blob: a40658946fc809570258a292fb13ee6be0c5e7ef [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000021#include "llvm/Pass.h"
Chris Lattner30483732004-06-20 07:49:54 +000022#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000023#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner94af4142002-12-25 05:13:53 +000026#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000028#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000029#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000031#include "llvm/ADT/Statistic.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattner986618e2004-02-22 19:47:26 +000034namespace {
35 Statistic<>
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
Chris Lattner427aeb42004-04-11 19:21:59 +000037
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
39 /// Representation.
40 ///
41 enum TypeClass {
42 cByte, cShort, cInt, cFP, cLong
43 };
44}
45
46/// getClass - Turn a primitive type into a "class" number which is based on the
47/// size of the type, and whether or not it is floating point.
48///
49static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerf70c22b2004-06-17 18:19:28 +000050 switch (Ty->getTypeID()) {
Chris Lattner427aeb42004-04-11 19:21:59 +000051 case Type::SByteTyID:
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
53 case Type::ShortTyID:
54 case Type::UShortTyID: return cShort; // Short operands are class #1
55 case Type::IntTyID:
56 case Type::UIntTyID:
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
58
59 case Type::FloatTyID:
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
61
62 case Type::LongTyID:
63 case Type::ULongTyID: return cLong; // Longs are class #4
64 default:
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
67 }
68}
69
70// getClassB - Just like getClass, but treat boolean values as bytes.
71static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
73 return getClass(Ty);
Chris Lattner986618e2004-02-22 19:47:26 +000074}
Chris Lattnercf93cdd2004-01-30 22:13:44 +000075
Chris Lattner72614082002-10-25 22:55:53 +000076namespace {
Misha Brukmaneae1bf12004-09-21 18:21:21 +000077 struct X86ISel : public FunctionPass, InstVisitor<X86ISel> {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000078 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000079 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000082 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000083
Chris Lattner72614082002-10-25 22:55:53 +000084 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
85
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
Chris Lattnercb2fd552004-05-13 07:40:27 +000089 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
Misha Brukmaneae1bf12004-09-21 18:21:21 +000093 X86ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000094
95 /// runOnFunction - Top level implementation of instruction selection for
96 /// the entire function.
97 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000098 bool runOnFunction(Function &Fn) {
Chris Lattner11cf7aa2004-12-17 00:07:46 +000099 // Lazily create a stack slot for the return address if needed.
Chris Lattner8cdbc352004-12-17 00:46:51 +0000100 ReturnAddressIndex = 0;
Chris Lattner11cf7aa2004-12-17 00:07:46 +0000101
Chris Lattner44827152003-12-28 09:47:19 +0000102 // First pass over the function, lower any unknown intrinsic functions
103 // with the IntrinsicLowering class.
104 LowerUnknownIntrinsicFunctionCalls(Fn);
105
Chris Lattner36b36032002-10-29 23:40:58 +0000106 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000107
Chris Lattner065faeb2002-12-28 20:24:02 +0000108 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +0000109 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
110 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
111
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000112 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +0000113
Chris Lattnerdbd73722003-05-06 21:32:22 +0000114 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000115 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000116
Chris Lattnerc0354c92004-12-13 17:23:11 +0000117 // If this is main, emit special code.
118 if (Fn.hasExternalLinkage() && Fn.getName() == "main")
119 EmitSpecialCodeForMain();
120
Chris Lattner333b2fa2002-12-13 10:09:43 +0000121 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000122 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000123
124 // Select the PHI nodes
125 SelectPHINodes();
126
Chris Lattner986618e2004-02-22 19:47:26 +0000127 // Insert the FP_REG_KILL instructions into blocks that need them.
128 InsertFPRegKills();
129
Chris Lattner72614082002-10-25 22:55:53 +0000130 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000131 MBBMap.clear();
Chris Lattnercb2fd552004-05-13 07:40:27 +0000132 AllocaMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000133 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000134 // We always build a machine code representation for the function
135 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000136 }
137
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000138 virtual const char *getPassName() const {
139 return "X86 Simple Instruction Selection";
140 }
141
Chris Lattnerc0354c92004-12-13 17:23:11 +0000142 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
143 /// the main function.
144 void EmitSpecialCodeForMain();
145
Chris Lattner72614082002-10-25 22:55:53 +0000146 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000147 /// block. This simply creates a new MachineBasicBlock to emit code into
148 /// and adds it to the current MachineFunction. Subsequent visit* for
149 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000150 ///
151 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000152 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000153 }
154
Chris Lattner44827152003-12-28 09:47:19 +0000155 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
156 /// function, lowering any calls to unknown intrinsic functions into the
157 /// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +0000158 ///
Chris Lattner44827152003-12-28 09:47:19 +0000159 void LowerUnknownIntrinsicFunctionCalls(Function &F);
160
Chris Lattner065faeb2002-12-28 20:24:02 +0000161 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
162 /// from the stack into virtual registers.
163 ///
164 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000165
166 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
167 /// because we have to generate our sources into the source basic blocks,
168 /// not the current one.
169 ///
170 void SelectPHINodes();
171
Chris Lattner986618e2004-02-22 19:47:26 +0000172 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
173 /// that need them. This only occurs due to the floating point stackifier
174 /// not being aggressive enough to handle arbitrary global stackification.
175 ///
176 void InsertFPRegKills();
177
Chris Lattner72614082002-10-25 22:55:53 +0000178 // Visitation methods for various instructions. These methods simply emit
179 // fixed X86 code for each instruction.
180 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000181
182 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000183 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000184 void visitBranchInst(BranchInst &BI);
Chris Lattner30483b02004-10-16 18:13:05 +0000185 void visitUnreachableInst(UnreachableInst &UI) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000186
187 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000188 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000189 unsigned Reg;
190 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000191 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
192 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000193 };
194 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000195 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000196 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000197 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000198
199 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000200 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000201 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
202 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +0000203 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000204
Chris Lattnerf01729e2002-11-02 20:54:46 +0000205 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
206 void visitRem(BinaryOperator &B) { visitDivRem(B); }
207 void visitDivRem(BinaryOperator &B);
208
Chris Lattnere2954c82002-11-02 20:04:26 +0000209 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000210 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
211 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
212 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000213
Chris Lattner6d40c192003-01-16 16:43:00 +0000214 // Comparison operators...
215 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000216 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
217 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000218 MachineBasicBlock::iterator MBBI);
Chris Lattner12d96a02004-03-30 21:22:00 +0000219 void visitSelectInst(SelectInst &SI);
220
Chris Lattnerb2acc512003-10-19 21:09:10 +0000221
Chris Lattner6fc3c522002-11-17 21:11:55 +0000222 // Memory Instructions
223 void visitLoadInst(LoadInst &I);
224 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000225 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000226 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000227 void visitMallocInst(MallocInst &I);
228 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000229
Chris Lattnere2954c82002-11-02 20:04:26 +0000230 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000231 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000232 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000233 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000234 void visitVANextInst(VANextInst &I);
235 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000236
237 void visitInstruction(Instruction &I) {
238 std::cerr << "Cannot instruction select: " << I;
239 abort();
240 }
241
Brian Gaeke95780cc2002-12-13 07:56:18 +0000242 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000243 ///
244 void promote32(unsigned targetReg, const ValueRecord &VR);
245
Chris Lattner721d2d42004-03-08 01:18:36 +0000246 /// getAddressingMode - Get the addressing mode to use to address the
247 /// specified value. The returned value should be used with addFullAddress.
Reid Spencerfc989e12004-08-30 00:13:26 +0000248 void getAddressingMode(Value *Addr, X86AddressMode &AM);
Chris Lattner721d2d42004-03-08 01:18:36 +0000249
250
251 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
252 /// expressions.
Chris Lattnerb6bac512004-02-25 06:13:04 +0000253 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
254 std::vector<Value*> &GEPOps,
Reid Spencerfc989e12004-08-30 00:13:26 +0000255 std::vector<const Type*> &GEPTypes,
256 X86AddressMode &AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +0000257
258 /// isGEPFoldable - Return true if the specified GEP can be completely
259 /// folded into the addressing mode of a load/store or lea instruction.
260 bool isGEPFoldable(MachineBasicBlock *MBB,
261 Value *Src, User::op_iterator IdxBegin,
Reid Spencerfc989e12004-08-30 00:13:26 +0000262 User::op_iterator IdxEnd, X86AddressMode &AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +0000263
Chris Lattner3e130a22003-01-13 00:32:26 +0000264 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
265 /// constant expression GEP support.
266 ///
Chris Lattner827832c2004-02-22 17:05:38 +0000267 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000268 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000269 User::op_iterator IdxEnd, unsigned TargetReg);
270
Chris Lattner548f61d2003-04-23 17:22:12 +0000271 /// emitCastOperation - Common code shared between visitCastInst and
272 /// constant expression cast support.
Misha Brukman538607f2004-03-01 23:53:11 +0000273 ///
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000274 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +0000275 Value *Src, const Type *DestTy, unsigned TargetReg);
276
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000277 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
278 /// and constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000279 ///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000280 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000281 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000282 Value *Op0, Value *Op1,
283 unsigned OperatorClass, unsigned TargetReg);
284
Chris Lattner6621ed92004-04-11 21:23:56 +0000285 /// emitBinaryFPOperation - This method handles emission of floating point
286 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
287 void emitBinaryFPOperation(MachineBasicBlock *BB,
288 MachineBasicBlock::iterator IP,
289 Value *Op0, Value *Op1,
290 unsigned OperatorClass, unsigned TargetReg);
291
Chris Lattner462fa822004-04-11 20:56:28 +0000292 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
293 Value *Op0, Value *Op1, unsigned TargetReg);
294
295 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
296 unsigned DestReg, const Type *DestTy,
297 unsigned Op0Reg, unsigned Op1Reg);
298 void doMultiplyConst(MachineBasicBlock *MBB,
299 MachineBasicBlock::iterator MBBI,
300 unsigned DestReg, const Type *DestTy,
301 unsigned Op0Reg, unsigned Op1Val);
302
Chris Lattnercadff442003-10-23 17:21:43 +0000303 void emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000304 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +0000305 Value *Op0, Value *Op1, bool isDiv,
306 unsigned TargetReg);
Chris Lattnercadff442003-10-23 17:21:43 +0000307
Chris Lattner58c41fe2003-08-24 19:19:47 +0000308 /// emitSetCCOperation - Common code shared between visitSetCondInst and
309 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000310 ///
Chris Lattner58c41fe2003-08-24 19:19:47 +0000311 void emitSetCCOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000312 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000313 Value *Op0, Value *Op1, unsigned Opcode,
314 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000315
316 /// emitShiftOperation - Common code shared between visitShiftInst and
317 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000318 ///
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000319 void emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000320 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000321 Value *Op, Value *ShiftAmount, bool isLeftShift,
322 const Type *ResultTy, unsigned DestReg);
Chris Lattnerce7cafa2004-11-13 20:48:57 +0000323
324 // Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a
325 // constant.
326 void doSHLDConst(MachineBasicBlock *MBB,
327 MachineBasicBlock::iterator MBBI,
328 unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg,
329 unsigned Op1Val);
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000330
Chris Lattner12d96a02004-03-30 21:22:00 +0000331 /// emitSelectOperation - Common code shared between visitSelectInst and the
332 /// constant expression support.
333 void emitSelectOperation(MachineBasicBlock *MBB,
334 MachineBasicBlock::iterator IP,
335 Value *Cond, Value *TrueVal, Value *FalseVal,
336 unsigned DestReg);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000337
Chris Lattnerc5291f52002-10-27 21:16:59 +0000338 /// copyConstantToRegister - Output the instructions required to put the
339 /// specified constant into the specified register.
340 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000341 void copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000342 MachineBasicBlock::iterator MBBI,
Chris Lattner8a307e82002-12-16 19:32:50 +0000343 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000344
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000345 void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
346 unsigned LHS, unsigned RHS);
347
Chris Lattner3e130a22003-01-13 00:32:26 +0000348 /// makeAnotherReg - This method returns the next register number we haven't
349 /// yet used.
350 ///
351 /// Long values are handled somewhat specially. They are always allocated
352 /// as pairs of 32 bit integer values. The register number returned is the
353 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
354 /// of the long value.
355 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000356 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000357 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
358 "Current target doesn't have X86 reg info??");
359 const X86RegisterInfo *MRI =
360 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000361 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000362 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
363 // Create the lower part
364 F->getSSARegMap()->createVirtualRegister(RC);
365 // Create the upper part.
366 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000367 }
368
Chris Lattnerc0812d82002-12-13 06:56:29 +0000369 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000370 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000371 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000372 }
373
Chris Lattnercb2fd552004-05-13 07:40:27 +0000374 /// getReg - This method turns an LLVM value into a register number.
Chris Lattner72614082002-10-25 22:55:53 +0000375 ///
376 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000377 unsigned getReg(Value *V) {
378 // Just append to the end of the current bb.
379 MachineBasicBlock::iterator It = BB->end();
380 return getReg(V, BB, It);
381 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000382 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnercb2fd552004-05-13 07:40:27 +0000383 MachineBasicBlock::iterator IPt);
Chris Lattner427aeb42004-04-11 19:21:59 +0000384
Chris Lattnercb2fd552004-05-13 07:40:27 +0000385 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
386 /// that is to be statically allocated with the initial stack frame
387 /// adjustment.
388 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
Chris Lattner72614082002-10-25 22:55:53 +0000389 };
390}
391
Chris Lattnercb2fd552004-05-13 07:40:27 +0000392/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
393/// instruction in the entry block, return it. Otherwise, return a null
394/// pointer.
395static AllocaInst *dyn_castFixedAlloca(Value *V) {
396 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
397 BasicBlock *BB = AI->getParent();
398 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
399 return AI;
400 }
401 return 0;
402}
403
404/// getReg - This method turns an LLVM value into a register number.
405///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000406unsigned X86ISel::getReg(Value *V, MachineBasicBlock *MBB,
407 MachineBasicBlock::iterator IPt) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000408 // If this operand is a constant, emit the code to copy the constant into
409 // the register here...
Chris Lattnercb2fd552004-05-13 07:40:27 +0000410 if (Constant *C = dyn_cast<Constant>(V)) {
411 unsigned Reg = makeAnotherReg(V->getType());
412 copyConstantToRegister(MBB, IPt, C, Reg);
413 return Reg;
Chris Lattnercb2fd552004-05-13 07:40:27 +0000414 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
Chris Lattner8b486a12004-06-29 00:14:38 +0000415 // Do not emit noop casts at all, unless it's a double -> float cast.
416 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) &&
417 (CI->getType() != Type::FloatTy ||
418 CI->getOperand(0)->getType() != Type::DoubleTy))
Chris Lattnercb2fd552004-05-13 07:40:27 +0000419 return getReg(CI->getOperand(0), MBB, IPt);
420 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
421 // If the alloca address couldn't be folded into the instruction addressing,
422 // emit an explicit LEA as appropriate.
423 unsigned Reg = makeAnotherReg(V->getType());
424 unsigned FI = getFixedSizedAllocaFI(AI);
425 addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
426 return Reg;
427 }
428
429 unsigned &Reg = RegMap[V];
430 if (Reg == 0) {
431 Reg = makeAnotherReg(V->getType());
432 RegMap[V] = Reg;
433 }
434
435 return Reg;
436}
437
438/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
439/// that is to be statically allocated with the initial stack frame
440/// adjustment.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000441unsigned X86ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000442 // Already computed this?
443 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
444 if (I != AllocaMap.end() && I->first == AI) return I->second;
445
446 const Type *Ty = AI->getAllocatedType();
447 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
448 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
449 TySize *= CUI->getValue(); // Get total allocated size...
450 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
451
452 // Create a new stack object using the frame manager...
453 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
454 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
455 return FrameIdx;
456}
457
458
Chris Lattnerc5291f52002-10-27 21:16:59 +0000459/// copyConstantToRegister - Output the instructions required to put the
460/// specified constant into the specified register.
461///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000462void X86ISel::copyConstantToRegister(MachineBasicBlock *MBB,
463 MachineBasicBlock::iterator IP,
464 Constant *C, unsigned R) {
Chris Lattner30483b02004-10-16 18:13:05 +0000465 if (isa<UndefValue>(C)) {
466 switch (getClassB(C->getType())) {
467 case cFP:
468 // FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES!
469 BuildMI(*MBB, IP, X86::FLD0, 0, R);
470 return;
471 case cLong:
472 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R+1);
473 // FALL THROUGH
474 default:
475 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R);
476 return;
477 }
478 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000479 unsigned Class = 0;
480 switch (CE->getOpcode()) {
481 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000482 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000483 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000484 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000485 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000486 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000487 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000488
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000489 case Instruction::Xor: ++Class; // FALL THROUGH
490 case Instruction::Or: ++Class; // FALL THROUGH
491 case Instruction::And: ++Class; // FALL THROUGH
492 case Instruction::Sub: ++Class; // FALL THROUGH
493 case Instruction::Add:
494 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
495 Class, R);
496 return;
497
Chris Lattner462fa822004-04-11 20:56:28 +0000498 case Instruction::Mul:
499 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
Chris Lattnercadff442003-10-23 17:21:43 +0000500 return;
Chris Lattner462fa822004-04-11 20:56:28 +0000501
Chris Lattnercadff442003-10-23 17:21:43 +0000502 case Instruction::Div:
Chris Lattner462fa822004-04-11 20:56:28 +0000503 case Instruction::Rem:
504 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
505 CE->getOpcode() == Instruction::Div, R);
Chris Lattnercadff442003-10-23 17:21:43 +0000506 return;
Chris Lattnercadff442003-10-23 17:21:43 +0000507
Chris Lattner58c41fe2003-08-24 19:19:47 +0000508 case Instruction::SetNE:
509 case Instruction::SetEQ:
510 case Instruction::SetLT:
511 case Instruction::SetGT:
512 case Instruction::SetLE:
513 case Instruction::SetGE:
514 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
515 CE->getOpcode(), R);
516 return;
517
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000518 case Instruction::Shl:
519 case Instruction::Shr:
520 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000521 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
522 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000523
Chris Lattner12d96a02004-03-30 21:22:00 +0000524 case Instruction::Select:
525 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
526 CE->getOperand(2), R);
527 return;
528
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000529 default:
Chris Lattner76e2df22004-07-15 02:14:30 +0000530 std::cerr << "Offending expr: " << *C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000531 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000532 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000533 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000534
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000535 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000536 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000537
538 if (Class == cLong) {
539 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000540 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000541 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
542 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000543 return;
544 }
545
Chris Lattner94af4142002-12-25 05:13:53 +0000546 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000547
548 static const unsigned IntegralOpcodeTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000549 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000550 };
551
Chris Lattner6b993cc2002-12-15 08:02:15 +0000552 if (C->getType() == Type::BoolTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000553 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000554 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000555 ConstantInt *CI = cast<ConstantInt>(C);
Chris Lattneree352852004-02-29 07:22:16 +0000556 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000557 }
Chris Lattner94af4142002-12-25 05:13:53 +0000558 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000559 if (CFP->isExactlyValue(+0.0))
Chris Lattneree352852004-02-29 07:22:16 +0000560 BuildMI(*MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000561 else if (CFP->isExactlyValue(+1.0))
Chris Lattneree352852004-02-29 07:22:16 +0000562 BuildMI(*MBB, IP, X86::FLD1, 0, R);
Chris Lattner6ac95f92005-01-06 21:19:16 +0000563 else if (CFP->isExactlyValue(-0.0)) {
564 unsigned Tmp = makeAnotherReg(Type::DoubleTy);
565 BuildMI(*MBB, IP, X86::FLD0, 0, Tmp);
566 BuildMI(*MBB, IP, X86::FCHS, 1, R).addReg(Tmp);
567 } else if (CFP->isExactlyValue(-1.0)) {
568 unsigned Tmp = makeAnotherReg(Type::DoubleTy);
569 BuildMI(*MBB, IP, X86::FLD1, 0, Tmp);
570 BuildMI(*MBB, IP, X86::FCHS, 1, R).addReg(Tmp);
571 } else { // FIXME: PI, other native values
Chris Lattner5384b382005-01-05 16:30:14 +0000572 // FIXME: 2*PI -> LDPI + FADD
573
574 // Otherwise we need to spill the constant to memory.
