995 }
1996 return false;
1997}
1998
1999bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2000 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2001 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2002 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2003 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2004 if (I == MemOp2RegOpTable.end())
2005 return false;
2006 unsigned Opc = I->second.first;
2007 unsigned Index = I->second.second & 0xf;
2008 bool FoldedLoad = I->second.second & (1 << 4);
2009 bool FoldedStore = I->second.second & (1 << 5);
2010 if (UnfoldLoad && !FoldedLoad)
2011 return false;
2012 UnfoldLoad &= FoldedLoad;
2013 if (UnfoldStore && !FoldedStore)
2014 return false;
2015 UnfoldStore &= FoldedStore;
2016
Chris Lattner749c6f62008-01-07 07:27:27 +00002017 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002018 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002019 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002020 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2021 SmallVector<MachineOperand,4> AddrOps;
2022 SmallVector<MachineOperand,2> BeforeOps;
2023 SmallVector<MachineOperand,2> AfterOps;
2024 SmallVector<MachineOperand,4> ImpOps;
2025 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2026 MachineOperand &Op = MI->getOperand(i);
2027 if (i >= Index && i < Index+4)
2028 AddrOps.push_back(Op);
2029 else if (Op.isRegister() && Op.isImplicit())
2030 ImpOps.push_back(Op);
2031 else if (i < Index)
2032 BeforeOps.push_back(Op);
2033 else if (i > Index)
2034 AfterOps.push_back(Op);
2035 }
2036
2037 // Emit the load instruction.
2038 if (UnfoldLoad) {
2039 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2040 if (UnfoldStore) {
2041 // Address operands cannot be marked isKill.
2042 for (unsigned i = 1; i != 5; ++i) {
2043 MachineOperand &MO = NewMIs[0]->getOperand(i);
2044 if (MO.isRegister())
2045 MO.setIsKill(false);
2046 }
2047 }
2048 }
2049
2050 // Emit the data processing instruction.
2051 MachineInstr *DataMI = new MachineInstr(TID, true);
2052 MachineInstrBuilder MIB(DataMI);
2053
2054 if (FoldedStore)
2055 MIB.addReg(Reg, true);
2056 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2057 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2058 if (FoldedLoad)
2059 MIB.addReg(Reg);
2060 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2061 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2062 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2063 MachineOperand &MO = ImpOps[i];
2064 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2065 }
2066 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2067 unsigned NewOpc = 0;
2068 switch (DataMI->getOpcode()) {
2069 default: break;
2070 case X86::CMP64ri32:
2071 case X86::CMP32ri:
2072 case X86::CMP16ri:
2073 case X86::CMP8ri: {
2074 MachineOperand &MO0 = DataMI->getOperand(0);
2075 MachineOperand &MO1 = DataMI->getOperand(1);
2076 if (MO1.getImm() == 0) {
2077 switch (DataMI->getOpcode()) {
2078 default: break;
2079 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2080 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2081 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2082 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2083 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00002084 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002085 MO1.ChangeToRegister(MO0.getReg(), false);
2086 }
2087 }
2088 }
2089 NewMIs.push_back(DataMI);
2090
2091 // Emit the store instruction.
2092 if (UnfoldStore) {
2093 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002094 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002095 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2096 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2097 }
2098
2099 return true;
2100}
2101
2102bool
2103X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2104 SmallVectorImpl<SDNode*> &NewNodes) const {
2105 if (!N->isTargetOpcode())
2106 return false;
2107
2108 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2109 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2110 if (I == MemOp2RegOpTable.end())
2111 return false;
2112 unsigned Opc = I->second.first;
2113 unsigned Index = I->second.second & 0xf;
2114 bool FoldedLoad = I->second.second & (1 << 4);
2115 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner749c6f62008-01-07 07:27:27 +00002116 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002117 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002118 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002119 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2120 std::vector<SDOperand> AddrOps;
2121 std::vector<SDOperand> BeforeOps;
2122 std::vector<SDOperand> AfterOps;
2123 unsigned NumOps = N->getNumOperands();
2124 for (unsigned i = 0; i != NumOps-1; ++i) {
2125 SDOperand Op = N->getOperand(i);
2126 if (i >= Index && i < Index+4)
2127 AddrOps.push_back(Op);
2128 else if (i < Index)
2129 BeforeOps.push_back(Op);
2130 else if (i > Index)
2131 AfterOps.push_back(Op);
2132 }
2133 SDOperand Chain = N->getOperand(NumOps-1);
2134 AddrOps.push_back(Chain);
2135
2136 // Emit the load instruction.
