blob: ff666ff3c2794785740bb973cc37035d79c2d73a [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Chris Lattnerabf05b22003-08-03 21:55:55 +000016#include "X86GenInstrInfo.inc"
Evan Chengaa3c1412006-05-30 21:45:53 +000017#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng0488db92007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000028
Brian Gaeked0fde302003-11-11 22:41:34 +000029using namespace llvm;
30
Owen Anderson43dbe052008-01-07 01:35:02 +000031namespace {
32 cl::opt<bool>
33 NoFusing("disable-spill-fusing",
34 cl::desc("Disable fusing of spill code into instructions"));
35 cl::opt<bool>
36 PrintFailedFusing("print-failed-fuse-candidates",
37 cl::desc("Print instructions that the allocator wants to"
38 " fuse, but the X86 backend currently can't"),
39 cl::Hidden);
Evan Chengd8850a52008-02-22 09:25:47 +000040 cl::opt<bool>
41 ReMatPICLoad("remat-pic-load",
42 cl::desc("Allow rematerializing pic load"),
Evan Chengc19eca32008-02-23 02:07:42 +000043 cl::init(true), cl::Hidden);
Owen Anderson43dbe052008-01-07 01:35:02 +000044}
45
Evan Chengaa3c1412006-05-30 21:45:53 +000046X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattner64105522008-01-01 01:03:04 +000047 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng25ab6902006-09-08 06:48:29 +000048 TM(tm), RI(tm, *this) {
Owen Anderson43dbe052008-01-07 01:35:02 +000049 SmallVector<unsigned,16> AmbEntries;
50 static const unsigned OpTbl2Addr[][2] = {
51 { X86::ADC32ri, X86::ADC32mi },
52 { X86::ADC32ri8, X86::ADC32mi8 },
53 { X86::ADC32rr, X86::ADC32mr },
54 { X86::ADC64ri32, X86::ADC64mi32 },
55 { X86::ADC64ri8, X86::ADC64mi8 },
56 { X86::ADC64rr, X86::ADC64mr },
57 { X86::ADD16ri, X86::ADD16mi },
58 { X86::ADD16ri8, X86::ADD16mi8 },
59 { X86::ADD16rr, X86::ADD16mr },
60 { X86::ADD32ri, X86::ADD32mi },
61 { X86::ADD32ri8, X86::ADD32mi8 },
62 { X86::ADD32rr, X86::ADD32mr },
63 { X86::ADD64ri32, X86::ADD64mi32 },
64 { X86::ADD64ri8, X86::ADD64mi8 },
65 { X86::ADD64rr, X86::ADD64mr },
66 { X86::ADD8ri, X86::ADD8mi },
67 { X86::ADD8rr, X86::ADD8mr },
68 { X86::AND16ri, X86::AND16mi },
69 { X86::AND16ri8, X86::AND16mi8 },
70 { X86::AND16rr, X86::AND16mr },
71 { X86::AND32ri, X86::AND32mi },
72 { X86::AND32ri8, X86::AND32mi8 },
73 { X86::AND32rr, X86::AND32mr },
74 { X86::AND64ri32, X86::AND64mi32 },
75 { X86::AND64ri8, X86::AND64mi8 },
76 { X86::AND64rr, X86::AND64mr },
77 { X86::AND8ri, X86::AND8mi },
78 { X86::AND8rr, X86::AND8mr },
79 { X86::DEC16r, X86::DEC16m },
80 { X86::DEC32r, X86::DEC32m },
81 { X86::DEC64_16r, X86::DEC64_16m },
82 { X86::DEC64_32r, X86::DEC64_32m },
83 { X86::DEC64r, X86::DEC64m },
84 { X86::DEC8r, X86::DEC8m },
85 { X86::INC16r, X86::INC16m },
86 { X86::INC32r, X86::INC32m },
87 { X86::INC64_16r, X86::INC64_16m },
88 { X86::INC64_32r, X86::INC64_32m },
89 { X86::INC64r, X86::INC64m },
90 { X86::INC8r, X86::INC8m },
91 { X86::NEG16r, X86::NEG16m },
92 { X86::NEG32r, X86::NEG32m },
93 { X86::NEG64r, X86::NEG64m },
94 { X86::NEG8r, X86::NEG8m },
95 { X86::NOT16r, X86::NOT16m },
96 { X86::NOT32r, X86::NOT32m },
97 { X86::NOT64r, X86::NOT64m },
98 { X86::NOT8r, X86::NOT8m },
99 { X86::OR16ri, X86::OR16mi },
100 { X86::OR16ri8, X86::OR16mi8 },
101 { X86::OR16rr, X86::OR16mr },
102 { X86::OR32ri, X86::OR32mi },
103 { X86::OR32ri8, X86::OR32mi8 },
104 { X86::OR32rr, X86::OR32mr },
105 { X86::OR64ri32, X86::OR64mi32 },
106 { X86::OR64ri8, X86::OR64mi8 },
107 { X86::OR64rr, X86::OR64mr },
108 { X86::OR8ri, X86::OR8mi },
109 { X86::OR8rr, X86::OR8mr },
110 { X86::ROL16r1, X86::ROL16m1 },
111 { X86::ROL16rCL, X86::ROL16mCL },
112 { X86::ROL16ri, X86::ROL16mi },
113 { X86::ROL32r1, X86::ROL32m1 },
114 { X86::ROL32rCL, X86::ROL32mCL },
115 { X86::ROL32ri, X86::ROL32mi },
116 { X86::ROL64r1, X86::ROL64m1 },
117 { X86::ROL64rCL, X86::ROL64mCL },
118 { X86::ROL64ri, X86::ROL64mi },
119 { X86::ROL8r1, X86::ROL8m1 },
120 { X86::ROL8rCL, X86::ROL8mCL },
121 { X86::ROL8ri, X86::ROL8mi },
122 { X86::ROR16r1, X86::ROR16m1 },
123 { X86::ROR16rCL, X86::ROR16mCL },
124 { X86::ROR16ri, X86::ROR16mi },
125 { X86::ROR32r1, X86::ROR32m1 },
126 { X86::ROR32rCL, X86::ROR32mCL },
127 { X86::ROR32ri, X86::ROR32mi },
128 { X86::ROR64r1, X86::ROR64m1 },
129 { X86::ROR64rCL, X86::ROR64mCL },
130 { X86::ROR64ri, X86::ROR64mi },
131 { X86::ROR8r1, X86::ROR8m1 },
132 { X86::ROR8rCL, X86::ROR8mCL },
133 { X86::ROR8ri, X86::ROR8mi },
134 { X86::SAR16r1, X86::SAR16m1 },
135 { X86::SAR16rCL, X86::SAR16mCL },
136 { X86::SAR16ri, X86::SAR16mi },
137 { X86::SAR32r1, X86::SAR32m1 },
138 { X86::SAR32rCL, X86::SAR32mCL },
139 { X86::SAR32ri, X86::SAR32mi },
140 { X86::SAR64r1, X86::SAR64m1 },
141 { X86::SAR64rCL, X86::SAR64mCL },
142 { X86::SAR64ri, X86::SAR64mi },
143 { X86::SAR8r1, X86::SAR8m1 },
144 { X86::SAR8rCL, X86::SAR8mCL },
145 { X86::SAR8ri, X86::SAR8mi },
146 { X86::SBB32ri, X86::SBB32mi },
147 { X86::SBB32ri8, X86::SBB32mi8 },
148 { X86::SBB32rr, X86::SBB32mr },
149 { X86::SBB64ri32, X86::SBB64mi32 },
150 { X86::SBB64ri8, X86::SBB64mi8 },
151 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson43dbe052008-01-07 01:35:02 +0000152 { X86::SHL16rCL, X86::SHL16mCL },
153 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000154 { X86::SHL32rCL, X86::SHL32mCL },
155 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000156 { X86::SHL64rCL, X86::SHL64mCL },
157 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000158 { X86::SHL8rCL, X86::SHL8mCL },
159 { X86::SHL8ri, X86::SHL8mi },
160 { X86::SHLD16rrCL, X86::SHLD16mrCL },
161 { X86::SHLD16rri8, X86::SHLD16mri8 },
162 { X86::SHLD32rrCL, X86::SHLD32mrCL },
163 { X86::SHLD32rri8, X86::SHLD32mri8 },
164 { X86::SHLD64rrCL, X86::SHLD64mrCL },
165 { X86::SHLD64rri8, X86::SHLD64mri8 },
166 { X86::SHR16r1, X86::SHR16m1 },
167 { X86::SHR16rCL, X86::SHR16mCL },
168 { X86::SHR16ri, X86::SHR16mi },
169 { X86::SHR32r1, X86::SHR32m1 },
170 { X86::SHR32rCL, X86::SHR32mCL },
171 { X86::SHR32ri, X86::SHR32mi },
172 { X86::SHR64r1, X86::SHR64m1 },
173 { X86::SHR64rCL, X86::SHR64mCL },
174 { X86::SHR64ri, X86::SHR64mi },
175 { X86::SHR8r1, X86::SHR8m1 },
176 { X86::SHR8rCL, X86::SHR8mCL },
177 { X86::SHR8ri, X86::SHR8mi },
178 { X86::SHRD16rrCL, X86::SHRD16mrCL },
179 { X86::SHRD16rri8, X86::SHRD16mri8 },
180 { X86::SHRD32rrCL, X86::SHRD32mrCL },
181 { X86::SHRD32rri8, X86::SHRD32mri8 },
182 { X86::SHRD64rrCL, X86::SHRD64mrCL },
183 { X86::SHRD64rri8, X86::SHRD64mri8 },
184 { X86::SUB16ri, X86::SUB16mi },
185 { X86::SUB16ri8, X86::SUB16mi8 },
186 { X86::SUB16rr, X86::SUB16mr },
187 { X86::SUB32ri, X86::SUB32mi },
188 { X86::SUB32ri8, X86::SUB32mi8 },
189 { X86::SUB32rr, X86::SUB32mr },
190 { X86::SUB64ri32, X86::SUB64mi32 },
191 { X86::SUB64ri8, X86::SUB64mi8 },
192 { X86::SUB64rr, X86::SUB64mr },
193 { X86::SUB8ri, X86::SUB8mi },
194 { X86::SUB8rr, X86::SUB8mr },
195 { X86::XOR16ri, X86::XOR16mi },
196 { X86::XOR16ri8, X86::XOR16mi8 },
197 { X86::XOR16rr, X86::XOR16mr },
198 { X86::XOR32ri, X86::XOR32mi },
199 { X86::XOR32ri8, X86::XOR32mi8 },
200 { X86::XOR32rr, X86::XOR32mr },
201 { X86::XOR64ri32, X86::XOR64mi32 },
202 { X86::XOR64ri8, X86::XOR64mi8 },
203 { X86::XOR64rr, X86::XOR64mr },
204 { X86::XOR8ri, X86::XOR8mi },
205 { X86::XOR8rr, X86::XOR8mr }
206 };
207
208 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
209 unsigned RegOp = OpTbl2Addr[i][0];
210 unsigned MemOp = OpTbl2Addr[i][1];
211 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
212 assert(false && "Duplicated entries?");
213 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
214 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
215 std::make_pair(RegOp, AuxInfo))))
216 AmbEntries.push_back(MemOp);
217 }
218
219 // If the third value is 1, then it's folding either a load or a store.
