blob: 968c3067f9a60430a52fb0cabe5b77cec5c3d2da [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000066#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000067#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000068#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000071#include "llvm/Support/Debug.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000072#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000073#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000074#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000075#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000076using namespace llvm;
77
Dan Gohman572645c2010-02-12 10:34:29 +000078namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +000079
Dan Gohman572645c2010-02-12 10:34:29 +000080/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices;
86
87 RegSortData() {}
88
89 void print(raw_ostream &OS) const;
90 void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96 OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
101}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000102
Chris Lattner0e5f4992006-12-19 21:40:18 +0000103namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000104
Dan Gohman572645c2010-02-12 10:34:29 +0000105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000109
Dan Gohman90bb3552010-05-18 22:33:00 +0000110 RegUsesTy RegUsesMap;
Dan Gohman572645c2010-02-12 10:34:29 +0000111 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000112
Dan Gohman572645c2010-02-12 10:34:29 +0000113public:
114 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000115 void DropRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmana2086b32010-05-19 23:43:12 +0000116 void DropUse(size_t LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000117
Dan Gohman572645c2010-02-12 10:34:29 +0000118 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000119
Dan Gohman572645c2010-02-12 10:34:29 +0000120 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000121
Dan Gohman572645c2010-02-12 10:34:29 +0000122 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000123
Dan Gohman572645c2010-02-12 10:34:29 +0000124 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126 iterator begin() { return RegSequence.begin(); }
127 iterator end() { return RegSequence.end(); }
128 const_iterator begin() const { return RegSequence.begin(); }
129 const_iterator end() const { return RegSequence.end(); }
130};
Dan Gohmana10756e2010-01-21 02:09:26 +0000131
Dan Gohmana10756e2010-01-21 02:09:26 +0000132}
133
Dan Gohman572645c2010-02-12 10:34:29 +0000134void
135RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136 std::pair<RegUsesTy::iterator, bool> Pair =
Dan Gohman90bb3552010-05-18 22:33:00 +0000137 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
Dan Gohman572645c2010-02-12 10:34:29 +0000138 RegSortData &RSD = Pair.first->second;
139 if (Pair.second)
140 RegSequence.push_back(Reg);
141 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000143}
144
Dan Gohmanb2df4332010-05-18 23:42:37 +0000145void
146RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147 RegUsesTy::iterator It = RegUsesMap.find(Reg);
148 assert(It != RegUsesMap.end());
149 RegSortData &RSD = It->second;
150 assert(RSD.UsedByIndices.size() > LUIdx);
151 RSD.UsedByIndices.reset(LUIdx);
152}
153
Dan Gohmana2086b32010-05-19 23:43:12 +0000154void
155RegUseTracker::DropUse(size_t LUIdx) {
156 // Remove the use index from every register's use list.
157 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
158 I != E; ++I)
159 I->second.UsedByIndices.reset(LUIdx);
160}
161
Dan Gohman572645c2010-02-12 10:34:29 +0000162bool
163RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000164 if (!RegUsesMap.count(Reg)) return false;
Dan Gohman572645c2010-02-12 10:34:29 +0000165 const SmallBitVector &UsedByIndices =
Dan Gohman90bb3552010-05-18 22:33:00 +0000166 RegUsesMap.find(Reg)->second.UsedByIndices;
Dan Gohman572645c2010-02-12 10:34:29 +0000167 int i = UsedByIndices.find_first();
168 if (i == -1) return false;
169 if ((size_t)i != LUIdx) return true;
170 return UsedByIndices.find_next(i) != -1;
171}
Dan Gohmana10756e2010-01-21 02:09:26 +0000172
Dan Gohman572645c2010-02-12 10:34:29 +0000173const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000174 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
175 assert(I != RegUsesMap.end() && "Unknown register!");
Dan Gohman572645c2010-02-12 10:34:29 +0000176 return I->second.UsedByIndices;
177}
Dan Gohmana10756e2010-01-21 02:09:26 +0000178
Dan Gohman572645c2010-02-12 10:34:29 +0000179void RegUseTracker::clear() {
Dan Gohman90bb3552010-05-18 22:33:00 +0000180 RegUsesMap.clear();
Dan Gohman572645c2010-02-12 10:34:29 +0000181 RegSequence.clear();
182}
Dan Gohmana10756e2010-01-21 02:09:26 +0000183
Dan Gohman572645c2010-02-12 10:34:29 +0000184namespace {
185
186/// Formula - This class holds information that describes a formula for
187/// computing satisfying a use. It may include broken-out immediates and scaled
188/// registers.
189struct Formula {
190 /// AM - This is used to represent complex addressing, as well as other kinds
191 /// of interesting uses.
192 TargetLowering::AddrMode AM;
193
194 /// BaseRegs - The list of "base" registers for this use. When this is
195 /// non-empty, AM.HasBaseReg should be set to true.
196 SmallVector<const SCEV *, 2> BaseRegs;
197
198 /// ScaledReg - The 'scaled' register for this use. This should be non-null
199 /// when AM.Scale is not zero.
200 const SCEV *ScaledReg;
201
202 Formula() : ScaledReg(0) {}
203
204 void InitialMatch(const SCEV *S, Loop *L,
205 ScalarEvolution &SE, DominatorTree &DT);
206
207 unsigned getNumRegs() const;
208 const Type *getType() const;
209
Dan Gohman5ce6d052010-05-20 15:17:54 +0000210 void DeleteBaseReg(const SCEV *&S);
211
Dan Gohman572645c2010-02-12 10:34:29 +0000212 bool referencesReg(const SCEV *S) const;
213 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
214 const RegUseTracker &RegUses) const;
215
216 void print(raw_ostream &OS) const;
217 void dump() const;
218};
219
220}
221
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000222/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000223static void DoInitialMatch(const SCEV *S, Loop *L,
224 SmallVectorImpl<const SCEV *> &Good,
225 SmallVectorImpl<const SCEV *> &Bad,
226 ScalarEvolution &SE, DominatorTree &DT) {
227 // Collect expressions which properly dominate the loop header.
228 if (S->properlyDominates(L->getHeader(), &DT)) {
229 Good.push_back(S);
230 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000231 }
Dan Gohman572645c2010-02-12 10:34:29 +0000232
233 // Look at add operands.
234 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
235 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
236 I != E; ++I)
237 DoInitialMatch(*I, L, Good, Bad, SE, DT);
238 return;
239 }
240
241 // Look at addrec operands.
242 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
243 if (!AR->getStart()->isZero()) {
244 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
Dan Gohmandeff6212010-05-03 22:09:21 +0000245 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +0000246 AR->getStepRecurrence(SE),
247 AR->getLoop()),
248 L, Good, Bad, SE, DT);
249 return;
250 }
251
252 // Handle a multiplication by -1 (negation) if it didn't fold.
253 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
254 if (Mul->getOperand(0)->isAllOnesValue()) {
255 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
256 const SCEV *NewMul = SE.getMulExpr(Ops);
257
258 SmallVector<const SCEV *, 4> MyGood;
259 SmallVector<const SCEV *, 4> MyBad;
260 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
261 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
262 SE.getEffectiveSCEVType(NewMul->getType())));
263 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
264 E = MyGood.end(); I != E; ++I)
265 Good.push_back(SE.getMulExpr(NegOne, *I));
266 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
267 E = MyBad.end(); I != E; ++I)
268 Bad.push_back(SE.getMulExpr(NegOne, *I));
269 return;
270 }
271
272 // Ok, we can't do anything interesting. Just stuff the whole thing into a
273 // register and hope for the best.
274 Bad.push_back(S);
275}
276
277/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
278/// attempting to keep all loop-invariant and loop-computable values in a
279/// single base register.
280void Formula::InitialMatch(const SCEV *S, Loop *L,
281 ScalarEvolution &SE, DominatorTree &DT) {
282 SmallVector<const SCEV *, 4> Good;
283 SmallVector<const SCEV *, 4> Bad;
284 DoInitialMatch(S, L, Good, Bad, SE, DT);
285 if (!Good.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000286 const SCEV *Sum = SE.getAddExpr(Good);
287 if (!Sum->isZero())
288 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000289 AM.HasBaseReg = true;
290 }
291 if (!Bad.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000292 const SCEV *Sum = SE.getAddExpr(Bad);
293 if (!Sum->isZero())
294 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000295 AM.HasBaseReg = true;
296 }
297}
298
299/// getNumRegs - Return the total number of register operands used by this
300/// formula. This does not include register uses implied by non-constant
301/// addrec strides.
302unsigned Formula::getNumRegs() const {
303 return !!ScaledReg + BaseRegs.size();
304}
305
306/// getType - Return the type of this formula, if it has one, or null
307/// otherwise. This type is meaningless except for the bit size.
308const Type *Formula::getType() const {
309 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
310 ScaledReg ? ScaledReg->getType() :
311 AM.BaseGV ? AM.BaseGV->getType() :
312 0;
313}
314
Dan Gohman5ce6d052010-05-20 15:17:54 +0000315/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
316void Formula::DeleteBaseReg(const SCEV *&S) {
317 if (&S != &BaseRegs.back())
318 std::swap(S, BaseRegs.back());
319 BaseRegs.pop_back();
320}
321
Dan Gohman572645c2010-02-12 10:34:29 +0000322/// referencesReg - Test if this formula references the given register.
323bool Formula::referencesReg(const SCEV *S) const {
324 return S == ScaledReg ||
325 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
326}
327
328/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
329/// which are used by uses other than the use with the given index.
330bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
331 const RegUseTracker &RegUses) const {
332 if (ScaledReg)
333 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
334 return true;
335 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
336 E = BaseRegs.end(); I != E; ++I)
337 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
338 return true;
339 return false;
340}
341
342void Formula::print(raw_ostream &OS) const {
343 bool First = true;
344 if (AM.BaseGV) {
345 if (!First) OS << " + "; else First = false;
346 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
347 }
348 if (AM.BaseOffs != 0) {
349 if (!First) OS << " + "; else First = false;
350 OS << AM.BaseOffs;
351 }
352 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
353 E = BaseRegs.end(); I != E; ++I) {
354 if (!First) OS << " + "; else First = false;
355 OS << "reg(" << **I << ')';
356 }
Dan Gohmanc4cfbaf2010-05-18 22:35:55 +0000357 if (AM.HasBaseReg && BaseRegs.empty()) {
358 if (!First) OS << " + "; else First = false;
359 OS << "**error: HasBaseReg**";
360 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
361 if (!First) OS << " + "; else First = false;
362 OS << "**error: !HasBaseReg**";
363 }
Dan Gohman572645c2010-02-12 10:34:29 +0000364 if (AM.Scale != 0) {
365 if (!First) OS << " + "; else First = false;
366 OS << AM.Scale << "*reg(";
367 if (ScaledReg)
368 OS << *ScaledReg;
369 else
370 OS << "<unknown>";
371 OS << ')';
372 }
373}
374
375void Formula::dump() const {
376 print(errs()); errs() << '\n';
377}
378
Dan Gohmanaae01f12010-02-19 19:32:49 +0000379/// isAddRecSExtable - Return true if the given addrec can be sign-extended
380/// without changing its value.
381static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
382 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000383 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000384 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
385}
386
387/// isAddSExtable - Return true if the given add can be sign-extended
388/// without changing its value.
389static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
390 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000391 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000392 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
393}
394
395/// isMulSExtable - Return true if the given add can be sign-extended
396/// without changing its value.
397static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
398 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000399 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000400 return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
401}
402
Dan Gohmanf09b7122010-02-19 19:35:48 +0000403/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
404/// and if the remainder is known to be zero, or null otherwise. If
405/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
406/// to Y, ignoring that the multiplication may overflow, which is useful when
407/// the result will be used in a context where the most significant bits are
408/// ignored.
409static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
410 ScalarEvolution &SE,
411 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000412 // Handle the trivial case, which works for any SCEV type.
413 if (LHS == RHS)
Dan Gohmandeff6212010-05-03 22:09:21 +0000414 return SE.getConstant(LHS->getType(), 1);
Dan Gohman572645c2010-02-12 10:34:29 +0000415
416 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
417 // folding.
418 if (RHS->isAllOnesValue())
419 return SE.getMulExpr(LHS, RHS);
420
421 // Check for a division of a constant by a constant.
422 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
423 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
424 if (!RC)
425 return 0;
426 if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
427 return 0;
428 return SE.getConstant(C->getValue()->getValue()
429 .sdiv(RC->getValue()->getValue()));
430 }
431
Dan Gohmanaae01f12010-02-19 19:32:49 +0000432 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000433 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000434 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000435 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
436 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000437 if (!Start) return 0;
Dan Gohmanf09b7122010-02-19 19:35:48 +0000438 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
439 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000440 if (!Step) return 0;
441 return SE.getAddRecExpr(Start, Step, AR->getLoop());
442 }
Dan Gohman572645c2010-02-12 10:34:29 +0000443 }
444
Dan Gohmanaae01f12010-02-19 19:32:49 +0000445 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000446 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000447 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
448 SmallVector<const SCEV *, 8> Ops;
449 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
450 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000451 const SCEV *Op = getExactSDiv(*I, RHS, SE,
452 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000453 if (!Op) return 0;
454 Ops.push_back(Op);
455 }
456 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000457 }
Dan Gohman572645c2010-02-12 10:34:29 +0000458 }
459
460 // Check for a multiply operand that we can pull RHS out of.
461 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
Dan Gohmanaae01f12010-02-19 19:32:49 +0000462 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000463 SmallVector<const SCEV *, 4> Ops;
464 bool Found = false;
465 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
466 I != E; ++I) {
Dan Gohman47667442010-05-20 16:23:28 +0000467 const SCEV *S = *I;
Dan Gohman572645c2010-02-12 10:34:29 +0000468 if (!Found)
Dan Gohman47667442010-05-20 16:23:28 +0000469 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
Dan Gohmanf09b7122010-02-19 19:35:48 +0000470 IgnoreSignificantBits)) {
Dan Gohman47667442010-05-20 16:23:28 +0000471 S = Q;
Dan Gohman572645c2010-02-12 10:34:29 +0000472 Found = true;
Dan Gohman572645c2010-02-12 10:34:29 +0000473 }
Dan Gohman47667442010-05-20 16:23:28 +0000474 Ops.push_back(S);
Dan Gohman572645c2010-02-12 10:34:29 +0000475 }
476 return Found ? SE.getMulExpr(Ops) : 0;
477 }
478
479 // Otherwise we don't know.
480 return 0;
481}
482
483/// ExtractImmediate - If S involves the addition of a constant integer value,
484/// return that integer value, and mutate S to point to a new SCEV with that
485/// value excluded.
486static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
487 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
488 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000489 S = SE.getConstant(C->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000490 return C->getValue()->getSExtValue();
491 }
492 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
493 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
494 int64_t Result = ExtractImmediate(NewOps.front(), SE);
495 S = SE.getAddExpr(NewOps);
496 return Result;
497 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
498 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
499 int64_t Result = ExtractImmediate(NewOps.front(), SE);
500 S = SE.getAddRecExpr(NewOps, AR->getLoop());
501 return Result;
502 }
503 return 0;
504}
505
506/// ExtractSymbol - If S involves the addition of a GlobalValue address,
507/// return that symbol, and mutate S to point to a new SCEV with that
508/// value excluded.
509static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
510 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
511 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000512 S = SE.getConstant(GV->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000513 return GV;
514 }
515 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
516 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
517 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
518 S = SE.getAddExpr(NewOps);
519 return Result;
520 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
521 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
522 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
523 S = SE.getAddRecExpr(NewOps, AR->getLoop());
524 return Result;
525 }
526 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000527}
528
Dan Gohmanf284ce22009-02-18 00:08:39 +0000529/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000530/// specified value as an address.
531static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
532 bool isAddress = isa<LoadInst>(Inst);
533 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
534 if (SI->getOperand(1) == OperandVal)
535 isAddress = true;
536 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
537 // Addressing modes can also be folded into prefetches and a variety
538 // of intrinsics.
