blob: 8938b287a8409f897cf5f8db2833e606bb13f569 [file] [log] [blame]
Chris Lattnered7b41e2003-05-27 15:45:27 +00001//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnered7b41e2003-05-27 15:45:27 +00009//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation. This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
Chris Lattner38aec322003-09-11 16:45:55 +000013// each member (if possible). Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs. As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
Chris Lattnered7b41e2003-05-27 15:45:27 +000019//
20//===----------------------------------------------------------------------===//
21
Chris Lattner0e5f4992006-12-19 21:40:18 +000022#define DEBUG_TYPE "scalarrepl"
Chris Lattnered7b41e2003-05-27 15:45:27 +000023#include "llvm/Transforms/Scalar.h"
Chris Lattner38aec322003-09-11 16:45:55 +000024#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
Chris Lattnered7b41e2003-05-27 15:45:27 +000026#include "llvm/Function.h"
Chris Lattner79b3bd32007-04-25 06:40:51 +000027#include "llvm/GlobalVariable.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattner372dda82007-03-05 07:52:57 +000029#include "llvm/IntrinsicInst.h"
Owen Andersonfa5cbd62009-07-03 19:42:02 +000030#include "llvm/LLVMContext.h"
Chris Lattner72eaa0e2010-09-01 23:09:27 +000031#include "llvm/Module.h"
Chris Lattner372dda82007-03-05 07:52:57 +000032#include "llvm/Pass.h"
Cameron Zwarichc8279392011-05-24 03:10:43 +000033#include "llvm/Analysis/DIBuilder.h"
Cameron Zwarichb1686c32011-01-18 03:53:26 +000034#include "llvm/Analysis/Dominators.h"
Chris Lattnerc87c50a2011-01-23 22:04:55 +000035#include "llvm/Analysis/Loads.h"
Dan Gohman5034dd32010-12-15 20:02:24 +000036#include "llvm/Analysis/ValueTracking.h"
Chris Lattner38aec322003-09-11 16:45:55 +000037#include "llvm/Target/TargetData.h"
38#include "llvm/Transforms/Utils/PromoteMemToReg.h"
Devang Patel4afc90d2009-02-10 07:00:59 +000039#include "llvm/Transforms/Utils/Local.h"
Chris Lattnere0a1a5b2011-01-14 07:50:47 +000040#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattnera9be1df2010-11-18 06:26:49 +000041#include "llvm/Support/CallSite.h"
Chris Lattner95255282006-06-28 23:17:24 +000042#include "llvm/Support/Debug.h"
Torok Edwin7d696d82009-07-11 13:10:19 +000043#include "llvm/Support/ErrorHandling.h"
Chris Lattnera1888942005-12-12 07:19:13 +000044#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner65a65022009-02-03 19:41:50 +000045#include "llvm/Support/IRBuilder.h"
Chris Lattnera1888942005-12-12 07:19:13 +000046#include "llvm/Support/MathExtras.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000047#include "llvm/Support/raw_ostream.h"
Chris Lattnerc87c50a2011-01-23 22:04:55 +000048#include "llvm/ADT/SetVector.h"
Chris Lattner1ccd1852007-02-12 22:56:41 +000049#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000050#include "llvm/ADT/Statistic.h"
Chris Lattnerd8664732003-12-02 17:43:55 +000051using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000052
Chris Lattner0e5f4992006-12-19 21:40:18 +000053STATISTIC(NumReplaced, "Number of allocas broken up");
54STATISTIC(NumPromoted, "Number of allocas promoted");
Chris Lattnerc87c50a2011-01-23 22:04:55 +000055STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
Chris Lattner0e5f4992006-12-19 21:40:18 +000056STATISTIC(NumConverted, "Number of aggregates converted to scalar");
Chris Lattner79b3bd32007-04-25 06:40:51 +000057STATISTIC(NumGlobals, "Number of allocas copied from constant global");
Chris Lattnered7b41e2003-05-27 15:45:27 +000058
Chris Lattner0e5f4992006-12-19 21:40:18 +000059namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000060 struct SROA : public FunctionPass {
Cameron Zwarichb1686c32011-01-18 03:53:26 +000061 SROA(int T, bool hasDT, char &ID)
62 : FunctionPass(ID), HasDomTree(hasDT) {
Devang Patelff366852007-07-09 21:19:23 +000063 if (T == -1)
Chris Lattnerb0e71ed2007-08-02 21:33:36 +000064 SRThreshold = 128;
Devang Patelff366852007-07-09 21:19:23 +000065 else
66 SRThreshold = T;
67 }
Devang Patel794fd752007-05-01 21:15:47 +000068
Chris Lattnered7b41e2003-05-27 15:45:27 +000069 bool runOnFunction(Function &F);
70
Chris Lattner38aec322003-09-11 16:45:55 +000071 bool performScalarRepl(Function &F);
72 bool performPromotion(Function &F);
73
Chris Lattnered7b41e2003-05-27 15:45:27 +000074 private:
Cameron Zwarichb1686c32011-01-18 03:53:26 +000075 bool HasDomTree;
Chris Lattner56c38522009-01-07 06:34:28 +000076 TargetData *TD;
Bob Wilson69743022011-01-13 20:59:44 +000077
Bob Wilsonb742def2009-12-18 20:14:40 +000078 /// DeadInsts - Keep track of instructions we have made dead, so that
79 /// we can remove them after we are done working.
80 SmallVector<Value*, 32> DeadInsts;
81
Chris Lattner39a1c042007-05-30 06:11:23 +000082 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
83 /// information about the uses. All these fields are initialized to false
84 /// and set to true when something is learned.
85 struct AllocaInfo {
Chris Lattner6c95d242011-01-23 07:29:29 +000086 /// The alloca to promote.
87 AllocaInst *AI;
88
Chris Lattner145c5322011-01-23 08:27:54 +000089 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
90 /// looping and avoid redundant work.
91 SmallPtrSet<PHINode*, 8> CheckedPHIs;
92
Chris Lattner39a1c042007-05-30 06:11:23 +000093 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
94 bool isUnsafe : 1;
Bob Wilson69743022011-01-13 20:59:44 +000095
Chris Lattner39a1c042007-05-30 06:11:23 +000096 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
97 bool isMemCpySrc : 1;
98
Zhou Sheng33b0b8d2007-07-06 06:01:16 +000099 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
Chris Lattner39a1c042007-05-30 06:11:23 +0000100 bool isMemCpyDst : 1;
101
Chris Lattner7e9b4272011-01-16 06:18:28 +0000102 /// hasSubelementAccess - This is true if a subelement of the alloca is
103 /// ever accessed, or false if the alloca is only accessed with mem
104 /// intrinsics or load/store that only access the entire alloca at once.
105 bool hasSubelementAccess : 1;
106
107 /// hasALoadOrStore - This is true if there are any loads or stores to it.
108 /// The alloca may just be accessed with memcpy, for example, which would
109 /// not set this.
110 bool hasALoadOrStore : 1;
111
Chris Lattner6c95d242011-01-23 07:29:29 +0000112 explicit AllocaInfo(AllocaInst *ai)
113 : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
Chris Lattner7e9b4272011-01-16 06:18:28 +0000114 hasSubelementAccess(false), hasALoadOrStore(false) {}
Chris Lattner39a1c042007-05-30 06:11:23 +0000115 };
Bob Wilson69743022011-01-13 20:59:44 +0000116
Devang Patelff366852007-07-09 21:19:23 +0000117 unsigned SRThreshold;
118
Chris Lattnerd01a0da2011-01-23 07:05:44 +0000119 void MarkUnsafe(AllocaInfo &I, Instruction *User) {
120 I.isUnsafe = true;
121 DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n');
122 }
Chris Lattner39a1c042007-05-30 06:11:23 +0000123
Victor Hernandez6c146ee2010-01-21 23:05:53 +0000124 bool isSafeAllocaToScalarRepl(AllocaInst *AI);
Chris Lattner39a1c042007-05-30 06:11:23 +0000125
Chris Lattner6c95d242011-01-23 07:29:29 +0000126 void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
Chris Lattner145c5322011-01-23 08:27:54 +0000127 void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
128 AllocaInfo &Info);
Chris Lattner6c95d242011-01-23 07:29:29 +0000129 void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
130 void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Chris Lattnerd01a0da2011-01-23 07:05:44 +0000131 const Type *MemOpType, bool isStore, AllocaInfo &Info,
Chris Lattner145c5322011-01-23 08:27:54 +0000132 Instruction *TheAccess, bool AllowWholeAccess);
Bob Wilsonb742def2009-12-18 20:14:40 +0000133 bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
Bob Wilsone88728d2009-12-19 06:53:17 +0000134 uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
135 const Type *&IdxTy);
Bob Wilson69743022011-01-13 20:59:44 +0000136
137 void DoScalarReplacement(AllocaInst *AI,
Victor Hernandez7b929da2009-10-23 21:09:37 +0000138 std::vector<AllocaInst*> &WorkList);
Bob Wilsonb742def2009-12-18 20:14:40 +0000139 void DeleteDeadInstructions();
Bob Wilson69743022011-01-13 20:59:44 +0000140
Bob Wilsonb742def2009-12-18 20:14:40 +0000141 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
142 SmallVector<AllocaInst*, 32> &NewElts);
143 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
144 SmallVector<AllocaInst*, 32> &NewElts);
145 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
146 SmallVector<AllocaInst*, 32> &NewElts);
147 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Victor Hernandez7b929da2009-10-23 21:09:37 +0000148 AllocaInst *AI,
Chris Lattnerd93afec2009-01-07 07:18:45 +0000149 SmallVector<AllocaInst*, 32> &NewElts);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000150 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
Chris Lattnerd2fa7812009-01-07 08:11:13 +0000151 SmallVector<AllocaInst*, 32> &NewElts);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000152 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Chris Lattner6e733d32009-01-28 20:16:43 +0000153 SmallVector<AllocaInst*, 32> &NewElts);
Bob Wilson69743022011-01-13 20:59:44 +0000154
Chris Lattner31d80102010-04-15 21:59:20 +0000155 static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
Chris Lattnered7b41e2003-05-27 15:45:27 +0000156 };
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000157
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000158 // SROA_DT - SROA that uses DominatorTree.
159 struct SROA_DT : public SROA {
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000160 static char ID;
161 public:
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000162 SROA_DT(int T = -1) : SROA(T, true, ID) {
163 initializeSROA_DTPass(*PassRegistry::getPassRegistry());
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000164 }
165
166 // getAnalysisUsage - This pass does not require any passes, but we know it
167 // will not alter the CFG, so say so.
168 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
169 AU.addRequired<DominatorTree>();
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000170 AU.setPreservesCFG();
171 }
172 };
173
174 // SROA_SSAUp - SROA that uses SSAUpdater.
175 struct SROA_SSAUp : public SROA {
176 static char ID;
177 public:
178 SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
179 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
180 }
181
182 // getAnalysisUsage - This pass does not require any passes, but we know it
183 // will not alter the CFG, so say so.
184 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
185 AU.setPreservesCFG();
186 }
187 };
188
Chris Lattnered7b41e2003-05-27 15:45:27 +0000189}
190
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000191char SROA_DT::ID = 0;
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000192char SROA_SSAUp::ID = 0;
193
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000194INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
195 "Scalar Replacement of Aggregates (DT)", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000196INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000197INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
198 "Scalar Replacement of Aggregates (DT)", false, false)
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000199
200INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
201 "Scalar Replacement of Aggregates (SSAUp)", false, false)
202INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
203 "Scalar Replacement of Aggregates (SSAUp)", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000204
Brian Gaeked0fde302003-11-11 22:41:34 +0000205// Public interface to the ScalarReplAggregates pass
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000206FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000207 bool UseDomTree) {
208 if (UseDomTree)
209 return new SROA_DT(Threshold);
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000210 return new SROA_SSAUp(Threshold);
Devang Patelff366852007-07-09 21:19:23 +0000211}
Chris Lattnered7b41e2003-05-27 15:45:27 +0000212
213
Chris Lattner4cc576b2010-04-16 00:24:57 +0000214//===----------------------------------------------------------------------===//
215// Convert To Scalar Optimization.
216//===----------------------------------------------------------------------===//
217
218namespace {
Chris Lattnera001b662010-04-16 00:38:19 +0000219/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
220/// optimization, which scans the uses of an alloca and determines if it can
221/// rewrite it in terms of a single new alloca that can be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000222class ConvertToScalarInfo {
Cameron Zwarichd4c9c3e2011-03-16 00:13:35 +0000223 /// AllocaSize - The size of the alloca being considered in bytes.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000224 unsigned AllocaSize;
225 const TargetData &TD;
Bob Wilson69743022011-01-13 20:59:44 +0000226
Chris Lattnera0bada72010-04-16 02:32:17 +0000227 /// IsNotTrivial - This is set to true if there is some access to the object
Chris Lattnera001b662010-04-16 00:38:19 +0000228 /// which means that mem2reg can't promote it.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000229 bool IsNotTrivial;
Bob Wilson69743022011-01-13 20:59:44 +0000230
Chris Lattnera001b662010-04-16 00:38:19 +0000231 /// VectorTy - This tracks the type that we should promote the vector to if
232 /// it is possible to turn it into a vector. This starts out null, and if it
233 /// isn't possible to turn into a vector type, it gets set to VoidTy.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000234 const Type *VectorTy;
Bob Wilson69743022011-01-13 20:59:44 +0000235
Chris Lattnera001b662010-04-16 00:38:19 +0000236 /// HadAVector - True if there is at least one vector access to the alloca.
237 /// We don't want to turn random arrays into vectors and use vector element
238 /// insert/extract, but if there are element accesses to something that is
239 /// also declared as a vector, we do want to promote to a vector.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000240 bool HadAVector;
241
Cameron Zwarich1bcdb6f2011-03-16 08:13:42 +0000242 /// HadNonMemTransferAccess - True if there is at least one access to the
243 /// alloca that is not a MemTransferInst. We don't want to turn structs into
244 /// large integers unless there is some potential for optimization.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000245 bool HadNonMemTransferAccess;
246
Chris Lattner4cc576b2010-04-16 00:24:57 +0000247public:
248 explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
Cameron Zwarichdeac2682011-03-16 00:13:37 +0000249 : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000250 HadAVector(false), HadNonMemTransferAccess(false) { }
Bob Wilson69743022011-01-13 20:59:44 +0000251
Chris Lattnera001b662010-04-16 00:38:19 +0000252 AllocaInst *TryConvert(AllocaInst *AI);
Bob Wilson69743022011-01-13 20:59:44 +0000253
Chris Lattner4cc576b2010-04-16 00:24:57 +0000254private:
255 bool CanConvertToScalar(Value *V, uint64_t Offset);
Cameron Zwarich9827b782011-03-29 05:19:52 +0000256 void MergeInType(const Type *In, uint64_t Offset, bool IsLoadOrStore);
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000257 bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000258 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
Bob Wilson69743022011-01-13 20:59:44 +0000259
Chris Lattner4cc576b2010-04-16 00:24:57 +0000260 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
261 uint64_t Offset, IRBuilder<> &Builder);
262 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
263 uint64_t Offset, IRBuilder<> &Builder);
264};
265} // end anonymous namespace.
266
Chris Lattner91abace2010-09-01 05:14:33 +0000267
Chris Lattnera001b662010-04-16 00:38:19 +0000268/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
269/// rewrite it to be a new alloca which is mem2reg'able. This returns the new
270/// alloca if possible or null if not.
271AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
272 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
273 // out.