Chris Lattner3e130a22003-01-13 00:32:26 +0000575 MachineConstantPool *CP = F->getConstantPool();
Chris Lattner5384b382005-01-05 16:30:14 +0000576
Chris Lattner6c09db22003-10-20 04:11:23 +0000577 const Type *Ty = CFP->getType();
578
Chris Lattner5384b382005-01-05 16:30:14 +0000579 // If a FP immediate is precise when represented as a float, we put it
580 // into the constant pool as a float, even if it's is statically typed as
581 // a double.
582 if (Ty == Type::DoubleTy)
583 if (CFP->isExactlyValue((float)CFP->getValue())) {
584 Ty = Type::FloatTy;
585 CFP = cast<ConstantFP>(ConstantExpr::getCast(CFP, Ty));
586 }
587
588 unsigned CPI = CP->getConstantPoolIndex(CFP);
589
Chris Lattner6c09db22003-10-20 04:11:23 +0000590 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000591 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
Chris Lattneree352852004-02-29 07:22:16 +0000592 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000593 }
594
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000595 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000596 // Copy zero (null pointer) to the register.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000597 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
Reid Spencer8863f182004-07-18 00:38:32 +0000598 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
599 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000600 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000601 std::cerr << "Offending constant: " << *C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000602 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000603 }
604}
605
Chris Lattner065faeb2002-12-28 20:24:02 +0000606/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
607/// the stack into virtual registers.
608///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000609void X86ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000610 // Emit instructions to load the arguments... On entry to a function on the
611 // X86, the stack frame looks like this:
612 //
613 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000614 // [ESP + 4] -- first argument (leftmost lexically)
615 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000616 // ...
617 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000618 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000619 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000620
Chris Lattnere4d5c442005-03-15 04:54:21 +0000621 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); I != E; ++I) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000622 bool ArgLive = !I->use_empty();
623 unsigned Reg = ArgLive ? getReg(*I) : 0;
Chris Lattner065faeb2002-12-28 20:24:02 +0000624 int FI; // Frame object index
Chris Lattner427aeb42004-04-11 19:21:59 +0000625
Chris Lattner065faeb2002-12-28 20:24:02 +0000626 switch (getClassB(I->getType())) {
627 case cByte:
Chris Lattner427aeb42004-04-11 19:21:59 +0000628 if (ArgLive) {
629 FI = MFI->CreateFixedObject(1, ArgOffset);
630 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
631 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000632 break;
633 case cShort:
Chris Lattner427aeb42004-04-11 19:21:59 +0000634 if (ArgLive) {
635 FI = MFI->CreateFixedObject(2, ArgOffset);
636 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
637 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000638 break;
639 case cInt:
Chris Lattner427aeb42004-04-11 19:21:59 +0000640 if (ArgLive) {
641 FI = MFI->CreateFixedObject(4, ArgOffset);
642 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
643 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000644 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000645 case cLong:
Chris Lattner427aeb42004-04-11 19:21:59 +0000646 if (ArgLive) {
647 FI = MFI->CreateFixedObject(8, ArgOffset);
648 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
649 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
650 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000651 ArgOffset += 4; // longs require 4 additional bytes
652 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000653 case cFP:
Chris Lattner427aeb42004-04-11 19:21:59 +0000654 if (ArgLive) {
655 unsigned Opcode;
656 if (I->getType() == Type::FloatTy) {
657 Opcode = X86::FLD32m;
658 FI = MFI->CreateFixedObject(4, ArgOffset);
659 } else {
660 Opcode = X86::FLD64m;
661 FI = MFI->CreateFixedObject(8, ArgOffset);
662 }
663 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000664 }
Chris Lattner427aeb42004-04-11 19:21:59 +0000665 if (I->getType() == Type::DoubleTy)
666 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000667 break;
668 default:
669 assert(0 && "Unhandled argument type!");
670 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000671 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000672 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000673
674 // If the function takes variable number of arguments, add a frame offset for
675 // the start of the first vararg value... this is used to expand
676 // llvm.va_start.
677 if (Fn.getFunctionType()->isVarArg())
678 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000679}
680
Chris Lattnerc0354c92004-12-13 17:23:11 +0000681/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
682/// the main function.
683void X86ISel::EmitSpecialCodeForMain() {
684 // Switch the FPU to 64-bit precision mode for better compatibility and speed.
685 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
686 addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
687
688 // Set the high part to be 64-bit precision.
689 addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
690 CWFrameIdx, 1).addImm(2);
691
692 // Reload the modified control word now.
693 addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
694}
Chris Lattner065faeb2002-12-28 20:24:02 +0000695
Chris Lattner333b2fa2002-12-13 10:09:43 +0000696/// SelectPHINodes - Insert machine code to generate phis. This is tricky
697/// because we have to generate our sources into the source basic blocks, not
698/// the current one.
699///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000700void X86ISel::SelectPHINodes() {
Chris Lattnerd029cd22004-06-02 05:55:25 +0000701 const TargetInstrInfo &TII = *TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000702 const Function &LF = *F->getFunction(); // The LLVM function...
703 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
704 const BasicBlock *BB = I;
Chris Lattner168aa902004-02-29 07:10:16 +0000705 MachineBasicBlock &MBB = *MBBMap[I];
Chris Lattner333b2fa2002-12-13 10:09:43 +0000706
707 // Loop over all of the PHI nodes in the LLVM basic block...
Chris Lattner168aa902004-02-29 07:10:16 +0000708 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000709 for (BasicBlock::const_iterator I = BB->begin(); isa<PHINode>(I); ++I) {
710 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I));
Chris Lattner3e130a22003-01-13 00:32:26 +0000711
Chris Lattner333b2fa2002-12-13 10:09:43 +0000712 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000713 unsigned PHIReg = getReg(*PN);
Chris Lattner168aa902004-02-29 07:10:16 +0000714 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
715 X86::PHI, PN->getNumOperands(), PHIReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000716
717 MachineInstr *LongPhiMI = 0;
Chris Lattner168aa902004-02-29 07:10:16 +0000718 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
719 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
720 X86::PHI, PN->getNumOperands(), PHIReg+1);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000721
Chris Lattnera6e73f12003-05-12 14:22:21 +0000722 // PHIValues - Map of blocks to incoming virtual registers. We use this
723 // so that we only initialize one incoming value for a particular block,
724 // even if the block has multiple entries in the PHI node.
725 //
726 std::map<MachineBasicBlock*, unsigned> PHIValues;
727
Chris Lattner333b2fa2002-12-13 10:09:43 +0000728 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
729 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000730 unsigned ValReg;
731 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
732 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000733
Chris Lattnera6e73f12003-05-12 14:22:21 +0000734 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
735 // We already inserted an initialization of the register for this
736 // predecessor. Recycle it.
737 ValReg = EntryIt->second;
738
739 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000740 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000741 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000742 Value *Val = PN->getIncomingValue(i);
743
744 // If this is a constant or GlobalValue, we may have to insert code
745 // into the basic block to compute it into a virtual register.
Reid Spencer8863f182004-07-18 00:38:32 +0000746 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000747 // Simple constants get emitted at the end of the basic block,
748 // before any terminator instructions. We "know" that the code to
749 // move a constant into a register will never clobber any flags.
750 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
Chris Lattnera81fc682003-10-19 00:26:11 +0000751 } else {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000752 // Because we don't want to clobber any values which might be in
753 // physical registers with the computation of this constant (which
754 // might be arbitrarily complex if it is a constant expression),
755 // just insert the computation at the top of the basic block.
756 MachineBasicBlock::iterator PI = PredMBB->begin();
757
758 // Skip over any PHI nodes though!
759 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
760 ++PI;
761
762 ValReg = getReg(Val, PredMBB, PI);
Chris Lattnera81fc682003-10-19 00:26:11 +0000763 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000764
765 // Remember that we inserted a value for this PHI for this predecessor
766 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
767 }
768
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000769 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000770 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000771 if (LongPhiMI) {
772 LongPhiMI->addRegOperand(ValReg+1);
773 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
774 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000775 }
Chris Lattner168aa902004-02-29 07:10:16 +0000776
777 // Now that we emitted all of the incoming values for the PHI node, make
778 // sure to reposition the InsertPoint after the PHI that we just added.
779 // This is needed because we might have inserted a constant into this
780 // block, right after the PHI's which is before the old insert point!
781 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
782 ++PHIInsertPoint;
Chris Lattner333b2fa2002-12-13 10:09:43 +0000783 }
784 }
785}
786
Chris Lattner986618e2004-02-22 19:47:26 +0000787/// RequiresFPRegKill - The floating point stackifier pass cannot insert
788/// compensation code on critical edges. As such, it requires that we kill all
789/// FP registers on the exit from any blocks that either ARE critical edges, or
790/// branch to a block that has incoming critical edges.
791///
792/// Note that this kill instruction will eventually be eliminated when
793/// restrictions in the stackifier are relaxed.
794///
Brian Gaeke1afe7732004-04-28 04:45:55 +0000795static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000796#if 0
Brian Gaeke1afe7732004-04-28 04:45:55 +0000797 const BasicBlock *BB = MBB->getBasicBlock ();
Chris Lattner986618e2004-02-22 19:47:26 +0000798 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
799 const BasicBlock *Succ = *SI;
800 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
801 ++PI; // Block have at least one predecessory
802 if (PI != PE) { // If it has exactly one, this isn't crit edge
803 // If this block has more than one predecessor, check all of the
804 // predecessors to see if they have multiple successors. If so, then the
805 // block we are analyzing needs an FPRegKill.
806 for (PI = pred_begin(Succ); PI != PE; ++PI) {
807 const BasicBlock *Pred = *PI;
808 succ_const_iterator SI2 = succ_begin(Pred);
809 ++SI2; // There must be at least one successor of this block.
810 if (SI2 != succ_end(Pred))
811 return true; // Yes, we must insert the kill on this edge.
812 }
813 }
814 }
815 // If we got this far, there is no need to insert the kill instruction.
816 return false;
817#else
818 return true;
819#endif
820}
821
822// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
823// need them. This only occurs due to the floating point stackifier not being
824// aggressive enough to handle arbitrary global stackification.
825//
826// Currently we insert an FP_REG_KILL instruction into each block that uses or
827// defines a floating point virtual register.
828//
829// When the global register allocators (like linear scan) finally update live
830// variable analysis, we can keep floating point values in registers across
831// portions of the CFG that do not involve critical edges. This will be a big
832// win, but we are waiting on the global allocators before we can do this.
833//
834// With a bit of work, the floating point stackifier pass can be enhanced to
835// break critical edges as needed (to make a place to put compensation code),
836// but this will require some infrastructure improvements as well.
837//
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000838void X86ISel::InsertFPRegKills() {
Chris Lattner986618e2004-02-22 19:47:26 +0000839 SSARegMap &RegMap = *F->getSSARegMap();
Chris Lattner986618e2004-02-22 19:47:26 +0000840
841 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000842 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000843 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
844 MachineOperand& MO = I->getOperand(i);
845 if (MO.isRegister() && MO.getReg()) {
846 unsigned Reg = MO.getReg();
Chris Lattner223d4c42004-12-03 05:13:15 +0000847 if (MRegisterInfo::isVirtualRegister(Reg)) {
848 unsigned RegSize = RegMap.getRegClass(Reg)->getSize();
849 if (RegSize == 10 || RegSize == 8)
Chris Lattner65cf42d2004-02-23 07:29:45 +0000850 goto UsesFPReg;
Chris Lattner223d4c42004-12-03 05:13:15 +0000851 }
Chris Lattner986618e2004-02-22 19:47:26 +0000852 }
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000853 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000854 // If we haven't found an FP register use or def in this basic block, check
855 // to see if any of our successors has an FP PHI node, which will cause a
856 // copy to be inserted into this block.
Brian Gaeke235aa5e2004-04-28 04:34:16 +0000857 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
858 SE = BB->succ_end(); SI != SE; ++SI) {
859 MachineBasicBlock *SBB = *SI;
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000860 for (MachineBasicBlock::iterator I = SBB->begin();
861 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
Chris Lattner39869242004-12-02 17:57:21 +0000862 const TargetRegisterClass *RC =
863 RegMap.getRegClass(I->getOperand(0).getReg());
864 if (RC->getSize() == 10 || RC->getSize() == 8)
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000865 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000866 }
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000867 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000868 continue;
869 UsesFPReg:
870 // Okay, this block uses an FP register. If the block has successors (ie,
871 // it's not an unwind/return), insert the FP_REG_KILL instruction.
Chris Lattner5384b382005-01-05 16:30:14 +0000872 if (BB->succ_size() && RequiresFPRegKill(BB)) {
Chris Lattneree352852004-02-29 07:22:16 +0000873 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
Chris Lattner65cf42d2004-02-23 07:29:45 +0000874 ++NumFPKill;
Chris Lattner986618e2004-02-22 19:47:26 +0000875 }
876 }
877}
878
879
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000880void X86ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) {
Reid Spencerfc989e12004-08-30 00:13:26 +0000881 AM.BaseType = X86AddressMode::RegBase;
882 AM.Base.Reg = 0; AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000883 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
884 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
Reid Spencerfc989e12004-08-30 00:13:26 +0000885 AM))
Chris Lattner9f1b5312004-05-13 15:12:43 +0000886 return;
887 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
888 if (CE->getOpcode() == Instruction::GetElementPtr)
889 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
Reid Spencerfc989e12004-08-30 00:13:26 +0000890 AM))
Chris Lattner9f1b5312004-05-13 15:12:43 +0000891 return;
Reid Spencerfc989e12004-08-30 00:13:26 +0000892 } else if (AllocaInst *AI = dyn_castFixedAlloca(Addr)) {
893 AM.BaseType = X86AddressMode::FrameIndexBase;
894 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
895 return;
Chris Lattner358a9022004-10-15 05:05:29 +0000896 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
897 AM.GV = GV;
898 return;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000899 }
900
901 // If it's not foldable, reset addr mode.
Reid Spencerfc989e12004-08-30 00:13:26 +0000902 AM.BaseType = X86AddressMode::RegBase;
903 AM.Base.Reg = getReg(Addr);
904 AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000905}
906
Chris Lattner307ecba2004-03-30 22:39:09 +0000907// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
908// it into the conditional branch or select instruction which is the only user
909// of the cc instruction. This is the case if the conditional branch is the
Chris Lattnera6f9fe62004-06-18 00:29:22 +0000910// only user of the setcc. We also don't handle long arguments below, so we
911// reject them here as well.
Chris Lattner6d40c192003-01-16 16:43:00 +0000912//
Chris Lattner307ecba2004-03-30 22:39:09 +0000913static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000914 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattner307ecba2004-03-30 22:39:09 +0000915 if (SCI->hasOneUse()) {
916 Instruction *User = cast<Instruction>(SCI->use_back());
Tanya Lattner9855b842004-12-01 18:27:03 +0000917 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
918 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
919 SCI->getOpcode() == Instruction::SetEQ ||
920 SCI->getOpcode() == Instruction::SetNE) &&
921 (isa<BranchInst>(User) || User->getOperand(0) == V))
Chris Lattner6d40c192003-01-16 16:43:00 +0000922 return SCI;
923 }
924 return 0;
925}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000926
Chris Lattner6d40c192003-01-16 16:43:00 +0000927// Return a fixed numbering for setcc instructions which does not depend on the
928// order of the opcodes.
929//
930static unsigned getSetCCNumber(unsigned Opcode) {
931 switch(Opcode) {
932 default: assert(0 && "Unknown setcc instruction!");
933 case Instruction::SetEQ: return 0;
934 case Instruction::SetNE: return 1;
935 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000936 case Instruction::SetGE: return 3;
937 case Instruction::SetGT: return 4;
938 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000939 }
940}
Chris Lattner06925362002-11-17 21:56:38 +0000941
Chris Lattner6d40c192003-01-16 16:43:00 +0000942// LLVM -> X86 signed X86 unsigned
943// ----- ---------- ------------
944// seteq -> sete sete
945// setne -> setne setne
946// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000947// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000948// setgt -> setg seta
949// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000950// ----
951// sets // Used by comparison with 0 optimization
952// setns
953static const unsigned SetCCOpcodeTab[2][8] = {
954 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
955 0, 0 },
956 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
957 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000958};
959
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000960/// emitUCOMr - In the future when we support processors before the P6, this
961/// wraps the logic for emitting an FUCOMr vs FUCOMIr.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000962void X86ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
963 unsigned LHS, unsigned RHS) {
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000964 if (0) { // for processors prior to the P6
965 BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
966 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
967 BuildMI(*MBB, IP, X86::SAHF, 1);
968 } else {
969 BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
970 }
971}
972
Chris Lattnerb2acc512003-10-19 21:09:10 +0000973// EmitComparison - This function emits a comparison of the two operands,
974// returning the extended setcc code to use.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000975unsigned X86ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
976 MachineBasicBlock *MBB,
977 MachineBasicBlock::iterator IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000978 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000979 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000980 unsigned Class = getClassB(CompTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000981
982 // Special case handling of: cmp R, i
Chris Lattner260195d2004-05-07 19:55:55 +0000983 if (isa<ConstantPointerNull>(Op1)) {
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000984 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner260195d2004-05-07 19:55:55 +0000985 if (OpNum < 2) // seteq/setne -> test
986 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
987 else
988 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
989 return OpNum;
990
991 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere80e6372004-04-06 16:02:27 +0000992 if (Class == cByte || Class == cShort || Class == cInt) {
993 unsigned Op1v = CI->getRawValue();
Chris Lattnerc07736a2003-07-23 15:22:26 +0000994
Chris Lattner333864d2003-06-05 19:30:30 +0000995 // Mask off any upper bits of the constant, if there are any...
996 Op1v &= (1ULL << (8 << Class)) - 1;
997
Chris Lattnerb2acc512003-10-19 21:09:10 +0000998 // If this is a comparison against zero, emit more efficient code. We
999 // can't handle unsigned comparisons against zero unless they are == or
1000 // !=. These should have been strength reduced already anyway.
1001 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
Chris Lattnerde95c9e2004-10-17 06:10:40 +00001002
1003 // If this is a comparison against zero and the LHS is an and of a
1004 // register with a constant, use the test to do the and.
