blob: 8ac59f422d62617f85b0251f154fdac9ca6ff735 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
Mark Dickinson6b87f112009-11-24 14:27:02 +000038 :const:`1.1` and :const:`2.2` do not have an exact representations in binary
39 floating point. End users typically would not expect ``1.1 + 2.2`` to display
40 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl8ec7f652007-08-15 14:28:01 +000041
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
Mark Dickinson03335172010-11-07 11:29:03 +000060 >>> from decimal import *
Georg Brandl8ec7f652007-08-15 14:28:01 +000061 >>> getcontext().prec = 6
62 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000063 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000064 >>> getcontext().prec = 28
65 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000066 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000067
68* Both binary and decimal floating point are implemented in terms of published
69 standards. While the built-in float type exposes only a modest portion of its
70 capabilities, the decimal module exposes all required parts of the standard.
71 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000072 This includes an option to enforce exact arithmetic by using exceptions
73 to block any inexact operations.
74
75* The decimal module was designed to support "without prejudice, both exact
76 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
77 and rounded floating-point arithmetic." -- excerpt from the decimal
78 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000079
80The module design is centered around three concepts: the decimal number, the
81context for arithmetic, and signals.
82
83A decimal number is immutable. It has a sign, coefficient digits, and an
84exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000085trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000086:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
87differentiates :const:`-0` from :const:`+0`.
88
89The context for arithmetic is an environment specifying precision, rounding
90rules, limits on exponents, flags indicating the results of operations, and trap
91enablers which determine whether signals are treated as exceptions. Rounding
92options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
93:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000094:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000095
96Signals are groups of exceptional conditions arising during the course of
97computation. Depending on the needs of the application, signals may be ignored,
98considered as informational, or treated as exceptions. The signals in the
99decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
100:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
101:const:`Overflow`, and :const:`Underflow`.
102
103For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000104encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000105set to one, an exception is raised. Flags are sticky, so the user needs to
106reset them before monitoring a calculation.
107
108
109.. seealso::
110
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000111 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettingerf345a212009-03-10 01:07:30 +0000112 Specification <http://speleotrove.com/decimal/>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000113
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000114 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000115 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000116
Georg Brandlb19be572007-12-29 10:57:00 +0000117.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000118
119
120.. _decimal-tutorial:
121
122Quick-start Tutorial
123--------------------
124
125The usual start to using decimals is importing the module, viewing the current
126context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000127precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000128
129 >>> from decimal import *
130 >>> getcontext()
131 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000132 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
133 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000134
135 >>> getcontext().prec = 7 # Set a new precision
136
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000137Decimal instances can be constructed from integers, strings, floats, or tuples.
138Construction from an integer or a float performs an exact conversion of the
139value of that integer or float. Decimal numbers include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +0000140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000148 >>> Decimal(3.14)
149 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000152 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000153 Decimal('1.41421356237')
154 >>> Decimal(2) ** Decimal('0.5')
155 Decimal('1.414213562373095048801688724')
156 >>> Decimal('NaN')
157 Decimal('NaN')
158 >>> Decimal('-Infinity')
159 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000160
161The significance of a new Decimal is determined solely by the number of digits
162input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000163operations.
164
165.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000166
167 >>> getcontext().prec = 6
168 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000173 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000174 >>> getcontext().rounding = ROUND_UP
175 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000176 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000177
178Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000179floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000180
Georg Brandl838b4b02008-03-22 13:07:06 +0000181.. doctest::
182 :options: +NORMALIZE_WHITESPACE
183
Georg Brandl8ec7f652007-08-15 14:28:01 +0000184 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
185 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000187 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000189 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000190 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
191 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000193 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000194 >>> a,b,c = data[:3]
195 >>> str(a)
196 '1.34'
197 >>> float(a)
Mark Dickinson6b87f112009-11-24 14:27:02 +0000198 1.34
Georg Brandl8ec7f652007-08-15 14:28:01 +0000199 >>> round(a, 1) # round() first converts to binary floating point
200 1.3
201 >>> int(a)
202 1
203 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000208 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000209
Georg Brandl9f662322008-03-22 11:47:10 +0000210And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000212 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000215 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000216 Decimal('2.718281828459045235360287471')
217 >>> Decimal('10').ln()
218 Decimal('2.302585092994045684017991455')
219 >>> Decimal('10').log10()
220 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000221
Georg Brandl8ec7f652007-08-15 14:28:01 +0000222The :meth:`quantize` method rounds a number to a fixed exponent. This method is
223useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000224places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000225
226 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000229 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000230
231As shown above, the :func:`getcontext` function accesses the current context and
232allows the settings to be changed. This approach meets the needs of most
233applications.
234
235For more advanced work, it may be useful to create alternate contexts using the
236Context() constructor. To make an alternate active, use the :func:`setcontext`
237function.
238
239In accordance with the standard, the :mod:`Decimal` module provides two ready to
240use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
241former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000242enabled:
243
244.. doctest:: newcontext
245 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000246
247 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
248 >>> setcontext(myothercontext)
249 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000250 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000251
252 >>> ExtendedContext
253 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
254 capitals=1, flags=[], traps=[])
255 >>> setcontext(ExtendedContext)
256 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000259 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000260
261 >>> setcontext(BasicContext)
262 >>> Decimal(42) / Decimal(0)
263 Traceback (most recent call last):
264 File "<pyshell#143>", line 1, in -toplevel-
265 Decimal(42) / Decimal(0)
266 DivisionByZero: x / 0
267
268Contexts also have signal flags for monitoring exceptional conditions
269encountered during computations. The flags remain set until explicitly cleared,
270so it is best to clear the flags before each set of monitored computations by
271using the :meth:`clear_flags` method. ::
272
273 >>> setcontext(ExtendedContext)
274 >>> getcontext().clear_flags()
275 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000276 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000277 >>> getcontext()
278 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000279 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000280
281The *flags* entry shows that the rational approximation to :const:`Pi` was
282rounded (digits beyond the context precision were thrown away) and that the
283result is inexact (some of the discarded digits were non-zero).
284
285Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000286context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000287
Georg Brandl9f662322008-03-22 11:47:10 +0000288.. doctest:: newcontext
289
290 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000292 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000293 >>> getcontext().traps[DivisionByZero] = 1
294 >>> Decimal(1) / Decimal(0)
295 Traceback (most recent call last):
296 File "<pyshell#112>", line 1, in -toplevel-
297 Decimal(1) / Decimal(0)
298 DivisionByZero: x / 0
299
300Most programs adjust the current context only once, at the beginning of the
301program. And, in many applications, data is converted to :class:`Decimal` with
302a single cast inside a loop. With context set and decimals created, the bulk of
303the program manipulates the data no differently than with other Python numeric
304types.
