blob: a2d6f08297344f39871d08e08d3ad26dcd8dc01d [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
Dale Johannesen5981f6b2009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033#include "llvm/Support/Debug.h"
Chris Lattner3bbf2a72009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattner8a6411c2009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnera0d64b92009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000040#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041using namespace llvm;
42
43STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
47
48namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000049 struct ValueEntry {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53 };
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
56 }
57}
58
Devang Patele93afd52008-11-21 21:00:20 +000059#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060/// PrintOps - Print out the expression identified in the Ops list.
61///
62static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
63 Module *M = I->getParent()->getParent()->getParent();
Chris Lattnerb0659d42009-08-23 04:52:46 +000064 errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000065 << *Ops[0].Op->getType() << '\t';
Chris Lattner51216ad2008-08-19 04:45:19 +000066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000067 errs() << "[ ";
68 WriteAsOperand(errs(), Ops[i].Op, false, M);
69 errs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner51216ad2008-08-19 04:45:19 +000070 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071}
Devang Patel4354f5c2008-11-21 20:00:59 +000072#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073
Dan Gohman089efff2008-05-13 00:00:25 +000074namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000075 class Reassociate : public FunctionPass {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner3bbf2a72009-03-31 22:13:29 +000077 std::map<AssertingVH<>, unsigned> ValueRankMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 bool MadeChange;
79 public:
80 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000081 Reassociate() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082
83 bool runOnFunction(Function &F);
84
85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86 AU.setPreservesCFG();
87 }
88 private:
89 void BuildRankMap(Function &F);
90 unsigned getRank(Value *V);
91 void ReassociateExpression(BinaryOperator *I);
92 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
93 unsigned Idx = 0);
94 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
Chris Lattnere3b19f32009-12-31 07:59:34 +000095 Value *OptimizeAdd(std::vector<ValueEntry> &Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000096 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
97 void LinearizeExpr(BinaryOperator *I);
98 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
99 void ReassociateBB(BasicBlock *BB);
100
101 void RemoveDeadBinaryOp(Value *V);
102 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103}
104
Dan Gohman089efff2008-05-13 00:00:25 +0000105char Reassociate::ID = 0;
106static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
107
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108// Public interface to the Reassociate pass
109FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
110
111void Reassociate::RemoveDeadBinaryOp(Value *V) {
112 Instruction *Op = dyn_cast<Instruction>(V);
113 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
114 return;
115
116 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
117 RemoveDeadBinaryOp(LHS);
118 RemoveDeadBinaryOp(RHS);
119}
120
121
122static bool isUnmovableInstruction(Instruction *I) {
123 if (I->getOpcode() == Instruction::PHI ||
124 I->getOpcode() == Instruction::Alloca ||
125 I->getOpcode() == Instruction::Load ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen5981f6b2009-03-06 01:41:59 +0000127 (I->getOpcode() == Instruction::Call &&
128 !isa<DbgInfoIntrinsic>(I)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000129 I->getOpcode() == Instruction::UDiv ||
130 I->getOpcode() == Instruction::SDiv ||
131 I->getOpcode() == Instruction::FDiv ||
132 I->getOpcode() == Instruction::URem ||
133 I->getOpcode() == Instruction::SRem ||
134 I->getOpcode() == Instruction::FRem)
135 return true;
136 return false;
137}
138
139void Reassociate::BuildRankMap(Function &F) {
140 unsigned i = 2;
141
142 // Assign distinct ranks to function arguments
143 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000144 ValueRankMap[&*I] = ++i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145
146 ReversePostOrderTraversal<Function*> RPOT(&F);
147 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
148 E = RPOT.end(); I != E; ++I) {
149 BasicBlock *BB = *I;
150 unsigned BBRank = RankMap[BB] = ++i << 16;
151
152 // Walk the basic block, adding precomputed ranks for any instructions that
153 // we cannot move. This ensures that the ranks for these instructions are
154 // all different in the block.
155 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
156 if (isUnmovableInstruction(I))
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000157 ValueRankMap[&*I] = ++BBRank;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000158 }
159}
160
161unsigned Reassociate::getRank(Value *V) {
162 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
163
164 Instruction *I = dyn_cast<Instruction>(V);
165 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
166
167 unsigned &CachedRank = ValueRankMap[I];
168 if (CachedRank) return CachedRank; // Rank already known?