1005 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
1006 if (Op0I->getOpcode() == Instruction::And && Op0->hasOneUse() &&
1007 isa<ConstantInt>(Op0I->getOperand(1))) {
1008 static const unsigned TESTTab[] = {
1009 X86::TEST8ri, X86::TEST16ri, X86::TEST32ri
1010 };
1011
1012 // Emit test X, i
1013 unsigned LHS = getReg(Op0I->getOperand(0), MBB, IP);
1014 unsigned Imm =
1015 cast<ConstantInt>(Op0I->getOperand(1))->getRawValue();
1016 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(LHS).addImm(Imm);
1017
Chris Lattnerde95c9e2004-10-17 06:10:40 +00001018 if (OpNum == 2) return 6; // Map jl -> js
1019 if (OpNum == 3) return 7; // Map jg -> jns
1020 return OpNum;
1021 }
1022
1023 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001024 static const unsigned TESTTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001025 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
Chris Lattnerb2acc512003-10-19 21:09:10 +00001026 };
Chris Lattneree352852004-02-29 07:22:16 +00001027 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001028
1029 if (OpNum == 2) return 6; // Map jl -> js
1030 if (OpNum == 3) return 7; // Map jg -> jns
1031 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +00001032 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001033
1034 static const unsigned CMPTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001035 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
Chris Lattnerb2acc512003-10-19 21:09:10 +00001036 };
1037
Chris Lattnerde95c9e2004-10-17 06:10:40 +00001038 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattneree352852004-02-29 07:22:16 +00001039 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001040 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +00001041 } else {
Chris Lattnerde95c9e2004-10-17 06:10:40 +00001042 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnere80e6372004-04-06 16:02:27 +00001043 assert(Class == cLong && "Unknown integer class!");
1044 unsigned LowCst = CI->getRawValue();
1045 unsigned HiCst = CI->getRawValue() >> 32;
1046 if (OpNum < 2) { // seteq, setne
1047 unsigned LoTmp = Op0r;
1048 if (LowCst != 0) {
1049 LoTmp = makeAnotherReg(Type::IntTy);
1050 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
1051 }
1052 unsigned HiTmp = Op0r+1;
1053 if (HiCst != 0) {
1054 HiTmp = makeAnotherReg(Type::IntTy);
Chris Lattner48c937e2004-04-06 17:34:50 +00001055 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
Chris Lattnere80e6372004-04-06 16:02:27 +00001056 }
1057 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
1058 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
1059 return OpNum;
Chris Lattner48c937e2004-04-06 17:34:50 +00001060 } else {
Tanya Lattner9855b842004-12-01 18:27:03 +00001061 // Emit a sequence of code which compares the high and low parts once
1062 // each, then uses a conditional move to handle the overflow case. For
1063 // example, a setlt for long would generate code like this:
1064 //
1065 // AL = lo(op1) < lo(op2) // Always unsigned comparison
1066 // BL = hi(op1) < hi(op2) // Signedness depends on operands
1067 // dest = hi(op1) == hi(op2) ? BL : AL;
1068 //
1069
1070 // FIXME: This would be much better if we had hierarchical register
1071 // classes! Until then, hardcode registers so that we can deal with
1072 // their aliases (because we don't have conditional byte moves).
1073 //
1074 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
1075 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
1076 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
1077 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
1078 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1079 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
1080 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
1081 .addReg(X86::AX);
1082 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1083 // register at this point for long values...
Chris Lattner48c937e2004-04-06 17:34:50 +00001084 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +00001085 }
Chris Lattner333864d2003-06-05 19:30:30 +00001086 }
Chris Lattnere80e6372004-04-06 16:02:27 +00001087 }
Chris Lattner333864d2003-06-05 19:30:30 +00001088
Chris Lattnerde95c9e2004-10-17 06:10:40 +00001089 unsigned Op0r = getReg(Op0, MBB, IP);
1090
Chris Lattner9f08a922004-02-03 18:54:04 +00001091 // Special case handling of comparison against +/- 0.0
1092 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
1093 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
Chris Lattneree352852004-02-29 07:22:16 +00001094 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001095 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00001096 BuildMI(*MBB, IP, X86::SAHF, 1);
Chris Lattner9f08a922004-02-03 18:54:04 +00001097 return OpNum;
1098 }
1099
Chris Lattner58c41fe2003-08-24 19:19:47 +00001100 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001101 switch (Class) {
1102 default: assert(0 && "Unknown type class!");
1103 // Emit: cmp <var1>, <var2> (do the comparison). We can
1104 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
1105 // 32-bit.
1106 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001107 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001108 break;
1109 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001110 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001111 break;
1112 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001113 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001114 break;
1115 case cFP:
Chris Lattner01cdb1b2004-06-11 05:33:49 +00001116 emitUCOMr(MBB, IP, Op0r, Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001117 break;
1118
1119 case cLong:
1120 if (OpNum < 2) { // seteq, setne
1121 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1122 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1123 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001124 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
1125 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
1126 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +00001127 break; // Allow the sete or setne to be generated from flags set by OR
1128 } else {
1129 // Emit a sequence of code which compares the high and low parts once
1130 // each, then uses a conditional move to handle the overflow case. For
1131 // example, a setlt for long would generate code like this:
1132 //
1133 // AL = lo(op1) < lo(op2) // Signedness depends on operands
1134 // BL = hi(op1) < hi(op2) // Always unsigned comparison
Chris Lattner9984fd02004-05-09 23:16:33 +00001135 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner3e130a22003-01-13 00:32:26 +00001136 //
1137
Chris Lattner6d40c192003-01-16 16:43:00 +00001138 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +00001139 // classes! Until then, hardcode registers so that we can deal with their
1140 // aliases (because we don't have conditional byte moves).
1141 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001142 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattneree352852004-02-29 07:22:16 +00001143 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001144 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattneree352852004-02-29 07:22:16 +00001145 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
1146 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1147 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001148 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
Chris Lattneree352852004-02-29 07:22:16 +00001149 .addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +00001150 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1151 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +00001152 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +00001153 }
1154 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001155 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +00001156}
Chris Lattner3e130a22003-01-13 00:32:26 +00001157
Chris Lattner6d40c192003-01-16 16:43:00 +00001158/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
1159/// register, then move it to wherever the result should be.
1160///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001161void X86ISel::visitSetCondInst(SetCondInst &I) {
Chris Lattner307ecba2004-03-30 22:39:09 +00001162 if (canFoldSetCCIntoBranchOrSelect(&I))
1163 return; // Fold this into a branch or select.
Chris Lattner6d40c192003-01-16 16:43:00 +00001164
Chris Lattner6d40c192003-01-16 16:43:00 +00001165 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001166 MachineBasicBlock::iterator MII = BB->end();
1167 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
1168 DestReg);
1169}
Chris Lattner6d40c192003-01-16 16:43:00 +00001170
Chris Lattner58c41fe2003-08-24 19:19:47 +00001171/// emitSetCCOperation - Common code shared between visitSetCondInst and
1172/// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +00001173///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001174void X86ISel::emitSetCCOperation(MachineBasicBlock *MBB,
1175 MachineBasicBlock::iterator IP,
1176 Value *Op0, Value *Op1, unsigned Opcode,
1177 unsigned TargetReg) {
Chris Lattner58c41fe2003-08-24 19:19:47 +00001178 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001179 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001180
Chris Lattnerb2acc512003-10-19 21:09:10 +00001181 const Type *CompTy = Op0->getType();
1182 unsigned CompClass = getClassB(CompTy);
1183 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1184
Tanya Lattner9855b842004-12-01 18:27:03 +00001185 if (CompClass != cLong || OpNum < 2) {
1186 // Handle normal comparisons with a setcc instruction...
1187 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
1188 } else {
1189 // Handle long comparisons by copying the value which is already in BL into
1190 // the register we want...
1191 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
1192 }
Brian Gaeke1749d632002-11-07 17:59:21 +00001193}
Chris Lattner51b49a92002-11-02 19:45:49 +00001194
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001195void X86ISel::visitSelectInst(SelectInst &SI) {
Chris Lattner12d96a02004-03-30 21:22:00 +00001196 unsigned DestReg = getReg(SI);
1197 MachineBasicBlock::iterator MII = BB->end();
1198 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1199 SI.getFalseValue(), DestReg);
1200}
1201
1202/// emitSelect - Common code shared between visitSelectInst and the constant
1203/// expression support.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001204void X86ISel::emitSelectOperation(MachineBasicBlock *MBB,
1205 MachineBasicBlock::iterator IP,
1206 Value *Cond, Value *TrueVal, Value *FalseVal,
1207 unsigned DestReg) {
Chris Lattner12d96a02004-03-30 21:22:00 +00001208 unsigned SelectClass = getClassB(TrueVal->getType());
1209
1210 // We don't support 8-bit conditional moves. If we have incoming constants,
1211 // transform them into 16-bit constants to avoid having a run-time conversion.
1212 if (SelectClass == cByte) {
1213 if (Constant *T = dyn_cast<Constant>(TrueVal))
1214 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1215 if (Constant *F = dyn_cast<Constant>(FalseVal))
1216 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1217 }
1218
Chris Lattner82c5a992004-04-13 21:56:09 +00001219 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1220 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1221 if (TrueReg == FalseReg) {
1222 static const unsigned Opcode[] = {
1223 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1224 };
1225 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1226 if (SelectClass == cLong)
1227 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1228 return;
1229 }
1230
Chris Lattner307ecba2004-03-30 22:39:09 +00001231 unsigned Opcode;
1232 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1233 // We successfully folded the setcc into the select instruction.
1234
1235 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1236 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1237 IP);
1238
1239 const Type *CompTy = SCI->getOperand(0)->getType();
1240 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1241
1242 // LLVM -> X86 signed X86 unsigned
1243 // ----- ---------- ------------
1244 // seteq -> cmovNE cmovNE
1245 // setne -> cmovE cmovE
1246 // setlt -> cmovGE cmovAE
1247 // setge -> cmovL cmovB
1248 // setgt -> cmovLE cmovBE
1249 // setle -> cmovG cmovA
1250 // ----
1251 // cmovNS // Used by comparison with 0 optimization
1252 // cmovS
1253
1254 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001255 default: assert(0 && "Unknown value class!");
1256 case cFP: {
1257 // Annoyingly, we don't have a full set of floating point conditional
1258 // moves. :(
1259 static const unsigned OpcodeTab[2][8] = {
1260 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1261 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1262 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1263 };
1264 Opcode = OpcodeTab[isSigned][OpNum];
1265
1266 // If opcode == 0, we hit a case that we don't support. Output a setcc
1267 // and compare the result against zero.
1268 if (Opcode == 0) {
1269 unsigned CompClass = getClassB(CompTy);
1270 unsigned CondReg;
1271 if (CompClass != cLong || OpNum < 2) {
1272 CondReg = makeAnotherReg(Type::BoolTy);
1273 // Handle normal comparisons with a setcc instruction...
1274 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1275 } else {
1276 // Long comparisons end up in the BL register.
1277 CondReg = X86::BL;
1278 }
1279
Chris Lattner68626c22004-03-31 22:22:36 +00001280 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner352eb482004-03-31 22:03:35 +00001281 Opcode = X86::FCMOVE;
1282 }
1283 break;
1284 }
Chris Lattner307ecba2004-03-30 22:39:09 +00001285 case cByte:
1286 case cShort: {
1287 static const unsigned OpcodeTab[2][8] = {
1288 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1289 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1290 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1291 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1292 };
1293 Opcode = OpcodeTab[isSigned][OpNum];
1294 break;
1295 }
1296 case cInt:
1297 case cLong: {
1298 static const unsigned OpcodeTab[2][8] = {
1299 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1300 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1301 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1302 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1303 };
1304 Opcode = OpcodeTab[isSigned][OpNum];
1305 break;
1306 }
1307 }
1308 } else {
1309 // Get the value being branched on, and use it to set the condition codes.
1310 unsigned CondReg = getReg(Cond, MBB, IP);
Chris Lattner68626c22004-03-31 22:22:36 +00001311 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner307ecba2004-03-30 22:39:09 +00001312 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001313 default: assert(0 && "Unknown value class!");
1314 case cFP: Opcode = X86::FCMOVE; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001315 case cByte:
Chris Lattner352eb482004-03-31 22:03:35 +00001316 case cShort: Opcode = X86::CMOVE16rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001317 case cInt:
Chris Lattner352eb482004-03-31 22:03:35 +00001318 case cLong: Opcode = X86::CMOVE32rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001319 }
1320 }
Chris Lattner12d96a02004-03-30 21:22:00 +00001321
Chris Lattner12d96a02004-03-30 21:22:00 +00001322 unsigned RealDestReg = DestReg;
Chris Lattner12d96a02004-03-30 21:22:00 +00001323
Chris Lattner12d96a02004-03-30 21:22:00 +00001324
1325 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1326 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1327 // cmove, then truncate the result.
1328 if (SelectClass == cByte) {
1329 DestReg = makeAnotherReg(Type::ShortTy);
1330 if (getClassB(TrueVal->getType()) == cByte) {
1331 // Promote the true value, by storing it into AL, and reading from AX.
1332 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1333 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1334 TrueReg = makeAnotherReg(Type::ShortTy);
1335 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1336 }
1337 if (getClassB(FalseVal->getType()) == cByte) {
1338 // Promote the true value, by storing it into CL, and reading from CX.
1339 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1340 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1341 FalseReg = makeAnotherReg(Type::ShortTy);
1342 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1343 }
1344 }
1345
1346 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1347
1348 switch (SelectClass) {
1349 case cByte:
1350 // We did the computation with 16-bit registers. Truncate back to our
1351 // result by copying into AX then copying out AL.
1352 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1353 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1354 break;
1355 case cLong:
1356 // Move the upper half of the value as well.
1357 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1358 break;
1359 }
1360}
Chris Lattner58c41fe2003-08-24 19:19:47 +00001361
1362
1363
Brian Gaekec2505982002-11-30 11:57:28 +00001364/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1365/// operand, in the specified target register.
Misha Brukman538607f2004-03-01 23:53:11 +00001366///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001367void X86ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
Chris Lattner9984fd02004-05-09 23:16:33 +00001368 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001369
Chris Lattner29bf0622004-04-06 01:21:00 +00001370 Value *Val = VR.Val;
1371 const Type *Ty = VR.Ty;
Chris Lattner502e36c2004-04-06 01:25:33 +00001372 if (Val) {
Chris Lattner29bf0622004-04-06 01:21:00 +00001373 if (Constant *C = dyn_cast<Constant>(Val)) {
1374 Val = ConstantExpr::getCast(C, Type::IntTy);
1375 Ty = Type::IntTy;
1376 }
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001377
Chris Lattner502e36c2004-04-06 01:25:33 +00001378 // If this is a simple constant, just emit a MOVri directly to avoid the
1379 // copy.
1380 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1381 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
Chris Lattner2b10b082004-05-12 16:35:04 +00001382 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
Chris Lattner502e36c2004-04-06 01:25:33 +00001383 return;
1384 }
1385 }
1386
Chris Lattner29bf0622004-04-06 01:21:00 +00001387 // Make sure we have the register number for this value...
1388 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1389
1390 switch (getClassB(Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +00001391 case cByte:
1392 // Extend value into target register (8->32)
1393 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001394 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001395 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001396 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001397 break;
1398 case cShort:
1399 // Extend value into target register (16->32)
1400 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001401 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001402 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001403 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001404 break;
1405 case cInt:
1406 // Move value into target register (32->32)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001407 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001408 break;
1409 default:
1410 assert(0 && "Unpromotable operand class in promote32");
1411 }
Brian Gaekec2505982002-11-30 11:57:28 +00001412}
Chris Lattnerc5291f52002-10-27 21:16:59 +00001413
Chris Lattner72614082002-10-25 22:55:53 +00001414/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1415/// we have the following possibilities:
1416///
1417/// ret void: No return value, simply emit a 'ret' instruction
1418/// ret sbyte, ubyte : Extend value into EAX and return
1419/// ret short, ushort: Extend value into EAX and return
1420/// ret int, uint : Move value into EAX and return
1421/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +00001422/// ret long, ulong : Move value into EAX/EDX and return
1423/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +00001424///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001425void X86ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001426 if (I.getNumOperands() == 0) {
1427 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1428 return;
1429 }
1430
1431 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001432 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +00001433 case cByte: // integral return values: extend or move into EAX and return
1434 case cShort:
1435 case cInt:
Chris Lattner29bf0622004-04-06 01:21:00 +00001436 promote32(X86::EAX, ValueRecord(RetVal));
Chris Lattnerdbd73722003-05-06 21:32:22 +00001437 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001438 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001439 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001440 case cFP: { // Floats & Doubles: Return in ST(0)
1441 unsigned RetReg = getReg(RetVal);
Chris Lattner3e130a22003-01-13 00:32:26 +00001442 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001443 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001444 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001445 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001446 }
1447 case cLong: {
1448 unsigned RetReg = getReg(RetVal);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001449 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1450 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001451 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001452 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1453 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001454 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001455 }
Chris Lattner94af4142002-12-25 05:13:53 +00001456 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001457 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001458 }
Chris Lattner43189d12002-11-17 20:07:45 +00001459 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +00001460 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +00001461}
1462
Chris Lattner55f6fab2003-01-16 18:07:23 +00001463// getBlockAfter - Return the basic block which occurs lexically after the
1464// specified one.
1465static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1466 Function::iterator I = BB; ++I; // Get iterator to next block
1467 return I != BB->getParent()->end() ? &*I : 0;
1468}
1469
Chris Lattner51b49a92002-11-02 19:45:49 +00001470/// visitBranchInst - Handle conditional and unconditional branches here. Note
1471/// that since code layout is frozen at this point, that if we are trying to
1472/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +00001473/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +00001474///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001475void X86ISel::visitBranchInst(BranchInst &BI) {
Brian Gaekeea9ca672004-04-28 04:19:37 +00001476 // Update machine-CFG edges
1477 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1478 if (BI.isConditional())
1479 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1480
Chris Lattner55f6fab2003-01-16 18:07:23 +00001481 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1482
1483 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001484 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001485 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner6d40c192003-01-16 16:43:00 +00001486 return;
1487 }
1488
1489 // See if we can fold the setcc into the branch itself...
Chris Lattner307ecba2004-03-30 22:39:09 +00001490 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
Chris Lattner6d40c192003-01-16 16:43:00 +00001491 if (SCI == 0) {
1492 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1493 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +00001494 unsigned condReg = getReg(BI.getCondition());
Chris Lattner68626c22004-03-31 22:22:36 +00001495 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001496 if (BI.getSuccessor(1) == NextBB) {
1497 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001498 BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001499 } else {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001500 BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001501
1502 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001503 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001504 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001505 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001506 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001507
1508 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +00001509 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001510 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001511
1512 const Type *CompTy = SCI->getOperand(0)->getType();
1513 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +00001514
Chris Lattnerb2acc512003-10-19 21:09:10 +00001515
Chris Lattner6d40c192003-01-16 16:43:00 +00001516 // LLVM -> X86 signed X86 unsigned
1517 // ----- ---------- ------------
1518 // seteq -> je je
1519 // setne -> jne jne
1520 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +00001521 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +00001522 // setgt -> jg ja
1523 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +00001524 // ----
1525 // js // Used by comparison with 0 optimization
1526 // jns
1527
1528 static const unsigned OpcodeTab[2][8] = {
1529 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1530 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1531 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001532 };
1533
Chris Lattner55f6fab2003-01-16 18:07:23 +00001534 if (BI.getSuccessor(0) != NextBB) {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001535 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1536 .addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001537 if (BI.getSuccessor(1) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001538 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001539 } else {
1540 // Change to the inverse condition...
1541 if (BI.getSuccessor(1) != NextBB) {
1542 OpNum ^= 1;
Brian Gaeke9f088e42004-05-14 06:54:56 +00001543 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1544 .addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001545 }
1546 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001547}
1548
Chris Lattner3e130a22003-01-13 00:32:26 +00001549
1550/// doCall - This emits an abstract call instruction, setting up the arguments
1551/// and the return value as appropriate. For the actual function call itself,
1552/// it inserts the specified CallMI instruction into the stream.