305
Georg Brandlb19be572007-12-29 10:57:00 +0000306.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000307
308
309.. _decimal-decimal:
310
311Decimal objects
312---------------
313
314
315.. class:: Decimal([value [, context]])
316
Georg Brandlb19be572007-12-29 10:57:00 +0000317 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000318
Raymond Hettingered171ab2010-04-02 18:39:24 +0000319 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000320 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000321 string, it should conform to the decimal numeric string syntax after leading
322 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000323
324 sign ::= '+' | '-'
325 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
326 indicator ::= 'e' | 'E'
327 digits ::= digit [digit]...
328 decimal-part ::= digits '.' [digits] | ['.'] digits
329 exponent-part ::= indicator [sign] digits
330 infinity ::= 'Infinity' | 'Inf'
331 nan ::= 'NaN' [digits] | 'sNaN' [digits]
332 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000333 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000334
Mark Dickinson4326ad82009-08-02 10:59:36 +0000335 If *value* is a unicode string then other Unicode decimal digits
336 are also permitted where ``digit`` appears above. These include
337 decimal digits from various other alphabets (for example,
338 Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
339 ``u'\uff10'`` through ``u'\uff19'``.
340
Georg Brandl8ec7f652007-08-15 14:28:01 +0000341 If *value* is a :class:`tuple`, it should have three components, a sign
342 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
343 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000344 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000345
Raymond Hettingered171ab2010-04-02 18:39:24 +0000346 If *value* is a :class:`float`, the binary floating point value is losslessly
347 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000348 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
349 converts to
350 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettingered171ab2010-04-02 18:39:24 +0000351
Georg Brandl8ec7f652007-08-15 14:28:01 +0000352 The *context* precision does not affect how many digits are stored. That is
353 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000354 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000355 only three.
356
357 The purpose of the *context* argument is determining what to do if *value* is a
358 malformed string. If the context traps :const:`InvalidOperation`, an exception
359 is raised; otherwise, the constructor returns a new Decimal with the value of
360 :const:`NaN`.
361
362 Once constructed, :class:`Decimal` objects are immutable.
363
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000364 .. versionchanged:: 2.6
365 leading and trailing whitespace characters are permitted when
366 creating a Decimal instance from a string.
367
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000368 .. versionchanged:: 2.7
Ezio Melotti6f65d2d2010-04-04 23:21:53 +0000369 The argument to the constructor is now permitted to be a :class:`float` instance.
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000370
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000371 Decimal floating point objects share many properties with the other built-in
372 numeric types such as :class:`float` and :class:`int`. All of the usual math
373 operations and special methods apply. Likewise, decimal objects can be
374 copied, pickled, printed, used as dictionary keys, used as set elements,
375 compared, sorted, and coerced to another type (such as :class:`float` or
376 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000377
Mark Dickinson99d80962010-04-02 08:53:22 +0000378 Decimal objects cannot generally be combined with floats in
379 arithmetic operations: an attempt to add a :class:`Decimal` to a
380 :class:`float`, for example, will raise a :exc:`TypeError`.
381 There's one exception to this rule: it's possible to use Python's
382 comparison operators to compare a :class:`float` instance ``x``
383 with a :class:`Decimal` instance ``y``. Without this exception,
384 comparisons between :class:`Decimal` and :class:`float` instances
385 would follow the general rules for comparing objects of different
386 types described in the :ref:`expressions` section of the reference
387 manual, leading to confusing results.
388
389 .. versionchanged:: 2.7
390 A comparison between a :class:`float` instance ``x`` and a
391 :class:`Decimal` instance ``y`` now returns a result based on
392 the values of ``x`` and ``y``. In earlier versions ``x < y``
393 returned the same (arbitrary) result for any :class:`Decimal`
394 instance ``x`` and any :class:`float` instance ``y``.
395
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000396 In addition to the standard numeric properties, decimal floating point
397 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000398
399
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000400 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000401
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000402 Return the adjusted exponent after shifting out the coefficient's
403 rightmost digits until only the lead digit remains:
404 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
405 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000406
407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 Return a :term:`named tuple` representation of the number:
411 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000412
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000413 .. versionchanged:: 2.6
414 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000415
416
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000417 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000418
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000419 Return the canonical encoding of the argument. Currently, the encoding of
420 a :class:`Decimal` instance is always canonical, so this operation returns
421 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000422
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000423 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000424
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000425 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000426
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000427 Compare the values of two Decimal instances. This operation behaves in
428 the same way as the usual comparison method :meth:`__cmp__`, except that
429 :meth:`compare` returns a Decimal instance rather than an integer, and if
430 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000431
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000432 a or b is a NaN ==> Decimal('NaN')
433 a < b ==> Decimal('-1')
434 a == b ==> Decimal('0')
435 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000436
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000437 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000438
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000439 This operation is identical to the :meth:`compare` method, except that all
440 NaNs signal. That is, if neither operand is a signaling NaN then any
441 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000442
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000443 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000444
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000445 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000446
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000447 Compare two operands using their abstract representation rather than their
448 numerical value. Similar to the :meth:`compare` method, but the result
449 gives a total ordering on :class:`Decimal` instances. Two
450 :class:`Decimal` instances with the same numeric value but different
451 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000452
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000453 >>> Decimal('12.0').compare_total(Decimal('12'))
454 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000455
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000456 Quiet and signaling NaNs are also included in the total ordering. The
457 result of this function is ``Decimal('0')`` if both operands have the same
458 representation, ``Decimal('-1')`` if the first operand is lower in the
459 total order than the second, and ``Decimal('1')`` if the first operand is
460 higher in the total order than the second operand. See the specification
461 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000462
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000463 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000464
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000465 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000466
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000467 Compare two operands using their abstract representation rather than their
468 value as in :meth:`compare_total`, but ignoring the sign of each operand.
469 ``x.compare_total_mag(y)`` is equivalent to
470 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000473
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000474 .. method:: conjugate()
475
476 Just returns self, this method is only to comply with the Decimal
477 Specification.
478
479 .. versionadded:: 2.6
480
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000481 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000482
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000483 Return the absolute value of the argument. This operation is unaffected
484 by the context and is quiet: no flags are changed and no rounding is
485 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000486
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000487 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000488
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000489 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000490
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000491 Return the negation of the argument. This operation is unaffected by the
492 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000493
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000494 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000495
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000496 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000497
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000498 Return a copy of the first operand with the sign set to be the same as the
499 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000500
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000501 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
502 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000503
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000504 This operation is unaffected by the context and is quiet: no flags are
505 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000506
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000507 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000508
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000509 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000510
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000511 Return the value of the (natural) exponential function ``e**x`` at the
512 given number. The result is correctly rounded using the
513 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000514
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000515 >>> Decimal(1).exp()
516 Decimal('2.718281828459045235360287471')
517 >>> Decimal(321).exp()
518 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000519
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000520 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000521
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000522 .. method:: from_float(f)
523
524 Classmethod that converts a float to a decimal number, exactly.
525
526 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
527 Since 0.1 is not exactly representable in binary floating point, the
528 value is stored as the nearest representable value which is
529 `0x1.999999999999ap-4`. That equivalent value in decimal is
530 `0.1000000000000000055511151231257827021181583404541015625`.