274 if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
275 return 0;
Bob Wilson69743022011-01-13 20:59:44 +0000276
Chris Lattnera001b662010-04-16 00:38:19 +0000277 // If we were able to find a vector type that can handle this with
278 // insert/extract elements, and if there was at least one use that had
279 // a vector type, promote this to a vector. We don't want to promote
280 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
281 // we just get a lot of insert/extracts. If at least one vector is
282 // involved, then we probably really do have a union of vector/array.
283 const Type *NewTy;
Chris Lattner85a7c692011-01-23 06:40:33 +0000284 if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
Chris Lattnera001b662010-04-16 00:38:19 +0000285 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
286 << *VectorTy << '\n');
287 NewTy = VectorTy; // Use the vector type.
288 } else {
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000289 unsigned BitWidth = AllocaSize * 8;
290 if (!HadAVector && !HadNonMemTransferAccess &&
291 !TD.fitsInLegalInteger(BitWidth))
292 return 0;
293
Chris Lattnera001b662010-04-16 00:38:19 +0000294 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
295 // Create and insert the integer alloca.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000296 NewTy = IntegerType::get(AI->getContext(), BitWidth);
Chris Lattnera001b662010-04-16 00:38:19 +0000297 }
298 AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
299 ConvertUsesToScalar(AI, NewAI, 0);
300 return NewAI;
301}
302
303/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
304/// so far at the offset specified by Offset (which is specified in bytes).
Chris Lattner4cc576b2010-04-16 00:24:57 +0000305///
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000306/// There are three cases we handle here:
Chris Lattner4cc576b2010-04-16 00:24:57 +0000307/// 1) A union of vector types of the same size and potentially its elements.
308/// Here we turn element accesses into insert/extract element operations.
309/// This promotes a <4 x float> with a store of float to the third element
310/// into a <4 x float> that uses insert element.
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000311/// 2) A union of vector types with power-of-2 size differences, e.g. a float,
312/// <2 x float> and <4 x float>. Here we turn element accesses into insert
313/// and extract element operations, and <2 x float> accesses into a cast to
314/// <2 x double>, an extract, and a cast back to <2 x float>.
315/// 3) A fully general blob of memory, which we turn into some (potentially
Chris Lattner4cc576b2010-04-16 00:24:57 +0000316/// large) integer type with extract and insert operations where the loads
Chris Lattnera001b662010-04-16 00:38:19 +0000317/// and stores would mutate the memory. We mark this by setting VectorTy
318/// to VoidTy.
Cameron Zwarich9827b782011-03-29 05:19:52 +0000319void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset,
320 bool IsLoadOrStore) {
Chris Lattnera001b662010-04-16 00:38:19 +0000321 // If we already decided to turn this into a blob of integer memory, there is
322 // nothing to be done.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000323 if (VectorTy && VectorTy->isVoidTy())
324 return;
Bob Wilson69743022011-01-13 20:59:44 +0000325
Chris Lattner4cc576b2010-04-16 00:24:57 +0000326 // If this could be contributing to a vector, analyze it.
327
328 // If the In type is a vector that is the same size as the alloca, see if it
329 // matches the existing VecTy.
330 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000331 if (MergeInVectorType(VInTy, Offset))
Chris Lattner4cc576b2010-04-16 00:24:57 +0000332 return;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000333 } else if (In->isFloatTy() || In->isDoubleTy() ||
334 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
335 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
Cameron Zwarich9827b782011-03-29 05:19:52 +0000336 // Full width accesses can be ignored, because they can always be turned
337 // into bitcasts.
338 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
339 if (IsLoadOrStore && EltSize == AllocaSize)
340 return;
Cameron Zwarich5fc12822011-04-20 21:48:16 +0000341
Chris Lattner4cc576b2010-04-16 00:24:57 +0000342 // If we're accessing something that could be an element of a vector, see
343 // if the implied vector agrees with what we already have and if Offset is
344 // compatible with it.
Cameron Zwarich96cc1d02011-06-09 01:45:33 +0000345 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
Cameron Zwarichc4f78202011-06-09 01:52:44 +0000346 (!VectorTy || Offset * 8 < VectorTy->getPrimitiveSizeInBits())) {
Cameron Zwarich5fc12822011-04-20 21:48:16 +0000347 if (!VectorTy) {
Chris Lattner4cc576b2010-04-16 00:24:57 +0000348 VectorTy = VectorType::get(In, AllocaSize/EltSize);
Cameron Zwarich5fc12822011-04-20 21:48:16 +0000349 return;
350 }
351
352 unsigned CurrentEltSize = cast<VectorType>(VectorTy)->getElementType()
353 ->getPrimitiveSizeInBits()/8;
354 if (EltSize == CurrentEltSize)
355 return;
Cameron Zwarich344731c2011-04-20 21:48:38 +0000356
357 if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
358 return;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000359 }
360 }
Bob Wilson69743022011-01-13 20:59:44 +0000361
Chris Lattner4cc576b2010-04-16 00:24:57 +0000362 // Otherwise, we have a case that we can't handle with an optimized vector
363 // form. We can still turn this into a large integer.
364 VectorTy = Type::getVoidTy(In->getContext());
365}
366
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000367/// MergeInVectorType - Handles the vector case of MergeInType, returning true
368/// if the type was successfully merged and false otherwise.
369bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
370 uint64_t Offset) {
371 // Remember if we saw a vector type.
372 HadAVector = true;
373
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000374 // TODO: Support nonzero offsets?
375 if (Offset != 0)
376 return false;
377
378 // Only allow vectors that are a power-of-2 away from the size of the alloca.
379 if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
380 return false;
381
382 // If this the first vector we see, remember the type so that we know the
383 // element size.
384 if (!VectorTy) {
385 VectorTy = VInTy;
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000386 return true;
387 }
388
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000389 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
390 unsigned InBitWidth = VInTy->getBitWidth();
391
392 // Vectors of the same size can be converted using a simple bitcast.
393 if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
394 return true;
395
396 const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
Cameron Zwarichc77a10f2011-03-26 04:58:50 +0000397 const Type *InElementTy = cast<VectorType>(VInTy)->getElementType();
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000398
399 // Do not allow mixed integer and floating-point accesses from vectors of
400 // different sizes.
401 if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
402 return false;
403
404 if (ElementTy->isFloatingPointTy()) {
405 // Only allow floating-point vectors of different sizes if they have the
406 // same element type.
407 // TODO: This could be loosened a bit, but would anything benefit?
408 if (ElementTy != InElementTy)
409 return false;
410
411 // There are no arbitrary-precision floating-point types, which limits the
412 // number of legal vector types with larger element types that we can form
413 // to bitcast and extract a subvector.
414 // TODO: We could support some more cases with mixed fp128 and double here.
415 if (!(BitWidth == 64 || BitWidth == 128) ||
416 !(InBitWidth == 64 || InBitWidth == 128))
417 return false;
418 } else {
419 assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
420 "or floating-point.");
421 unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
422 unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
423
424 // Do not allow integer types smaller than a byte or types whose widths are
425 // not a multiple of a byte.
426 if (BitWidth < 8 || InBitWidth < 8 ||
427 BitWidth % 8 != 0 || InBitWidth % 8 != 0)
428 return false;
429 }
430
431 // Pick the largest of the two vector types.
432 if (InBitWidth > BitWidth)
433 VectorTy = VInTy;
434
435 return true;
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000436}
437
Chris Lattner4cc576b2010-04-16 00:24:57 +0000438/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
439/// its accesses to a single vector type, return true and set VecTy to
440/// the new type. If we could convert the alloca into a single promotable
441/// integer, return true but set VecTy to VoidTy. Further, if the use is not a
442/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
443/// is the current offset from the base of the alloca being analyzed.
444///
445/// If we see at least one access to the value that is as a vector type, set the
446/// SawVec flag.
447bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
448 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
449 Instruction *User = cast<Instruction>(*UI);
Bob Wilson69743022011-01-13 20:59:44 +0000450
Chris Lattner4cc576b2010-04-16 00:24:57 +0000451 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
452 // Don't break volatile loads.
453 if (LI->isVolatile())
454 return false;
Dale Johannesen0488fb62010-09-30 23:57:10 +0000455 // Don't touch MMX operations.
456 if (LI->getType()->isX86_MMXTy())
457 return false;
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000458 HadNonMemTransferAccess = true;
Cameron Zwarich9827b782011-03-29 05:19:52 +0000459 MergeInType(LI->getType(), Offset, true);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000460 continue;
461 }
Bob Wilson69743022011-01-13 20:59:44 +0000462
Chris Lattner4cc576b2010-04-16 00:24:57 +0000463 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
464 // Storing the pointer, not into the value?
465 if (SI->getOperand(0) == V || SI->isVolatile()) return false;
Dale Johannesen0488fb62010-09-30 23:57:10 +0000466 // Don't touch MMX operations.
467 if (SI->getOperand(0)->getType()->isX86_MMXTy())
468 return false;
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000469 HadNonMemTransferAccess = true;
Cameron Zwarich9827b782011-03-29 05:19:52 +0000470 MergeInType(SI->getOperand(0)->getType(), Offset, true);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000471 continue;
472 }
Bob Wilson69743022011-01-13 20:59:44 +0000473
Chris Lattner4cc576b2010-04-16 00:24:57 +0000474 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000475 IsNotTrivial = true; // Can't be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000476 if (!CanConvertToScalar(BCI, Offset))
477 return false;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000478 continue;
479 }
480
481 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
482 // If this is a GEP with a variable indices, we can't handle it.
483 if (!GEP->hasAllConstantIndices())
484 return false;
Bob Wilson69743022011-01-13 20:59:44 +0000485
Chris Lattner4cc576b2010-04-16 00:24:57 +0000486 // Compute the offset that this GEP adds to the pointer.
487 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
488 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
489 &Indices[0], Indices.size());
490 // See if all uses can be converted.
491 if (!CanConvertToScalar(GEP, Offset+GEPOffset))
492 return false;
Chris Lattnera001b662010-04-16 00:38:19 +0000493 IsNotTrivial = true; // Can't be mem2reg'd.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000494 HadNonMemTransferAccess = true;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000495 continue;
496 }
497
498 // If this is a constant sized memset of a constant value (e.g. 0) we can
499 // handle it.
500 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
501 // Store of constant value and constant size.
Chris Lattnera001b662010-04-16 00:38:19 +0000502 if (!isa<ConstantInt>(MSI->getValue()) ||
503 !isa<ConstantInt>(MSI->getLength()))
504 return false;
505 IsNotTrivial = true; // Can't be mem2reg'd.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000506 HadNonMemTransferAccess = true;
Chris Lattnera001b662010-04-16 00:38:19 +0000507 continue;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000508 }
509
510 // If this is a memcpy or memmove into or out of the whole allocation, we
511 // can handle it like a load or store of the scalar type.
512 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000513 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
514 if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
515 return false;
Bob Wilson69743022011-01-13 20:59:44 +0000516
Chris Lattnera001b662010-04-16 00:38:19 +0000517 IsNotTrivial = true; // Can't be mem2reg'd.
518 continue;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000519 }
Bob Wilson69743022011-01-13 20:59:44 +0000520
Chris Lattner4cc576b2010-04-16 00:24:57 +0000521 // Otherwise, we cannot handle this!
522 return false;
523 }
Bob Wilson69743022011-01-13 20:59:44 +0000524
Chris Lattner4cc576b2010-04-16 00:24:57 +0000525 return true;
526}
527
528/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
529/// directly. This happens when we are converting an "integer union" to a
530/// single integer scalar, or when we are converting a "vector union" to a
531/// vector with insert/extractelement instructions.
532///
533/// Offset is an offset from the original alloca, in bits that need to be
534/// shifted to the right. By the end of this, there should be no uses of Ptr.
535void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
536 uint64_t Offset) {
537 while (!Ptr->use_empty()) {
538 Instruction *User = cast<Instruction>(Ptr->use_back());
539
540 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
541 ConvertUsesToScalar(CI, NewAI, Offset);
542 CI->eraseFromParent();
543 continue;
544 }
545
546 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
547 // Compute the offset that this GEP adds to the pointer.
548 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
549 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
550 &Indices[0], Indices.size());
551 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
552 GEP->eraseFromParent();
553 continue;
554 }
Bob Wilson69743022011-01-13 20:59:44 +0000555
Chris Lattner61db1f52010-12-26 22:57:41 +0000556 IRBuilder<> Builder(User);
Bob Wilson69743022011-01-13 20:59:44 +0000557
Chris Lattner4cc576b2010-04-16 00:24:57 +0000558 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
559 // The load is a bit extract from NewAI shifted right by Offset bits.
560 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
561 Value *NewLoadVal
562 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
563 LI->replaceAllUsesWith(NewLoadVal);
564 LI->eraseFromParent();
565 continue;
566 }
Bob Wilson69743022011-01-13 20:59:44 +0000567
Chris Lattner4cc576b2010-04-16 00:24:57 +0000568 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
569 assert(SI->getOperand(0) != Ptr && "Consistency error!");
570 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
571 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
572 Builder);
573 Builder.CreateStore(New, NewAI);
574 SI->eraseFromParent();
Bob Wilson69743022011-01-13 20:59:44 +0000575
Chris Lattner4cc576b2010-04-16 00:24:57 +0000576 // If the load we just inserted is now dead, then the inserted store
577 // overwrote the entire thing.
578 if (Old->use_empty())
579 Old->eraseFromParent();
580 continue;
581 }
Bob Wilson69743022011-01-13 20:59:44 +0000582
Chris Lattner4cc576b2010-04-16 00:24:57 +0000583 // If this is a constant sized memset of a constant value (e.g. 0) we can
584 // transform it into a store of the expanded constant value.
585 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
586 assert(MSI->getRawDest() == Ptr && "Consistency error!");
587 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
588 if (NumBytes != 0) {
589 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
Bob Wilson69743022011-01-13 20:59:44 +0000590
Chris Lattner4cc576b2010-04-16 00:24:57 +0000591 // Compute the value replicated the right number of times.
592 APInt APVal(NumBytes*8, Val);
593
594 // Splat the value if non-zero.
595 if (Val)
596 for (unsigned i = 1; i != NumBytes; ++i)
597 APVal |= APVal << 8;
Bob Wilson69743022011-01-13 20:59:44 +0000598
Chris Lattner4cc576b2010-04-16 00:24:57 +0000599 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
600 Value *New = ConvertScalar_InsertValue(
601 ConstantInt::get(User->getContext(), APVal),
602 Old, Offset, Builder);
603 Builder.CreateStore(New, NewAI);
Bob Wilson69743022011-01-13 20:59:44 +0000604
Chris Lattner4cc576b2010-04-16 00:24:57 +0000605 // If the load we just inserted is now dead, then the memset overwrote
606 // the entire thing.
607 if (Old->use_empty())
Bob Wilson69743022011-01-13 20:59:44 +0000608 Old->eraseFromParent();
Chris Lattner4cc576b2010-04-16 00:24:57 +0000609 }
610 MSI->eraseFromParent();
611 continue;
612 }
613
614 // If this is a memcpy or memmove into or out of the whole allocation, we
615 // can handle it like a load or store of the scalar type.
616 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
617 assert(Offset == 0 && "must be store to start of alloca");
Bob Wilson69743022011-01-13 20:59:44 +0000618
Chris Lattner4cc576b2010-04-16 00:24:57 +0000619 // If the source and destination are both to the same alloca, then this is
620 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
621 // as appropriate.
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000622 AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
Bob Wilson69743022011-01-13 20:59:44 +0000623
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000624 if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
Chris Lattner4cc576b2010-04-16 00:24:57 +0000625 // Dest must be OrigAI, change this to be a load from the original
626 // pointer (bitcasted), then a store to our new alloca.