169
170 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
171 // we can reassociate expressions for code motion! Since we do not recurse
172 // for PHI nodes, we cannot have infinite recursion here, because there
173 // cannot be loops in the value graph that do not go through PHI nodes.
174 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
175 for (unsigned i = 0, e = I->getNumOperands();
176 i != e && Rank != MaxRank; ++i)
177 Rank = std::max(Rank, getRank(I->getOperand(i)));
178
179 // If this is a not or neg instruction, do not count it for rank. This
180 // assures us that X and ~X will have the same rank.
181 if (!I->getType()->isInteger() ||
Owen Anderson76f49252009-07-13 22:18:28 +0000182 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000183 ++Rank;
184
Chris Lattner8a6411c2009-08-23 04:37:46 +0000185 //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
186 // << Rank << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187
188 return CachedRank = Rank;
189}
190
191/// isReassociableOp - Return true if V is an instruction of the specified
192/// opcode and if it only has one use.
193static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
194 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
195 cast<Instruction>(V)->getOpcode() == Opcode)
196 return cast<BinaryOperator>(V);
197 return 0;
198}
199
200/// LowerNegateToMultiply - Replace 0-X with X*-1.
201///
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000202static Instruction *LowerNegateToMultiply(Instruction *Neg,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000203 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersonaac28372009-07-31 20:28:14 +0000204 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000205
Gabor Greifa645dd32008-05-16 19:29:10 +0000206 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000207 ValueRankMap.erase(Neg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 Res->takeName(Neg);
209 Neg->replaceAllUsesWith(Res);
210 Neg->eraseFromParent();
211 return Res;
212}
213
214// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
215// Note that if D is also part of the expression tree that we recurse to
216// linearize it as well. Besides that case, this does not recurse into A,B, or
217// C.
218void Reassociate::LinearizeExpr(BinaryOperator *I) {
219 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
220 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
221 assert(isReassociableOp(LHS, I->getOpcode()) &&
222 isReassociableOp(RHS, I->getOpcode()) &&
223 "Not an expression that needs linearization?");
224
Chris Lattner8a6411c2009-08-23 04:37:46 +0000225 DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000226
227 // Move the RHS instruction to live immediately before I, avoiding breaking
228 // dominator properties.
229 RHS->moveBefore(I);
230
231 // Move operands around to do the linearization.
232 I->setOperand(1, RHS->getOperand(0));
233 RHS->setOperand(0, LHS);
234 I->setOperand(0, RHS);
235
236 ++NumLinear;
237 MadeChange = true;
Chris Lattner8a6411c2009-08-23 04:37:46 +0000238 DEBUG(errs() << "Linearized: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239
240 // If D is part of this expression tree, tail recurse.
241 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
242 LinearizeExpr(I);
243}
244
245
246/// LinearizeExprTree - Given an associative binary expression tree, traverse
247/// all of the uses putting it into canonical form. This forces a left-linear
248/// form of the the expression (((a+b)+c)+d), and collects information about the
249/// rank of the non-tree operands.
250///
251/// NOTE: These intentionally destroys the expression tree operands (turning
252/// them into undef values) to reduce #uses of the values. This means that the
253/// caller MUST use something like RewriteExprTree to put the values back in.
254///
255void Reassociate::LinearizeExprTree(BinaryOperator *I,
256 std::vector<ValueEntry> &Ops) {
257 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
258 unsigned Opcode = I->getOpcode();
259
260 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
261 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
262 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
263
264 // If this is a multiply expression tree and it contains internal negations,
265 // transform them into multiplies by -1 so they can be reassociated.
266 if (I->getOpcode() == Instruction::Mul) {
Owen Anderson76f49252009-07-13 22:18:28 +0000267 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000268 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000269 LHSBO = isReassociableOp(LHS, Opcode);
270 }
Owen Anderson76f49252009-07-13 22:18:28 +0000271 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000272 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 RHSBO = isReassociableOp(RHS, Opcode);
274 }
275 }
276
277 if (!LHSBO) {
278 if (!RHSBO) {
279 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
280 // such, just remember these operands and their rank.
