blob: 6066e5cf66f6330d9ca686a33112c71b2793ef2a [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030using namespace llvm;
31
Owen Anderson9a184ef2008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000045}
46
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
213 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000214 assert(false && "Duplicated entries?");
215 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
216 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000217 std::make_pair(RegOp,
218 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000219 AmbEntries.push_back(MemOp);
220 }
221
222 // If the third value is 1, then it's folding either a load or a store.
223 static const unsigned OpTbl0[][3] = {
224 { X86::CALL32r, X86::CALL32m, 1 },
225 { X86::CALL64r, X86::CALL64m, 1 },
226 { X86::CMP16ri, X86::CMP16mi, 1 },
227 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000228 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000229 { X86::CMP32ri, X86::CMP32mi, 1 },
230 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000231 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000232 { X86::CMP64ri32, X86::CMP64mi32, 1 },
233 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000234 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000235 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::DIV16r, X86::DIV16m, 1 },
238 { X86::DIV32r, X86::DIV32m, 1 },
239 { X86::DIV64r, X86::DIV64m, 1 },
240 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000241 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000242 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
243 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
244 { X86::IDIV16r, X86::IDIV16m, 1 },
245 { X86::IDIV32r, X86::IDIV32m, 1 },
246 { X86::IDIV64r, X86::IDIV64m, 1 },
247 { X86::IDIV8r, X86::IDIV8m, 1 },
248 { X86::IMUL16r, X86::IMUL16m, 1 },
249 { X86::IMUL32r, X86::IMUL32m, 1 },
250 { X86::IMUL64r, X86::IMUL64m, 1 },
251 { X86::IMUL8r, X86::IMUL8m, 1 },
252 { X86::JMP32r, X86::JMP32m, 1 },
253 { X86::JMP64r, X86::JMP64m, 1 },
254 { X86::MOV16ri, X86::MOV16mi, 0 },
255 { X86::MOV16rr, X86::MOV16mr, 0 },
256 { X86::MOV16to16_, X86::MOV16_mr, 0 },
257 { X86::MOV32ri, X86::MOV32mi, 0 },
258 { X86::MOV32rr, X86::MOV32mr, 0 },
259 { X86::MOV32to32_, X86::MOV32_mr, 0 },
260 { X86::MOV64ri32, X86::MOV64mi32, 0 },
261 { X86::MOV64rr, X86::MOV64mr, 0 },
262 { X86::MOV8ri, X86::MOV8mi, 0 },
263 { X86::MOV8rr, X86::MOV8mr, 0 },
264 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
265 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
266 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
267 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
268 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
269 { X86::MOVSDrr, X86::MOVSDmr, 0 },
270 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
271 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
272 { X86::MOVSSrr, X86::MOVSSmr, 0 },
273 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
274 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
275 { X86::MUL16r, X86::MUL16m, 1 },
276 { X86::MUL32r, X86::MUL32m, 1 },
277 { X86::MUL64r, X86::MUL64m, 1 },
278 { X86::MUL8r, X86::MUL8m, 1 },
279 { X86::SETAEr, X86::SETAEm, 0 },
280 { X86::SETAr, X86::SETAm, 0 },
281 { X86::SETBEr, X86::SETBEm, 0 },
282 { X86::SETBr, X86::SETBm, 0 },
283 { X86::SETEr, X86::SETEm, 0 },
284 { X86::SETGEr, X86::SETGEm, 0 },
285 { X86::SETGr, X86::SETGm, 0 },
286 { X86::SETLEr, X86::SETLEm, 0 },
287 { X86::SETLr, X86::SETLm, 0 },
288 { X86::SETNEr, X86::SETNEm, 0 },
289 { X86::SETNPr, X86::SETNPm, 0 },
290 { X86::SETNSr, X86::SETNSm, 0 },
291 { X86::SETPr, X86::SETPm, 0 },
292 { X86::SETSr, X86::SETSm, 0 },
293 { X86::TAILJMPr, X86::TAILJMPm, 1 },
294 { X86::TEST16ri, X86::TEST16mi, 1 },
295 { X86::TEST32ri, X86::TEST32mi, 1 },
296 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000297 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000298 };
299
300 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
301 unsigned RegOp = OpTbl0[i][0];
302 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000303 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
304 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000305 assert(false && "Duplicated entries?");
306 unsigned FoldedLoad = OpTbl0[i][2];
307 // Index 0, folded load or store.
308 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
309 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
310 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000311 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000312 AmbEntries.push_back(MemOp);
313 }
314
315 static const unsigned OpTbl1[][2] = {
316 { X86::CMP16rr, X86::CMP16rm },
317 { X86::CMP32rr, X86::CMP32rm },
318 { X86::CMP64rr, X86::CMP64rm },
319 { X86::CMP8rr, X86::CMP8rm },
320 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
321 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
322 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
323 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
324 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
325 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
326 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
327 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
328 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
329 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
330 { X86::FsMOVAPDrr, X86::MOVSDrm },
331 { X86::FsMOVAPSrr, X86::MOVSSrm },
332 { X86::IMUL16rri, X86::IMUL16rmi },
333 { X86::IMUL16rri8, X86::IMUL16rmi8 },
334 { X86::IMUL32rri, X86::IMUL32rmi },
335 { X86::IMUL32rri8, X86::IMUL32rmi8 },
336 { X86::IMUL64rri32, X86::IMUL64rmi32 },
337 { X86::IMUL64rri8, X86::IMUL64rmi8 },
338 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
339 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
340 { X86::Int_COMISDrr, X86::Int_COMISDrm },
341 { X86::Int_COMISSrr, X86::Int_COMISSrm },
342 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
343 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
344 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
345 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
346 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
347 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
348 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
349 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
350 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
351 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
352 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
353 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
354 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
355 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
356 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
357 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
358 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
359 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
360 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
361 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
362 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
363 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
364 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
365 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
366 { X86::MOV16rr, X86::MOV16rm },
367 { X86::MOV16to16_, X86::MOV16_rm },
368 { X86::MOV32rr, X86::MOV32rm },
369 { X86::MOV32to32_, X86::MOV32_rm },
370 { X86::MOV64rr, X86::MOV64rm },
371 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
372 { X86::MOV64toSDrr, X86::MOV64toSDrm },
373 { X86::MOV8rr, X86::MOV8rm },
374 { X86::MOVAPDrr, X86::MOVAPDrm },
375 { X86::MOVAPSrr, X86::MOVAPSrm },
376 { X86::MOVDDUPrr, X86::MOVDDUPrm },
377 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
378 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
379 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
380 { X86::MOVSDrr, X86::MOVSDrm },
381 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
382 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
383 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
384 { X86::MOVSSrr, X86::MOVSSrm },
385 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
386 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
387 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
388 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
389 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
390 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
391 { X86::MOVUPDrr, X86::MOVUPDrm },
392 { X86::MOVUPSrr, X86::MOVUPSrm },
393 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
394 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
395 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
396 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
397 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
398 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
399 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000400 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000401 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
402 { X86::PSHUFDri, X86::PSHUFDmi },
403 { X86::PSHUFHWri, X86::PSHUFHWmi },
404 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000405 { X86::RCPPSr, X86::RCPPSm },
406 { X86::RCPPSr_Int, X86::RCPPSm_Int },
407 { X86::RSQRTPSr, X86::RSQRTPSm },
408 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
409 { X86::RSQRTSSr, X86::RSQRTSSm },
410 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
411 { X86::SQRTPDr, X86::SQRTPDm },
412 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
413 { X86::SQRTPSr, X86::SQRTPSm },
414 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
415 { X86::SQRTSDr, X86::SQRTSDm },
416 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
417 { X86::SQRTSSr, X86::SQRTSSm },
418 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
419 { X86::TEST16rr, X86::TEST16rm },
420 { X86::TEST32rr, X86::TEST32rm },
421 { X86::TEST64rr, X86::TEST64rm },
422 { X86::TEST8rr, X86::TEST8rm },
423 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
424 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000425 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000426 };
427
428 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
429 unsigned RegOp = OpTbl1[i][0];
430 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000431 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
432 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000433 assert(false && "Duplicated entries?");
434 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
435 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
436 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000437 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000438 AmbEntries.push_back(MemOp);
439 }
440
441 static const unsigned OpTbl2[][2] = {
442 { X86::ADC32rr, X86::ADC32rm },
443 { X86::ADC64rr, X86::ADC64rm },
444 { X86::ADD16rr, X86::ADD16rm },
445 { X86::ADD32rr, X86::ADD32rm },
446 { X86::ADD64rr, X86::ADD64rm },
447 { X86::ADD8rr, X86::ADD8rm },
448 { X86::ADDPDrr, X86::ADDPDrm },
449 { X86::ADDPSrr, X86::ADDPSrm },
450 { X86::ADDSDrr, X86::ADDSDrm },
451 { X86::ADDSSrr, X86::ADDSSrm },
452 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
453 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
454 { X86::AND16rr, X86::AND16rm },
455 { X86::AND32rr, X86::AND32rm },
456 { X86::AND64rr, X86::AND64rm },
457 { X86::AND8rr, X86::AND8rm },
458 { X86::ANDNPDrr, X86::ANDNPDrm },