539 switch (II->getIntrinsicID()) {
540 default: break;
541 case Intrinsic::prefetch:
542 case Intrinsic::x86_sse2_loadu_dq:
543 case Intrinsic::x86_sse2_loadu_pd:
544 case Intrinsic::x86_sse_loadu_ps:
545 case Intrinsic::x86_sse_storeu_ps:
546 case Intrinsic::x86_sse2_storeu_pd:
547 case Intrinsic::x86_sse2_storeu_dq:
548 case Intrinsic::x86_sse2_storel_dq:
549 if (II->getOperand(1) == OperandVal)
550 isAddress = true;
551 break;
552 }
553 }
554 return isAddress;
555}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000556
Dan Gohman21e77222009-03-09 21:01:17 +0000557/// getAccessType - Return the type of the memory being accessed.
558static const Type *getAccessType(const Instruction *Inst) {
Dan Gohmana537bf82009-05-18 16:45:28 +0000559 const Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000560 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000561 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000562 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
563 // Addressing modes can also be folded into prefetches and a variety
564 // of intrinsics.
565 switch (II->getIntrinsicID()) {
566 default: break;
567 case Intrinsic::x86_sse_storeu_ps:
568 case Intrinsic::x86_sse2_storeu_pd:
569 case Intrinsic::x86_sse2_storeu_dq:
570 case Intrinsic::x86_sse2_storel_dq:
Dan Gohmana537bf82009-05-18 16:45:28 +0000571 AccessTy = II->getOperand(1)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000572 break;
573 }
574 }
Dan Gohman572645c2010-02-12 10:34:29 +0000575
576 // All pointers have the same requirements, so canonicalize them to an
577 // arbitrary pointer type to minimize variation.
578 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
579 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
580 PTy->getAddressSpace());
581
Dan Gohmana537bf82009-05-18 16:45:28 +0000582 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000583}
584
Dan Gohman572645c2010-02-12 10:34:29 +0000585/// DeleteTriviallyDeadInstructions - If any of the instructions is the
586/// specified set are trivially dead, delete them and see if this makes any of
587/// their operands subsequently dead.
588static bool
589DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
590 bool Changed = false;
591
592 while (!DeadInsts.empty()) {
593 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
594
595 if (I == 0 || !isInstructionTriviallyDead(I))
596 continue;
597
598 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
599 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
600 *OI = 0;
601 if (U->use_empty())
602 DeadInsts.push_back(U);
603 }
604
605 I->eraseFromParent();
606 Changed = true;
607 }
608
609 return Changed;
610}
611
Dan Gohman7979b722010-01-22 00:46:49 +0000612namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000613
Dan Gohman572645c2010-02-12 10:34:29 +0000614/// Cost - This class is used to measure and compare candidate formulae.
615class Cost {
616 /// TODO: Some of these could be merged. Also, a lexical ordering
617 /// isn't always optimal.
618 unsigned NumRegs;
619 unsigned AddRecCost;
620 unsigned NumIVMuls;
621 unsigned NumBaseAdds;
622 unsigned ImmCost;
623 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000624
Dan Gohman572645c2010-02-12 10:34:29 +0000625public:
626 Cost()
627 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
628 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000629
Dan Gohman572645c2010-02-12 10:34:29 +0000630 unsigned getNumRegs() const { return NumRegs; }
Dan Gohman7979b722010-01-22 00:46:49 +0000631
Dan Gohman572645c2010-02-12 10:34:29 +0000632 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000633
Dan Gohman572645c2010-02-12 10:34:29 +0000634 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000635
Dan Gohman572645c2010-02-12 10:34:29 +0000636 void RateFormula(const Formula &F,
637 SmallPtrSet<const SCEV *, 16> &Regs,
638 const DenseSet<const SCEV *> &VisitedRegs,
639 const Loop *L,
640 const SmallVectorImpl<int64_t> &Offsets,
641 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman7979b722010-01-22 00:46:49 +0000642
Dan Gohman572645c2010-02-12 10:34:29 +0000643 void print(raw_ostream &OS) const;
644 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000645
Dan Gohman572645c2010-02-12 10:34:29 +0000646private:
647 void RateRegister(const SCEV *Reg,
648 SmallPtrSet<const SCEV *, 16> &Regs,
649 const Loop *L,
650 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000651 void RatePrimaryRegister(const SCEV *Reg,
652 SmallPtrSet<const SCEV *, 16> &Regs,
653 const Loop *L,
654 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000655};
656
657}
658
659/// RateRegister - Tally up interesting quantities from the given register.
660void Cost::RateRegister(const SCEV *Reg,
661 SmallPtrSet<const SCEV *, 16> &Regs,
662 const Loop *L,
663 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000664 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
665 if (AR->getLoop() == L)
666 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000667
Dan Gohman9214b822010-02-13 02:06:02 +0000668 // If this is an addrec for a loop that's already been visited by LSR,
669 // don't second-guess its addrec phi nodes. LSR isn't currently smart
670 // enough to reason about more than one loop at a time. Consider these
671 // registers free and leave them alone.
672 else if (L->contains(AR->getLoop()) ||
673 (!AR->getLoop()->contains(L) &&
674 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
675 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
676 PHINode *PN = dyn_cast<PHINode>(I); ++I)
677 if (SE.isSCEVable(PN->getType()) &&
678 (SE.getEffectiveSCEVType(PN->getType()) ==
679 SE.getEffectiveSCEVType(AR->getType())) &&
680 SE.getSCEV(PN) == AR)
681 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000682
Dan Gohman9214b822010-02-13 02:06:02 +0000683 // If this isn't one of the addrecs that the loop already has, it
684 // would require a costly new phi and add. TODO: This isn't
685 // precisely modeled right now.
686 ++NumBaseAdds;
687 if (!Regs.count(AR->getStart()))
Dan Gohman572645c2010-02-12 10:34:29 +0000688 RateRegister(AR->getStart(), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000689 }
Dan Gohman572645c2010-02-12 10:34:29 +0000690
Dan Gohman9214b822010-02-13 02:06:02 +0000691 // Add the step value register, if it needs one.
692 // TODO: The non-affine case isn't precisely modeled here.
693 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
694 if (!Regs.count(AR->getStart()))
695 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000696 }
Dan Gohman9214b822010-02-13 02:06:02 +0000697 ++NumRegs;
698
699 // Rough heuristic; favor registers which don't require extra setup
700 // instructions in the preheader.
701 if (!isa<SCEVUnknown>(Reg) &&
702 !isa<SCEVConstant>(Reg) &&
703 !(isa<SCEVAddRecExpr>(Reg) &&
704 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
705 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
706 ++SetupCost;
707}
708
709/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
710/// before, rate it.
711void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000712 SmallPtrSet<const SCEV *, 16> &Regs,
713 const Loop *L,
714 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000715 if (Regs.insert(Reg))
716 RateRegister(Reg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000717}
718
719void Cost::RateFormula(const Formula &F,
720 SmallPtrSet<const SCEV *, 16> &Regs,
721 const DenseSet<const SCEV *> &VisitedRegs,
722 const Loop *L,
723 const SmallVectorImpl<int64_t> &Offsets,
724 ScalarEvolution &SE, DominatorTree &DT) {
725 // Tally up the registers.
726 if (const SCEV *ScaledReg = F.ScaledReg) {
727 if (VisitedRegs.count(ScaledReg)) {
728 Loose();
729 return;
730 }
Dan Gohman9214b822010-02-13 02:06:02 +0000731 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000732 }
733 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
734 E = F.BaseRegs.end(); I != E; ++I) {
735 const SCEV *BaseReg = *I;
736 if (VisitedRegs.count(BaseReg)) {
737 Loose();
738 return;
739 }
Dan Gohman9214b822010-02-13 02:06:02 +0000740 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000741
742 NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
743 BaseReg->hasComputableLoopEvolution(L);
744 }
745
746 if (F.BaseRegs.size() > 1)
747 NumBaseAdds += F.BaseRegs.size() - 1;
748
749 // Tally up the non-zero immediates.
750 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
751 E = Offsets.end(); I != E; ++I) {
752 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
753 if (F.AM.BaseGV)
754 ImmCost += 64; // Handle symbolic values conservatively.
755 // TODO: This should probably be the pointer size.
756 else if (Offset != 0)
757 ImmCost += APInt(64, Offset, true).getMinSignedBits();
758 }
759}
760
761/// Loose - Set this cost to a loosing value.
762void Cost::Loose() {
763 NumRegs = ~0u;
764 AddRecCost = ~0u;
765 NumIVMuls = ~0u;
766 NumBaseAdds = ~0u;
767 ImmCost = ~0u;
768 SetupCost = ~0u;
769}
770
771/// operator< - Choose the lower cost.
772bool Cost::operator<(const Cost &Other) const {
773 if (NumRegs != Other.NumRegs)
774 return NumRegs < Other.NumRegs;
775 if (AddRecCost != Other.AddRecCost)
776 return AddRecCost < Other.AddRecCost;
777 if (NumIVMuls != Other.NumIVMuls)
778 return NumIVMuls < Other.NumIVMuls;
779 if (NumBaseAdds != Other.NumBaseAdds)
780 return NumBaseAdds < Other.NumBaseAdds;
781 if (ImmCost != Other.ImmCost)
782 return ImmCost < Other.ImmCost;
783 if (SetupCost != Other.SetupCost)
784 return SetupCost < Other.SetupCost;
785 return false;
786}
787
788void Cost::print(raw_ostream &OS) const {
789 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
790 if (AddRecCost != 0)
791 OS << ", with addrec cost " << AddRecCost;
792 if (NumIVMuls != 0)
793 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
794 if (NumBaseAdds != 0)
795 OS << ", plus " << NumBaseAdds << " base add"
796 << (NumBaseAdds == 1 ? "" : "s");
797 if (ImmCost != 0)
798 OS << ", plus " << ImmCost << " imm cost";
799 if (SetupCost != 0)
800 OS << ", plus " << SetupCost << " setup cost";
801}
802
803void Cost::dump() const {
804 print(errs()); errs() << '\n';
805}
806
807namespace {
808
809/// LSRFixup - An operand value in an instruction which is to be replaced
810/// with some equivalent, possibly strength-reduced, replacement.
811struct LSRFixup {
812 /// UserInst - The instruction which will be updated.
813 Instruction *UserInst;
814
815 /// OperandValToReplace - The operand of the instruction which will
816 /// be replaced. The operand may be used more than once; every instance
817 /// will be replaced.
818 Value *OperandValToReplace;
819
Dan Gohman448db1c2010-04-07 22:27:08 +0000820 /// PostIncLoops - If this user is to use the post-incremented value of an
Dan Gohman572645c2010-02-12 10:34:29 +0000821 /// induction variable, this variable is non-null and holds the loop
822 /// associated with the induction variable.
Dan Gohman448db1c2010-04-07 22:27:08 +0000823 PostIncLoopSet PostIncLoops;
Dan Gohman572645c2010-02-12 10:34:29 +0000824
825 /// LUIdx - The index of the LSRUse describing the expression which
826 /// this fixup needs, minus an offset (below).
827 size_t LUIdx;
828
829 /// Offset - A constant offset to be added to the LSRUse expression.
830 /// This allows multiple fixups to share the same LSRUse with different
831 /// offsets, for example in an unrolled loop.
832 int64_t Offset;
833
Dan Gohman448db1c2010-04-07 22:27:08 +0000834 bool isUseFullyOutsideLoop(const Loop *L) const;
835
Dan Gohman572645c2010-02-12 10:34:29 +0000836 LSRFixup();
837
838 void print(raw_ostream &OS) const;
839 void dump() const;
840};
841
842}
843
844LSRFixup::LSRFixup()
Dan Gohmanea507f52010-05-20 19:44:23 +0000845 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +0000846
Dan Gohman448db1c2010-04-07 22:27:08 +0000847/// isUseFullyOutsideLoop - Test whether this fixup always uses its
848/// value outside of the given loop.
849bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
850 // PHI nodes use their value in their incoming blocks.
851 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
852 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
853 if (PN->getIncomingValue(i) == OperandValToReplace &&
854 L->contains(PN->getIncomingBlock(i)))
855 return false;
856 return true;
857 }
858
859 return !L->contains(UserInst);
860}
861
Dan Gohman572645c2010-02-12 10:34:29 +0000862void LSRFixup::print(raw_ostream &OS) const {
863 OS << "UserInst=";
864 // Store is common and interesting enough to be worth special-casing.
865 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
866 OS << "store ";
867 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
868 } else if (UserInst->getType()->isVoidTy())
869 OS << UserInst->getOpcodeName();
870 else
871 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
872
873 OS << ", OperandValToReplace=";
874 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
875
Dan Gohman448db1c2010-04-07 22:27:08 +0000876 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
877 E = PostIncLoops.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +0000878 OS << ", PostIncLoop=";
Dan Gohman448db1c2010-04-07 22:27:08 +0000879 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
Dan Gohman572645c2010-02-12 10:34:29 +0000880 }
881
882 if (LUIdx != ~size_t(0))
883 OS << ", LUIdx=" << LUIdx;
884
885 if (Offset != 0)
886 OS << ", Offset=" << Offset;
887}
888
889void LSRFixup::dump() const {
890 print(errs()); errs() << '\n';
891}
892
893namespace {
894
895/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
896/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
897struct UniquifierDenseMapInfo {
898 static SmallVector<const SCEV *, 2> getEmptyKey() {
899 SmallVector<const SCEV *, 2> V;
900 V.push_back(reinterpret_cast<const SCEV *>(-1));
901 return V;
902 }
903
904 static SmallVector<const SCEV *, 2> getTombstoneKey() {
905 SmallVector<const SCEV *, 2> V;
906 V.push_back(reinterpret_cast<const SCEV *>(-2));
907 return V;
908 }
909
910 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
911 unsigned Result = 0;
912 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
913 E = V.end(); I != E; ++I)
914 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
915 return Result;
916 }
917
918 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
919 const SmallVector<const SCEV *, 2> &RHS) {
920 return LHS == RHS;
921 }
922};
923
924/// LSRUse - This class holds the state that LSR keeps for each use in
925/// IVUsers, as well as uses invented by LSR itself. It includes information
926/// about what kinds of things can be folded into the user, information about
927/// the user itself, and information about how the use may be satisfied.
928/// TODO: Represent multiple users of the same expression in common?
929class LSRUse {
930 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
931
932public:
933 /// KindType - An enum for a kind of use, indicating what types of
934 /// scaled and immediate operands it might support.
935 enum KindType {
936 Basic, ///< A normal use, with no folding.
937 Special, ///< A special case of basic, allowing -1 scales.
938 Address, ///< An address use; folding according to TargetLowering
939 ICmpZero ///< An equality icmp with both operands folded into one.
940 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +0000941 };
Dan Gohman572645c2010-02-12 10:34:29 +0000942
943 KindType Kind;
944 const Type *AccessTy;
945
946 SmallVector<int64_t, 8> Offsets;
947 int64_t MinOffset;
948 int64_t MaxOffset;
949
950 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
951 /// LSRUse are outside of the loop, in which case some special-case heuristics
952 /// may be used.
953 bool AllFixupsOutsideLoop;
954
955 /// Formulae - A list of ways to build a value that can satisfy this user.
956 /// After the list is populated, one of these is selected heuristically and
957 /// used to formulate a replacement for OperandValToReplace in UserInst.
958 SmallVector<Formula, 12> Formulae;
959
960 /// Regs - The set of register candidates used by all formulae in this LSRUse.
961 SmallPtrSet<const SCEV *, 4> Regs;
962
963 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
964 MinOffset(INT64_MAX),
965 MaxOffset(INT64_MIN),
966 AllFixupsOutsideLoop(true) {}
967
Dan Gohmana2086b32010-05-19 23:43:12 +0000968 bool HasFormulaWithSameRegs(const Formula &F) const;
Dan Gohman454d26d2010-02-22 04:11:59 +0000969 bool InsertFormula(const Formula &F);
Dan Gohmand69d6282010-05-18 22:39:15 +0000970 void DeleteFormula(Formula &F);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000971 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
Dan Gohman572645c2010-02-12 10:34:29 +0000972
973 void check() const;
974
975 void print(raw_ostream &OS) const;
976 void dump() const;
977};
978
Dan Gohmana2086b32010-05-19 23:43:12 +0000979/// HasFormula - Test whether this use as a formula which has the same
980/// registers as the given formula.
981bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
982 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
983 if (F.ScaledReg) Key.push_back(F.ScaledReg);
984 // Unstable sort by host order ok, because this is only used for uniquifying.