281 Ops.push_back(ValueEntry(getRank(LHS), LHS));
282 Ops.push_back(ValueEntry(getRank(RHS), RHS));
283
284 // Clear the leaves out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000285 I->setOperand(0, UndefValue::get(I->getType()));
286 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000287 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000288 }
Chris Lattnere3b19f32009-12-31 07:59:34 +0000289
290 // Turn X+(Y+Z) -> (Y+Z)+X
291 std::swap(LHSBO, RHSBO);
292 std::swap(LHS, RHS);
293 bool Success = !I->swapOperands();
294 assert(Success && "swapOperands failed");
295 Success = false;
296 MadeChange = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000297 } else if (RHSBO) {
298 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
299 // part of the expression tree.
300 LinearizeExpr(I);
301 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
302 RHS = I->getOperand(1);
303 RHSBO = 0;
304 }
305
306 // Okay, now we know that the LHS is a nested expression and that the RHS is
307 // not. Perform reassociation.
308 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
309
310 // Move LHS right before I to make sure that the tree expression dominates all
311 // values.
312 LHSBO->moveBefore(I);
313
314 // Linearize the expression tree on the LHS.
315 LinearizeExprTree(LHSBO, Ops);
316
317 // Remember the RHS operand and its rank.
318 Ops.push_back(ValueEntry(getRank(RHS), RHS));
319
320 // Clear the RHS leaf out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000321 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000322}
323
324// RewriteExprTree - Now that the operands for this expression tree are
325// linearized and optimized, emit them in-order. This function is written to be
326// tail recursive.
327void Reassociate::RewriteExprTree(BinaryOperator *I,
328 std::vector<ValueEntry> &Ops,
329 unsigned i) {
330 if (i+2 == Ops.size()) {
331 if (I->getOperand(0) != Ops[i].Op ||
332 I->getOperand(1) != Ops[i+1].Op) {
333 Value *OldLHS = I->getOperand(0);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000334 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 I->setOperand(0, Ops[i].Op);
336 I->setOperand(1, Ops[i+1].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000337 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338 MadeChange = true;
339 ++NumChanged;
340
341 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
342 // delete the extra, now dead, nodes.
343 RemoveDeadBinaryOp(OldLHS);
344 }
345 return;
346 }
347 assert(i+2 < Ops.size() && "Ops index out of range!");
348
349 if (I->getOperand(1) != Ops[i].Op) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000350 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351 I->setOperand(1, Ops[i].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000352 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000353 MadeChange = true;
354 ++NumChanged;
355 }
356
357 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
358 assert(LHS->getOpcode() == I->getOpcode() &&
359 "Improper expression tree!");
360
361 // Compactify the tree instructions together with each other to guarantee
362 // that the expression tree is dominated by all of Ops.
363 LHS->moveBefore(I);
364 RewriteExprTree(LHS, Ops, i+1);
365}
366
367
368
369// NegateValue - Insert instructions before the instruction pointed to by BI,
370// that computes the negative version of the value specified. The negative
371// version of the value is returned, and BI is left pointing at the instruction
372// that should be processed next by the reassociation pass.
373//
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000374static Value *NegateValue(Value *V, Instruction *BI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000375 // We are trying to expose opportunity for reassociation. One of the things
376 // that we want to do to achieve this is to push a negation as deep into an
377 // expression chain as possible, to expose the add instructions. In practice,
378 // this means that we turn this:
379 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
380 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
381 // the constants. We assume that instcombine will clean up the mess later if
382 // we introduce tons of unnecessary negation instructions...
383 //
384 if (Instruction *I = dyn_cast<Instruction>(V))
385 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
386 // Push the negates through the add.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000387 I->setOperand(0, NegateValue(I->getOperand(0), BI));
388 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000389
390 // We must move the add instruction here, because the neg instructions do
391 // not dominate the old add instruction in general. By moving it, we are
392 // assured that the neg instructions we just inserted dominate the
393 // instruction we are about to insert after them.
394 //
395 I->moveBefore(BI);
396 I->setName(I->getName()+".neg");
397 return I;
398 }
399
400 // Insert a 'neg' instruction that subtracts the value from zero to get the
401 // negation.
402 //
Dan Gohmancdff2122009-08-12 16:23:25 +0000403 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404}
405
Chris Lattner6cf17172008-02-17 20:44:51 +0000406/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
407/// X-Y into (X + -Y).
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000408static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000409 // If this is a negation, we can't split it up!
Owen Anderson76f49252009-07-13 22:18:28 +0000410 if (BinaryOperator::isNeg(Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000411 return false;
412
413 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner4846b312008-02-17 20:51:26 +0000414 // subtract or if this is only used by one.