627 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
628 Value *SrcPtr = MTI->getSource();
Mon P Wange90a6332010-12-23 01:41:32 +0000629 const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
630 const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
631 if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
632 AIPTy = PointerType::get(AIPTy->getElementType(),
633 SPTy->getAddressSpace());
634 }
635 SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
636
Chris Lattner4cc576b2010-04-16 00:24:57 +0000637 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
638 SrcVal->setAlignment(MTI->getAlignment());
639 Builder.CreateStore(SrcVal, NewAI);
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000640 } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
Chris Lattner4cc576b2010-04-16 00:24:57 +0000641 // Src must be OrigAI, change this to be a load from NewAI then a store
642 // through the original dest pointer (bitcasted).
643 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
644 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
645
Mon P Wange90a6332010-12-23 01:41:32 +0000646 const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
647 const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
648 if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
649 AIPTy = PointerType::get(AIPTy->getElementType(),
650 DPTy->getAddressSpace());
651 }
652 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
653
Chris Lattner4cc576b2010-04-16 00:24:57 +0000654 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
655 NewStore->setAlignment(MTI->getAlignment());
656 } else {
657 // Noop transfer. Src == Dst
658 }
659
660 MTI->eraseFromParent();
661 continue;
662 }
Bob Wilson69743022011-01-13 20:59:44 +0000663
Chris Lattner4cc576b2010-04-16 00:24:57 +0000664 llvm_unreachable("Unsupported operation!");
665 }
666}
667
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000668/// getScaledElementType - Gets a scaled element type for a partial vector
Cameron Zwarich344731c2011-04-20 21:48:38 +0000669/// access of an alloca. The input types must be integer or floating-point
670/// scalar or vector types, and the resulting type is an integer, float or
671/// double.
672static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000673 unsigned NewBitWidth) {
Cameron Zwarich344731c2011-04-20 21:48:38 +0000674 bool IsFP1 = Ty1->isFloatingPointTy() ||
675 (Ty1->isVectorTy() &&
676 cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
677 bool IsFP2 = Ty2->isFloatingPointTy() ||
678 (Ty2->isVectorTy() &&
679 cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000680
Cameron Zwarich344731c2011-04-20 21:48:38 +0000681 LLVMContext &Context = Ty1->getContext();
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000682
Cameron Zwarich344731c2011-04-20 21:48:38 +0000683 // Prefer floating-point types over integer types, as integer types may have
684 // been created by earlier scalar replacement.
685 if (IsFP1 || IsFP2) {
686 if (NewBitWidth == 32)
687 return Type::getFloatTy(Context);
688 if (NewBitWidth == 64)
689 return Type::getDoubleTy(Context);
690 }
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000691
Cameron Zwarich344731c2011-04-20 21:48:38 +0000692 return Type::getIntNTy(Context, NewBitWidth);
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000693}
694
Mon P Wangddf9abf2011-04-14 08:04:01 +0000695/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
696/// to another vector of the same element type which has the same allocation
697/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
698static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
699 IRBuilder<> &Builder) {
700 const Type *FromType = FromVal->getType();
Mon P Wang481823a2011-04-14 19:20:42 +0000701 const VectorType *FromVTy = cast<VectorType>(FromType);
702 const VectorType *ToVTy = cast<VectorType>(ToType);
703 assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
Mon P Wangddf9abf2011-04-14 08:04:01 +0000704 "Vectors must have the same element type");
Mon P Wangddf9abf2011-04-14 08:04:01 +0000705 Value *UnV = UndefValue::get(FromType);
706 unsigned numEltsFrom = FromVTy->getNumElements();
707 unsigned numEltsTo = ToVTy->getNumElements();
708
709 SmallVector<Constant*, 3> Args;
Mon P Wang481823a2011-04-14 19:20:42 +0000710 const Type* Int32Ty = Builder.getInt32Ty();
Mon P Wangddf9abf2011-04-14 08:04:01 +0000711 unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
712 unsigned i;
713 for (i=0; i != minNumElts; ++i)
Mon P Wang481823a2011-04-14 19:20:42 +0000714 Args.push_back(ConstantInt::get(Int32Ty, i));
Mon P Wangddf9abf2011-04-14 08:04:01 +0000715
716 if (i < numEltsTo) {
Mon P Wang481823a2011-04-14 19:20:42 +0000717 Constant* UnC = UndefValue::get(Int32Ty);
Mon P Wangddf9abf2011-04-14 08:04:01 +0000718 for (; i != numEltsTo; ++i)
719 Args.push_back(UnC);
720 }
721 Constant *Mask = ConstantVector::get(Args);
722 return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
723}
724
Chris Lattner4cc576b2010-04-16 00:24:57 +0000725/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
726/// or vector value FromVal, extracting the bits from the offset specified by
727/// Offset. This returns the value, which is of type ToType.
728///
729/// This happens when we are converting an "integer union" to a single
730/// integer scalar, or when we are converting a "vector union" to a vector with
731/// insert/extractelement instructions.
732///
733/// Offset is an offset from the original alloca, in bits that need to be
734/// shifted to the right.
735Value *ConvertToScalarInfo::
736ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
737 uint64_t Offset, IRBuilder<> &Builder) {
738 // If the load is of the whole new alloca, no conversion is needed.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000739 const Type *FromType = FromVal->getType();
740 if (FromType == ToType && Offset == 0)
Chris Lattner4cc576b2010-04-16 00:24:57 +0000741 return FromVal;
742
743 // If the result alloca is a vector type, this is either an element
744 // access or a bitcast to another vector type of the same size.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000745 if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
Cameron Zwarich0398d612011-06-08 22:08:31 +0000746 unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
Cameron Zwarich9827b782011-03-29 05:19:52 +0000747 unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
Cameron Zwarich0398d612011-06-08 22:08:31 +0000748 if (FromTypeSize == ToTypeSize) {
Mon P Wangddf9abf2011-04-14 08:04:01 +0000749 // If the two types have the same primitive size, use a bit cast.
750 // Otherwise, it is two vectors with the same element type that has
751 // the same allocation size but different number of elements so use
752 // a shuffle vector.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000753 if (FromType->getPrimitiveSizeInBits() ==
754 ToType->getPrimitiveSizeInBits())
755 return Builder.CreateBitCast(FromVal, ToType, "tmp");
Mon P Wangddf9abf2011-04-14 08:04:01 +0000756 else
757 return CreateShuffleVectorCast(FromVal, ToType, Builder);
Mon P Wangbe0761c2011-04-13 21:40:02 +0000758 }
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000759
Cameron Zwarich0398d612011-06-08 22:08:31 +0000760 if (isPowerOf2_64(FromTypeSize / ToTypeSize)) {
Cameron Zwarich344731c2011-04-20 21:48:38 +0000761 assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
762 "of a smaller vector type at a nonzero offset.");
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000763
Cameron Zwarich344731c2011-04-20 21:48:38 +0000764 const Type *CastElementTy = getScaledElementType(FromType, ToType,
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000765 ToTypeSize * 8);
Cameron Zwarich0398d612011-06-08 22:08:31 +0000766 unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000767
Cameron Zwarich032c10f2011-03-09 07:34:11 +0000768 LLVMContext &Context = FromVal->getContext();
769 const Type *CastTy = VectorType::get(CastElementTy,
770 NumCastVectorElements);
771 Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
Cameron Zwarich344731c2011-04-20 21:48:38 +0000772
773 unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
774 unsigned Elt = Offset/EltSize;
775 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
Cameron Zwarich032c10f2011-03-09 07:34:11 +0000776 Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
Cameron Zwarich344731c2011-04-20 21:48:38 +0000777 Type::getInt32Ty(Context), Elt), "tmp");
Cameron Zwarich032c10f2011-03-09 07:34:11 +0000778 return Builder.CreateBitCast(Extract, ToType, "tmp");
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000779 }
Chris Lattner4cc576b2010-04-16 00:24:57 +0000780
781 // Otherwise it must be an element access.
782 unsigned Elt = 0;
783 if (Offset) {
784 unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
785 Elt = Offset/EltSize;
786 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
787 }
788 // Return the element extracted out of it.
789 Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
790 Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
791 if (V->getType() != ToType)
792 V = Builder.CreateBitCast(V, ToType, "tmp");
793 return V;
794 }
Bob Wilson69743022011-01-13 20:59:44 +0000795
Chris Lattner4cc576b2010-04-16 00:24:57 +0000796 // If ToType is a first class aggregate, extract out each of the pieces and
797 // use insertvalue's to form the FCA.
798 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
799 const StructLayout &Layout = *TD.getStructLayout(ST);
800 Value *Res = UndefValue::get(ST);
801 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
802 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
803 Offset+Layout.getElementOffsetInBits(i),
804 Builder);
805 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
806 }
807 return Res;
808 }
Bob Wilson69743022011-01-13 20:59:44 +0000809
Chris Lattner4cc576b2010-04-16 00:24:57 +0000810 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
811 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
812 Value *Res = UndefValue::get(AT);
813 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
814 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
815 Offset+i*EltSize, Builder);
816 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
817 }
818 return Res;
819 }
820
821 // Otherwise, this must be a union that was converted to an integer value.
822 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
823
824 // If this is a big-endian system and the load is narrower than the
825 // full alloca type, we need to do a shift to get the right bits.
826 int ShAmt = 0;
827 if (TD.isBigEndian()) {
828 // On big-endian machines, the lowest bit is stored at the bit offset
829 // from the pointer given by getTypeStoreSizeInBits. This matters for
830 // integers with a bitwidth that is not a multiple of 8.
831 ShAmt = TD.getTypeStoreSizeInBits(NTy) -
832 TD.getTypeStoreSizeInBits(ToType) - Offset;
833 } else {
834 ShAmt = Offset;
835 }
836
837 // Note: we support negative bitwidths (with shl) which are not defined.
838 // We do this to support (f.e.) loads off the end of a structure where
839 // only some bits are used.
840 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
841 FromVal = Builder.CreateLShr(FromVal,
842 ConstantInt::get(FromVal->getType(),
843 ShAmt), "tmp");
844 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
Bob Wilson69743022011-01-13 20:59:44 +0000845 FromVal = Builder.CreateShl(FromVal,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000846 ConstantInt::get(FromVal->getType(),
847 -ShAmt), "tmp");
848
849 // Finally, unconditionally truncate the integer to the right width.
850 unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
851 if (LIBitWidth < NTy->getBitWidth())
852 FromVal =
Bob Wilson69743022011-01-13 20:59:44 +0000853 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
Chris Lattner4cc576b2010-04-16 00:24:57 +0000854 LIBitWidth), "tmp");
855 else if (LIBitWidth > NTy->getBitWidth())
856 FromVal =
Bob Wilson69743022011-01-13 20:59:44 +0000857 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
Chris Lattner4cc576b2010-04-16 00:24:57 +0000858 LIBitWidth), "tmp");
859
860 // If the result is an integer, this is a trunc or bitcast.
861 if (ToType->isIntegerTy()) {
862 // Should be done.
863 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
864 // Just do a bitcast, we know the sizes match up.
865 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
866 } else {
867 // Otherwise must be a pointer.
868 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
869 }
870 assert(FromVal->getType() == ToType && "Didn't convert right?");
871 return FromVal;
872}
873
874/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
875/// or vector value "Old" at the offset specified by Offset.
876///
877/// This happens when we are converting an "integer union" to a
878/// single integer scalar, or when we are converting a "vector union" to a
879/// vector with insert/extractelement instructions.
880///
881/// Offset is an offset from the original alloca, in bits that need to be
882/// shifted to the right.
883Value *ConvertToScalarInfo::
884ConvertScalar_InsertValue(Value *SV, Value *Old,
885 uint64_t Offset, IRBuilder<> &Builder) {
886 // Convert the stored type to the actual type, shift it left to insert
887 // then 'or' into place.
888 const Type *AllocaType = Old->getType();
889 LLVMContext &Context = Old->getContext();
890
891 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
892 uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
893 uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
Bob Wilson69743022011-01-13 20:59:44 +0000894
Chris Lattner4cc576b2010-04-16 00:24:57 +0000895 // Changing the whole vector with memset or with an access of a different
896 // vector type?
Mon P Wangbe0761c2011-04-13 21:40:02 +0000897 if (ValSize == VecSize) {
Mon P Wangddf9abf2011-04-14 08:04:01 +0000898 // If the two types have the same primitive size, use a bit cast.
899 // Otherwise, it is two vectors with the same element type that has
900 // the same allocation size but different number of elements so use
901 // a shuffle vector.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000902 if (VTy->getPrimitiveSizeInBits() ==
903 SV->getType()->getPrimitiveSizeInBits())
904 return Builder.CreateBitCast(SV, AllocaType, "tmp");
Mon P Wangddf9abf2011-04-14 08:04:01 +0000905 else
906 return CreateShuffleVectorCast(SV, VTy, Builder);
Mon P Wangbe0761c2011-04-13 21:40:02 +0000907 }
Chris Lattner4cc576b2010-04-16 00:24:57 +0000908
Cameron Zwarich344731c2011-04-20 21:48:38 +0000909 if (isPowerOf2_64(VecSize / ValSize)) {
910 assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
911 "value of a smaller vector type at a nonzero offset.");
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000912
Cameron Zwarich344731c2011-04-20 21:48:38 +0000913 const Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
914 ValSize);
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000915 unsigned NumCastVectorElements = VecSize / ValSize;
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000916
917 LLVMContext &Context = SV->getContext();
918 const Type *OldCastTy = VectorType::get(CastElementTy,
919 NumCastVectorElements);
920 Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
921
922 Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
Cameron Zwarich344731c2011-04-20 21:48:38 +0000923
924 unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
925 unsigned Elt = Offset/EltSize;
926 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000927 Value *Insert =
928 Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
Cameron Zwarich344731c2011-04-20 21:48:38 +0000929 Type::getInt32Ty(Context), Elt), "tmp");
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000930 return Builder.CreateBitCast(Insert, AllocaType, "tmp");
931 }
932
Chris Lattner4cc576b2010-04-16 00:24:57 +0000933 // Must be an element insertion.
Cameron Zwarichc5c43b92011-04-20 21:48:34 +0000934 assert(SV->getType() == VTy->getElementType());
935 uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
Chris Lattner4cc576b2010-04-16 00:24:57 +0000936 unsigned Elt = Offset/EltSize;
Cameron Zwarichc5c43b92011-04-20 21:48:34 +0000937 return Builder.CreateInsertElement(Old, SV,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000938 ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
939 "tmp");
Chris Lattner4cc576b2010-04-16 00:24:57 +0000940 }
Bob Wilson69743022011-01-13 20:59:44 +0000941
Chris Lattner4cc576b2010-04-16 00:24:57 +0000942 // If SV is a first-class aggregate value, insert each value recursively.
943 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
944 const StructLayout &Layout = *TD.getStructLayout(ST);
945 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
946 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
Bob Wilson69743022011-01-13 20:59:44 +0000947 Old = ConvertScalar_InsertValue(Elt, Old,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000948 Offset+Layout.getElementOffsetInBits(i),
949 Builder);
950 }
951 return Old;
952 }
Bob Wilson69743022011-01-13 20:59:44 +0000953
Chris Lattner4cc576b2010-04-16 00:24:57 +0000954 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
955 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
956 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
957 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
958 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
959 }
960 return Old;
961 }
962
963 // If SV is a float, convert it to the appropriate integer type.
964 // If it is a pointer, do the same.
965 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
966 unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
967 unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
968 unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
969 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
970 SV = Builder.CreateBitCast(SV,
971 IntegerType::get(SV->getContext(),SrcWidth), "tmp");
972 else if (SV->getType()->isPointerTy())
973 SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
974
975 // Zero extend or truncate the value if needed.