531
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000532 .. note:: From Python 2.7 onwards, a :class:`Decimal` instance
533 can also be constructed directly from a :class:`float`.
534
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000535 .. doctest::
536
537 >>> Decimal.from_float(0.1)
538 Decimal('0.1000000000000000055511151231257827021181583404541015625')
539 >>> Decimal.from_float(float('nan'))
540 Decimal('NaN')
541 >>> Decimal.from_float(float('inf'))
542 Decimal('Infinity')
543 >>> Decimal.from_float(float('-inf'))
544 Decimal('-Infinity')
545
546 .. versionadded:: 2.7
547
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000548 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000549
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000550 Fused multiply-add. Return self*other+third with no rounding of the
551 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000552
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000553 >>> Decimal(2).fma(3, 5)
554 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000555
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000556 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000557
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000558 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000559
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000560 Return :const:`True` if the argument is canonical and :const:`False`
561 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
562 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000563
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000564 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000565
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000566 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000567
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000568 Return :const:`True` if the argument is a finite number, and
569 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000570
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000571 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000572
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000573 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000574
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000575 Return :const:`True` if the argument is either positive or negative
576 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000577
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000578 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000579
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000580 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000581
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000582 Return :const:`True` if the argument is a (quiet or signaling) NaN and
583 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000584
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000585 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000586
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000587 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000588
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000589 Return :const:`True` if the argument is a *normal* finite non-zero
590 number with an adjusted exponent greater than or equal to *Emin*.
591 Return :const:`False` if the argument is zero, subnormal, infinite or a
592 NaN. Note, the term *normal* is used here in a different sense with
593 the :meth:`normalize` method which is used to create canonical values.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000594
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000595 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000596
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000597 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000598
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000599 Return :const:`True` if the argument is a quiet NaN, and
600 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000601
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000602 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000603
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000604 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000605
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000606 Return :const:`True` if the argument has a negative sign and
607 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000608
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000609 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000610
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000611 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000612
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000613 Return :const:`True` if the argument is a signaling NaN and :const:`False`
614 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000615
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000616 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000617
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000618 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000619
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000620 Return :const:`True` if the argument is subnormal, and :const:`False`
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000621 otherwise. A number is subnormal is if it is nonzero, finite, and has an
622 adjusted exponent less than *Emin*.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000623
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000624 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000625
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000626 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000627
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000628 Return :const:`True` if the argument is a (positive or negative) zero and
629 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000630
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000631 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000632
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000633 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000634
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000635 Return the natural (base e) logarithm of the operand. The result is
636 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000637
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000638 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000639
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000640 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000641
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000642 Return the base ten logarithm of the operand. The result is correctly
643 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000644
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000645 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000646
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000647 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000648
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000649 For a nonzero number, return the adjusted exponent of its operand as a
650 :class:`Decimal` instance. If the operand is a zero then
651 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
652 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
653 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000654
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000655 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000656
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000657 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000658
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000659 :meth:`logical_and` is a logical operation which takes two *logical
660 operands* (see :ref:`logical_operands_label`). The result is the
661 digit-wise ``and`` of the two operands.
662
663 .. versionadded:: 2.6
664
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000665 .. method:: logical_invert([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000666
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000667 :meth:`logical_invert` is a logical operation. The
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000668 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000669
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000670 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000671
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000672 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000673
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000674 :meth:`logical_or` is a logical operation which takes two *logical
675 operands* (see :ref:`logical_operands_label`). The result is the
676 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000677
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000678 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000679
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000680 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000681
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000682 :meth:`logical_xor` is a logical operation which takes two *logical
683 operands* (see :ref:`logical_operands_label`). The result is the
684 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000685
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000686 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000687
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000688 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000689
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000690 Like ``max(self, other)`` except that the context rounding rule is applied
691 before returning and that :const:`NaN` values are either signaled or
692 ignored (depending on the context and whether they are signaling or
693 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000694
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000695 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000696
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000697 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000698 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000699
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000700 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000701
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000702 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000703
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000704 Like ``min(self, other)`` except that the context rounding rule is applied
705 before returning and that :const:`NaN` values are either signaled or
706 ignored (depending on the context and whether they are signaling or
707 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000708
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000709 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000710
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000711 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000712 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000713
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000714 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000715
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000716 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000717
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000718 Return the largest number representable in the given context (or in the
719 current thread's context if no context is given) that is smaller than the
720 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000721
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000722 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000723
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000724 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000725
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000726 Return the smallest number representable in the given context (or in the
727 current thread's context if no context is given) that is larger than the
728 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000729
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000730 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000731
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000732 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000733
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000734 If the two operands are unequal, return the number closest to the first
735 operand in the direction of the second operand. If both operands are
736 numerically equal, return a copy of the first operand with the sign set to
737 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000738
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000739 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000740
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000741 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000742
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000743 Normalize the number by stripping the rightmost trailing zeros and
744 converting any result equal to :const:`Decimal('0')` to
Senthil Kumaran6f18b982011-07-04 12:50:02 -0700745 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000746 of an equivalence class. For example, ``Decimal('32.100')`` and
747 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
748 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000749
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000750 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000751
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000752 Return a string describing the *class* of the operand. The returned value
753 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000754
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000755 * ``"-Infinity"``, indicating that the operand is negative infinity.
756 * ``"-Normal"``, indicating that the operand is a negative normal number.
757 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
758 * ``"-Zero"``, indicating that the operand is a negative zero.
759 * ``"+Zero"``, indicating that the operand is a positive zero.
760 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
761 * ``"+Normal"``, indicating that the operand is a positive normal number.
762 * ``"+Infinity"``, indicating that the operand is positive infinity.