415 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
416 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000417 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000418 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner720f2ba2008-02-17 20:54:40 +0000419 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000420 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000421 if (Sub->hasOneUse() &&
422 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
423 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner6cf17172008-02-17 20:44:51 +0000424 return true;
425
426 return false;
427}
428
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
430/// only used by an add, transform this into (X+(0-Y)) to promote better
431/// reassociation.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000432static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000433 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 // Convert a subtract into an add and a neg instruction... so that sub
435 // instructions can be commuted with other add instructions...
436 //
437 // Calculate the negative value of Operand 1 of the sub instruction...
438 // and set it as the RHS of the add instruction we just made...
439 //
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000440 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441 Instruction *New =
Gabor Greifa645dd32008-05-16 19:29:10 +0000442 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000443 New->takeName(Sub);
444
445 // Everyone now refers to the add instruction.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000446 ValueRankMap.erase(Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 Sub->replaceAllUsesWith(New);
448 Sub->eraseFromParent();
449
Chris Lattner8a6411c2009-08-23 04:37:46 +0000450 DEBUG(errs() << "Negated: " << *New << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 return New;
452}
453
454/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
455/// by one, change this into a multiply by a constant to assist with further
456/// reassociation.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000457static Instruction *ConvertShiftToMul(Instruction *Shl,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000458 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000459 // If an operand of this shift is a reassociable multiply, or if the shift
460 // is used by a reassociable multiply or add, turn into a multiply.
461 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
462 (Shl->hasOneUse() &&
463 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
464 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneacb44d2009-07-24 23:12:02 +0000465 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnere3b19f32009-12-31 07:59:34 +0000466 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467
Chris Lattnere3b19f32009-12-31 07:59:34 +0000468 Instruction *Mul =
469 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000470 ValueRankMap.erase(Shl);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000471 Mul->takeName(Shl);
472 Shl->replaceAllUsesWith(Mul);
473 Shl->eraseFromParent();
474 return Mul;
475 }
476 return 0;
477}
478
479// Scan backwards and forwards among values with the same rank as element i to
480// see if X exists. If X does not exist, return i.
481static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
482 Value *X) {
483 unsigned XRank = Ops[i].Rank;
484 unsigned e = Ops.size();
485 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
486 if (Ops[j].Op == X)
487 return j;
488 // Scan backwards
489 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
490 if (Ops[j].Op == X)
491 return j;
492 return i;
493}
494
495/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
496/// and returning the result. Insert the tree before I.
Chris Lattner4f663d02009-12-31 07:48:51 +0000497static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000498 if (Ops.size() == 1) return Ops.back();
499
500 Value *V1 = Ops.back();
501 Ops.pop_back();
502 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greifa645dd32008-05-16 19:29:10 +0000503 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504}
505
506/// RemoveFactorFromExpression - If V is an expression tree that is a
507/// multiplication sequence, and if this sequence contains a multiply by Factor,
508/// remove Factor from the tree and return the new tree.
509Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
510 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
511 if (!BO) return 0;
512
513 std::vector<ValueEntry> Factors;
514 LinearizeExprTree(BO, Factors);
515
516 bool FoundFactor = false;
517 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
518 if (Factors[i].Op == Factor) {
519 FoundFactor = true;
520 Factors.erase(Factors.begin()+i);
521 break;
522 }
523 if (!FoundFactor) {
524 // Make sure to restore the operands to the expression tree.
525 RewriteExprTree(BO, Factors);
526 return 0;
527 }
528
529 if (Factors.size() == 1) return Factors[0].Op;
530
531 RewriteExprTree(BO, Factors);
532 return BO;
533}
534
535/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
536/// add its operands as factors, otherwise add V to the list of factors.
537static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner4f663d02009-12-31 07:48:51 +0000538 SmallVectorImpl<Value*> &Factors) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000539 BinaryOperator *BO;
540 if ((!V->hasOneUse() && !V->use_empty()) ||
541 !(BO = dyn_cast<BinaryOperator>(V)) ||
542 BO->getOpcode() != Instruction::Mul) {
543 Factors.push_back(V);
544 return;
545 }
546
547 // Otherwise, add the LHS and RHS to the list of factors.