220 static const unsigned OpTbl0[][3] = {
221 { X86::CALL32r, X86::CALL32m, 1 },
222 { X86::CALL64r, X86::CALL64m, 1 },
223 { X86::CMP16ri, X86::CMP16mi, 1 },
224 { X86::CMP16ri8, X86::CMP16mi8, 1 },
225 { X86::CMP32ri, X86::CMP32mi, 1 },
226 { X86::CMP32ri8, X86::CMP32mi8, 1 },
227 { X86::CMP64ri32, X86::CMP64mi32, 1 },
228 { X86::CMP64ri8, X86::CMP64mi8, 1 },
229 { X86::CMP8ri, X86::CMP8mi, 1 },
230 { X86::DIV16r, X86::DIV16m, 1 },
231 { X86::DIV32r, X86::DIV32m, 1 },
232 { X86::DIV64r, X86::DIV64m, 1 },
233 { X86::DIV8r, X86::DIV8m, 1 },
234 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
235 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
236 { X86::IDIV16r, X86::IDIV16m, 1 },
237 { X86::IDIV32r, X86::IDIV32m, 1 },
238 { X86::IDIV64r, X86::IDIV64m, 1 },
239 { X86::IDIV8r, X86::IDIV8m, 1 },
240 { X86::IMUL16r, X86::IMUL16m, 1 },
241 { X86::IMUL32r, X86::IMUL32m, 1 },
242 { X86::IMUL64r, X86::IMUL64m, 1 },
243 { X86::IMUL8r, X86::IMUL8m, 1 },
244 { X86::JMP32r, X86::JMP32m, 1 },
245 { X86::JMP64r, X86::JMP64m, 1 },
246 { X86::MOV16ri, X86::MOV16mi, 0 },
247 { X86::MOV16rr, X86::MOV16mr, 0 },
248 { X86::MOV16to16_, X86::MOV16_mr, 0 },
249 { X86::MOV32ri, X86::MOV32mi, 0 },
250 { X86::MOV32rr, X86::MOV32mr, 0 },
251 { X86::MOV32to32_, X86::MOV32_mr, 0 },
252 { X86::MOV64ri32, X86::MOV64mi32, 0 },
253 { X86::MOV64rr, X86::MOV64mr, 0 },
254 { X86::MOV8ri, X86::MOV8mi, 0 },
255 { X86::MOV8rr, X86::MOV8mr, 0 },
256 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
257 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
258 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
259 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
260 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
261 { X86::MOVSDrr, X86::MOVSDmr, 0 },
262 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
263 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
264 { X86::MOVSSrr, X86::MOVSSmr, 0 },
265 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
266 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
267 { X86::MUL16r, X86::MUL16m, 1 },
268 { X86::MUL32r, X86::MUL32m, 1 },
269 { X86::MUL64r, X86::MUL64m, 1 },
270 { X86::MUL8r, X86::MUL8m, 1 },
271 { X86::SETAEr, X86::SETAEm, 0 },
272 { X86::SETAr, X86::SETAm, 0 },
273 { X86::SETBEr, X86::SETBEm, 0 },
274 { X86::SETBr, X86::SETBm, 0 },
275 { X86::SETEr, X86::SETEm, 0 },
276 { X86::SETGEr, X86::SETGEm, 0 },
277 { X86::SETGr, X86::SETGm, 0 },
278 { X86::SETLEr, X86::SETLEm, 0 },
279 { X86::SETLr, X86::SETLm, 0 },
280 { X86::SETNEr, X86::SETNEm, 0 },
281 { X86::SETNPr, X86::SETNPm, 0 },
282 { X86::SETNSr, X86::SETNSm, 0 },
283 { X86::SETPr, X86::SETPm, 0 },
284 { X86::SETSr, X86::SETSm, 0 },
285 { X86::TAILJMPr, X86::TAILJMPm, 1 },
286 { X86::TEST16ri, X86::TEST16mi, 1 },
287 { X86::TEST32ri, X86::TEST32mi, 1 },
288 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000289 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000290 };
291
292 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
293 unsigned RegOp = OpTbl0[i][0];
294 unsigned MemOp = OpTbl0[i][1];
295 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
296 assert(false && "Duplicated entries?");
297 unsigned FoldedLoad = OpTbl0[i][2];
298 // Index 0, folded load or store.
299 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
300 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
301 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
302 std::make_pair(RegOp, AuxInfo))))
303 AmbEntries.push_back(MemOp);
304 }
305
306 static const unsigned OpTbl1[][2] = {
307 { X86::CMP16rr, X86::CMP16rm },
308 { X86::CMP32rr, X86::CMP32rm },
309 { X86::CMP64rr, X86::CMP64rm },
310 { X86::CMP8rr, X86::CMP8rm },
311 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
312 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
313 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
314 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
315 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
316 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
317 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
318 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
319 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
320 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
321 { X86::FsMOVAPDrr, X86::MOVSDrm },
322 { X86::FsMOVAPSrr, X86::MOVSSrm },
323 { X86::IMUL16rri, X86::IMUL16rmi },
324 { X86::IMUL16rri8, X86::IMUL16rmi8 },
325 { X86::IMUL32rri, X86::IMUL32rmi },
326 { X86::IMUL32rri8, X86::IMUL32rmi8 },
327 { X86::IMUL64rri32, X86::IMUL64rmi32 },
328 { X86::IMUL64rri8, X86::IMUL64rmi8 },
329 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
330 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
331 { X86::Int_COMISDrr, X86::Int_COMISDrm },
332 { X86::Int_COMISSrr, X86::Int_COMISSrm },
333 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
334 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
335 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
336 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
337 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
338 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
339 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
340 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
341 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
342 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
343 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
344 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
345 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
346 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
347 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
348 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
349 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
350 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
351 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
352 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
353 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
354 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
355 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
356 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
357 { X86::MOV16rr, X86::MOV16rm },
358 { X86::MOV16to16_, X86::MOV16_rm },
359 { X86::MOV32rr, X86::MOV32rm },
360 { X86::MOV32to32_, X86::MOV32_rm },
361 { X86::MOV64rr, X86::MOV64rm },
362 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
363 { X86::MOV64toSDrr, X86::MOV64toSDrm },
364 { X86::MOV8rr, X86::MOV8rm },
365 { X86::MOVAPDrr, X86::MOVAPDrm },
366 { X86::MOVAPSrr, X86::MOVAPSrm },
367 { X86::MOVDDUPrr, X86::MOVDDUPrm },
368 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
369 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
370 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
371 { X86::MOVSDrr, X86::MOVSDrm },
372 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
373 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
374 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
375 { X86::MOVSSrr, X86::MOVSSrm },
376 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
377 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
378 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
379 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
380 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
381 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
382 { X86::MOVUPDrr, X86::MOVUPDrm },
383 { X86::MOVUPSrr, X86::MOVUPSrm },
384 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
385 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
386 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
387 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
388 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
389 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
390 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
391 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
392 { X86::PSHUFDri, X86::PSHUFDmi },
393 { X86::PSHUFHWri, X86::PSHUFHWmi },
394 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000395 { X86::RCPPSr, X86::RCPPSm },
396 { X86::RCPPSr_Int, X86::RCPPSm_Int },
397 { X86::RSQRTPSr, X86::RSQRTPSm },
398 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
399 { X86::RSQRTSSr, X86::RSQRTSSm },
400 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
401 { X86::SQRTPDr, X86::SQRTPDm },
402 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
403 { X86::SQRTPSr, X86::SQRTPSm },
404 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
405 { X86::SQRTSDr, X86::SQRTSDm },
406 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
407 { X86::SQRTSSr, X86::SQRTSSm },
408 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
409 { X86::TEST16rr, X86::TEST16rm },
410 { X86::TEST32rr, X86::TEST32rm },
411 { X86::TEST64rr, X86::TEST64rm },