459 { X86::ANDNPSrr, X86::ANDNPSrm },
460 { X86::ANDPDrr, X86::ANDPDrm },
461 { X86::ANDPSrr, X86::ANDPSrm },
462 { X86::CMOVA16rr, X86::CMOVA16rm },
463 { X86::CMOVA32rr, X86::CMOVA32rm },
464 { X86::CMOVA64rr, X86::CMOVA64rm },
465 { X86::CMOVAE16rr, X86::CMOVAE16rm },
466 { X86::CMOVAE32rr, X86::CMOVAE32rm },
467 { X86::CMOVAE64rr, X86::CMOVAE64rm },
468 { X86::CMOVB16rr, X86::CMOVB16rm },
469 { X86::CMOVB32rr, X86::CMOVB32rm },
470 { X86::CMOVB64rr, X86::CMOVB64rm },
471 { X86::CMOVBE16rr, X86::CMOVBE16rm },
472 { X86::CMOVBE32rr, X86::CMOVBE32rm },
473 { X86::CMOVBE64rr, X86::CMOVBE64rm },
474 { X86::CMOVE16rr, X86::CMOVE16rm },
475 { X86::CMOVE32rr, X86::CMOVE32rm },
476 { X86::CMOVE64rr, X86::CMOVE64rm },
477 { X86::CMOVG16rr, X86::CMOVG16rm },
478 { X86::CMOVG32rr, X86::CMOVG32rm },
479 { X86::CMOVG64rr, X86::CMOVG64rm },
480 { X86::CMOVGE16rr, X86::CMOVGE16rm },
481 { X86::CMOVGE32rr, X86::CMOVGE32rm },
482 { X86::CMOVGE64rr, X86::CMOVGE64rm },
483 { X86::CMOVL16rr, X86::CMOVL16rm },
484 { X86::CMOVL32rr, X86::CMOVL32rm },
485 { X86::CMOVL64rr, X86::CMOVL64rm },
486 { X86::CMOVLE16rr, X86::CMOVLE16rm },
487 { X86::CMOVLE32rr, X86::CMOVLE32rm },
488 { X86::CMOVLE64rr, X86::CMOVLE64rm },
489 { X86::CMOVNE16rr, X86::CMOVNE16rm },
490 { X86::CMOVNE32rr, X86::CMOVNE32rm },
491 { X86::CMOVNE64rr, X86::CMOVNE64rm },
492 { X86::CMOVNP16rr, X86::CMOVNP16rm },
493 { X86::CMOVNP32rr, X86::CMOVNP32rm },
494 { X86::CMOVNP64rr, X86::CMOVNP64rm },
495 { X86::CMOVNS16rr, X86::CMOVNS16rm },
496 { X86::CMOVNS32rr, X86::CMOVNS32rm },
497 { X86::CMOVNS64rr, X86::CMOVNS64rm },
498 { X86::CMOVP16rr, X86::CMOVP16rm },
499 { X86::CMOVP32rr, X86::CMOVP32rm },
500 { X86::CMOVP64rr, X86::CMOVP64rm },
501 { X86::CMOVS16rr, X86::CMOVS16rm },
502 { X86::CMOVS32rr, X86::CMOVS32rm },
503 { X86::CMOVS64rr, X86::CMOVS64rm },
504 { X86::CMPPDrri, X86::CMPPDrmi },
505 { X86::CMPPSrri, X86::CMPPSrmi },
506 { X86::CMPSDrr, X86::CMPSDrm },
507 { X86::CMPSSrr, X86::CMPSSrm },
508 { X86::DIVPDrr, X86::DIVPDrm },
509 { X86::DIVPSrr, X86::DIVPSrm },
510 { X86::DIVSDrr, X86::DIVSDrm },
511 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000512 { X86::FsANDNPDrr, X86::FsANDNPDrm },
513 { X86::FsANDNPSrr, X86::FsANDNPSrm },
514 { X86::FsANDPDrr, X86::FsANDPDrm },
515 { X86::FsANDPSrr, X86::FsANDPSrm },
516 { X86::FsORPDrr, X86::FsORPDrm },
517 { X86::FsORPSrr, X86::FsORPSrm },
518 { X86::FsXORPDrr, X86::FsXORPDrm },
519 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000520 { X86::HADDPDrr, X86::HADDPDrm },
521 { X86::HADDPSrr, X86::HADDPSrm },
522 { X86::HSUBPDrr, X86::HSUBPDrm },
523 { X86::HSUBPSrr, X86::HSUBPSrm },
524 { X86::IMUL16rr, X86::IMUL16rm },
525 { X86::IMUL32rr, X86::IMUL32rm },
526 { X86::IMUL64rr, X86::IMUL64rm },
527 { X86::MAXPDrr, X86::MAXPDrm },
528 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
529 { X86::MAXPSrr, X86::MAXPSrm },
530 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
531 { X86::MAXSDrr, X86::MAXSDrm },
532 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
533 { X86::MAXSSrr, X86::MAXSSrm },
534 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
535 { X86::MINPDrr, X86::MINPDrm },
536 { X86::MINPDrr_Int, X86::MINPDrm_Int },
537 { X86::MINPSrr, X86::MINPSrm },
538 { X86::MINPSrr_Int, X86::MINPSrm_Int },
539 { X86::MINSDrr, X86::MINSDrm },
540 { X86::MINSDrr_Int, X86::MINSDrm_Int },
541 { X86::MINSSrr, X86::MINSSrm },
542 { X86::MINSSrr_Int, X86::MINSSrm_Int },
543 { X86::MULPDrr, X86::MULPDrm },
544 { X86::MULPSrr, X86::MULPSrm },
545 { X86::MULSDrr, X86::MULSDrm },
546 { X86::MULSSrr, X86::MULSSrm },
547 { X86::OR16rr, X86::OR16rm },
548 { X86::OR32rr, X86::OR32rm },
549 { X86::OR64rr, X86::OR64rm },
550 { X86::OR8rr, X86::OR8rm },
551 { X86::ORPDrr, X86::ORPDrm },
552 { X86::ORPSrr, X86::ORPSrm },
553 { X86::PACKSSDWrr, X86::PACKSSDWrm },
554 { X86::PACKSSWBrr, X86::PACKSSWBrm },
555 { X86::PACKUSWBrr, X86::PACKUSWBrm },
556 { X86::PADDBrr, X86::PADDBrm },
557 { X86::PADDDrr, X86::PADDDrm },
558 { X86::PADDQrr, X86::PADDQrm },
559 { X86::PADDSBrr, X86::PADDSBrm },
560 { X86::PADDSWrr, X86::PADDSWrm },
561 { X86::PADDWrr, X86::PADDWrm },
562 { X86::PANDNrr, X86::PANDNrm },
563 { X86::PANDrr, X86::PANDrm },
564 { X86::PAVGBrr, X86::PAVGBrm },
565 { X86::PAVGWrr, X86::PAVGWrm },
566 { X86::PCMPEQBrr, X86::PCMPEQBrm },
567 { X86::PCMPEQDrr, X86::PCMPEQDrm },
568 { X86::PCMPEQWrr, X86::PCMPEQWrm },
569 { X86::PCMPGTBrr, X86::PCMPGTBrm },
570 { X86::PCMPGTDrr, X86::PCMPGTDrm },
571 { X86::PCMPGTWrr, X86::PCMPGTWrm },
572 { X86::PINSRWrri, X86::PINSRWrmi },
573 { X86::PMADDWDrr, X86::PMADDWDrm },
574 { X86::PMAXSWrr, X86::PMAXSWrm },
575 { X86::PMAXUBrr, X86::PMAXUBrm },
576 { X86::PMINSWrr, X86::PMINSWrm },
577 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000578 { X86::PMULDQrr, X86::PMULDQrm },
579 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000580 { X86::PMULHUWrr, X86::PMULHUWrm },
581 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000582 { X86::PMULLDrr, X86::PMULLDrm },
583 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000584 { X86::PMULLWrr, X86::PMULLWrm },
585 { X86::PMULUDQrr, X86::PMULUDQrm },
586 { X86::PORrr, X86::PORrm },
587 { X86::PSADBWrr, X86::PSADBWrm },
588 { X86::PSLLDrr, X86::PSLLDrm },
589 { X86::PSLLQrr, X86::PSLLQrm },
590 { X86::PSLLWrr, X86::PSLLWrm },
591 { X86::PSRADrr, X86::PSRADrm },
592 { X86::PSRAWrr, X86::PSRAWrm },
593 { X86::PSRLDrr, X86::PSRLDrm },
594 { X86::PSRLQrr, X86::PSRLQrm },
595 { X86::PSRLWrr, X86::PSRLWrm },
596 { X86::PSUBBrr, X86::PSUBBrm },
597 { X86::PSUBDrr, X86::PSUBDrm },
598 { X86::PSUBSBrr, X86::PSUBSBrm },
599 { X86::PSUBSWrr, X86::PSUBSWrm },
600 { X86::PSUBWrr, X86::PSUBWrm },
601 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
602 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
603 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
604 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
605 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
606 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
607 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
608 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
609 { X86::PXORrr, X86::PXORrm },
610 { X86::SBB32rr, X86::SBB32rm },
611 { X86::SBB64rr, X86::SBB64rm },
612 { X86::SHUFPDrri, X86::SHUFPDrmi },
613 { X86::SHUFPSrri, X86::SHUFPSrmi },
614 { X86::SUB16rr, X86::SUB16rm },
615 { X86::SUB32rr, X86::SUB32rm },
616 { X86::SUB64rr, X86::SUB64rm },
617 { X86::SUB8rr, X86::SUB8rm },
618 { X86::SUBPDrr, X86::SUBPDrm },
619 { X86::SUBPSrr, X86::SUBPSrm },
620 { X86::SUBSDrr, X86::SUBSDrm },
621 { X86::SUBSSrr, X86::SUBSSrm },
622 // FIXME: TEST*rr -> swapped operand of TEST*mr.
623 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
624 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
625 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
626 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
627 { X86::XOR16rr, X86::XOR16rm },
628 { X86::XOR32rr, X86::XOR32rm },
629 { X86::XOR64rr, X86::XOR64rm },
630 { X86::XOR8rr, X86::XOR8rm },
631 { X86::XORPDrr, X86::XORPDrm },
632 { X86::XORPSrr, X86::XORPSrm }
633 };
634
635 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
636 unsigned RegOp = OpTbl2[i][0];
637 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000638 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
639 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000640 assert(false && "Duplicated entries?");
641 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
642 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000643 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000644 AmbEntries.push_back(MemOp);
645 }
646
647 // Remove ambiguous entries.
648 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649}
650
651bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
652 unsigned& sourceReg,
653 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000654 switch (MI.getOpcode()) {
655 default:
656 return false;
657 case X86::MOV8rr:
658 case X86::MOV16rr:
659 case X86::MOV32rr:
660 case X86::MOV64rr:
661 case X86::MOV16to16_:
662 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000663 case X86::MOVSSrr:
664 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000665
666 // FP Stack register class copies
667 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
668 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
669 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
670
Chris Lattnerff195282008-03-11 19:28:17 +0000671 case X86::FsMOVAPSrr:
672 case X86::FsMOVAPDrr:
673 case X86::MOVAPSrr:
674 case X86::MOVAPDrr:
675 case X86::MOVSS2PSrr:
676 case X86::MOVSD2PDrr:
677 case X86::MOVPS2SSrr:
678 case X86::MOVPD2SDrr:
679 case X86::MMX_MOVD64rr:
680 case X86::MMX_MOVQ64rr:
681 assert(MI.getNumOperands() >= 2 &&
682 MI.getOperand(0).isRegister() &&
683 MI.getOperand(1).isRegister() &&
684 "invalid register-register move instruction");
685 sourceReg = MI.getOperand(1).getReg();
686 destReg = MI.getOperand(0).getReg();
687 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000689}
690
691unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
692 int &FrameIndex) const {
693 switch (MI->getOpcode()) {
694 default: break;
695 case X86::MOV8rm:
696 case X86::MOV16rm:
697 case X86::MOV16_rm:
698 case X86::MOV32rm:
699 case X86::MOV32_rm:
700 case X86::MOV64rm:
701 case X86::LD_Fp64m:
702 case X86::MOVSSrm:
703 case X86::MOVSDrm:
704 case X86::MOVAPSrm:
705 case X86::MOVAPDrm:
706 case X86::MMX_MOVD64rm:
707 case X86::MMX_MOVQ64rm:
Chris Lattner6017d482007-12-30 23:10:15 +0000708 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
709 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000710 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000712 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000713 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 return MI->getOperand(0).getReg();
715 }
716 break;
717 }
718 return 0;
719}
720
721unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
722 int &FrameIndex) const {
723 switch (MI->getOpcode()) {
724 default: break;
725 case X86::MOV8mr:
726 case X86::MOV16mr:
727 case X86::MOV16_mr:
728 case X86::MOV32mr:
729 case X86::MOV32_mr:
730 case X86::MOV64mr:
731 case X86::ST_FpP64m:
732 case X86::MOVSSmr:
733 case X86::MOVSDmr:
734 case X86::MOVAPSmr:
735 case X86::MOVAPDmr:
736 case X86::MMX_MOVD64mr:
737 case X86::MMX_MOVQ64mr:
738 case X86::MMX_MOVNTQmr:
Chris Lattner6017d482007-12-30 23:10:15 +0000739 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
740 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000741 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000743 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000744 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 return MI->getOperand(4).getReg();
746 }
747 break;
748 }
749 return 0;
750}
751
752
Evan Chengb819a512008-03-27 01:45:11 +0000753/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
754/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000755static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000756 bool isPICBase = false;
757 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
758 E = MRI.def_end(); I != E; ++I) {
759 MachineInstr *DefMI = I.getOperand().getParent();
760 if (DefMI->getOpcode() != X86::MOVPC32r)
761 return false;
762 assert(!isPICBase && "More than one PIC base?");
763 isPICBase = true;
764 }
765 return isPICBase;
766}
Evan Chenge9caab52008-03-31 07:54:19 +0000767
768/// isGVStub - Return true if the GV requires an extra load to get the
769/// real address.