976 if (SV->getType() != AllocaType) {
977 if (SV->getType()->getPrimitiveSizeInBits() <
978 AllocaType->getPrimitiveSizeInBits())
979 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
980 else {
981 // Truncation may be needed if storing more than the alloca can hold
982 // (undefined behavior).
983 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
984 SrcWidth = DestWidth;
985 SrcStoreWidth = DestStoreWidth;
986 }
987 }
988
989 // If this is a big-endian system and the store is narrower than the
990 // full alloca type, we need to do a shift to get the right bits.
991 int ShAmt = 0;
992 if (TD.isBigEndian()) {
993 // On big-endian machines, the lowest bit is stored at the bit offset
994 // from the pointer given by getTypeStoreSizeInBits. This matters for
995 // integers with a bitwidth that is not a multiple of 8.
996 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
997 } else {
998 ShAmt = Offset;
999 }
1000
1001 // Note: we support negative bitwidths (with shr) which are not defined.
1002 // We do this to support (f.e.) stores off the end of a structure where
1003 // only some bits in the structure are set.
1004 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1005 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1006 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1007 ShAmt), "tmp");
1008 Mask <<= ShAmt;
1009 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1010 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1011 -ShAmt), "tmp");
1012 Mask = Mask.lshr(-ShAmt);
1013 }
1014
1015 // Mask out the bits we are about to insert from the old value, and or
1016 // in the new bits.
1017 if (SrcWidth != DestWidth) {
1018 assert(DestWidth > SrcWidth);
1019 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1020 SV = Builder.CreateOr(Old, SV, "ins");
1021 }
1022 return SV;
1023}
1024
1025
1026//===----------------------------------------------------------------------===//
1027// SRoA Driver
1028//===----------------------------------------------------------------------===//
1029
1030
Chris Lattnered7b41e2003-05-27 15:45:27 +00001031bool SROA::runOnFunction(Function &F) {
Dan Gohmane4af1cf2009-08-19 18:22:18 +00001032 TD = getAnalysisIfAvailable<TargetData>();
1033
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +00001034 bool Changed = performPromotion(F);
Dan Gohmane4af1cf2009-08-19 18:22:18 +00001035
1036 // FIXME: ScalarRepl currently depends on TargetData more than it
1037 // theoretically needs to. It should be refactored in order to support
1038 // target-independent IR. Until this is done, just skip the actual
1039 // scalar-replacement portion of this pass.
1040 if (!TD) return Changed;
1041
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +00001042 while (1) {
1043 bool LocalChange = performScalarRepl(F);
1044 if (!LocalChange) break; // No need to repromote if no scalarrepl
1045 Changed = true;
1046 LocalChange = performPromotion(F);
1047 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
1048 }
Chris Lattner38aec322003-09-11 16:45:55 +00001049
1050 return Changed;
1051}
1052
Chris Lattnerd0f56132011-01-14 19:50:47 +00001053namespace {
1054class AllocaPromoter : public LoadAndStorePromoter {
1055 AllocaInst *AI;
1056public:
Cameron Zwarichc8279392011-05-24 03:10:43 +00001057 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1058 DbgDeclareInst *DD, DIBuilder *&DB)
1059 : LoadAndStorePromoter(Insts, S, DD, DB), AI(0) {}
Chris Lattnerd0f56132011-01-14 19:50:47 +00001060
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001061 void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
Chris Lattnerd0f56132011-01-14 19:50:47 +00001062 // Remember which alloca we're promoting (for isInstInList).
1063 this->AI = AI;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001064 LoadAndStorePromoter::run(Insts);
Chris Lattnerd0f56132011-01-14 19:50:47 +00001065 AI->eraseFromParent();
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001066 }
1067
Chris Lattnerd0f56132011-01-14 19:50:47 +00001068 virtual bool isInstInList(Instruction *I,
1069 const SmallVectorImpl<Instruction*> &Insts) const {
1070 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1071 return LI->getOperand(0) == AI;
1072 return cast<StoreInst>(I)->getPointerOperand() == AI;
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001073 }
Chris Lattnerd0f56132011-01-14 19:50:47 +00001074};
1075} // end anon namespace
Chris Lattner38aec322003-09-11 16:45:55 +00001076
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001077/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1078/// subsequently loaded can be rewritten to load both input pointers and then
1079/// select between the result, allowing the load of the alloca to be promoted.
1080/// From this:
1081/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1082/// %V = load i32* %P2
1083/// to:
1084/// %V1 = load i32* %Alloca -> will be mem2reg'd
1085/// %V2 = load i32* %Other
Chris Lattnere3357862011-01-24 01:07:11 +00001086/// %V = select i1 %cond, i32 %V1, i32 %V2
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001087///
1088/// We can do this to a select if its only uses are loads and if the operand to
1089/// the select can be loaded unconditionally.
1090static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1091 bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1092 bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1093
1094 for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1095 UI != UE; ++UI) {
1096 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1097 if (LI == 0 || LI->isVolatile()) return false;
1098
Chris Lattnere3357862011-01-24 01:07:11 +00001099 // Both operands to the select need to be dereferencable, either absolutely
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001100 // (e.g. allocas) or at this point because we can see other accesses to it.
1101 if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1102 LI->getAlignment(), TD))
1103 return false;
1104 if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1105 LI->getAlignment(), TD))
1106 return false;
1107 }
1108
1109 return true;
1110}
1111
Chris Lattnere3357862011-01-24 01:07:11 +00001112/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1113/// subsequently loaded can be rewritten to load both input pointers in the pred
1114/// blocks and then PHI the results, allowing the load of the alloca to be
1115/// promoted.
1116/// From this:
1117/// %P2 = phi [i32* %Alloca, i32* %Other]
1118/// %V = load i32* %P2
1119/// to:
1120/// %V1 = load i32* %Alloca -> will be mem2reg'd
1121/// ...
1122/// %V2 = load i32* %Other
1123/// ...
1124/// %V = phi [i32 %V1, i32 %V2]
1125///
1126/// We can do this to a select if its only uses are loads and if the operand to
1127/// the select can be loaded unconditionally.
1128static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1129 // For now, we can only do this promotion if the load is in the same block as
1130 // the PHI, and if there are no stores between the phi and load.
1131 // TODO: Allow recursive phi users.
1132 // TODO: Allow stores.
1133 BasicBlock *BB = PN->getParent();
1134 unsigned MaxAlign = 0;
1135 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1136 UI != UE; ++UI) {
1137 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1138 if (LI == 0 || LI->isVolatile()) return false;
1139
1140 // For now we only allow loads in the same block as the PHI. This is a
1141 // common case that happens when instcombine merges two loads through a PHI.
1142 if (LI->getParent() != BB) return false;
1143
1144 // Ensure that there are no instructions between the PHI and the load that
1145 // could store.
1146 for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1147 if (BBI->mayWriteToMemory())
1148 return false;
1149
1150 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1151 }
1152
1153 // Okay, we know that we have one or more loads in the same block as the PHI.
1154 // We can transform this if it is safe to push the loads into the predecessor
1155 // blocks. The only thing to watch out for is that we can't put a possibly
1156 // trapping load in the predecessor if it is a critical edge.
1157 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1158 BasicBlock *Pred = PN->getIncomingBlock(i);
1159
1160 // If the predecessor has a single successor, then the edge isn't critical.
1161 if (Pred->getTerminator()->getNumSuccessors() == 1)
1162 continue;
1163
1164 Value *InVal = PN->getIncomingValue(i);
1165
1166 // If the InVal is an invoke in the pred, we can't put a load on the edge.
1167 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1168 if (II->getParent() == Pred)
1169 return false;
1170
1171 // If this pointer is always safe to load, or if we can prove that there is
1172 // already a load in the block, then we can move the load to the pred block.
1173 if (InVal->isDereferenceablePointer() ||
1174 isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1175 continue;
1176
1177 return false;
1178 }
1179
1180 return true;
1181}
1182
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001183
1184/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1185/// direct (non-volatile) loads and stores to it. If the alloca is close but
1186/// not quite there, this will transform the code to allow promotion. As such,
1187/// it is a non-pure predicate.
1188static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1189 SetVector<Instruction*, SmallVector<Instruction*, 4>,
1190 SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1191
1192 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1193 UI != UE; ++UI) {
1194 User *U = *UI;
1195 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1196 if (LI->isVolatile())
1197 return false;
1198 continue;
1199 }
1200
1201 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1202 if (SI->getOperand(0) == AI || SI->isVolatile())
1203 return false; // Don't allow a store OF the AI, only INTO the AI.
1204 continue;
1205 }
1206
1207 if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1208 // If the condition being selected on is a constant, fold the select, yes
1209 // this does (rarely) happen early on.
1210 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1211 Value *Result = SI->getOperand(1+CI->isZero());
1212 SI->replaceAllUsesWith(Result);
1213 SI->eraseFromParent();
1214
1215 // This is very rare and we just scrambled the use list of AI, start
1216 // over completely.
1217 return tryToMakeAllocaBePromotable(AI, TD);
1218 }
1219
1220 // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1221 // loads, then we can transform this by rewriting the select.
1222 if (!isSafeSelectToSpeculate(SI, TD))
1223 return false;
1224
1225 InstsToRewrite.insert(SI);
1226 continue;
1227 }
1228
Chris Lattnere3357862011-01-24 01:07:11 +00001229 if (PHINode *PN = dyn_cast<PHINode>(U)) {
1230 if (PN->use_empty()) { // Dead PHIs can be stripped.
1231 InstsToRewrite.insert(PN);
1232 continue;
1233 }
1234
1235 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1236 // in the pred blocks, then we can transform this by rewriting the PHI.
1237 if (!isSafePHIToSpeculate(PN, TD))
1238 return false;
1239
1240 InstsToRewrite.insert(PN);
1241 continue;
1242 }
1243
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001244 return false;
1245 }
1246
1247 // If there are no instructions to rewrite, then all uses are load/stores and
1248 // we're done!
1249 if (InstsToRewrite.empty())
1250 return true;
1251
1252 // If we have instructions that need to be rewritten for this to be promotable
1253 // take care of it now.
1254 for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
Chris Lattnere3357862011-01-24 01:07:11 +00001255 if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1256 // Selects in InstsToRewrite only have load uses. Rewrite each as two
1257 // loads with a new select.
1258 while (!SI->use_empty()) {
1259 LoadInst *LI = cast<LoadInst>(SI->use_back());
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001260
Chris Lattnere3357862011-01-24 01:07:11 +00001261 IRBuilder<> Builder(LI);
1262 LoadInst *TrueLoad =
1263 Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1264 LoadInst *FalseLoad =
1265 Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1266
1267 // Transfer alignment and TBAA info if present.
1268 TrueLoad->setAlignment(LI->getAlignment());
1269 FalseLoad->setAlignment(LI->getAlignment());
1270 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1271 TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1272 FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1273 }
1274
1275 Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1276 V->takeName(LI);
1277 LI->replaceAllUsesWith(V);
1278 LI->eraseFromParent();
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001279 }
Chris Lattnere3357862011-01-24 01:07:11 +00001280
1281 // Now that all the loads are gone, the select is gone too.
1282 SI->eraseFromParent();
1283 continue;
1284 }
1285
1286 // Otherwise, we have a PHI node which allows us to push the loads into the
1287 // predecessors.
1288 PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1289 if (PN->use_empty()) {
1290 PN->eraseFromParent();
1291 continue;
1292 }
1293
1294 const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
Jay Foad3ecfc862011-03-30 11:28:46 +00001295 PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1296 PN->getName()+".ld", PN);
Chris Lattnere3357862011-01-24 01:07:11 +00001297
1298 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1299 // matter which one we get and if any differ, it doesn't matter.
1300 LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1301 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1302 unsigned Align = SomeLoad->getAlignment();
1303
1304 // Rewrite all loads of the PN to use the new PHI.
1305 while (!PN->use_empty()) {
1306 LoadInst *LI = cast<LoadInst>(PN->use_back());
1307 LI->replaceAllUsesWith(NewPN);
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001308 LI->eraseFromParent();
1309 }
1310
Chris Lattnere3357862011-01-24 01:07:11 +00001311 // Inject loads into all of the pred blocks. Keep track of which blocks we
1312 // insert them into in case we have multiple edges from the same block.
1313 DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1314
1315 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1316 BasicBlock *Pred = PN->getIncomingBlock(i);
1317 LoadInst *&Load = InsertedLoads[Pred];
1318 if (Load == 0) {
1319 Load = new LoadInst(PN->getIncomingValue(i),
1320 PN->getName() + "." + Pred->getName(),
1321 Pred->getTerminator());
1322 Load->setAlignment(Align);
1323 if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1324 }
1325
1326 NewPN->addIncoming(Load, Pred);
1327 }
1328
1329 PN->eraseFromParent();
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001330 }
1331
1332 ++NumAdjusted;
1333 return true;
1334}
1335
Chris Lattner38aec322003-09-11 16:45:55 +00001336bool SROA::performPromotion(Function &F) {
1337 std::vector<AllocaInst*> Allocas;
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001338 DominatorTree *DT = 0;
Cameron Zwarichb1686c32011-01-18 03:53:26 +00001339 if (HasDomTree)
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001340 DT = &getAnalysis<DominatorTree>();
Chris Lattner38aec322003-09-11 16:45:55 +00001341
Chris Lattner02a3be02003-09-20 14:39:18 +00001342 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
Chris Lattner38aec322003-09-11 16:45:55 +00001343
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +00001344 bool Changed = false;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001345 SmallVector<Instruction*, 64> Insts;
Cameron Zwarichc8279392011-05-24 03:10:43 +00001346 DIBuilder *DIB = 0;
Chris Lattner38aec322003-09-11 16:45:55 +00001347 while (1) {
1348 Allocas.clear();
1349
1350 // Find allocas that are safe to promote, by looking at all instructions in
1351 // the entry node
1352 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1353 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001354 if (tryToMakeAllocaBePromotable(AI, TD))
Chris Lattner38aec322003-09-11 16:45:55 +00001355 Allocas.push_back(AI);
1356
1357 if (Allocas.empty()) break;
1358
Cameron Zwarichb1686c32011-01-18 03:53:26 +00001359 if (HasDomTree)
Cameron Zwarich419e8a62011-01-17 17:38:41 +00001360 PromoteMemToReg(Allocas, *DT);
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001361 else {
1362 SSAUpdater SSA;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001363 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1364 AllocaInst *AI = Allocas[i];
1365
1366 // Build list of instructions to promote.
1367 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1368 UI != E; ++UI)
1369 Insts.push_back(cast<Instruction>(*UI));
Cameron Zwarichc8279392011-05-24 03:10:43 +00001370
1371 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
Cameron Zwarich13a16082011-05-24 06:00:08 +00001372 if (DDI && !DIB)
1373 DIB = new DIBuilder(*AI->getParent()->getParent()->getParent());
Cameron Zwarichc8279392011-05-24 03:10:43 +00001374 AllocaPromoter(Insts, SSA, DDI, DIB).run(AI, Insts);
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001375 Insts.clear();
1376 }
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001377 }
Chris Lattner38aec322003-09-11 16:45:55 +00001378 NumPromoted += Allocas.size();
1379 Changed = true;
1380 }
1381
Cameron Zwarichc8279392011-05-24 03:10:43 +00001382 // FIXME: Is there a better way to handle the lazy initialization of DIB
1383 // so that there doesn't need to be an explicit delete?
