blob: 2e0235af3941696a7459b58a12d4567250f17dc2 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000018#include "X86.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86RegisterInfo.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000020#include "llvm/ADT/DenseMap.h"
Dan Gohman1e57df32008-02-10 18:45:23 +000021#include "llvm/Target/TargetRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022
23namespace llvm {
24 class X86RegisterInfo;
25 class X86TargetMachine;
26
27namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
Dan Gohman0fc9ed62009-01-07 00:15:08 +000044 COND_O = 13,
45 COND_P = 14,
46 COND_S = 15,
Dan Gohman6a00fcb2008-10-21 03:29:32 +000047
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
53 COND_NE_OR_P,
54 COND_NP_OR_E,
55
Dan Gohmanf17a25c2007-07-18 16:29:46 +000056 COND_INVALID
57 };
Christopher Lambb371e032008-03-13 05:47:01 +000058
Dan Gohmanf17a25c2007-07-18 16:29:46 +000059 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC);
61
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
66}
67
68/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
Chris Lattner6d62ab92009-07-10 06:29:59 +000072 /// Target Operand Flag enum.
73 enum TOF {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074 //===------------------------------------------------------------------===//
Chris Lattner13d6c2d2009-06-25 17:38:33 +000075 // X86 Specific MachineOperand flags.
76
77 MO_NO_FLAG = 0,
78
79 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
80 /// relocation of:
Chris Lattner7ae15ea2009-06-26 00:43:52 +000081 /// SYMBOL_LABEL + [. - PICBASELABEL]
Chris Lattner13d6c2d2009-06-25 17:38:33 +000082 MO_GOT_ABSOLUTE_ADDRESS = 1,
83
Chris Lattner7ae15ea2009-06-26 00:43:52 +000084 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
85 /// immediate should get the value of the symbol minus the PIC base label:
86 /// SYMBOL_LABEL - PICBASELABEL
87 MO_PIC_BASE_OFFSET = 2,
88
Chris Lattnerec7cfd42009-06-26 21:20:29 +000089 /// MO_GOT - On a symbol operand this indicates that the immediate is the
90 /// offset to the GOT entry for the symbol name from the base of the GOT.
91 ///
92 /// See the X86-64 ELF ABI supplement for more details.
93 /// SYMBOL_LABEL @GOT
94 MO_GOT = 3,
Chris Lattner7ae15ea2009-06-26 00:43:52 +000095
Chris Lattnerec7cfd42009-06-26 21:20:29 +000096 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
97 /// the offset to the location of the symbol name from the base of the GOT.
98 ///
99 /// See the X86-64 ELF ABI supplement for more details.
100 /// SYMBOL_LABEL @GOTOFF
101 MO_GOTOFF = 4,
102
103 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
104 /// offset to the GOT entry for the symbol name from the current code
105 /// location.
106 ///
107 /// See the X86-64 ELF ABI supplement for more details.
108 /// SYMBOL_LABEL @GOTPCREL
109 MO_GOTPCREL = 5,
110
111 /// MO_PLT - On a symbol operand this indicates that the immediate is
112 /// offset to the PLT entry of symbol name from the current code location.
113 ///
114 /// See the X86-64 ELF ABI supplement for more details.
115 /// SYMBOL_LABEL @PLT
116 MO_PLT = 6,
117
118 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
119 /// some TLS offset.
120 ///
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSGD
123 MO_TLSGD = 7,
124
125 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126 /// some TLS offset.
127 ///
128 /// See 'ELF Handling for Thread-Local Storage' for more details.
129 /// SYMBOL_LABEL @GOTTPOFF
130 MO_GOTTPOFF = 8,
131
132 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
133 /// some TLS offset.
134 ///
135 /// See 'ELF Handling for Thread-Local Storage' for more details.
136 /// SYMBOL_LABEL @INDNTPOFF
137 MO_INDNTPOFF = 9,
138
139 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
140 /// some TLS offset.
141 ///
142 /// See 'ELF Handling for Thread-Local Storage' for more details.
143 /// SYMBOL_LABEL @TPOFF
144 MO_TPOFF = 10,
145
146 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
147 /// some TLS offset.
148 ///
149 /// See 'ELF Handling for Thread-Local Storage' for more details.
150 /// SYMBOL_LABEL @NTPOFF
151 MO_NTPOFF = 11,
Chris Lattner13d6c2d2009-06-25 17:38:33 +0000152
Chris Lattner9ab4e662009-07-09 00:58:53 +0000153 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
154 /// reference is actually to the "__imp_FOO" symbol. This is used for
155 /// dllimport linkage on windows.