985 std::sort(Key.begin(), Key.end());
986 return Uniquifier.count(Key);
987}
988
Dan Gohman572645c2010-02-12 10:34:29 +0000989/// InsertFormula - If the given formula has not yet been inserted, add it to
990/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +0000991bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +0000992 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
993 if (F.ScaledReg) Key.push_back(F.ScaledReg);
994 // Unstable sort by host order ok, because this is only used for uniquifying.
995 std::sort(Key.begin(), Key.end());
996
997 if (!Uniquifier.insert(Key).second)
998 return false;
999
1000 // Using a register to hold the value of 0 is not profitable.
1001 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1002 "Zero allocated in a scaled register!");
1003#ifndef NDEBUG
1004 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1005 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1006 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1007#endif
1008
1009 // Add the formula to the list.
1010 Formulae.push_back(F);
1011
1012 // Record registers now being used by this use.
1013 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1014 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1015
1016 return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001017}
1018
Dan Gohmand69d6282010-05-18 22:39:15 +00001019/// DeleteFormula - Remove the given formula from this use's list.
1020void LSRUse::DeleteFormula(Formula &F) {
Dan Gohman5ce6d052010-05-20 15:17:54 +00001021 if (&F != &Formulae.back())
1022 std::swap(F, Formulae.back());
Dan Gohmand69d6282010-05-18 22:39:15 +00001023 Formulae.pop_back();
Dan Gohmana2086b32010-05-19 23:43:12 +00001024 assert(!Formulae.empty() && "LSRUse has no formulae left!");
Dan Gohmand69d6282010-05-18 22:39:15 +00001025}
1026
Dan Gohmanb2df4332010-05-18 23:42:37 +00001027/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1028void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1029 // Now that we've filtered out some formulae, recompute the Regs set.
1030 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1031 Regs.clear();
1032 for (size_t FIdx = 0, NumForms = Formulae.size(); FIdx != NumForms; ++FIdx) {
1033 Formula &F = Formulae[FIdx];
1034 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1035 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1036 }
1037
1038 // Update the RegTracker.
1039 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1040 E = OldRegs.end(); I != E; ++I)
1041 if (!Regs.count(*I))
1042 RegUses.DropRegister(*I, LUIdx);
1043}
1044
Dan Gohman572645c2010-02-12 10:34:29 +00001045void LSRUse::print(raw_ostream &OS) const {
1046 OS << "LSR Use: Kind=";
1047 switch (Kind) {
1048 case Basic: OS << "Basic"; break;
1049 case Special: OS << "Special"; break;
1050 case ICmpZero: OS << "ICmpZero"; break;
1051 case Address:
1052 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +00001053 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +00001054 OS << "pointer"; // the full pointer type could be really verbose
1055 else
1056 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +00001057 }
1058
Dan Gohman572645c2010-02-12 10:34:29 +00001059 OS << ", Offsets={";
1060 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1061 E = Offsets.end(); I != E; ++I) {
1062 OS << *I;
1063 if (next(I) != E)
1064 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +00001065 }
Dan Gohman572645c2010-02-12 10:34:29 +00001066 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +00001067
Dan Gohman572645c2010-02-12 10:34:29 +00001068 if (AllFixupsOutsideLoop)
1069 OS << ", all-fixups-outside-loop";
Dan Gohman7979b722010-01-22 00:46:49 +00001070}
1071
Dan Gohman572645c2010-02-12 10:34:29 +00001072void LSRUse::dump() const {
1073 print(errs()); errs() << '\n';
1074}
Dan Gohman7979b722010-01-22 00:46:49 +00001075
Dan Gohman572645c2010-02-12 10:34:29 +00001076/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1077/// be completely folded into the user instruction at isel time. This includes
1078/// address-mode folding and special icmp tricks.
1079static bool isLegalUse(const TargetLowering::AddrMode &AM,
1080 LSRUse::KindType Kind, const Type *AccessTy,
1081 const TargetLowering *TLI) {
1082 switch (Kind) {
1083 case LSRUse::Address:
1084 // If we have low-level target information, ask the target if it can
1085 // completely fold this address.
1086 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1087
1088 // Otherwise, just guess that reg+reg addressing is legal.
1089 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1090
1091 case LSRUse::ICmpZero:
1092 // There's not even a target hook for querying whether it would be legal to
1093 // fold a GV into an ICmp.
1094 if (AM.BaseGV)
1095 return false;
1096
1097 // ICmp only has two operands; don't allow more than two non-trivial parts.
1098 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1099 return false;
1100
1101 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1102 // putting the scaled register in the other operand of the icmp.
1103 if (AM.Scale != 0 && AM.Scale != -1)
1104 return false;
1105
1106 // If we have low-level target information, ask the target if it can fold an
1107 // integer immediate on an icmp.
1108 if (AM.BaseOffs != 0) {
1109 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1110 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001111 }
Dan Gohman572645c2010-02-12 10:34:29 +00001112
1113 return true;
1114
1115 case LSRUse::Basic:
1116 // Only handle single-register values.
1117 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1118
1119 case LSRUse::Special:
1120 // Only handle -1 scales, or no scale.
1121 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001122 }
1123
Dan Gohman7979b722010-01-22 00:46:49 +00001124 return false;
1125}
1126
Dan Gohman572645c2010-02-12 10:34:29 +00001127static bool isLegalUse(TargetLowering::AddrMode AM,
1128 int64_t MinOffset, int64_t MaxOffset,
1129 LSRUse::KindType Kind, const Type *AccessTy,
1130 const TargetLowering *TLI) {
1131 // Check for overflow.
1132 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1133 (MinOffset > 0))
1134 return false;
1135 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1136 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1137 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1138 // Check for overflow.
1139 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1140 (MaxOffset > 0))
1141 return false;
1142 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1143 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001144 }
Dan Gohman572645c2010-02-12 10:34:29 +00001145 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001146}
1147
Dan Gohman572645c2010-02-12 10:34:29 +00001148static bool isAlwaysFoldable(int64_t BaseOffs,
1149 GlobalValue *BaseGV,
1150 bool HasBaseReg,
1151 LSRUse::KindType Kind, const Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001152 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001153 // Fast-path: zero is always foldable.
1154 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001155
Dan Gohman572645c2010-02-12 10:34:29 +00001156 // Conservatively, create an address with an immediate and a
1157 // base and a scale.
1158 TargetLowering::AddrMode AM;
1159 AM.BaseOffs = BaseOffs;
1160 AM.BaseGV = BaseGV;
1161 AM.HasBaseReg = HasBaseReg;
1162 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001163
Dan Gohmana2086b32010-05-19 23:43:12 +00001164 // Canonicalize a scale of 1 to a base register if the formula doesn't
1165 // already have a base register.
1166 if (!AM.HasBaseReg && AM.Scale == 1) {
1167 AM.Scale = 0;
1168 AM.HasBaseReg = true;
1169 }
1170
Dan Gohman572645c2010-02-12 10:34:29 +00001171 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001172}
1173
Dan Gohman572645c2010-02-12 10:34:29 +00001174static bool isAlwaysFoldable(const SCEV *S,
1175 int64_t MinOffset, int64_t MaxOffset,
1176 bool HasBaseReg,
1177 LSRUse::KindType Kind, const Type *AccessTy,
1178 const TargetLowering *TLI,
1179 ScalarEvolution &SE) {
1180 // Fast-path: zero is always foldable.
1181 if (S->isZero()) return true;
1182
1183 // Conservatively, create an address with an immediate and a
1184 // base and a scale.
1185 int64_t BaseOffs = ExtractImmediate(S, SE);
1186 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1187
1188 // If there's anything else involved, it's not foldable.
1189 if (!S->isZero()) return false;
1190
1191 // Fast-path: zero is always foldable.
1192 if (BaseOffs == 0 && !BaseGV) return true;
1193
1194 // Conservatively, create an address with an immediate and a
1195 // base and a scale.
1196 TargetLowering::AddrMode AM;
1197 AM.BaseOffs = BaseOffs;
1198 AM.BaseGV = BaseGV;
1199 AM.HasBaseReg = HasBaseReg;
1200 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1201
1202 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001203}
1204
Dan Gohman572645c2010-02-12 10:34:29 +00001205/// FormulaSorter - This class implements an ordering for formulae which sorts
1206/// the by their standalone cost.
1207class FormulaSorter {
1208 /// These two sets are kept empty, so that we compute standalone costs.
1209 DenseSet<const SCEV *> VisitedRegs;
1210 SmallPtrSet<const SCEV *, 16> Regs;
1211 Loop *L;
1212 LSRUse *LU;
1213 ScalarEvolution &SE;
1214 DominatorTree &DT;
1215
1216public:
1217 FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1218 : L(l), LU(&lu), SE(se), DT(dt) {}
1219
1220 bool operator()(const Formula &A, const Formula &B) {
1221 Cost CostA;
1222 CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1223 Regs.clear();
1224 Cost CostB;
1225 CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1226 Regs.clear();
1227 return CostA < CostB;
1228 }
1229};
1230
1231/// LSRInstance - This class holds state for the main loop strength reduction
1232/// logic.
1233class LSRInstance {
1234 IVUsers &IU;
1235 ScalarEvolution &SE;
1236 DominatorTree &DT;
Dan Gohmane5f76872010-04-09 22:07:05 +00001237 LoopInfo &LI;
Dan Gohman572645c2010-02-12 10:34:29 +00001238 const TargetLowering *const TLI;
1239 Loop *const L;
1240 bool Changed;
1241
1242 /// IVIncInsertPos - This is the insert position that the current loop's
1243 /// induction variable increment should be placed. In simple loops, this is
1244 /// the latch block's terminator. But in more complicated cases, this is a
1245 /// position which will dominate all the in-loop post-increment users.
1246 Instruction *IVIncInsertPos;
1247
1248 /// Factors - Interesting factors between use strides.
1249 SmallSetVector<int64_t, 8> Factors;
1250
1251 /// Types - Interesting use types, to facilitate truncation reuse.
1252 SmallSetVector<const Type *, 4> Types;
1253
1254 /// Fixups - The list of operands which are to be replaced.
1255 SmallVector<LSRFixup, 16> Fixups;
1256
1257 /// Uses - The list of interesting uses.
1258 SmallVector<LSRUse, 16> Uses;
1259
1260 /// RegUses - Track which uses use which register candidates.
1261 RegUseTracker RegUses;
1262
1263 void OptimizeShadowIV();
1264 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1265 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1266 bool OptimizeLoopTermCond();
1267
1268 void CollectInterestingTypesAndFactors();
1269 void CollectFixupsAndInitialFormulae();
1270
1271 LSRFixup &getNewFixup() {
1272 Fixups.push_back(LSRFixup());
1273 return Fixups.back();
1274 }
1275
1276 // Support for sharing of LSRUses between LSRFixups.
1277 typedef DenseMap<const SCEV *, size_t> UseMapTy;
1278 UseMapTy UseMap;
1279
Dan Gohmanea507f52010-05-20 19:44:23 +00001280 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001281 LSRUse::KindType Kind, const Type *AccessTy);
1282
1283 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1284 LSRUse::KindType Kind,
1285 const Type *AccessTy);
1286
Dan Gohman5ce6d052010-05-20 15:17:54 +00001287 void DeleteUse(LSRUse &LU);
1288
Dan Gohmana2086b32010-05-19 23:43:12 +00001289 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1290
Dan Gohman572645c2010-02-12 10:34:29 +00001291public:
Dan Gohman454d26d2010-02-22 04:11:59 +00001292 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001293 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1294 void CountRegisters(const Formula &F, size_t LUIdx);
1295 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1296
1297 void CollectLoopInvariantFixupsAndFormulae();
1298
1299 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1300 unsigned Depth = 0);
1301 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1302 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1303 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1304 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1305 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1306 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1307 void GenerateCrossUseConstantOffsets();
1308 void GenerateAllReuseFormulae();
1309
1310 void FilterOutUndesirableDedicatedRegisters();
Dan Gohmand079c302010-05-18 22:51:59 +00001311
1312 size_t EstimateSearchSpaceComplexity() const;
Dan Gohman572645c2010-02-12 10:34:29 +00001313 void NarrowSearchSpaceUsingHeuristics();
1314
1315 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1316 Cost &SolutionCost,
1317 SmallVectorImpl<const Formula *> &Workspace,
1318 const Cost &CurCost,
1319 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1320 DenseSet<const SCEV *> &VisitedRegs) const;
1321 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1322
Dan Gohmane5f76872010-04-09 22:07:05 +00001323 BasicBlock::iterator
1324 HoistInsertPosition(BasicBlock::iterator IP,
1325 const SmallVectorImpl<Instruction *> &Inputs) const;
1326 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1327 const LSRFixup &LF,
1328 const LSRUse &LU) const;
Dan Gohmand96eae82010-04-09 02:00:38 +00001329
Dan Gohman572645c2010-02-12 10:34:29 +00001330 Value *Expand(const LSRFixup &LF,
1331 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001332 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001333 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001334 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001335 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1336 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001337 SCEVExpander &Rewriter,
1338 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001339 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001340 void Rewrite(const LSRFixup &LF,
1341 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001342 SCEVExpander &Rewriter,
1343 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001344 Pass *P) const;
1345 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1346 Pass *P);
1347
1348 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1349
1350 bool getChanged() const { return Changed; }
1351
1352 void print_factors_and_types(raw_ostream &OS) const;
1353 void print_fixups(raw_ostream &OS) const;
1354 void print_uses(raw_ostream &OS) const;
1355 void print(raw_ostream &OS) const;
1356 void dump() const;
1357};
1358
1359}
1360
1361/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001362/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001363void LSRInstance::OptimizeShadowIV() {
1364 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1365 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1366 return;
1367
1368 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1369 UI != E; /* empty */) {
1370 IVUsers::const_iterator CandidateUI = UI;
1371 ++UI;
1372 Instruction *ShadowUse = CandidateUI->getUser();
1373 const Type *DestTy = NULL;
1374
1375 /* If shadow use is a int->float cast then insert a second IV
1376 to eliminate this cast.
1377
1378 for (unsigned i = 0; i < n; ++i)
1379 foo((double)i);
1380
1381 is transformed into
1382
1383 double d = 0.0;
1384 for (unsigned i = 0; i < n; ++i, ++d)
1385 foo(d);
1386 */
1387 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1388 DestTy = UCast->getDestTy();
1389 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1390 DestTy = SCast->getDestTy();
1391 if (!DestTy) continue;
1392
1393 if (TLI) {
1394 // If target does not support DestTy natively then do not apply
1395 // this transformation.
1396 EVT DVT = TLI->getValueType(DestTy);
1397 if (!TLI->isTypeLegal(DVT)) continue;
1398 }
1399
1400 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1401 if (!PH) continue;
1402 if (PH->getNumIncomingValues() != 2) continue;
1403
1404 const Type *SrcTy = PH->getType();
1405 int Mantissa = DestTy->getFPMantissaWidth();
1406 if (Mantissa == -1) continue;
1407 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1408 continue;
1409
1410 unsigned Entry, Latch;
1411 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1412 Entry = 0;
1413 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001414 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001415 Entry = 1;
1416 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001417 }
Dan Gohman7979b722010-01-22 00:46:49 +00001418
Dan Gohman572645c2010-02-12 10:34:29 +00001419 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1420 if (!Init) continue;
1421 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001422
Dan Gohman572645c2010-02-12 10:34:29 +00001423 BinaryOperator *Incr =
1424 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1425 if (!Incr) continue;
1426 if (Incr->getOpcode() != Instruction::Add
1427 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001428 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001429
Dan Gohman572645c2010-02-12 10:34:29 +00001430 /* Initialize new IV, double d = 0.0 in above example. */
1431 ConstantInt *C = NULL;
1432 if (Incr->getOperand(0) == PH)
1433 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1434 else if (Incr->getOperand(1) == PH)
1435 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001436 else
Dan Gohman7979b722010-01-22 00:46:49 +00001437 continue;
1438
Dan Gohman572645c2010-02-12 10:34:29 +00001439 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001440
Dan Gohman572645c2010-02-12 10:34:29 +00001441 // Ignore negative constants, as the code below doesn't handle them
1442 // correctly. TODO: Remove this restriction.