1553///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001554void X86ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1555 const std::vector<ValueRecord> &Args) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001556 // Count how many bytes are to be pushed on the stack...
1557 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001558
Chris Lattner3e130a22003-01-13 00:32:26 +00001559 if (!Args.empty()) {
1560 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1561 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001562 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001563 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001564 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001565 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001566 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001567 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1568 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001569 default: assert(0 && "Unknown class!");
1570 }
1571
1572 // Adjust the stack pointer for the new arguments...
Chris Lattneree352852004-02-29 07:22:16 +00001573 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
Chris Lattner065faeb2002-12-28 20:24:02 +00001574
1575 // Arguments go on the stack in reverse order, as specified by the ABI.
1576 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001577 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattnerce6096f2004-03-01 02:34:08 +00001578 unsigned ArgReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001579 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001580 case cByte:
Chris Lattner2b10b082004-05-12 16:35:04 +00001581 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1582 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1583 .addImm(Args[i].Val == ConstantBool::True);
1584 break;
1585 }
1586 // FALL THROUGH
Chris Lattner21585222004-03-01 02:42:43 +00001587 case cShort:
1588 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1589 // Zero/Sign extend constant, then stuff into memory.
1590 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1591 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1592 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1593 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1594 } else {
1595 // Promote arg to 32 bits wide into a temporary register...
1596 ArgReg = makeAnotherReg(Type::UIntTy);
1597 promote32(ArgReg, Args[i]);
1598 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1599 X86::ESP, ArgOffset).addReg(ArgReg);
1600 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001601 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001602 case cInt:
Chris Lattner21585222004-03-01 02:42:43 +00001603 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1604 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1605 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1606 X86::ESP, ArgOffset).addImm(Val);
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00001607 } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
1608 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1609 X86::ESP, ArgOffset).addImm(0);
Chris Lattner21585222004-03-01 02:42:43 +00001610 } else {
1611 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1612 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1613 X86::ESP, ArgOffset).addReg(ArgReg);
1614 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001615 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001616 case cLong:
Chris Lattner92900a62004-04-06 03:23:00 +00001617 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1618 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1619 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1620 X86::ESP, ArgOffset).addImm(Val & ~0U);
1621 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1622 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1623 } else {
1624 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1625 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1626 X86::ESP, ArgOffset).addReg(ArgReg);
1627 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1628 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1629 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001630 ArgOffset += 4; // 8 byte entry, not 4.
1631 break;
1632
Chris Lattner065faeb2002-12-28 20:24:02 +00001633 case cFP:
Chris Lattner7ab65932005-01-08 05:45:24 +00001634 if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(Args[i].Val)) {
Chris Lattner8c926282005-01-08 06:59:50 +00001635 // Store constant FP values with integer instructions to avoid having
1636 // to load the constants from the constant pool then do a store.
Chris Lattner7ab65932005-01-08 05:45:24 +00001637 if (CFP->getType() == Type::FloatTy) {
1638 union {
1639 unsigned I;
1640 float F;
1641 } V;
1642 V.F = CFP->getValue();
1643 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1644 X86::ESP, ArgOffset).addImm(V.I);
1645 } else {
1646 union {
1647 uint64_t I;
1648 double F;
1649 } V;
1650 V.F = CFP->getValue();
1651 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1652 X86::ESP, ArgOffset).addImm((unsigned)V.I);
1653 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1654 X86::ESP, ArgOffset+4).addImm(unsigned(V.I >> 32));
1655 ArgOffset += 4; // 8 byte entry, not 4.
1656 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001657 } else {
Chris Lattner7ab65932005-01-08 05:45:24 +00001658 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1659 if (Args[i].Ty == Type::FloatTy) {
1660 addRegOffset(BuildMI(BB, X86::FST32m, 5),
1661 X86::ESP, ArgOffset).addReg(ArgReg);
1662 } else {
1663 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1664 addRegOffset(BuildMI(BB, X86::FST64m, 5),
1665 X86::ESP, ArgOffset).addReg(ArgReg);
1666 ArgOffset += 4; // 8 byte entry, not 4.
1667 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001668 }
1669 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001670
Chris Lattner3e130a22003-01-13 00:32:26 +00001671 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001672 }
1673 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001674 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001675 } else {
Chris Lattneree352852004-02-29 07:22:16 +00001676 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001677 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001678
Chris Lattner3e130a22003-01-13 00:32:26 +00001679 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001680
Chris Lattneree352852004-02-29 07:22:16 +00001681 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001682
1683 // If there is a return value, scavenge the result from the location the call
1684 // leaves it in...
1685 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001686 if (Ret.Ty != Type::VoidTy) {
1687 unsigned DestClass = getClassB(Ret.Ty);
1688 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001689 case cByte:
1690 case cShort:
1691 case cInt: {
1692 // Integral results are in %eax, or the appropriate portion
1693 // thereof.
1694 static const unsigned regRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001695 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
Brian Gaeke20244b72002-12-12 15:33:40 +00001696 };
1697 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001698 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001699 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001700 }
Chris Lattner94af4142002-12-25 05:13:53 +00001701 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001702 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001703 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001704 case cLong: // Long values are left in EDX:EAX
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001705 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1706 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
Chris Lattner3e130a22003-01-13 00:32:26 +00001707 break;
1708 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001709 }
Chris Lattnera3243642002-12-04 23:45:28 +00001710 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001711}
Chris Lattner2df035b2002-11-02 19:27:56 +00001712
Chris Lattner3e130a22003-01-13 00:32:26 +00001713
1714/// visitCallInst - Push args on stack and do a procedure call instruction.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001715void X86ISel::visitCallInst(CallInst &CI) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001716 MachineInstr *TheCall;
1717 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001718 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001719 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001720 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1721 return;
1722 }
1723
Chris Lattner3e130a22003-01-13 00:32:26 +00001724 // Emit a CALL instruction with PC-relative displacement.
1725 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1726 } else { // Emit an indirect call...
1727 unsigned Reg = getReg(CI.getCalledValue());
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001728 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001729 }
1730
1731 std::vector<ValueRecord> Args;
1732 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001733 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001734
1735 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1736 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001737}
Chris Lattner3e130a22003-01-13 00:32:26 +00001738
Chris Lattner44827152003-12-28 09:47:19 +00001739/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1740/// function, lowering any calls to unknown intrinsic functions into the
1741/// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +00001742///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001743void X86ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
Chris Lattner44827152003-12-28 09:47:19 +00001744 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1745 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1746 if (CallInst *CI = dyn_cast<CallInst>(I++))
1747 if (Function *F = CI->getCalledFunction())
1748 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001749 case Intrinsic::not_intrinsic:
Chris Lattner317201d2004-03-13 00:24:00 +00001750 case Intrinsic::vastart:
1751 case Intrinsic::vacopy:
1752 case Intrinsic::vaend:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001753 case Intrinsic::returnaddress:
1754 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001755 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001756 case Intrinsic::memset:
Chris Lattnerdc572442004-06-15 21:36:44 +00001757 case Intrinsic::isunordered:
John Criswell4ffff9e2004-04-08 20:31:47 +00001758 case Intrinsic::readport:
1759 case Intrinsic::writeport:
Chris Lattner44827152003-12-28 09:47:19 +00001760 // We directly implement these intrinsics
1761 break;
John Criswelle5a4c152004-04-13 22:13:14 +00001762 case Intrinsic::readio: {
1763 // On X86, memory operations are in-order. Lower this intrinsic
1764 // into a volatile load.
1765 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001766 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1767 CI->replaceAllUsesWith(LI);
1768 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001769 break;
1770 }
1771 case Intrinsic::writeio: {
1772 // On X86, memory operations are in-order. Lower this intrinsic
1773 // into a volatile store.
1774 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001775 StoreInst *LI = new StoreInst(CI->getOperand(1),
1776 CI->getOperand(2), true, CI);
1777 CI->replaceAllUsesWith(LI);
1778 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001779 break;
1780 }
Chris Lattner44827152003-12-28 09:47:19 +00001781 default:
1782 // All other intrinsic calls we must lower.
1783 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001784 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001785 if (Before) { // Move iterator to instruction after call
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001786 I = Before; ++I;
Chris Lattner44827152003-12-28 09:47:19 +00001787 } else {
1788 I = BB->begin();
1789 }
1790 }
Chris Lattner44827152003-12-28 09:47:19 +00001791}
1792
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001793void X86ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001794 unsigned TmpReg1, TmpReg2;
1795 switch (ID) {
Chris Lattner5634b9f2004-03-13 00:24:52 +00001796 case Intrinsic::vastart:
Chris Lattnereca195e2003-05-08 19:44:13 +00001797 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001798 TmpReg1 = getReg(CI);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001799 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001800 return;
1801
Chris Lattner5634b9f2004-03-13 00:24:52 +00001802 case Intrinsic::vacopy:
Chris Lattner73815062003-10-18 05:56:40 +00001803 TmpReg1 = getReg(CI);
1804 TmpReg2 = getReg(CI.getOperand(1));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001805 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001806 return;
Chris Lattner5634b9f2004-03-13 00:24:52 +00001807 case Intrinsic::vaend: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001808
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001809 case Intrinsic::returnaddress:
1810 case Intrinsic::frameaddress:
1811 TmpReg1 = getReg(CI);
1812 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
Chris Lattner8cdbc352004-12-17 00:46:51 +00001813 if (ReturnAddressIndex == 0) {
Chris Lattner11cf7aa2004-12-17 00:07:46 +00001814 // Set up a frame object for the return address.
1815 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
1816 }
1817
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001818 if (ID == Intrinsic::returnaddress) {
1819 // Just load the return address
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001820 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001821 ReturnAddressIndex);
1822 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001823 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001824 ReturnAddressIndex, -4);
1825 }
1826 } else {
1827 // Values other than zero are not implemented yet.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001828 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001829 }
1830 return;
1831
Chris Lattnerdc572442004-06-15 21:36:44 +00001832 case Intrinsic::isunordered:
1833 TmpReg1 = getReg(CI.getOperand(1));
1834 TmpReg2 = getReg(CI.getOperand(2));
1835 emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
1836 TmpReg2 = getReg(CI);
1837 BuildMI(BB, X86::SETPr, 0, TmpReg2);
1838 return;
1839
Chris Lattner915e5e52004-02-12 17:53:22 +00001840 case Intrinsic::memcpy: {
1841 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1842 unsigned Align = 1;
1843 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1844 Align = AlignC->getRawValue();
1845 if (Align == 0) Align = 1;
1846 }
1847
1848 // Turn the byte code into # iterations
Chris Lattner915e5e52004-02-12 17:53:22 +00001849 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001850 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001851 switch (Align & 3) {
1852 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001853 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1854 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1855 } else {
1856 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001857 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001858 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001859 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001860 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001861 break;
1862 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001863 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1864 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1865 } else {
1866 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001867 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001868 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001869 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001870 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001871 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001872 default: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001873 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001874 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001875 break;
1876 }
1877
1878 // No matter what the alignment is, we put the source in ESI, the
1879 // destination in EDI, and the count in ECX.
1880 TmpReg1 = getReg(CI.getOperand(1));
1881 TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001882 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1883 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1884 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001885 BuildMI(BB, Opcode, 0);
1886 return;
1887 }
1888 case Intrinsic::memset: {
1889 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1890 unsigned Align = 1;
1891 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1892 Align = AlignC->getRawValue();
1893 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001894 }
1895
Chris Lattner2a0f2242004-02-14 04:46:05 +00001896 // Turn the byte code into # iterations
Chris Lattner2a0f2242004-02-14 04:46:05 +00001897 unsigned CountReg;
1898 unsigned Opcode;
1899 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1900 unsigned Val = ValC->getRawValue() & 255;
1901
1902 // If the value is a constant, then we can potentially use larger copies.
1903 switch (Align & 3) {
1904 case 2: // WORD aligned
1905 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001906 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001907 } else {
1908 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001909 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001910 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001911 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001912 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001913 Opcode = X86::REP_STOSW;
1914 break;
1915 case 0: // DWORD aligned
1916 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001917 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001918 } else {
1919 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001920 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001921 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001922 }
1923 Val = (Val << 8) | Val;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001924 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001925 Opcode = X86::REP_STOSD;
1926 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001927 default: // BYTE aligned
Chris Lattner2a0f2242004-02-14 04:46:05 +00001928 CountReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001929 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001930 Opcode = X86::REP_STOSB;
1931 break;
1932 }
1933 } else {
1934 // If it's not a constant value we are storing, just fall back. We could
1935 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1936 unsigned ValReg = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001937 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001938 CountReg = getReg(CI.getOperand(3));
1939 Opcode = X86::REP_STOSB;
1940 }
1941
1942 // No matter what the alignment is, we put the source in ESI, the
1943 // destination in EDI, and the count in ECX.
1944 TmpReg1 = getReg(CI.getOperand(1));
1945 //TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001946 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1947 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001948 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001949 return;
1950 }
1951
Chris Lattner87e18de2004-04-13 17:20:37 +00001952 case Intrinsic::readport: {
1953 // First, determine that the size of the operand falls within the acceptable
1954 // range for this architecture.
John Criswell4ffff9e2004-04-08 20:31:47 +00001955 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001956 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
John Criswellca6ea0f2004-04-08 22:39:13 +00001957 std::cerr << "llvm.readport: Address size is not 16 bits\n";
Chris Lattner87e18de2004-04-13 17:20:37 +00001958 exit(1);
John Criswellca6ea0f2004-04-08 22:39:13 +00001959 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001960
John Criswell4ffff9e2004-04-08 20:31:47 +00001961 // Now, move the I/O port address into the DX register and use the IN
1962 // instruction to get the input data.
1963 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001964 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1965 unsigned DestReg = getReg(CI);
John Criswell4ffff9e2004-04-08 20:31:47 +00001966
Chris Lattner87e18de2004-04-13 17:20:37 +00001967 // If the port is a single-byte constant, use the immediate form.
1968 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1969 if ((C->getRawValue() & 255) == C->getRawValue()) {
1970 switch (Class) {
1971 case cByte:
1972 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1973 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1974 return;
1975 case cShort:
1976 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1977 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1978 return;
1979 case cInt:
1980 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1981 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1982 return;
1983 }
1984 }
1985
1986 unsigned Reg = getReg(CI.getOperand(1));
1987 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1988 switch (Class) {
1989 case cByte:
1990 BuildMI(BB, X86::IN8rr, 0);
1991 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1992 break;
1993 case cShort:
1994 BuildMI(BB, X86::IN16rr, 0);
1995 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1996 break;
1997 case cInt:
1998 BuildMI(BB, X86::IN32rr, 0);
1999 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
2000 break;
2001 default:
2002 std::cerr << "Cannot do input on this data type";
John Criswellca6ea0f2004-04-08 22:39:13 +00002003 exit (1);
2004 }
John Criswell4ffff9e2004-04-08 20:31:47 +00002005 return;
Chris Lattner87e18de2004-04-13 17:20:37 +00002006 }
John Criswell4ffff9e2004-04-08 20:31:47 +00002007
Chris Lattner87e18de2004-04-13 17:20:37 +00002008 case Intrinsic::writeport: {
2009 // First, determine that the size of the operand falls within the
2010 // acceptable range for this architecture.
2011 if (getClass(CI.getOperand(2)->getType()) != cShort) {
2012 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
2013 exit(1);
2014 }
2015
2016 unsigned Class = getClassB(CI.getOperand(1)->getType());
2017 unsigned ValReg = getReg(CI.getOperand(1));
2018 switch (Class) {
2019 case cByte:
2020 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
2021 break;
2022 case cShort:
2023 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
2024 break;
2025 case cInt:
2026 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
2027 break;
2028 default:
2029 std::cerr << "llvm.writeport: invalid data type for X86 target";
2030 exit(1);
2031 }
2032
2033
2034 // If the port is a single-byte constant, use the immediate form.
2035 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
2036 if ((C->getRawValue() & 255) == C->getRawValue()) {
2037 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
2038 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
2039 return;
2040 }
2041
2042 // Otherwise, move the I/O port address into the DX register and the value
2043 // to write into the AL/AX/EAX register.
2044 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
2045 unsigned Reg = getReg(CI.getOperand(2));
2046 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
2047 BuildMI(BB, Opc[Class], 0);
2048 return;
2049 }
2050
Chris Lattner44827152003-12-28 09:47:19 +00002051 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00002052 }
2053}
2054
Chris Lattner7dee5da2004-03-08 01:58:35 +00002055static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
2056 if (LI.getParent() != User.getParent())
2057 return false;
2058 BasicBlock::iterator It = &LI;
2059 // Check all of the instructions between the load and the user. We should
2060 // really use alias analysis here, but for now we just do something simple.
2061 for (++It; It != BasicBlock::iterator(&User); ++It) {
2062 switch (It->getOpcode()) {
Chris Lattner85c84e72004-03-18 06:29:54 +00002063 case Instruction::Free:
Chris Lattner7dee5da2004-03-08 01:58:35 +00002064 case Instruction::Store:
2065 case Instruction::Call:
2066 case Instruction::Invoke:
2067 return false;
Chris Lattner133dbb12004-04-12 03:02:48 +00002068 case Instruction::Load:
2069 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
2070 return false;
2071 break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00002072 }
2073 }
2074 return true;
2075}
2076
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002077/// visitSimpleBinary - Implement simple binary operators for integral types...
2078/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
2079/// Xor.
Misha Brukman538607f2004-03-01 23:53:11 +00002080///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002081void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002082 unsigned DestReg = getReg(B);
2083 MachineBasicBlock::iterator MI = BB->end();
Chris Lattner721d2d42004-03-08 01:18:36 +00002084 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00002085 unsigned Class = getClassB(B.getType());
Chris Lattner721d2d42004-03-08 01:18:36 +00002086
Chris Lattnerde95c9e2004-10-17 06:10:40 +00002087 // If this is AND X, C, and it is only used by a setcc instruction, it will
2088 // be folded. There is no need to emit this instruction.
2089 if (B.hasOneUse() && OperatorClass == 2 && isa<ConstantInt>(Op1))
2090 if (Class == cByte || Class == cShort || Class == cInt) {
2091 Instruction *Use = cast<Instruction>(B.use_back());
2092 if (isa<SetCondInst>(Use) &&
2093 Use->getOperand(1) == Constant::getNullValue(B.getType())) {
2094 switch (getSetCCNumber(Use->getOpcode())) {
2095 case 0:
2096 case 1:
2097 return;
2098 default:
2099 if (B.getType()->isSigned()) return;
2100 }
2101 }
2102 }
2103
Chris Lattner7dee5da2004-03-08 01:58:35 +00002104 // Special case: op Reg, load [mem]
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00002105 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
Chris Lattnerccd97962004-06-17 22:15:25 +00002106 Op0->hasOneUse() &&
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00002107 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
Chris Lattner7dee5da2004-03-08 01:58:35 +00002108 if (!B.swapOperands())
2109 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2110
Chris Lattnerccd97962004-06-17 22:15:25 +00002111 if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
Chris Lattner7dee5da2004-03-08 01:58:35 +00002112 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
2113
Chris Lattner95157f72004-04-11 22:05:45 +00002114 unsigned Opcode;
2115 if (Class != cFP) {
2116 static const unsigned OpcodeTab[][3] = {
2117 // Arithmetic operators
2118 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
2119 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
2120
2121 // Bitwise operators
2122 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
2123 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
2124 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
2125 };
2126 Opcode = OpcodeTab[OperatorClass][Class];
2127 } else {
2128 static const unsigned OpcodeTab[][2] = {
2129 { X86::FADD32m, X86::FADD64m }, // ADD
2130 { X86::FSUB32m, X86::FSUB64m }, // SUB
2131 };
2132 const Type *Ty = Op0->getType();
2133 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2134 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
2135 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00002136
Chris Lattner7dee5da2004-03-08 01:58:35 +00002137 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002138 if (AllocaInst *AI =
2139 dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
2140 unsigned FI = getFixedSizedAllocaFI(AI);
2141 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
2142
2143 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002144 X86AddressMode AM;
2145 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002146
Reid Spencerfc989e12004-08-30 00:13:26 +00002147 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002148 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00002149 return;
2150 }
2151
Chris Lattner95157f72004-04-11 22:05:45 +00002152 // If this is a floating point subtract, check to see if we can fold the first
2153 // operand in.