763 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
764 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000765
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000766 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000767
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000768 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000769
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000770 Return a value equal to the first operand after rounding and having the
771 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000772
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000773 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
774 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000775
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000776 Unlike other operations, if the length of the coefficient after the
777 quantize operation would be greater than precision, then an
778 :const:`InvalidOperation` is signaled. This guarantees that, unless there
779 is an error condition, the quantized exponent is always equal to that of
780 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000781
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000782 Also unlike other operations, quantize never signals Underflow, even if
783 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000784
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000785 If the exponent of the second operand is larger than that of the first
786 then rounding may be necessary. In this case, the rounding mode is
787 determined by the ``rounding`` argument if given, else by the given
788 ``context`` argument; if neither argument is given the rounding mode of
789 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000790
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000791 If *watchexp* is set (default), then an error is returned whenever the
792 resulting exponent is greater than :attr:`Emax` or less than
793 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000794
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000795 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000796
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000797 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
798 class does all its arithmetic. Included for compatibility with the
799 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000800
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000801 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000802
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000803 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000804
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000805 Compute the modulo as either a positive or negative value depending on
806 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
807 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000808
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000809 If both are equally close, the one chosen will have the same sign as
810 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000811
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000812 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000813
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000814 Return the result of rotating the digits of the first operand by an amount
815 specified by the second operand. The second operand must be an integer in
816 the range -precision through precision. The absolute value of the second
817 operand gives the number of places to rotate. If the second operand is
818 positive then rotation is to the left; otherwise rotation is to the right.
819 The coefficient of the first operand is padded on the left with zeros to
820 length precision if necessary. The sign and exponent of the first operand
821 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000822
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000823 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000824
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000825 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000826
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000827 Test whether self and other have the same exponent or whether both are
828 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000829
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000830 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000831
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000832 Return the first operand with exponent adjusted by the second.
833 Equivalently, return the first operand multiplied by ``10**other``. The
834 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000835
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000836 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000837
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000838 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000839
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000840 Return the result of shifting the digits of the first operand by an amount
841 specified by the second operand. The second operand must be an integer in
842 the range -precision through precision. The absolute value of the second
843 operand gives the number of places to shift. If the second operand is
844 positive then the shift is to the left; otherwise the shift is to the
845 right. Digits shifted into the coefficient are zeros. The sign and
846 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000847
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000848 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000849
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000850 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000851
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000852 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000853
854
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000855 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000856
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000857 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000858
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000859 Engineering notation has an exponent which is a multiple of 3, so there
860 are up to 3 digits left of the decimal place. For example, converts
861 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000862
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000863 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000864
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000865 Identical to the :meth:`to_integral_value` method. The ``to_integral``
866 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000867
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000868 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000869
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000870 Round to the nearest integer, signaling :const:`Inexact` or
871 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
872 determined by the ``rounding`` parameter if given, else by the given
873 ``context``. If neither parameter is given then the rounding mode of the
874 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000875
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000876 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000877
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000878 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000879
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000880 Round to the nearest integer without signaling :const:`Inexact` or
881 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
882 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000883
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000884 .. versionchanged:: 2.6
885 renamed from ``to_integral`` to ``to_integral_value``. The old name
886 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000887
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000888.. _logical_operands_label:
889
890Logical operands
891^^^^^^^^^^^^^^^^
892
893The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
894and :meth:`logical_xor` methods expect their arguments to be *logical
895operands*. A *logical operand* is a :class:`Decimal` instance whose
896exponent and sign are both zero, and whose digits are all either
897:const:`0` or :const:`1`.
898
Georg Brandlb19be572007-12-29 10:57:00 +0000899.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000900
901
902.. _decimal-context:
903
904Context objects
905---------------
906
907Contexts are environments for arithmetic operations. They govern precision, set
908rules for rounding, determine which signals are treated as exceptions, and limit
909the range for exponents.
910
911Each thread has its own current context which is accessed or changed using the
912:func:`getcontext` and :func:`setcontext` functions:
913
914
915.. function:: getcontext()
916
917 Return the current context for the active thread.
918
919
920.. function:: setcontext(c)
921
922 Set the current context for the active thread to *c*.
923
924Beginning with Python 2.5, you can also use the :keyword:`with` statement and
925the :func:`localcontext` function to temporarily change the active context.
926
927
928.. function:: localcontext([c])
929
930 Return a context manager that will set the current context for the active thread
931 to a copy of *c* on entry to the with-statement and restore the previous context
932 when exiting the with-statement. If no context is specified, a copy of the
933 current context is used.
934
935 .. versionadded:: 2.5
936
937 For example, the following code sets the current decimal precision to 42 places,
938 performs a calculation, and then automatically restores the previous context::
939
Georg Brandl8ec7f652007-08-15 14:28:01 +0000940 from decimal import localcontext
941
942 with localcontext() as ctx:
943 ctx.prec = 42 # Perform a high precision calculation
944 s = calculate_something()
945 s = +s # Round the final result back to the default precision
946
947New contexts can also be created using the :class:`Context` constructor
948described below. In addition, the module provides three pre-made contexts:
949
950
951.. class:: BasicContext
952
953 This is a standard context defined by the General Decimal Arithmetic
954 Specification. Precision is set to nine. Rounding is set to
955 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
956 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
957 :const:`Subnormal`.
958
959 Because many of the traps are enabled, this context is useful for debugging.
960
961
962.. class:: ExtendedContext
963
964 This is a standard context defined by the General Decimal Arithmetic
965 Specification. Precision is set to nine. Rounding is set to
966 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
967 exceptions are not raised during computations).
968
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000969 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000970 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
971 raising exceptions. This allows an application to complete a run in the
972 presence of conditions that would otherwise halt the program.
973
974
975.. class:: DefaultContext
976
977 This context is used by the :class:`Context` constructor as a prototype for new
978 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Krah3d08d882010-05-29 12:54:35 +0000979 default for new contexts created by the :class:`Context` constructor.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000980
981 This context is most useful in multi-threaded environments. Changing one of the
982 fields before threads are started has the effect of setting system-wide
983 defaults. Changing the fields after threads have started is not recommended as
984 it would require thread synchronization to prevent race conditions.
985
986 In single threaded environments, it is preferable to not use this context at
987 all. Instead, simply create contexts explicitly as described below.
988
989 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
990 for Overflow, InvalidOperation, and DivisionByZero.
991
992In addition to the three supplied contexts, new contexts can be created with the
993:class:`Context` constructor.
994
995
996.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
997
998 Creates a new context. If a field is not specified or is :const:`None`, the
999 default values are copied from the :const:`DefaultContext`. If the *flags*
1000 field is not specified or is :const:`None`, all flags are cleared.
1001
1002 The *prec* field is a positive integer that sets the precision for arithmetic
1003 operations in the context.
1004
1005 The *rounding* option is one of:
1006
1007 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
1008 * :const:`ROUND_DOWN` (towards zero),
1009 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
1010 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
1011 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
1012 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
1013 * :const:`ROUND_UP` (away from zero).
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001014 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001015 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001016
1017 The *traps* and *flags* fields list any signals to be set. Generally, new
1018 contexts should only set traps and leave the flags clear.