548 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
549 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
550}
551
Chris Lattnere3b19f32009-12-31 07:59:34 +0000552/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
553/// instruction. This optimizes based on identities. If it can be reduced to
554/// a single Value, it is returned, otherwise the Ops list is mutated as
555/// necessary.
556static Value *OptimizeAndOrXor(unsigned Opcode, std::vector<ValueEntry> &Ops) {
557 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
558 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
559 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
560 // First, check for X and ~X in the operand list.
561 assert(i < Ops.size());
562 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
563 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
564 unsigned FoundX = FindInOperandList(Ops, i, X);
565 if (FoundX != i) {
566 if (Opcode == Instruction::And) { // ...&X&~X = 0
567 ++NumAnnihil;
568 return Constant::getNullValue(X->getType());
569 }
570
571 if (Opcode == Instruction::Or) { // ...|X|~X = -1
572 ++NumAnnihil;
573 return Constant::getAllOnesValue(X->getType());
574 }
575 }
576 }
577
578 // Next, check for duplicate pairs of values, which we assume are next to
579 // each other, due to our sorting criteria.
580 assert(i < Ops.size());
581 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
582 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
583 // Drop duplicate values.
584 Ops.erase(Ops.begin()+i);
585 --i; --e;
586 ++NumAnnihil;
587 } else {
588 assert(Opcode == Instruction::Xor);
589 if (e == 2) {
590 ++NumAnnihil;
591 return Constant::getNullValue(Ops[0].Op->getType());
592 }
593 // ... X^X -> ...
594 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
595 i -= 1; e -= 2;
596 ++NumAnnihil;
597 }
598 }
599 }
600 return 0;
601}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000602
Chris Lattnere3b19f32009-12-31 07:59:34 +0000603/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
604/// optimizes based on identities. If it can be reduced to a single Value, it
605/// is returned, otherwise the Ops list is mutated as necessary.
606Value *Reassociate::OptimizeAdd(std::vector<ValueEntry> &Ops) {
607 // Scan the operand lists looking for X and -X pairs. If we find any, we
608 // can simplify the expression. X+-X == 0.
609 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
610 assert(i < Ops.size());
611 // Check for X and -X in the operand list.
612 if (!BinaryOperator::isNeg(Ops[i].Op))
613 continue;
614
615 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
616 unsigned FoundX = FindInOperandList(Ops, i, X);
617 if (FoundX == i)
618 continue;
619
620 // Remove X and -X from the operand list.
621 if (Ops.size() == 2) {
622 ++NumAnnihil;
623 return Constant::getNullValue(X->getType());
624 }
625
626 Ops.erase(Ops.begin()+i);
627 if (i < FoundX)
628 --FoundX;
629 else
630 --i; // Need to back up an extra one.
631 Ops.erase(Ops.begin()+FoundX);
632 ++NumAnnihil;
633 --i; // Revisit element.
634 e -= 2; // Removed two elements.
635 }
636 return 0;
637}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000638
639Value *Reassociate::OptimizeExpression(BinaryOperator *I,
640 std::vector<ValueEntry> &Ops) {
641 // Now that we have the linearized expression tree, try to optimize it.
642 // Start by folding any constants that we found.
643 bool IterateOptimization = false;
644 if (Ops.size() == 1) return Ops[0].Op;
645
646 unsigned Opcode = I->getOpcode();
647
648 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
649 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
650 Ops.pop_back();
Owen Anderson02b48c32009-07-29 18:55:55 +0000651 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000652 return OptimizeExpression(I, Ops);
653 }
654
655 // Check for destructive annihilation due to a constant being used.
656 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
657 switch (Opcode) {
658 default: break;
659 case Instruction::And:
660 if (CstVal->isZero()) { // ... & 0 -> 0
661 ++NumAnnihil;
662 return CstVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000663 }
Chris Lattner4f663d02009-12-31 07:48:51 +0000664 if (CstVal->isAllOnesValue()) // ... & -1 -> ...
665 Ops.pop_back();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000666 break;
667 case Instruction::Mul:
668 if (CstVal->isZero()) { // ... * 0 -> 0
669 ++NumAnnihil;
670 return CstVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000671 }
Chris Lattner4f663d02009-12-31 07:48:51 +0000672
673 if (cast<ConstantInt>(CstVal)->isOne())
674 Ops.pop_back(); // ... * 1 -> ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000675 break;
676 case Instruction::Or:
677 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
678 ++NumAnnihil;
679 return CstVal;
680 }
681 // FALLTHROUGH!