1443 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001444
Dan Gohman572645c2010-02-12 10:34:29 +00001445 /* Add new PHINode. */
1446 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001447
Dan Gohman572645c2010-02-12 10:34:29 +00001448 /* create new increment. '++d' in above example. */
1449 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1450 BinaryOperator *NewIncr =
1451 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1452 Instruction::FAdd : Instruction::FSub,
1453 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001454
Dan Gohman572645c2010-02-12 10:34:29 +00001455 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1456 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001457
Dan Gohman572645c2010-02-12 10:34:29 +00001458 /* Remove cast operation */
1459 ShadowUse->replaceAllUsesWith(NewPH);
1460 ShadowUse->eraseFromParent();
1461 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001462 }
1463}
1464
1465/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1466/// set the IV user and stride information and return true, otherwise return
1467/// false.
Dan Gohmanea507f52010-05-20 19:44:23 +00001468bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
Dan Gohman572645c2010-02-12 10:34:29 +00001469 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1470 if (UI->getUser() == Cond) {
1471 // NOTE: we could handle setcc instructions with multiple uses here, but
1472 // InstCombine does it as well for simple uses, it's not clear that it
1473 // occurs enough in real life to handle.
1474 CondUse = UI;
1475 return true;
1476 }
Dan Gohman7979b722010-01-22 00:46:49 +00001477 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001478}
1479
Dan Gohman7979b722010-01-22 00:46:49 +00001480/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1481/// a max computation.
1482///
1483/// This is a narrow solution to a specific, but acute, problem. For loops
1484/// like this:
1485///
1486/// i = 0;
1487/// do {
1488/// p[i] = 0.0;
1489/// } while (++i < n);
1490///
1491/// the trip count isn't just 'n', because 'n' might not be positive. And
1492/// unfortunately this can come up even for loops where the user didn't use
1493/// a C do-while loop. For example, seemingly well-behaved top-test loops
1494/// will commonly be lowered like this:
1495//
1496/// if (n > 0) {
1497/// i = 0;
1498/// do {
1499/// p[i] = 0.0;
1500/// } while (++i < n);
1501/// }
1502///
1503/// and then it's possible for subsequent optimization to obscure the if
1504/// test in such a way that indvars can't find it.
1505///
1506/// When indvars can't find the if test in loops like this, it creates a
1507/// max expression, which allows it to give the loop a canonical
1508/// induction variable:
1509///
1510/// i = 0;
1511/// max = n < 1 ? 1 : n;
1512/// do {
1513/// p[i] = 0.0;
1514/// } while (++i != max);
1515///
1516/// Canonical induction variables are necessary because the loop passes
1517/// are designed around them. The most obvious example of this is the
1518/// LoopInfo analysis, which doesn't remember trip count values. It
1519/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001520/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001521/// the loop has a canonical induction variable.
1522///
1523/// However, when it comes time to generate code, the maximum operation
1524/// can be quite costly, especially if it's inside of an outer loop.
1525///
1526/// This function solves this problem by detecting this type of loop and
1527/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1528/// the instructions for the maximum computation.
1529///
Dan Gohman572645c2010-02-12 10:34:29 +00001530ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001531 // Check that the loop matches the pattern we're looking for.
1532 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1533 Cond->getPredicate() != CmpInst::ICMP_NE)
1534 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001535
Dan Gohman7979b722010-01-22 00:46:49 +00001536 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1537 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001538
Dan Gohman572645c2010-02-12 10:34:29 +00001539 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001540 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1541 return Cond;
Dan Gohmandeff6212010-05-03 22:09:21 +00001542 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
Dan Gohmana10756e2010-01-21 02:09:26 +00001543
Dan Gohman7979b722010-01-22 00:46:49 +00001544 // Add one to the backedge-taken count to get the trip count.
Dan Gohman572645c2010-02-12 10:34:29 +00001545 const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
Dan Gohman1d367982010-04-24 03:13:44 +00001546 if (IterationCount != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001547
Dan Gohman1d367982010-04-24 03:13:44 +00001548 // Check for a max calculation that matches the pattern. There's no check
1549 // for ICMP_ULE here because the comparison would be with zero, which
1550 // isn't interesting.
1551 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1552 const SCEVNAryExpr *Max = 0;
1553 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1554 Pred = ICmpInst::ICMP_SLE;
1555 Max = S;
1556 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1557 Pred = ICmpInst::ICMP_SLT;
1558 Max = S;
1559 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1560 Pred = ICmpInst::ICMP_ULT;
1561 Max = U;
1562 } else {
1563 // No match; bail.
Dan Gohman7979b722010-01-22 00:46:49 +00001564 return Cond;
Dan Gohman1d367982010-04-24 03:13:44 +00001565 }
Dan Gohman7979b722010-01-22 00:46:49 +00001566
1567 // To handle a max with more than two operands, this optimization would
1568 // require additional checking and setup.
1569 if (Max->getNumOperands() != 2)
1570 return Cond;
1571
1572 const SCEV *MaxLHS = Max->getOperand(0);
1573 const SCEV *MaxRHS = Max->getOperand(1);
Dan Gohman1d367982010-04-24 03:13:44 +00001574
1575 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1576 // for a comparison with 1. For <= and >=, a comparison with zero.
1577 if (!MaxLHS ||
1578 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1579 return Cond;
1580
Dan Gohman7979b722010-01-22 00:46:49 +00001581 // Check the relevant induction variable for conformance to
1582 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001583 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001584 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1585 if (!AR || !AR->isAffine() ||
1586 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001587 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001588 return Cond;
1589
1590 assert(AR->getLoop() == L &&
1591 "Loop condition operand is an addrec in a different loop!");
1592
1593 // Check the right operand of the select, and remember it, as it will
1594 // be used in the new comparison instruction.
1595 Value *NewRHS = 0;
Dan Gohman1d367982010-04-24 03:13:44 +00001596 if (ICmpInst::isTrueWhenEqual(Pred)) {
1597 // Look for n+1, and grab n.
1598 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1599 if (isa<ConstantInt>(BO->getOperand(1)) &&
1600 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1601 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1602 NewRHS = BO->getOperand(0);
1603 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1604 if (isa<ConstantInt>(BO->getOperand(1)) &&
1605 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1606 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1607 NewRHS = BO->getOperand(0);
1608 if (!NewRHS)
1609 return Cond;
1610 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001611 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001612 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001613 NewRHS = Sel->getOperand(2);
Dan Gohman1d367982010-04-24 03:13:44 +00001614 else
1615 llvm_unreachable("Max doesn't match expected pattern!");
Dan Gohman7979b722010-01-22 00:46:49 +00001616
1617 // Determine the new comparison opcode. It may be signed or unsigned,
1618 // and the original comparison may be either equality or inequality.
Dan Gohman7979b722010-01-22 00:46:49 +00001619 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1620 Pred = CmpInst::getInversePredicate(Pred);
1621
1622 // Ok, everything looks ok to change the condition into an SLT or SGE and
1623 // delete the max calculation.
1624 ICmpInst *NewCond =
1625 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1626
1627 // Delete the max calculation instructions.
1628 Cond->replaceAllUsesWith(NewCond);
1629 CondUse->setUser(NewCond);
1630 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1631 Cond->eraseFromParent();
1632 Sel->eraseFromParent();
1633 if (Cmp->use_empty())
1634 Cmp->eraseFromParent();
1635 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001636}
1637
Jim Grosbach56a1f802009-11-17 17:53:56 +00001638/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001639/// postinc iv when possible.
Dan Gohman572645c2010-02-12 10:34:29 +00001640bool
1641LSRInstance::OptimizeLoopTermCond() {
1642 SmallPtrSet<Instruction *, 4> PostIncs;
1643
Evan Cheng586f69a2009-11-12 07:35:05 +00001644 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001645 SmallVector<BasicBlock*, 8> ExitingBlocks;
1646 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001647
Evan Cheng076e0852009-11-17 18:10:11 +00001648 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1649 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001650
Dan Gohman572645c2010-02-12 10:34:29 +00001651 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001652 // can, we want to change it to use a post-incremented version of its
1653 // induction variable, to allow coalescing the live ranges for the IV into
1654 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001655
Evan Cheng076e0852009-11-17 18:10:11 +00001656 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1657 if (!TermBr)
1658 continue;
1659 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1660 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1661 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001662
Evan Cheng076e0852009-11-17 18:10:11 +00001663 // Search IVUsesByStride to find Cond's IVUse if there is one.
1664 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001665 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001666 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001667 continue;
1668
Evan Cheng076e0852009-11-17 18:10:11 +00001669 // If the trip count is computed in terms of a max (due to ScalarEvolution
1670 // being unable to find a sufficient guard, for example), change the loop
1671 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001672 // One consequence of doing this now is that it disrupts the count-down
1673 // optimization. That's not always a bad thing though, because in such
1674 // cases it may still be worthwhile to avoid a max.
1675 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001676
Dan Gohman572645c2010-02-12 10:34:29 +00001677 // If this exiting block dominates the latch block, it may also use
1678 // the post-inc value if it won't be shared with other uses.
1679 // Check for dominance.
1680 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001681 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001682
Dan Gohman572645c2010-02-12 10:34:29 +00001683 // Conservatively avoid trying to use the post-inc value in non-latch
1684 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001685 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001686 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1687 // Test if the use is reachable from the exiting block. This dominator
1688 // query is a conservative approximation of reachability.
1689 if (&*UI != CondUse &&
1690 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1691 // Conservatively assume there may be reuse if the quotient of their
1692 // strides could be a legal scale.
Dan Gohmanc0564542010-04-19 21:48:58 +00001693 const SCEV *A = IU.getStride(*CondUse, L);
1694 const SCEV *B = IU.getStride(*UI, L);
Dan Gohman448db1c2010-04-07 22:27:08 +00001695 if (!A || !B) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001696 if (SE.getTypeSizeInBits(A->getType()) !=
1697 SE.getTypeSizeInBits(B->getType())) {
1698 if (SE.getTypeSizeInBits(A->getType()) >
1699 SE.getTypeSizeInBits(B->getType()))
1700 B = SE.getSignExtendExpr(B, A->getType());
1701 else
1702 A = SE.getSignExtendExpr(A, B->getType());
1703 }
1704 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001705 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001706 // Stride of one or negative one can have reuse with non-addresses.
1707 if (D->getValue()->isOne() ||
1708 D->getValue()->isAllOnesValue())
1709 goto decline_post_inc;
1710 // Avoid weird situations.
1711 if (D->getValue()->getValue().getMinSignedBits() >= 64 ||
1712 D->getValue()->getValue().isMinSignedValue())
1713 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001714 // Without TLI, assume that any stride might be valid, and so any
1715 // use might be shared.
1716 if (!TLI)
1717 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001718 // Check for possible scaled-address reuse.
1719 const Type *AccessTy = getAccessType(UI->getUser());
1720 TargetLowering::AddrMode AM;
1721 AM.Scale = D->getValue()->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001722 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001723 goto decline_post_inc;
1724 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001725 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001726 goto decline_post_inc;
1727 }
1728 }
1729
David Greene63c94632009-12-23 22:58:38 +00001730 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001731 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001732
1733 // It's possible for the setcc instruction to be anywhere in the loop, and
1734 // possible for it to have multiple users. If it is not immediately before
1735 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001736 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1737 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00001738 Cond->moveBefore(TermBr);
1739 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001740 // Clone the terminating condition and insert into the loopend.
1741 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00001742 Cond = cast<ICmpInst>(Cond->clone());
1743 Cond->setName(L->getHeader()->getName() + ".termcond");
1744 ExitingBlock->getInstList().insert(TermBr, Cond);
1745
1746 // Clone the IVUse, as the old use still exists!
Dan Gohmanc0564542010-04-19 21:48:58 +00001747 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
Dan Gohman572645c2010-02-12 10:34:29 +00001748 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00001749 }
Evan Cheng586f69a2009-11-12 07:35:05 +00001750 }
1751
Evan Cheng076e0852009-11-17 18:10:11 +00001752 // If we get to here, we know that we can transform the setcc instruction to
1753 // use the post-incremented version of the IV, allowing us to coalesce the
1754 // live ranges for the IV correctly.
Dan Gohman448db1c2010-04-07 22:27:08 +00001755 CondUse->transformToPostInc(L);
Evan Cheng076e0852009-11-17 18:10:11 +00001756 Changed = true;
1757
Dan Gohman572645c2010-02-12 10:34:29 +00001758 PostIncs.insert(Cond);
1759 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00001760 }
Dan Gohman572645c2010-02-12 10:34:29 +00001761
1762 // Determine an insertion point for the loop induction variable increment. It
1763 // must dominate all the post-inc comparisons we just set up, and it must
1764 // dominate the loop latch edge.
1765 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1766 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1767 E = PostIncs.end(); I != E; ++I) {
1768 BasicBlock *BB =
1769 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1770 (*I)->getParent());
1771 if (BB == (*I)->getParent())
1772 IVIncInsertPos = *I;
1773 else if (BB != IVIncInsertPos->getParent())
1774 IVIncInsertPos = BB->getTerminator();
1775 }
1776
1777 return Changed;
Dan Gohmana10756e2010-01-21 02:09:26 +00001778}
1779
Dan Gohman572645c2010-02-12 10:34:29 +00001780bool
Dan Gohmanea507f52010-05-20 19:44:23 +00001781LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001782 LSRUse::KindType Kind, const Type *AccessTy) {
1783 int64_t NewMinOffset = LU.MinOffset;
1784 int64_t NewMaxOffset = LU.MaxOffset;
1785 const Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00001786
Dan Gohman572645c2010-02-12 10:34:29 +00001787 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1788 // something conservative, however this can pessimize in the case that one of
1789 // the uses will have all its uses outside the loop, for example.
1790 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00001791 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001792 // Conservatively assume HasBaseReg is true for now.
1793 if (NewOffset < LU.MinOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001794 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001795 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001796 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001797 NewMinOffset = NewOffset;
1798 } else if (NewOffset > LU.MaxOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001799 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001800 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001801 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001802 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00001803 }
Dan Gohman572645c2010-02-12 10:34:29 +00001804 // Check for a mismatched access type, and fall back conservatively as needed.
1805 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1806 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00001807
Dan Gohman572645c2010-02-12 10:34:29 +00001808 // Update the use.
1809 LU.MinOffset = NewMinOffset;
1810 LU.MaxOffset = NewMaxOffset;
1811 LU.AccessTy = NewAccessTy;
1812 if (NewOffset != LU.Offsets.back())
1813 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00001814 return true;
1815}
1816
Dan Gohman572645c2010-02-12 10:34:29 +00001817/// getUse - Return an LSRUse index and an offset value for a fixup which
1818/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001819/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00001820std::pair<size_t, int64_t>
1821LSRInstance::getUse(const SCEV *&Expr,
1822 LSRUse::KindType Kind, const Type *AccessTy) {
1823 const SCEV *Copy = Expr;
1824 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00001825
Dan Gohman572645c2010-02-12 10:34:29 +00001826 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00001827 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00001828 Expr = Copy;
1829 Offset = 0;
1830 }
1831
1832 std::pair<UseMapTy::iterator, bool> P =
1833 UseMap.insert(std::make_pair(Expr, 0));
1834 if (!P.second) {
1835 // A use already existed with this base.
1836 size_t LUIdx = P.first->second;
1837 LSRUse &LU = Uses[LUIdx];
Dan Gohmana2086b32010-05-19 23:43:12 +00001838 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001839 // Reuse this use.
1840 return std::make_pair(LUIdx, Offset);
1841 }
1842
1843 // Create a new use.
1844 size_t LUIdx = Uses.size();
1845 P.first->second = LUIdx;
1846 Uses.push_back(LSRUse(Kind, AccessTy));
1847 LSRUse &LU = Uses[LUIdx];
1848
1849 // We don't need to track redundant offsets, but we don't need to go out
1850 // of our way here to avoid them.
1851 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1852 LU.Offsets.push_back(Offset);
1853
1854 LU.MinOffset = Offset;
1855 LU.MaxOffset = Offset;
1856 return std::make_pair(LUIdx, Offset);
1857}
1858
Dan Gohman5ce6d052010-05-20 15:17:54 +00001859/// DeleteUse - Delete the given use from the Uses list.
1860void LSRInstance::DeleteUse(LSRUse &LU) {
1861 if (&LU != &Uses.back())
1862 std::swap(LU, Uses.back());
1863 Uses.pop_back();
1864}
1865
Dan Gohmana2086b32010-05-19 23:43:12 +00001866/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1867/// a formula that has the same registers as the given formula.
1868LSRUse *
1869LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1870 const LSRUse &OrigLU) {
1871 // Search all uses for the formula. This could be more clever. Ignore
1872 // ICmpZero uses because they may contain formulae generated by
1873 // GenerateICmpZeroScales, in which case adding fixup offsets may
1874 // be invalid.