2154 if (Class == cFP && OperatorClass == 1 &&
2155 isa<LoadInst>(Op0) &&
2156 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
2157 const Type *Ty = Op0->getType();
2158 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2159 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
2160
Chris Lattner95157f72004-04-11 22:05:45 +00002161 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002162 if (AllocaInst *AI =
2163 dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
2164 unsigned FI = getFixedSizedAllocaFI(AI);
2165 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
2166 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002167 X86AddressMode AM;
2168 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002169
Reid Spencerfc989e12004-08-30 00:13:26 +00002170 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002171 }
Chris Lattner95157f72004-04-11 22:05:45 +00002172 return;
2173 }
2174
Chris Lattner721d2d42004-03-08 01:18:36 +00002175 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002176}
Chris Lattner3e130a22003-01-13 00:32:26 +00002177
Chris Lattner6621ed92004-04-11 21:23:56 +00002178
2179/// emitBinaryFPOperation - This method handles emission of floating point
2180/// Add (0), Sub (1), Mul (2), and Div (3) operations.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002181void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
2182 MachineBasicBlock::iterator IP,
2183 Value *Op0, Value *Op1,
2184 unsigned OperatorClass, unsigned DestReg) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002185 // Special case: op Reg, <const fp>
2186 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
2187 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
2188 // Create a constant pool entry for this constant.
2189 MachineConstantPool *CP = F->getConstantPool();
2190 unsigned CPI = CP->getConstantPoolIndex(Op1C);
2191 const Type *Ty = Op1->getType();
2192
2193 static const unsigned OpcodeTab[][4] = {
2194 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
2195 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
2196 };
2197
2198 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2199 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2200 unsigned Op0r = getReg(Op0, BB, IP);
2201 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2202 DestReg).addReg(Op0r), CPI);
2203 return;
2204 }
2205
Chris Lattner13c07fe2004-04-12 00:12:04 +00002206 // Special case: R1 = op <const fp>, R2
Chris Lattner6621ed92004-04-11 21:23:56 +00002207 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
2208 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
2209 // -0.0 - X === -X
2210 unsigned op1Reg = getReg(Op1, BB, IP);
2211 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
2212 return;
2213 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
Chris Lattner13c07fe2004-04-12 00:12:04 +00002214 // R1 = op CST, R2 --> R1 = opr R2, CST
Chris Lattner6621ed92004-04-11 21:23:56 +00002215
2216 // Create a constant pool entry for this constant.
2217 MachineConstantPool *CP = F->getConstantPool();
2218 unsigned CPI = CP->getConstantPoolIndex(CFP);
2219 const Type *Ty = CFP->getType();
2220
2221 static const unsigned OpcodeTab[][4] = {
2222 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
2223 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
2224 };
2225
2226 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2227 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2228 unsigned Op1r = getReg(Op1, BB, IP);
2229 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2230 DestReg).addReg(Op1r), CPI);
2231 return;
2232 }
2233
2234 // General case.
2235 static const unsigned OpcodeTab[4] = {
2236 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
2237 };
2238
2239 unsigned Opcode = OpcodeTab[OperatorClass];
2240 unsigned Op0r = getReg(Op0, BB, IP);
2241 unsigned Op1r = getReg(Op1, BB, IP);
2242 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2243}
2244
Chris Lattnerb2acc512003-10-19 21:09:10 +00002245/// emitSimpleBinaryOperation - Implement simple binary operators for integral
2246/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2247/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00002248///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002249/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2250/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002251///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002252void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
2253 MachineBasicBlock::iterator IP,
2254 Value *Op0, Value *Op1,
2255 unsigned OperatorClass,
2256 unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002257 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00002258
Chris Lattner6621ed92004-04-11 21:23:56 +00002259 if (Class == cFP) {
2260 assert(OperatorClass < 2 && "No logical ops for FP!");
2261 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2262 return;
2263 }
2264
Chris Lattner48b0c972004-04-11 20:26:20 +00002265 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
Chris Lattner667ea022004-06-18 00:50:37 +00002266 if (OperatorClass == 1) {
Chris Lattner48b0c972004-04-11 20:26:20 +00002267 static unsigned const NEGTab[] = {
2268 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2269 };
Chris Lattner667ea022004-06-18 00:50:37 +00002270
2271 // sub 0, X -> neg X
2272 if (CI->isNullValue()) {
2273 unsigned op1Reg = getReg(Op1, MBB, IP);
2274 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
Chris Lattner48b0c972004-04-11 20:26:20 +00002275
Chris Lattner667ea022004-06-18 00:50:37 +00002276 if (Class == cLong) {
2277 // We just emitted: Dl = neg Sl
2278 // Now emit : T = addc Sh, 0
2279 // : Dh = neg T
2280 unsigned T = makeAnotherReg(Type::IntTy);
2281 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2282 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
2283 }
2284 return;
2285 } else if (Op1->hasOneUse() && Class != cLong) {
2286 // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better
2287 // than copying C into a temporary register, because of register
2288 // pressure (tmp and destreg can share a register.
2289 static unsigned const ADDRITab[] = {
2290 X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
2291 };
2292 unsigned op1Reg = getReg(Op1, MBB, IP);
2293 unsigned Tmp = makeAnotherReg(Op0->getType());
2294 BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
Chris Lattner30483732004-06-20 07:49:54 +00002295 BuildMI(*MBB, IP, ADDRITab[Class], 2,
2296 DestReg).addReg(Tmp).addImm(CI->getRawValue());
Chris Lattner667ea022004-06-18 00:50:37 +00002297 return;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002298 }
Chris Lattner48b0c972004-04-11 20:26:20 +00002299 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002300
Chris Lattner48b0c972004-04-11 20:26:20 +00002301 // Special case: op Reg, <const int>
2302 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner721d2d42004-03-08 01:18:36 +00002303 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002304
Chris Lattner721d2d42004-03-08 01:18:36 +00002305 // xor X, -1 -> not X
2306 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002307 static unsigned const NOTTab[] = {
2308 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2309 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002310 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002311 if (Class == cLong) // Invert the top part too
2312 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
Chris Lattner721d2d42004-03-08 01:18:36 +00002313 return;
2314 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002315
Chris Lattner721d2d42004-03-08 01:18:36 +00002316 // add X, -1 -> dec X
Chris Lattner06521672004-04-06 03:36:57 +00002317 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2318 // Note that we can't use dec for 64-bit decrements, because it does not
2319 // set the carry flag!
2320 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
Chris Lattner721d2d42004-03-08 01:18:36 +00002321 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2322 return;
2323 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002324
Chris Lattner721d2d42004-03-08 01:18:36 +00002325 // add X, 1 -> inc X
Chris Lattner06521672004-04-06 03:36:57 +00002326 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2327 // Note that we can't use inc for 64-bit increments, because it does not
2328 // set the carry flag!
2329 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
Alkis Evlogimenosbee8a092004-04-02 18:11:32 +00002330 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattner721d2d42004-03-08 01:18:36 +00002331 return;
2332 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002333
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002334 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002335 // Arithmetic operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002336 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2337 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
Chris Lattnerb2acc512003-10-19 21:09:10 +00002338
Chris Lattner721d2d42004-03-08 01:18:36 +00002339 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002340 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2341 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2342 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
Chris Lattner721d2d42004-03-08 01:18:36 +00002343 };
2344
Chris Lattner721d2d42004-03-08 01:18:36 +00002345 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner33f7fa32004-04-06 03:15:53 +00002346 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner721d2d42004-03-08 01:18:36 +00002347
Chris Lattner33f7fa32004-04-06 03:15:53 +00002348 if (Class != cLong) {
2349 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2350 return;
Chris Lattner6621ed92004-04-11 21:23:56 +00002351 }
2352
2353 // If this is a long value and the high or low bits have a special
2354 // property, emit some special cases.
2355 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2356
2357 // If the constant is zero in the low 32-bits, just copy the low part
2358 // across and apply the normal 32-bit operation to the high parts. There
2359 // will be no carry or borrow into the top.
2360 if (Op1l == 0) {
2361 if (OperatorClass != 2) // All but and...
2362 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2363 else
2364 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2365 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2366 .addReg(Op0r+1).addImm(Op1h);
Chris Lattner33f7fa32004-04-06 03:15:53 +00002367 return;
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002368 }
Chris Lattner6621ed92004-04-11 21:23:56 +00002369
2370 // If this is a logical operation and the top 32-bits are zero, just
2371 // operate on the lower 32.
2372 if (Op1h == 0 && OperatorClass > 1) {
2373 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2374 .addReg(Op0r).addImm(Op1l);
2375 if (OperatorClass != 2) // All but and
2376 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2377 else
2378 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2379 return;
2380 }
2381
2382 // TODO: We could handle lots of other special cases here, such as AND'ing
2383 // with 0xFFFFFFFF00000000 -> noop, etc.
2384
2385 // Otherwise, code generate the full operation with a constant.
2386 static const unsigned TopTab[] = {
2387 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2388 };
2389
2390 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2391 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2392 .addReg(Op0r+1).addImm(Op1h);
2393 return;
Chris Lattner721d2d42004-03-08 01:18:36 +00002394 }
2395
2396 // Finally, handle the general case now.
Chris Lattner7ba92302004-04-06 02:13:25 +00002397 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002398 // Arithmetic operators
Chris Lattner6621ed92004-04-11 21:23:56 +00002399 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2400 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
Chris Lattner721d2d42004-03-08 01:18:36 +00002401
Chris Lattnerb2acc512003-10-19 21:09:10 +00002402 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002403 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2404 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2405 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
Chris Lattnerb2acc512003-10-19 21:09:10 +00002406 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002407
Chris Lattnerb2acc512003-10-19 21:09:10 +00002408 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner721d2d42004-03-08 01:18:36 +00002409 unsigned Op0r = getReg(Op0, MBB, IP);
2410 unsigned Op1r = getReg(Op1, MBB, IP);
2411 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2412
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002413 if (Class == cLong) { // Handle the upper 32 bits of long values...
Chris Lattner721d2d42004-03-08 01:18:36 +00002414 static const unsigned TopTab[] = {
2415 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2416 };
2417 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2418 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2419 }
Chris Lattnere2954c82002-11-02 20:04:26 +00002420}
2421
Chris Lattner3e130a22003-01-13 00:32:26 +00002422/// doMultiply - Emit appropriate instructions to multiply together the
2423/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2424/// result should be given as DestTy.
2425///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002426void X86ISel::doMultiply(MachineBasicBlock *MBB,
2427 MachineBasicBlock::iterator MBBI,
2428 unsigned DestReg, const Type *DestTy,
2429 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002430 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00002431 switch (Class) {
Chris Lattner0f1c4612003-06-21 17:16:58 +00002432 case cInt:
2433 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002434 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00002435 .addReg(op0Reg).addReg(op1Reg);
2436 return;
2437 case cByte:
2438 // Must use the MUL instruction, which forces use of AL...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002439 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2440 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2441 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
Chris Lattner0f1c4612003-06-21 17:16:58 +00002442 return;
Chris Lattner94af4142002-12-25 05:13:53 +00002443 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00002444 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00002445 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002446}
2447
Chris Lattnerb2acc512003-10-19 21:09:10 +00002448// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2449// returns zero when the input is not exactly a power of two.
2450static unsigned ExactLog2(unsigned Val) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002451 if (Val == 0 || (Val & (Val-1))) return 0;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002452 unsigned Count = 0;
2453 while (Val != 1) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00002454 Val >>= 1;
2455 ++Count;
2456 }
2457 return Count+1;
2458}
2459
Chris Lattner462fa822004-04-11 20:56:28 +00002460
2461/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2462/// 16, or 32-bit integer multiply by a constant.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002463void X86ISel::doMultiplyConst(MachineBasicBlock *MBB,
2464 MachineBasicBlock::iterator IP,
2465 unsigned DestReg, const Type *DestTy,
2466 unsigned op0Reg, unsigned ConstRHS) {
Chris Lattner6ab06d52004-04-06 04:55:43 +00002467 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2468 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002469 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
Chris Lattner596b97f2004-07-19 23:47:21 +00002470 static const unsigned NEGrTab[] = {X86::NEG8r , X86::NEG16r , X86::NEG32r };
Chris Lattner6ab06d52004-04-06 04:55:43 +00002471
Chris Lattnerb2acc512003-10-19 21:09:10 +00002472 unsigned Class = getClass(DestTy);
Chris Lattner596b97f2004-07-19 23:47:21 +00002473 unsigned TmpReg;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002474
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002475 // Handle special cases here.
2476 switch (ConstRHS) {
Chris Lattner596b97f2004-07-19 23:47:21 +00002477 case -2:
2478 TmpReg = makeAnotherReg(DestTy);
2479 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2480 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg);
2481 return;
2482 case -1:
2483 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg);
2484 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002485 case 0:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002486 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2487 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002488 case 1:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002489 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2490 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002491 case 2:
2492 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2493 return;
2494 case 3:
2495 case 5:
2496 case 9:
2497 if (Class == cInt) {
Reid Spencerfc989e12004-08-30 00:13:26 +00002498 X86AddressMode AM;
2499 AM.BaseType = X86AddressMode::RegBase;
2500 AM.Base.Reg = op0Reg;
2501 AM.Scale = ConstRHS-1;
2502 AM.IndexReg = op0Reg;
2503 AM.Disp = 0;
2504 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), AM);
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002505 return;
2506 }
Chris Lattner596b97f2004-07-19 23:47:21 +00002507 case -3:
2508 case -5:
2509 case -9:
2510 if (Class == cInt) {
2511 TmpReg = makeAnotherReg(DestTy);
Reid Spencerfc989e12004-08-30 00:13:26 +00002512 X86AddressMode AM;
2513 AM.BaseType = X86AddressMode::RegBase;
2514 AM.Base.Reg = op0Reg;
2515 AM.Scale = -ConstRHS-1;
2516 AM.IndexReg = op0Reg;
2517 AM.Disp = 0;
2518 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), AM);
Chris Lattner596b97f2004-07-19 23:47:21 +00002519 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg);
2520 return;
2521 }
Chris Lattner6ab06d52004-04-06 04:55:43 +00002522 }
2523
Chris Lattnerb2acc512003-10-19 21:09:10 +00002524 // If the element size is exactly a power of 2, use a shift to get it.
2525 if (unsigned Shift = ExactLog2(ConstRHS)) {
2526 switch (Class) {
2527 default: assert(0 && "Unknown class for this function!");
2528 case cByte:
Chris Lattner596b97f2004-07-19 23:47:21 +00002529 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002530 return;
2531 case cShort:
Chris Lattner596b97f2004-07-19 23:47:21 +00002532 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002533 return;
2534 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002535 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002536 return;
2537 }
2538 }
Chris Lattner596b97f2004-07-19 23:47:21 +00002539
2540 // If the element size is a negative power of 2, use a shift/neg to get it.
2541 if (unsigned Shift = ExactLog2(-ConstRHS)) {
2542 TmpReg = makeAnotherReg(DestTy);
2543 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2544 switch (Class) {
2545 default: assert(0 && "Unknown class for this function!");
2546 case cByte:
2547 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2548 return;
2549 case cShort:
2550 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2551 return;
2552 case cInt:
2553 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2554 return;
2555 }
2556 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00002557
2558 if (Class == cShort) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002559 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002560 return;
2561 } else if (Class == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002562 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002563 return;
2564 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002565
2566 // Most general case, emit a normal multiply...
Chris Lattner596b97f2004-07-19 23:47:21 +00002567 TmpReg = makeAnotherReg(DestTy);
Chris Lattneree352852004-02-29 07:22:16 +00002568 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002569
2570 // Emit a MUL to multiply the register holding the index by
2571 // elementSize, putting the result in OffsetReg.
2572 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2573}
2574
Chris Lattnerca9671d2002-11-02 20:28:58 +00002575/// visitMul - Multiplies are not simple binary operators because they must deal
2576/// with the EAX register explicitly.
2577///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002578void X86ISel::visitMul(BinaryOperator &I) {
Chris Lattner462fa822004-04-11 20:56:28 +00002579 unsigned ResultReg = getReg(I);
2580
Chris Lattner95157f72004-04-11 22:05:45 +00002581 Value *Op0 = I.getOperand(0);
2582 Value *Op1 = I.getOperand(1);
2583
2584 // Fold loads into floating point multiplies.
2585 if (getClass(Op0->getType()) == cFP) {
2586 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2587 if (!I.swapOperands())
2588 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2589 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2590 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2591 const Type *Ty = Op0->getType();
2592 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2593 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2594
Chris Lattner95157f72004-04-11 22:05:45 +00002595 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002596 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2597 unsigned FI = getFixedSizedAllocaFI(AI);
2598 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2599 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002600 X86AddressMode AM;
2601 getAddressingMode(LI->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002602
Reid Spencerfc989e12004-08-30 00:13:26 +00002603 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002604 }
Chris Lattner95157f72004-04-11 22:05:45 +00002605 return;
2606 }
2607 }
2608
Chris Lattner462fa822004-04-11 20:56:28 +00002609 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002610 emitMultiply(BB, IP, Op0, Op1, ResultReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002611}
2612
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002613void X86ISel::emitMultiply(MachineBasicBlock *MBB,
2614 MachineBasicBlock::iterator IP,
2615 Value *Op0, Value *Op1, unsigned DestReg) {
Chris Lattner462fa822004-04-11 20:56:28 +00002616 MachineBasicBlock &BB = *MBB;
2617 TypeClass Class = getClass(Op0->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +00002618
2619 // Simple scalar multiply?
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002620 unsigned Op0Reg = getReg(Op0, &BB, IP);
Chris Lattner462fa822004-04-11 20:56:28 +00002621 switch (Class) {
2622 case cByte:
2623 case cShort:
2624 case cInt:
2625 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner462fa822004-04-11 20:56:28 +00002626 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2627 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002628 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002629 unsigned Op1Reg = getReg(Op1, &BB, IP);
2630 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002631 }
Chris Lattner462fa822004-04-11 20:56:28 +00002632 return;
2633 case cFP:
Chris Lattner6621ed92004-04-11 21:23:56 +00002634 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2635 return;
Chris Lattner462fa822004-04-11 20:56:28 +00002636 case cLong:
2637 break;
2638 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002639
Chris Lattner462fa822004-04-11 20:56:28 +00002640 // Long value. We have to do things the hard way...
2641 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2642 unsigned CLow = CI->getRawValue();
2643 unsigned CHi = CI->getRawValue() >> 32;
2644
2645 if (CLow == 0) {
2646 // If the low part of the constant is all zeros, things are simple.