1019
1020 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
1021 for exponents.
1022
1023 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
1024 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
1025 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
1026
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001027 .. versionchanged:: 2.6
1028 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001029
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001030 The :class:`Context` class defines several general purpose methods as well as
1031 a large number of methods for doing arithmetic directly in a given context.
1032 In addition, for each of the :class:`Decimal` methods described above (with
1033 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson6d8effb2010-02-18 14:27:02 +00001034 a corresponding :class:`Context` method. For example, for a :class:`Context`
1035 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1036 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
1037 Python integer (an instance of :class:`int` or :class:`long`) anywhere that a
1038 Decimal instance is accepted.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001039
1040
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001041 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001042
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001043 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001044
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001045 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001046
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001047 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001048
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001049 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001050
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001051 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001052
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001053 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +00001054
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001055 Creates a new Decimal instance from *num* but using *self* as
1056 context. Unlike the :class:`Decimal` constructor, the context precision,
1057 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001058
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001059 This is useful because constants are often given to a greater precision
1060 than is needed by the application. Another benefit is that rounding
1061 immediately eliminates unintended effects from digits beyond the current
1062 precision. In the following example, using unrounded inputs means that
1063 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001064
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001065 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001066
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001067 >>> getcontext().prec = 3
1068 >>> Decimal('3.4445') + Decimal('1.0023')
1069 Decimal('4.45')
1070 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1071 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001072
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001073 This method implements the to-number operation of the IBM specification.
1074 If the argument is a string, no leading or trailing whitespace is
1075 permitted.
1076
Georg Brandlaa5bb322009-01-03 19:44:48 +00001077 .. method:: create_decimal_from_float(f)
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001078
1079 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandla24067e2009-01-03 20:15:14 +00001080 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001081 the context precision, rounding method, flags, and traps are applied to
1082 the conversion.
1083
1084 .. doctest::
1085
Georg Brandlaa5bb322009-01-03 19:44:48 +00001086 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1087 >>> context.create_decimal_from_float(math.pi)
1088 Decimal('3.1415')
1089 >>> context = Context(prec=5, traps=[Inexact])
1090 >>> context.create_decimal_from_float(math.pi)
1091 Traceback (most recent call last):
1092 ...
1093 Inexact: None
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001094
1095 .. versionadded:: 2.7
1096
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001097 .. method:: Etiny()
1098
1099 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1100 value for subnormal results. When underflow occurs, the exponent is set
1101 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001102
1103
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001104 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001105
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001106 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001107
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001108 The usual approach to working with decimals is to create :class:`Decimal`
1109 instances and then apply arithmetic operations which take place within the
1110 current context for the active thread. An alternative approach is to use
1111 context methods for calculating within a specific context. The methods are
1112 similar to those for the :class:`Decimal` class and are only briefly
1113 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001114
1115
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001116 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001117
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001118 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001119
1120
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001121 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001122
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001123 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001124
1125
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001126 .. method:: canonical(x)
1127
1128 Returns the same Decimal object *x*.
1129
1130
1131 .. method:: compare(x, y)
1132
1133 Compares *x* and *y* numerically.
1134
1135
1136 .. method:: compare_signal(x, y)
1137
1138 Compares the values of the two operands numerically.
1139
1140
1141 .. method:: compare_total(x, y)
1142
1143 Compares two operands using their abstract representation.
1144
1145
1146 .. method:: compare_total_mag(x, y)
1147
1148 Compares two operands using their abstract representation, ignoring sign.
1149
1150
1151 .. method:: copy_abs(x)
1152
1153 Returns a copy of *x* with the sign set to 0.
1154
1155
1156 .. method:: copy_negate(x)
1157
1158 Returns a copy of *x* with the sign inverted.
1159
1160
1161 .. method:: copy_sign(x, y)
1162
1163 Copies the sign from *y* to *x*.
1164
1165
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001166 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001167
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001168 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001169
1170
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001171 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001172
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001173 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001174
1175
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001176 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001177
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001178 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001179
1180
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001181 .. method:: exp(x)
1182
1183 Returns `e ** x`.
1184
1185
1186 .. method:: fma(x, y, z)
1187
1188 Returns *x* multiplied by *y*, plus *z*.
1189
1190
1191 .. method:: is_canonical(x)
1192
1193 Returns True if *x* is canonical; otherwise returns False.
1194
1195
1196 .. method:: is_finite(x)
1197
1198 Returns True if *x* is finite; otherwise returns False.
1199
1200
1201 .. method:: is_infinite(x)
1202
1203 Returns True if *x* is infinite; otherwise returns False.
1204
1205
1206 .. method:: is_nan(x)
1207
1208 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1209
1210
1211 .. method:: is_normal(x)
1212
1213 Returns True if *x* is a normal number; otherwise returns False.
1214
1215
1216 .. method:: is_qnan(x)
1217
1218 Returns True if *x* is a quiet NaN; otherwise returns False.
1219
1220
1221 .. method:: is_signed(x)
1222
1223 Returns True if *x* is negative; otherwise returns False.
1224
1225
1226 .. method:: is_snan(x)
1227
1228 Returns True if *x* is a signaling NaN; otherwise returns False.
1229
1230
1231 .. method:: is_subnormal(x)
1232
1233 Returns True if *x* is subnormal; otherwise returns False.
1234
1235
1236 .. method:: is_zero(x)
1237
1238 Returns True if *x* is a zero; otherwise returns False.
1239
1240
1241 .. method:: ln(x)
1242
1243 Returns the natural (base e) logarithm of *x*.
1244
1245
1246 .. method:: log10(x)
1247
1248 Returns the base 10 logarithm of *x*.
1249
1250
1251 .. method:: logb(x)
1252
1253 Returns the exponent of the magnitude of the operand's MSD.
1254
1255
1256 .. method:: logical_and(x, y)
1257
Georg Brandle92818f2009-01-03 20:47:01 +00001258 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001259
1260
1261 .. method:: logical_invert(x)
1262
1263 Invert all the digits in *x*.
1264
1265
1266 .. method:: logical_or(x, y)
1267
Georg Brandle92818f2009-01-03 20:47:01 +00001268 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001269
1270
1271 .. method:: logical_xor(x, y)
1272
Georg Brandle92818f2009-01-03 20:47:01 +00001273 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001274
1275
1276 .. method:: max(x, y)
1277
1278 Compares two values numerically and returns the maximum.
1279
1280
1281 .. method:: max_mag(x, y)
1282
1283 Compares the values numerically with their sign ignored.
1284
1285
1286 .. method:: min(x, y)