156 MO_DLLIMPORT = 12,
157
Chris Lattner48837612009-07-09 05:27:35 +0000158 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
159 /// reference is actually to the "FOO$stub" symbol. This is used for calls
160 /// and jumps to external functions on Tiger and before.
161 MO_DARWIN_STUB = 13,
162
Chris Lattnera3bde622009-07-09 06:59:17 +0000163 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
164 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
165 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
166 MO_DARWIN_NONLAZY = 14,
167
168 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
169 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
170 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
171 MO_DARWIN_NONLAZY_PIC_BASE = 15,
172
173 /// MO_DARWIN_HIDDEN_NONLAZY - On a symbol operand "FOO", this indicates
174 /// that the reference is actually to the "FOO$non_lazy_ptr" symbol, which
175 /// is a non-PIC-base-relative reference to a hidden dyld lazy pointer stub.
176 MO_DARWIN_HIDDEN_NONLAZY = 16,
177
178 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
179 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
180 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
181 /// stub.
Chris Lattner578c2c82009-07-10 06:06:17 +0000182 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE = 17
Chris Lattner578c2c82009-07-10 06:06:17 +0000183 };
184}
185
Chris Lattner6d62ab92009-07-10 06:29:59 +0000186/// isGlobalStubReference - Return true if the specified TargetFlag operand is
Chris Lattner578c2c82009-07-10 06:06:17 +0000187/// a reference to a stub for a global, not the global itself.
Chris Lattner6d62ab92009-07-10 06:29:59 +0000188inline static bool isGlobalStubReference(unsigned char TargetFlag) {
189 switch (TargetFlag) {
Chris Lattner578c2c82009-07-10 06:06:17 +0000190 case X86II::MO_DLLIMPORT: // dllimport stub.
191 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
192 case X86II::MO_GOT: // normal GOT reference.
193 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
194 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
195 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
196 case X86II::MO_DARWIN_HIDDEN_NONLAZY: // Hidden $non_lazy_ptr ref.
197 return true;
198 default:
199 return false;
200 }
201}
Chris Lattner11939602009-07-10 07:33:30 +0000202
203/// isGlobalRelativeToPICBase - Return true if the specified global value
204/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
205/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
206inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
207 switch (TargetFlag) {
208 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
209 case X86II::MO_GOT: // isPICStyleGOT: other global.
210 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
211 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
212 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
213 return true;
214 default:
215 return false;
216 }
217}
Chris Lattner578c2c82009-07-10 06:06:17 +0000218
219/// X86II - This namespace holds all of the target specific flags that
220/// instruction info tracks.
221///
222namespace X86II {
223 enum {
Chris Lattner13d6c2d2009-06-25 17:38:33 +0000224 //===------------------------------------------------------------------===//
225 // Instruction encodings. These are the standard/most common forms for X86
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000226 // instructions.
227 //
228
229 // PseudoFrm - This represents an instruction that is a pseudo instruction
230 // or one that has not been implemented yet. It is illegal to code generate
231 // it, but tolerated for intermediate implementation stages.
232 Pseudo = 0,
233
234 /// Raw - This form is for instructions that don't have any operands, so
235 /// they are just a fixed opcode value, like 'leave'.
236 RawFrm = 1,
237
238 /// AddRegFrm - This form is used for instructions like 'push r32' that have
239 /// their one register operand added to their opcode.
240 AddRegFrm = 2,
241
242 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
243 /// to specify a destination, which in this case is a register.
244 ///
245 MRMDestReg = 3,
246
247 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
248 /// to specify a destination, which in this case is memory.
249 ///
250 MRMDestMem = 4,
251
252 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
253 /// to specify a source, which in this case is a register.
254 ///
255 MRMSrcReg = 5,
256
257 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
258 /// to specify a source, which in this case is memory.
259 ///
260 MRMSrcMem = 6,
261
262 /// MRM[0-7][rm] - These forms are used to represent instructions that use
263 /// a Mod/RM byte, and use the middle field to hold extended opcode
264 /// information. In the intel manual these are represented as /0, /1, ...
265 ///
266
267 // First, instructions that operate on a register r/m operand...
268 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
269 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
270
271 // Next, instructions that operate on a memory r/m operand...
272 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
273 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
274
275 // MRMInitReg - This form is used for instructions whose source and
276 // destinations are the same register.
277 MRMInitReg = 32,
278
279 FormMask = 63,
280
281 //===------------------------------------------------------------------===//
282 // Actual flags...