770static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
771 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
772}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000773
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000774bool
775X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776 switch (MI->getOpcode()) {
777 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000778 case X86::MOV8rm:
779 case X86::MOV16rm:
780 case X86::MOV16_rm:
781 case X86::MOV32rm:
782 case X86::MOV32_rm:
783 case X86::MOV64rm:
784 case X86::LD_Fp64m:
785 case X86::MOVSSrm:
786 case X86::MOVSDrm:
787 case X86::MOVAPSrm:
788 case X86::MOVAPDrm:
789 case X86::MMX_MOVD64rm:
790 case X86::MMX_MOVQ64rm: {
791 // Loads from constant pools are trivially rematerializable.
792 if (MI->getOperand(1).isReg() &&
793 MI->getOperand(2).isImm() &&
794 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Evan Chenge9caab52008-03-31 07:54:19 +0000795 (MI->getOperand(4).isCPI() ||
796 (MI->getOperand(4).isGlobal() &&
797 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000798 unsigned BaseReg = MI->getOperand(1).getReg();
799 if (BaseReg == 0)
800 return true;
801 // Allow re-materialization of PIC load.
Evan Chengc87df652008-04-01 23:26:12 +0000802 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
803 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000804 const MachineFunction &MF = *MI->getParent()->getParent();
805 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000806 bool isPICBase = false;
807 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
808 E = MRI.def_end(); I != E; ++I) {
809 MachineInstr *DefMI = I.getOperand().getParent();
810 if (DefMI->getOpcode() != X86::MOVPC32r)
811 return false;
812 assert(!isPICBase && "More than one PIC base?");
813 isPICBase = true;
814 }
815 return isPICBase;
816 }
817 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000818 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000819
820 case X86::LEA32r:
821 case X86::LEA64r: {
822 if (MI->getOperand(1).isReg() &&
823 MI->getOperand(2).isImm() &&
824 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
825 !MI->getOperand(4).isReg()) {
826 // lea fi#, lea GV, etc. are all rematerializable.
827 unsigned BaseReg = MI->getOperand(1).getReg();
828 if (BaseReg == 0)
829 return true;
830 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000831 const MachineFunction &MF = *MI->getParent()->getParent();
832 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000833 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000834 }
835 return false;
836 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000837 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000838
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000839 // All other instructions marked M_REMATERIALIZABLE are always trivially
840 // rematerializable.
841 return true;
842}
843
Evan Chengc564ded2008-06-24 07:10:51 +0000844/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
845/// would clobber the EFLAGS condition register. Note the result may be
846/// conservative. If it cannot definitely determine the safety after visiting
847/// two instructions it assumes it's not safe.
848static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
849 MachineBasicBlock::iterator I) {
850 // For compile time consideration, if we are not able to determine the
851 // safety after visiting 2 instructions, we will assume it's not safe.
852 for (unsigned i = 0; i < 2; ++i) {
853 if (I == MBB.end())
854 // Reached end of block, it's safe.
855 return true;
856 bool SeenDef = false;
857 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
858 MachineOperand &MO = I->getOperand(j);
859 if (!MO.isRegister())
860 continue;
861 if (MO.getReg() == X86::EFLAGS) {
862 if (MO.isUse())
863 return false;
864 SeenDef = true;
865 }
866 }
867
868 if (SeenDef)
869 // This instruction defines EFLAGS, no need to look any further.
870 return true;
871 ++I;
872 }
873
874 // Conservative answer.
875 return false;
876}
877
Evan Cheng7d73efc2008-03-31 20:40:39 +0000878void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
879 MachineBasicBlock::iterator I,
880 unsigned DestReg,
881 const MachineInstr *Orig) const {
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000882 unsigned SubIdx = Orig->getOperand(0).isReg()
883 ? Orig->getOperand(0).getSubReg() : 0;
884 bool ChangeSubIdx = SubIdx != 0;
885 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
886 DestReg = RI.getSubReg(DestReg, SubIdx);
887 SubIdx = 0;
888 }
889
Evan Cheng7d73efc2008-03-31 20:40:39 +0000890 // MOV32r0 etc. are implemented with xor which clobbers condition code.
891 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000892 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000893 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000894 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000895 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000896 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000897 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000898 case X86::MOV64r0: {
899 if (!isSafeToClobberEFLAGS(MBB, I)) {
900 unsigned Opc = 0;
901 switch (Orig->getOpcode()) {
902 default: break;
903 case X86::MOV8r0: Opc = X86::MOV8ri; break;
904 case X86::MOV16r0: Opc = X86::MOV16ri; break;
905 case X86::MOV32r0: Opc = X86::MOV32ri; break;
906 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
907 }
908 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
909 Emitted = true;
910 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000911 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000912 }
913 }
914
915 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000916 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000917 MI->getOperand(0).setReg(DestReg);
918 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000919 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000920
921 if (ChangeSubIdx) {
922 MachineInstr *NewMI = prior(I);
923 NewMI->getOperand(0).setSubReg(SubIdx);
924 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000925}
926
Chris Lattnerea3a1812008-01-10 23:08:24 +0000927/// isInvariantLoad - Return true if the specified instruction (which is marked
928/// mayLoad) is loading from a location whose value is invariant across the
929/// function. For example, loading a value from the constant pool or from
930/// from the argument area of a function if it does not change. This should
931/// only return true of *all* loads the instruction does are invariant (if it
932/// does multiple loads).
933bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000934 // This code cares about loads from three cases: constant pool entries,
935 // invariant argument slots, and global stubs. In order to handle these cases
936 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000937 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000938 // none of these three cases is ever used as anything other than a load base
939 // and X86 doesn't have any instructions that load from multiple places.
940
941 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
942 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000943 // Loads from constant pools are trivially invariant.
Chris Lattner0875b572008-01-12 00:35:08 +0000944 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000945 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000946
947 if (MO.isGlobal())
948 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000949
950 // If this is a load from an invariant stack slot, the load is a constant.
951 if (MO.isFI()) {
952 const MachineFrameInfo &MFI =
953 *MI->getParent()->getParent()->getFrameInfo();
954 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000955 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
956 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000957 }
Chris Lattner0875b572008-01-12 00:35:08 +0000958
Chris Lattnerea3a1812008-01-10 23:08:24 +0000959 // All other instances of these instructions are presumed to have other
960 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000961 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000962}
963
Evan Chengfa1a4952007-10-05 08:04:01 +0000964/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
965/// is not marked dead.
966static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000967 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
968 MachineOperand &MO = MI->getOperand(i);
969 if (MO.isRegister() && MO.isDef() &&
970 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
971 return true;
972 }
973 }
974 return false;
975}
976
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000977/// convertToThreeAddress - This method must be implemented by targets that
978/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
979/// may be able to convert a two-address instruction into a true
980/// three-address instruction on demand. This allows the X86 target (for
981/// example) to convert ADD and SHL instructions into LEA instructions if they
982/// would require register copies due to two-addressness.
983///
984/// This method returns a null pointer if the transformation cannot be
985/// performed, otherwise it returns the new instruction.
986///
987MachineInstr *
988X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
989 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000990 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +0000992 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000993 // All instructions input are two-addr instructions. Get the known operands.
994 unsigned Dest = MI->getOperand(0).getReg();
995 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +0000996 bool isDead = MI->getOperand(0).isDead();
997 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000998
999 MachineInstr *NewMI = NULL;
1000 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1001 // we have better subtarget support, enable the 16-bit LEA generation here.
1002 bool DisableLEA16 = true;
1003
Evan Cheng6b96ed32007-10-05 20:34:26 +00001004 unsigned MIOpc = MI->getOpcode();
1005 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001006 case X86::SHUFPSrri: {
1007 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1008 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1009
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001010 unsigned B = MI->getOperand(1).getReg();
1011 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001012 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001013 unsigned A = MI->getOperand(0).getReg();
1014 unsigned M = MI->getOperand(3).getImm();
Dan Gohman221a4372008-07-07 23:14:23 +00001015 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001016 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001017 break;
1018 }
1019 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001020 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1022 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001023 unsigned ShAmt = MI->getOperand(2).getImm();
1024 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001025
Dan Gohman221a4372008-07-07 23:14:23 +00001026 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001027 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 break;
1029 }
1030 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001031 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001032 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1033 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001034 unsigned ShAmt = MI->getOperand(2).getImm();
1035 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001036
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001037 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1038 X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001039 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001040 .addReg(0).addImm(1 << ShAmt)
1041 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001042 break;
1043 }
1044 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001045 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001046 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1047 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001048 unsigned ShAmt = MI->getOperand(2).getImm();
1049 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001050
Christopher Lamb380c6272007-08-10 21:18:25 +00001051 if (DisableLEA16) {
1052 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001053 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001054 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1055 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001056 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1057 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001058
Christopher Lamb8d226a22008-03-11 10:27:36 +00001059 // Build and insert into an implicit UNDEF value. This is OK because
1060 // well be shifting and then extracting the lower 16-bits.
Dan Gohman221a4372008-07-07 23:14:23 +00001061 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1062 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001063 .addReg(leaInReg).addReg(Src, false, false, isKill)
1064 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001065
Dan Gohman221a4372008-07-07 23:14:23 +00001066 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001067 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001068
Dan Gohman221a4372008-07-07 23:14:23 +00001069 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001070 .addReg(Dest, true, false, false, isDead)
1071 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonc6959722008-07-02 23:41:07 +00001072 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001073 // Update live variables
1074 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1075 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1076 if (isKill)
1077 LV->replaceKillInstruction(Src, MI, InsMI);
1078 if (isDead)
1079 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001080 }
Evan Chenge52c1912008-07-03 09:09:37 +00001081 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001082 } else {
Dan Gohman221a4372008-07-07 23:14:23 +00001083 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001084 .addReg(0).addImm(1 << ShAmt)
1085 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001086 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001087 break;
1088 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001089 default: {
1090 // The following opcodes also sets the condition code register(s). Only
1091 // convert them to equivalent lea if the condition code register def's
1092 // are dead!