1384 delete DIB;
1385
Chris Lattner38aec322003-09-11 16:45:55 +00001386 return Changed;
1387}
1388
Chris Lattner4cc576b2010-04-16 00:24:57 +00001389
Bob Wilson3992feb2010-02-03 17:23:56 +00001390/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1391/// SROA. It must be a struct or array type with a small number of elements.
1392static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1393 const Type *T = AI->getAllocatedType();
1394 // Do not promote any struct into more than 32 separate vars.
Chris Lattner963a97f2008-06-22 17:46:21 +00001395 if (const StructType *ST = dyn_cast<StructType>(T))
Bob Wilson3992feb2010-02-03 17:23:56 +00001396 return ST->getNumElements() <= 32;
1397 // Arrays are much less likely to be safe for SROA; only consider
1398 // them if they are very small.
1399 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1400 return AT->getNumElements() <= 8;
1401 return false;
Chris Lattner963a97f2008-06-22 17:46:21 +00001402}
1403
Chris Lattnerc4472072010-04-15 23:50:26 +00001404
Chris Lattner38aec322003-09-11 16:45:55 +00001405// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1406// which runs on all of the malloc/alloca instructions in the function, removing
1407// them if they are only used by getelementptr instructions.
1408//
1409bool SROA::performScalarRepl(Function &F) {
Victor Hernandez7b929da2009-10-23 21:09:37 +00001410 std::vector<AllocaInst*> WorkList;
Chris Lattnered7b41e2003-05-27 15:45:27 +00001411
Chris Lattner31d80102010-04-15 21:59:20 +00001412 // Scan the entry basic block, adding allocas to the worklist.
Chris Lattner02a3be02003-09-20 14:39:18 +00001413 BasicBlock &BB = F.getEntryBlock();
Chris Lattnered7b41e2003-05-27 15:45:27 +00001414 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
Victor Hernandez7b929da2009-10-23 21:09:37 +00001415 if (AllocaInst *A = dyn_cast<AllocaInst>(I))
Chris Lattnered7b41e2003-05-27 15:45:27 +00001416 WorkList.push_back(A);
1417
1418 // Process the worklist
1419 bool Changed = false;
1420 while (!WorkList.empty()) {
Victor Hernandez7b929da2009-10-23 21:09:37 +00001421 AllocaInst *AI = WorkList.back();
Chris Lattnered7b41e2003-05-27 15:45:27 +00001422 WorkList.pop_back();
Bob Wilson69743022011-01-13 20:59:44 +00001423
Chris Lattneradd2bd72006-12-22 23:14:42 +00001424 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1425 // with unused elements.
1426 if (AI->use_empty()) {
1427 AI->eraseFromParent();
Chris Lattnerc4472072010-04-15 23:50:26 +00001428 Changed = true;
Chris Lattneradd2bd72006-12-22 23:14:42 +00001429 continue;
1430 }
Chris Lattner7809ecd2009-02-03 01:30:09 +00001431
1432 // If this alloca is impossible for us to promote, reject it early.
1433 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1434 continue;
Bob Wilson69743022011-01-13 20:59:44 +00001435
Chris Lattner79b3bd32007-04-25 06:40:51 +00001436 // Check to see if this allocation is only modified by a memcpy/memmove from
1437 // a constant global. If this is the case, we can change all users to use
1438 // the constant global instead. This is commonly produced by the CFE by
1439 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1440 // is only subsequently read.
Chris Lattner31d80102010-04-15 21:59:20 +00001441 if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
David Greene504c7d82010-01-05 01:27:09 +00001442 DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1443 DEBUG(dbgs() << " memcpy = " << *TheCopy << '\n');
Chris Lattner31d80102010-04-15 21:59:20 +00001444 Constant *TheSrc = cast<Constant>(TheCopy->getSource());
Owen Andersonbaf3c402009-07-29 18:55:55 +00001445 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
Chris Lattner79b3bd32007-04-25 06:40:51 +00001446 TheCopy->eraseFromParent(); // Don't mutate the global.
1447 AI->eraseFromParent();
1448 ++NumGlobals;
1449 Changed = true;
1450 continue;
1451 }
Bob Wilson69743022011-01-13 20:59:44 +00001452
Chris Lattner7809ecd2009-02-03 01:30:09 +00001453 // Check to see if we can perform the core SROA transformation. We cannot
1454 // transform the allocation instruction if it is an array allocation
1455 // (allocations OF arrays are ok though), and an allocation of a scalar
1456 // value cannot be decomposed at all.
Duncan Sands777d2302009-05-09 07:06:46 +00001457 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
Bill Wendling5a377cb2009-03-03 12:12:58 +00001458
Nick Lewyckyd3aa25e2009-08-17 05:37:31 +00001459 // Do not promote [0 x %struct].
1460 if (AllocaSize == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00001461
Chris Lattner31d80102010-04-15 21:59:20 +00001462 // Do not promote any struct whose size is too big.
1463 if (AllocaSize > SRThreshold) continue;
Bob Wilson69743022011-01-13 20:59:44 +00001464
Bob Wilson3992feb2010-02-03 17:23:56 +00001465 // If the alloca looks like a good candidate for scalar replacement, and if
1466 // all its users can be transformed, then split up the aggregate into its
1467 // separate elements.
1468 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1469 DoScalarReplacement(AI, WorkList);
1470 Changed = true;
1471 continue;
1472 }
1473
Chris Lattner6e733d32009-01-28 20:16:43 +00001474 // If we can turn this aggregate value (potentially with casts) into a
1475 // simple scalar value that can be mem2reg'd into a register value.
Chris Lattner2e0d5f82009-01-31 02:28:54 +00001476 // IsNotTrivial tracks whether this is something that mem2reg could have
1477 // promoted itself. If so, we don't want to transform it needlessly. Note
1478 // that we can't just check based on the type: the alloca may be of an i32
1479 // but that has pointer arithmetic to set byte 3 of it or something.
Chris Lattner593375d2010-04-16 00:20:00 +00001480 if (AllocaInst *NewAI =
1481 ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
Chris Lattner7809ecd2009-02-03 01:30:09 +00001482 NewAI->takeName(AI);
1483 AI->eraseFromParent();
1484 ++NumConverted;
1485 Changed = true;
1486 continue;
Bob Wilson69743022011-01-13 20:59:44 +00001487 }
1488
Chris Lattner7809ecd2009-02-03 01:30:09 +00001489 // Otherwise, couldn't process this alloca.
Chris Lattnered7b41e2003-05-27 15:45:27 +00001490 }
1491
1492 return Changed;
1493}
Chris Lattner5e062a12003-05-30 04:15:41 +00001494
Chris Lattnera10b29b2007-04-25 05:02:56 +00001495/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1496/// predicate, do SROA now.
Bob Wilson69743022011-01-13 20:59:44 +00001497void SROA::DoScalarReplacement(AllocaInst *AI,
Victor Hernandez7b929da2009-10-23 21:09:37 +00001498 std::vector<AllocaInst*> &WorkList) {
David Greene504c7d82010-01-05 01:27:09 +00001499 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
Chris Lattnera10b29b2007-04-25 05:02:56 +00001500 SmallVector<AllocaInst*, 32> ElementAllocas;
1501 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1502 ElementAllocas.reserve(ST->getNumContainedTypes());
1503 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
Bob Wilson69743022011-01-13 20:59:44 +00001504 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
Chris Lattnera10b29b2007-04-25 05:02:56 +00001505 AI->getAlignment(),
Daniel Dunbarfe09b202009-07-30 17:37:43 +00001506 AI->getName() + "." + Twine(i), AI);
Chris Lattnera10b29b2007-04-25 05:02:56 +00001507 ElementAllocas.push_back(NA);
1508 WorkList.push_back(NA); // Add to worklist for recursive processing
1509 }
1510 } else {
1511 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1512 ElementAllocas.reserve(AT->getNumElements());
1513 const Type *ElTy = AT->getElementType();
1514 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Owen Anderson50dead02009-07-15 23:53:25 +00001515 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
Daniel Dunbarfe09b202009-07-30 17:37:43 +00001516 AI->getName() + "." + Twine(i), AI);
Chris Lattnera10b29b2007-04-25 05:02:56 +00001517 ElementAllocas.push_back(NA);
1518 WorkList.push_back(NA); // Add to worklist for recursive processing
1519 }
1520 }
1521
Bob Wilsonb742def2009-12-18 20:14:40 +00001522 // Now that we have created the new alloca instructions, rewrite all the
1523 // uses of the old alloca.
1524 RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
Chris Lattnera59adc42009-12-14 05:11:02 +00001525
Bob Wilsonb742def2009-12-18 20:14:40 +00001526 // Now erase any instructions that were made dead while rewriting the alloca.
1527 DeleteDeadInstructions();
Bob Wilson39c88a62009-12-17 18:34:24 +00001528 AI->eraseFromParent();
Bob Wilsonb742def2009-12-18 20:14:40 +00001529
Dan Gohmanfe601042010-06-22 15:08:57 +00001530 ++NumReplaced;
Chris Lattnera10b29b2007-04-25 05:02:56 +00001531}
Chris Lattnera59adc42009-12-14 05:11:02 +00001532
Bob Wilsonb742def2009-12-18 20:14:40 +00001533/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1534/// recursively including all their operands that become trivially dead.
1535void SROA::DeleteDeadInstructions() {
1536 while (!DeadInsts.empty()) {
1537 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
Chris Lattnera59adc42009-12-14 05:11:02 +00001538
Bob Wilsonb742def2009-12-18 20:14:40 +00001539 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1540 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1541 // Zero out the operand and see if it becomes trivially dead.
1542 // (But, don't add allocas to the dead instruction list -- they are
1543 // already on the worklist and will be deleted separately.)
1544 *OI = 0;
1545 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1546 DeadInsts.push_back(U);
Chris Lattnera59adc42009-12-14 05:11:02 +00001547 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001548
1549 I->eraseFromParent();
Chris Lattnera59adc42009-12-14 05:11:02 +00001550 }
Chris Lattnera59adc42009-12-14 05:11:02 +00001551}
Bob Wilson69743022011-01-13 20:59:44 +00001552
Bob Wilsonb742def2009-12-18 20:14:40 +00001553/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1554/// performing scalar replacement of alloca AI. The results are flagged in
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001555/// the Info parameter. Offset indicates the position within AI that is
1556/// referenced by this instruction.
Chris Lattner6c95d242011-01-23 07:29:29 +00001557void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001558 AllocaInfo &Info) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001559 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1560 Instruction *User = cast<Instruction>(*UI);
Chris Lattnerbe883a22003-11-25 21:09:18 +00001561
Bob Wilsonb742def2009-12-18 20:14:40 +00001562 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
Chris Lattner6c95d242011-01-23 07:29:29 +00001563 isSafeForScalarRepl(BC, Offset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001564 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001565 uint64_t GEPOffset = Offset;
Chris Lattner6c95d242011-01-23 07:29:29 +00001566 isSafeGEP(GEPI, GEPOffset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001567 if (!Info.isUnsafe)
Chris Lattner6c95d242011-01-23 07:29:29 +00001568 isSafeForScalarRepl(GEPI, GEPOffset, Info);
Gabor Greif19101c72010-06-28 11:20:42 +00001569 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001570 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001571 if (Length == 0)
1572 return MarkUnsafe(Info, User);
Chris Lattner6c95d242011-01-23 07:29:29 +00001573 isSafeMemAccess(Offset, Length->getZExtValue(), 0,
Chris Lattner145c5322011-01-23 08:27:54 +00001574 UI.getOperandNo() == 0, Info, MI,
1575 true /*AllowWholeAccess*/);
Bob Wilsonb742def2009-12-18 20:14:40 +00001576 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001577 if (LI->isVolatile())
1578 return MarkUnsafe(Info, User);
1579 const Type *LIType = LI->getType();
Chris Lattner6c95d242011-01-23 07:29:29 +00001580 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
Chris Lattner145c5322011-01-23 08:27:54 +00001581 LIType, false, Info, LI, true /*AllowWholeAccess*/);
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001582 Info.hasALoadOrStore = true;
1583
Bob Wilsonb742def2009-12-18 20:14:40 +00001584 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1585 // Store is ok if storing INTO the pointer, not storing the pointer
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001586 if (SI->isVolatile() || SI->getOperand(0) == I)
1587 return MarkUnsafe(Info, User);
1588
1589 const Type *SIType = SI->getOperand(0)->getType();
Chris Lattner6c95d242011-01-23 07:29:29 +00001590 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
Chris Lattner145c5322011-01-23 08:27:54 +00001591 SIType, true, Info, SI, true /*AllowWholeAccess*/);
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001592 Info.hasALoadOrStore = true;
Chris Lattner145c5322011-01-23 08:27:54 +00001593 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1594 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1595 } else {
1596 return MarkUnsafe(Info, User);
1597 }
1598 if (Info.isUnsafe) return;
1599 }
1600}
1601
1602
1603/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1604/// derived from the alloca, we can often still split the alloca into elements.
1605/// This is useful if we have a large alloca where one element is phi'd
1606/// together somewhere: we can SRoA and promote all the other elements even if
1607/// we end up not being able to promote this one.
1608///
1609/// All we require is that the uses of the PHI do not index into other parts of
1610/// the alloca. The most important use case for this is single load and stores
1611/// that are PHI'd together, which can happen due to code sinking.
1612void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1613 AllocaInfo &Info) {
1614 // If we've already checked this PHI, don't do it again.
1615 if (PHINode *PN = dyn_cast<PHINode>(I))
1616 if (!Info.CheckedPHIs.insert(PN))
1617 return;
1618
1619 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1620 Instruction *User = cast<Instruction>(*UI);
1621
1622 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1623 isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1624 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1625 // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1626 // but would have to prove that we're staying inside of an element being
1627 // promoted.
1628 if (!GEPI->hasAllZeroIndices())
1629 return MarkUnsafe(Info, User);
1630 isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1631 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1632 if (LI->isVolatile())
1633 return MarkUnsafe(Info, User);
1634 const Type *LIType = LI->getType();
1635 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1636 LIType, false, Info, LI, false /*AllowWholeAccess*/);
1637 Info.hasALoadOrStore = true;
1638
1639 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1640 // Store is ok if storing INTO the pointer, not storing the pointer
1641 if (SI->isVolatile() || SI->getOperand(0) == I)
1642 return MarkUnsafe(Info, User);
1643
1644 const Type *SIType = SI->getOperand(0)->getType();
1645 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1646 SIType, true, Info, SI, false /*AllowWholeAccess*/);
1647 Info.hasALoadOrStore = true;
1648 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1649 isSafePHISelectUseForScalarRepl(User, Offset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001650 } else {
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001651 return MarkUnsafe(Info, User);
Bob Wilsonb742def2009-12-18 20:14:40 +00001652 }
1653 if (Info.isUnsafe) return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001654 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001655}
Bob Wilson39c88a62009-12-17 18:34:24 +00001656
Bob Wilsonb742def2009-12-18 20:14:40 +00001657/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1658/// replacement. It is safe when all the indices are constant, in-bounds
1659/// references, and when the resulting offset corresponds to an element within
1660/// the alloca type. The results are flagged in the Info parameter. Upon
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001661/// return, Offset is adjusted as specified by the GEP indices.
Chris Lattner6c95d242011-01-23 07:29:29 +00001662void SROA::isSafeGEP(GetElementPtrInst *GEPI,
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001663 uint64_t &Offset, AllocaInfo &Info) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001664 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1665 if (GEPIt == E)
1666 return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001667
Chris Lattner88e6dc82008-08-23 05:21:06 +00001668 // Walk through the GEP type indices, checking the types that this indexes
1669 // into.