682 case Instruction::Add:
683 case Instruction::Xor:
684 if (CstVal->isZero()) // ... [|^+] 0 -> ...
685 Ops.pop_back();
686 break;
687 }
688 if (Ops.size() == 1) return Ops[0].Op;
689
Chris Lattnera0d64b92009-12-31 07:33:14 +0000690 // Handle destructive annihilation due to identities between elements in the
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000691 // argument list here.
692 switch (Opcode) {
693 default: break;
694 case Instruction::And:
695 case Instruction::Or:
Chris Lattnere3b19f32009-12-31 07:59:34 +0000696 case Instruction::Xor: {
697 unsigned NumOps = Ops.size();
698 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
699 return Result;
700 IterateOptimization |= Ops.size() != NumOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701 break;
Chris Lattnere3b19f32009-12-31 07:59:34 +0000702 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000703
Chris Lattnere3b19f32009-12-31 07:59:34 +0000704 case Instruction::Add: {
705 unsigned NumOps = Ops.size();
706 if (Value *Result = OptimizeAdd(Ops))
707 return Result;
708 IterateOptimization |= Ops.size() != NumOps;
709 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710
711 // Scan the operand list, checking to see if there are any common factors
712 // between operands. Consider something like A*A+A*B*C+D. We would like to
713 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
714 // To efficiently find this, we count the number of times a factor occurs
715 // for any ADD operands that are MULs.
Chris Lattnera0d64b92009-12-31 07:33:14 +0000716 DenseMap<Value*, unsigned> FactorOccurrences;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717 unsigned MaxOcc = 0;
718 Value *MaxOccVal = 0;
719 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner4f663d02009-12-31 07:48:51 +0000720 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
721 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
722 continue;
723
724 // Compute all of the factors of this added value.
725 SmallVector<Value*, 8> Factors;
726 FindSingleUseMultiplyFactors(BOp, Factors);
727 assert(Factors.size() > 1 && "Bad linearize!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000728
Chris Lattner4f663d02009-12-31 07:48:51 +0000729 // Add one to FactorOccurrences for each unique factor in this op.
730 if (Factors.size() == 2) {
731 unsigned Occ = ++FactorOccurrences[Factors[0]];
732 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
733 if (Factors[0] != Factors[1]) { // Don't double count A*A.
734 Occ = ++FactorOccurrences[Factors[1]];
735 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
736 }
737 } else {
738 SmallPtrSet<Value*, 4> Duplicates;
739 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
740 if (!Duplicates.insert(Factors[i])) continue;
741
742 unsigned Occ = ++FactorOccurrences[Factors[i]];
743 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 }
745 }
746 }
747
748 // If any factor occurred more than one time, we can pull it out.
749 if (MaxOcc > 1) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000750 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000751
752 // Create a new instruction that uses the MaxOccVal twice. If we don't do
753 // this, we could otherwise run into situations where removing a factor
754 // from an expression will drop a use of maxocc, and this can cause
755 // RemoveFactorFromExpression on successive values to behave differently.
Gabor Greifa645dd32008-05-16 19:29:10 +0000756 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Chris Lattner4f663d02009-12-31 07:48:51 +0000757 SmallVector<Value*, 4> NewMulOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
759 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
760 NewMulOps.push_back(V);
761 Ops.erase(Ops.begin()+i);
762 --i; --e;
763 }
764 }
765
766 // No need for extra uses anymore.
767 delete DummyInst;
768
769 unsigned NumAddedValues = NewMulOps.size();
770 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Gabor Greifa645dd32008-05-16 19:29:10 +0000771 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000772
773 // Now that we have inserted V and its sole use, optimize it. This allows
774 // us to handle cases that require multiple factoring steps, such as this:
775 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
776 if (NumAddedValues > 1)
777 ReassociateExpression(cast<BinaryOperator>(V));
778
779 ++NumFactor;
780
Dan Gohman301f4052008-01-29 13:02:09 +0000781 if (Ops.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000782 return V2;
783
784 // Add the new value to the list of things being added.
785 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
786
787 // Rewrite the tree so that there is now a use of V.