412 { X86::TEST8rr, X86::TEST8rm },
413 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
414 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000415 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson43dbe052008-01-07 01:35:02 +0000416 };
417
418 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
419 unsigned RegOp = OpTbl1[i][0];
420 unsigned MemOp = OpTbl1[i][1];
421 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
422 assert(false && "Duplicated entries?");
423 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
424 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
425 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
426 std::make_pair(RegOp, AuxInfo))))
427 AmbEntries.push_back(MemOp);
428 }
429
430 static const unsigned OpTbl2[][2] = {
431 { X86::ADC32rr, X86::ADC32rm },
432 { X86::ADC64rr, X86::ADC64rm },
433 { X86::ADD16rr, X86::ADD16rm },
434 { X86::ADD32rr, X86::ADD32rm },
435 { X86::ADD64rr, X86::ADD64rm },
436 { X86::ADD8rr, X86::ADD8rm },
437 { X86::ADDPDrr, X86::ADDPDrm },
438 { X86::ADDPSrr, X86::ADDPSrm },
439 { X86::ADDSDrr, X86::ADDSDrm },
440 { X86::ADDSSrr, X86::ADDSSrm },
441 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
442 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
443 { X86::AND16rr, X86::AND16rm },
444 { X86::AND32rr, X86::AND32rm },
445 { X86::AND64rr, X86::AND64rm },
446 { X86::AND8rr, X86::AND8rm },
447 { X86::ANDNPDrr, X86::ANDNPDrm },
448 { X86::ANDNPSrr, X86::ANDNPSrm },
449 { X86::ANDPDrr, X86::ANDPDrm },
450 { X86::ANDPSrr, X86::ANDPSrm },
451 { X86::CMOVA16rr, X86::CMOVA16rm },
452 { X86::CMOVA32rr, X86::CMOVA32rm },
453 { X86::CMOVA64rr, X86::CMOVA64rm },
454 { X86::CMOVAE16rr, X86::CMOVAE16rm },
455 { X86::CMOVAE32rr, X86::CMOVAE32rm },
456 { X86::CMOVAE64rr, X86::CMOVAE64rm },
457 { X86::CMOVB16rr, X86::CMOVB16rm },
458 { X86::CMOVB32rr, X86::CMOVB32rm },
459 { X86::CMOVB64rr, X86::CMOVB64rm },
460 { X86::CMOVBE16rr, X86::CMOVBE16rm },
461 { X86::CMOVBE32rr, X86::CMOVBE32rm },
462 { X86::CMOVBE64rr, X86::CMOVBE64rm },
463 { X86::CMOVE16rr, X86::CMOVE16rm },
464 { X86::CMOVE32rr, X86::CMOVE32rm },
465 { X86::CMOVE64rr, X86::CMOVE64rm },
466 { X86::CMOVG16rr, X86::CMOVG16rm },
467 { X86::CMOVG32rr, X86::CMOVG32rm },
468 { X86::CMOVG64rr, X86::CMOVG64rm },
469 { X86::CMOVGE16rr, X86::CMOVGE16rm },
470 { X86::CMOVGE32rr, X86::CMOVGE32rm },
471 { X86::CMOVGE64rr, X86::CMOVGE64rm },
472 { X86::CMOVL16rr, X86::CMOVL16rm },
473 { X86::CMOVL32rr, X86::CMOVL32rm },
474 { X86::CMOVL64rr, X86::CMOVL64rm },
475 { X86::CMOVLE16rr, X86::CMOVLE16rm },
476 { X86::CMOVLE32rr, X86::CMOVLE32rm },
477 { X86::CMOVLE64rr, X86::CMOVLE64rm },
478 { X86::CMOVNE16rr, X86::CMOVNE16rm },
479 { X86::CMOVNE32rr, X86::CMOVNE32rm },
480 { X86::CMOVNE64rr, X86::CMOVNE64rm },
481 { X86::CMOVNP16rr, X86::CMOVNP16rm },
482 { X86::CMOVNP32rr, X86::CMOVNP32rm },
483 { X86::CMOVNP64rr, X86::CMOVNP64rm },
484 { X86::CMOVNS16rr, X86::CMOVNS16rm },
485 { X86::CMOVNS32rr, X86::CMOVNS32rm },
486 { X86::CMOVNS64rr, X86::CMOVNS64rm },
487 { X86::CMOVP16rr, X86::CMOVP16rm },
488 { X86::CMOVP32rr, X86::CMOVP32rm },
489 { X86::CMOVP64rr, X86::CMOVP64rm },
490 { X86::CMOVS16rr, X86::CMOVS16rm },
491 { X86::CMOVS32rr, X86::CMOVS32rm },
492 { X86::CMOVS64rr, X86::CMOVS64rm },
493 { X86::CMPPDrri, X86::CMPPDrmi },
494 { X86::CMPPSrri, X86::CMPPSrmi },
495 { X86::CMPSDrr, X86::CMPSDrm },
496 { X86::CMPSSrr, X86::CMPSSrm },
497 { X86::DIVPDrr, X86::DIVPDrm },
498 { X86::DIVPSrr, X86::DIVPSrm },
499 { X86::DIVSDrr, X86::DIVSDrm },
500 { X86::DIVSSrr, X86::DIVSSrm },
Evan Cheng33663fc2008-02-08 00:12:56 +0000501 { X86::FsANDNPDrr, X86::FsANDNPDrm },
502 { X86::FsANDNPSrr, X86::FsANDNPSrm },
503 { X86::FsANDPDrr, X86::FsANDPDrm },
504 { X86::FsANDPSrr, X86::FsANDPSrm },
505 { X86::FsORPDrr, X86::FsORPDrm },
506 { X86::FsORPSrr, X86::FsORPSrm },
507 { X86::FsXORPDrr, X86::FsXORPDrm },
508 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson43dbe052008-01-07 01:35:02 +0000509 { X86::HADDPDrr, X86::HADDPDrm },
510 { X86::HADDPSrr, X86::HADDPSrm },
511 { X86::HSUBPDrr, X86::HSUBPDrm },
512 { X86::HSUBPSrr, X86::HSUBPSrm },
513 { X86::IMUL16rr, X86::IMUL16rm },
514 { X86::IMUL32rr, X86::IMUL32rm },
515 { X86::IMUL64rr, X86::IMUL64rm },
516 { X86::MAXPDrr, X86::MAXPDrm },
517 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
518 { X86::MAXPSrr, X86::MAXPSrm },
519 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
520 { X86::MAXSDrr, X86::MAXSDrm },
521 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
522 { X86::MAXSSrr, X86::MAXSSrm },
523 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
524 { X86::MINPDrr, X86::MINPDrm },
525 { X86::MINPDrr_Int, X86::MINPDrm_Int },
526 { X86::MINPSrr, X86::MINPSrm },
527 { X86::MINPSrr_Int, X86::MINPSrm_Int },
528 { X86::MINSDrr, X86::MINSDrm },
529 { X86::MINSDrr_Int, X86::MINSDrm_Int },
530 { X86::MINSSrr, X86::MINSSrm },
531 { X86::MINSSrr_Int, X86::MINSSrm_Int },
532 { X86::MULPDrr, X86::MULPDrm },
533 { X86::MULPSrr, X86::MULPSrm },
534 { X86::MULSDrr, X86::MULSDrm },
535 { X86::MULSSrr, X86::MULSSrm },
536 { X86::OR16rr, X86::OR16rm },
537 { X86::OR32rr, X86::OR32rm },
538 { X86::OR64rr, X86::OR64rm },
539 { X86::OR8rr, X86::OR8rm },
540 { X86::ORPDrr, X86::ORPDrm },
541 { X86::ORPSrr, X86::ORPSrm },
542 { X86::PACKSSDWrr, X86::PACKSSDWrm },
543 { X86::PACKSSWBrr, X86::PACKSSWBrm },
544 { X86::PACKUSWBrr, X86::PACKUSWBrm },
545 { X86::PADDBrr, X86::PADDBrm },
546 { X86::PADDDrr, X86::PADDDrm },
547 { X86::PADDQrr, X86::PADDQrm },
548 { X86::PADDSBrr, X86::PADDSBrm },
549 { X86::PADDSWrr, X86::PADDSWrm },
550 { X86::PADDWrr, X86::PADDWrm },
551 { X86::PANDNrr, X86::PANDNrm },
552 { X86::PANDrr, X86::PANDrm },
553 { X86::PAVGBrr, X86::PAVGBrm },
554 { X86::PAVGWrr, X86::PAVGWrm },
555 { X86::PCMPEQBrr, X86::PCMPEQBrm },
556 { X86::PCMPEQDrr, X86::PCMPEQDrm },
557 { X86::PCMPEQWrr, X86::PCMPEQWrm },
558 { X86::PCMPGTBrr, X86::PCMPGTBrm },
559 { X86::PCMPGTDrr, X86::PCMPGTDrm },
560 { X86::PCMPGTWrr, X86::PCMPGTWrm },
561 { X86::PINSRWrri, X86::PINSRWrmi },
562 { X86::PMADDWDrr, X86::PMADDWDrm },
563 { X86::PMAXSWrr, X86::PMAXSWrm },
564 { X86::PMAXUBrr, X86::PMAXUBrm },
565 { X86::PMINSWrr, X86::PMINSWrm },
566 { X86::PMINUBrr, X86::PMINUBrm },
567 { X86::PMULHUWrr, X86::PMULHUWrm },
568 { X86::PMULHWrr, X86::PMULHWrm },
569 { X86::PMULLWrr, X86::PMULLWrm },
570 { X86::PMULUDQrr, X86::PMULUDQrm },
571 { X86::PORrr, X86::PORrm },
572 { X86::PSADBWrr, X86::PSADBWrm },
573 { X86::PSLLDrr, X86::PSLLDrm },
574 { X86::PSLLQrr, X86::PSLLQrm },
575 { X86::PSLLWrr, X86::PSLLWrm },
576 { X86::PSRADrr, X86::PSRADrm },
577 { X86::PSRAWrr, X86::PSRAWrm },
578 { X86::PSRLDrr, X86::PSRLDrm },
579 { X86::PSRLQrr, X86::PSRLQrm },
580 { X86::PSRLWrr, X86::PSRLWrm },
581 { X86::PSUBBrr, X86::PSUBBrm },
582 { X86::PSUBDrr, X86::PSUBDrm },
583 { X86::PSUBSBrr, X86::PSUBSBrm },
584 { X86::PSUBSWrr, X86::PSUBSWrm },
585 { X86::PSUBWrr, X86::PSUBWrm },
586 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
587 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
588 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
589 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
590 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
591 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
592 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
593 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
594 { X86::PXORrr, X86::PXORrm },
595 { X86::SBB32rr, X86::SBB32rm },
596 { X86::SBB64rr, X86::SBB64rm },
597 { X86::SHUFPDrri, X86::SHUFPDrmi },
598 { X86::SHUFPSrri, X86::SHUFPSrmi },
599 { X86::SUB16rr, X86::SUB16rm },
600 { X86::SUB32rr, X86::SUB32rm },
601 { X86::SUB64rr, X86::SUB64rm },
602 { X86::SUB8rr, X86::SUB8rm },
603 { X86::SUBPDrr, X86::SUBPDrm },
604 { X86::SUBPSrr, X86::SUBPSrm },
605 { X86::SUBSDrr, X86::SUBSDrm },
606 { X86::SUBSSrr, X86::SUBSSrm },
607 // FIXME: TEST*rr -> swapped operand of TEST*mr.
608 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
609 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
610 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
611 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
612 { X86::XOR16rr, X86::XOR16rm },
613 { X86::XOR32rr, X86::XOR32rm },
614 { X86::XOR64rr, X86::XOR64rm },
615 { X86::XOR8rr, X86::XOR8rm },
616 { X86::XORPDrr, X86::XORPDrm },
617 { X86::XORPSrr, X86::XORPSrm }
618 };
619
620 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
621 unsigned RegOp = OpTbl2[i][0];
622 unsigned MemOp = OpTbl2[i][1];
623 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
624 assert(false && "Duplicated entries?");
625 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
626 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
627 std::make_pair(RegOp, AuxInfo))))
628 AmbEntries.push_back(MemOp);
629 }
630
631 // Remove ambiguous entries.