2647 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2648 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2649 return;
2650 }
2651
2652 // Multiply the two low parts... capturing carry into EDX
2653 unsigned OverflowReg = 0;
2654 if (CLow == 1) {
2655 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
Chris Lattner028adc42004-04-06 04:29:36 +00002656 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002657 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2658 OverflowReg = makeAnotherReg(Type::UIntTy);
2659 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2660 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2661 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
Chris Lattner028adc42004-04-06 04:29:36 +00002662
Chris Lattner462fa822004-04-11 20:56:28 +00002663 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2664 BuildMI(BB, IP, X86::MOV32rr, 1,
2665 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2666 }
2667
2668 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2669 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2670
2671 unsigned AHBLplusOverflowReg;
2672 if (OverflowReg) {
2673 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2674 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002675 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002676 } else {
2677 AHBLplusOverflowReg = AHBLReg;
2678 }
2679
2680 if (CHi == 0) {
2681 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2682 } else {
Chris Lattner028adc42004-04-06 04:29:36 +00002683 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattner462fa822004-04-11 20:56:28 +00002684 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
Chris Lattner028adc42004-04-06 04:29:36 +00002685
Chris Lattner462fa822004-04-11 20:56:28 +00002686 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002687 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2688 }
Chris Lattner462fa822004-04-11 20:56:28 +00002689 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002690 }
Chris Lattner462fa822004-04-11 20:56:28 +00002691
2692 // General 64x64 multiply
2693
2694 unsigned Op1Reg = getReg(Op1, &BB, IP);
2695 // Multiply the two low parts... capturing carry into EDX
2696 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2697 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2698
2699 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2700 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2701 BuildMI(BB, IP, X86::MOV32rr, 1,
2702 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2703
2704 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2705 BuildMI(BB, IP, X86::IMUL32rr, 2,
2706 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2707
2708 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2709 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2710 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2711
2712 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2713 BuildMI(BB, IP, X86::IMUL32rr, 2,
2714 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2715
2716 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2717 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002718}
Chris Lattnerca9671d2002-11-02 20:28:58 +00002719
Chris Lattner06925362002-11-17 21:56:38 +00002720
Chris Lattnerf01729e2002-11-02 20:54:46 +00002721/// visitDivRem - Handle division and remainder instructions... these
2722/// instruction both require the same instructions to be generated, they just
2723/// select the result from a different register. Note that both of these
2724/// instructions work differently for signed and unsigned operands.
2725///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002726void X86ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00002727 unsigned ResultReg = getReg(I);
Chris Lattner95157f72004-04-11 22:05:45 +00002728 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2729
2730 // Fold loads into floating point divides.
2731 if (getClass(Op0->getType()) == cFP) {
2732 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2733 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2734 const Type *Ty = Op0->getType();
2735 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2736 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2737
Chris Lattner95157f72004-04-11 22:05:45 +00002738 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002739 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2740 unsigned FI = getFixedSizedAllocaFI(AI);
2741 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2742 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002743 X86AddressMode AM;
2744 getAddressingMode(LI->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002745
Reid Spencerfc989e12004-08-30 00:13:26 +00002746 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002747 }
Chris Lattner95157f72004-04-11 22:05:45 +00002748 return;
2749 }
2750
2751 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2752 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2753 const Type *Ty = Op0->getType();
2754 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2755 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2756
Chris Lattner95157f72004-04-11 22:05:45 +00002757 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002758 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2759 unsigned FI = getFixedSizedAllocaFI(AI);
2760 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
2761 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002762 X86AddressMode AM;
2763 getAddressingMode(LI->getOperand(0), AM);
2764 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002765 }
Chris Lattner95157f72004-04-11 22:05:45 +00002766 return;
2767 }
2768 }
2769
Chris Lattner94af4142002-12-25 05:13:53 +00002770
Chris Lattnercadff442003-10-23 17:21:43 +00002771 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002772 emitDivRemOperation(BB, IP, Op0, Op1,
Chris Lattner462fa822004-04-11 20:56:28 +00002773 I.getOpcode() == Instruction::Div, ResultReg);
Chris Lattnercadff442003-10-23 17:21:43 +00002774}
2775
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002776void X86ISel::emitDivRemOperation(MachineBasicBlock *BB,
2777 MachineBasicBlock::iterator IP,
2778 Value *Op0, Value *Op1, bool isDiv,
2779 unsigned ResultReg) {
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002780 const Type *Ty = Op0->getType();
2781 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00002782 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002783 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00002784 if (isDiv) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002785 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2786 return;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002787 } else { // Floating point remainder...
Chris Lattner462fa822004-04-11 20:56:28 +00002788 unsigned Op0Reg = getReg(Op0, BB, IP);
2789 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002790 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002791 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002792 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002793 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2794 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002795 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2796 }
Chris Lattner94af4142002-12-25 05:13:53 +00002797 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002798 case cLong: {
2799 static const char *FnName[] =
2800 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
Chris Lattner462fa822004-04-11 20:56:28 +00002801 unsigned Op0Reg = getReg(Op0, BB, IP);
2802 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002803 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00002804 MachineInstr *TheCall =
2805 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2806
2807 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002808 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2809 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002810 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2811 return;
2812 }
2813 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00002814 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00002815 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00002816 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00002817
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002818 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
Chris Lattner2483f672004-10-06 05:01:07 +00002819 static const unsigned NEGOpcode[]={ X86::NEG8r, X86::NEG16r, X86::NEG32r };
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002820 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2821 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2822 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2823
2824 // Special case signed division by power of 2.
Chris Lattner2483f672004-10-06 05:01:07 +00002825 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1))
2826 if (isDiv) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002827 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2828 int V = CI->getValue();
2829
2830 if (V == 1) { // X /s 1 => X
2831 unsigned Op0Reg = getReg(Op0, BB, IP);
2832 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2833 return;
2834 }
2835
2836 if (V == -1) { // X /s -1 => -X
2837 unsigned Op0Reg = getReg(Op0, BB, IP);
2838 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2839 return;
2840 }
2841
Chris Lattner610f1e22004-10-06 04:02:39 +00002842 if (V == 2 || V == -2) { // X /s 2
2843 static const unsigned CMPOpcode[] = {
2844 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
2845 };
2846 static const unsigned SBBOpcode[] = {
2847 X86::SBB8ri, X86::SBB16ri, X86::SBB32ri
2848 };
2849 unsigned Op0Reg = getReg(Op0, BB, IP);
2850 unsigned SignBit = 1 << (CI->getType()->getPrimitiveSize()*8-1);
2851 BuildMI(*BB, IP, CMPOpcode[Class], 2).addReg(Op0Reg).addImm(SignBit);
2852
2853 unsigned TmpReg = makeAnotherReg(Op0->getType());
2854 BuildMI(*BB, IP, SBBOpcode[Class], 2, TmpReg).addReg(Op0Reg).addImm(-1);
2855
2856 unsigned TmpReg2 = V == 2 ? ResultReg : makeAnotherReg(Op0->getType());
2857 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg2).addReg(TmpReg).addImm(1);
2858 if (V == -2) {
2859 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg2);
2860 }
2861 return;
2862 }
2863
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002864 bool isNeg = false;
2865 if (V < 0) { // Not a positive power of 2?
2866 V = -V;
2867 isNeg = true; // Maybe it's a negative power of 2.
2868 }
2869 if (unsigned Log = ExactLog2(V)) {
2870 --Log;
2871 unsigned Op0Reg = getReg(Op0, BB, IP);
2872 unsigned TmpReg = makeAnotherReg(Op0->getType());
Chris Lattner3ffdff62004-10-06 04:19:43 +00002873 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2874 .addReg(Op0Reg).addImm(Log-1);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002875 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2876 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2877 .addReg(TmpReg).addImm(32-Log);
2878 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2879 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2880 .addReg(Op0Reg).addReg(TmpReg2);
2881
2882 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2883 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
Chris Lattner3ffdff62004-10-06 04:19:43 +00002884 .addReg(TmpReg3).addImm(Log);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002885 if (isNeg)
2886 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2887 return;
2888 }
Chris Lattner2483f672004-10-06 05:01:07 +00002889 } else { // X % C
2890 assert(Class != cLong && "This doesn't handle 64-bit remainder!");
2891 int V = CI->getValue();
2892
2893 if (V == 2 || V == -2) { // X % 2, X % -2
Chris Lattner2483f672004-10-06 05:01:07 +00002894 static const unsigned SExtOpcode[] = { X86::CBW, X86::CWD, X86::CDQ };
2895 static const unsigned BaseReg[] = { X86::AL , X86::AX , X86::EAX };
2896 static const unsigned SExtReg[] = { X86::AH , X86::DX , X86::EDX };
2897 static const unsigned ANDOpcode[] = {
2898 X86::AND8ri, X86::AND16ri, X86::AND32ri
2899 };
2900 static const unsigned XOROpcode[] = {
2901 X86::XOR8rr, X86::XOR16rr, X86::XOR32rr
2902 };
2903 static const unsigned SUBOpcode[] = {
2904 X86::SUB8rr, X86::SUB16rr, X86::SUB32rr
2905 };
2906
2907 // Sign extend result into reg of -1 or 0.
2908 unsigned Op0Reg = getReg(Op0, BB, IP);
2909 BuildMI(*BB, IP, MovOpcode[Class], 1, BaseReg[Class]).addReg(Op0Reg);
2910 BuildMI(*BB, IP, SExtOpcode[Class], 0);
2911 unsigned TmpReg0 = makeAnotherReg(Op0->getType());
2912 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg0).addReg(SExtReg[Class]);
2913
2914 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2915 BuildMI(*BB, IP, ANDOpcode[Class], 2, TmpReg1).addReg(Op0Reg).addImm(1);
2916
2917 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2918 BuildMI(*BB, IP, XOROpcode[Class], 2,
2919 TmpReg2).addReg(TmpReg1).addReg(TmpReg0);
2920 BuildMI(*BB, IP, SUBOpcode[Class], 2,
2921 ResultReg).addReg(TmpReg2).addReg(TmpReg0);
2922 return;
2923 }
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002924 }
2925
2926 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002927 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
Chris Lattnerf01729e2002-11-02 20:54:46 +00002928 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
Chris Lattner5384b382005-01-05 16:30:14 +00002929 static const unsigned SExOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +00002930
2931 static const unsigned DivOpcode[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002932 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2933 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00002934 };
2935
Chris Lattnerf01729e2002-11-02 20:54:46 +00002936 unsigned Reg = Regs[Class];
2937 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00002938
2939 // Put the first operand into one of the A registers...
Chris Lattner462fa822004-04-11 20:56:28 +00002940 unsigned Op0Reg = getReg(Op0, BB, IP);
2941 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattneree352852004-02-29 07:22:16 +00002942 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002943
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002944 if (Ty->isSigned()) {
Chris Lattner5384b382005-01-05 16:30:14 +00002945 // Emit a sign extension instruction.
2946 BuildMI(*BB, IP, SExOpcode[Class], 0);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002947
2948 // Emit the appropriate divide or remainder instruction...
2949 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002950 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00002951 // If unsigned, emit a zeroing instruction... (reg = 0)
Chris Lattneree352852004-02-29 07:22:16 +00002952 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002953
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002954 // Emit the appropriate divide or remainder instruction...
2955 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2956 }
Chris Lattner06925362002-11-17 21:56:38 +00002957
Chris Lattnerf01729e2002-11-02 20:54:46 +00002958 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00002959 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00002960
Chris Lattnerf01729e2002-11-02 20:54:46 +00002961 // Put the result into the destination register...
Chris Lattneree352852004-02-29 07:22:16 +00002962 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00002963}
Chris Lattnere2954c82002-11-02 20:04:26 +00002964
Chris Lattner06925362002-11-17 21:56:38 +00002965
Brian Gaekea1719c92002-10-31 23:03:59 +00002966/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2967/// for constant immediate shift values, and for constant immediate
2968/// shift values equal to 1. Even the general case is sort of special,
2969/// because the shift amount has to be in CL, not just any old register.
2970///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002971void X86ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002972 MachineBasicBlock::iterator IP = BB->end ();
2973 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2974 I.getOpcode () == Instruction::Shl, I.getType (),
2975 getReg (I));
2976}
2977
Chris Lattnerce7cafa2004-11-13 20:48:57 +00002978/// Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a
2979/// constant.
2980void X86ISel::doSHLDConst(MachineBasicBlock *MBB,
2981 MachineBasicBlock::iterator IP,
2982 unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg,
2983 unsigned Amt) {
2984 // SHLD is a very inefficient operation on every processor, try to do
2985 // somethign simpler for common values of 'Amt'.
2986 if (Amt == 0) {
2987 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
2988 } else if (Amt == 1) {
2989 unsigned Tmp = makeAnotherReg(Type::UIntTy);
2990 BuildMI(*MBB, IP, X86::ADD32rr, 2, Tmp).addReg(Op1Reg).addReg(Op1Reg);
2991 BuildMI(*MBB, IP, X86::ADC32rr, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
2992 } else if (Amt == 2 || Amt == 3) {
2993 // On the P4 and Athlon it is cheaper to replace shld ..., 2|3 with a
2994 // shift/lea pair. NOTE: This should not be done on the P6 family!
2995 unsigned Tmp = makeAnotherReg(Type::UIntTy);
2996 BuildMI(*MBB, IP, X86::SHR32ri, 2, Tmp).addReg(Op1Reg).addImm(32-Amt);
2997 X86AddressMode AM;
2998 AM.BaseType = X86AddressMode::RegBase;
2999 AM.Base.Reg = Tmp;
3000 AM.Scale = 1 << Amt;
3001 AM.IndexReg = Op0Reg;
3002 AM.Disp = 0;
3003 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 4, DestReg), AM);
3004 } else {
3005 // NOTE: It is always cheaper on the P4 to emit SHLD as two shifts and an OR
3006 // than it is to emit a real SHLD.
3007
3008 BuildMI(*MBB, IP, X86::SHLD32rri8, 3,
3009 DestReg).addReg(Op0Reg).addReg(Op1Reg).addImm(Amt);
3010 }
3011}
3012
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003013/// emitShiftOperation - Common code shared between visitShiftInst and
3014/// constant expression support.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003015void X86ISel::emitShiftOperation(MachineBasicBlock *MBB,
3016 MachineBasicBlock::iterator IP,
3017 Value *Op, Value *ShiftAmount,
3018 bool isLeftShift, const Type *ResultTy,
3019 unsigned DestReg) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003020 unsigned SrcReg = getReg (Op, MBB, IP);
3021 bool isSigned = ResultTy->isSigned ();
3022 unsigned Class = getClass (ResultTy);
Chris Lattnerde95c9e2004-10-17 06:10:40 +00003023
Chris Lattnerce7cafa2004-11-13 20:48:57 +00003024 static const unsigned ConstantOperand[][3] = {
3025 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri }, // SHR
3026 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }, // SAR
3027 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri }, // SHL
3028 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00003029 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00003030
Chris Lattnerce7cafa2004-11-13 20:48:57 +00003031 static const unsigned NonConstantOperand[][3] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003032 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
3033 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
3034 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
3035 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00003036 };
Chris Lattner796df732002-11-02 00:44:25 +00003037
Chris Lattnerce7cafa2004-11-13 20:48:57 +00003038 // Longs, as usual, are handled specially.
Chris Lattner3e130a22003-01-13 00:32:26 +00003039 if (Class == cLong) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003040 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003041 unsigned Amount = CUI->getValue();
Chris Lattner62f5a942004-11-13 20:04:38 +00003042 if (Amount == 1 && isLeftShift) { // X << 1 == X+X
Chris Lattner44205ca2004-11-13 20:03:48 +00003043 BuildMI(*MBB, IP, X86::ADD32rr, 2,
3044 DestReg).addReg(SrcReg).addReg(SrcReg);
3045 BuildMI(*MBB, IP, X86::ADC32rr, 2,
3046 DestReg+1).addReg(SrcReg+1).addReg(SrcReg+1);
3047 } else if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003048 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
3049 if (isLeftShift) {
Chris Lattnerce7cafa2004-11-13 20:48:57 +00003050 doSHLDConst(MBB, IP, DestReg+1, SrcReg+1, SrcReg, Amount);
Chris Lattneree352852004-02-29 07:22:16 +00003051 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003052 } else {
Chris Lattnerce7cafa2004-11-13 20:48:57 +00003053 BuildMI(*MBB, IP, X86::SHRD32rri8, 3,
3054 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
Chris Lattneree352852004-02-29 07:22:16 +00003055 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003056 }
Chris Lattner36c625d2004-11-15 23:16:34 +00003057 } else if (Amount == 32) {
3058 if (isLeftShift) {
3059 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
3060 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
3061 } else {
Chris Lattner39a83dc2004-11-16 18:40:52 +00003062 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
Chris Lattner36c625d2004-11-15 23:16:34 +00003063 if (!isSigned) {
3064 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
3065 } else {
3066 BuildMI(*MBB, IP, X86::SAR32ri, 2,
3067 DestReg+1).addReg(SrcReg).addImm(31);
3068 }
3069 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003070 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003071 Amount -= 32;
3072 if (isLeftShift) {
Chris Lattner36c625d2004-11-15 23:16:34 +00003073 BuildMI(*MBB, IP, X86::SHL32ri, 2,
3074 DestReg + 1).addReg(SrcReg).addImm(Amount);
Chris Lattner722070e2004-04-06 03:42:38 +00003075 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003076 } else {
Chris Lattner36c625d2004-11-15 23:16:34 +00003077 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
3078 DestReg).addReg(SrcReg+1).addImm(Amount);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003079 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003080 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003081 }
3082 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00003083 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Chris Lattner9171ef52003-06-01 01:56:54 +00003084 if (!isLeftShift && isSigned) {
3085 // If this is a SHR of a Long, then we need to do funny sign extension
3086 // stuff. TmpReg gets the value to use as the high-part if we are
3087 // shifting more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003088 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00003089 } else {
3090 // Other shifts use a fixed zero value if the shift is more than 32
3091 // bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003092 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00003093 }
3094
3095 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003096 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003097 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00003098
3099 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
3100 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
3101 if (isLeftShift) {
3102 // TmpReg2 = shld inHi, inLo
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003103 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
Chris Lattneree352852004-02-29 07:22:16 +00003104 .addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00003105 // TmpReg3 = shl inLo, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003106 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00003107
3108 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003109 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00003110
3111 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003112 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00003113 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
3114 // DestLo = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003115 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003116 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00003117 } else {
3118 // TmpReg2 = shrd inLo, inHi
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003119 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
Chris Lattneree352852004-02-29 07:22:16 +00003120 .addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00003121 // TmpReg3 = s[ah]r inHi, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003122 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00003123 .addReg(SrcReg+1);
3124
3125 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003126 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00003127
3128 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003129 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00003130 DestReg).addReg(TmpReg2).addReg(TmpReg3);
3131
3132 // DestHi = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003133 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00003134 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
3135 }
Brian Gaekea1719c92002-10-31 23:03:59 +00003136 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003137 return;
3138 }
Chris Lattnere9913f22002-11-02 01:41:55 +00003139
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003140 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003141 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
3142 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00003143
Chris Lattner44205ca2004-11-13 20:03:48 +00003144 if (CUI->getValue() == 1 && isLeftShift) { // X << 1 -> X+X
3145 static const int AddOpC[] = { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
3146 BuildMI(*MBB, IP, AddOpC[Class], 2,DestReg).addReg(SrcReg).addReg(SrcReg);
3147 } else {
3148 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
3149 BuildMI(*MBB, IP, Opc[Class], 2,
3150 DestReg).addReg(SrcReg).addImm(CUI->getValue());
3151 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003152 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003153 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003154 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00003155
Chris Lattner3e130a22003-01-13 00:32:26 +00003156 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00003157 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003158 }
3159}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00003160
Chris Lattner3e130a22003-01-13 00:32:26 +00003161
Chris Lattner6fc3c522002-11-17 21:11:55 +00003162/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00003163/// instruction. The load and store instructions are the only place where we
3164/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00003165///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003166void X86ISel::visitLoadInst(LoadInst &I) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00003167 // Check to see if this load instruction is going to be folded into a binary
3168 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
3169 // pattern matching instruction selector be nice?