1093 if (hasLiveCondCodeDef(MI))
1094 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001095
Evan Chenga28a9562007-10-09 07:14:53 +00001096 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001097 switch (MIOpc) {
1098 default: return 0;
1099 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001100 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001101 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001102 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1103 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001104 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001105 .addReg(Dest, true, false, false, isDead),
1106 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001107 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001109 case X86::INC16r:
1110 case X86::INC64_16r:
1111 if (DisableLEA16) return 0;
1112 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001113 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001114 .addReg(Dest, true, false, false, isDead),
1115 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001116 break;
1117 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001118 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001119 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001120 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1121 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001122 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001123 .addReg(Dest, true, false, false, isDead),
1124 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001125 break;
1126 }
1127 case X86::DEC16r:
1128 case X86::DEC64_16r:
1129 if (DisableLEA16) return 0;
1130 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001131 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001132 .addReg(Dest, true, false, false, isDead),
1133 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001134 break;
1135 case X86::ADD64rr:
1136 case X86::ADD32rr: {
1137 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001138 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1139 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001140 unsigned Src2 = MI->getOperand(2).getReg();
1141 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001142 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001143 .addReg(Dest, true, false, false, isDead),
1144 Src, isKill, Src2, isKill2);
1145 if (LV && isKill2)
1146 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001147 break;
1148 }
Evan Chenge52c1912008-07-03 09:09:37 +00001149 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001150 if (DisableLEA16) return 0;
1151 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001152 unsigned Src2 = MI->getOperand(2).getReg();
1153 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001154 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001155 .addReg(Dest, true, false, false, isDead),
1156 Src, isKill, Src2, isKill2);
1157 if (LV && isKill2)
1158 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001159 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001160 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001161 case X86::ADD64ri32:
1162 case X86::ADD64ri8:
1163 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1164 if (MI->getOperand(2).isImmediate())
Dan Gohman221a4372008-07-07 23:14:23 +00001165 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001166 .addReg(Dest, true, false, false, isDead),
1167 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001168 break;
1169 case X86::ADD32ri:
1170 case X86::ADD32ri8:
1171 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001172 if (MI->getOperand(2).isImmediate()) {
1173 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001174 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001175 .addReg(Dest, true, false, false, isDead),
1176 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001177 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001178 break;
1179 case X86::ADD16ri:
1180 case X86::ADD16ri8:
1181 if (DisableLEA16) return 0;
1182 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1183 if (MI->getOperand(2).isImmediate())
Dan Gohman221a4372008-07-07 23:14:23 +00001184 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001185 .addReg(Dest, true, false, false, isDead),
1186 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001187 break;
1188 case X86::SHL16ri:
1189 if (DisableLEA16) return 0;
1190 case X86::SHL32ri:
1191 case X86::SHL64ri: {
1192 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1193 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001194 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001195 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1196 X86AddressMode AM;
1197 AM.Scale = 1 << ShAmt;
1198 AM.IndexReg = Src;
1199 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001200 : (MIOpc == X86::SHL32ri
1201 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman221a4372008-07-07 23:14:23 +00001202 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001203 .addReg(Dest, true, false, false, isDead), AM);
1204 if (isKill)
1205 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001206 }
1207 break;
1208 }
1209 }
1210 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001211 }
1212
Evan Chengc3cb24d2008-02-07 08:29:53 +00001213 if (!NewMI) return 0;
1214
Evan Chenge52c1912008-07-03 09:09:37 +00001215 if (LV) { // Update live variables
1216 if (isKill)
1217 LV->replaceKillInstruction(Src, MI, NewMI);
1218 if (isDead)
1219 LV->replaceKillInstruction(Dest, MI, NewMI);
1220 }
1221
Evan Cheng6b96ed32007-10-05 20:34:26 +00001222 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001223 return NewMI;
1224}
1225
1226/// commuteInstruction - We have a few instructions that must be hacked on to
1227/// commute them.
1228///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001229MachineInstr *
1230X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001231 switch (MI->getOpcode()) {
1232 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1233 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1234 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001235 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1236 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1237 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001238 unsigned Opc;
1239 unsigned Size;
1240 switch (MI->getOpcode()) {
1241 default: assert(0 && "Unreachable!");
1242 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1243 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1244 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1245 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001246 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1247 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001249 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001250 unsigned A = MI->getOperand(0).getReg();
1251 unsigned B = MI->getOperand(1).getReg();
1252 unsigned C = MI->getOperand(2).getReg();
Evan Chengeb76f832008-07-03 00:04:51 +00001253 bool AisDead = MI->getOperand(0).isDead();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254 bool BisKill = MI->getOperand(1).isKill();
1255 bool CisKill = MI->getOperand(2).isKill();
Evan Chengb554e532008-02-13 02:46:49 +00001256 // If machine instrs are no longer in two-address forms, update
1257 // destination register as well.
1258 if (A == B) {
1259 // Must be two address instruction!
1260 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1261 "Expecting a two-address instruction!");
1262 A = C;
1263 CisKill = false;
1264 }
Dan Gohman221a4372008-07-07 23:14:23 +00001265 MachineFunction &MF = *MI->getParent()->getParent();
1266 return BuildMI(MF, get(Opc))
1267 .addReg(A, true, false, false, AisDead)
Evan Chengeb76f832008-07-03 00:04:51 +00001268 .addReg(C, false, false, CisKill)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001269 .addReg(B, false, false, BisKill).addImm(Size-Amt);
1270 }
Evan Cheng926658c2007-10-05 23:13:21 +00001271 case X86::CMOVB16rr:
1272 case X86::CMOVB32rr:
1273 case X86::CMOVB64rr:
1274 case X86::CMOVAE16rr:
1275 case X86::CMOVAE32rr:
1276 case X86::CMOVAE64rr:
1277 case X86::CMOVE16rr:
1278 case X86::CMOVE32rr:
1279 case X86::CMOVE64rr:
1280 case X86::CMOVNE16rr:
1281 case X86::CMOVNE32rr:
1282 case X86::CMOVNE64rr:
1283 case X86::CMOVBE16rr:
1284 case X86::CMOVBE32rr:
1285 case X86::CMOVBE64rr:
1286 case X86::CMOVA16rr:
1287 case X86::CMOVA32rr:
1288 case X86::CMOVA64rr:
1289 case X86::CMOVL16rr:
1290 case X86::CMOVL32rr:
1291 case X86::CMOVL64rr:
1292 case X86::CMOVGE16rr:
1293 case X86::CMOVGE32rr:
1294 case X86::CMOVGE64rr:
1295 case X86::CMOVLE16rr:
1296 case X86::CMOVLE32rr:
1297 case X86::CMOVLE64rr:
1298 case X86::CMOVG16rr:
1299 case X86::CMOVG32rr:
1300 case X86::CMOVG64rr:
1301 case X86::CMOVS16rr:
1302 case X86::CMOVS32rr:
1303 case X86::CMOVS64rr:
1304 case X86::CMOVNS16rr:
1305 case X86::CMOVNS32rr:
1306 case X86::CMOVNS64rr:
1307 case X86::CMOVP16rr:
1308 case X86::CMOVP32rr:
1309 case X86::CMOVP64rr:
1310 case X86::CMOVNP16rr:
1311 case X86::CMOVNP32rr:
1312 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001313 unsigned Opc = 0;
1314 switch (MI->getOpcode()) {
1315 default: break;
1316 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1317 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1318 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1319 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1320 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1321 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1322 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1323 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1324 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1325 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1326 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1327 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1328 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1329 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1330 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1331 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1332 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1333 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1334 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1335 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1336 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1337 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1338 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1339 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1340 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1341 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1342 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1343 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1344 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1345 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1346 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1347 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1348 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1349 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1350 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1351 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1352 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1353 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1354 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1355 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1356 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1357 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1358 }
1359
Chris Lattner86bb02f2008-01-11 18:10:50 +00001360 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001361 // Fallthrough intended.
1362 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001363 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001364 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001365 }
1366}
1367
1368static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1369 switch (BrOpc) {
1370 default: return X86::COND_INVALID;
1371 case X86::JE: return X86::COND_E;
1372 case X86::JNE: return X86::COND_NE;
1373 case X86::JL: return X86::COND_L;
1374 case X86::JLE: return X86::COND_LE;
1375 case X86::JG: return X86::COND_G;
1376 case X86::JGE: return X86::COND_GE;
1377 case X86::JB: return X86::COND_B;
1378 case X86::JBE: return X86::COND_BE;
1379 case X86::JA: return X86::COND_A;
1380 case X86::JAE: return X86::COND_AE;
1381 case X86::JS: return X86::COND_S;
1382 case X86::JNS: return X86::COND_NS;
1383 case X86::JP: return X86::COND_P;
1384 case X86::JNP: return X86::COND_NP;
1385 case X86::JO: return X86::COND_O;
1386 case X86::JNO: return X86::COND_NO;
1387 }
1388}
1389
1390unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1391 switch (CC) {
1392 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001393 case X86::COND_E: return X86::JE;
1394 case X86::COND_NE: return X86::JNE;
1395 case X86::COND_L: return X86::JL;
1396 case X86::COND_LE: return X86::JLE;
1397 case X86::COND_G: return X86::JG;
1398 case X86::COND_GE: return X86::JGE;
1399 case X86::COND_B: return X86::JB;
1400 case X86::COND_BE: return X86::JBE;
1401 case X86::COND_A: return X86::JA;
1402 case X86::COND_AE: return X86::JAE;
1403 case X86::COND_S: return X86::JS;
1404 case X86::COND_NS: return X86::JNS;
1405 case X86::COND_P: return X86::JP;
1406 case X86::COND_NP: return X86::JNP;
1407 case X86::COND_O: return X86::JO;
1408 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001409 }
1410}
1411
1412/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1413/// e.g. turning COND_E to COND_NE.
1414X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1415 switch (CC) {
1416 default: assert(0 && "Illegal condition code!");
1417 case X86::COND_E: return X86::COND_NE;
1418 case X86::COND_NE: return X86::COND_E;
1419 case X86::COND_L: return X86::COND_GE;
1420 case X86::COND_LE: return X86::COND_G;
1421 case X86::COND_G: return X86::COND_LE;
1422 case X86::COND_GE: return X86::COND_L;
1423 case X86::COND_B: return X86::COND_AE;
1424 case X86::COND_BE: return X86::COND_A;
1425 case X86::COND_A: return X86::COND_BE;
1426 case X86::COND_AE: return X86::COND_B;
1427 case X86::COND_S: return X86::COND_NS;
1428 case X86::COND_NS: return X86::COND_S;
1429 case X86::COND_P: return X86::COND_NP;
1430 case X86::COND_NP: return X86::COND_P;
1431 case X86::COND_O: return X86::COND_NO;
1432 case X86::COND_NO: return X86::COND_O;
1433 }
1434}
1435
Evan Chengfc937c92008-08-28 23:48:31 +00001436/// GetSwappedBranchCondition - Return the branch condition that would be
1437/// the result of exchanging the two operands of a comparison without
1438/// changing the result produced.
1439/// e.g. COND_E to COND_E, COND_G -> COND_L
1440X86::CondCode X86::GetSwappedBranchCondition(X86::CondCode CC) {
1441 switch (CC) {
1442 default: assert(0 && "Illegal condition code!");
1443 case X86::COND_E: return X86::COND_E;
1444 case X86::COND_NE: return X86::COND_NE;
1445 case X86::COND_L: return X86::COND_G;
1446 case X86::COND_LE: return X86::COND_GE;
1447 case X86::COND_G: return X86::COND_L;
1448 case X86::COND_GE: return X86::COND_LE;
1449 case X86::COND_B: return X86::COND_A;
1450 case X86::COND_BE: return X86::COND_AE;
1451 case X86::COND_A: return X86::COND_B;
1452 case X86::COND_AE: return X86::COND_BE;
1453 case X86::COND_P: return X86::COND_P;
1454 case X86::COND_NP: return X86::COND_NP;
1455 case X86::COND_O: return X86::COND_O;
1456 case X86::COND_NO: return X86::COND_NO;
1457 }
1458}
1459
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001460bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001461 const TargetInstrDesc &TID = MI->getDesc();
1462 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001463
1464 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001465 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001466 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001467 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001468 return true;
1469 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001470}
1471
Evan Cheng12515792007-07-26 17:32:14 +00001472// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1473static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1474 const X86InstrInfo &TII) {
1475 if (MI->getOpcode() == X86::FP_REG_KILL)
1476 return false;
1477 return TII.isUnpredicatedTerminator(MI);
1478}
1479
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001480bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1481 MachineBasicBlock *&TBB,
1482 MachineBasicBlock *&FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001483 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001484 // If the block has no terminators, it just falls into the block after it.
1485 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +00001486 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001487 return false;
1488
1489 // Get the last instruction in the block.