632 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Chris Lattner72614082002-10-25 22:55:53 +0000633}
634
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000635bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
636 unsigned& sourceReg,
637 unsigned& destReg) const {
Chris Lattner07f7cc32008-03-11 19:28:17 +0000638 switch (MI.getOpcode()) {
639 default:
640 return false;
641 case X86::MOV8rr:
642 case X86::MOV16rr:
643 case X86::MOV32rr:
644 case X86::MOV64rr:
645 case X86::MOV16to16_:
646 case X86::MOV32to32_:
Chris Lattner07f7cc32008-03-11 19:28:17 +0000647 case X86::MOVSSrr:
648 case X86::MOVSDrr:
Chris Lattner1d386772008-03-11 19:30:09 +0000649
650 // FP Stack register class copies
651 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
652 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
653 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
654
Chris Lattner07f7cc32008-03-11 19:28:17 +0000655 case X86::FsMOVAPSrr:
656 case X86::FsMOVAPDrr:
657 case X86::MOVAPSrr:
658 case X86::MOVAPDrr:
659 case X86::MOVSS2PSrr:
660 case X86::MOVSD2PDrr:
661 case X86::MOVPS2SSrr:
662 case X86::MOVPD2SDrr:
663 case X86::MMX_MOVD64rr:
664 case X86::MMX_MOVQ64rr:
665 assert(MI.getNumOperands() >= 2 &&
666 MI.getOperand(0).isRegister() &&
667 MI.getOperand(1).isRegister() &&
668 "invalid register-register move instruction");
669 sourceReg = MI.getOperand(1).getReg();
670 destReg = MI.getOperand(0).getReg();
671 return true;
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000672 }
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000673}
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000674
Chris Lattner40839602006-02-02 20:12:32 +0000675unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
676 int &FrameIndex) const {
677 switch (MI->getOpcode()) {
678 default: break;
679 case X86::MOV8rm:
680 case X86::MOV16rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000681 case X86::MOV16_rm:
Chris Lattner40839602006-02-02 20:12:32 +0000682 case X86::MOV32rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000683 case X86::MOV32_rm:
Evan Cheng25ab6902006-09-08 06:48:29 +0000684 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000685 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +0000686 case X86::MOVSSrm:
687 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +0000688 case X86::MOVAPSrm:
689 case X86::MOVAPDrm:
Bill Wendling823efee2007-04-03 06:00:37 +0000690 case X86::MMX_MOVD64rm:
691 case X86::MMX_MOVQ64rm:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000692 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
693 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000694 MI->getOperand(2).getImm() == 1 &&
Chris Lattner40839602006-02-02 20:12:32 +0000695 MI->getOperand(3).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000696 MI->getOperand(4).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000697 FrameIndex = MI->getOperand(1).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000698 return MI->getOperand(0).getReg();
699 }
700 break;
701 }
702 return 0;
703}
704
705unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
706 int &FrameIndex) const {
707 switch (MI->getOpcode()) {
708 default: break;
709 case X86::MOV8mr:
710 case X86::MOV16mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000711 case X86::MOV16_mr:
Chris Lattner40839602006-02-02 20:12:32 +0000712 case X86::MOV32mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000713 case X86::MOV32_mr:
Evan Cheng25ab6902006-09-08 06:48:29 +0000714 case X86::MOV64mr:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000715 case X86::ST_FpP64m:
Chris Lattner40839602006-02-02 20:12:32 +0000716 case X86::MOVSSmr:
717 case X86::MOVSDmr:
Chris Lattner993c8972006-04-18 16:44:51 +0000718 case X86::MOVAPSmr:
719 case X86::MOVAPDmr:
Bill Wendling823efee2007-04-03 06:00:37 +0000720 case X86::MMX_MOVD64mr:
721 case X86::MMX_MOVQ64mr:
Bill Wendling71bfd112007-04-03 23:48:32 +0000722 case X86::MMX_MOVNTQmr:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000723 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
724 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000725 MI->getOperand(1).getImm() == 1 &&
Chris Lattner1c07e722006-02-02 20:38:12 +0000726 MI->getOperand(2).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000727 MI->getOperand(3).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000728 FrameIndex = MI->getOperand(0).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000729 return MI->getOperand(4).getReg();
730 }
731 break;
732 }
733 return 0;
734}
735
736
Bill Wendling041b3f82007-12-08 23:58:46 +0000737bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
Dan Gohmanc101e952007-06-14 20:50:44 +0000738 switch (MI->getOpcode()) {
739 default: break;
740 case X86::MOV8rm:
741 case X86::MOV16rm:
742 case X86::MOV16_rm:
743 case X86::MOV32rm:
744 case X86::MOV32_rm:
745 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000746 case X86::LD_Fp64m:
Dan Gohmanc101e952007-06-14 20:50:44 +0000747 case X86::MOVSSrm:
748 case X86::MOVSDrm:
749 case X86::MOVAPSrm:
750 case X86::MOVAPDrm:
751 case X86::MMX_MOVD64rm:
752 case X86::MMX_MOVQ64rm:
Dan Gohman82a87a02007-06-19 01:48:05 +0000753 // Loads from constant pools are trivially rematerializable.
Chris Lattner3b5a2212008-01-05 05:28:30 +0000754 if (MI->getOperand(1).isReg() && MI->getOperand(2).isImm() &&
755 MI->getOperand(3).isReg() && MI->getOperand(4).isCPI() &&
Chris Lattner3b5a2212008-01-05 05:28:30 +0000756 MI->getOperand(2).getImm() == 1 &&
Evan Chengd8850a52008-02-22 09:25:47 +0000757 MI->getOperand(3).getReg() == 0) {
758 unsigned BaseReg = MI->getOperand(1).getReg();
759 if (BaseReg == 0)
760 return true;
761 if (!ReMatPICLoad)
762 return false;
763 // Allow re-materialization of PIC load.
764 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
765 bool isPICBase = false;
766 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
767 E = MRI.def_end(); I != E; ++I) {
768 MachineInstr *DefMI = I.getOperand().getParent();
769 if (DefMI->getOpcode() != X86::MOVPC32r)
770 return false;
771 assert(!isPICBase && "More than one PIC base?");
772 isPICBase = true;
773 }
774 return isPICBase;
775 }
Chris Lattnerf29495a2008-01-05 06:10:42 +0000776
Chris Lattner3b5a2212008-01-05 05:28:30 +0000777 return false;
Dan Gohmanc101e952007-06-14 20:50:44 +0000778 }
Dan Gohmand45eddd2007-06-26 00:48:07 +0000779 // All other instructions marked M_REMATERIALIZABLE are always trivially
780 // rematerializable.
781 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +0000782}
783
Chris Lattnera22edc82008-01-10 23:08:24 +0000784/// isInvariantLoad - Return true if the specified instruction (which is marked
785/// mayLoad) is loading from a location whose value is invariant across the
786/// function. For example, loading a value from the constant pool or from
787/// from the argument area of a function if it does not change. This should
788/// only return true of *all* loads the instruction does are invariant (if it
789/// does multiple loads).
790bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner828bb6c2008-01-12 00:35:08 +0000791 // This code cares about loads from three cases: constant pool entries,
792 // invariant argument slots, and global stubs. In order to handle these cases
793 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner144ad582008-01-12 00:53:16 +0000794 // operand and base our analysis on it. This is safe because the address of
Chris Lattner828bb6c2008-01-12 00:35:08 +0000795 // none of these three cases is ever used as anything other than a load base
796 // and X86 doesn't have any instructions that load from multiple places.
797
798 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
799 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnera22edc82008-01-10 23:08:24 +0000800 // Loads from constant pools are trivially invariant.
Chris Lattner828bb6c2008-01-12 00:35:08 +0000801 if (MO.isCPI())
Chris Lattner3b5a2212008-01-05 05:28:30 +0000802 return true;
Chris Lattner828bb6c2008-01-12 00:35:08 +0000803
804 if (MO.isGlobal()) {
805 if (TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(MO.getGlobal(),
806 TM, false))
807 return true;
808 return false;
809 }
810
811 // If this is a load from an invariant stack slot, the load is a constant.
812 if (MO.isFI()) {
813 const MachineFrameInfo &MFI =
814 *MI->getParent()->getParent()->getFrameInfo();
815 int Idx = MO.getIndex();
Chris Lattner87943902008-01-10 04:16:31 +0000816 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
817 }
Bill Wendling627c00b2007-12-17 23:07:56 +0000818 }
Chris Lattner828bb6c2008-01-12 00:35:08 +0000819
Chris Lattnera22edc82008-01-10 23:08:24 +0000820 // All other instances of these instructions are presumed to have other
821 // issues.
Chris Lattnera83b34b2008-01-05 05:26:26 +0000822 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000823}
824
Evan Cheng3f411c72007-10-05 08:04:01 +0000825/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
826/// is not marked dead.
827static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +0000828 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
829 MachineOperand &MO = MI->getOperand(i);
830 if (MO.isRegister() && MO.isDef() &&
831 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
832 return true;
833 }
834 }
835 return false;
836}
837
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000838/// convertToThreeAddress - This method must be implemented by targets that
839/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
840/// may be able to convert a two-address instruction into a true
841/// three-address instruction on demand. This allows the X86 target (for
842/// example) to convert ADD and SHL instructions into LEA instructions if they
843/// would require register copies due to two-addressness.
844///
845/// This method returns a null pointer if the transformation cannot be
846/// performed, otherwise it returns the new instruction.
847///
Evan Cheng258ff672006-12-01 21:52:41 +0000848MachineInstr *
849X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
850 MachineBasicBlock::iterator &MBBI,
851 LiveVariables &LV) const {
852 MachineInstr *MI = MBBI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000853 // All instructions input are two-addr instructions. Get the known operands.
854 unsigned Dest = MI->getOperand(0).getReg();
855 unsigned Src = MI->getOperand(1).getReg();
856
Evan Cheng6ce7dc22006-11-15 20:58:11 +0000857 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +0000858 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000859 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng258ff672006-12-01 21:52:41 +0000860 bool DisableLEA16 = true;
861
Evan Cheng559dc462007-10-05 20:34:26 +0000862 unsigned MIOpc = MI->getOpcode();
863 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +0000864 case X86::SHUFPSrri: {
865 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000866 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
867
Evan Chengaa3c1412006-05-30 21:45:53 +0000868 unsigned A = MI->getOperand(0).getReg();
869 unsigned B = MI->getOperand(1).getReg();
870 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000871 unsigned M = MI->getOperand(3).getImm();
872 if (B != C) return 0;
Evan Chengc0f64ff2006-11-27 23:37:22 +0000873 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000874 break;
875 }
Chris Lattner995f5502007-03-28 18:12:31 +0000876 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000877 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +0000878 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
879 // the flags produced by a shift yet, so this is safe.
880 unsigned Dest = MI->getOperand(0).getReg();
881 unsigned Src = MI->getOperand(1).getReg();
882 unsigned ShAmt = MI->getOperand(2).getImm();
883 if (ShAmt == 0 || ShAmt >= 4) return 0;
884
885 NewMI = BuildMI(get(X86::LEA64r), Dest)
886 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
887 break;
888 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000889 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000890 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000891 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
892 // the flags produced by a shift yet, so this is safe.
893 unsigned Dest = MI->getOperand(0).getReg();
894 unsigned Src = MI->getOperand(1).getReg();
895 unsigned ShAmt = MI->getOperand(2).getImm();
896 if (ShAmt == 0 || ShAmt >= 4) return 0;
897
Chris Lattnerf2177b82007-03-28 00:58:40 +0000898 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
899 X86::LEA64_32r : X86::LEA32r;
900 NewMI = BuildMI(get(Opc), Dest)
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000901 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
902 break;
903 }
904 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000905 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +0000906 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
907 // the flags produced by a shift yet, so this is safe.
908 unsigned Dest = MI->getOperand(0).getReg();
909 unsigned Src = MI->getOperand(1).getReg();
910 unsigned ShAmt = MI->getOperand(2).getImm();
911 if (ShAmt == 0 || ShAmt >= 4) return 0;
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000912
Christopher Lambb8133712007-08-10 21:18:25 +0000913 if (DisableLEA16) {
914 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner84bc5422007-12-31 04:13:23 +0000915 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng61d9c862007-09-06 00:14:41 +0000916 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
917 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner84bc5422007-12-31 04:13:23 +0000918 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
919 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Cheng4499e492008-03-10 19:31:26 +0000920
Christopher Lamb1bc10082008-03-11 10:27:36 +0000921 // Build and insert into an implicit UNDEF value. This is OK because
922 // well be shifting and then extracting the lower 16-bits.