1875 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1876 LSRUse &LU = Uses[LUIdx];
1877 if (&LU != &OrigLU &&
1878 LU.Kind != LSRUse::ICmpZero &&
1879 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1880 LU.HasFormulaWithSameRegs(OrigF)) {
1881 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
1882 FIdx != NumForms; ++FIdx) {
1883 Formula &F = LU.Formulae[FIdx];
1884 if (F.BaseRegs == OrigF.BaseRegs &&
1885 F.ScaledReg == OrigF.ScaledReg &&
1886 F.AM.BaseGV == OrigF.AM.BaseGV &&
1887 F.AM.Scale == OrigF.AM.Scale &&
1888 LU.Kind) {
1889 if (F.AM.BaseOffs == 0)
1890 return &LU;
1891 break;
1892 }
1893 }
1894 }
1895 }
1896
1897 return 0;
1898}
1899
Dan Gohman572645c2010-02-12 10:34:29 +00001900void LSRInstance::CollectInterestingTypesAndFactors() {
1901 SmallSetVector<const SCEV *, 4> Strides;
1902
Dan Gohman1b7bf182010-02-19 00:05:23 +00001903 // Collect interesting types and strides.
Dan Gohman448db1c2010-04-07 22:27:08 +00001904 SmallVector<const SCEV *, 4> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00001905 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Dan Gohmanc0564542010-04-19 21:48:58 +00001906 const SCEV *Expr = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001907
1908 // Collect interesting types.
Dan Gohman448db1c2010-04-07 22:27:08 +00001909 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
Dan Gohman572645c2010-02-12 10:34:29 +00001910
Dan Gohman448db1c2010-04-07 22:27:08 +00001911 // Add strides for mentioned loops.
1912 Worklist.push_back(Expr);
1913 do {
1914 const SCEV *S = Worklist.pop_back_val();
1915 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1916 Strides.insert(AR->getStepRecurrence(SE));
1917 Worklist.push_back(AR->getStart());
1918 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1919 Worklist.insert(Worklist.end(), Add->op_begin(), Add->op_end());
1920 }
1921 } while (!Worklist.empty());
Dan Gohman1b7bf182010-02-19 00:05:23 +00001922 }
1923
1924 // Compute interesting factors from the set of interesting strides.
1925 for (SmallSetVector<const SCEV *, 4>::const_iterator
1926 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00001927 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Dan Gohman1b7bf182010-02-19 00:05:23 +00001928 next(I); NewStrideIter != E; ++NewStrideIter) {
1929 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00001930 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00001931
1932 if (SE.getTypeSizeInBits(OldStride->getType()) !=
1933 SE.getTypeSizeInBits(NewStride->getType())) {
1934 if (SE.getTypeSizeInBits(OldStride->getType()) >
1935 SE.getTypeSizeInBits(NewStride->getType()))
1936 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1937 else
1938 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1939 }
1940 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001941 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1942 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001943 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1944 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1945 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00001946 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1947 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00001948 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001949 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1950 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1951 }
1952 }
Dan Gohman572645c2010-02-12 10:34:29 +00001953
1954 // If all uses use the same type, don't bother looking for truncation-based
1955 // reuse.
1956 if (Types.size() == 1)
1957 Types.clear();
1958
1959 DEBUG(print_factors_and_types(dbgs()));
1960}
1961
1962void LSRInstance::CollectFixupsAndInitialFormulae() {
1963 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1964 // Record the uses.
1965 LSRFixup &LF = getNewFixup();
1966 LF.UserInst = UI->getUser();
1967 LF.OperandValToReplace = UI->getOperandValToReplace();
Dan Gohman448db1c2010-04-07 22:27:08 +00001968 LF.PostIncLoops = UI->getPostIncLoops();
Dan Gohman572645c2010-02-12 10:34:29 +00001969
1970 LSRUse::KindType Kind = LSRUse::Basic;
1971 const Type *AccessTy = 0;
1972 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1973 Kind = LSRUse::Address;
1974 AccessTy = getAccessType(LF.UserInst);
1975 }
1976
Dan Gohmanc0564542010-04-19 21:48:58 +00001977 const SCEV *S = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001978
1979 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1980 // (N - i == 0), and this allows (N - i) to be the expression that we work
1981 // with rather than just N or i, so we can consider the register
1982 // requirements for both N and i at the same time. Limiting this code to
1983 // equality icmps is not a problem because all interesting loops use
1984 // equality icmps, thanks to IndVarSimplify.
1985 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1986 if (CI->isEquality()) {
1987 // Swap the operands if needed to put the OperandValToReplace on the
1988 // left, for consistency.
1989 Value *NV = CI->getOperand(1);
1990 if (NV == LF.OperandValToReplace) {
1991 CI->setOperand(1, CI->getOperand(0));
1992 CI->setOperand(0, NV);
Dan Gohmanf182b232010-05-20 19:26:52 +00001993 NV = CI->getOperand(1);
Dan Gohman9da1bf42010-05-20 19:16:03 +00001994 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00001995 }
1996
1997 // x == y --> x - y == 0
1998 const SCEV *N = SE.getSCEV(NV);
1999 if (N->isLoopInvariant(L)) {
2000 Kind = LSRUse::ICmpZero;
2001 S = SE.getMinusSCEV(N, S);
2002 }
2003
2004 // -1 and the negations of all interesting strides (except the negation
2005 // of -1) are now also interesting.
2006 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2007 if (Factors[i] != -1)
2008 Factors.insert(-(uint64_t)Factors[i]);
2009 Factors.insert(-1);
2010 }
2011
2012 // Set up the initial formula for this use.
2013 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2014 LF.LUIdx = P.first;
2015 LF.Offset = P.second;
2016 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002017 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002018
2019 // If this is the first use of this LSRUse, give it a formula.
2020 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002021 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00002022 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2023 }
2024 }
2025
2026 DEBUG(print_fixups(dbgs()));
2027}
2028
2029void
Dan Gohman454d26d2010-02-22 04:11:59 +00002030LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00002031 Formula F;
2032 F.InitialMatch(S, L, SE, DT);
2033 bool Inserted = InsertFormula(LU, LUIdx, F);
2034 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2035}
2036
2037void
2038LSRInstance::InsertSupplementalFormula(const SCEV *S,
2039 LSRUse &LU, size_t LUIdx) {
2040 Formula F;
2041 F.BaseRegs.push_back(S);
2042 F.AM.HasBaseReg = true;
2043 bool Inserted = InsertFormula(LU, LUIdx, F);
2044 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2045}
2046
2047/// CountRegisters - Note which registers are used by the given formula,
2048/// updating RegUses.
2049void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2050 if (F.ScaledReg)
2051 RegUses.CountRegister(F.ScaledReg, LUIdx);
2052 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2053 E = F.BaseRegs.end(); I != E; ++I)
2054 RegUses.CountRegister(*I, LUIdx);
2055}
2056
2057/// InsertFormula - If the given formula has not yet been inserted, add it to
2058/// the list, and return true. Return false otherwise.
2059bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002060 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00002061 return false;
2062
2063 CountRegisters(F, LUIdx);
2064 return true;
2065}
2066
2067/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2068/// loop-invariant values which we're tracking. These other uses will pin these
2069/// values in registers, making them less profitable for elimination.
2070/// TODO: This currently misses non-constant addrec step registers.
2071/// TODO: Should this give more weight to users inside the loop?
2072void
2073LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2074 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2075 SmallPtrSet<const SCEV *, 8> Inserted;
2076
2077 while (!Worklist.empty()) {
2078 const SCEV *S = Worklist.pop_back_val();
2079
2080 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2081 Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
2082 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2083 Worklist.push_back(C->getOperand());
2084 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2085 Worklist.push_back(D->getLHS());
2086 Worklist.push_back(D->getRHS());
2087 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2088 if (!Inserted.insert(U)) continue;
2089 const Value *V = U->getValue();
2090 if (const Instruction *Inst = dyn_cast<Instruction>(V))
2091 if (L->contains(Inst)) continue;
Gabor Greif60ad7812010-03-25 23:06:16 +00002092 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
Dan Gohman572645c2010-02-12 10:34:29 +00002093 UI != UE; ++UI) {
2094 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2095 // Ignore non-instructions.
2096 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00002097 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002098 // Ignore instructions in other functions (as can happen with
2099 // Constants).
2100 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00002101 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002102 // Ignore instructions not dominated by the loop.
2103 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2104 UserInst->getParent() :
2105 cast<PHINode>(UserInst)->getIncomingBlock(
2106 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2107 if (!DT.dominates(L->getHeader(), UseBB))
2108 continue;
2109 // Ignore uses which are part of other SCEV expressions, to avoid
2110 // analyzing them multiple times.
Dan Gohman4a2a6832010-04-09 19:12:34 +00002111 if (SE.isSCEVable(UserInst->getType())) {
2112 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2113 // If the user is a no-op, look through to its uses.
2114 if (!isa<SCEVUnknown>(UserS))
2115 continue;
2116 if (UserS == U) {
2117 Worklist.push_back(
2118 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2119 continue;
2120 }
2121 }
Dan Gohman572645c2010-02-12 10:34:29 +00002122 // Ignore icmp instructions which are already being analyzed.
2123 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2124 unsigned OtherIdx = !UI.getOperandNo();
2125 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2126 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2127 continue;
2128 }
2129
2130 LSRFixup &LF = getNewFixup();
2131 LF.UserInst = const_cast<Instruction *>(UserInst);
2132 LF.OperandValToReplace = UI.getUse();
2133 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2134 LF.LUIdx = P.first;
2135 LF.Offset = P.second;
2136 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002137 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002138 InsertSupplementalFormula(U, LU, LF.LUIdx);
2139 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2140 break;
2141 }
2142 }
2143 }
2144}
2145
2146/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2147/// separate registers. If C is non-null, multiply each subexpression by C.
2148static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2149 SmallVectorImpl<const SCEV *> &Ops,
2150 ScalarEvolution &SE) {
2151 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2152 // Break out add operands.
2153 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2154 I != E; ++I)
2155 CollectSubexprs(*I, C, Ops, SE);
2156 return;
2157 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2158 // Split a non-zero base out of an addrec.
2159 if (!AR->getStart()->isZero()) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002160 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +00002161 AR->getStepRecurrence(SE),
2162 AR->getLoop()), C, Ops, SE);
Dan Gohman68d6da12010-02-12 19:35:25 +00002163 CollectSubexprs(AR->getStart(), C, Ops, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002164 return;
2165 }
2166 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2167 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2168 if (Mul->getNumOperands() == 2)
2169 if (const SCEVConstant *Op0 =
2170 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2171 CollectSubexprs(Mul->getOperand(1),
2172 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2173 Ops, SE);
2174 return;
2175 }
2176 }
2177
2178 // Otherwise use the value itself.
2179 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2180}
2181
2182/// GenerateReassociations - Split out subexpressions from adds and the bases of
2183/// addrecs.
2184void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2185 Formula Base,
2186 unsigned Depth) {
2187 // Arbitrarily cap recursion to protect compile time.
2188 if (Depth >= 3) return;
2189
2190 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2191 const SCEV *BaseReg = Base.BaseRegs[i];
2192
2193 SmallVector<const SCEV *, 8> AddOps;
2194 CollectSubexprs(BaseReg, 0, AddOps, SE);
2195 if (AddOps.size() == 1) continue;
2196
2197 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2198 JE = AddOps.end(); J != JE; ++J) {
2199 // Don't pull a constant into a register if the constant could be folded
2200 // into an immediate field.
2201 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2202 Base.getNumRegs() > 1,
2203 LU.Kind, LU.AccessTy, TLI, SE))
2204 continue;
2205
2206 // Collect all operands except *J.
2207 SmallVector<const SCEV *, 8> InnerAddOps;
2208 for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
2209 KE = AddOps.end(); K != KE; ++K)
2210 if (K != J)
2211 InnerAddOps.push_back(*K);
2212
2213 // Don't leave just a constant behind in a register if the constant could
2214 // be folded into an immediate field.
2215 if (InnerAddOps.size() == 1 &&
2216 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2217 Base.getNumRegs() > 1,
2218 LU.Kind, LU.AccessTy, TLI, SE))
2219 continue;
2220
Dan Gohmanfafb8902010-04-23 01:55:05 +00002221 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2222 if (InnerSum->isZero())
2223 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002224 Formula F = Base;
Dan Gohmanfafb8902010-04-23 01:55:05 +00002225 F.BaseRegs[i] = InnerSum;
Dan Gohman572645c2010-02-12 10:34:29 +00002226 F.BaseRegs.push_back(*J);
2227 if (InsertFormula(LU, LUIdx, F))
2228 // If that formula hadn't been seen before, recurse to find more like
2229 // it.
2230 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2231 }
2232 }
2233}
2234
2235/// GenerateCombinations - Generate a formula consisting of all of the
2236/// loop-dominating registers added into a single register.
2237void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00002238 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002239 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00002240 if (Base.BaseRegs.size() <= 1) return;
2241
2242 Formula F = Base;
2243 F.BaseRegs.clear();
2244 SmallVector<const SCEV *, 4> Ops;
2245 for (SmallVectorImpl<const SCEV *>::const_iterator
2246 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2247 const SCEV *BaseReg = *I;
2248 if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2249 !BaseReg->hasComputableLoopEvolution(L))
2250 Ops.push_back(BaseReg);
2251 else
2252 F.BaseRegs.push_back(BaseReg);
2253 }
2254 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00002255 const SCEV *Sum = SE.getAddExpr(Ops);
2256 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2257 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002258 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00002259 if (!Sum->isZero()) {
2260 F.BaseRegs.push_back(Sum);
2261 (void)InsertFormula(LU, LUIdx, F);
2262 }
Dan Gohman572645c2010-02-12 10:34:29 +00002263 }
2264}
2265
2266/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2267void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2268 Formula Base) {
2269 // We can't add a symbolic offset if the address already contains one.
2270 if (Base.AM.BaseGV) return;
2271
2272 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2273 const SCEV *G = Base.BaseRegs[i];
2274 GlobalValue *GV = ExtractSymbol(G, SE);
2275 if (G->isZero() || !GV)
2276 continue;
2277 Formula F = Base;
2278 F.AM.BaseGV = GV;
2279 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2280 LU.Kind, LU.AccessTy, TLI))
2281 continue;
2282 F.BaseRegs[i] = G;
2283 (void)InsertFormula(LU, LUIdx, F);
2284 }
2285}
2286
2287/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2288void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2289 Formula Base) {
2290 // TODO: For now, just add the min and max offset, because it usually isn't
2291 // worthwhile looking at everything inbetween.
2292 SmallVector<int64_t, 4> Worklist;
2293 Worklist.push_back(LU.MinOffset);
2294 if (LU.MaxOffset != LU.MinOffset)
2295 Worklist.push_back(LU.MaxOffset);
2296
2297 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2298 const SCEV *G = Base.BaseRegs[i];
2299
2300 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2301 E = Worklist.end(); I != E; ++I) {
2302 Formula F = Base;
2303 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2304 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2305 LU.Kind, LU.AccessTy, TLI)) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002306 F.BaseRegs[i] = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
Dan Gohman572645c2010-02-12 10:34:29 +00002307
2308 (void)InsertFormula(LU, LUIdx, F);
2309 }
2310 }
2311
2312 int64_t Imm = ExtractImmediate(G, SE);
2313 if (G->isZero() || Imm == 0)
2314 continue;
2315 Formula F = Base;
2316 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2317 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2318 LU.Kind, LU.AccessTy, TLI))
2319 continue;
2320 F.BaseRegs[i] = G;
2321 (void)InsertFormula(LU, LUIdx, F);
2322 }
2323}
2324
2325/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2326/// the comparison. For example, x == y -> x*c == y*c.
2327void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2328 Formula Base) {
2329 if (LU.Kind != LSRUse::ICmpZero) return;
2330
2331 // Determine the integer type for the base formula.
2332 const Type *IntTy = Base.getType();
2333 if (!IntTy) return;
2334 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2335
2336 // Don't do this if there is more than one offset.
2337 if (LU.MinOffset != LU.MaxOffset) return;
2338
2339 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2340
2341 // Check each interesting stride.