283
284 // OpSize - Set if this instruction requires an operand size prefix (0x66),
285 // which most often indicates that the instruction operates on 16 bit data
286 // instead of 32 bit data.
287 OpSize = 1 << 6,
288
289 // AsSize - Set if this instruction requires an operand size prefix (0x67),
290 // which most often indicates that the instruction address 16 bit address
291 // instead of 32 bit address (or 32 bit address in 64 bit mode).
292 AdSize = 1 << 7,
293
294 //===------------------------------------------------------------------===//
295 // Op0Mask - There are several prefix bytes that are used to form two byte
296 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
297 // used to obtain the setting of this field. If no bits in this field is
298 // set, there is no prefix byte for obtaining a multibyte opcode.
299 //
300 Op0Shift = 8,
301 Op0Mask = 0xF << Op0Shift,
302
303 // TB - TwoByte - Set if this instruction has a two byte opcode, which
304 // starts with a 0x0F byte before the real opcode.
305 TB = 1 << Op0Shift,
306
307 // REP - The 0xF3 prefix byte indicating repetition of the following
308 // instruction.
309 REP = 2 << Op0Shift,
310
311 // D8-DF - These escape opcodes are used by the floating point unit. These
312 // values must remain sequential.
313 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
314 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
315 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
316 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
317
318 // XS, XD - These prefix codes are for single and double precision scalar
319 // floating point operations performed in the SSE registers.
320 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
321
322 // T8, TA - Prefix after the 0x0F prefix.
323 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
Eric Christopherb5f948c2009-08-08 21:55:08 +0000324
325 // TF - Prefix before and after 0x0F
326 TF = 15 << Op0Shift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000327
328 //===------------------------------------------------------------------===//
329 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
330 // They are used to specify GPRs and SSE registers, 64-bit operand size,
331 // etc. We only cares about REX.W and REX.R bits and only the former is
332 // statically determined.
333 //
334 REXShift = 12,
335 REX_W = 1 << REXShift,
336
337 //===------------------------------------------------------------------===//
338 // This three-bit field describes the size of an immediate operand. Zero is
339 // unused so that we can tell if we forgot to set a value.
340 ImmShift = 13,
341 ImmMask = 7 << ImmShift,
342 Imm8 = 1 << ImmShift,
343 Imm16 = 2 << ImmShift,
344 Imm32 = 3 << ImmShift,
345 Imm64 = 4 << ImmShift,
346
347 //===------------------------------------------------------------------===//
348 // FP Instruction Classification... Zero is non-fp instruction.
349
350 // FPTypeMask - Mask for all of the FP types...
351 FPTypeShift = 16,
352 FPTypeMask = 7 << FPTypeShift,
353
354 // NotFP - The default, set for instructions that do not use FP registers.
355 NotFP = 0 << FPTypeShift,
356
357 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
358 ZeroArgFP = 1 << FPTypeShift,
359
360 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
361 OneArgFP = 2 << FPTypeShift,
362
363 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
364 // result back to ST(0). For example, fcos, fsqrt, etc.
365 //
366 OneArgFPRW = 3 << FPTypeShift,
367
368 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
369 // explicit argument, storing the result to either ST(0) or the implicit
370 // argument. For example: fadd, fsub, fmul, etc...
371 TwoArgFP = 4 << FPTypeShift,
372
373 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
374 // explicit argument, but have no destination. Example: fucom, fucomi, ...
375 CompareFP = 5 << FPTypeShift,
376
377 // CondMovFP - "2 operand" floating point conditional move instructions.
378 CondMovFP = 6 << FPTypeShift,
379
380 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
381 SpecialFP = 7 << FPTypeShift,
382
Andrew Lenharth7a5a4b22008-03-01 13:37:02 +0000383 // Lock prefix
384 LOCKShift = 19,
385 LOCK = 1 << LOCKShift,
386
Anton Korobeynikov975e1472008-10-11 19:09:15 +0000387 // Segment override prefixes. Currently we just need ability to address
388 // stuff in gs and fs segments.