923 MachineInstr *Ins =
Christopher Lamb6634e262008-03-13 05:47:01 +0000924 BuildMI(get(X86::INSERT_SUBREG),leaInReg)
925 .addImm(X86InstrInfo::IMPL_VAL_UNDEF)
926 .addReg(Src).addImm(X86::SUBREG_16BIT);
Christopher Lambb8133712007-08-10 21:18:25 +0000927
928 NewMI = BuildMI(get(Opc), leaOutReg)
929 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
930
Evan Cheng61d9c862007-09-06 00:14:41 +0000931 MachineInstr *Ext =
Christopher Lamb1bc10082008-03-11 10:27:36 +0000932 BuildMI(get(X86::EXTRACT_SUBREG), Dest)
933 .addReg(leaOutReg).addImm(X86::SUBREG_16BIT);
Christopher Lambb8133712007-08-10 21:18:25 +0000934 Ext->copyKillDeadInfo(MI);
935
936 MFI->insert(MBBI, Ins); // Insert the insert_subreg
937 LV.instructionChanged(MI, NewMI); // Update live variables
938 LV.addVirtualRegisterKilled(leaInReg, NewMI);
939 MFI->insert(MBBI, NewMI); // Insert the new inst
940 LV.addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng61d9c862007-09-06 00:14:41 +0000941 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lambb8133712007-08-10 21:18:25 +0000942 return Ext;
943 } else {
944 NewMI = BuildMI(get(X86::LEA16r), Dest)
945 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
946 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000947 break;
Evan Chengccba76b2006-05-30 20:26:50 +0000948 }
Evan Cheng559dc462007-10-05 20:34:26 +0000949 default: {
950 // The following opcodes also sets the condition code register(s). Only
951 // convert them to equivalent lea if the condition code register def's
952 // are dead!
953 if (hasLiveCondCodeDef(MI))
954 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +0000955
Evan Chengb76143c2007-10-09 07:14:53 +0000956 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng559dc462007-10-05 20:34:26 +0000957 switch (MIOpc) {
958 default: return 0;
959 case X86::INC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000960 case X86::INC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000961 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000962 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
963 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000964 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
965 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000966 }
Evan Cheng559dc462007-10-05 20:34:26 +0000967 case X86::INC16r:
968 case X86::INC64_16r:
969 if (DisableLEA16) return 0;
970 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
971 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
972 break;
973 case X86::DEC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000974 case X86::DEC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000975 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000976 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
977 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000978 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
979 break;
980 }
981 case X86::DEC16r:
982 case X86::DEC64_16r:
983 if (DisableLEA16) return 0;
984 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
985 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
986 break;
987 case X86::ADD64rr:
988 case X86::ADD32rr: {
989 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000990 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
991 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000992 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
993 MI->getOperand(2).getReg());
994 break;
995 }
996 case X86::ADD16rr:
997 if (DisableLEA16) return 0;
998 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
999 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
1000 MI->getOperand(2).getReg());
1001 break;
1002 case X86::ADD64ri32:
1003 case X86::ADD64ri8:
1004 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1005 if (MI->getOperand(2).isImmediate())
1006 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001007 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001008 break;
1009 case X86::ADD32ri:
1010 case X86::ADD32ri8:
1011 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001012 if (MI->getOperand(2).isImmediate()) {
1013 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1014 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001015 MI->getOperand(2).getImm());
Evan Chengb76143c2007-10-09 07:14:53 +00001016 }
Evan Cheng559dc462007-10-05 20:34:26 +00001017 break;
1018 case X86::ADD16ri:
1019 case X86::ADD16ri8:
1020 if (DisableLEA16) return 0;
1021 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1022 if (MI->getOperand(2).isImmediate())
1023 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001024 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001025 break;
1026 case X86::SHL16ri:
1027 if (DisableLEA16) return 0;
1028 case X86::SHL32ri:
1029 case X86::SHL64ri: {
1030 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1031 "Unknown shl instruction!");
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001032 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng559dc462007-10-05 20:34:26 +00001033 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1034 X86AddressMode AM;
1035 AM.Scale = 1 << ShAmt;
1036 AM.IndexReg = Src;
1037 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chengb76143c2007-10-09 07:14:53 +00001038 : (MIOpc == X86::SHL32ri
1039 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng559dc462007-10-05 20:34:26 +00001040 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1041 }
1042 break;
1043 }
1044 }
1045 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001046 }
1047
Evan Cheng15246732008-02-07 08:29:53 +00001048 if (!NewMI) return 0;
1049
Evan Cheng559dc462007-10-05 20:34:26 +00001050 NewMI->copyKillDeadInfo(MI);
1051 LV.instructionChanged(MI, NewMI); // Update live variables
1052 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001053 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001054}
1055
Chris Lattner41e431b2005-01-19 07:11:01 +00001056/// commuteInstruction - We have a few instructions that must be hacked on to
1057/// commute them.
1058///
1059MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
1060 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001061 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1062 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001063 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001064 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1065 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1066 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001067 unsigned Opc;
1068 unsigned Size;
1069 switch (MI->getOpcode()) {
1070 default: assert(0 && "Unreachable!");
1071 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1072 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1073 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1074 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001075 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1076 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001077 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001078 unsigned Amt = MI->getOperand(3).getImm();
Chris Lattner41e431b2005-01-19 07:11:01 +00001079 unsigned A = MI->getOperand(0).getReg();
1080 unsigned B = MI->getOperand(1).getReg();
1081 unsigned C = MI->getOperand(2).getReg();
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001082 bool BisKill = MI->getOperand(1).isKill();
1083 bool CisKill = MI->getOperand(2).isKill();
Evan Chenga4d16a12008-02-13 02:46:49 +00001084 // If machine instrs are no longer in two-address forms, update
1085 // destination register as well.
1086 if (A == B) {
1087 // Must be two address instruction!
1088 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1089 "Expecting a two-address instruction!");
1090 A = C;
1091 CisKill = false;
1092 }
Evan Chengc0f64ff2006-11-27 23:37:22 +00001093 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001094 .addReg(B, false, false, BisKill).addImm(Size-Amt);
Chris Lattner41e431b2005-01-19 07:11:01 +00001095 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001096 case X86::CMOVB16rr:
1097 case X86::CMOVB32rr:
1098 case X86::CMOVB64rr:
1099 case X86::CMOVAE16rr:
1100 case X86::CMOVAE32rr:
1101 case X86::CMOVAE64rr:
1102 case X86::CMOVE16rr:
1103 case X86::CMOVE32rr:
1104 case X86::CMOVE64rr:
1105 case X86::CMOVNE16rr:
1106 case X86::CMOVNE32rr:
1107 case X86::CMOVNE64rr:
1108 case X86::CMOVBE16rr:
1109 case X86::CMOVBE32rr:
1110 case X86::CMOVBE64rr:
1111 case X86::CMOVA16rr:
1112 case X86::CMOVA32rr:
1113 case X86::CMOVA64rr:
1114 case X86::CMOVL16rr:
1115 case X86::CMOVL32rr:
1116 case X86::CMOVL64rr:
1117 case X86::CMOVGE16rr:
1118 case X86::CMOVGE32rr:
1119 case X86::CMOVGE64rr:
1120 case X86::CMOVLE16rr:
1121 case X86::CMOVLE32rr:
1122 case X86::CMOVLE64rr:
1123 case X86::CMOVG16rr:
1124 case X86::CMOVG32rr:
1125 case X86::CMOVG64rr:
1126 case X86::CMOVS16rr:
1127 case X86::CMOVS32rr:
1128 case X86::CMOVS64rr:
1129 case X86::CMOVNS16rr:
1130 case X86::CMOVNS32rr:
1131 case X86::CMOVNS64rr:
1132 case X86::CMOVP16rr:
1133 case X86::CMOVP32rr:
1134 case X86::CMOVP64rr:
1135 case X86::CMOVNP16rr:
1136 case X86::CMOVNP32rr:
1137 case X86::CMOVNP64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001138 unsigned Opc = 0;
1139 switch (MI->getOpcode()) {
1140 default: break;
1141 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1142 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1143 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1144 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1145 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1146 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1147 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1148 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1149 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1150 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1151 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1152 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1153 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1154 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1155 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1156 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1157 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1158 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1159 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1160 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1161 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1162 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1163 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1164 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1165 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1166 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1167 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1168 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1169 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1170 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1171 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1172 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1173 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1174 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1175 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1176 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1177 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1178 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1179 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1180 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1181 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1182 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1183 }
1184
Chris Lattner5080f4d2008-01-11 18:10:50 +00001185 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00001186 // Fallthrough intended.
1187 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001188 default:
Chris Lattner264e6fe2008-01-01 01:05:34 +00001189 return TargetInstrInfoImpl::commuteInstruction(MI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001190 }
1191}
1192
Chris Lattner7fbe9722006-10-20 17:42:20 +00001193static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1194 switch (BrOpc) {
1195 default: return X86::COND_INVALID;
1196 case X86::JE: return X86::COND_E;
1197 case X86::JNE: return X86::COND_NE;
1198 case X86::JL: return X86::COND_L;
1199 case X86::JLE: return X86::COND_LE;
1200 case X86::JG: return X86::COND_G;
1201 case X86::JGE: return X86::COND_GE;
1202 case X86::JB: return X86::COND_B;
1203 case X86::JBE: return X86::COND_BE;
1204 case X86::JA: return X86::COND_A;
1205 case X86::JAE: return X86::COND_AE;
1206 case X86::JS: return X86::COND_S;
1207 case X86::JNS: return X86::COND_NS;
1208 case X86::JP: return X86::COND_P;
1209 case X86::JNP: return X86::COND_NP;
1210 case X86::JO: return X86::COND_O;
1211 case X86::JNO: return X86::COND_NO;
1212 }
1213}
1214
1215unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1216 switch (CC) {
1217 default: assert(0 && "Illegal condition code!");
Evan Chenge5f62042007-09-29 00:00:36 +00001218 case X86::COND_E: return X86::JE;
1219 case X86::COND_NE: return X86::JNE;
1220 case X86::COND_L: return X86::JL;
1221 case X86::COND_LE: return X86::JLE;
1222 case X86::COND_G: return X86::JG;
1223 case X86::COND_GE: return X86::JGE;
1224 case X86::COND_B: return X86::JB;
1225 case X86::COND_BE: return X86::JBE;
1226 case X86::COND_A: return X86::JA;
1227 case X86::COND_AE: return X86::JAE;
1228 case X86::COND_S: return X86::JS;
1229 case X86::COND_NS: return X86::JNS;
1230 case X86::COND_P: return X86::JP;
1231 case X86::COND_NP: return X86::JNP;
1232 case X86::COND_O: return X86::JO;
1233 case X86::COND_NO: return X86::JNO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001234 }
1235}
1236
Chris Lattner9cd68752006-10-21 05:52:40 +00001237/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1238/// e.g. turning COND_E to COND_NE.
1239X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1240 switch (CC) {
1241 default: assert(0 && "Illegal condition code!");
1242 case X86::COND_E: return X86::COND_NE;
1243 case X86::COND_NE: return X86::COND_E;
1244 case X86::COND_L: return X86::COND_GE;
1245 case X86::COND_LE: return X86::COND_G;
1246 case X86::COND_G: return X86::COND_LE;
1247 case X86::COND_GE: return X86::COND_L;
1248 case X86::COND_B: return X86::COND_AE;
1249 case X86::COND_BE: return X86::COND_A;
1250 case X86::COND_A: return X86::COND_BE;
1251 case X86::COND_AE: return X86::COND_B;
1252 case X86::COND_S: return X86::COND_NS;
1253 case X86::COND_NS: return X86::COND_S;
1254 case X86::COND_P: return X86::COND_NP;
1255 case X86::COND_NP: return X86::COND_P;
1256 case X86::COND_O: return X86::COND_NO;
1257 case X86::COND_NO: return X86::COND_O;
1258 }
1259}
1260
Dale Johannesen318093b2007-06-14 22:03:45 +00001261bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner749c6f62008-01-07 07:27:27 +00001262 const TargetInstrDesc &TID = MI->getDesc();
1263 if (!TID.isTerminator()) return false;
Chris Lattner69244302008-01-07 01:56:04 +00001264
1265 // Conditional branch is a special case.