1490 MachineInstr *LastInst = I;
1491
1492 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +00001493 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner5b930372008-01-07 07:27:27 +00001494 if (!LastInst->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001495 return true;
1496
1497 // If the block ends with a branch there are 3 possibilities:
1498 // it's an unconditional, conditional, or indirect branch.
1499
1500 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001501 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001502 return false;
1503 }
1504 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1505 if (BranchCode == X86::COND_INVALID)
1506 return true; // Can't handle indirect branch.
1507
1508 // Otherwise, block ends with fall-through condbranch.
Chris Lattner6017d482007-12-30 23:10:15 +00001509 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001510 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1511 return false;
1512 }
1513
1514 // Get the instruction before it if it's a terminator.
1515 MachineInstr *SecondLastInst = I;
1516
1517 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +00001518 if (SecondLastInst && I != MBB.begin() &&
1519 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001520 return true;
1521
1522 // If the block ends with X86::JMP and a conditional branch, handle it.
1523 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1524 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001525 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001526 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner6017d482007-12-30 23:10:15 +00001527 FBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001528 return false;
1529 }
1530
1531 // If the block ends with two X86::JMPs, handle it. The second one is not
1532 // executed, so remove it.
1533 if (SecondLastInst->getOpcode() == X86::JMP &&
1534 LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001535 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001536 I = LastInst;
1537 I->eraseFromParent();
1538 return false;
1539 }
1540
1541 // Otherwise, can't handle this.
1542 return true;
1543}
1544
1545unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1546 MachineBasicBlock::iterator I = MBB.end();
1547 if (I == MBB.begin()) return 0;
1548 --I;
1549 if (I->getOpcode() != X86::JMP &&
1550 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1551 return 0;
1552
1553 // Remove the branch.
1554 I->eraseFromParent();
1555
1556 I = MBB.end();
1557
1558 if (I == MBB.begin()) return 1;
1559 --I;
1560 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1561 return 1;
1562
1563 // Remove the branch.
1564 I->eraseFromParent();
1565 return 2;
1566}
1567
Owen Anderson81875432008-01-01 21:11:32 +00001568static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1569 MachineOperand &MO) {
1570 if (MO.isRegister())
1571 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001572 MO.isKill(), MO.isDead(), MO.getSubReg());
Owen Anderson81875432008-01-01 21:11:32 +00001573 else if (MO.isImmediate())
1574 MIB = MIB.addImm(MO.getImm());
1575 else if (MO.isFrameIndex())
1576 MIB = MIB.addFrameIndex(MO.getIndex());
1577 else if (MO.isGlobalAddress())
1578 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1579 else if (MO.isConstantPoolIndex())
1580 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1581 else if (MO.isJumpTableIndex())
1582 MIB = MIB.addJumpTableIndex(MO.getIndex());
1583 else if (MO.isExternalSymbol())
1584 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1585 else
1586 assert(0 && "Unknown operand for X86InstrAddOperand!");
1587
1588 return MIB;
1589}
1590
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001591unsigned
1592X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1593 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001594 const SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001595 // Shouldn't be a fall through.
1596 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1597 assert((Cond.size() == 1 || Cond.size() == 0) &&
1598 "X86 branch conditions have one component!");
1599
1600 if (FBB == 0) { // One way branch.
1601 if (Cond.empty()) {
1602 // Unconditional branch?
1603 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1604 } else {
1605 // Conditional branch.
1606 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1607 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1608 }
1609 return 1;
1610 }
1611
1612 // Two-way Conditional branch.
1613 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1614 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1615 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1616 return 2;
1617}
1618
Owen Anderson9fa72d92008-08-26 18:03:31 +00001619bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001620 MachineBasicBlock::iterator MI,
1621 unsigned DestReg, unsigned SrcReg,
1622 const TargetRegisterClass *DestRC,
1623 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001624 if (DestRC == SrcRC) {
1625 unsigned Opc;
1626 if (DestRC == &X86::GR64RegClass) {
1627 Opc = X86::MOV64rr;
1628 } else if (DestRC == &X86::GR32RegClass) {
1629 Opc = X86::MOV32rr;
1630 } else if (DestRC == &X86::GR16RegClass) {
1631 Opc = X86::MOV16rr;
1632 } else if (DestRC == &X86::GR8RegClass) {
1633 Opc = X86::MOV8rr;
1634 } else if (DestRC == &X86::GR32_RegClass) {
1635 Opc = X86::MOV32_rr;
1636 } else if (DestRC == &X86::GR16_RegClass) {
1637 Opc = X86::MOV16_rr;
1638 } else if (DestRC == &X86::RFP32RegClass) {
1639 Opc = X86::MOV_Fp3232;
1640 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1641 Opc = X86::MOV_Fp6464;
1642 } else if (DestRC == &X86::RFP80RegClass) {
1643 Opc = X86::MOV_Fp8080;
1644 } else if (DestRC == &X86::FR32RegClass) {
1645 Opc = X86::FsMOVAPSrr;
1646 } else if (DestRC == &X86::FR64RegClass) {
1647 Opc = X86::FsMOVAPDrr;
1648 } else if (DestRC == &X86::VR128RegClass) {
1649 Opc = X86::MOVAPSrr;
1650 } else if (DestRC == &X86::VR64RegClass) {
1651 Opc = X86::MMX_MOVQ64rr;
1652 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001653 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001654 }
Chris Lattner59707122008-03-09 07:58:04 +00001655 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001656 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001657 }
Chris Lattner59707122008-03-09 07:58:04 +00001658
1659 // Moving EFLAGS to / from another register requires a push and a pop.
1660 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001661 if (SrcReg != X86::EFLAGS)
1662 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001663 if (DestRC == &X86::GR64RegClass) {
1664 BuildMI(MBB, MI, get(X86::PUSHFQ));
1665 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001666 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001667 } else if (DestRC == &X86::GR32RegClass) {
1668 BuildMI(MBB, MI, get(X86::PUSHFD));
1669 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001670 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001671 }
1672 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001673 if (DestReg != X86::EFLAGS)
1674 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001675 if (SrcRC == &X86::GR64RegClass) {
1676 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1677 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001678 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001679 } else if (SrcRC == &X86::GR32RegClass) {
1680 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1681 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001682 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001683 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001684 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001685
Chris Lattner0d128722008-03-09 09:15:31 +00001686 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001687 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001688 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001689 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1690 // Can only copy from ST(0)/ST(1) right now
1691 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001692 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001693 unsigned Opc;
1694 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001695 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001696 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001697 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001698 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001699 if (DestRC != &X86::RFP80RegClass)
1700 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001701 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001702 }
1703 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001704 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001705 }
Chris Lattner0d128722008-03-09 09:15:31 +00001706
1707 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1708 if (DestRC == &X86::RSTRegClass) {
1709 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson9fa72d92008-08-26 18:03:31 +00001710 if (DestReg != X86::ST0)
1711 // Can only copy to TOS right now
1712 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001713 unsigned Opc;
1714 if (SrcRC == &X86::RFP32RegClass)
1715 Opc = X86::FpSET_ST0_32;
1716 else if (SrcRC == &X86::RFP64RegClass)
1717 Opc = X86::FpSET_ST0_64;
1718 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001719 if (SrcRC != &X86::RFP80RegClass)
1720 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001721 Opc = X86::FpSET_ST0_80;
1722 }
1723 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001724 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001725 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001726
Owen Anderson9fa72d92008-08-26 18:03:31 +00001727 // Not yet supported!
1728 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001729}
1730
Owen Anderson81875432008-01-01 21:11:32 +00001731static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001732 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001733 unsigned Opc = 0;
1734 if (RC == &X86::GR64RegClass) {
1735 Opc = X86::MOV64mr;
1736 } else if (RC == &X86::GR32RegClass) {
1737 Opc = X86::MOV32mr;
1738 } else if (RC == &X86::GR16RegClass) {
1739 Opc = X86::MOV16mr;
1740 } else if (RC == &X86::GR8RegClass) {
1741 Opc = X86::MOV8mr;
1742 } else if (RC == &X86::GR32_RegClass) {
1743 Opc = X86::MOV32_mr;
1744 } else if (RC == &X86::GR16_RegClass) {
1745 Opc = X86::MOV16_mr;
1746 } else if (RC == &X86::RFP80RegClass) {
1747 Opc = X86::ST_FpP80m; // pops
1748 } else if (RC == &X86::RFP64RegClass) {
1749 Opc = X86::ST_Fp64m;
1750 } else if (RC == &X86::RFP32RegClass) {
1751 Opc = X86::ST_Fp32m;
1752 } else if (RC == &X86::FR32RegClass) {
1753 Opc = X86::MOVSSmr;
1754 } else if (RC == &X86::FR64RegClass) {
1755 Opc = X86::MOVSDmr;
1756 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001757 // If stack is realigned we can use aligned stores.
1758 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001759 } else if (RC == &X86::VR64RegClass) {
1760 Opc = X86::MMX_MOVQ64mr;
1761 } else {
1762 assert(0 && "Unknown regclass");
1763 abort();
1764 }
1765
1766 return Opc;
1767}
1768
1769void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1770 MachineBasicBlock::iterator MI,
1771 unsigned SrcReg, bool isKill, int FrameIdx,
1772 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001773 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001774 bool isAligned = (RI.getStackAlignment() >= 16) ||
1775 RI.needsStackRealignment(MF);
1776 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001777 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1778 .addReg(SrcReg, false, false, isKill);
1779}
1780
1781void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1782 bool isKill,
1783 SmallVectorImpl<MachineOperand> &Addr,
1784 const TargetRegisterClass *RC,
1785 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001786 bool isAligned = (RI.getStackAlignment() >= 16) ||
1787 RI.needsStackRealignment(MF);
1788 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001789 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001790 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1791 MIB = X86InstrAddOperand(MIB, Addr[i]);
1792 MIB.addReg(SrcReg, false, false, isKill);
1793 NewMIs.push_back(MIB);
1794}
1795
1796static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001797 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001798 unsigned Opc = 0;
1799 if (RC == &X86::GR64RegClass) {
1800 Opc = X86::MOV64rm;
1801 } else if (RC == &X86::GR32RegClass) {
1802 Opc = X86::MOV32rm;
1803 } else if (RC == &X86::GR16RegClass) {
1804 Opc = X86::MOV16rm;
1805 } else if (RC == &X86::GR8RegClass) {
1806 Opc = X86::MOV8rm;
1807 } else if (RC == &X86::GR32_RegClass) {
1808 Opc = X86::MOV32_rm;
1809 } else if (RC == &X86::GR16_RegClass) {
1810 Opc = X86::MOV16_rm;
1811 } else if (RC == &X86::RFP80RegClass) {
1812 Opc = X86::LD_Fp80m;
1813 } else if (RC == &X86::RFP64RegClass) {
1814 Opc = X86::LD_Fp64m;
1815 } else if (RC == &X86::RFP32RegClass) {
1816 Opc = X86::LD_Fp32m;
1817 } else if (RC == &X86::FR32RegClass) {
1818 Opc = X86::MOVSSrm;
1819 } else if (RC == &X86::FR64RegClass) {
1820 Opc = X86::MOVSDrm;
1821 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001822 // If stack is realigned we can use aligned loads.