389 SegOvrShift = 20,
390 SegOvrMask = 3 << SegOvrShift,
391 FS = 1 << SegOvrShift,
392 GS = 2 << SegOvrShift,
393
394 // Bits 22 -> 23 are unused
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000395 OpcodeShift = 24,
396 OpcodeMask = 0xFF << OpcodeShift
397 };
398}
399
Rafael Espindolabca99f72009-04-08 21:14:34 +0000400const int X86AddrNumOperands = 5;
Rafael Espindola3ef73652009-03-28 18:55:31 +0000401
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000402inline static bool isScale(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000403 return MO.isImm() &&
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000404 (MO.getImm() == 1 || MO.getImm() == 2 ||
405 MO.getImm() == 4 || MO.getImm() == 8);
406}
407
Rafael Espindolabca99f72009-04-08 21:14:34 +0000408inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000409 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000410 return Op+4 <= MI->getNumOperands() &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000411 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
412 MI->getOperand(Op+2).isReg() &&
413 (MI->getOperand(Op+3).isImm() ||
414 MI->getOperand(Op+3).isGlobal() ||
415 MI->getOperand(Op+3).isCPI() ||
416 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000417}
418
Rafael Espindolabca99f72009-04-08 21:14:34 +0000419inline static bool isMem(const MachineInstr *MI, unsigned Op) {
420 if (MI->getOperand(Op).isFI()) return true;
421 return Op+5 <= MI->getNumOperands() &&
422 MI->getOperand(Op+4).isReg() &&
423 isLeaMem(MI, Op);
424}
425
Chris Lattnerd2fd6db2008-01-01 01:03:04 +0000426class X86InstrInfo : public TargetInstrInfoImpl {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000427 X86TargetMachine &TM;
428 const X86RegisterInfo RI;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000429
430 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
431 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
432 ///
Evan Chenga5853792009-07-15 06:10:07 +0000433 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
434 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
435 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
436 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000437
438 /// MemOp2RegOpTable - Load / store unfolding opcode map.
439 ///
440 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
441
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442public:
Dan Gohman40bd38e2008-03-25 22:06:05 +0000443 explicit X86InstrInfo(X86TargetMachine &tm);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000444
445 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
446 /// such, whenever a client has an instance of instruction info, it should
447 /// always be able to get register info as well (through this method).
448 ///
Dan Gohmanb41dfba2008-05-14 01:58:56 +0000449 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450
Evan Chengf97496a2009-01-20 19:12:24 +0000451 /// Return true if the instruction is a register to register move and return
452 /// the source and dest operands and their sub-register indices by reference.
453 virtual bool isMoveInstr(const MachineInstr &MI,
454 unsigned &SrcReg, unsigned &DstReg,
455 unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
456
Dan Gohman90feee22008-11-18 19:49:32 +0000457 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
458 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000459
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000460 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000461 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
Evan Cheng463a3e42009-07-16 09:20:10 +0000462 unsigned DestReg, unsigned SubIdx,
463 const MachineInstr *Orig) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000464
Dan Gohman90feee22008-11-18 19:49:32 +0000465 bool isInvariantLoad(const MachineInstr *MI) const;
Bill Wendling57e31d62007-12-17 23:07:56 +0000466
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467 /// convertToThreeAddress - This method must be implemented by targets that
468 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
469 /// may be able to convert a two-address instruction into a true
470 /// three-address instruction on demand. This allows the X86 target (for
471 /// example) to convert ADD and SHL instructions into LEA instructions if they
472 /// would require register copies due to two-addressness.
473 ///
474 /// This method returns a null pointer if the transformation cannot be
475 /// performed, otherwise it returns the new instruction.
476 ///
477 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
478 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000479 LiveVariables *LV) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480
481 /// commuteInstruction - We have a few instructions that must be hacked on to
482 /// commute them.
483 ///
Evan Cheng5de1aaf2008-06-16 07:33:11 +0000484 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000485
486 // Branch analysis.
487 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
488 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
489 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +0000490 SmallVectorImpl<MachineOperand> &Cond,
491 bool AllowModify) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000492 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
493 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
494 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +0000495 const SmallVectorImpl<MachineOperand> &Cond) const;
Owen Anderson9fa72d92008-08-26 18:03:31 +0000496 virtual bool copyRegToReg(MachineBasicBlock &MBB,
Owen Anderson8f2c8932007-12-31 06:32:00 +0000497 MachineBasicBlock::iterator MI,
498 unsigned DestReg, unsigned SrcReg,
499 const TargetRegisterClass *DestRC,
500 const TargetRegisterClass *SrcRC) const;
Owen Anderson81875432008-01-01 21:11:32 +0000501 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
502 MachineBasicBlock::iterator MI,
503 unsigned SrcReg, bool isKill, int FrameIndex,
504 const TargetRegisterClass *RC) const;
505
506 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
507 SmallVectorImpl<MachineOperand> &Addr,
508 const TargetRegisterClass *RC,
509 SmallVectorImpl<MachineInstr*> &NewMIs) const;
510
511 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
512 MachineBasicBlock::iterator MI,
513 unsigned DestReg, int FrameIndex,
514 const TargetRegisterClass *RC) const;
515
516 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
517 SmallVectorImpl<MachineOperand> &Addr,
518 const TargetRegisterClass *RC,
519 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Anderson6690c7f2008-01-04 23:57:37 +0000520
521 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
522 MachineBasicBlock::iterator MI,
523 const std::vector<CalleeSavedInfo> &CSI) const;
524
525 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
526 MachineBasicBlock::iterator MI,
527 const std::vector<CalleeSavedInfo> &CSI) const;
528
Owen Anderson9a184ef2008-01-07 01:35:02 +0000529 /// foldMemoryOperand - If this target supports it, fold a load or store of
530 /// the specified stack slot into the specified machine instruction for the
531 /// specified operand(s). If this is possible, the target should perform the
532 /// folding and return true, otherwise it should return false. If it folds
533 /// the instruction, it is likely that the MachineInstruction the iterator
534 /// references has been changed.