Chris Lattner749c6f62008-01-07 07:27:27 +00001266 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00001267 return true;
Chris Lattner749c6f62008-01-07 07:27:27 +00001268 if (!TID.isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00001269 return true;
1270 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00001271}
Chris Lattner9cd68752006-10-21 05:52:40 +00001272
Evan Cheng85dce6c2007-07-26 17:32:14 +00001273// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1274static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1275 const X86InstrInfo &TII) {
1276 if (MI->getOpcode() == X86::FP_REG_KILL)
1277 return false;
1278 return TII.isUnpredicatedTerminator(MI);
1279}
1280
Chris Lattner7fbe9722006-10-20 17:42:20 +00001281bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1282 MachineBasicBlock *&TBB,
1283 MachineBasicBlock *&FBB,
1284 std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001285 // If the block has no terminators, it just falls into the block after it.
1286 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng85dce6c2007-07-26 17:32:14 +00001287 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001288 return false;
1289
1290 // Get the last instruction in the block.
1291 MachineInstr *LastInst = I;
1292
1293 // If there is only one terminator instruction, process it.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001294 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner749c6f62008-01-07 07:27:27 +00001295 if (!LastInst->getDesc().isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00001296 return true;
1297
1298 // If the block ends with a branch there are 3 possibilities:
1299 // it's an unconditional, conditional, or indirect branch.
1300
1301 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001302 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001303 return false;
1304 }
1305 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1306 if (BranchCode == X86::COND_INVALID)
1307 return true; // Can't handle indirect branch.
1308
1309 // Otherwise, block ends with fall-through condbranch.
Chris Lattner8aa797a2007-12-30 23:10:15 +00001310 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001311 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1312 return false;
1313 }
1314
1315 // Get the instruction before it if it's a terminator.
1316 MachineInstr *SecondLastInst = I;
1317
1318 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001319 if (SecondLastInst && I != MBB.begin() &&
1320 isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001321 return true;
1322
Chris Lattner6ce64432006-10-30 22:27:23 +00001323 // If the block ends with X86::JMP and a conditional branch, handle it.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001324 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1325 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001326 TBB = SecondLastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001327 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner8aa797a2007-12-30 23:10:15 +00001328 FBB = LastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001329 return false;
1330 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001331
Dale Johannesen13e8b512007-06-13 17:59:52 +00001332 // If the block ends with two X86::JMPs, handle it. The second one is not
1333 // executed, so remove it.
1334 if (SecondLastInst->getOpcode() == X86::JMP &&
1335 LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001336 TBB = SecondLastInst->getOperand(0).getMBB();
Dale Johannesen13e8b512007-06-13 17:59:52 +00001337 I = LastInst;
1338 I->eraseFromParent();
1339 return false;
1340 }
1341
Chris Lattner7fbe9722006-10-20 17:42:20 +00001342 // Otherwise, can't handle this.
1343 return true;
1344}
1345
Evan Cheng6ae36262007-05-18 00:18:17 +00001346unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001347 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng6ae36262007-05-18 00:18:17 +00001348 if (I == MBB.begin()) return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001349 --I;
1350 if (I->getOpcode() != X86::JMP &&
1351 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001352 return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001353
1354 // Remove the branch.
1355 I->eraseFromParent();
1356
1357 I = MBB.end();
1358
Evan Cheng6ae36262007-05-18 00:18:17 +00001359 if (I == MBB.begin()) return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001360 --I;
1361 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001362 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001363
1364 // Remove the branch.
1365 I->eraseFromParent();
Evan Cheng6ae36262007-05-18 00:18:17 +00001366 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001367}
1368
Owen Andersonf6372aa2008-01-01 21:11:32 +00001369static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1370 MachineOperand &MO) {
1371 if (MO.isRegister())
1372 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1373 false, false, MO.getSubReg());
1374 else if (MO.isImmediate())
1375 MIB = MIB.addImm(MO.getImm());
1376 else if (MO.isFrameIndex())
1377 MIB = MIB.addFrameIndex(MO.getIndex());
1378 else if (MO.isGlobalAddress())
1379 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1380 else if (MO.isConstantPoolIndex())
1381 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1382 else if (MO.isJumpTableIndex())
1383 MIB = MIB.addJumpTableIndex(MO.getIndex());
1384 else if (MO.isExternalSymbol())
1385 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1386 else
1387 assert(0 && "Unknown operand for X86InstrAddOperand!");
1388
1389 return MIB;
1390}
1391
Evan Cheng6ae36262007-05-18 00:18:17 +00001392unsigned
1393X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1394 MachineBasicBlock *FBB,
1395 const std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001396 // Shouldn't be a fall through.
1397 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00001398 assert((Cond.size() == 1 || Cond.size() == 0) &&
1399 "X86 branch conditions have one component!");
1400
1401 if (FBB == 0) { // One way branch.
1402 if (Cond.empty()) {
1403 // Unconditional branch?
Evan Chengc0f64ff2006-11-27 23:37:22 +00001404 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001405 } else {
1406 // Conditional branch.
1407 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001408 BuildMI(&MBB, get(Opc)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001409 }
Evan Cheng6ae36262007-05-18 00:18:17 +00001410 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001411 }
1412
Chris Lattner879d09c2006-10-21 05:42:09 +00001413 // Two-way Conditional branch.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001414 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001415 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1416 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00001417 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001418}
1419
Owen Andersond10fd972007-12-31 06:32:00 +00001420void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner5c927502008-03-09 08:46:19 +00001421 MachineBasicBlock::iterator MI,
1422 unsigned DestReg, unsigned SrcReg,
1423 const TargetRegisterClass *DestRC,
1424 const TargetRegisterClass *SrcRC) const {
Chris Lattner90b347d2008-03-09 07:58:04 +00001425 if (DestRC == SrcRC) {
1426 unsigned Opc;
1427 if (DestRC == &X86::GR64RegClass) {
1428 Opc = X86::MOV64rr;
1429 } else if (DestRC == &X86::GR32RegClass) {
1430 Opc = X86::MOV32rr;
1431 } else if (DestRC == &X86::GR16RegClass) {
1432 Opc = X86::MOV16rr;
1433 } else if (DestRC == &X86::GR8RegClass) {
1434 Opc = X86::MOV8rr;
1435 } else if (DestRC == &X86::GR32_RegClass) {
1436 Opc = X86::MOV32_rr;
1437 } else if (DestRC == &X86::GR16_RegClass) {
1438 Opc = X86::MOV16_rr;
1439 } else if (DestRC == &X86::RFP32RegClass) {
1440 Opc = X86::MOV_Fp3232;
1441 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1442 Opc = X86::MOV_Fp6464;
1443 } else if (DestRC == &X86::RFP80RegClass) {
1444 Opc = X86::MOV_Fp8080;
1445 } else if (DestRC == &X86::FR32RegClass) {
1446 Opc = X86::FsMOVAPSrr;
1447 } else if (DestRC == &X86::FR64RegClass) {
1448 Opc = X86::FsMOVAPDrr;
1449 } else if (DestRC == &X86::VR128RegClass) {
1450 Opc = X86::MOVAPSrr;
1451 } else if (DestRC == &X86::VR64RegClass) {
1452 Opc = X86::MMX_MOVQ64rr;
1453 } else {
1454 assert(0 && "Unknown regclass");
1455 abort();
Owen Andersond10fd972007-12-31 06:32:00 +00001456 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001457 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1458 return;
Owen Andersond10fd972007-12-31 06:32:00 +00001459 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001460
1461 // Moving EFLAGS to / from another register requires a push and a pop.
1462 if (SrcRC == &X86::CCRRegClass) {
1463 assert(SrcReg == X86::EFLAGS);
1464 if (DestRC == &X86::GR64RegClass) {
1465 BuildMI(MBB, MI, get(X86::PUSHFQ));
1466 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1467 return;
1468 } else if (DestRC == &X86::GR32RegClass) {
1469 BuildMI(MBB, MI, get(X86::PUSHFD));
1470 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1471 return;
1472 }
1473 } else if (DestRC == &X86::CCRRegClass) {
1474 assert(DestReg == X86::EFLAGS);
1475 if (SrcRC == &X86::GR64RegClass) {
1476 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1477 BuildMI(MBB, MI, get(X86::POPFQ));
1478 return;
1479 } else if (SrcRC == &X86::GR32RegClass) {
1480 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1481 BuildMI(MBB, MI, get(X86::POPFD));
1482 return;
1483 }
Owen Andersond10fd972007-12-31 06:32:00 +00001484 }
Chris Lattner5c927502008-03-09 08:46:19 +00001485
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001486 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner5c927502008-03-09 08:46:19 +00001487 if (SrcRC == &X86::RSTRegClass) {
1488 // Copying from ST(0). FIXME: handle ST(1) also
1489 assert(SrcReg == X86::ST0 && "Can only copy from TOS right now");
1490 unsigned Opc;
1491 if (DestRC == &X86::RFP32RegClass)
1492 Opc = X86::FpGET_ST0_32;
1493 else if (DestRC == &X86::RFP64RegClass)
1494 Opc = X86::FpGET_ST0_64;
1495 else {
1496 assert(DestRC == &X86::RFP80RegClass);
1497 Opc = X86::FpGET_ST0_80;
1498 }
1499 BuildMI(MBB, MI, get(Opc), DestReg);
1500 return;
1501 }
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001502
1503 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1504 if (DestRC == &X86::RSTRegClass) {
1505 // Copying to ST(0). FIXME: handle ST(1) also
1506 assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1507 unsigned Opc;
1508 if (SrcRC == &X86::RFP32RegClass)
1509 Opc = X86::FpSET_ST0_32;
1510 else if (SrcRC == &X86::RFP64RegClass)
1511 Opc = X86::FpSET_ST0_64;
1512 else {
1513 assert(SrcRC == &X86::RFP80RegClass);
1514 Opc = X86::FpSET_ST0_80;
1515 }
1516 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1517 return;
1518 }
Chris Lattner5c927502008-03-09 08:46:19 +00001519
Chris Lattner183275a2008-03-10 23:56:08 +00001520 assert(0 && "Not yet supported!");
Chris Lattner90b347d2008-03-09 07:58:04 +00001521 abort();
Owen Andersond10fd972007-12-31 06:32:00 +00001522}
1523
Owen Andersonf6372aa2008-01-01 21:11:32 +00001524static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1525 unsigned StackAlign) {
1526 unsigned Opc = 0;
1527 if (RC == &X86::GR64RegClass) {
1528 Opc = X86::MOV64mr;
1529 } else if (RC == &X86::GR32RegClass) {
1530 Opc = X86::MOV32mr;
1531 } else if (RC == &X86::GR16RegClass) {
1532 Opc = X86::MOV16mr;
1533 } else if (RC == &X86::GR8RegClass) {
1534 Opc = X86::MOV8mr;
1535 } else if (RC == &X86::GR32_RegClass) {
1536 Opc = X86::MOV32_mr;
1537 } else if (RC == &X86::GR16_RegClass) {
1538 Opc = X86::MOV16_mr;
1539 } else if (RC == &X86::RFP80RegClass) {
1540 Opc = X86::ST_FpP80m; // pops
1541 } else if (RC == &X86::RFP64RegClass) {
1542 Opc = X86::ST_Fp64m;
1543 } else if (RC == &X86::RFP32RegClass) {
1544 Opc = X86::ST_Fp32m;
1545 } else if (RC == &X86::FR32RegClass) {
1546 Opc = X86::MOVSSmr;
1547 } else if (RC == &X86::FR64RegClass) {
1548 Opc = X86::MOVSDmr;
1549 } else if (RC == &X86::VR128RegClass) {
1550 // FIXME: Use movaps once we are capable of selectively
1551 // aligning functions that spill SSE registers on 16-byte boundaries.