Bob Wilsonb742def2009-12-18 20:14:40 +00001670 for (; GEPIt != E; ++GEPIt) {
Chris Lattner88e6dc82008-08-23 05:21:06 +00001671 // Ignore struct elements, no extra checking needed for these.
Duncan Sands1df98592010-02-16 11:11:14 +00001672 if ((*GEPIt)->isStructTy())
Chris Lattner88e6dc82008-08-23 05:21:06 +00001673 continue;
Matthijs Kooijman5fac55f2008-10-06 16:23:31 +00001674
Bob Wilsonb742def2009-12-18 20:14:40 +00001675 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1676 if (!IdxVal)
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001677 return MarkUnsafe(Info, GEPI);
Chris Lattner88e6dc82008-08-23 05:21:06 +00001678 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001679
Bob Wilsonf27a4cd2009-12-22 06:57:14 +00001680 // Compute the offset due to this GEP and check if the alloca has a
1681 // component element at that offset.
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001682 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1683 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1684 &Indices[0], Indices.size());
Chris Lattner6c95d242011-01-23 07:29:29 +00001685 if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001686 MarkUnsafe(Info, GEPI);
Chris Lattner5e062a12003-05-30 04:15:41 +00001687}
1688
Bob Wilson704d1342011-01-13 17:45:11 +00001689/// isHomogeneousAggregate - Check if type T is a struct or array containing
1690/// elements of the same type (which is always true for arrays). If so,
1691/// return true with NumElts and EltTy set to the number of elements and the
1692/// element type, respectively.
1693static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1694 const Type *&EltTy) {
1695 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1696 NumElts = AT->getNumElements();
Bob Wilsonf0908ae2011-01-13 18:26:59 +00001697 EltTy = (NumElts == 0 ? 0 : AT->getElementType());
Bob Wilson704d1342011-01-13 17:45:11 +00001698 return true;
1699 }
1700 if (const StructType *ST = dyn_cast<StructType>(T)) {
1701 NumElts = ST->getNumContainedTypes();
Bob Wilsonf0908ae2011-01-13 18:26:59 +00001702 EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
Bob Wilson704d1342011-01-13 17:45:11 +00001703 for (unsigned n = 1; n < NumElts; ++n) {
1704 if (ST->getContainedType(n) != EltTy)
1705 return false;
1706 }
1707 return true;
1708 }
1709 return false;
1710}
1711
1712/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1713/// "homogeneous" aggregates with the same element type and number of elements.
1714static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1715 if (T1 == T2)
1716 return true;
1717
1718 unsigned NumElts1, NumElts2;
1719 const Type *EltTy1, *EltTy2;
1720 if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1721 isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1722 NumElts1 == NumElts2 &&
1723 EltTy1 == EltTy2)
1724 return true;
1725
1726 return false;
1727}
1728
Bob Wilsonb742def2009-12-18 20:14:40 +00001729/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1730/// alloca or has an offset and size that corresponds to a component element
1731/// within it. The offset checked here may have been formed from a GEP with a
1732/// pointer bitcasted to a different type.
Chris Lattner145c5322011-01-23 08:27:54 +00001733///
1734/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1735/// unit. If false, it only allows accesses known to be in a single element.
Chris Lattner6c95d242011-01-23 07:29:29 +00001736void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Bob Wilsonb742def2009-12-18 20:14:40 +00001737 const Type *MemOpType, bool isStore,
Chris Lattner145c5322011-01-23 08:27:54 +00001738 AllocaInfo &Info, Instruction *TheAccess,
1739 bool AllowWholeAccess) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001740 // Check if this is a load/store of the entire alloca.
Chris Lattner145c5322011-01-23 08:27:54 +00001741 if (Offset == 0 && AllowWholeAccess &&
Chris Lattner6c95d242011-01-23 07:29:29 +00001742 MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
Bob Wilson704d1342011-01-13 17:45:11 +00001743 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1744 // loads/stores (which are essentially the same as the MemIntrinsics with
1745 // regard to copying padding between elements). But, if an alloca is
1746 // flagged as both a source and destination of such operations, we'll need
1747 // to check later for padding between elements.
1748 if (!MemOpType || MemOpType->isIntegerTy()) {
1749 if (isStore)
1750 Info.isMemCpyDst = true;
1751 else
1752 Info.isMemCpySrc = true;
Bob Wilsonb742def2009-12-18 20:14:40 +00001753 return;
1754 }
Bob Wilson704d1342011-01-13 17:45:11 +00001755 // This is also safe for references using a type that is compatible with
1756 // the type of the alloca, so that loads/stores can be rewritten using
1757 // insertvalue/extractvalue.
Chris Lattner6c95d242011-01-23 07:29:29 +00001758 if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
Chris Lattner7e9b4272011-01-16 06:18:28 +00001759 Info.hasSubelementAccess = true;
Bob Wilson704d1342011-01-13 17:45:11 +00001760 return;
Chris Lattner7e9b4272011-01-16 06:18:28 +00001761 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001762 }
1763 // Check if the offset/size correspond to a component within the alloca type.
Chris Lattner6c95d242011-01-23 07:29:29 +00001764 const Type *T = Info.AI->getAllocatedType();
Chris Lattner7e9b4272011-01-16 06:18:28 +00001765 if (TypeHasComponent(T, Offset, MemSize)) {
1766 Info.hasSubelementAccess = true;
Bob Wilsonb742def2009-12-18 20:14:40 +00001767 return;
Chris Lattner7e9b4272011-01-16 06:18:28 +00001768 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001769
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001770 return MarkUnsafe(Info, TheAccess);
Bob Wilsonb742def2009-12-18 20:14:40 +00001771}
1772
1773/// TypeHasComponent - Return true if T has a component type with the
1774/// specified offset and size. If Size is zero, do not check the size.
1775bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1776 const Type *EltTy;
1777 uint64_t EltSize;
1778 if (const StructType *ST = dyn_cast<StructType>(T)) {
1779 const StructLayout *Layout = TD->getStructLayout(ST);
1780 unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1781 EltTy = ST->getContainedType(EltIdx);
1782 EltSize = TD->getTypeAllocSize(EltTy);
1783 Offset -= Layout->getElementOffset(EltIdx);
1784 } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1785 EltTy = AT->getElementType();
1786 EltSize = TD->getTypeAllocSize(EltTy);
Bob Wilsonf27a4cd2009-12-22 06:57:14 +00001787 if (Offset >= AT->getNumElements() * EltSize)
1788 return false;
Bob Wilsonb742def2009-12-18 20:14:40 +00001789 Offset %= EltSize;
1790 } else {
1791 return false;
1792 }
1793 if (Offset == 0 && (Size == 0 || EltSize == Size))
1794 return true;
1795 // Check if the component spans multiple elements.
1796 if (Offset + Size > EltSize)
1797 return false;
1798 return TypeHasComponent(EltTy, Offset, Size);
1799}
1800
1801/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1802/// the instruction I, which references it, to use the separate elements.
1803/// Offset indicates the position within AI that is referenced by this
1804/// instruction.
1805void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1806 SmallVector<AllocaInst*, 32> &NewElts) {
Chris Lattner145c5322011-01-23 08:27:54 +00001807 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1808 Use &TheUse = UI.getUse();
1809 Instruction *User = cast<Instruction>(*UI++);
Bob Wilsonb742def2009-12-18 20:14:40 +00001810
1811 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1812 RewriteBitCast(BC, AI, Offset, NewElts);
Chris Lattner145c5322011-01-23 08:27:54 +00001813 continue;
1814 }
1815
1816 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001817 RewriteGEP(GEPI, AI, Offset, NewElts);
Chris Lattner145c5322011-01-23 08:27:54 +00001818 continue;
1819 }
1820
1821 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001822 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1823 uint64_t MemSize = Length->getZExtValue();
1824 if (Offset == 0 &&
1825 MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1826 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
Bob Wilsone88728d2009-12-19 06:53:17 +00001827 // Otherwise the intrinsic can only touch a single element and the
1828 // address operand will be updated, so nothing else needs to be done.
Chris Lattner145c5322011-01-23 08:27:54 +00001829 continue;
1830 }
1831
1832 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001833 const Type *LIType = LI->getType();
Chris Lattner192228e2011-01-16 05:28:59 +00001834
Bob Wilson704d1342011-01-13 17:45:11 +00001835 if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001836 // Replace:
1837 // %res = load { i32, i32 }* %alloc
1838 // with:
1839 // %load.0 = load i32* %alloc.0
1840 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1841 // %load.1 = load i32* %alloc.1
1842 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1843 // (Also works for arrays instead of structs)
1844 Value *Insert = UndefValue::get(LIType);
Devang Patelabb25122011-06-03 19:46:19 +00001845 IRBuilder<> Builder(LI);
Bob Wilsonb742def2009-12-18 20:14:40 +00001846 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
Devang Patelabb25122011-06-03 19:46:19 +00001847 Value *Load = Builder.CreateLoad(NewElts[i], "load");
1848 Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
Bob Wilsonb742def2009-12-18 20:14:40 +00001849 }
1850 LI->replaceAllUsesWith(Insert);
1851 DeadInsts.push_back(LI);
Duncan Sands1df98592010-02-16 11:11:14 +00001852 } else if (LIType->isIntegerTy() &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001853 TD->getTypeAllocSize(LIType) ==
1854 TD->getTypeAllocSize(AI->getAllocatedType())) {
1855 // If this is a load of the entire alloca to an integer, rewrite it.
1856 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1857 }
Chris Lattner145c5322011-01-23 08:27:54 +00001858 continue;
1859 }
1860
1861 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001862 Value *Val = SI->getOperand(0);
1863 const Type *SIType = Val->getType();
Bob Wilson704d1342011-01-13 17:45:11 +00001864 if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001865 // Replace:
1866 // store { i32, i32 } %val, { i32, i32 }* %alloc
1867 // with:
1868 // %val.0 = extractvalue { i32, i32 } %val, 0
1869 // store i32 %val.0, i32* %alloc.0
1870 // %val.1 = extractvalue { i32, i32 } %val, 1
1871 // store i32 %val.1, i32* %alloc.1
1872 // (Also works for arrays instead of structs)
Devang Patelabb25122011-06-03 19:46:19 +00001873 IRBuilder<> Builder(SI);
Bob Wilsonb742def2009-12-18 20:14:40 +00001874 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
Devang Patelabb25122011-06-03 19:46:19 +00001875 Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1876 Builder.CreateStore(Extract, NewElts[i]);
Bob Wilsonb742def2009-12-18 20:14:40 +00001877 }
1878 DeadInsts.push_back(SI);
Duncan Sands1df98592010-02-16 11:11:14 +00001879 } else if (SIType->isIntegerTy() &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001880 TD->getTypeAllocSize(SIType) ==
1881 TD->getTypeAllocSize(AI->getAllocatedType())) {
1882 // If this is a store of the entire alloca from an integer, rewrite it.
1883 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1884 }
Chris Lattner145c5322011-01-23 08:27:54 +00001885 continue;
1886 }
1887
1888 if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1889 // If we have a PHI user of the alloca itself (as opposed to a GEP or
1890 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1891 // the new pointer.
1892 if (!isa<AllocaInst>(I)) continue;
1893
1894 assert(Offset == 0 && NewElts[0] &&
1895 "Direct alloca use should have a zero offset");
1896
1897 // If we have a use of the alloca, we know the derived uses will be
1898 // utilizing just the first element of the scalarized result. Insert a
1899 // bitcast of the first alloca before the user as required.
1900 AllocaInst *NewAI = NewElts[0];
1901 BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1902 NewAI->moveBefore(BCI);
1903 TheUse = BCI;
1904 continue;
Bob Wilsonb742def2009-12-18 20:14:40 +00001905 }
Bob Wilson39c88a62009-12-17 18:34:24 +00001906 }
1907}
1908
Bob Wilsonb742def2009-12-18 20:14:40 +00001909/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1910/// and recursively continue updating all of its uses.
1911void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1912 SmallVector<AllocaInst*, 32> &NewElts) {
1913 RewriteForScalarRepl(BC, AI, Offset, NewElts);
1914 if (BC->getOperand(0) != AI)
1915 return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001916
Bob Wilsonb742def2009-12-18 20:14:40 +00001917 // The bitcast references the original alloca. Replace its uses with
1918 // references to the first new element alloca.
1919 Instruction *Val = NewElts[0];
1920 if (Val->getType() != BC->getDestTy()) {
1921 Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1922 Val->takeName(BC);
Daniel Dunbarfca55c82009-12-16 10:56:17 +00001923 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001924 BC->replaceAllUsesWith(Val);
1925 DeadInsts.push_back(BC);
Daniel Dunbarfca55c82009-12-16 10:56:17 +00001926}
1927
Bob Wilsonb742def2009-12-18 20:14:40 +00001928/// FindElementAndOffset - Return the index of the element containing Offset
1929/// within the specified type, which must be either a struct or an array.
1930/// Sets T to the type of the element and Offset to the offset within that
Bob Wilsone88728d2009-12-19 06:53:17 +00001931/// element. IdxTy is set to the type of the index result to be used in a
1932/// GEP instruction.
1933uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1934 const Type *&IdxTy) {
1935 uint64_t Idx = 0;
Bob Wilsonb742def2009-12-18 20:14:40 +00001936 if (const StructType *ST = dyn_cast<StructType>(T)) {
1937 const StructLayout *Layout = TD->getStructLayout(ST);
1938 Idx = Layout->getElementContainingOffset(Offset);
1939 T = ST->getContainedType(Idx);
1940 Offset -= Layout->getElementOffset(Idx);
Bob Wilsone88728d2009-12-19 06:53:17 +00001941 IdxTy = Type::getInt32Ty(T->getContext());
1942 return Idx;
Chris Lattnera59adc42009-12-14 05:11:02 +00001943 }
Bob Wilsone88728d2009-12-19 06:53:17 +00001944 const ArrayType *AT = cast<ArrayType>(T);
1945 T = AT->getElementType();
1946 uint64_t EltSize = TD->getTypeAllocSize(T);
1947 Idx = Offset / EltSize;
1948 Offset -= Idx * EltSize;
1949 IdxTy = Type::getInt64Ty(T->getContext());
Bob Wilsonb742def2009-12-18 20:14:40 +00001950 return Idx;
1951}
1952
1953/// RewriteGEP - Check if this GEP instruction moves the pointer across
1954/// elements of the alloca that are being split apart, and if so, rewrite
1955/// the GEP to be relative to the new element.
1956void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1957 SmallVector<AllocaInst*, 32> &NewElts) {
1958 uint64_t OldOffset = Offset;
1959 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1960 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1961 &Indices[0], Indices.size());
1962
1963 RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1964
1965 const Type *T = AI->getAllocatedType();
Bob Wilsone88728d2009-12-19 06:53:17 +00001966 const Type *IdxTy;
1967 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
Bob Wilsonb742def2009-12-18 20:14:40 +00001968 if (GEPI->getOperand(0) == AI)
Bob Wilsone88728d2009-12-19 06:53:17 +00001969 OldIdx = ~0ULL; // Force the GEP to be rewritten.
Bob Wilsonb742def2009-12-18 20:14:40 +00001970
1971 T = AI->getAllocatedType();
1972 uint64_t EltOffset = Offset;
Bob Wilsone88728d2009-12-19 06:53:17 +00001973 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
Bob Wilsonb742def2009-12-18 20:14:40 +00001974
1975 // If this GEP does not move the pointer across elements of the alloca
1976 // being split, then it does not needs to be rewritten.