2342 for (SmallSetVector<int64_t, 8>::const_iterator
2343 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2344 int64_t Factor = *I;
2345 Formula F = Base;
2346
2347 // Check that the multiplication doesn't overflow.
Dan Gohman968cb932010-02-17 00:41:53 +00002348 if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2349 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002350 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002351 if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00002352 continue;
2353
2354 // Check that multiplying with the use offset doesn't overflow.
2355 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00002356 if (Offset == INT64_MIN && Factor == -1)
2357 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002358 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002359 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00002360 continue;
2361
2362 // Check that this scale is legal.
2363 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2364 continue;
2365
2366 // Compensate for the use having MinOffset built into it.
2367 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2368
Dan Gohmandeff6212010-05-03 22:09:21 +00002369 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002370
2371 // Check that multiplying with each base register doesn't overflow.
2372 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2373 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002374 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00002375 goto next;
2376 }
2377
2378 // Check that multiplying with the scaled register doesn't overflow.
2379 if (F.ScaledReg) {
2380 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002381 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00002382 continue;
2383 }
2384
2385 // If we make it here and it's legal, add it.
2386 (void)InsertFormula(LU, LUIdx, F);
2387 next:;
2388 }
2389}
2390
2391/// GenerateScales - Generate stride factor reuse formulae by making use of
2392/// scaled-offset address modes, for example.
Dan Gohmanea507f52010-05-20 19:44:23 +00002393void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00002394 // Determine the integer type for the base formula.
2395 const Type *IntTy = Base.getType();
2396 if (!IntTy) return;
2397
2398 // If this Formula already has a scaled register, we can't add another one.
2399 if (Base.AM.Scale != 0) return;
2400
2401 // Check each interesting stride.
2402 for (SmallSetVector<int64_t, 8>::const_iterator
2403 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2404 int64_t Factor = *I;
2405
2406 Base.AM.Scale = Factor;
2407 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2408 // Check whether this scale is going to be legal.
2409 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2410 LU.Kind, LU.AccessTy, TLI)) {
2411 // As a special-case, handle special out-of-loop Basic users specially.
2412 // TODO: Reconsider this special case.
2413 if (LU.Kind == LSRUse::Basic &&
2414 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2415 LSRUse::Special, LU.AccessTy, TLI) &&
2416 LU.AllFixupsOutsideLoop)
2417 LU.Kind = LSRUse::Special;
2418 else
2419 continue;
2420 }
2421 // For an ICmpZero, negating a solitary base register won't lead to
2422 // new solutions.
2423 if (LU.Kind == LSRUse::ICmpZero &&
2424 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2425 continue;
2426 // For each addrec base reg, apply the scale, if possible.
2427 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2428 if (const SCEVAddRecExpr *AR =
2429 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002430 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002431 if (FactorS->isZero())
2432 continue;
2433 // Divide out the factor, ignoring high bits, since we'll be
2434 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00002435 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002436 // TODO: This could be optimized to avoid all the copying.
2437 Formula F = Base;
2438 F.ScaledReg = Quotient;
Dan Gohman5ce6d052010-05-20 15:17:54 +00002439 F.DeleteBaseReg(F.BaseRegs[i]);
Dan Gohman572645c2010-02-12 10:34:29 +00002440 (void)InsertFormula(LU, LUIdx, F);
2441 }
2442 }
2443 }
2444}
2445
2446/// GenerateTruncates - Generate reuse formulae from different IV types.
Dan Gohmanea507f52010-05-20 19:44:23 +00002447void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00002448 // This requires TargetLowering to tell us which truncates are free.
2449 if (!TLI) return;
2450
2451 // Don't bother truncating symbolic values.
2452 if (Base.AM.BaseGV) return;
2453
2454 // Determine the integer type for the base formula.
2455 const Type *DstTy = Base.getType();
2456 if (!DstTy) return;
2457 DstTy = SE.getEffectiveSCEVType(DstTy);
2458
2459 for (SmallSetVector<const Type *, 4>::const_iterator
2460 I = Types.begin(), E = Types.end(); I != E; ++I) {
2461 const Type *SrcTy = *I;
2462 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2463 Formula F = Base;
2464
2465 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2466 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2467 JE = F.BaseRegs.end(); J != JE; ++J)
2468 *J = SE.getAnyExtendExpr(*J, SrcTy);
2469
2470 // TODO: This assumes we've done basic processing on all uses and
2471 // have an idea what the register usage is.
2472 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2473 continue;
2474
2475 (void)InsertFormula(LU, LUIdx, F);
2476 }
2477 }
2478}
2479
2480namespace {
2481
Dan Gohman6020d852010-02-14 18:51:20 +00002482/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00002483/// defer modifications so that the search phase doesn't have to worry about
2484/// the data structures moving underneath it.
2485struct WorkItem {
2486 size_t LUIdx;
2487 int64_t Imm;
2488 const SCEV *OrigReg;
2489
2490 WorkItem(size_t LI, int64_t I, const SCEV *R)
2491 : LUIdx(LI), Imm(I), OrigReg(R) {}
2492
2493 void print(raw_ostream &OS) const;
2494 void dump() const;
2495};
2496
2497}
2498
2499void WorkItem::print(raw_ostream &OS) const {
2500 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2501 << " , add offset " << Imm;
2502}
2503
2504void WorkItem::dump() const {
2505 print(errs()); errs() << '\n';
2506}
2507
2508/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2509/// distance apart and try to form reuse opportunities between them.
2510void LSRInstance::GenerateCrossUseConstantOffsets() {
2511 // Group the registers by their value without any added constant offset.
2512 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2513 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2514 RegMapTy Map;
2515 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2516 SmallVector<const SCEV *, 8> Sequence;
2517 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2518 I != E; ++I) {
2519 const SCEV *Reg = *I;
2520 int64_t Imm = ExtractImmediate(Reg, SE);
2521 std::pair<RegMapTy::iterator, bool> Pair =
2522 Map.insert(std::make_pair(Reg, ImmMapTy()));
2523 if (Pair.second)
2524 Sequence.push_back(Reg);
2525 Pair.first->second.insert(std::make_pair(Imm, *I));
2526 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2527 }
2528
2529 // Now examine each set of registers with the same base value. Build up
2530 // a list of work to do and do the work in a separate step so that we're
2531 // not adding formulae and register counts while we're searching.
2532 SmallVector<WorkItem, 32> WorkItems;
2533 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2534 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2535 E = Sequence.end(); I != E; ++I) {
2536 const SCEV *Reg = *I;
2537 const ImmMapTy &Imms = Map.find(Reg)->second;
2538
Dan Gohmancd045c02010-02-12 19:20:37 +00002539 // It's not worthwhile looking for reuse if there's only one offset.
2540 if (Imms.size() == 1)
2541 continue;
2542
Dan Gohman572645c2010-02-12 10:34:29 +00002543 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2544 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2545 J != JE; ++J)
2546 dbgs() << ' ' << J->first;
2547 dbgs() << '\n');
2548
2549 // Examine each offset.
2550 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2551 J != JE; ++J) {
2552 const SCEV *OrigReg = J->second;
2553
2554 int64_t JImm = J->first;
2555 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2556
2557 if (!isa<SCEVConstant>(OrigReg) &&
2558 UsedByIndicesMap[Reg].count() == 1) {
2559 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2560 continue;
2561 }
2562
2563 // Conservatively examine offsets between this orig reg a few selected
2564 // other orig regs.
2565 ImmMapTy::const_iterator OtherImms[] = {
2566 Imms.begin(), prior(Imms.end()),
2567 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2568 };
2569 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2570 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00002571 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002572
2573 // Compute the difference between the two.
2574 int64_t Imm = (uint64_t)JImm - M->first;
2575 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2576 LUIdx = UsedByIndices.find_next(LUIdx))
2577 // Make a memo of this use, offset, and register tuple.
2578 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2579 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00002580 }
2581 }
2582 }
2583
Dan Gohman572645c2010-02-12 10:34:29 +00002584 Map.clear();
2585 Sequence.clear();
2586 UsedByIndicesMap.clear();
2587 UniqueItems.clear();
2588
2589 // Now iterate through the worklist and add new formulae.
2590 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2591 E = WorkItems.end(); I != E; ++I) {
2592 const WorkItem &WI = *I;
2593 size_t LUIdx = WI.LUIdx;
2594 LSRUse &LU = Uses[LUIdx];
2595 int64_t Imm = WI.Imm;
2596 const SCEV *OrigReg = WI.OrigReg;
2597
2598 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2599 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2600 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2601
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002602 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00002603 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2604 Formula F = LU.Formulae[L];
2605 // Use the immediate in the scaled register.
2606 if (F.ScaledReg == OrigReg) {
2607 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2608 Imm * (uint64_t)F.AM.Scale;
2609 // Don't create 50 + reg(-50).
2610 if (F.referencesReg(SE.getSCEV(
2611 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2612 continue;
2613 Formula NewF = F;
2614 NewF.AM.BaseOffs = Offs;
2615 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2616 LU.Kind, LU.AccessTy, TLI))
2617 continue;
2618 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2619
2620 // If the new scale is a constant in a register, and adding the constant
2621 // value to the immediate would produce a value closer to zero than the
2622 // immediate itself, then the formula isn't worthwhile.
2623 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2624 if (C->getValue()->getValue().isNegative() !=
2625 (NewF.AM.BaseOffs < 0) &&
2626 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
Dan Gohmane0567812010-04-08 23:03:40 +00002627 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00002628 continue;
2629
2630 // OK, looks good.
2631 (void)InsertFormula(LU, LUIdx, NewF);
2632 } else {
2633 // Use the immediate in a base register.
2634 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2635 const SCEV *BaseReg = F.BaseRegs[N];
2636 if (BaseReg != OrigReg)
2637 continue;
2638 Formula NewF = F;
2639 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2640 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2641 LU.Kind, LU.AccessTy, TLI))
2642 continue;
2643 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2644
2645 // If the new formula has a constant in a register, and adding the
2646 // constant value to the immediate would produce a value closer to
2647 // zero than the immediate itself, then the formula isn't worthwhile.
2648 for (SmallVectorImpl<const SCEV *>::const_iterator
2649 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2650 J != JE; ++J)
2651 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
Dan Gohman360026f2010-05-18 23:48:08 +00002652 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2653 abs64(NewF.AM.BaseOffs)) &&
2654 (C->getValue()->getValue() +
2655 NewF.AM.BaseOffs).countTrailingZeros() >=
2656 CountTrailingZeros_64(NewF.AM.BaseOffs))
Dan Gohman572645c2010-02-12 10:34:29 +00002657 goto skip_formula;
2658
2659 // Ok, looks good.
2660 (void)InsertFormula(LU, LUIdx, NewF);
2661 break;
2662 skip_formula:;
2663 }
2664 }
2665 }
2666 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00002667}
2668
Dan Gohman572645c2010-02-12 10:34:29 +00002669/// GenerateAllReuseFormulae - Generate formulae for each use.
2670void
2671LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00002672 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00002673 // queries are more precise.
2674 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2675 LSRUse &LU = Uses[LUIdx];
2676 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2677 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2678 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2679 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2680 }
2681 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2682 LSRUse &LU = Uses[LUIdx];
2683 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2684 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2685 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2686 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2687 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2688 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2689 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2690 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00002691 }
2692 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2693 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002694 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2695 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2696 }
2697
2698 GenerateCrossUseConstantOffsets();
2699}
2700
2701/// If their are multiple formulae with the same set of registers used
2702/// by other uses, pick the best one and delete the others.
2703void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2704#ifndef NDEBUG
2705 bool Changed = false;
2706#endif
2707
2708 // Collect the best formula for each unique set of shared registers. This
2709 // is reset for each use.
2710 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2711 BestFormulaeTy;
2712 BestFormulaeTy BestFormulae;
2713
2714 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2715 LSRUse &LU = Uses[LUIdx];
2716 FormulaSorter Sorter(L, LU, SE, DT);
Dan Gohmanea507f52010-05-20 19:44:23 +00002717 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
Dan Gohman572645c2010-02-12 10:34:29 +00002718
Dan Gohmanb2df4332010-05-18 23:42:37 +00002719 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002720 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2721 FIdx != NumForms; ++FIdx) {
2722 Formula &F = LU.Formulae[FIdx];
2723
2724 SmallVector<const SCEV *, 2> Key;
2725 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2726 JE = F.BaseRegs.end(); J != JE; ++J) {
2727 const SCEV *Reg = *J;
2728 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2729 Key.push_back(Reg);
2730 }
2731 if (F.ScaledReg &&
2732 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2733 Key.push_back(F.ScaledReg);
2734 // Unstable sort by host order ok, because this is only used for
2735 // uniquifying.
2736 std::sort(Key.begin(), Key.end());
2737
2738 std::pair<BestFormulaeTy::const_iterator, bool> P =
2739 BestFormulae.insert(std::make_pair(Key, FIdx));
2740 if (!P.second) {
2741 Formula &Best = LU.Formulae[P.first->second];
2742 if (Sorter.operator()(F, Best))
2743 std::swap(F, Best);
Dan Gohman6458ff92010-05-18 22:37:37 +00002744 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002745 dbgs() << "\n"
Dan Gohman6458ff92010-05-18 22:37:37 +00002746 " in favor of formula "; Best.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002747 dbgs() << '\n');
2748#ifndef NDEBUG
2749 Changed = true;
2750#endif
Dan Gohmand69d6282010-05-18 22:39:15 +00002751 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002752 --FIdx;
2753 --NumForms;
Dan Gohmanb2df4332010-05-18 23:42:37 +00002754 Any = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002755 continue;
2756 }
Dan Gohman59dc6032010-05-07 23:36:59 +00002757 }
2758
Dan Gohman57aaa0b2010-05-18 23:55:57 +00002759 // Now that we've filtered out some formulae, recompute the Regs set.
Dan Gohmanb2df4332010-05-18 23:42:37 +00002760 if (Any)
2761 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman59dc6032010-05-07 23:36:59 +00002762
2763 // Reset this to prepare for the next use.
Dan Gohman572645c2010-02-12 10:34:29 +00002764 BestFormulae.clear();
2765 }
2766
2767 DEBUG(if (Changed) {
Dan Gohman9214b822010-02-13 02:06:02 +00002768 dbgs() << "\n"
2769 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00002770 print_uses(dbgs());
2771 });
2772}
2773
Dan Gohmand079c302010-05-18 22:51:59 +00002774// This is a rough guess that seems to work fairly well.
2775static const size_t ComplexityLimit = UINT16_MAX;
2776
2777/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2778/// solutions the solver might have to consider. It almost never considers
2779/// this many solutions because it prune the search space, but the pruning
2780/// isn't always sufficient.
2781size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2782 uint32_t Power = 1;
2783 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2784 E = Uses.end(); I != E; ++I) {
2785 size_t FSize = I->Formulae.size();
2786 if (FSize >= ComplexityLimit) {
2787 Power = ComplexityLimit;
2788 break;
2789 }
2790 Power *= FSize;
2791 if (Power >= ComplexityLimit)
2792 break;
2793 }
2794 return Power;
2795}
2796
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002797/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
Dan Gohman572645c2010-02-12 10:34:29 +00002798/// formulae to choose from, use some rough heuristics to prune down the number
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002799/// of formulae. This keeps the main solver from taking an extraordinary amount
Dan Gohman572645c2010-02-12 10:34:29 +00002800/// of time in some worst-case scenarios.