1552 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1553 } else if (RC == &X86::VR64RegClass) {
1554 Opc = X86::MMX_MOVQ64mr;
1555 } else {
1556 assert(0 && "Unknown regclass");
1557 abort();
1558 }
1559
1560 return Opc;
1561}
1562
1563void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1564 MachineBasicBlock::iterator MI,
1565 unsigned SrcReg, bool isKill, int FrameIdx,
1566 const TargetRegisterClass *RC) const {
1567 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1568 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1569 .addReg(SrcReg, false, false, isKill);
1570}
1571
1572void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1573 bool isKill,
1574 SmallVectorImpl<MachineOperand> &Addr,
1575 const TargetRegisterClass *RC,
1576 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1577 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1578 MachineInstrBuilder MIB = BuildMI(get(Opc));
1579 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1580 MIB = X86InstrAddOperand(MIB, Addr[i]);
1581 MIB.addReg(SrcReg, false, false, isKill);
1582 NewMIs.push_back(MIB);
1583}
1584
1585static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1586 unsigned StackAlign) {
1587 unsigned Opc = 0;
1588 if (RC == &X86::GR64RegClass) {
1589 Opc = X86::MOV64rm;
1590 } else if (RC == &X86::GR32RegClass) {
1591 Opc = X86::MOV32rm;
1592 } else if (RC == &X86::GR16RegClass) {
1593 Opc = X86::MOV16rm;
1594 } else if (RC == &X86::GR8RegClass) {
1595 Opc = X86::MOV8rm;
1596 } else if (RC == &X86::GR32_RegClass) {
1597 Opc = X86::MOV32_rm;
1598 } else if (RC == &X86::GR16_RegClass) {
1599 Opc = X86::MOV16_rm;
1600 } else if (RC == &X86::RFP80RegClass) {
1601 Opc = X86::LD_Fp80m;
1602 } else if (RC == &X86::RFP64RegClass) {
1603 Opc = X86::LD_Fp64m;
1604 } else if (RC == &X86::RFP32RegClass) {
1605 Opc = X86::LD_Fp32m;
1606 } else if (RC == &X86::FR32RegClass) {
1607 Opc = X86::MOVSSrm;
1608 } else if (RC == &X86::FR64RegClass) {
1609 Opc = X86::MOVSDrm;
1610 } else if (RC == &X86::VR128RegClass) {
1611 // FIXME: Use movaps once we are capable of selectively
1612 // aligning functions that spill SSE registers on 16-byte boundaries.
1613 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1614 } else if (RC == &X86::VR64RegClass) {
1615 Opc = X86::MMX_MOVQ64rm;
1616 } else {
1617 assert(0 && "Unknown regclass");
1618 abort();
1619 }
1620
1621 return Opc;
1622}
1623
1624void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1625 MachineBasicBlock::iterator MI,
1626 unsigned DestReg, int FrameIdx,
1627 const TargetRegisterClass *RC) const{
1628 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1629 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1630}
1631
1632void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1633 SmallVectorImpl<MachineOperand> &Addr,
1634 const TargetRegisterClass *RC,
1635 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1636 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1637 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1638 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1639 MIB = X86InstrAddOperand(MIB, Addr[i]);
1640 NewMIs.push_back(MIB);
1641}
1642
Owen Andersond94b6a12008-01-04 23:57:37 +00001643bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1644 MachineBasicBlock::iterator MI,
1645 const std::vector<CalleeSavedInfo> &CSI) const {
1646 if (CSI.empty())
1647 return false;
1648
1649 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1650 unsigned SlotSize = is64Bit ? 8 : 4;
1651
1652 MachineFunction &MF = *MBB.getParent();
1653 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1654 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1655
1656 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1657 for (unsigned i = CSI.size(); i != 0; --i) {
1658 unsigned Reg = CSI[i-1].getReg();
1659 // Add the callee-saved register as live-in. It's killed at the spill.
1660 MBB.addLiveIn(Reg);
1661 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1662 }
1663 return true;
1664}
1665
1666bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1667 MachineBasicBlock::iterator MI,
1668 const std::vector<CalleeSavedInfo> &CSI) const {
1669 if (CSI.empty())
1670 return false;
1671
1672 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1673
1674 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1675 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1676 unsigned Reg = CSI[i].getReg();
1677 BuildMI(MBB, MI, get(Opc), Reg);
1678 }
1679 return true;
1680}
1681
Owen Anderson43dbe052008-01-07 01:35:02 +00001682static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1683 SmallVector<MachineOperand,4> &MOs,
1684 MachineInstr *MI, const TargetInstrInfo &TII) {
1685 // Create the base instruction with the memory operand as the first part.
1686 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1687 MachineInstrBuilder MIB(NewMI);
1688 unsigned NumAddrOps = MOs.size();
1689 for (unsigned i = 0; i != NumAddrOps; ++i)
1690 MIB = X86InstrAddOperand(MIB, MOs[i]);
1691 if (NumAddrOps < 4) // FrameIndex only
1692 MIB.addImm(1).addReg(0).addImm(0);
1693
1694 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00001695 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00001696 for (unsigned i = 0; i != NumOps; ++i) {
1697 MachineOperand &MO = MI->getOperand(i+2);
1698 MIB = X86InstrAddOperand(MIB, MO);
1699 }
1700 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1701 MachineOperand &MO = MI->getOperand(i);
1702 MIB = X86InstrAddOperand(MIB, MO);
1703 }
1704 return MIB;
1705}
1706
1707static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1708 SmallVector<MachineOperand,4> &MOs,
1709 MachineInstr *MI, const TargetInstrInfo &TII) {
1710 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1711 MachineInstrBuilder MIB(NewMI);
1712
1713 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1714 MachineOperand &MO = MI->getOperand(i);
1715 if (i == OpNo) {
1716 assert(MO.isRegister() && "Expected to fold into reg operand!");
1717 unsigned NumAddrOps = MOs.size();
1718 for (unsigned i = 0; i != NumAddrOps; ++i)
1719 MIB = X86InstrAddOperand(MIB, MOs[i]);
1720 if (NumAddrOps < 4) // FrameIndex only
1721 MIB.addImm(1).addReg(0).addImm(0);
1722 } else {
1723 MIB = X86InstrAddOperand(MIB, MO);
1724 }
1725 }
1726 return MIB;
1727}
1728
1729static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1730 SmallVector<MachineOperand,4> &MOs,
1731 MachineInstr *MI) {
1732 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1733
1734 unsigned NumAddrOps = MOs.size();
1735 for (unsigned i = 0; i != NumAddrOps; ++i)
1736 MIB = X86InstrAddOperand(MIB, MOs[i]);
1737 if (NumAddrOps < 4) // FrameIndex only
1738 MIB.addImm(1).addReg(0).addImm(0);
1739 return MIB.addImm(0);
1740}
1741
1742MachineInstr*
1743X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng5fd79d02008-02-08 21:20:40 +00001744 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001745 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1746 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00001747 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001748 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001749 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001750
1751 MachineInstr *NewMI = NULL;
1752 // Folding a memory location into the two-address part of a two-address
1753 // instruction is different than folding it other places. It requires
1754 // replacing the *two* registers with the memory location.
1755 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1756 MI->getOperand(0).isRegister() &&
1757 MI->getOperand(1).isRegister() &&
1758 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1759 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1760 isTwoAddrFold = true;
1761 } else if (i == 0) { // If operand 0
1762 if (MI->getOpcode() == X86::MOV16r0)
1763 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1764 else if (MI->getOpcode() == X86::MOV32r0)
1765 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1766 else if (MI->getOpcode() == X86::MOV64r0)
1767 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1768 else if (MI->getOpcode() == X86::MOV8r0)
1769 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1770 if (NewMI) {
1771 NewMI->copyKillDeadInfo(MI);
1772 return NewMI;
1773 }
1774
1775 OpcodeTablePtr = &RegOp2MemOpTable0;
1776 } else if (i == 1) {
1777 OpcodeTablePtr = &RegOp2MemOpTable1;
1778 } else if (i == 2) {
1779 OpcodeTablePtr = &RegOp2MemOpTable2;
1780 }
1781
1782 // If table selected...
1783 if (OpcodeTablePtr) {
1784 // Find the Opcode to fuse
1785 DenseMap<unsigned*, unsigned>::iterator I =
1786 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1787 if (I != OpcodeTablePtr->end()) {
1788 if (isTwoAddrFold)
1789 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1790 else
1791 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1792 NewMI->copyKillDeadInfo(MI);
1793 return NewMI;
1794 }
1795 }
1796
1797 // No fusion
1798 if (PrintFailedFusing)
Chris Lattner269f0592008-01-09 00:37:18 +00001799 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00001800 return NULL;
1801}
1802
1803
Evan Cheng5fd79d02008-02-08 21:20:40 +00001804MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1805 MachineInstr *MI,
Owen Anderson43dbe052008-01-07 01:35:02 +00001806 SmallVectorImpl<unsigned> &Ops,
1807 int FrameIndex) const {
1808 // Check switch flag
1809 if (NoFusing) return NULL;
1810
Evan Cheng5fd79d02008-02-08 21:20:40 +00001811 const MachineFrameInfo *MFI = MF.getFrameInfo();
1812 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1813 // FIXME: Move alignment requirement into tables?
1814 if (Alignment < 16) {
1815 switch (MI->getOpcode()) {
1816 default: break;
1817 // Not always safe to fold movsd into these instructions since their load
1818 // folding variants expects the address to be 16 byte aligned.
1819 case X86::FsANDNPDrr:
1820 case X86::FsANDNPSrr:
1821 case X86::FsANDPDrr:
1822 case X86::FsANDPSrr:
1823 case X86::FsORPDrr:
1824 case X86::FsORPSrr:
1825 case X86::FsXORPDrr:
1826 case X86::FsXORPSrr:
1827 return NULL;
1828 }
1829 }
1830
Owen Anderson43dbe052008-01-07 01:35:02 +00001831 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1832 unsigned NewOpc = 0;
1833 switch (MI->getOpcode()) {
1834 default: return NULL;
1835 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1836 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1837 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1838 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1839 }
1840 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001841 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00001842 MI->getOperand(1).ChangeToImmediate(0);
1843 } else if (Ops.size() != 1)
1844 return NULL;
1845
1846 SmallVector<MachineOperand,4> MOs;
1847 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1848 return foldMemoryOperand(MI, Ops[0], MOs);
1849}
1850
Evan Cheng5fd79d02008-02-08 21:20:40 +00001851MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1852 MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001853 SmallVectorImpl<unsigned> &Ops,
1854 MachineInstr *LoadMI) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001855 // Check switch flag
1856 if (NoFusing) return NULL;
1857
Evan Cheng5fd79d02008-02-08 21:20:40 +00001858 unsigned Alignment = 0;
1859 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
1860 const MemOperand &MRO = LoadMI->getMemOperand(i);
1861 unsigned Align = MRO.getAlignment();
1862 if (Align > Alignment)
1863 Alignment = Align;
1864 }
1865
1866 // FIXME: Move alignment requirement into tables?