1977 if (Idx == OldIdx)
1978 return;
1979
1980 const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1981 SmallVector<Value*, 8> NewArgs;
1982 NewArgs.push_back(Constant::getNullValue(i32Ty));
1983 while (EltOffset != 0) {
Bob Wilsone88728d2009-12-19 06:53:17 +00001984 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1985 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
Bob Wilsonb742def2009-12-18 20:14:40 +00001986 }
1987 Instruction *Val = NewElts[Idx];
1988 if (NewArgs.size() > 1) {
1989 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1990 NewArgs.end(), "", GEPI);
1991 Val->takeName(GEPI);
1992 }
1993 if (Val->getType() != GEPI->getType())
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00001994 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
Bob Wilsonb742def2009-12-18 20:14:40 +00001995 GEPI->replaceAllUsesWith(Val);
1996 DeadInsts.push_back(GEPI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001997}
1998
1999/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2000/// Rewrite it to copy or set the elements of the scalarized memory.
Bob Wilsonb742def2009-12-18 20:14:40 +00002001void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Victor Hernandez7b929da2009-10-23 21:09:37 +00002002 AllocaInst *AI,
Chris Lattnerd93afec2009-01-07 07:18:45 +00002003 SmallVector<AllocaInst*, 32> &NewElts) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00002004 // If this is a memcpy/memmove, construct the other pointer as the
Chris Lattner88fe1ad2009-03-04 19:23:25 +00002005 // appropriate type. The "Other" pointer is the pointer that goes to memory
2006 // that doesn't have anything to do with the alloca that we are promoting. For
2007 // memset, this Value* stays null.
Chris Lattnerd93afec2009-01-07 07:18:45 +00002008 Value *OtherPtr = 0;
Chris Lattnerdfe964c2009-03-08 03:59:00 +00002009 unsigned MemAlignment = MI->getAlignment();
Chris Lattner3ce5e882009-03-08 03:37:16 +00002010 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
Bob Wilsonb742def2009-12-18 20:14:40 +00002011 if (Inst == MTI->getRawDest())
Chris Lattner3ce5e882009-03-08 03:37:16 +00002012 OtherPtr = MTI->getRawSource();
Chris Lattnerd93afec2009-01-07 07:18:45 +00002013 else {
Bob Wilsonb742def2009-12-18 20:14:40 +00002014 assert(Inst == MTI->getRawSource());
Chris Lattner3ce5e882009-03-08 03:37:16 +00002015 OtherPtr = MTI->getRawDest();
Chris Lattnerd93afec2009-01-07 07:18:45 +00002016 }
2017 }
Bob Wilson78c50b82009-12-08 18:22:03 +00002018
Chris Lattnerd93afec2009-01-07 07:18:45 +00002019 // If there is an other pointer, we want to convert it to the same pointer
2020 // type as AI has, so we can GEP through it safely.
2021 if (OtherPtr) {
Chris Lattner0238f8c2010-07-08 00:27:05 +00002022 unsigned AddrSpace =
2023 cast<PointerType>(OtherPtr->getType())->getAddressSpace();
Bob Wilsonb742def2009-12-18 20:14:40 +00002024
2025 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
2026 // optimization, but it's also required to detect the corner case where
2027 // both pointer operands are referencing the same memory, and where
2028 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
2029 // function is only called for mem intrinsics that access the whole
2030 // aggregate, so non-zero GEPs are not an issue here.)
Chris Lattner0238f8c2010-07-08 00:27:05 +00002031 OtherPtr = OtherPtr->stripPointerCasts();
Bob Wilson69743022011-01-13 20:59:44 +00002032
Bob Wilsona756b1d2010-01-19 04:32:48 +00002033 // Copying the alloca to itself is a no-op: just delete it.
2034 if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2035 // This code will run twice for a no-op memcpy -- once for each operand.
2036 // Put only one reference to MI on the DeadInsts list.
2037 for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2038 E = DeadInsts.end(); I != E; ++I)
2039 if (*I == MI) return;
2040 DeadInsts.push_back(MI);
Bob Wilsonb742def2009-12-18 20:14:40 +00002041 return;
Bob Wilsona756b1d2010-01-19 04:32:48 +00002042 }
Bob Wilson69743022011-01-13 20:59:44 +00002043
Chris Lattnerd93afec2009-01-07 07:18:45 +00002044 // If the pointer is not the right type, insert a bitcast to the right
2045 // type.
Chris Lattner0238f8c2010-07-08 00:27:05 +00002046 const Type *NewTy =
2047 PointerType::get(AI->getType()->getElementType(), AddrSpace);
Bob Wilson69743022011-01-13 20:59:44 +00002048
Chris Lattner0238f8c2010-07-08 00:27:05 +00002049 if (OtherPtr->getType() != NewTy)
2050 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002051 }
Bob Wilson69743022011-01-13 20:59:44 +00002052
Chris Lattnerd93afec2009-01-07 07:18:45 +00002053 // Process each element of the aggregate.
Bob Wilsonb742def2009-12-18 20:14:40 +00002054 bool SROADest = MI->getRawDest() == Inst;
Bob Wilson69743022011-01-13 20:59:44 +00002055
Owen Anderson1d0be152009-08-13 21:58:54 +00002056 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
Chris Lattnerd93afec2009-01-07 07:18:45 +00002057
2058 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2059 // If this is a memcpy/memmove, emit a GEP of the other element address.
2060 Value *OtherElt = 0;
Chris Lattner1541e0f2009-03-04 19:20:50 +00002061 unsigned OtherEltAlign = MemAlignment;
Bob Wilson69743022011-01-13 20:59:44 +00002062
Bob Wilsona756b1d2010-01-19 04:32:48 +00002063 if (OtherPtr) {
Owen Anderson1d0be152009-08-13 21:58:54 +00002064 Value *Idx[2] = { Zero,
2065 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
Bob Wilsonb742def2009-12-18 20:14:40 +00002066 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00002067 OtherPtr->getName()+"."+Twine(i),
Bob Wilsonb742def2009-12-18 20:14:40 +00002068 MI);
Chris Lattner1541e0f2009-03-04 19:20:50 +00002069 uint64_t EltOffset;
2070 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
Chris Lattnerd55c1c12010-04-16 01:05:38 +00002071 const Type *OtherTy = OtherPtrTy->getElementType();
2072 if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
Chris Lattner1541e0f2009-03-04 19:20:50 +00002073 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2074 } else {
Chris Lattnerd55c1c12010-04-16 01:05:38 +00002075 const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002076 EltOffset = TD->getTypeAllocSize(EltTy)*i;
Chris Lattner1541e0f2009-03-04 19:20:50 +00002077 }
Bob Wilson69743022011-01-13 20:59:44 +00002078
Chris Lattner1541e0f2009-03-04 19:20:50 +00002079 // The alignment of the other pointer is the guaranteed alignment of the
2080 // element, which is affected by both the known alignment of the whole
2081 // mem intrinsic and the alignment of the element. If the alignment of
2082 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2083 // known alignment is just 4 bytes.
2084 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
Chris Lattnerc14d3ca2007-03-08 06:36:54 +00002085 }
Bob Wilson69743022011-01-13 20:59:44 +00002086
Chris Lattnerd93afec2009-01-07 07:18:45 +00002087 Value *EltPtr = NewElts[i];
Chris Lattner1541e0f2009-03-04 19:20:50 +00002088 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
Bob Wilson69743022011-01-13 20:59:44 +00002089
Chris Lattnerd93afec2009-01-07 07:18:45 +00002090 // If we got down to a scalar, insert a load or store as appropriate.
2091 if (EltTy->isSingleValueType()) {
Chris Lattner3ce5e882009-03-08 03:37:16 +00002092 if (isa<MemTransferInst>(MI)) {
Chris Lattner1541e0f2009-03-04 19:20:50 +00002093 if (SROADest) {
2094 // From Other to Alloca.
2095 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2096 new StoreInst(Elt, EltPtr, MI);
2097 } else {
2098 // From Alloca to Other.
2099 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2100 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2101 }
Chris Lattnerd93afec2009-01-07 07:18:45 +00002102 continue;
2103 }
2104 assert(isa<MemSetInst>(MI));
Bob Wilson69743022011-01-13 20:59:44 +00002105
Chris Lattnerd93afec2009-01-07 07:18:45 +00002106 // If the stored element is zero (common case), just store a null
2107 // constant.
2108 Constant *StoreVal;
Gabor Greif6f14c8c2010-06-30 09:16:16 +00002109 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00002110 if (CI->isZero()) {
Owen Andersona7235ea2009-07-31 20:28:14 +00002111 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
Chris Lattnerd93afec2009-01-07 07:18:45 +00002112 } else {
2113 // If EltTy is a vector type, get the element type.
Dan Gohman44118f02009-06-16 00:20:26 +00002114 const Type *ValTy = EltTy->getScalarType();
2115
Chris Lattnerd93afec2009-01-07 07:18:45 +00002116 // Construct an integer with the right value.
2117 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2118 APInt OneVal(EltSize, CI->getZExtValue());
2119 APInt TotalVal(OneVal);
2120 // Set each byte.
2121 for (unsigned i = 0; 8*i < EltSize; ++i) {
2122 TotalVal = TotalVal.shl(8);
2123 TotalVal |= OneVal;
2124 }
Bob Wilson69743022011-01-13 20:59:44 +00002125
Chris Lattnerd93afec2009-01-07 07:18:45 +00002126 // Convert the integer value to the appropriate type.
Chris Lattnerd55c1c12010-04-16 01:05:38 +00002127 StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
Duncan Sands1df98592010-02-16 11:11:14 +00002128 if (ValTy->isPointerTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +00002129 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002130 else if (ValTy->isFloatingPointTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +00002131 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002132 assert(StoreVal->getType() == ValTy && "Type mismatch!");
Bob Wilson69743022011-01-13 20:59:44 +00002133
Chris Lattnerd93afec2009-01-07 07:18:45 +00002134 // If the requested value was a vector constant, create it.
2135 if (EltTy != ValTy) {
2136 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2137 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
Chris Lattner2ca5c862011-02-15 00:14:00 +00002138 StoreVal = ConstantVector::get(Elts);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002139 }
2140 }
2141 new StoreInst(StoreVal, EltPtr, MI);
2142 continue;
2143 }
2144 // Otherwise, if we're storing a byte variable, use a memset call for
2145 // this element.
2146 }
Bob Wilson69743022011-01-13 20:59:44 +00002147
Duncan Sands777d2302009-05-09 07:06:46 +00002148 unsigned EltSize = TD->getTypeAllocSize(EltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002149
Chris Lattner61db1f52010-12-26 22:57:41 +00002150 IRBuilder<> Builder(MI);
Bob Wilson69743022011-01-13 20:59:44 +00002151
Chris Lattnerd93afec2009-01-07 07:18:45 +00002152 // Finally, insert the meminst for this element.
Chris Lattner61db1f52010-12-26 22:57:41 +00002153 if (isa<MemSetInst>(MI)) {
2154 Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2155 MI->isVolatile());
Chris Lattnerd93afec2009-01-07 07:18:45 +00002156 } else {
Chris Lattner61db1f52010-12-26 22:57:41 +00002157 assert(isa<MemTransferInst>(MI));
2158 Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr
2159 Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr
Bob Wilson69743022011-01-13 20:59:44 +00002160
Chris Lattner61db1f52010-12-26 22:57:41 +00002161 if (isa<MemCpyInst>(MI))
2162 Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2163 else
2164 Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
Chris Lattnerd93afec2009-01-07 07:18:45 +00002165 }
Chris Lattner372dda82007-03-05 07:52:57 +00002166 }
Bob Wilsonb742def2009-12-18 20:14:40 +00002167 DeadInsts.push_back(MI);
Chris Lattner372dda82007-03-05 07:52:57 +00002168}
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002169
Bob Wilson39fdd692009-12-04 21:57:37 +00002170/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002171/// overwrites the entire allocation. Extract out the pieces of the stored
2172/// integer and store them individually.
Victor Hernandez7b929da2009-10-23 21:09:37 +00002173void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002174 SmallVector<AllocaInst*, 32> &NewElts){
2175 // Extract each element out of the integer according to its structure offset
2176 // and store the element value to the individual alloca.
2177 Value *SrcVal = SI->getOperand(0);
Bob Wilsonb742def2009-12-18 20:14:40 +00002178 const Type *AllocaEltTy = AI->getAllocatedType();
Duncan Sands777d2302009-05-09 07:06:46 +00002179 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002180
Chris Lattner70728532011-01-16 05:58:24 +00002181 IRBuilder<> Builder(SI);
2182
Eli Friedman41b33f42009-06-01 09:14:32 +00002183 // Handle tail padding by extending the operand
2184 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002185 SrcVal = Builder.CreateZExt(SrcVal,
2186 IntegerType::get(SI->getContext(), AllocaSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002187
David Greene504c7d82010-01-05 01:27:09 +00002188 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
Nick Lewycky59136252009-09-15 07:08:25 +00002189 << '\n');
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002190
2191 // There are two forms here: AI could be an array or struct. Both cases
2192 // have different ways to compute the element offset.
2193 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2194 const StructLayout *Layout = TD->getStructLayout(EltSTy);
Bob Wilson69743022011-01-13 20:59:44 +00002195
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002196 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2197 // Get the number of bits to shift SrcVal to get the value.
2198 const Type *FieldTy = EltSTy->getElementType(i);
2199 uint64_t Shift = Layout->getElementOffsetInBits(i);
Bob Wilson69743022011-01-13 20:59:44 +00002200
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002201 if (TD->isBigEndian())
Duncan Sands777d2302009-05-09 07:06:46 +00002202 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002203
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002204 Value *EltVal = SrcVal;
2205 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002206 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
Chris Lattner70728532011-01-16 05:58:24 +00002207 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002208 }
Bob Wilson69743022011-01-13 20:59:44 +00002209
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002210 // Truncate down to an integer of the right size.
2211 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002212
Chris Lattner583dd602009-01-09 18:18:43 +00002213 // Ignore zero sized fields like {}, they obviously contain no data.
2214 if (FieldSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002215
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002216 if (FieldSizeBits != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002217 EltVal = Builder.CreateTrunc(EltVal,
2218 IntegerType::get(SI->getContext(), FieldSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002219 Value *DestField = NewElts[i];
2220 if (EltVal->getType() == FieldTy) {
2221 // Storing to an integer field of this size, just do it.
Duncan Sands1df98592010-02-16 11:11:14 +00002222 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002223 // Bitcast to the right element type (for fp/vector values).
Chris Lattner70728532011-01-16 05:58:24 +00002224 EltVal = Builder.CreateBitCast(EltVal, FieldTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002225 } else {
2226 // Otherwise, bitcast the dest pointer (for aggregates).
Chris Lattner70728532011-01-16 05:58:24 +00002227 DestField = Builder.CreateBitCast(DestField,
2228 PointerType::getUnqual(EltVal->getType()));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002229 }
2230 new StoreInst(EltVal, DestField, SI);
2231 }
Bob Wilson69743022011-01-13 20:59:44 +00002232
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002233 } else {
2234 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2235 const Type *ArrayEltTy = ATy->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002236 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002237 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2238
2239 uint64_t Shift;
Bob Wilson69743022011-01-13 20:59:44 +00002240
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002241 if (TD->isBigEndian())
2242 Shift = AllocaSizeBits-ElementOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002243 else
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002244 Shift = 0;
Bob Wilson69743022011-01-13 20:59:44 +00002245
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002246 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
Chris Lattner583dd602009-01-09 18:18:43 +00002247 // Ignore zero sized fields like {}, they obviously contain no data.
2248 if (ElementSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002249
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002250 Value *EltVal = SrcVal;
2251 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002252 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
Chris Lattner70728532011-01-16 05:58:24 +00002253 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002254 }
Bob Wilson69743022011-01-13 20:59:44 +00002255
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002256 // Truncate down to an integer of the right size.