1287
1288 Compares two values numerically and returns the minimum.
1289
1290
1291 .. method:: min_mag(x, y)
1292
1293 Compares the values numerically with their sign ignored.
1294
1295
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001296 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001297
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001298 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001299
1300
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001301 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001302
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001303 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001304
1305
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001306 .. method:: next_minus(x)
1307
1308 Returns the largest representable number smaller than *x*.
1309
1310
1311 .. method:: next_plus(x)
1312
1313 Returns the smallest representable number larger than *x*.
1314
1315
1316 .. method:: next_toward(x, y)
1317
1318 Returns the number closest to *x*, in direction towards *y*.
1319
1320
1321 .. method:: normalize(x)
1322
1323 Reduces *x* to its simplest form.
1324
1325
1326 .. method:: number_class(x)
1327
1328 Returns an indication of the class of *x*.
1329
1330
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001331 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001332
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001333 Plus corresponds to the unary prefix plus operator in Python. This
1334 operation applies the context precision and rounding, so it is *not* an
1335 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001336
1337
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001338 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001339
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001340 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001341
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001342 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1343 must be integral. The result will be inexact unless ``y`` is integral and
1344 the result is finite and can be expressed exactly in 'precision' digits.
1345 The result should always be correctly rounded, using the rounding mode of
1346 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001347
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001348 With three arguments, compute ``(x**y) % modulo``. For the three argument
1349 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001350
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001351 - all three arguments must be integral
1352 - ``y`` must be nonnegative
1353 - at least one of ``x`` or ``y`` must be nonzero
1354 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001355
Mark Dickinsonf5be4e62010-02-22 15:40:28 +00001356 The value resulting from ``Context.power(x, y, modulo)`` is
1357 equal to the value that would be obtained by computing ``(x**y)
1358 % modulo`` with unbounded precision, but is computed more
1359 efficiently. The exponent of the result is zero, regardless of
1360 the exponents of ``x``, ``y`` and ``modulo``. The result is
1361 always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001362
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001363 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001364 ``y`` may now be nonintegral in ``x**y``.
1365 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001366
1367
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001368 .. method:: quantize(x, y)
1369
1370 Returns a value equal to *x* (rounded), having the exponent of *y*.
1371
1372
1373 .. method:: radix()
1374
1375 Just returns 10, as this is Decimal, :)
1376
1377
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001378 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001379
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001380 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001381
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001382 The sign of the result, if non-zero, is the same as that of the original
1383 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001384
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001385 .. method:: remainder_near(x, y)
1386
Georg Brandle92818f2009-01-03 20:47:01 +00001387 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1388 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001389
1390
1391 .. method:: rotate(x, y)
1392
1393 Returns a rotated copy of *x*, *y* times.
1394
1395
1396 .. method:: same_quantum(x, y)
1397
1398 Returns True if the two operands have the same exponent.
1399
1400
1401 .. method:: scaleb (x, y)
1402
1403 Returns the first operand after adding the second value its exp.
1404
1405
1406 .. method:: shift(x, y)
1407
1408 Returns a shifted copy of *x*, *y* times.
1409
1410
1411 .. method:: sqrt(x)
1412
1413 Square root of a non-negative number to context precision.
1414
1415
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001416 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001417
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001418 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001419
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001420
1421 .. method:: to_eng_string(x)
1422
1423 Converts a number to a string, using scientific notation.
1424
1425
1426 .. method:: to_integral_exact(x)
1427
1428 Rounds to an integer.
1429
1430
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001431 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001432
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001433 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001434
Georg Brandlb19be572007-12-29 10:57:00 +00001435.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001436
1437
1438.. _decimal-signals:
1439
1440Signals
1441-------
1442
1443Signals represent conditions that arise during computation. Each corresponds to
1444one context flag and one context trap enabler.
1445
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001446The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001447computation, flags may be checked for informational purposes (for instance, to
1448determine whether a computation was exact). After checking the flags, be sure to
1449clear all flags before starting the next computation.
1450
1451If the context's trap enabler is set for the signal, then the condition causes a
1452Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1453is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1454condition.
1455
1456
1457.. class:: Clamped
1458
1459 Altered an exponent to fit representation constraints.
1460
1461 Typically, clamping occurs when an exponent falls outside the context's
1462 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001463 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001464
1465
1466.. class:: DecimalException
1467
1468 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1469
1470
1471.. class:: DivisionByZero
1472
1473 Signals the division of a non-infinite number by zero.
1474
1475 Can occur with division, modulo division, or when raising a number to a negative
1476 power. If this signal is not trapped, returns :const:`Infinity` or
1477 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1478
1479
1480.. class:: Inexact
1481
1482 Indicates that rounding occurred and the result is not exact.
1483
1484 Signals when non-zero digits were discarded during rounding. The rounded result
1485 is returned. The signal flag or trap is used to detect when results are
1486 inexact.
1487
1488
1489.. class:: InvalidOperation
1490
1491 An invalid operation was performed.
1492
1493 Indicates that an operation was requested that does not make sense. If not
1494 trapped, returns :const:`NaN`. Possible causes include::
1495
1496 Infinity - Infinity
1497 0 * Infinity
1498 Infinity / Infinity
1499 x % 0
1500 Infinity % x
1501 x._rescale( non-integer )
1502 sqrt(-x) and x > 0
1503 0 ** 0
1504 x ** (non-integer)
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001505 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001506
1507
1508.. class:: Overflow
1509
1510 Numerical overflow.
1511
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001512 Indicates the exponent is larger than :attr:`Emax` after rounding has
1513 occurred. If not trapped, the result depends on the rounding mode, either
1514 pulling inward to the largest representable finite number or rounding outward
1515 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1516 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001517
1518
1519.. class:: Rounded
1520
1521 Rounding occurred though possibly no information was lost.
1522
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001523 Signaled whenever rounding discards digits; even if those digits are zero
1524 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1525 the result unchanged. This signal is used to detect loss of significant
1526 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001527
1528
1529.. class:: Subnormal
1530
1531 Exponent was lower than :attr:`Emin` prior to rounding.
1532
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001533 Occurs when an operation result is subnormal (the exponent is too small). If
1534 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001535
1536
1537.. class:: Underflow
1538
1539 Numerical underflow with result rounded to zero.
1540
1541 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1542 and :class:`Subnormal` are also signaled.
1543
1544The following table summarizes the hierarchy of signals::
1545
1546 exceptions.ArithmeticError(exceptions.StandardError)
1547 DecimalException
1548 Clamped
1549 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1550 Inexact
1551 Overflow(Inexact, Rounded)
1552 Underflow(Inexact, Rounded, Subnormal)
1553 InvalidOperation
1554 Rounded
1555 Subnormal
1556
Georg Brandlb19be572007-12-29 10:57:00 +00001557.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001558
1559
1560.. _decimal-notes:
1561
1562Floating Point Notes
1563--------------------
1564
1565
1566Mitigating round-off error with increased precision
1567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1568
1569The use of decimal floating point eliminates decimal representation error
1570(making it possible to represent :const:`0.1` exactly); however, some operations
1571can still incur round-off error when non-zero digits exceed the fixed precision.