1867 if (Alignment < 16) {
1868 switch (MI->getOpcode()) {
1869 default: break;
1870 // Not always safe to fold movsd into these instructions since their load
1871 // folding variants expects the address to be 16 byte aligned.
1872 case X86::FsANDNPDrr:
1873 case X86::FsANDNPSrr:
1874 case X86::FsANDPDrr:
1875 case X86::FsANDPSrr:
1876 case X86::FsORPDrr:
1877 case X86::FsORPSrr:
1878 case X86::FsXORPDrr:
1879 case X86::FsXORPSrr:
1880 return NULL;
1881 }
1882 }
1883
Owen Anderson43dbe052008-01-07 01:35:02 +00001884 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1885 unsigned NewOpc = 0;
1886 switch (MI->getOpcode()) {
1887 default: return NULL;
1888 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1889 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1890 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1891 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1892 }
1893 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001894 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00001895 MI->getOperand(1).ChangeToImmediate(0);
1896 } else if (Ops.size() != 1)
1897 return NULL;
1898
1899 SmallVector<MachineOperand,4> MOs;
Chris Lattner749c6f62008-01-07 07:27:27 +00001900 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001901 for (unsigned i = NumOps - 4; i != NumOps; ++i)
1902 MOs.push_back(LoadMI->getOperand(i));
1903 return foldMemoryOperand(MI, Ops[0], MOs);
1904}
1905
1906
1907bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001908 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001909 // Check switch flag
1910 if (NoFusing) return 0;
1911
1912 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1913 switch (MI->getOpcode()) {
1914 default: return false;
1915 case X86::TEST8rr:
1916 case X86::TEST16rr:
1917 case X86::TEST32rr:
1918 case X86::TEST64rr:
1919 return true;
1920 }
1921 }
1922
1923 if (Ops.size() != 1)
1924 return false;
1925
1926 unsigned OpNum = Ops[0];
1927 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00001928 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001929 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001930 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001931
1932 // Folding a memory location into the two-address part of a two-address
1933 // instruction is different than folding it other places. It requires
1934 // replacing the *two* registers with the memory location.
1935 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1936 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
1937 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1938 } else if (OpNum == 0) { // If operand 0
1939 switch (Opc) {
1940 case X86::MOV16r0:
1941 case X86::MOV32r0:
1942 case X86::MOV64r0:
1943 case X86::MOV8r0:
1944 return true;
1945 default: break;
1946 }
1947 OpcodeTablePtr = &RegOp2MemOpTable0;
1948 } else if (OpNum == 1) {
1949 OpcodeTablePtr = &RegOp2MemOpTable1;
1950 } else if (OpNum == 2) {
1951 OpcodeTablePtr = &RegOp2MemOpTable2;
1952 }
1953
1954 if (OpcodeTablePtr) {
1955 // Find the Opcode to fuse
1956 DenseMap<unsigned*, unsigned>::iterator I =
1957 OpcodeTablePtr->find((unsigned*)Opc);
1958 if (I != OpcodeTablePtr->end())
1959 return true;
1960 }
1961 return false;
1962}
1963
1964bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
1965 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
1966 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1967 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1968 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
1969 if (I == MemOp2RegOpTable.end())
1970 return false;
1971 unsigned Opc = I->second.first;
1972 unsigned Index = I->second.second & 0xf;
1973 bool FoldedLoad = I->second.second & (1 << 4);
1974 bool FoldedStore = I->second.second & (1 << 5);
1975 if (UnfoldLoad && !FoldedLoad)
1976 return false;
1977 UnfoldLoad &= FoldedLoad;
1978 if (UnfoldStore && !FoldedStore)
1979 return false;
1980 UnfoldStore &= FoldedStore;
1981
Chris Lattner749c6f62008-01-07 07:27:27 +00001982 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00001983 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00001984 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00001985 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
1986 SmallVector<MachineOperand,4> AddrOps;
1987 SmallVector<MachineOperand,2> BeforeOps;
1988 SmallVector<MachineOperand,2> AfterOps;
1989 SmallVector<MachineOperand,4> ImpOps;
1990 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1991 MachineOperand &Op = MI->getOperand(i);
1992 if (i >= Index && i < Index+4)
1993 AddrOps.push_back(Op);
1994 else if (Op.isRegister() && Op.isImplicit())
1995 ImpOps.push_back(Op);
1996 else if (i < Index)
1997 BeforeOps.push_back(Op);
1998 else if (i > Index)
1999 AfterOps.push_back(Op);
2000 }
2001
2002 // Emit the load instruction.
2003 if (UnfoldLoad) {
2004 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2005 if (UnfoldStore) {
2006 // Address operands cannot be marked isKill.
2007 for (unsigned i = 1; i != 5; ++i) {
2008 MachineOperand &MO = NewMIs[0]->getOperand(i);
2009 if (MO.isRegister())
2010 MO.setIsKill(false);
2011 }
2012 }
2013 }
2014
2015 // Emit the data processing instruction.
2016 MachineInstr *DataMI = new MachineInstr(TID, true);
2017 MachineInstrBuilder MIB(DataMI);
2018
2019 if (FoldedStore)
2020 MIB.addReg(Reg, true);
2021 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2022 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2023 if (FoldedLoad)
2024 MIB.addReg(Reg);
2025 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2026 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2027 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2028 MachineOperand &MO = ImpOps[i];
2029 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2030 }
2031 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2032 unsigned NewOpc = 0;
2033 switch (DataMI->getOpcode()) {
2034 default: break;
2035 case X86::CMP64ri32:
2036 case X86::CMP32ri:
2037 case X86::CMP16ri:
2038 case X86::CMP8ri: {
2039 MachineOperand &MO0 = DataMI->getOperand(0);
2040 MachineOperand &MO1 = DataMI->getOperand(1);
2041 if (MO1.getImm() == 0) {
2042 switch (DataMI->getOpcode()) {
2043 default: break;
2044 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2045 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2046 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2047 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2048 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00002049 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002050 MO1.ChangeToRegister(MO0.getReg(), false);
2051 }
2052 }
2053 }
2054 NewMIs.push_back(DataMI);
2055
2056 // Emit the store instruction.
2057 if (UnfoldStore) {
2058 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002059 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002060 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2061 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2062 }
2063
2064 return true;
2065}
2066
2067bool
2068X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2069 SmallVectorImpl<SDNode*> &NewNodes) const {
2070 if (!N->isTargetOpcode())
2071 return false;
2072
2073 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2074 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2075 if (I == MemOp2RegOpTable.end())
2076 return false;
2077 unsigned Opc = I->second.first;
2078 unsigned Index = I->second.second & 0xf;
2079 bool FoldedLoad = I->second.second & (1 << 4);
2080 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner749c6f62008-01-07 07:27:27 +00002081 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002082 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002083 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002084 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2085 std::vector<SDOperand> AddrOps;
2086 std::vector<SDOperand> BeforeOps;
2087 std::vector<SDOperand> AfterOps;
2088 unsigned NumOps = N->getNumOperands();
2089 for (unsigned i = 0; i != NumOps-1; ++i) {
2090 SDOperand Op = N->getOperand(i);
2091 if (i >= Index && i < Index+4)
2092 AddrOps.push_back(Op);
2093 else if (i < Index)
2094 BeforeOps.push_back(Op);
2095 else if (i > Index)
2096 AfterOps.push_back(Op);
2097 }
2098 SDOperand Chain = N->getOperand(NumOps-1);
2099 AddrOps.push_back(Chain);
2100
2101 // Emit the load instruction.
2102 SDNode *Load = 0;
2103 if (FoldedLoad) {
2104 MVT::ValueType VT = *RC->vt_begin();
2105 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2106 MVT::Other, &AddrOps[0], AddrOps.size());
2107 NewNodes.push_back(Load);
2108 }
2109
2110 // Emit the data processing instruction.
2111 std::vector<MVT::ValueType> VTs;
2112 const TargetRegisterClass *DstRC = 0;
Chris Lattner349c4952008-01-07 03:13:06 +00002113 if (TID.getNumDefs() > 0) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002114 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002115 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002116 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2117 VTs.push_back(*DstRC->vt_begin());
2118 }
2119 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2120 MVT::ValueType VT = N->getValueType(i);
Chris Lattner349c4952008-01-07 03:13:06 +00002121 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00002122 VTs.push_back(VT);
2123 }
2124 if (Load)
2125 BeforeOps.push_back(SDOperand(Load, 0));
2126 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2127 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2128 NewNodes.push_back(NewNode);
2129
2130 // Emit the store instruction.
2131 if (FoldedStore) {
2132 AddrOps.pop_back();
2133 AddrOps.push_back(SDOperand(NewNode, 0));
2134 AddrOps.push_back(Chain);
2135 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2136 MVT::Other, &AddrOps[0], AddrOps.size());
2137 NewNodes.push_back(Store);
2138 }
2139
2140 return true;
2141}
2142
2143unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2144 bool UnfoldLoad, bool UnfoldStore) const {
2145 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2146 MemOp2RegOpTable.find((unsigned*)Opc);
2147 if (I == MemOp2RegOpTable.end())
2148 return 0;
2149 bool FoldedLoad = I->second.second & (1 << 4);
2150 bool FoldedStore = I->second.second & (1 << 5);
2151 if (UnfoldLoad && !FoldedLoad)
2152 return 0;
2153 if (UnfoldStore && !FoldedStore)
2154 return 0;
2155 return I->second.first;
2156}
2157
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002158bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2159 if (MBB.empty()) return false;
2160
2161 switch (MBB.back().getOpcode()) {
Arnold Schwaighoferc85e1712007-10-11 19:40:01 +00002162 case X86::TCRETURNri:
2163 case X86::TCRETURNdi:
Evan Cheng126f17a2007-05-21 18:44:17 +00002164 case X86::RET: // Return.
2165 case X86::RETI:
2166 case X86::TAILJMPd:
2167 case X86::TAILJMPr:
2168 case X86::TAILJMPm:
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002169 case X86::JMP: // Uncond branch.
2170 case X86::JMP32r: // Indirect branch.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002171 case X86::JMP64r: // Indirect branch (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002172 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002173 case X86::JMP64m: // Indirect branch through mem (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002174 return true;
2175 default: return false;
2176 }
2177}
2178
Chris Lattner7fbe9722006-10-20 17:42:20 +00002179bool X86InstrInfo::
2180ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00002181 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2182 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2183 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002184}
2185
Evan Cheng25ab6902006-09-08 06:48:29 +00002186const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2187 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2188 if (Subtarget->is64Bit())
2189 return &X86::GR64RegClass;
2190 else
2191 return &X86::GR32RegClass;
2192}