2137 SDNode *Load = 0;
2138 if (FoldedLoad) {
2139 MVT::ValueType VT = *RC->vt_begin();
2140 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2141 MVT::Other, &AddrOps[0], AddrOps.size());
2142 NewNodes.push_back(Load);
2143 }
2144
2145 // Emit the data processing instruction.
2146 std::vector<MVT::ValueType> VTs;
2147 const TargetRegisterClass *DstRC = 0;
Chris Lattner349c4952008-01-07 03:13:06 +00002148 if (TID.getNumDefs() > 0) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002149 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002150 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002151 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2152 VTs.push_back(*DstRC->vt_begin());
2153 }
2154 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2155 MVT::ValueType VT = N->getValueType(i);
Chris Lattner349c4952008-01-07 03:13:06 +00002156 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00002157 VTs.push_back(VT);
2158 }
2159 if (Load)
2160 BeforeOps.push_back(SDOperand(Load, 0));
2161 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2162 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2163 NewNodes.push_back(NewNode);
2164
2165 // Emit the store instruction.
2166 if (FoldedStore) {
2167 AddrOps.pop_back();
2168 AddrOps.push_back(SDOperand(NewNode, 0));
2169 AddrOps.push_back(Chain);
2170 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2171 MVT::Other, &AddrOps[0], AddrOps.size());
2172 NewNodes.push_back(Store);
2173 }
2174
2175 return true;
2176}
2177
2178unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2179 bool UnfoldLoad, bool UnfoldStore) const {
2180 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2181 MemOp2RegOpTable.find((unsigned*)Opc);
2182 if (I == MemOp2RegOpTable.end())
2183 return 0;
2184 bool FoldedLoad = I->second.second & (1 << 4);
2185 bool FoldedStore = I->second.second & (1 << 5);
2186 if (UnfoldLoad && !FoldedLoad)
2187 return 0;
2188 if (UnfoldStore && !FoldedStore)
2189 return 0;
2190 return I->second.first;
2191}
2192
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002193bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2194 if (MBB.empty()) return false;
2195
2196 switch (MBB.back().getOpcode()) {
Arnold Schwaighoferc85e1712007-10-11 19:40:01 +00002197 case X86::TCRETURNri:
2198 case X86::TCRETURNdi:
Evan Cheng126f17a2007-05-21 18:44:17 +00002199 case X86::RET: // Return.
2200 case X86::RETI:
2201 case X86::TAILJMPd:
2202 case X86::TAILJMPr:
2203 case X86::TAILJMPm:
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002204 case X86::JMP: // Uncond branch.
2205 case X86::JMP32r: // Indirect branch.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002206 case X86::JMP64r: // Indirect branch (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002207 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002208 case X86::JMP64m: // Indirect branch through mem (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002209 return true;
2210 default: return false;
2211 }
2212}
2213
Chris Lattner7fbe9722006-10-20 17:42:20 +00002214bool X86InstrInfo::
2215ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00002216 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2217 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2218 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002219}
2220
Evan Cheng25ab6902006-09-08 06:48:29 +00002221const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2222 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2223 if (Subtarget->is64Bit())
2224 return &X86::GR64RegClass;
2225 else
2226 return &X86::GR32RegClass;
2227}