Dan Gohmanedc83d62008-12-03 18:43:12 +0000535 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
536 MachineInstr* MI,
537 const SmallVectorImpl<unsigned> &Ops,
538 int FrameIndex) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000539
540 /// foldMemoryOperand - Same as the previous version except it allows folding
541 /// of any load and store from / to any address, not just from a specific
542 /// stack slot.
Dan Gohmanedc83d62008-12-03 18:43:12 +0000543 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
544 MachineInstr* MI,
545 const SmallVectorImpl<unsigned> &Ops,
546 MachineInstr* LoadMI) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000547
548 /// canFoldMemoryOperand - Returns true if the specified load / store is
549 /// folding is possible.
Dan Gohman46b948e2008-10-16 01:49:15 +0000550 virtual bool canFoldMemoryOperand(const MachineInstr*,
551 const SmallVectorImpl<unsigned> &) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000552
553 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
554 /// a store or a load and a store into two or more instruction. If this is
555 /// possible, returns true as well as the new instructions by reference.
556 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
557 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
558 SmallVectorImpl<MachineInstr*> &NewMIs) const;
559
560 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
561 SmallVectorImpl<SDNode*> &NewNodes) const;
562
563 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
564 /// instruction after load / store are unfolded from an instruction of the
565 /// specified opcode. It returns zero if the specified unfolding is not
566 /// possible.
567 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
568 bool UnfoldLoad, bool UnfoldStore) const;
569
Dan Gohman46b948e2008-10-16 01:49:15 +0000570 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
Owen Andersond131b5b2008-08-14 22:49:33 +0000571 virtual
572 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000573
Evan Chengf5a8a362009-02-06 17:17:30 +0000574 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
575 /// instruction that defines the specified register class.
576 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
Evan Cheng0e4a5a92008-10-27 07:14:50 +0000577
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000578 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sands466eadd2007-08-29 19:01:20 +0000579 // specified machine instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000580 //
Chris Lattner5b930372008-01-07 07:27:27 +0000581 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000582 return TID->TSFlags >> X86II::OpcodeShift;
583 }
Chris Lattner99aa3372008-01-07 02:48:55 +0000584 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
Duncan Sands466eadd2007-08-29 19:01:20 +0000585 return getBaseOpcodeFor(&get(Opcode));
586 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +0000587
588 static bool isX86_64NonExtLowByteReg(unsigned reg) {
589 return (reg == X86::SPL || reg == X86::BPL ||
590 reg == X86::SIL || reg == X86::DIL);
591 }
592
593 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +0000594 static bool isX86_64ExtendedReg(const MachineOperand &MO);
595 static unsigned determineREX(const MachineInstr &MI);
596
597 /// GetInstSize - Returns the size of the specified MachineInstr.
598 ///
599 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000600
Dan Gohman882ab732008-09-30 00:58:23 +0000601 /// getGlobalBaseReg - Return a virtual register initialized with the
602 /// the global base register value. Output instructions required to
603 /// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +0000604 ///
Dan Gohman882ab732008-09-30 00:58:23 +0000605 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohmanb60482f2008-09-23 18:22:58 +0000606
Owen Anderson9a184ef2008-01-07 01:35:02 +0000607private:
Dan Gohmanedc83d62008-12-03 18:43:12 +0000608 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
Evan Chenga5853792009-07-15 06:10:07 +0000609 MachineInstr* MI,
610 unsigned OpNum,
611 const SmallVectorImpl<MachineOperand> &MOs,
612 unsigned Alignment) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000613};
614
615} // End llvm namespace
616
617#endif