1823 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001824 } else if (RC == &X86::VR64RegClass) {
1825 Opc = X86::MMX_MOVQ64rm;
1826 } else {
1827 assert(0 && "Unknown regclass");
1828 abort();
1829 }
1830
1831 return Opc;
1832}
1833
1834void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001835 MachineBasicBlock::iterator MI,
1836 unsigned DestReg, int FrameIdx,
1837 const TargetRegisterClass *RC) const{
1838 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001839 bool isAligned = (RI.getStackAlignment() >= 16) ||
1840 RI.needsStackRealignment(MF);
1841 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001842 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1843}
1844
1845void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001846 SmallVectorImpl<MachineOperand> &Addr,
1847 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001848 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001849 bool isAligned = (RI.getStackAlignment() >= 16) ||
1850 RI.needsStackRealignment(MF);
1851 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001852 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001853 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1854 MIB = X86InstrAddOperand(MIB, Addr[i]);
1855 NewMIs.push_back(MIB);
1856}
1857
Owen Anderson6690c7f2008-01-04 23:57:37 +00001858bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1859 MachineBasicBlock::iterator MI,
1860 const std::vector<CalleeSavedInfo> &CSI) const {
1861 if (CSI.empty())
1862 return false;
1863
1864 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1865 unsigned SlotSize = is64Bit ? 8 : 4;
1866
1867 MachineFunction &MF = *MBB.getParent();
1868 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1869 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1870
1871 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1872 for (unsigned i = CSI.size(); i != 0; --i) {
1873 unsigned Reg = CSI[i-1].getReg();
1874 // Add the callee-saved register as live-in. It's killed at the spill.
1875 MBB.addLiveIn(Reg);
1876 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1877 }
1878 return true;
1879}
1880
1881bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1882 MachineBasicBlock::iterator MI,
1883 const std::vector<CalleeSavedInfo> &CSI) const {
1884 if (CSI.empty())
1885 return false;
1886
1887 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1888
1889 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1890 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1891 unsigned Reg = CSI[i].getReg();
1892 BuildMI(MBB, MI, get(Opc), Reg);
1893 }
1894 return true;
1895}
1896
Dan Gohman221a4372008-07-07 23:14:23 +00001897static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001898 SmallVector<MachineOperand,4> &MOs,
1899 MachineInstr *MI, const TargetInstrInfo &TII) {
1900 // Create the base instruction with the memory operand as the first part.
Dan Gohman221a4372008-07-07 23:14:23 +00001901 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001902 MachineInstrBuilder MIB(NewMI);
1903 unsigned NumAddrOps = MOs.size();
1904 for (unsigned i = 0; i != NumAddrOps; ++i)
1905 MIB = X86InstrAddOperand(MIB, MOs[i]);
1906 if (NumAddrOps < 4) // FrameIndex only
1907 MIB.addImm(1).addReg(0).addImm(0);
1908
1909 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001910 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001911 for (unsigned i = 0; i != NumOps; ++i) {
1912 MachineOperand &MO = MI->getOperand(i+2);
1913 MIB = X86InstrAddOperand(MIB, MO);
1914 }
1915 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1916 MachineOperand &MO = MI->getOperand(i);
1917 MIB = X86InstrAddOperand(MIB, MO);
1918 }
1919 return MIB;
1920}
1921
Dan Gohman221a4372008-07-07 23:14:23 +00001922static MachineInstr *FuseInst(MachineFunction &MF,
1923 unsigned Opcode, unsigned OpNo,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001924 SmallVector<MachineOperand,4> &MOs,
1925 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman221a4372008-07-07 23:14:23 +00001926 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001927 MachineInstrBuilder MIB(NewMI);
1928
1929 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1930 MachineOperand &MO = MI->getOperand(i);
1931 if (i == OpNo) {
1932 assert(MO.isRegister() && "Expected to fold into reg operand!");
1933 unsigned NumAddrOps = MOs.size();
1934 for (unsigned i = 0; i != NumAddrOps; ++i)
1935 MIB = X86InstrAddOperand(MIB, MOs[i]);
1936 if (NumAddrOps < 4) // FrameIndex only
1937 MIB.addImm(1).addReg(0).addImm(0);
1938 } else {
1939 MIB = X86InstrAddOperand(MIB, MO);
1940 }
1941 }
1942 return MIB;
1943}
1944
1945static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1946 SmallVector<MachineOperand,4> &MOs,
1947 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00001948 MachineFunction &MF = *MI->getParent()->getParent();
1949 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001950
1951 unsigned NumAddrOps = MOs.size();
1952 for (unsigned i = 0; i != NumAddrOps; ++i)
1953 MIB = X86InstrAddOperand(MIB, MOs[i]);
1954 if (NumAddrOps < 4) // FrameIndex only
1955 MIB.addImm(1).addReg(0).addImm(0);
1956 return MIB.addImm(0);
1957}
1958
1959MachineInstr*
Dan Gohman221a4372008-07-07 23:14:23 +00001960X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1961 MachineInstr *MI, unsigned i,
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001962 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001963 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1964 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001965 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001966 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001967 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001968
1969 MachineInstr *NewMI = NULL;
1970 // Folding a memory location into the two-address part of a two-address
1971 // instruction is different than folding it other places. It requires
1972 // replacing the *two* registers with the memory location.
1973 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1974 MI->getOperand(0).isRegister() &&
1975 MI->getOperand(1).isRegister() &&
1976 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1977 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1978 isTwoAddrFold = true;
1979 } else if (i == 0) { // If operand 0
1980 if (MI->getOpcode() == X86::MOV16r0)
1981 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1982 else if (MI->getOpcode() == X86::MOV32r0)
1983 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1984 else if (MI->getOpcode() == X86::MOV64r0)
1985 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1986 else if (MI->getOpcode() == X86::MOV8r0)
1987 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00001988 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00001989 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001990
1991 OpcodeTablePtr = &RegOp2MemOpTable0;
1992 } else if (i == 1) {
1993 OpcodeTablePtr = &RegOp2MemOpTable1;
1994 } else if (i == 2) {
1995 OpcodeTablePtr = &RegOp2MemOpTable2;
1996 }
1997
1998 // If table selected...
1999 if (OpcodeTablePtr) {
2000 // Find the Opcode to fuse
2001 DenseMap<unsigned*, unsigned>::iterator I =
2002 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2003 if (I != OpcodeTablePtr->end()) {
2004 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002005 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002006 else
Dan Gohman221a4372008-07-07 23:14:23 +00002007 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002008 return NewMI;
2009 }
2010 }
2011
2012 // No fusion
2013 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002014 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002015 return NULL;
2016}
2017
2018
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002019MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2020 MachineInstr *MI,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002021 SmallVectorImpl<unsigned> &Ops,
2022 int FrameIndex) const {
2023 // Check switch flag
2024 if (NoFusing) return NULL;
2025
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002026 const MachineFrameInfo *MFI = MF.getFrameInfo();
2027 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2028 // FIXME: Move alignment requirement into tables?
2029 if (Alignment < 16) {
2030 switch (MI->getOpcode()) {
2031 default: break;
2032 // Not always safe to fold movsd into these instructions since their load
2033 // folding variants expects the address to be 16 byte aligned.
2034 case X86::FsANDNPDrr:
2035 case X86::FsANDNPSrr:
2036 case X86::FsANDPDrr:
2037 case X86::FsANDPSrr:
2038 case X86::FsORPDrr:
2039 case X86::FsORPSrr:
2040 case X86::FsXORPDrr:
2041 case X86::FsXORPSrr:
2042 return NULL;
2043 }
2044 }
2045
Owen Anderson9a184ef2008-01-07 01:35:02 +00002046 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2047 unsigned NewOpc = 0;
2048 switch (MI->getOpcode()) {
2049 default: return NULL;
2050 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2051 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2052 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2053 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2054 }
2055 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002056 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002057 MI->getOperand(1).ChangeToImmediate(0);
2058 } else if (Ops.size() != 1)
2059 return NULL;
2060
2061 SmallVector<MachineOperand,4> MOs;
2062 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohman221a4372008-07-07 23:14:23 +00002063 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002064}
2065
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002066MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2067 MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002068 SmallVectorImpl<unsigned> &Ops,
2069 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002070 // Check switch flag
2071 if (NoFusing) return NULL;
2072
Dan Gohmand0e8c752008-07-12 00:10:52 +00002073 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002074 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002075 if (LoadMI->hasOneMemOperand())
2076 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002077
2078 // FIXME: Move alignment requirement into tables?
2079 if (Alignment < 16) {
2080 switch (MI->getOpcode()) {
2081 default: break;
2082 // Not always safe to fold movsd into these instructions since their load
2083 // folding variants expects the address to be 16 byte aligned.
2084 case X86::FsANDNPDrr:
2085 case X86::FsANDNPSrr:
2086 case X86::FsANDPDrr:
2087 case X86::FsANDPSrr:
2088 case X86::FsORPDrr:
2089 case X86::FsORPSrr:
2090 case X86::FsXORPDrr:
2091 case X86::FsXORPSrr:
2092 return NULL;
2093 }
2094 }
2095
Owen Anderson9a184ef2008-01-07 01:35:02 +00002096 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2097 unsigned NewOpc = 0;
2098 switch (MI->getOpcode()) {
2099 default: return NULL;
2100 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2101 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2102 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2103 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2104 }
2105 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002106 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002107 MI->getOperand(1).ChangeToImmediate(0);
2108 } else if (Ops.size() != 1)
2109 return NULL;
2110
2111 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00002112 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002113 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2114 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman221a4372008-07-07 23:14:23 +00002115 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002116}
2117
2118
2119bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002120 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002121 // Check switch flag
2122 if (NoFusing) return 0;
2123
2124 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2125 switch (MI->getOpcode()) {
2126 default: return false;
2127 case X86::TEST8rr:
2128 case X86::TEST16rr:
2129 case X86::TEST32rr:
2130 case X86::TEST64rr:
2131 return true;
2132 }
2133 }
2134
2135 if (Ops.size() != 1)
2136 return false;
2137
2138 unsigned OpNum = Ops[0];
2139 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002140 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002141 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002142 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002143
2144 // Folding a memory location into the two-address part of a two-address
2145 // instruction is different than folding it other places. It requires
2146 // replacing the *two* registers with the memory location.
2147 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2148 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2149 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2150 } else if (OpNum == 0) { // If operand 0
2151 switch (Opc) {
2152 case X86::MOV16r0:
2153 case X86::MOV32r0:
2154 case X86::MOV64r0:
2155 case X86::MOV8r0:
2156 return true;
2157 default: break;
2158 }
2159 OpcodeTablePtr = &RegOp2MemOpTable0;
2160 } else if (OpNum == 1) {
2161 OpcodeTablePtr = &RegOp2MemOpTable1;
2162 } else if (OpNum == 2) {
2163 OpcodeTablePtr = &RegOp2MemOpTable2;
2164 }
2165
2166 if (OpcodeTablePtr) {
2167 // Find the Opcode to fuse
2168 DenseMap<unsigned*, unsigned>::iterator I =
2169 OpcodeTablePtr->find((unsigned*)Opc);
2170 if (I != OpcodeTablePtr->end())
2171 return true;
2172 }
2173 return false;
2174}
2175
2176bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2177 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2178 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2179 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2180 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2181 if (I == MemOp2RegOpTable.end())
2182 return false;
2183 unsigned Opc = I->second.first;
2184 unsigned Index = I->second.second & 0xf;
2185 bool FoldedLoad = I->second.second & (1 << 4);
2186 bool FoldedStore = I->second.second & (1 << 5);
2187 if (UnfoldLoad && !FoldedLoad)
2188 return false;
2189 UnfoldLoad &= FoldedLoad;
2190 if (UnfoldStore && !FoldedStore)
2191 return false;
2192 UnfoldStore &= FoldedStore;
2193
Chris Lattner5b930372008-01-07 07:27:27 +00002194 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002195 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002196 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002197 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2198 SmallVector<MachineOperand,4> AddrOps;
2199 SmallVector<MachineOperand,2> BeforeOps;
2200 SmallVector<MachineOperand,2> AfterOps;
2201 SmallVector<MachineOperand,4> ImpOps;
2202 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2203 MachineOperand &Op = MI->getOperand(i);
2204 if (i >= Index && i < Index+4)
2205 AddrOps.push_back(Op);
2206 else if (Op.isRegister() && Op.isImplicit())
2207 ImpOps.push_back(Op);
2208 else if (i < Index)
2209 BeforeOps.push_back(Op);
2210 else if (i > Index)
2211 AfterOps.push_back(Op);
2212 }
2213
2214 // Emit the load instruction.