1572
1573The effects of round-off error can be amplified by the addition or subtraction
1574of nearly offsetting quantities resulting in loss of significance. Knuth
1575provides two instructive examples where rounded floating point arithmetic with
1576insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001577properties of addition:
1578
1579.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001580
1581 # Examples from Seminumerical Algorithms, Section 4.2.2.
1582 >>> from decimal import Decimal, getcontext
1583 >>> getcontext().prec = 8
1584
1585 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1586 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001587 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001588 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001589 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001590
1591 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1592 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001593 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001594 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001595 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001596
1597The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001598expanding the precision sufficiently to avoid loss of significance:
1599
1600.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001601
1602 >>> getcontext().prec = 20
1603 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1604 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001605 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001606 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001607 Decimal('9.51111111')
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001608 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001609 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1610 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001611 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001612 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001613 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001614
1615
1616Special values
1617^^^^^^^^^^^^^^
1618
1619The number system for the :mod:`decimal` module provides special values
1620including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001621and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001622
1623Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1624they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1625not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1626can result from rounding beyond the limits of the largest representable number.
1627
1628The infinities are signed (affine) and can be used in arithmetic operations
1629where they get treated as very large, indeterminate numbers. For instance,
1630adding a constant to infinity gives another infinite result.
1631
1632Some operations are indeterminate and return :const:`NaN`, or if the
1633:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1634``0/0`` returns :const:`NaN` which means "not a number". This variety of
1635:const:`NaN` is quiet and, once created, will flow through other computations
1636always resulting in another :const:`NaN`. This behavior can be useful for a
1637series of computations that occasionally have missing inputs --- it allows the
1638calculation to proceed while flagging specific results as invalid.
1639
1640A variant is :const:`sNaN` which signals rather than remaining quiet after every
1641operation. This is a useful return value when an invalid result needs to
1642interrupt a calculation for special handling.
1643
Mark Dickinson2fc92632008-02-06 22:10:50 +00001644The behavior of Python's comparison operators can be a little surprising where a
1645:const:`NaN` is involved. A test for equality where one of the operands is a
1646quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1647``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001648:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001649``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1650if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001651not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001652specify the behavior of direct comparisons; these rules for comparisons
1653involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1654section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001655and :meth:`compare-signal` methods instead.
1656
Georg Brandl8ec7f652007-08-15 14:28:01 +00001657The signed zeros can result from calculations that underflow. They keep the sign
1658that would have resulted if the calculation had been carried out to greater
1659precision. Since their magnitude is zero, both positive and negative zeros are
1660treated as equal and their sign is informational.
1661
1662In addition to the two signed zeros which are distinct yet equal, there are
1663various representations of zero with differing precisions yet equivalent in
1664value. This takes a bit of getting used to. For an eye accustomed to
1665normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001666the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001667
1668 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001669 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001670
Georg Brandlb19be572007-12-29 10:57:00 +00001671.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001672
1673
1674.. _decimal-threads:
1675
1676Working with threads
1677--------------------
1678
1679The :func:`getcontext` function accesses a different :class:`Context` object for
1680each thread. Having separate thread contexts means that threads may make
1681changes (such as ``getcontext.prec=10``) without interfering with other threads.
1682
1683Likewise, the :func:`setcontext` function automatically assigns its target to
1684the current thread.
1685
1686If :func:`setcontext` has not been called before :func:`getcontext`, then
1687:func:`getcontext` will automatically create a new context for use in the
1688current thread.
1689
1690The new context is copied from a prototype context called *DefaultContext*. To
1691control the defaults so that each thread will use the same values throughout the
1692application, directly modify the *DefaultContext* object. This should be done
1693*before* any threads are started so that there won't be a race condition between
1694threads calling :func:`getcontext`. For example::
1695
1696 # Set applicationwide defaults for all threads about to be launched
1697 DefaultContext.prec = 12
1698 DefaultContext.rounding = ROUND_DOWN
1699 DefaultContext.traps = ExtendedContext.traps.copy()
1700 DefaultContext.traps[InvalidOperation] = 1
1701 setcontext(DefaultContext)
1702
1703 # Afterwards, the threads can be started
1704 t1.start()
1705 t2.start()
1706 t3.start()
1707 . . .
1708
Georg Brandlb19be572007-12-29 10:57:00 +00001709.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001710
1711
1712.. _decimal-recipes:
1713
1714Recipes
1715-------
1716
1717Here are a few recipes that serve as utility functions and that demonstrate ways
1718to work with the :class:`Decimal` class::
1719
1720 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1721 pos='', neg='-', trailneg=''):
1722 """Convert Decimal to a money formatted string.
1723
1724 places: required number of places after the decimal point
1725 curr: optional currency symbol before the sign (may be blank)
1726 sep: optional grouping separator (comma, period, space, or blank)
1727 dp: decimal point indicator (comma or period)
1728 only specify as blank when places is zero
1729 pos: optional sign for positive numbers: '+', space or blank
1730 neg: optional sign for negative numbers: '-', '(', space or blank
1731 trailneg:optional trailing minus indicator: '-', ')', space or blank
1732
1733 >>> d = Decimal('-1234567.8901')
1734 >>> moneyfmt(d, curr='$')
1735 '-$1,234,567.89'
1736 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1737 '1.234.568-'
1738 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1739 '($1,234,567.89)'
1740 >>> moneyfmt(Decimal(123456789), sep=' ')
1741 '123 456 789.00'
1742 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001743 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001744
1745 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001746 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001747 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001748 result = []
1749 digits = map(str, digits)
1750 build, next = result.append, digits.pop
1751 if sign:
1752 build(trailneg)
1753 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001754 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001755 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001756 if not digits:
1757 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001758 i = 0
1759 while digits:
1760 build(next())
1761 i += 1
1762 if i == 3 and digits:
1763 i = 0
1764 build(sep)
1765 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001766 build(neg if sign else pos)
1767 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001768
1769 def pi():
1770 """Compute Pi to the current precision.
1771
1772 >>> print pi()
1773 3.141592653589793238462643383
1774
1775 """
1776 getcontext().prec += 2 # extra digits for intermediate steps
1777 three = Decimal(3) # substitute "three=3.0" for regular floats
1778 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1779 while s != lasts:
1780 lasts = s
1781 n, na = n+na, na+8
1782 d, da = d+da, da+32
1783 t = (t * n) / d
1784 s += t
1785 getcontext().prec -= 2
1786 return +s # unary plus applies the new precision
1787
1788 def exp(x):
1789 """Return e raised to the power of x. Result type matches input type.