Chris Lattner95157f72004-04-11 22:05:45 +00003170 unsigned Class = getClassB(I.getType());
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003171 if (I.hasOneUse()) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00003172 Instruction *User = cast<Instruction>(I.use_back());
3173 switch (User->getOpcode()) {
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003174 case Instruction::Cast:
3175 // If this is a cast from a signed-integer type to a floating point type,
3176 // fold the cast here.
John Criswell6b5bd582004-06-09 15:18:51 +00003177 if (getClassB(User->getType()) == cFP &&
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003178 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
3179 I.getType() == Type::LongTy)) {
3180 unsigned DestReg = getReg(User);
3181 static const unsigned Opcode[] = {
3182 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
3183 };
Chris Lattner9f1b5312004-05-13 15:12:43 +00003184
3185 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3186 unsigned FI = getFixedSizedAllocaFI(AI);
3187 addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
3188 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003189 X86AddressMode AM;
3190 getAddressingMode(I.getOperand(0), AM);
3191 addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003192 }
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003193 return;
3194 } else {
3195 User = 0;
3196 }
3197 break;
Chris Lattner13c07fe2004-04-12 00:12:04 +00003198
Chris Lattner7dee5da2004-03-08 01:58:35 +00003199 case Instruction::Add:
3200 case Instruction::Sub:
3201 case Instruction::And:
3202 case Instruction::Or:
3203 case Instruction::Xor:
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003204 if (Class == cLong) User = 0;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003205 break;
Chris Lattner95157f72004-04-11 22:05:45 +00003206 case Instruction::Mul:
3207 case Instruction::Div:
Chris Lattner13c07fe2004-04-12 00:12:04 +00003208 if (Class != cFP) User = 0;
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003209 break; // Folding only implemented for floating point.
Chris Lattner95157f72004-04-11 22:05:45 +00003210 default: User = 0; break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003211 }
3212
3213 if (User) {
3214 // Okay, we found a user. If the load is the first operand and there is
3215 // no second operand load, reverse the operand ordering. Note that this
3216 // can fail for a subtract (ie, no change will be made).
Chris Lattner3dbb5042004-07-21 21:28:26 +00003217 bool Swapped = false;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003218 if (!isa<LoadInst>(User->getOperand(1)))
Chris Lattner3dbb5042004-07-21 21:28:26 +00003219 Swapped = !cast<BinaryOperator>(User)->swapOperands();
Chris Lattner7dee5da2004-03-08 01:58:35 +00003220
3221 // Okay, now that everything is set up, if this load is used by the second
3222 // operand, and if there are no instructions that invalidate the load
3223 // before the binary operator, eliminate the load.
3224 if (User->getOperand(1) == &I &&
3225 isSafeToFoldLoadIntoInstruction(I, *User))
3226 return; // Eliminate the load!
Chris Lattner95157f72004-04-11 22:05:45 +00003227
3228 // If this is a floating point sub or div, we won't be able to swap the
3229 // operands, but we will still be able to eliminate the load.
3230 if (Class == cFP && User->getOperand(0) == &I &&
3231 !isa<LoadInst>(User->getOperand(1)) &&
3232 (User->getOpcode() == Instruction::Sub ||
3233 User->getOpcode() == Instruction::Div) &&
3234 isSafeToFoldLoadIntoInstruction(I, *User))
3235 return; // Eliminate the load!
Chris Lattner3dbb5042004-07-21 21:28:26 +00003236
3237 // If we swapped the operands to the instruction, but couldn't fold the
3238 // load anyway, swap them back. We don't want to break add X, int
3239 // folding.
3240 if (Swapped) cast<BinaryOperator>(User)->swapOperands();
Chris Lattner7dee5da2004-03-08 01:58:35 +00003241 }
3242 }
3243
Chris Lattner6ac1d712003-10-20 04:48:06 +00003244 static const unsigned Opcodes[] = {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003245 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
Chris Lattner3e130a22003-01-13 00:32:26 +00003246 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00003247 unsigned Opcode = Opcodes[Class];
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003248 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003249
3250 unsigned DestReg = getReg(I);
3251
3252 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3253 unsigned FI = getFixedSizedAllocaFI(AI);
3254 if (Class == cLong) {
3255 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
3256 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
3257 } else {
3258 addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
3259 }
3260 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003261 X86AddressMode AM;
3262 getAddressingMode(I.getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003263
3264 if (Class == cLong) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003265 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM);
3266 AM.Disp += 4;
3267 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003268 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003269 addFullAddress(BuildMI(BB, Opcode, 4, DestReg), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003270 }
3271 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003272}
3273
Chris Lattner6fc3c522002-11-17 21:11:55 +00003274/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
3275/// instruction.
3276///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003277void X86ISel::visitStoreInst(StoreInst &I) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003278 X86AddressMode AM;
3279 getAddressingMode(I.getOperand(1), AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003280
Chris Lattner6c09db22003-10-20 04:11:23 +00003281 const Type *ValTy = I.getOperand(0)->getType();
3282 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00003283
Chris Lattner5a830962004-02-25 02:56:58 +00003284 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
3285 uint64_t Val = CI->getRawValue();
3286 if (Class == cLong) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003287 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val & ~0U);
3288 AM.Disp += 4;
3289 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val>>32);
Chris Lattner5a830962004-02-25 02:56:58 +00003290 } else {
3291 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003292 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
Chris Lattner5a830962004-02-25 02:56:58 +00003293 };
3294 unsigned Opcode = Opcodes[Class];
Reid Spencerfc989e12004-08-30 00:13:26 +00003295 addFullAddress(BuildMI(BB, Opcode, 5), AM).addImm(Val);
Chris Lattner5a830962004-02-25 02:56:58 +00003296 }
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00003297 } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
Chris Lattner358a9022004-10-15 05:05:29 +00003298 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(0);
Chris Lattner5a830962004-02-25 02:56:58 +00003299 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003300 addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CB->getValue());
Chris Lattnere7a31c92004-05-07 21:18:15 +00003301 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
3302 // Store constant FP values with integer instructions to avoid having to
3303 // load the constants from the constant pool then do a store.
3304 if (CFP->getType() == Type::FloatTy) {
3305 union {
3306 unsigned I;
3307 float F;
3308 } V;
3309 V.F = CFP->getValue();
Reid Spencerfc989e12004-08-30 00:13:26 +00003310 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(V.I);
Chris Lattner5a830962004-02-25 02:56:58 +00003311 } else {
Chris Lattnere7a31c92004-05-07 21:18:15 +00003312 union {
3313 uint64_t I;
3314 double F;
3315 } V;
3316 V.F = CFP->getValue();
Reid Spencerfc989e12004-08-30 00:13:26 +00003317 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm((unsigned)V.I);
3318 AM.Disp += 4;
3319 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(
Chris Lattnere7a31c92004-05-07 21:18:15 +00003320 unsigned(V.I >> 32));
Chris Lattner5a830962004-02-25 02:56:58 +00003321 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00003322
3323 } else if (Class == cLong) {
3324 unsigned ValReg = getReg(I.getOperand(0));
Reid Spencerfc989e12004-08-30 00:13:26 +00003325 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg);
3326 AM.Disp += 4;
3327 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg+1);
Chris Lattnere7a31c92004-05-07 21:18:15 +00003328 } else {
Chris Lattner358a9022004-10-15 05:05:29 +00003329 // FIXME: stop emitting these two instructions:
3330 // movl $global,%eax
3331 // movl %eax,(%ebx)
3332 // when one instruction will suffice. That includes when the global
3333 // has an offset applied to it.
Chris Lattnere7a31c92004-05-07 21:18:15 +00003334 unsigned ValReg = getReg(I.getOperand(0));
3335 static const unsigned Opcodes[] = {
3336 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
3337 };
3338 unsigned Opcode = Opcodes[Class];
3339 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003340
Reid Spencerfc989e12004-08-30 00:13:26 +00003341 addFullAddress(BuildMI(BB, Opcode, 1+4), AM).addReg(ValReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003342 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00003343}
3344
3345
Misha Brukman538607f2004-03-01 23:53:11 +00003346/// visitCastInst - Here we have various kinds of copying with or without sign
3347/// extension going on.
3348///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003349void X86ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003350 Value *Op = CI.getOperand(0);
Chris Lattner427aeb42004-04-11 19:21:59 +00003351
Chris Lattner99382862004-04-12 00:23:04 +00003352 unsigned SrcClass = getClassB(Op->getType());
3353 unsigned DestClass = getClassB(CI.getType());
3354 // Noop casts are not emitted: getReg will return the source operand as the
3355 // register to use for any uses of the noop cast.
Chris Lattner8b486a12004-06-29 00:14:38 +00003356 if (DestClass == SrcClass) {
3357 // The only detail in this plan is that casts from double -> float are
3358 // truncating operations that we have to codegen through memory (despite
3359 // the fact that the source/dest registers are the same class).
3360 if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy)
3361 return;
3362 }
Chris Lattner427aeb42004-04-11 19:21:59 +00003363
Chris Lattnerf5854472003-06-21 16:01:24 +00003364 // If this is a cast from a 32-bit integer to a Long type, and the only uses
3365 // of the case are GEP instructions, then the cast does not need to be
3366 // generated explicitly, it will be folded into the GEP.
Chris Lattner99382862004-04-12 00:23:04 +00003367 if (DestClass == cLong && SrcClass == cInt) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003368 bool AllUsesAreGEPs = true;
3369 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
3370 if (!isa<GetElementPtrInst>(*I)) {
3371 AllUsesAreGEPs = false;
3372 break;
3373 }
3374
3375 // No need to codegen this cast if all users are getelementptr instrs...
3376 if (AllUsesAreGEPs) return;
3377 }
3378
Chris Lattner99382862004-04-12 00:23:04 +00003379 // If this cast converts a load from a short,int, or long integer to a FP
3380 // value, we will have folded this cast away.
3381 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
3382 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
3383 Op->getType() == Type::LongTy))
3384 return;
3385
3386
Chris Lattner548f61d2003-04-23 17:22:12 +00003387 unsigned DestReg = getReg(CI);
3388 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00003389 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00003390}
3391
Misha Brukman538607f2004-03-01 23:53:11 +00003392/// emitCastOperation - Common code shared between visitCastInst and constant
3393/// expression cast support.
3394///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003395void X86ISel::emitCastOperation(MachineBasicBlock *BB,
3396 MachineBasicBlock::iterator IP,
3397 Value *Src, const Type *DestTy,
3398 unsigned DestReg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003399 const Type *SrcTy = Src->getType();
3400 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00003401 unsigned DestClass = getClassB(DestTy);
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003402 unsigned SrcReg = getReg(Src, BB, IP);
3403
Chris Lattner3e130a22003-01-13 00:32:26 +00003404 // Implement casts to bool by using compare on the operand followed by set if
3405 // not zero on the result.
3406 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00003407 switch (SrcClass) {
3408 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003409 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003410 break;
3411 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003412 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003413 break;
3414 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003415 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003416 break;
3417 case cLong: {
3418 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003419 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner20772542003-06-01 03:38:24 +00003420 break;
3421 }
3422 case cFP:
Chris Lattneree352852004-02-29 07:22:16 +00003423 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003424 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00003425 BuildMI(*BB, IP, X86::SAHF, 1);
Chris Lattner311ca2e2004-02-23 03:21:41 +00003426 break;
Chris Lattner20772542003-06-01 03:38:24 +00003427 }
3428
3429 // If the zero flag is not set, then the value is true, set the byte to
3430 // true.
Chris Lattneree352852004-02-29 07:22:16 +00003431 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003432 return;
3433 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003434
3435 static const unsigned RegRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003436 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
Chris Lattner3e130a22003-01-13 00:32:26 +00003437 };
3438
3439 // Implement casts between values of the same type class (as determined by
3440 // getClass) by using a register-to-register move.
3441 if (SrcClass == DestClass) {
3442 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattneree352852004-02-29 07:22:16 +00003443 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003444 } else if (SrcClass == cFP) {
3445 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003446 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattneree352852004-02-29 07:22:16 +00003447 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003448 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003449 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3450 "Unknown cFP member!");
3451 // Truncate from double to float by storing to memory as short, then
3452 // reading it back.
3453 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00003454 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner5384b382005-01-05 16:30:14 +00003455 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5),
3456 FrameIdx).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003457 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003458 }
3459 } else if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003460 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3461 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003462 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00003463 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003464 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00003465 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003466 return;
3467 }
3468
3469 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3470 // or zero extension, depending on whether the source type was signed.
3471 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3472 SrcClass < DestClass) {
3473 bool isLong = DestClass == cLong;
3474 if (isLong) DestClass = cInt;
3475
3476 static const unsigned Opc[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003477 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3478 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
Chris Lattner3e130a22003-01-13 00:32:26 +00003479 };
3480
Chris Lattner96e3b422004-05-09 22:28:45 +00003481 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Chris Lattneree352852004-02-29 07:22:16 +00003482 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
Chris Lattner548f61d2003-04-23 17:22:12 +00003483 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003484
3485 if (isLong) { // Handle upper 32 bits as appropriate...
3486 if (isUnsigned) // Zero out top bits...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003487 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00003488 else // Sign extend bottom half...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003489 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00003490 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003491 return;
3492 }
3493
3494 // Special case long -> int ...
3495 if (SrcClass == cLong && DestClass == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003496 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003497 return;
3498 }
3499
3500 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3501 // move out of AX or AL.
3502 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3503 && SrcClass > DestClass) {
3504 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattneree352852004-02-29 07:22:16 +00003505 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3506 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00003507 return;
3508 }
3509
3510 // Handle casts from integer to floating point now...
3511 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003512 // Promote the integer to a type supported by FLD. We do this because there
3513 // are no unsigned FLD instructions, so we must promote an unsigned value to
3514 // a larger signed value, then use FLD on the larger value.
3515 //
3516 const Type *PromoteType = 0;
Chris Lattner85aa7092004-04-10 18:32:01 +00003517 unsigned PromoteOpcode = 0;
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003518 unsigned RealDestReg = DestReg;
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003519 switch (SrcTy->getTypeID()) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003520 case Type::BoolTyID:
3521 case Type::SByteTyID:
3522 // We don't have the facilities for directly loading byte sized data from
3523 // memory (even signed). Promote it to 16 bits.
3524 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003525 PromoteOpcode = X86::MOVSX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003526 break;
3527 case Type::UByteTyID:
3528 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003529 PromoteOpcode = X86::MOVZX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003530 break;
3531 case Type::UShortTyID:
3532 PromoteType = Type::IntTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003533 PromoteOpcode = X86::MOVZX32rr16;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003534 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003535 case Type::ULongTyID:
Chris Lattner56a31c62004-10-17 08:01:28 +00003536 case Type::UIntTyID:
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003537 // Don't fild into the read destination.
3538 DestReg = makeAnotherReg(Type::DoubleTy);
3539 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003540 default: // No promotion needed...
3541 break;
3542 }
3543
3544 if (PromoteType) {
3545 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner7b92de1e2004-04-06 19:29:36 +00003546 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003547 SrcTy = PromoteType;
3548 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00003549 SrcReg = TmpReg;
3550 }
3551
3552 // Spill the integer to memory and reload it from there...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003553 int FrameIdx =
3554 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Chris Lattner3e130a22003-01-13 00:32:26 +00003555
3556 if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003557 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003558 FrameIdx).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003559 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003560 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003561 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003562 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
Chris Lattneree352852004-02-29 07:22:16 +00003563 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3564 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003565 }
3566
3567 static const unsigned Op2[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003568 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
Chris Lattneree352852004-02-29 07:22:16 +00003569 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003570
Chris Lattner56a31c62004-10-17 08:01:28 +00003571 if (SrcTy == Type::UIntTy) {
3572 // If this is a cast from uint -> double, we need to be careful about if
3573 // the "sign" bit is set. If so, we don't want to make a negative number,
3574 // we want to make a positive number. Emit code to add an offset if the
3575 // sign bit is set.
3576
3577 // Compute whether the sign bit is set by shifting the reg right 31 bits.
3578 unsigned IsNeg = makeAnotherReg(Type::IntTy);
Chris Lattner6e7c47c2005-01-09 01:49:29 +00003579 BuildMI(*BB, IP, X86::SHR32ri, 2, IsNeg).addReg(SrcReg).addImm(31);
Chris Lattner56a31c62004-10-17 08:01:28 +00003580
3581 // Create a CP value that has the offset in one word and 0 in the other.
3582 static ConstantInt *TheOffset = ConstantUInt::get(Type::ULongTy,
3583 0x4f80000000000000ULL);
3584 unsigned CPI = F->getConstantPool()->getConstantPoolIndex(TheOffset);
Chris Lattner6e7c47c2005-01-09 01:49:29 +00003585 BuildMI(*BB, IP, X86::FADD32m, 5, RealDestReg).addReg(DestReg)
Chris Lattner56a31c62004-10-17 08:01:28 +00003586 .addConstantPoolIndex(CPI).addZImm(4).addReg(IsNeg).addSImm(0);
3587
3588 } else if (SrcTy == Type::ULongTy) {
3589 // We need special handling for unsigned 64-bit integer sources. If the
3590 // input number has the "sign bit" set, then we loaded it incorrectly as a
3591 // negative 64-bit number. In this case, add an offset value.
3592
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003593 // Emit a test instruction to see if the dynamic input value was signed.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003594 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003595
Chris Lattnerb6bac512004-02-25 06:13:04 +00003596 // If the sign bit is set, get a pointer to an offset, otherwise get a
3597 // pointer to a zero.
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003598 MachineConstantPool *CP = F->getConstantPool();
3599 unsigned Zero = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003600 Constant *Null = Constant::getNullValue(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003601 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003602 CP->getConstantPoolIndex(Null));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003603 unsigned Offset = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003604 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3605
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003606 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003607 CP->getConstantPoolIndex(OffsetCst));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003608 unsigned Addr = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003609 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003610
3611 // Load the constant for an add. FIXME: this could make an 'fadd' that
3612 // reads directly from memory, but we don't support these yet.
3613 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003614 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003615
Chris Lattneree352852004-02-29 07:22:16 +00003616 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3617 .addReg(ConstReg).addReg(DestReg);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003618 }
3619
Chris Lattner3e130a22003-01-13 00:32:26 +00003620 return;
3621 }
3622
3623 // Handle casts from floating point to integer now...
3624 if (SrcClass == cFP) {
3625 // Change the floating point control register to use "round towards zero"
3626 // mode when truncating to an integer value.
3627 //
3628 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003629 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003630
3631 // Load the old value of the high byte of the control word...
3632 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003633 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
Chris Lattneree352852004-02-29 07:22:16 +00003634 CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003635
3636 // Set the high part to be round to zero...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003637 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003638 CWFrameIdx, 1).addImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00003639
3640 // Reload the modified control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003641 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003642
3643 // Restore the memory image of control word to original value
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003644 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003645 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00003646
3647 // We don't have the facilities for directly storing byte sized data to
3648 // memory. Promote it to 16 bits. We also must promote unsigned values to
3649 // larger classes because we only have signed FP stores.