2801void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
Dan Gohmana2086b32010-05-19 23:43:12 +00002802 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2803 DEBUG(dbgs() << "The search space is too complex.\n");
2804
2805 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2806 "which use a superset of registers used by other "
2807 "formulae.\n");
2808
2809 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2810 LSRUse &LU = Uses[LUIdx];
2811 bool Any = false;
2812 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2813 Formula &F = LU.Formulae[i];
2814 for (SmallVectorImpl<const SCEV *>::const_iterator
2815 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2816 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2817 Formula NewF = F;
2818 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2819 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2820 (I - F.BaseRegs.begin()));
2821 if (LU.HasFormulaWithSameRegs(NewF)) {
2822 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2823 LU.DeleteFormula(F);
2824 --i;
2825 --e;
2826 Any = true;
2827 break;
2828 }
2829 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2830 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2831 if (!F.AM.BaseGV) {
2832 Formula NewF = F;
2833 NewF.AM.BaseGV = GV;
2834 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2835 (I - F.BaseRegs.begin()));
2836 if (LU.HasFormulaWithSameRegs(NewF)) {
2837 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2838 dbgs() << '\n');
2839 LU.DeleteFormula(F);
2840 --i;
2841 --e;
2842 Any = true;
2843 break;
2844 }
2845 }
2846 }
2847 }
2848 }
2849 if (Any)
2850 LU.RecomputeRegs(LUIdx, RegUses);
2851 }
2852
2853 DEBUG(dbgs() << "After pre-selection:\n";
2854 print_uses(dbgs()));
2855 }
2856
2857 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2858 DEBUG(dbgs() << "The search space is too complex.\n");
2859
2860 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2861 "separated by a constant offset will use the same "
2862 "registers.\n");
2863
2864 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2865 LSRUse &LU = Uses[LUIdx];
Dan Gohman24a7c302010-05-20 16:41:11 +00002866 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2867 FIdx != NumForms; ++FIdx) {
2868 Formula &F = LU.Formulae[FIdx];
Dan Gohmana2086b32010-05-19 23:43:12 +00002869 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2870 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2871 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2872 /*HasBaseReg=*/false,
2873 LU.Kind, LU.AccessTy)) {
2874 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
2875 dbgs() << '\n');
2876
2877 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2878
2879 // Delete formulae from the new use which are no longer legal.
2880 bool Any = false;
2881 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
2882 Formula &F = LUThatHas->Formulae[i];
2883 if (!isLegalUse(F.AM,
2884 LUThatHas->MinOffset, LUThatHas->MaxOffset,
2885 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
2886 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2887 dbgs() << '\n');
2888 LUThatHas->DeleteFormula(F);
2889 --i;
2890 --e;
2891 Any = true;
2892 }
2893 }
2894 if (Any)
2895 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
2896
2897 // Update the relocs to reference the new use.
2898 for (size_t i = 0, e = Fixups.size(); i != e; ++i) {
2899 if (Fixups[i].LUIdx == LUIdx) {
2900 Fixups[i].LUIdx = LUThatHas - &Uses.front();
2901 Fixups[i].Offset += F.AM.BaseOffs;
2902 DEBUG(errs() << "New fixup has offset "
Dan Gohmanea507f52010-05-20 19:44:23 +00002903 << Fixups[i].Offset << '\n');
Dan Gohmana2086b32010-05-19 23:43:12 +00002904 }
2905 if (Fixups[i].LUIdx == NumUses-1)
2906 Fixups[i].LUIdx = LUIdx;
2907 }
2908
2909 // Delete the old use.
Dan Gohman5ce6d052010-05-20 15:17:54 +00002910 DeleteUse(LU);
Dan Gohmana2086b32010-05-19 23:43:12 +00002911 --LUIdx;
2912 --NumUses;
2913 break;
2914 }
2915 }
2916 }
2917 }
2918 }
2919
2920 DEBUG(dbgs() << "After pre-selection:\n";
2921 print_uses(dbgs()));
2922 }
2923
Dan Gohman572645c2010-02-12 10:34:29 +00002924 SmallPtrSet<const SCEV *, 4> Taken;
Dan Gohmand079c302010-05-18 22:51:59 +00002925 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
Dan Gohman572645c2010-02-12 10:34:29 +00002926 // Ok, we have too many of formulae on our hands to conveniently handle.
2927 // Use a rough heuristic to thin out the list.
Dan Gohman0da751b2010-05-18 22:41:32 +00002928 DEBUG(dbgs() << "The search space is too complex.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002929
2930 // Pick the register which is used by the most LSRUses, which is likely
2931 // to be a good reuse register candidate.
2932 const SCEV *Best = 0;
2933 unsigned BestNum = 0;
2934 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2935 I != E; ++I) {
2936 const SCEV *Reg = *I;
2937 if (Taken.count(Reg))
2938 continue;
2939 if (!Best)
2940 Best = Reg;
2941 else {
2942 unsigned Count = RegUses.getUsedByIndices(Reg).count();
2943 if (Count > BestNum) {
2944 Best = Reg;
2945 BestNum = Count;
2946 }
2947 }
2948 }
2949
2950 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002951 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002952 Taken.insert(Best);
2953
2954 // In any use with formulae which references this register, delete formulae
2955 // which don't reference it.
Dan Gohmanb2df4332010-05-18 23:42:37 +00002956 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2957 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002958 if (!LU.Regs.count(Best)) continue;
2959
Dan Gohmanb2df4332010-05-18 23:42:37 +00002960 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002961 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2962 Formula &F = LU.Formulae[i];
2963 if (!F.referencesReg(Best)) {
2964 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
Dan Gohmand69d6282010-05-18 22:39:15 +00002965 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002966 --e;
2967 --i;
Dan Gohmanb2df4332010-05-18 23:42:37 +00002968 Any = true;
Dan Gohman59dc6032010-05-07 23:36:59 +00002969 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
Dan Gohman572645c2010-02-12 10:34:29 +00002970 continue;
2971 }
Dan Gohman572645c2010-02-12 10:34:29 +00002972 }
Dan Gohmanb2df4332010-05-18 23:42:37 +00002973
2974 if (Any)
2975 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman572645c2010-02-12 10:34:29 +00002976 }
2977
2978 DEBUG(dbgs() << "After pre-selection:\n";
2979 print_uses(dbgs()));
2980 }
2981}
2982
2983/// SolveRecurse - This is the recursive solver.
2984void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2985 Cost &SolutionCost,
2986 SmallVectorImpl<const Formula *> &Workspace,
2987 const Cost &CurCost,
2988 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2989 DenseSet<const SCEV *> &VisitedRegs) const {
2990 // Some ideas:
2991 // - prune more:
2992 // - use more aggressive filtering
2993 // - sort the formula so that the most profitable solutions are found first
2994 // - sort the uses too
2995 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002996 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00002997 // and bail early.
2998 // - track register sets with SmallBitVector
2999
3000 const LSRUse &LU = Uses[Workspace.size()];
3001
3002 // If this use references any register that's already a part of the
3003 // in-progress solution, consider it a requirement that a formula must
3004 // reference that register in order to be considered. This prunes out
3005 // unprofitable searching.
3006 SmallSetVector<const SCEV *, 4> ReqRegs;
3007 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3008 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00003009 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00003010 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00003011
Dan Gohman9214b822010-02-13 02:06:02 +00003012 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003013 SmallPtrSet<const SCEV *, 16> NewRegs;
3014 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00003015retry:
Dan Gohman572645c2010-02-12 10:34:29 +00003016 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3017 E = LU.Formulae.end(); I != E; ++I) {
3018 const Formula &F = *I;
3019
3020 // Ignore formulae which do not use any of the required registers.
3021 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3022 JE = ReqRegs.end(); J != JE; ++J) {
3023 const SCEV *Reg = *J;
3024 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3025 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3026 F.BaseRegs.end())
3027 goto skip;
3028 }
Dan Gohman9214b822010-02-13 02:06:02 +00003029 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00003030
3031 // Evaluate the cost of the current formula. If it's already worse than
3032 // the current best, prune the search at that point.
3033 NewCost = CurCost;
3034 NewRegs = CurRegs;
3035 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3036 if (NewCost < SolutionCost) {
3037 Workspace.push_back(&F);
3038 if (Workspace.size() != Uses.size()) {
3039 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3040 NewRegs, VisitedRegs);
3041 if (F.getNumRegs() == 1 && Workspace.size() == 1)
3042 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3043 } else {
3044 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3045 dbgs() << ". Regs:";
3046 for (SmallPtrSet<const SCEV *, 16>::const_iterator
3047 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3048 dbgs() << ' ' << **I;
3049 dbgs() << '\n');
3050
3051 SolutionCost = NewCost;
3052 Solution = Workspace;
3053 }
3054 Workspace.pop_back();
3055 }
3056 skip:;
3057 }
Dan Gohman9214b822010-02-13 02:06:02 +00003058
3059 // If none of the formulae had all of the required registers, relax the
3060 // constraint so that we don't exclude all formulae.
3061 if (!AnySatisfiedReqRegs) {
Dan Gohman59dc6032010-05-07 23:36:59 +00003062 assert(!ReqRegs.empty() && "Solver failed even without required registers");
Dan Gohman9214b822010-02-13 02:06:02 +00003063 ReqRegs.clear();
3064 goto retry;
3065 }
Dan Gohman572645c2010-02-12 10:34:29 +00003066}
3067
3068void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3069 SmallVector<const Formula *, 8> Workspace;
3070 Cost SolutionCost;
3071 SolutionCost.Loose();
3072 Cost CurCost;
3073 SmallPtrSet<const SCEV *, 16> CurRegs;
3074 DenseSet<const SCEV *> VisitedRegs;
3075 Workspace.reserve(Uses.size());
3076
3077 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3078 CurRegs, VisitedRegs);
3079
3080 // Ok, we've now made all our decisions.
3081 DEBUG(dbgs() << "\n"
3082 "The chosen solution requires "; SolutionCost.print(dbgs());
3083 dbgs() << ":\n";
3084 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3085 dbgs() << " ";
3086 Uses[i].print(dbgs());
3087 dbgs() << "\n"
3088 " ";
3089 Solution[i]->print(dbgs());
3090 dbgs() << '\n';
3091 });
3092}
3093
3094/// getImmediateDominator - A handy utility for the specific DominatorTree
3095/// query that we need here.
3096///
3097static BasicBlock *getImmediateDominator(BasicBlock *BB, DominatorTree &DT) {
3098 DomTreeNode *Node = DT.getNode(BB);
3099 if (!Node) return 0;
3100 Node = Node->getIDom();
3101 if (!Node) return 0;
3102 return Node->getBlock();
3103}
3104
Dan Gohmane5f76872010-04-09 22:07:05 +00003105/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3106/// the dominator tree far as we can go while still being dominated by the
3107/// input positions. This helps canonicalize the insert position, which
3108/// encourages sharing.
3109BasicBlock::iterator
3110LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3111 const SmallVectorImpl<Instruction *> &Inputs)
3112 const {
3113 for (;;) {
3114 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3115 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3116
3117 BasicBlock *IDom;
3118 for (BasicBlock *Rung = IP->getParent(); ; Rung = IDom) {
3119 IDom = getImmediateDominator(Rung, DT);
3120 if (!IDom) return IP;
3121
3122 // Don't climb into a loop though.
3123 const Loop *IDomLoop = LI.getLoopFor(IDom);
3124 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3125 if (IDomDepth <= IPLoopDepth &&
3126 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3127 break;
3128 }
3129
3130 bool AllDominate = true;
3131 Instruction *BetterPos = 0;
3132 Instruction *Tentative = IDom->getTerminator();
3133 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3134 E = Inputs.end(); I != E; ++I) {
3135 Instruction *Inst = *I;
3136 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3137 AllDominate = false;
3138 break;
3139 }
3140 // Attempt to find an insert position in the middle of the block,
3141 // instead of at the end, so that it can be used for other expansions.
3142 if (IDom == Inst->getParent() &&
3143 (!BetterPos || DT.dominates(BetterPos, Inst)))
Douglas Gregor7d9663c2010-05-11 06:17:44 +00003144 BetterPos = llvm::next(BasicBlock::iterator(Inst));
Dan Gohmane5f76872010-04-09 22:07:05 +00003145 }
3146 if (!AllDominate)
3147 break;
3148 if (BetterPos)
3149 IP = BetterPos;
3150 else
3151 IP = Tentative;
3152 }
3153
3154 return IP;
3155}
3156
3157/// AdjustInsertPositionForExpand - Determine an input position which will be
Dan Gohmand96eae82010-04-09 02:00:38 +00003158/// dominated by the operands and which will dominate the result.
3159BasicBlock::iterator
Dan Gohmane5f76872010-04-09 22:07:05 +00003160LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3161 const LSRFixup &LF,
3162 const LSRUse &LU) const {
Dan Gohmand96eae82010-04-09 02:00:38 +00003163 // Collect some instructions which must be dominated by the
Dan Gohman448db1c2010-04-07 22:27:08 +00003164 // expanding replacement. These must be dominated by any operands that
Dan Gohman572645c2010-02-12 10:34:29 +00003165 // will be required in the expansion.
3166 SmallVector<Instruction *, 4> Inputs;
3167 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3168 Inputs.push_back(I);
3169 if (LU.Kind == LSRUse::ICmpZero)
3170 if (Instruction *I =
3171 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3172 Inputs.push_back(I);
Dan Gohman448db1c2010-04-07 22:27:08 +00003173 if (LF.PostIncLoops.count(L)) {
3174 if (LF.isUseFullyOutsideLoop(L))
Dan Gohman069d6f32010-03-02 01:59:21 +00003175 Inputs.push_back(L->getLoopLatch()->getTerminator());
3176 else
3177 Inputs.push_back(IVIncInsertPos);
3178 }
Dan Gohman701a4ae2010-04-08 05:57:57 +00003179 // The expansion must also be dominated by the increment positions of any
3180 // loops it for which it is using post-inc mode.
3181 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3182 E = LF.PostIncLoops.end(); I != E; ++I) {
3183 const Loop *PIL = *I;
3184 if (PIL == L) continue;
3185
Dan Gohmane5f76872010-04-09 22:07:05 +00003186 // Be dominated by the loop exit.
Dan Gohman701a4ae2010-04-08 05:57:57 +00003187 SmallVector<BasicBlock *, 4> ExitingBlocks;
3188 PIL->getExitingBlocks(ExitingBlocks);
3189 if (!ExitingBlocks.empty()) {
3190 BasicBlock *BB = ExitingBlocks[0];
3191 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3192 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3193 Inputs.push_back(BB->getTerminator());
3194 }
3195 }
Dan Gohman572645c2010-02-12 10:34:29 +00003196
3197 // Then, climb up the immediate dominator tree as far as we can go while
3198 // still being dominated by the input positions.
Dan Gohmane5f76872010-04-09 22:07:05 +00003199 IP = HoistInsertPosition(IP, Inputs);
Dan Gohmand96eae82010-04-09 02:00:38 +00003200
3201 // Don't insert instructions before PHI nodes.
Dan Gohman572645c2010-02-12 10:34:29 +00003202 while (isa<PHINode>(IP)) ++IP;
Dan Gohmand96eae82010-04-09 02:00:38 +00003203
3204 // Ignore debug intrinsics.
Dan Gohman449f31c2010-03-26 00:33:27 +00003205 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
Dan Gohman572645c2010-02-12 10:34:29 +00003206
Dan Gohmand96eae82010-04-09 02:00:38 +00003207 return IP;
3208}
3209
3210Value *LSRInstance::Expand(const LSRFixup &LF,
3211 const Formula &F,
3212 BasicBlock::iterator IP,
3213 SCEVExpander &Rewriter,
3214 SmallVectorImpl<WeakVH> &DeadInsts) const {
3215 const LSRUse &LU = Uses[LF.LUIdx];
3216
3217 // Determine an input position which will be dominated by the operands and
3218 // which will dominate the result.
Dan Gohmane5f76872010-04-09 22:07:05 +00003219 IP = AdjustInsertPositionForExpand(IP, LF, LU);
Dan Gohmand96eae82010-04-09 02:00:38 +00003220
Dan Gohman572645c2010-02-12 10:34:29 +00003221 // Inform the Rewriter if we have a post-increment use, so that it can
3222 // perform an advantageous expansion.
Dan Gohman448db1c2010-04-07 22:27:08 +00003223 Rewriter.setPostInc(LF.PostIncLoops);
Dan Gohman572645c2010-02-12 10:34:29 +00003224
3225 // This is the type that the user actually needs.
3226 const Type *OpTy = LF.OperandValToReplace->getType();
3227 // This will be the type that we'll initially expand to.
3228 const Type *Ty = F.getType();
3229 if (!Ty)
3230 // No type known; just expand directly to the ultimate type.
3231 Ty = OpTy;
3232 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3233 // Expand directly to the ultimate type if it's the right size.
3234 Ty = OpTy;
3235 // This is the type to do integer arithmetic in.
3236 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3237
3238 // Build up a list of operands to add together to form the full base.
3239 SmallVector<const SCEV *, 8> Ops;
3240
3241 // Expand the BaseRegs portion.
3242 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3243 E = F.BaseRegs.end(); I != E; ++I) {
3244 const SCEV *Reg = *I;
3245 assert(!Reg->isZero() && "Zero allocated in a base register!");
3246
Dan Gohman448db1c2010-04-07 22:27:08 +00003247 // If we're expanding for a post-inc user, make the post-inc adjustment.