2257 if (ElementSizeBits != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002258 EltVal = Builder.CreateTrunc(EltVal,
2259 IntegerType::get(SI->getContext(),
2260 ElementSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002261 Value *DestField = NewElts[i];
2262 if (EltVal->getType() == ArrayEltTy) {
2263 // Storing to an integer field of this size, just do it.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002264 } else if (ArrayEltTy->isFloatingPointTy() ||
Duncan Sands1df98592010-02-16 11:11:14 +00002265 ArrayEltTy->isVectorTy()) {
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002266 // Bitcast to the right element type (for fp/vector values).
Chris Lattner70728532011-01-16 05:58:24 +00002267 EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002268 } else {
2269 // Otherwise, bitcast the dest pointer (for aggregates).
Chris Lattner70728532011-01-16 05:58:24 +00002270 DestField = Builder.CreateBitCast(DestField,
2271 PointerType::getUnqual(EltVal->getType()));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002272 }
2273 new StoreInst(EltVal, DestField, SI);
Bob Wilson69743022011-01-13 20:59:44 +00002274
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002275 if (TD->isBigEndian())
2276 Shift -= ElementOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002277 else
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002278 Shift += ElementOffset;
2279 }
2280 }
Bob Wilson69743022011-01-13 20:59:44 +00002281
Bob Wilsonb742def2009-12-18 20:14:40 +00002282 DeadInsts.push_back(SI);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002283}
2284
Bob Wilson39fdd692009-12-04 21:57:37 +00002285/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002286/// an integer. Load the individual pieces to form the aggregate value.
Victor Hernandez7b929da2009-10-23 21:09:37 +00002287void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002288 SmallVector<AllocaInst*, 32> &NewElts) {
2289 // Extract each element out of the NewElts according to its structure offset
2290 // and form the result value.
Bob Wilsonb742def2009-12-18 20:14:40 +00002291 const Type *AllocaEltTy = AI->getAllocatedType();
Duncan Sands777d2302009-05-09 07:06:46 +00002292 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002293
David Greene504c7d82010-01-05 01:27:09 +00002294 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
Nick Lewycky59136252009-09-15 07:08:25 +00002295 << '\n');
Bob Wilson69743022011-01-13 20:59:44 +00002296
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002297 // There are two forms here: AI could be an array or struct. Both cases
2298 // have different ways to compute the element offset.
2299 const StructLayout *Layout = 0;
2300 uint64_t ArrayEltBitOffset = 0;
2301 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2302 Layout = TD->getStructLayout(EltSTy);
2303 } else {
2304 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002305 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002306 }
2307
2308 Value *ResultVal =
Owen Anderson1d0be152009-08-13 21:58:54 +00002309 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
Bob Wilson69743022011-01-13 20:59:44 +00002310
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002311 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2312 // Load the value from the alloca. If the NewElt is an aggregate, cast
2313 // the pointer to an integer of the same size before doing the load.
2314 Value *SrcField = NewElts[i];
2315 const Type *FieldTy =
2316 cast<PointerType>(SrcField->getType())->getElementType();
Chris Lattner583dd602009-01-09 18:18:43 +00002317 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002318
Chris Lattner583dd602009-01-09 18:18:43 +00002319 // Ignore zero sized fields like {}, they obviously contain no data.
2320 if (FieldSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002321
2322 const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +00002323 FieldSizeBits);
Duncan Sands1df98592010-02-16 11:11:14 +00002324 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2325 !FieldTy->isVectorTy())
Owen Andersonfa5cbd62009-07-03 19:42:02 +00002326 SrcField = new BitCastInst(SrcField,
Owen Andersondebcb012009-07-29 22:17:13 +00002327 PointerType::getUnqual(FieldIntTy),
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002328 "", LI);
2329 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2330
2331 // If SrcField is a fp or vector of the right size but that isn't an
2332 // integer type, bitcast to an integer so we can shift it.
2333 if (SrcField->getType() != FieldIntTy)
2334 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2335
2336 // Zero extend the field to be the same size as the final alloca so that
2337 // we can shift and insert it.
2338 if (SrcField->getType() != ResultVal->getType())
2339 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
Bob Wilson69743022011-01-13 20:59:44 +00002340
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002341 // Determine the number of bits to shift SrcField.
2342 uint64_t Shift;
2343 if (Layout) // Struct case.
2344 Shift = Layout->getElementOffsetInBits(i);
2345 else // Array case.
2346 Shift = i*ArrayEltBitOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002347
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002348 if (TD->isBigEndian())
2349 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
Bob Wilson69743022011-01-13 20:59:44 +00002350
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002351 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002352 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002353 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2354 }
2355
Chris Lattner14952472010-06-27 07:58:26 +00002356 // Don't create an 'or x, 0' on the first iteration.
2357 if (!isa<Constant>(ResultVal) ||
2358 !cast<Constant>(ResultVal)->isNullValue())
2359 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2360 else
2361 ResultVal = SrcField;
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002362 }
Eli Friedman41b33f42009-06-01 09:14:32 +00002363
2364 // Handle tail padding by truncating the result
2365 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2366 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2367
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002368 LI->replaceAllUsesWith(ResultVal);
Bob Wilsonb742def2009-12-18 20:14:40 +00002369 DeadInsts.push_back(LI);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002370}
2371
Duncan Sands3cb36502007-11-04 14:43:57 +00002372/// HasPadding - Return true if the specified type has any structure or
Bob Wilson694a10e2011-01-13 17:45:08 +00002373/// alignment padding in between the elements that would be split apart
2374/// by SROA; return false otherwise.
Duncan Sandsa0fcc082008-06-04 08:21:45 +00002375static bool HasPadding(const Type *Ty, const TargetData &TD) {
Bob Wilson694a10e2011-01-13 17:45:08 +00002376 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2377 Ty = ATy->getElementType();
2378 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
Chris Lattner39a1c042007-05-30 06:11:23 +00002379 }
Bob Wilson694a10e2011-01-13 17:45:08 +00002380
2381 // SROA currently handles only Arrays and Structs.
2382 const StructType *STy = cast<StructType>(Ty);
2383 const StructLayout *SL = TD.getStructLayout(STy);
2384 unsigned PrevFieldBitOffset = 0;
2385 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2386 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2387
2388 // Check to see if there is any padding between this element and the
2389 // previous one.
2390 if (i) {
2391 unsigned PrevFieldEnd =
2392 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2393 if (PrevFieldEnd < FieldBitOffset)
2394 return true;
2395 }
2396 PrevFieldBitOffset = FieldBitOffset;
2397 }
2398 // Check for tail padding.
2399 if (unsigned EltCount = STy->getNumElements()) {
2400 unsigned PrevFieldEnd = PrevFieldBitOffset +
2401 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2402 if (PrevFieldEnd < SL->getSizeInBits())
2403 return true;
2404 }
2405 return false;
Chris Lattner39a1c042007-05-30 06:11:23 +00002406}
Chris Lattner372dda82007-03-05 07:52:57 +00002407
Chris Lattnerf5990ed2004-11-14 04:24:28 +00002408/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2409/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2410/// or 1 if safe after canonicalization has been performed.
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002411bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
Chris Lattner5e062a12003-05-30 04:15:41 +00002412 // Loop over the use list of the alloca. We can only transform it if all of
2413 // the users are safe to transform.
Chris Lattner6c95d242011-01-23 07:29:29 +00002414 AllocaInfo Info(AI);
Bob Wilson69743022011-01-13 20:59:44 +00002415
Chris Lattner6c95d242011-01-23 07:29:29 +00002416 isSafeForScalarRepl(AI, 0, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00002417 if (Info.isUnsafe) {
David Greene504c7d82010-01-05 01:27:09 +00002418 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002419 return false;
Chris Lattnerf5990ed2004-11-14 04:24:28 +00002420 }
Bob Wilson69743022011-01-13 20:59:44 +00002421
Chris Lattner39a1c042007-05-30 06:11:23 +00002422 // Okay, we know all the users are promotable. If the aggregate is a memcpy
2423 // source and destination, we have to be careful. In particular, the memcpy
2424 // could be moving around elements that live in structure padding of the LLVM
2425 // types, but may actually be used. In these cases, we refuse to promote the
2426 // struct.
2427 if (Info.isMemCpySrc && Info.isMemCpyDst &&
Bob Wilsonb742def2009-12-18 20:14:40 +00002428 HasPadding(AI->getAllocatedType(), *TD))
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002429 return false;
Duncan Sands3cb36502007-11-04 14:43:57 +00002430
Chris Lattner396a0562011-01-16 17:46:19 +00002431 // If the alloca never has an access to just *part* of it, but is accessed
2432 // via loads and stores, then we should use ConvertToScalarInfo to promote
Chris Lattner7e9b4272011-01-16 06:18:28 +00002433 // the alloca instead of promoting each piece at a time and inserting fission
2434 // and fusion code.
2435 if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2436 // If the struct/array just has one element, use basic SRoA.
2437 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2438 if (ST->getNumElements() > 1) return false;
2439 } else {
2440 if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2441 return false;
2442 }
2443 }
Chris Lattner145c5322011-01-23 08:27:54 +00002444
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002445 return true;
Chris Lattner5e062a12003-05-30 04:15:41 +00002446}
Chris Lattnera1888942005-12-12 07:19:13 +00002447
Chris Lattner800de312008-02-29 07:03:13 +00002448
Chris Lattner79b3bd32007-04-25 06:40:51 +00002449
2450/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2451/// some part of a constant global variable. This intentionally only accepts
2452/// constant expressions because we don't can't rewrite arbitrary instructions.
2453static bool PointsToConstantGlobal(Value *V) {
2454 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2455 return GV->isConstant();
2456 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Bob Wilson69743022011-01-13 20:59:44 +00002457 if (CE->getOpcode() == Instruction::BitCast ||
Chris Lattner79b3bd32007-04-25 06:40:51 +00002458 CE->getOpcode() == Instruction::GetElementPtr)
2459 return PointsToConstantGlobal(CE->getOperand(0));
2460 return false;
2461}
2462
2463/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2464/// pointer to an alloca. Ignore any reads of the pointer, return false if we
2465/// see any stores or other unknown uses. If we see pointer arithmetic, keep
2466/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2467/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
Nick Lewycky081f8002010-11-24 22:04:20 +00002468/// the alloca, and if the source pointer is a pointer to a constant global, we
Chris Lattner79b3bd32007-04-25 06:40:51 +00002469/// can optimize this.
Chris Lattner31d80102010-04-15 21:59:20 +00002470static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
Chris Lattner79b3bd32007-04-25 06:40:51 +00002471 bool isOffset) {
2472 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
Gabor Greif8a8a4352010-04-06 19:32:30 +00002473 User *U = cast<Instruction>(*UI);
2474
Chris Lattner2e618492010-11-18 06:20:47 +00002475 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
Chris Lattner6e733d32009-01-28 20:16:43 +00002476 // Ignore non-volatile loads, they are always ok.
Chris Lattner2e618492010-11-18 06:20:47 +00002477 if (LI->isVolatile()) return false;
2478 continue;
2479 }
Bob Wilson69743022011-01-13 20:59:44 +00002480
Gabor Greif8a8a4352010-04-06 19:32:30 +00002481 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
Chris Lattner79b3bd32007-04-25 06:40:51 +00002482 // If uses of the bitcast are ok, we are ok.
2483 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2484 return false;
2485 continue;
2486 }
Gabor Greif8a8a4352010-04-06 19:32:30 +00002487 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
Chris Lattner79b3bd32007-04-25 06:40:51 +00002488 // If the GEP has all zero indices, it doesn't offset the pointer. If it
2489 // doesn't, it does.
2490 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2491 isOffset || !GEP->hasAllZeroIndices()))
2492 return false;
2493 continue;
2494 }
Bob Wilson69743022011-01-13 20:59:44 +00002495
Chris Lattner62480652010-11-18 06:41:51 +00002496 if (CallSite CS = U) {
Nick Lewycky081f8002010-11-24 22:04:20 +00002497 // If this is the function being called then we treat it like a load and
2498 // ignore it.
2499 if (CS.isCallee(UI))
2500 continue;
Bob Wilson69743022011-01-13 20:59:44 +00002501
Duncan Sands53892102011-05-06 10:30:37 +00002502 // If this is a readonly/readnone call site, then we know it is just a
2503 // load (but one that potentially returns the value itself), so we can
2504 // ignore it if we know that the value isn't captured.
2505 unsigned ArgNo = CS.getArgumentNo(UI);
2506 if (CS.onlyReadsMemory() &&
2507 (CS.getInstruction()->use_empty() ||
2508 CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2509 continue;
2510
Chris Lattner62480652010-11-18 06:41:51 +00002511 // If this is being passed as a byval argument, the caller is making a
2512 // copy, so it is only a read of the alloca.
Chris Lattner62480652010-11-18 06:41:51 +00002513 if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2514 continue;
2515 }
Bob Wilson69743022011-01-13 20:59:44 +00002516
Chris Lattner79b3bd32007-04-25 06:40:51 +00002517 // If this is isn't our memcpy/memmove, reject it as something we can't
2518 // handle.
Chris Lattner31d80102010-04-15 21:59:20 +00002519 MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2520 if (MI == 0)
Chris Lattner79b3bd32007-04-25 06:40:51 +00002521 return false;
Bob Wilson69743022011-01-13 20:59:44 +00002522
Chris Lattner2e618492010-11-18 06:20:47 +00002523 // If the transfer is using the alloca as a source of the transfer, then
Chris Lattner2e29ebd2010-11-18 07:32:33 +00002524 // ignore it since it is a load (unless the transfer is volatile).
Chris Lattner2e618492010-11-18 06:20:47 +00002525 if (UI.getOperandNo() == 1) {
2526 if (MI->isVolatile()) return false;
2527 continue;
2528 }
Chris Lattner79b3bd32007-04-25 06:40:51 +00002529
2530 // If we already have seen a copy, reject the second one.
2531 if (TheCopy) return false;
Bob Wilson69743022011-01-13 20:59:44 +00002532
Chris Lattner79b3bd32007-04-25 06:40:51 +00002533 // If the pointer has been offset from the start of the alloca, we can't
2534 // safely handle this.
2535 if (isOffset) return false;
2536
2537 // If the memintrinsic isn't using the alloca as the dest, reject it.
Gabor Greifa6aac4c2010-07-16 09:38:02 +00002538 if (UI.getOperandNo() != 0) return false;
Bob Wilson69743022011-01-13 20:59:44 +00002539
Chris Lattner79b3bd32007-04-25 06:40:51 +00002540 // If the source of the memcpy/move is not a constant global, reject it.
Chris Lattner31d80102010-04-15 21:59:20 +00002541 if (!PointsToConstantGlobal(MI->getSource()))
Chris Lattner79b3bd32007-04-25 06:40:51 +00002542 return false;
Bob Wilson69743022011-01-13 20:59:44 +00002543
Chris Lattner79b3bd32007-04-25 06:40:51 +00002544 // Otherwise, the transform is safe. Remember the copy instruction.
2545 TheCopy = MI;
2546 }
2547 return true;
2548}
2549
2550/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2551/// modified by a copy from a constant global. If we can prove this, we can
2552/// replace any uses of the alloca with uses of the global directly.
Chris Lattner31d80102010-04-15 21:59:20 +00002553MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2554 MemTransferInst *TheCopy = 0;
Chris Lattner79b3bd32007-04-25 06:40:51 +00002555 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2556 return TheCopy;
2557 return 0;
2558}