3650 unsigned StoreClass = DestClass;
3651 const Type *StoreTy = DestTy;
3652 if (StoreClass == cByte || DestTy->isUnsigned())
3653 switch (StoreClass) {
3654 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3655 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3656 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00003657 // The following treatment of cLong may not be perfectly right,
3658 // but it survives chains of casts of the form
3659 // double->ulong->double.
3660 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00003661 default: assert(0 && "Unknown store class!");
3662 }
3663
3664 // Spill the integer to memory and reload it from there...
3665 int FrameIdx =
3666 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3667
3668 static const unsigned Op1[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003669 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
Chris Lattneree352852004-02-29 07:22:16 +00003670 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3671 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003672
3673 if (DestClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003674 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3675 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
Chris Lattneree352852004-02-29 07:22:16 +00003676 FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00003677 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003678 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
Chris Lattneree352852004-02-29 07:22:16 +00003679 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003680 }
3681
3682 // Reload the original control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003683 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003684 return;
3685 }
3686
Brian Gaeked474e9c2002-12-06 10:49:33 +00003687 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00003688 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003689 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00003690}
Brian Gaekea1719c92002-10-31 23:03:59 +00003691
Chris Lattner73815062003-10-18 05:56:40 +00003692/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00003693///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003694void X86ISel::visitVANextInst(VANextInst &I) {
Chris Lattner73815062003-10-18 05:56:40 +00003695 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00003696 unsigned DestReg = getReg(I);
3697
Chris Lattnereca195e2003-05-08 19:44:13 +00003698 unsigned Size;
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003699 switch (I.getArgType()->getTypeID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00003700 default:
3701 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00003702 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00003703 return;
3704 case Type::PointerTyID:
3705 case Type::UIntTyID:
3706 case Type::IntTyID:
3707 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00003708 break;
3709 case Type::ULongTyID:
3710 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00003711 case Type::DoubleTyID:
3712 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00003713 break;
3714 }
3715
3716 // Increment the VAList pointer...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003717 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
Chris Lattner73815062003-10-18 05:56:40 +00003718}
Chris Lattnereca195e2003-05-08 19:44:13 +00003719
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003720void X86ISel::visitVAArgInst(VAArgInst &I) {
Chris Lattner73815062003-10-18 05:56:40 +00003721 unsigned VAList = getReg(I.getOperand(0));
3722 unsigned DestReg = getReg(I);
3723
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003724 switch (I.getType()->getTypeID()) {
Chris Lattner73815062003-10-18 05:56:40 +00003725 default:
3726 std::cerr << I;
3727 assert(0 && "Error: bad type for va_next instruction!");
3728 return;
3729 case Type::PointerTyID:
3730 case Type::UIntTyID:
3731 case Type::IntTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003732 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003733 break;
3734 case Type::ULongTyID:
3735 case Type::LongTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003736 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3737 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00003738 break;
3739 case Type::DoubleTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003740 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003741 break;
3742 }
Chris Lattnereca195e2003-05-08 19:44:13 +00003743}
3744
Misha Brukman538607f2004-03-01 23:53:11 +00003745/// visitGetElementPtrInst - instruction-select GEP instructions
3746///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003747void X86ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003748 // If this GEP instruction will be folded into all of its users, we don't need
3749 // to explicitly calculate it!
Reid Spencerfc989e12004-08-30 00:13:26 +00003750 X86AddressMode AM;
3751 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), AM)) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003752 // Check all of the users of the instruction to see if they are loads and
3753 // stores.
3754 bool AllWillFold = true;
3755 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3756 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3757 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3758 cast<Instruction>(*UI)->getOperand(0) == &I) {
3759 AllWillFold = false;
3760 break;
3761 }
3762
3763 // If the instruction is foldable, and will be folded into all users, don't
3764 // emit it!
3765 if (AllWillFold) return;
3766 }
3767
Chris Lattner3e130a22003-01-13 00:32:26 +00003768 unsigned outputReg = getReg(I);
Chris Lattner827832c2004-02-22 17:05:38 +00003769 emitGEPOperation(BB, BB->end(), I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00003770 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00003771}
3772
Chris Lattner985fe3d2004-02-25 03:45:50 +00003773/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3774/// GEPTypes (the derived types being stepped through at each level). On return
3775/// from this function, if some indexes of the instruction are representable as
3776/// an X86 lea instruction, the machine operands are put into the Ops
3777/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3778/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3779/// addressing mode that only partially consumes the input, the BaseReg input of
3780/// the addressing mode must be left free.
3781///
3782/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3783///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003784void X86ISel::getGEPIndex(MachineBasicBlock *MBB,
3785 MachineBasicBlock::iterator IP,
3786 std::vector<Value*> &GEPOps,
3787 std::vector<const Type*> &GEPTypes,
3788 X86AddressMode &AM) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003789 const TargetData &TD = TM.getTargetData();
3790
Chris Lattner985fe3d2004-02-25 03:45:50 +00003791 // Clear out the state we are working with...
Reid Spencerfc989e12004-08-30 00:13:26 +00003792 AM.BaseType = X86AddressMode::RegBase;
3793 AM.Base.Reg = 0; // No base register
3794 AM.Scale = 1; // Unit scale
3795 AM.IndexReg = 0; // No index register
3796 AM.Disp = 0; // No displacement
Chris Lattnerb6bac512004-02-25 06:13:04 +00003797
Chris Lattner985fe3d2004-02-25 03:45:50 +00003798 // While there are GEP indexes that can be folded into the current address,
3799 // keep processing them.
3800 while (!GEPTypes.empty()) {
3801 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3802 // It's a struct access. CUI is the index into the structure,
3803 // which names the field. This index must have unsigned type.
3804 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3805
3806 // Use the TargetData structure to pick out what the layout of the
3807 // structure is in memory. Since the structure index must be constant, we
3808 // can get its value and use it to find the right byte offset from the
3809 // StructLayout class's list of structure member offsets.
Reid Spencerfc989e12004-08-30 00:13:26 +00003810 AM.Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
Chris Lattner985fe3d2004-02-25 03:45:50 +00003811 GEPOps.pop_back(); // Consume a GEP operand
3812 GEPTypes.pop_back();
3813 } else {
3814 // It's an array or pointer access: [ArraySize x ElementType].
3815 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3816 Value *idx = GEPOps.back();
3817
3818 // idx is the index into the array. Unlike with structure
3819 // indices, we may not know its actual value at code-generation
3820 // time.
Chris Lattner985fe3d2004-02-25 03:45:50 +00003821
3822 // If idx is a constant, fold it into the offset.
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003823 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
Chris Lattner985fe3d2004-02-25 03:45:50 +00003824 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003825 AM.Disp += TypeSize*CSI->getValue();
Chris Lattner28977af2004-04-05 01:30:19 +00003826 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003827 AM.Disp += TypeSize*CUI->getValue();
Chris Lattner985fe3d2004-02-25 03:45:50 +00003828 } else {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003829 // If the index reg is already taken, we can't handle this index.
Reid Spencerfc989e12004-08-30 00:13:26 +00003830 if (AM.IndexReg) return;
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003831
3832 // If this is a size that we can handle, then add the index as
3833 switch (TypeSize) {
3834 case 1: case 2: case 4: case 8:
3835 // These are all acceptable scales on X86.
Reid Spencerfc989e12004-08-30 00:13:26 +00003836 AM.Scale = TypeSize;
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003837 break;
3838 default:
3839 // Otherwise, we can't handle this scale
3840 return;
3841 }
3842
3843 if (CastInst *CI = dyn_cast<CastInst>(idx))
3844 if (CI->getOperand(0)->getType() == Type::IntTy ||
3845 CI->getOperand(0)->getType() == Type::UIntTy)
3846 idx = CI->getOperand(0);
3847
Reid Spencerfc989e12004-08-30 00:13:26 +00003848 AM.IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003849 }
3850
3851 GEPOps.pop_back(); // Consume a GEP operand
3852 GEPTypes.pop_back();
3853 }
3854 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003855
Chris Lattnerdf040972004-05-23 21:23:12 +00003856 // GEPTypes is empty, which means we have a single operand left. Set it as
3857 // the base register.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003858 //
Reid Spencerfc989e12004-08-30 00:13:26 +00003859 assert(AM.Base.Reg == 0);
Chris Lattnerdf040972004-05-23 21:23:12 +00003860
Reid Spencerfc989e12004-08-30 00:13:26 +00003861 if (AllocaInst *AI = dyn_castFixedAlloca(GEPOps.back())) {
3862 AM.BaseType = X86AddressMode::FrameIndexBase;
3863 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
Chris Lattnerdf040972004-05-23 21:23:12 +00003864 GEPOps.pop_back();
3865 return;
Reid Spencerfc989e12004-08-30 00:13:26 +00003866 }
3867
Chris Lattner358a9022004-10-15 05:05:29 +00003868 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps.back())) {
3869 AM.GV = GV;
3870 GEPOps.pop_back();
3871 return;
Chris Lattnerdf040972004-05-23 21:23:12 +00003872 }
Chris Lattnerdf040972004-05-23 21:23:12 +00003873
Reid Spencerfc989e12004-08-30 00:13:26 +00003874 AM.Base.Reg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
Chris Lattnerb6bac512004-02-25 06:13:04 +00003875 GEPOps.pop_back(); // Consume the last GEP operand
Chris Lattner985fe3d2004-02-25 03:45:50 +00003876}
3877
3878
Chris Lattnerb6bac512004-02-25 06:13:04 +00003879/// isGEPFoldable - Return true if the specified GEP can be completely
3880/// folded into the addressing mode of a load/store or lea instruction.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003881bool X86ISel::isGEPFoldable(MachineBasicBlock *MBB,
3882 Value *Src, User::op_iterator IdxBegin,
3883 User::op_iterator IdxEnd, X86AddressMode &AM) {
Chris Lattner7ca04092004-02-22 17:35:42 +00003884
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003885 std::vector<Value*> GEPOps;
3886 GEPOps.resize(IdxEnd-IdxBegin+1);
3887 GEPOps[0] = Src;
3888 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3889
Chris Lattnerdf040972004-05-23 21:23:12 +00003890 std::vector<const Type*>
3891 GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3892 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003893
Chris Lattnerb6bac512004-02-25 06:13:04 +00003894 MachineBasicBlock::iterator IP;
3895 if (MBB) IP = MBB->end();
Reid Spencerfc989e12004-08-30 00:13:26 +00003896 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003897
3898 // We can fold it away iff the getGEPIndex call eliminated all operands.
3899 return GEPOps.empty();
3900}
3901
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003902void X86ISel::emitGEPOperation(MachineBasicBlock *MBB,
3903 MachineBasicBlock::iterator IP,
3904 Value *Src, User::op_iterator IdxBegin,
3905 User::op_iterator IdxEnd, unsigned TargetReg) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003906 const TargetData &TD = TM.getTargetData();
Chris Lattnerb6bac512004-02-25 06:13:04 +00003907
Chris Lattnerd2995df2004-07-15 00:58:53 +00003908 // If this is a getelementptr null, with all constant integer indices, just
3909 // replace it with TargetReg = 42.
3910 if (isa<ConstantPointerNull>(Src)) {
3911 User::op_iterator I = IdxBegin;
3912 for (; I != IdxEnd; ++I)
3913 if (!isa<ConstantInt>(*I))
3914 break;
3915 if (I == IdxEnd) { // All constant indices
3916 unsigned Offset = TD.getIndexedOffset(Src->getType(),
3917 std::vector<Value*>(IdxBegin, IdxEnd));
3918 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset);
3919 return;
3920 }
3921 }
3922
Chris Lattnerb6bac512004-02-25 06:13:04 +00003923 std::vector<Value*> GEPOps;
3924 GEPOps.resize(IdxEnd-IdxBegin+1);
3925 GEPOps[0] = Src;
3926 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3927
3928 std::vector<const Type*> GEPTypes;
3929 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3930 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner985fe3d2004-02-25 03:45:50 +00003931
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003932 // Keep emitting instructions until we consume the entire GEP instruction.
3933 while (!GEPOps.empty()) {
3934 unsigned OldSize = GEPOps.size();
Reid Spencerfc989e12004-08-30 00:13:26 +00003935 X86AddressMode AM;
3936 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003937
Chris Lattner985fe3d2004-02-25 03:45:50 +00003938 if (GEPOps.size() != OldSize) {
3939 // getGEPIndex consumed some of the input. Build an LEA instruction here.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003940 unsigned NextTarget = 0;
3941 if (!GEPOps.empty()) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003942 assert(AM.Base.Reg == 0 &&
Chris Lattnerb6bac512004-02-25 06:13:04 +00003943 "getGEPIndex should have left the base register open for chaining!");
Reid Spencerfc989e12004-08-30 00:13:26 +00003944 NextTarget = AM.Base.Reg = makeAnotherReg(Type::UIntTy);
Chris Lattner985fe3d2004-02-25 03:45:50 +00003945 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003946
Reid Spencerfc989e12004-08-30 00:13:26 +00003947 if (AM.BaseType == X86AddressMode::RegBase &&
Chris Lattner358a9022004-10-15 05:05:29 +00003948 AM.IndexReg == 0 && AM.Disp == 0 && !AM.GV)
Reid Spencerfc989e12004-08-30 00:13:26 +00003949 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(AM.Base.Reg);
Chris Lattner358a9022004-10-15 05:05:29 +00003950 else if (AM.BaseType == X86AddressMode::RegBase && AM.Base.Reg == 0 &&
3951 AM.IndexReg == 0 && AM.Disp == 0)
3952 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(AM.GV);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003953 else
Reid Spencerfc989e12004-08-30 00:13:26 +00003954 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003955 --IP;
3956 TargetReg = NextTarget;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003957 } else if (GEPTypes.empty()) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003958 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3959 // all operands are consumed but the base pointer. If so, just load it
3960 // into the register.
Chris Lattner7ca04092004-02-22 17:35:42 +00003961 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003962 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
Chris Lattner7ca04092004-02-22 17:35:42 +00003963 } else {
3964 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003965 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattner7ca04092004-02-22 17:35:42 +00003966 }
3967 break; // we are now done
Chris Lattnerb6bac512004-02-25 06:13:04 +00003968
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003969 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00003970 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003971 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3972 Value *idx = GEPOps.back();
3973 GEPOps.pop_back(); // Consume a GEP operand
3974 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00003975
Chris Lattner28977af2004-04-05 01:30:19 +00003976 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Chris Lattnerf5854472003-06-21 16:01:24 +00003977 // operand on X86. Handle this case directly now...
3978 if (CastInst *CI = dyn_cast<CastInst>(idx))
3979 if (CI->getOperand(0)->getType() == Type::IntTy ||
3980 CI->getOperand(0)->getType() == Type::UIntTy)
3981 idx = CI->getOperand(0);
3982
Chris Lattner3e130a22003-01-13 00:32:26 +00003983 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00003984 // must find the size of the pointed-to type (Not coincidentally, the next
3985 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003986 const Type *ElTy = SqTy->getElementType();
3987 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00003988
3989 // If idxReg is a constant, we don't need to perform the multiply!
Chris Lattner28977af2004-04-05 01:30:19 +00003990 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003991 if (!CSI->isNullValue()) {
Chris Lattner28977af2004-04-05 01:30:19 +00003992 unsigned Offset = elementSize*CSI->getRawValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003993 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003994 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003995 .addReg(Reg).addImm(Offset);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003996 --IP; // Insert the next instruction before this one.
3997 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003998 }
3999 } else if (elementSize == 1) {
4000 // If the element size is 1, we don't have to multiply, just add
4001 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00004002 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00004003 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00004004 --IP; // Insert the next instruction before this one.
4005 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00004006 } else {
4007 unsigned idxReg = getReg(idx, MBB, IP);
4008 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00004009
Chris Lattner3f1e8e72004-02-22 07:04:00 +00004010 // Make sure we can back the iterator up to point to the first
4011 // instruction emitted.
4012 MachineBasicBlock::iterator BeforeIt = IP;
4013 if (IP == MBB->begin())
4014 BeforeIt = MBB->end();
4015 else
4016 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00004017 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
4018
Chris Lattner8a307e82002-12-16 19:32:50 +00004019 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00004020 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00004021 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00004022 .addReg(Reg).addReg(OffsetReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00004023
4024 // Step to the first instruction of the multiply.
4025 if (BeforeIt == MBB->end())
4026 IP = MBB->begin();
4027 else
4028 IP = ++BeforeIt;
4029
4030 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00004031 }
Brian Gaeke20244b72002-12-12 15:33:40 +00004032 }
Brian Gaeke20244b72002-12-12 15:33:40 +00004033 }
Brian Gaeke20244b72002-12-12 15:33:40 +00004034}
4035
Chris Lattner065faeb2002-12-28 20:24:02 +00004036/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
4037/// frame manager, otherwise do it the hard way.
4038///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00004039void X86ISel::visitAllocaInst(AllocaInst &I) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00004040 // If this is a fixed size alloca in the entry block for the function, we
4041 // statically stack allocate the space, so we don't need to do anything here.
4042 //
Chris Lattnercb2fd552004-05-13 07:40:27 +00004043 if (dyn_castFixedAlloca(&I)) return;
Chris Lattner9f1b5312004-05-13 15:12:43 +00004044
Brian Gaekee48ec012002-12-13 06:46:31 +00004045 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00004046 const Type *Ty = I.getAllocatedType();
4047 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
4048
Chris Lattner065faeb2002-12-28 20:24:02 +00004049 // Create a register to hold the temporary result of multiplying the type size
4050 // constant by the variable amount.
4051 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
4052 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00004053
4054 // TotalSizeReg = mul <numelements>, <TypeSize>
4055 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00004056 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00004057
4058 // AddedSize = add <TotalSizeReg>, 15
4059 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00004060 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
Chris Lattner065faeb2002-12-28 20:24:02 +00004061
4062 // AlignedSize = and <AddedSize>, ~15
4063 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00004064 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
Chris Lattner065faeb2002-12-28 20:24:02 +00004065
Brian Gaekee48ec012002-12-13 06:46:31 +00004066 // Subtract size from stack pointer, thereby allocating some space.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00004067 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00004068
Brian Gaekee48ec012002-12-13 06:46:31 +00004069 // Put a pointer to the space into the result register, by copying
4070 // the stack pointer.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00004071 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
Chris Lattner065faeb2002-12-28 20:24:02 +00004072
Misha Brukman48196b32003-05-03 02:18:17 +00004073 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00004074 // object.
4075 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00004076}
Chris Lattner3e130a22003-01-13 00:32:26 +00004077
4078/// visitMallocInst - Malloc instructions are code generated into direct calls
4079/// to the library malloc.
4080///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00004081void X86ISel::visitMallocInst(MallocInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00004082 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
4083 unsigned Arg;
4084
4085 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
4086 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
4087 } else {
4088 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00004089 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00004090 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00004091 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00004092 }
4093
4094 std::vector<ValueRecord> Args;
4095 Args.push_back(ValueRecord(Arg, Type::UIntTy));
4096 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00004097 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00004098 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
4099}
4100
4101
4102/// visitFreeInst - Free instructions are code gen'd to call the free libc
4103/// function.
4104///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00004105void X86ISel::visitFreeInst(FreeInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00004106 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00004107 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00004108 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00004109 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00004110 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
4111}
4112
Chris Lattnerd281de22003-07-26 23:49:58 +00004113/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00004114/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00004115/// generated code sucks but the implementation is nice and simple.
4116///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00004117FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
Misha Brukmaneae1bf12004-09-21 18:21:21 +00004118 return new X86ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00004119}