2215 if (UnfoldLoad) {
2216 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2217 if (UnfoldStore) {
2218 // Address operands cannot be marked isKill.
2219 for (unsigned i = 1; i != 5; ++i) {
2220 MachineOperand &MO = NewMIs[0]->getOperand(i);
2221 if (MO.isRegister())
2222 MO.setIsKill(false);
2223 }
2224 }
2225 }
2226
2227 // Emit the data processing instruction.
Dan Gohman221a4372008-07-07 23:14:23 +00002228 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002229 MachineInstrBuilder MIB(DataMI);
2230
2231 if (FoldedStore)
2232 MIB.addReg(Reg, true);
2233 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2234 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2235 if (FoldedLoad)
2236 MIB.addReg(Reg);
2237 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2238 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2239 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2240 MachineOperand &MO = ImpOps[i];
2241 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2242 }
2243 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2244 unsigned NewOpc = 0;
2245 switch (DataMI->getOpcode()) {
2246 default: break;
2247 case X86::CMP64ri32:
2248 case X86::CMP32ri:
2249 case X86::CMP16ri:
2250 case X86::CMP8ri: {
2251 MachineOperand &MO0 = DataMI->getOperand(0);
2252 MachineOperand &MO1 = DataMI->getOperand(1);
2253 if (MO1.getImm() == 0) {
2254 switch (DataMI->getOpcode()) {
2255 default: break;
2256 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2257 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2258 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2259 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2260 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002261 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002262 MO1.ChangeToRegister(MO0.getReg(), false);
2263 }
2264 }
2265 }
2266 NewMIs.push_back(DataMI);
2267
2268 // Emit the store instruction.
2269 if (UnfoldStore) {
2270 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002271 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002272 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2273 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2274 }
2275
2276 return true;
2277}
2278
2279bool
2280X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2281 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002282 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002283 return false;
2284
2285 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002286 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002287 if (I == MemOp2RegOpTable.end())
2288 return false;
2289 unsigned Opc = I->second.first;
2290 unsigned Index = I->second.second & 0xf;
2291 bool FoldedLoad = I->second.second & (1 << 4);
2292 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002293 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002294 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002295 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002296 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002297 std::vector<SDValue> AddrOps;
2298 std::vector<SDValue> BeforeOps;
2299 std::vector<SDValue> AfterOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002300 unsigned NumOps = N->getNumOperands();
2301 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002302 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002303 if (i >= Index && i < Index+4)
2304 AddrOps.push_back(Op);
2305 else if (i < Index)
2306 BeforeOps.push_back(Op);
2307 else if (i > Index)
2308 AfterOps.push_back(Op);
2309 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002310 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002311 AddrOps.push_back(Chain);
2312
2313 // Emit the load instruction.
2314 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002315 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002316 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002317 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002318 bool isAligned = (RI.getStackAlignment() >= 16) ||
2319 RI.needsStackRealignment(MF);
2320 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002321 VT, MVT::Other,
2322 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002323 NewNodes.push_back(Load);
2324 }
2325
2326 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002327 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002328 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002329 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002330 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002331 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002332 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2333 VTs.push_back(*DstRC->vt_begin());
2334 }
2335 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002336 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002337 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002338 VTs.push_back(VT);
2339 }
2340 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002341 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002342 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2343 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2344 NewNodes.push_back(NewNode);
2345
2346 // Emit the store instruction.
2347 if (FoldedStore) {
2348 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002349 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002350 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002351 bool isAligned = (RI.getStackAlignment() >= 16) ||
2352 RI.needsStackRealignment(MF);
2353 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2354 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002355 NewNodes.push_back(Store);
2356 }
2357
2358 return true;
2359}
2360
2361unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2362 bool UnfoldLoad, bool UnfoldStore) const {
2363 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2364 MemOp2RegOpTable.find((unsigned*)Opc);
2365 if (I == MemOp2RegOpTable.end())
2366 return 0;
2367 bool FoldedLoad = I->second.second & (1 << 4);
2368 bool FoldedStore = I->second.second & (1 << 5);
2369 if (UnfoldLoad && !FoldedLoad)
2370 return 0;
2371 if (UnfoldStore && !FoldedStore)
2372 return 0;
2373 return I->second.first;
2374}
2375
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002376bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2377 if (MBB.empty()) return false;
2378
2379 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002380 case X86::TCRETURNri:
2381 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002382 case X86::RET: // Return.
2383 case X86::RETI:
2384 case X86::TAILJMPd:
2385 case X86::TAILJMPr:
2386 case X86::TAILJMPm:
2387 case X86::JMP: // Uncond branch.
2388 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002389 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002390 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002391 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392 return true;
2393 default: return false;
2394 }
2395}
2396
2397bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002398ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002399 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chengfc937c92008-08-28 23:48:31 +00002400 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2401 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002402 return false;
2403}
2404
2405const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2406 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2407 if (Subtarget->is64Bit())
2408 return &X86::GR64RegClass;
2409 else
2410 return &X86::GR32RegClass;
2411}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002412
2413unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2414 switch (Desc->TSFlags & X86II::ImmMask) {
2415 case X86II::Imm8: return 1;
2416 case X86II::Imm16: return 2;
2417 case X86II::Imm32: return 4;
2418 case X86II::Imm64: return 8;
2419 default: assert(0 && "Immediate size not set!");
2420 return 0;
2421 }
2422}
2423
2424/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2425/// e.g. r8, xmm8, etc.
2426bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2427 if (!MO.isRegister()) return false;
2428 switch (MO.getReg()) {
2429 default: break;
2430 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2431 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2432 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2433 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2434 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2435 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2436 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2437 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2438 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2439 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2440 return true;
2441 }
2442 return false;
2443}
2444
2445
2446/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2447/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2448/// size, and 3) use of X86-64 extended registers.
2449unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2450 unsigned REX = 0;
2451 const TargetInstrDesc &Desc = MI.getDesc();
2452
2453 // Pseudo instructions do not need REX prefix byte.
2454 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2455 return 0;
2456 if (Desc.TSFlags & X86II::REX_W)
2457 REX |= 1 << 3;
2458
2459 unsigned NumOps = Desc.getNumOperands();
2460 if (NumOps) {
2461 bool isTwoAddr = NumOps > 1 &&
2462 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2463
2464 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2465 unsigned i = isTwoAddr ? 1 : 0;
2466 for (unsigned e = NumOps; i != e; ++i) {
2467 const MachineOperand& MO = MI.getOperand(i);
2468 if (MO.isRegister()) {
2469 unsigned Reg = MO.getReg();
2470 if (isX86_64NonExtLowByteReg(Reg))
2471 REX |= 0x40;
2472 }
2473 }
2474
2475 switch (Desc.TSFlags & X86II::FormMask) {
2476 case X86II::MRMInitReg:
2477 if (isX86_64ExtendedReg(MI.getOperand(0)))
2478 REX |= (1 << 0) | (1 << 2);
2479 break;
2480 case X86II::MRMSrcReg: {
2481 if (isX86_64ExtendedReg(MI.getOperand(0)))
2482 REX |= 1 << 2;
2483 i = isTwoAddr ? 2 : 1;
2484 for (unsigned e = NumOps; i != e; ++i) {
2485 const MachineOperand& MO = MI.getOperand(i);
2486 if (isX86_64ExtendedReg(MO))
2487 REX |= 1 << 0;
2488 }
2489 break;
2490 }
2491 case X86II::MRMSrcMem: {
2492 if (isX86_64ExtendedReg(MI.getOperand(0)))
2493 REX |= 1 << 2;
2494 unsigned Bit = 0;
2495 i = isTwoAddr ? 2 : 1;
2496 for (; i != NumOps; ++i) {
2497 const MachineOperand& MO = MI.getOperand(i);
2498 if (MO.isRegister()) {
2499 if (isX86_64ExtendedReg(MO))
2500 REX |= 1 << Bit;
2501 Bit++;
2502 }
2503 }
2504 break;
2505 }
2506 case X86II::MRM0m: case X86II::MRM1m:
2507 case X86II::MRM2m: case X86II::MRM3m:
2508 case X86II::MRM4m: case X86II::MRM5m:
2509 case X86II::MRM6m: case X86II::MRM7m:
2510 case X86II::MRMDestMem: {
2511 unsigned e = isTwoAddr ? 5 : 4;
2512 i = isTwoAddr ? 1 : 0;
2513 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2514 REX |= 1 << 2;
2515 unsigned Bit = 0;
2516 for (; i != e; ++i) {
2517 const MachineOperand& MO = MI.getOperand(i);
2518 if (MO.isRegister()) {
2519 if (isX86_64ExtendedReg(MO))
2520 REX |= 1 << Bit;
2521 Bit++;
2522 }
2523 }
2524 break;
2525 }
2526 default: {
2527 if (isX86_64ExtendedReg(MI.getOperand(0)))
2528 REX |= 1 << 0;
2529 i = isTwoAddr ? 2 : 1;
2530 for (unsigned e = NumOps; i != e; ++i) {
2531 const MachineOperand& MO = MI.getOperand(i);
2532 if (isX86_64ExtendedReg(MO))
2533 REX |= 1 << 2;
2534 }
2535 break;
2536 }
2537 }
2538 }
2539 return REX;
2540}
2541
2542/// sizePCRelativeBlockAddress - This method returns the size of a PC
2543/// relative block address instruction
2544///
2545static unsigned sizePCRelativeBlockAddress() {
2546 return 4;
2547}
2548
2549/// sizeGlobalAddress - Give the size of the emission of this global address
2550///
2551static unsigned sizeGlobalAddress(bool dword) {
2552 return dword ? 8 : 4;
2553}
2554
2555/// sizeConstPoolAddress - Give the size of the emission of this constant
2556/// pool address
2557///
2558static unsigned sizeConstPoolAddress(bool dword) {
2559 return dword ? 8 : 4;
2560}
2561
2562/// sizeExternalSymbolAddress - Give the size of the emission of this external
2563/// symbol
2564///
2565static unsigned sizeExternalSymbolAddress(bool dword) {
2566 return dword ? 8 : 4;
2567}
2568
2569/// sizeJumpTableAddress - Give the size of the emission of this jump
2570/// table address
2571///
2572static unsigned sizeJumpTableAddress(bool dword) {
2573 return dword ? 8 : 4;
2574}
2575
2576static unsigned sizeConstant(unsigned Size) {
2577 return Size;
2578}
2579
2580static unsigned sizeRegModRMByte(){
2581 return 1;
2582}
2583
2584static unsigned sizeSIBByte(){
2585 return 1;
2586}
2587
2588static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2589 unsigned FinalSize = 0;
2590 // If this is a simple integer displacement that doesn't require a relocation.
2591 if (!RelocOp) {
2592 FinalSize += sizeConstant(4);
2593 return FinalSize;
2594 }
2595
2596 // Otherwise, this is something that requires a relocation.