3248 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3249 Reg = TransformForPostIncUse(Denormalize, Reg,
3250 LF.UserInst, LF.OperandValToReplace,
3251 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003252
3253 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3254 }
3255
Dan Gohman087bd1e2010-03-03 05:29:13 +00003256 // Flush the operand list to suppress SCEVExpander hoisting.
3257 if (!Ops.empty()) {
3258 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3259 Ops.clear();
3260 Ops.push_back(SE.getUnknown(FullV));
3261 }
3262
Dan Gohman572645c2010-02-12 10:34:29 +00003263 // Expand the ScaledReg portion.
3264 Value *ICmpScaledV = 0;
3265 if (F.AM.Scale != 0) {
3266 const SCEV *ScaledS = F.ScaledReg;
3267
Dan Gohman448db1c2010-04-07 22:27:08 +00003268 // If we're expanding for a post-inc user, make the post-inc adjustment.
3269 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3270 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3271 LF.UserInst, LF.OperandValToReplace,
3272 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003273
3274 if (LU.Kind == LSRUse::ICmpZero) {
3275 // An interesting way of "folding" with an icmp is to use a negated
3276 // scale, which we'll implement by inserting it into the other operand
3277 // of the icmp.
3278 assert(F.AM.Scale == -1 &&
3279 "The only scale supported by ICmpZero uses is -1!");
3280 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3281 } else {
3282 // Otherwise just expand the scaled register and an explicit scale,
3283 // which is expected to be matched as part of the address.
3284 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3285 ScaledS = SE.getMulExpr(ScaledS,
Dan Gohmandeff6212010-05-03 22:09:21 +00003286 SE.getConstant(ScaledS->getType(), F.AM.Scale));
Dan Gohman572645c2010-02-12 10:34:29 +00003287 Ops.push_back(ScaledS);
Dan Gohman087bd1e2010-03-03 05:29:13 +00003288
3289 // Flush the operand list to suppress SCEVExpander hoisting.
3290 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3291 Ops.clear();
3292 Ops.push_back(SE.getUnknown(FullV));
Dan Gohman572645c2010-02-12 10:34:29 +00003293 }
3294 }
3295
Dan Gohman087bd1e2010-03-03 05:29:13 +00003296 // Expand the GV portion.
3297 if (F.AM.BaseGV) {
3298 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3299
3300 // Flush the operand list to suppress SCEVExpander hoisting.
3301 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3302 Ops.clear();
3303 Ops.push_back(SE.getUnknown(FullV));
3304 }
3305
3306 // Expand the immediate portion.
Dan Gohman572645c2010-02-12 10:34:29 +00003307 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3308 if (Offset != 0) {
3309 if (LU.Kind == LSRUse::ICmpZero) {
3310 // The other interesting way of "folding" with an ICmpZero is to use a
3311 // negated immediate.
3312 if (!ICmpScaledV)
3313 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3314 else {
3315 Ops.push_back(SE.getUnknown(ICmpScaledV));
3316 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3317 }
3318 } else {
3319 // Just add the immediate values. These again are expected to be matched
3320 // as part of the address.
Dan Gohman087bd1e2010-03-03 05:29:13 +00003321 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
Dan Gohman572645c2010-02-12 10:34:29 +00003322 }
3323 }
3324
3325 // Emit instructions summing all the operands.
3326 const SCEV *FullS = Ops.empty() ?
Dan Gohmandeff6212010-05-03 22:09:21 +00003327 SE.getConstant(IntTy, 0) :
Dan Gohman572645c2010-02-12 10:34:29 +00003328 SE.getAddExpr(Ops);
3329 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3330
3331 // We're done expanding now, so reset the rewriter.
Dan Gohman448db1c2010-04-07 22:27:08 +00003332 Rewriter.clearPostInc();
Dan Gohman572645c2010-02-12 10:34:29 +00003333
3334 // An ICmpZero Formula represents an ICmp which we're handling as a
3335 // comparison against zero. Now that we've expanded an expression for that
3336 // form, update the ICmp's other operand.
3337 if (LU.Kind == LSRUse::ICmpZero) {
3338 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3339 DeadInsts.push_back(CI->getOperand(1));
3340 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3341 "a scale at the same time!");
3342 if (F.AM.Scale == -1) {
3343 if (ICmpScaledV->getType() != OpTy) {
3344 Instruction *Cast =
3345 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3346 OpTy, false),
3347 ICmpScaledV, OpTy, "tmp", CI);
3348 ICmpScaledV = Cast;
3349 }
3350 CI->setOperand(1, ICmpScaledV);
3351 } else {
3352 assert(F.AM.Scale == 0 &&
3353 "ICmp does not support folding a global value and "
3354 "a scale at the same time!");
3355 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3356 -(uint64_t)Offset);
3357 if (C->getType() != OpTy)
3358 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3359 OpTy, false),
3360 C, OpTy);
3361
3362 CI->setOperand(1, C);
3363 }
3364 }
3365
3366 return FullV;
3367}
3368
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003369/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3370/// of their operands effectively happens in their predecessor blocks, so the
3371/// expression may need to be expanded in multiple places.
3372void LSRInstance::RewriteForPHI(PHINode *PN,
3373 const LSRFixup &LF,
3374 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003375 SCEVExpander &Rewriter,
3376 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003377 Pass *P) const {
3378 DenseMap<BasicBlock *, Value *> Inserted;
3379 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3380 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3381 BasicBlock *BB = PN->getIncomingBlock(i);
3382
3383 // If this is a critical edge, split the edge so that we do not insert
3384 // the code on all predecessor/successor paths. We do this unless this
3385 // is the canonical backedge for this loop, which complicates post-inc
3386 // users.
3387 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3388 !isa<IndirectBrInst>(BB->getTerminator()) &&
3389 (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3390 // Split the critical edge.
3391 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3392
3393 // If PN is outside of the loop and BB is in the loop, we want to
3394 // move the block to be immediately before the PHI block, not
3395 // immediately after BB.
3396 if (L->contains(BB) && !L->contains(PN))
3397 NewBB->moveBefore(PN->getParent());
3398
3399 // Splitting the edge can reduce the number of PHI entries we have.
3400 e = PN->getNumIncomingValues();
3401 BB = NewBB;
3402 i = PN->getBasicBlockIndex(BB);
3403 }
3404
3405 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3406 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3407 if (!Pair.second)
3408 PN->setIncomingValue(i, Pair.first->second);
3409 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003410 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003411
3412 // If this is reuse-by-noop-cast, insert the noop cast.
3413 const Type *OpTy = LF.OperandValToReplace->getType();
3414 if (FullV->getType() != OpTy)
3415 FullV =
3416 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3417 OpTy, false),
3418 FullV, LF.OperandValToReplace->getType(),
3419 "tmp", BB->getTerminator());
3420
3421 PN->setIncomingValue(i, FullV);
3422 Pair.first->second = FullV;
3423 }
3424 }
3425}
3426
Dan Gohman572645c2010-02-12 10:34:29 +00003427/// Rewrite - Emit instructions for the leading candidate expression for this
3428/// LSRUse (this is called "expanding"), and update the UserInst to reference
3429/// the newly expanded value.
3430void LSRInstance::Rewrite(const LSRFixup &LF,
3431 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00003432 SCEVExpander &Rewriter,
3433 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00003434 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00003435 // First, find an insertion point that dominates UserInst. For PHI nodes,
3436 // find the nearest block which dominates all the relevant uses.
3437 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00003438 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003439 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003440 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00003441
3442 // If this is reuse-by-noop-cast, insert the noop cast.
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003443 const Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003444 if (FullV->getType() != OpTy) {
3445 Instruction *Cast =
3446 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3447 FullV, OpTy, "tmp", LF.UserInst);
3448 FullV = Cast;
3449 }
3450
3451 // Update the user. ICmpZero is handled specially here (for now) because
3452 // Expand may have updated one of the operands of the icmp already, and
3453 // its new value may happen to be equal to LF.OperandValToReplace, in
3454 // which case doing replaceUsesOfWith leads to replacing both operands
3455 // with the same value. TODO: Reorganize this.
3456 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3457 LF.UserInst->setOperand(0, FullV);
3458 else
3459 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3460 }
3461
3462 DeadInsts.push_back(LF.OperandValToReplace);
3463}
3464
3465void
3466LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3467 Pass *P) {
3468 // Keep track of instructions we may have made dead, so that
3469 // we can remove them after we are done working.
3470 SmallVector<WeakVH, 16> DeadInsts;
3471
3472 SCEVExpander Rewriter(SE);
3473 Rewriter.disableCanonicalMode();
3474 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3475
3476 // Expand the new value definitions and update the users.
3477 for (size_t i = 0, e = Fixups.size(); i != e; ++i) {
3478 size_t LUIdx = Fixups[i].LUIdx;
3479
Dan Gohman454d26d2010-02-22 04:11:59 +00003480 Rewrite(Fixups[i], *Solution[LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003481
3482 Changed = true;
3483 }
3484
3485 // Clean up after ourselves. This must be done before deleting any
3486 // instructions.
3487 Rewriter.clear();
3488
3489 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3490}
3491
3492LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3493 : IU(P->getAnalysis<IVUsers>()),
3494 SE(P->getAnalysis<ScalarEvolution>()),
3495 DT(P->getAnalysis<DominatorTree>()),
Dan Gohmane5f76872010-04-09 22:07:05 +00003496 LI(P->getAnalysis<LoopInfo>()),
Dan Gohman572645c2010-02-12 10:34:29 +00003497 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00003498
Dan Gohman03e896b2009-11-05 21:11:53 +00003499 // If LoopSimplify form is not available, stay out of trouble.
Dan Gohman572645c2010-02-12 10:34:29 +00003500 if (!L->isLoopSimplifyForm()) return;
Dan Gohman03e896b2009-11-05 21:11:53 +00003501
Dan Gohman572645c2010-02-12 10:34:29 +00003502 // If there's no interesting work to be done, bail early.
3503 if (IU.empty()) return;
Dan Gohman80b0f8c2009-03-09 20:34:59 +00003504
Dan Gohman572645c2010-02-12 10:34:29 +00003505 DEBUG(dbgs() << "\nLSR on loop ";
3506 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3507 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00003508
Dan Gohman572645c2010-02-12 10:34:29 +00003509 /// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003510 /// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00003511 OptimizeShadowIV();
Chris Lattner010de252005-08-08 05:28:22 +00003512
Dan Gohman572645c2010-02-12 10:34:29 +00003513 // Change loop terminating condition to use the postinc iv when possible.
3514 Changed |= OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00003515
Dan Gohman572645c2010-02-12 10:34:29 +00003516 CollectInterestingTypesAndFactors();
3517 CollectFixupsAndInitialFormulae();
3518 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00003519
Dan Gohman572645c2010-02-12 10:34:29 +00003520 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3521 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00003522
Dan Gohman572645c2010-02-12 10:34:29 +00003523 // Now use the reuse data to generate a bunch of interesting ways
3524 // to formulate the values needed for the uses.
3525 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00003526
Dan Gohman572645c2010-02-12 10:34:29 +00003527 DEBUG(dbgs() << "\n"
3528 "After generating reuse formulae:\n";
3529 print_uses(dbgs()));
Nate Begemaneaa13852004-10-18 21:08:22 +00003530
Dan Gohman572645c2010-02-12 10:34:29 +00003531 FilterOutUndesirableDedicatedRegisters();
3532 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003533
Dan Gohman572645c2010-02-12 10:34:29 +00003534 SmallVector<const Formula *, 8> Solution;
3535 Solve(Solution);
3536 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003537
Dan Gohman572645c2010-02-12 10:34:29 +00003538 // Release memory that is no longer needed.
3539 Factors.clear();
3540 Types.clear();
3541 RegUses.clear();
3542
3543#ifndef NDEBUG
3544 // Formulae should be legal.
3545 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3546 E = Uses.end(); I != E; ++I) {
3547 const LSRUse &LU = *I;
3548 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3549 JE = LU.Formulae.end(); J != JE; ++J)
3550 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3551 LU.Kind, LU.AccessTy, TLI) &&
3552 "Illegal formula generated!");
3553 };
3554#endif
3555
3556 // Now that we've decided what we want, make it so.
3557 ImplementSolution(Solution, P);
3558}
3559
3560void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3561 if (Factors.empty() && Types.empty()) return;
3562
3563 OS << "LSR has identified the following interesting factors and types: ";
3564 bool First = true;
3565
3566 for (SmallSetVector<int64_t, 8>::const_iterator
3567 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3568 if (!First) OS << ", ";
3569 First = false;
3570 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00003571 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003572
Dan Gohman572645c2010-02-12 10:34:29 +00003573 for (SmallSetVector<const Type *, 4>::const_iterator
3574 I = Types.begin(), E = Types.end(); I != E; ++I) {
3575 if (!First) OS << ", ";
3576 First = false;
3577 OS << '(' << **I << ')';
3578 }
3579 OS << '\n';
3580}
3581
3582void LSRInstance::print_fixups(raw_ostream &OS) const {
3583 OS << "LSR is examining the following fixup sites:\n";
3584 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3585 E = Fixups.end(); I != E; ++I) {
3586 const LSRFixup &LF = *I;
3587 dbgs() << " ";
3588 LF.print(OS);
3589 OS << '\n';
3590 }
3591}
3592
3593void LSRInstance::print_uses(raw_ostream &OS) const {
3594 OS << "LSR is examining the following uses:\n";
3595 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3596 E = Uses.end(); I != E; ++I) {
3597 const LSRUse &LU = *I;
3598 dbgs() << " ";
3599 LU.print(OS);
3600 OS << '\n';
3601 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3602 JE = LU.Formulae.end(); J != JE; ++J) {
3603 OS << " ";
3604 J->print(OS);
3605 OS << '\n';
3606 }
3607 }
3608}
3609
3610void LSRInstance::print(raw_ostream &OS) const {
3611 print_factors_and_types(OS);
3612 print_fixups(OS);
3613 print_uses(OS);
3614}
3615
3616void LSRInstance::dump() const {
3617 print(errs()); errs() << '\n';
3618}
3619
3620namespace {
3621
3622class LoopStrengthReduce : public LoopPass {
3623 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3624 /// transformation profitability.
3625 const TargetLowering *const TLI;
3626
3627public:
3628 static char ID; // Pass ID, replacement for typeid
3629 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3630
3631private:
3632 bool runOnLoop(Loop *L, LPPassManager &LPM);
3633 void getAnalysisUsage(AnalysisUsage &AU) const;
3634};
3635
3636}
3637
3638char LoopStrengthReduce::ID = 0;
3639static RegisterPass<LoopStrengthReduce>
3640X("loop-reduce", "Loop Strength Reduction");
3641
3642Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3643 return new LoopStrengthReduce(TLI);
3644}
3645
3646LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3647 : LoopPass(&ID), TLI(tli) {}
3648
3649void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3650 // We split critical edges, so we change the CFG. However, we do update
3651 // many analyses if they are around.
3652 AU.addPreservedID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00003653 AU.addPreserved("domfrontier");
3654
Dan Gohmane5f76872010-04-09 22:07:05 +00003655 AU.addRequired<LoopInfo>();
3656 AU.addPreserved<LoopInfo>();
Dan Gohman572645c2010-02-12 10:34:29 +00003657 AU.addRequiredID(LoopSimplifyID);
3658 AU.addRequired<DominatorTree>();
3659 AU.addPreserved<DominatorTree>();
3660 AU.addRequired<ScalarEvolution>();
3661 AU.addPreserved<ScalarEvolution>();
3662 AU.addRequired<IVUsers>();
3663 AU.addPreserved<IVUsers>();
3664}
3665
3666bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3667 bool Changed = false;
3668
3669 // Run the main LSR transformation.
3670 Changed |= LSRInstance(TLI, L, this).getChanged();
3671
Dan Gohmanafc36a92009-05-02 18:29:22 +00003672 // At this point, it is worth checking to see if any recurrence PHIs are also
Dan Gohman35738ac2009-05-04 22:30:44 +00003673 // dead, so that we can remove them as well.
Dan Gohman9fff2182010-01-05 16:31:45 +00003674 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmanafc36a92009-05-02 18:29:22 +00003675
Evan Cheng1ce75dc2008-07-07 19:51:32 +00003676 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00003677}