788 RewriteExprTree(I, Ops);
789 return OptimizeExpression(I, Ops);
790 }
791 break;
792 //case Instruction::Mul:
793 }
794
795 if (IterateOptimization)
796 return OptimizeExpression(I, Ops);
797 return 0;
798}
799
800
801/// ReassociateBB - Inspect all of the instructions in this basic block,
802/// reassociating them as we go.
803void Reassociate::ReassociateBB(BasicBlock *BB) {
804 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
805 Instruction *BI = BBI++;
806 if (BI->getOpcode() == Instruction::Shl &&
807 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000808 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000809 MadeChange = true;
810 BI = NI;
811 }
812
813 // Reject cases where it is pointless to do this.
814 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
815 isa<VectorType>(BI->getType()))
816 continue; // Floating point ops are not associative.
817
818 // If this is a subtract instruction which is not already in negate form,
819 // see if we can convert it to X+-Y.
820 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000821 if (ShouldBreakUpSubtract(BI)) {
822 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattnerb0cd25e2008-02-18 02:18:25 +0000823 MadeChange = true;
Owen Anderson76f49252009-07-13 22:18:28 +0000824 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000825 // Otherwise, this is a negation. See if the operand is a multiply tree
826 // and if this is not an inner node of a multiply tree.
827 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
828 (!BI->hasOneUse() ||
829 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000830 BI = LowerNegateToMultiply(BI, ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000831 MadeChange = true;
832 }
833 }
834 }
835
836 // If this instruction is a commutative binary operator, process it.
837 if (!BI->isAssociative()) continue;
838 BinaryOperator *I = cast<BinaryOperator>(BI);
839
840 // If this is an interior node of a reassociable tree, ignore it until we
841 // get to the root of the tree, to avoid N^2 analysis.
842 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
843 continue;
844
845 // If this is an add tree that is used by a sub instruction, ignore it
846 // until we process the subtract.
847 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
848 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
849 continue;
850
851 ReassociateExpression(I);
852 }
853}
854
855void Reassociate::ReassociateExpression(BinaryOperator *I) {
856
857 // First, walk the expression tree, linearizing the tree, collecting
858 std::vector<ValueEntry> Ops;
859 LinearizeExprTree(I, Ops);
860
Chris Lattner8a6411c2009-08-23 04:37:46 +0000861 DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000862
863 // Now that we have linearized the tree to a list and have gathered all of
864 // the operands and their ranks, sort the operands by their rank. Use a
865 // stable_sort so that values with equal ranks will have their relative
866 // positions maintained (and so the compiler is deterministic). Note that
867 // this sorts so that the highest ranking values end up at the beginning of
868 // the vector.
869 std::stable_sort(Ops.begin(), Ops.end());
870
871 // OptimizeExpression - Now that we have the expression tree in a convenient
872 // sorted form, optimize it globally if possible.
873 if (Value *V = OptimizeExpression(I, Ops)) {
874 // This expression tree simplified to something that isn't a tree,
875 // eliminate it.
Chris Lattner8a6411c2009-08-23 04:37:46 +0000876 DEBUG(errs() << "Reassoc to scalar: " << *V << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000877 I->replaceAllUsesWith(V);
878 RemoveDeadBinaryOp(I);
879 return;
880 }
881
882 // We want to sink immediates as deeply as possible except in the case where
883 // this is a multiply tree used only by an add, and the immediate is a -1.
884 // In this case we reassociate to put the negation on the outside so that we
885 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
886 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
887 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
888 isa<ConstantInt>(Ops.back().Op) &&
889 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
890 Ops.insert(Ops.begin(), Ops.back());
891 Ops.pop_back();
892 }
893
Chris Lattner8a6411c2009-08-23 04:37:46 +0000894 DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000895
896 if (Ops.size() == 1) {
897 // This expression tree simplified to something that isn't a tree,
898 // eliminate it.
899 I->replaceAllUsesWith(Ops[0].Op);
900 RemoveDeadBinaryOp(I);
901 } else {
902 // Now that we ordered and optimized the expressions, splat them back into
903 // the expression tree, removing any unneeded nodes.
904 RewriteExprTree(I, Ops);
905 }
906}
907
908
909bool Reassociate::runOnFunction(Function &F) {
910 // Recalculate the rank map for F
911 BuildRankMap(F);
912
913 MadeChange = false;
914 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
915 ReassociateBB(FI);
916
917 // We are done with the rank map...
918 RankMap.clear();
919 ValueRankMap.clear();
920 return MadeChange;
921}
922