1790
1791 >>> print exp(Decimal(1))
1792 2.718281828459045235360287471
1793 >>> print exp(Decimal(2))
1794 7.389056098930650227230427461
1795 >>> print exp(2.0)
1796 7.38905609893
1797 >>> print exp(2+0j)
1798 (7.38905609893+0j)
1799
1800 """
1801 getcontext().prec += 2
1802 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1803 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001804 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001805 i += 1
1806 fact *= i
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001807 num *= x
1808 s += num / fact
1809 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001810 return +s
1811
1812 def cos(x):
1813 """Return the cosine of x as measured in radians.
1814
1815 >>> print cos(Decimal('0.5'))
1816 0.8775825618903727161162815826
1817 >>> print cos(0.5)
1818 0.87758256189
1819 >>> print cos(0.5+0j)
1820 (0.87758256189+0j)
1821
1822 """
1823 getcontext().prec += 2
1824 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1825 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001826 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001827 i += 2
1828 fact *= i * (i-1)
1829 num *= x * x
1830 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001831 s += num / fact * sign
1832 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001833 return +s
1834
1835 def sin(x):
1836 """Return the sine of x as measured in radians.
1837
1838 >>> print sin(Decimal('0.5'))
1839 0.4794255386042030002732879352
1840 >>> print sin(0.5)
1841 0.479425538604
1842 >>> print sin(0.5+0j)
1843 (0.479425538604+0j)
1844
1845 """
1846 getcontext().prec += 2
1847 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1848 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001849 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001850 i += 2
1851 fact *= i * (i-1)
1852 num *= x * x
1853 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001854 s += num / fact * sign
1855 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001856 return +s
1857
1858
Georg Brandlb19be572007-12-29 10:57:00 +00001859.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001860
1861
1862.. _decimal-faq:
1863
1864Decimal FAQ
1865-----------
1866
1867Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1868minimize typing when using the interactive interpreter?
1869
Georg Brandl9f662322008-03-22 11:47:10 +00001870A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001871
1872 >>> D = decimal.Decimal
1873 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001874 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001875
1876Q. In a fixed-point application with two decimal places, some inputs have many
1877places and need to be rounded. Others are not supposed to have excess digits
1878and need to be validated. What methods should be used?
1879
1880A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001881the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001882
1883 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1884
1885 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001886 >>> Decimal('3.214').quantize(TWOPLACES)
1887 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001888
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001889 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001890 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1891 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001892
Raymond Hettingerabe32372008-02-14 02:41:22 +00001893 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001894 Traceback (most recent call last):
1895 ...
Georg Brandlf6dab952009-04-28 21:48:35 +00001896 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001897
1898Q. Once I have valid two place inputs, how do I maintain that invariant
1899throughout an application?
1900
Raymond Hettinger46314812008-02-14 10:46:57 +00001901A. Some operations like addition, subtraction, and multiplication by an integer
1902will automatically preserve fixed point. Others operations, like division and
1903non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001904be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001905
1906 >>> a = Decimal('102.72') # Initial fixed-point values
1907 >>> b = Decimal('3.17')
1908 >>> a + b # Addition preserves fixed-point
1909 Decimal('105.89')
1910 >>> a - b
1911 Decimal('99.55')
1912 >>> a * 42 # So does integer multiplication
1913 Decimal('4314.24')
1914 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1915 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001916 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001917 Decimal('0.03')
1918
1919In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001920to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001921
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001922 >>> def mul(x, y, fp=TWOPLACES):
1923 ... return (x * y).quantize(fp)
1924 >>> def div(x, y, fp=TWOPLACES):
1925 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001926
Raymond Hettinger46314812008-02-14 10:46:57 +00001927 >>> mul(a, b) # Automatically preserve fixed-point
1928 Decimal('325.62')
1929 >>> div(b, a)
1930 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001931
1932Q. There are many ways to express the same value. The numbers :const:`200`,
1933:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1934various precisions. Is there a way to transform them to a single recognizable
1935canonical value?
1936
1937A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001938representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001939
1940 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1941 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001942 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001943
1944Q. Some decimal values always print with exponential notation. Is there a way
1945to get a non-exponential representation?
1946
1947A. For some values, exponential notation is the only way to express the number
1948of significant places in the coefficient. For example, expressing
1949:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1950original's two-place significance.
1951
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001952If an application does not care about tracking significance, it is easy to
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001953remove the exponent and trailing zeros, losing significance, but keeping the
1954value unchanged::
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001955
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001956 def remove_exponent(d):
1957 '''Remove exponent and trailing zeros.
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001958
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001959 >>> remove_exponent(Decimal('5E+3'))
1960 Decimal('5000')
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001961
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001962 '''
1963 return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001964
Raymond Hettingered171ab2010-04-02 18:39:24 +00001965Q. Is there a way to convert a regular float to a :class:`Decimal`?
Georg Brandl9f662322008-03-22 11:47:10 +00001966
Mark Dickinsonb1affc52010-04-04 22:09:21 +00001967A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettingered171ab2010-04-02 18:39:24 +00001968Decimal though an exact conversion may take more precision than intuition would
1969suggest:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001970
Raymond Hettingered171ab2010-04-02 18:39:24 +00001971.. doctest::
Georg Brandl8ec7f652007-08-15 14:28:01 +00001972
Raymond Hettingered171ab2010-04-02 18:39:24 +00001973 >>> Decimal(math.pi)
1974 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001975
1976Q. Within a complex calculation, how can I make sure that I haven't gotten a
1977spurious result because of insufficient precision or rounding anomalies.
1978
1979A. The decimal module makes it easy to test results. A best practice is to
1980re-run calculations using greater precision and with various rounding modes.
1981Widely differing results indicate insufficient precision, rounding mode issues,
1982ill-conditioned inputs, or a numerically unstable algorithm.
1983
1984Q. I noticed that context precision is applied to the results of operations but
1985not to the inputs. Is there anything to watch out for when mixing values of
1986different precisions?
1987
1988A. Yes. The principle is that all values are considered to be exact and so is
1989the arithmetic on those values. Only the results are rounded. The advantage
1990for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001991results can look odd if you forget that the inputs haven't been rounded:
1992
1993.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001994
1995 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00001996 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001997 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00001998 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001999 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002000
2001The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00002002using the unary plus operation:
2003
2004.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00002005
2006 >>> getcontext().prec = 3
2007 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00002008 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002009
2010Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00002011:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00002012
2013 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002014 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002015