2597 if (RelocOp->isGlobalAddress()) {
2598 FinalSize += sizeGlobalAddress(false);
2599 } else if (RelocOp->isConstantPoolIndex()) {
2600 FinalSize += sizeConstPoolAddress(false);
2601 } else if (RelocOp->isJumpTableIndex()) {
2602 FinalSize += sizeJumpTableAddress(false);
2603 } else {
2604 assert(0 && "Unknown value to relocate!");
2605 }
2606 return FinalSize;
2607}
2608
2609static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2610 bool IsPIC, bool Is64BitMode) {
2611 const MachineOperand &Op3 = MI.getOperand(Op+3);
2612 int DispVal = 0;
2613 const MachineOperand *DispForReloc = 0;
2614 unsigned FinalSize = 0;
2615
2616 // Figure out what sort of displacement we have to handle here.
2617 if (Op3.isGlobalAddress()) {
2618 DispForReloc = &Op3;
2619 } else if (Op3.isConstantPoolIndex()) {
2620 if (Is64BitMode || IsPIC) {
2621 DispForReloc = &Op3;
2622 } else {
2623 DispVal = 1;
2624 }
2625 } else if (Op3.isJumpTableIndex()) {
2626 if (Is64BitMode || IsPIC) {
2627 DispForReloc = &Op3;
2628 } else {
2629 DispVal = 1;
2630 }
2631 } else {
2632 DispVal = 1;
2633 }
2634
2635 const MachineOperand &Base = MI.getOperand(Op);
2636 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2637
2638 unsigned BaseReg = Base.getReg();
2639
2640 // Is a SIB byte needed?
2641 if (IndexReg.getReg() == 0 &&
2642 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2643 if (BaseReg == 0) { // Just a displacement?
2644 // Emit special case [disp32] encoding
2645 ++FinalSize;
2646 FinalSize += getDisplacementFieldSize(DispForReloc);
2647 } else {
2648 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2649 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2650 // Emit simple indirect register encoding... [EAX] f.e.
2651 ++FinalSize;
2652 // Be pessimistic and assume it's a disp32, not a disp8
2653 } else {
2654 // Emit the most general non-SIB encoding: [REG+disp32]
2655 ++FinalSize;
2656 FinalSize += getDisplacementFieldSize(DispForReloc);
2657 }
2658 }
2659
2660 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2661 assert(IndexReg.getReg() != X86::ESP &&
2662 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2663
2664 bool ForceDisp32 = false;
2665 if (BaseReg == 0 || DispForReloc) {
2666 // Emit the normal disp32 encoding.
2667 ++FinalSize;
2668 ForceDisp32 = true;
2669 } else {
2670 ++FinalSize;
2671 }
2672
2673 FinalSize += sizeSIBByte();
2674
2675 // Do we need to output a displacement?
2676 if (DispVal != 0 || ForceDisp32) {
2677 FinalSize += getDisplacementFieldSize(DispForReloc);
2678 }
2679 }
2680 return FinalSize;
2681}
2682
2683
2684static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2685 const TargetInstrDesc *Desc,
2686 bool IsPIC, bool Is64BitMode) {
2687
2688 unsigned Opcode = Desc->Opcode;
2689 unsigned FinalSize = 0;
2690
2691 // Emit the lock opcode prefix as needed.
2692 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2693
2694 // Emit the repeat opcode prefix as needed.
2695 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2696
2697 // Emit the operand size opcode prefix as needed.
2698 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2699
2700 // Emit the address size opcode prefix as needed.
2701 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2702
2703 bool Need0FPrefix = false;
2704 switch (Desc->TSFlags & X86II::Op0Mask) {
2705 case X86II::TB: // Two-byte opcode prefix
2706 case X86II::T8: // 0F 38
2707 case X86II::TA: // 0F 3A
2708 Need0FPrefix = true;
2709 break;
2710 case X86II::REP: break; // already handled.
2711 case X86II::XS: // F3 0F
2712 ++FinalSize;
2713 Need0FPrefix = true;
2714 break;
2715 case X86II::XD: // F2 0F
2716 ++FinalSize;
2717 Need0FPrefix = true;
2718 break;
2719 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2720 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2721 ++FinalSize;
2722 break; // Two-byte opcode prefix
2723 default: assert(0 && "Invalid prefix!");
2724 case 0: break; // No prefix!
2725 }
2726
2727 if (Is64BitMode) {
2728 // REX prefix
2729 unsigned REX = X86InstrInfo::determineREX(MI);
2730 if (REX)
2731 ++FinalSize;
2732 }
2733
2734 // 0x0F escape code must be emitted just before the opcode.
2735 if (Need0FPrefix)
2736 ++FinalSize;
2737
2738 switch (Desc->TSFlags & X86II::Op0Mask) {
2739 case X86II::T8: // 0F 38
2740 ++FinalSize;
2741 break;
2742 case X86II::TA: // 0F 3A
2743 ++FinalSize;
2744 break;
2745 }
2746
2747 // If this is a two-address instruction, skip one of the register operands.
2748 unsigned NumOps = Desc->getNumOperands();
2749 unsigned CurOp = 0;
2750 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2751 CurOp++;
2752
2753 switch (Desc->TSFlags & X86II::FormMask) {
2754 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2755 case X86II::Pseudo:
2756 // Remember the current PC offset, this is the PIC relocation
2757 // base address.
2758 switch (Opcode) {
2759 default:
2760 break;
2761 case TargetInstrInfo::INLINEASM: {
2762 const MachineFunction *MF = MI.getParent()->getParent();
2763 const char *AsmStr = MI.getOperand(0).getSymbolName();
2764 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2765 FinalSize += AI->getInlineAsmLength(AsmStr);
2766 break;
2767 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002768 case TargetInstrInfo::DBG_LABEL:
2769 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002770 break;
2771 case TargetInstrInfo::IMPLICIT_DEF:
2772 case TargetInstrInfo::DECLARE:
2773 case X86::DWARF_LOC:
2774 case X86::FP_REG_KILL:
2775 break;
2776 case X86::MOVPC32r: {
2777 // This emits the "call" portion of this pseudo instruction.
2778 ++FinalSize;
2779 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2780 break;
2781 }
2782 }
2783 CurOp = NumOps;
2784 break;
2785 case X86II::RawFrm:
2786 ++FinalSize;
2787
2788 if (CurOp != NumOps) {
2789 const MachineOperand &MO = MI.getOperand(CurOp++);
2790 if (MO.isMachineBasicBlock()) {
2791 FinalSize += sizePCRelativeBlockAddress();
2792 } else if (MO.isGlobalAddress()) {
2793 FinalSize += sizeGlobalAddress(false);
2794 } else if (MO.isExternalSymbol()) {
2795 FinalSize += sizeExternalSymbolAddress(false);
2796 } else if (MO.isImmediate()) {
2797 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2798 } else {
2799 assert(0 && "Unknown RawFrm operand!");
2800 }
2801 }
2802 break;
2803
2804 case X86II::AddRegFrm:
2805 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002806 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002807
2808 if (CurOp != NumOps) {
2809 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2810 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2811 if (MO1.isImmediate())
2812 FinalSize += sizeConstant(Size);
2813 else {
2814 bool dword = false;
2815 if (Opcode == X86::MOV64ri)
2816 dword = true;
2817 if (MO1.isGlobalAddress()) {
2818 FinalSize += sizeGlobalAddress(dword);
2819 } else if (MO1.isExternalSymbol())
2820 FinalSize += sizeExternalSymbolAddress(dword);
2821 else if (MO1.isConstantPoolIndex())
2822 FinalSize += sizeConstPoolAddress(dword);
2823 else if (MO1.isJumpTableIndex())
2824 FinalSize += sizeJumpTableAddress(dword);
2825 }
2826 }
2827 break;
2828
2829 case X86II::MRMDestReg: {
2830 ++FinalSize;
2831 FinalSize += sizeRegModRMByte();
2832 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002833 if (CurOp != NumOps) {
2834 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002835 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002836 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002837 break;
2838 }
2839 case X86II::MRMDestMem: {
2840 ++FinalSize;
2841 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2842 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002843 if (CurOp != NumOps) {
2844 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002845 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002846 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002847 break;
2848 }
2849
2850 case X86II::MRMSrcReg:
2851 ++FinalSize;
2852 FinalSize += sizeRegModRMByte();
2853 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002854 if (CurOp != NumOps) {
2855 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002856 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002857 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002858 break;
2859
2860 case X86II::MRMSrcMem: {
2861
2862 ++FinalSize;
2863 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2864 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002865 if (CurOp != NumOps) {
2866 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002867 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002868 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002869 break;
2870 }
2871
2872 case X86II::MRM0r: case X86II::MRM1r:
2873 case X86II::MRM2r: case X86II::MRM3r:
2874 case X86II::MRM4r: case X86II::MRM5r:
2875 case X86II::MRM6r: case X86II::MRM7r:
2876 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002877 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002878 FinalSize += sizeRegModRMByte();
2879
2880 if (CurOp != NumOps) {
2881 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2882 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2883 if (MO1.isImmediate())
2884 FinalSize += sizeConstant(Size);
2885 else {
2886 bool dword = false;
2887 if (Opcode == X86::MOV64ri32)
2888 dword = true;
2889 if (MO1.isGlobalAddress()) {
2890 FinalSize += sizeGlobalAddress(dword);
2891 } else if (MO1.isExternalSymbol())
2892 FinalSize += sizeExternalSymbolAddress(dword);
2893 else if (MO1.isConstantPoolIndex())
2894 FinalSize += sizeConstPoolAddress(dword);
2895 else if (MO1.isJumpTableIndex())
2896 FinalSize += sizeJumpTableAddress(dword);
2897 }
2898 }
2899 break;
2900
2901 case X86II::MRM0m: case X86II::MRM1m:
2902 case X86II::MRM2m: case X86II::MRM3m:
2903 case X86II::MRM4m: case X86II::MRM5m:
2904 case X86II::MRM6m: case X86II::MRM7m: {
2905
2906 ++FinalSize;
2907 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2908 CurOp += 4;
2909
2910 if (CurOp != NumOps) {
2911 const MachineOperand &MO = MI.getOperand(CurOp++);
2912 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2913 if (MO.isImmediate())
2914 FinalSize += sizeConstant(Size);
2915 else {
2916 bool dword = false;
2917 if (Opcode == X86::MOV64mi32)
2918 dword = true;
2919 if (MO.isGlobalAddress()) {
2920 FinalSize += sizeGlobalAddress(dword);
2921 } else if (MO.isExternalSymbol())
2922 FinalSize += sizeExternalSymbolAddress(dword);
2923 else if (MO.isConstantPoolIndex())
2924 FinalSize += sizeConstPoolAddress(dword);
2925 else if (MO.isJumpTableIndex())
2926 FinalSize += sizeJumpTableAddress(dword);
2927 }
2928 }
2929 break;
2930 }
2931
2932 case X86II::MRMInitReg:
2933 ++FinalSize;
2934 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2935 FinalSize += sizeRegModRMByte();
2936 ++CurOp;
2937 break;
2938 }
2939
2940 if (!Desc->isVariadic() && CurOp != NumOps) {
2941 cerr << "Cannot determine size: ";
2942 MI.dump();
2943 cerr << '\n';
2944 abort();
2945 }
2946
2947
2948 return FinalSize;
2949}
2950
2951
2952unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2953 const TargetInstrDesc &Desc = MI->getDesc();
2954 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00002955 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002956 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2957 if (Desc.getOpcode() == X86::MOVPC32r) {
2958 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2959 }
2960 return Size;
2961}