Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 1 | |
| 2 | :mod:`math` --- Mathematical functions |
| 3 | ====================================== |
| 4 | |
| 5 | .. module:: math |
| 6 | :synopsis: Mathematical functions (sin() etc.). |
| 7 | |
| 8 | |
| 9 | This module is always available. It provides access to the mathematical |
| 10 | functions defined by the C standard. |
| 11 | |
| 12 | These functions cannot be used with complex numbers; use the functions of the |
| 13 | same name from the :mod:`cmath` module if you require support for complex |
| 14 | numbers. The distinction between functions which support complex numbers and |
| 15 | those which don't is made since most users do not want to learn quite as much |
| 16 | mathematics as required to understand complex numbers. Receiving an exception |
| 17 | instead of a complex result allows earlier detection of the unexpected complex |
| 18 | number used as a parameter, so that the programmer can determine how and why it |
| 19 | was generated in the first place. |
| 20 | |
| 21 | The following functions are provided by this module. Except when explicitly |
| 22 | noted otherwise, all return values are floats. |
| 23 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 24 | |
Benjamin Peterson | 4f6ec9d | 2008-12-20 02:51:26 +0000 | [diff] [blame] | 25 | Number-theoretic and representation functions |
| 26 | --------------------------------------------- |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 27 | |
| 28 | .. function:: ceil(x) |
| 29 | |
Jeffrey Yasskin | 9871d8f | 2008-01-05 08:47:13 +0000 | [diff] [blame] | 30 | Return the ceiling of *x* as a float, the smallest integer value greater than or |
| 31 | equal to *x*. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 32 | |
| 33 | |
Christian Heimes | eebb79c | 2008-01-03 22:32:26 +0000 | [diff] [blame] | 34 | .. function:: copysign(x, y) |
| 35 | |
Mark Dickinson | 99e73f9 | 2010-04-06 19:50:03 +0000 | [diff] [blame] | 36 | Return *x* with the sign of *y*. On a platform that supports |
| 37 | signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*. |
Christian Heimes | eebb79c | 2008-01-03 22:32:26 +0000 | [diff] [blame] | 38 | |
Andrew M. Kuchling | 54966a5 | 2008-01-04 18:25:05 +0000 | [diff] [blame] | 39 | .. versionadded:: 2.6 |
Christian Heimes | eebb79c | 2008-01-03 22:32:26 +0000 | [diff] [blame] | 40 | |
| 41 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 42 | .. function:: fabs(x) |
| 43 | |
| 44 | Return the absolute value of *x*. |
| 45 | |
Georg Brandl | 5da652e | 2008-06-18 09:28:22 +0000 | [diff] [blame] | 46 | |
Raymond Hettinger | ecbdd2e | 2008-06-09 06:54:45 +0000 | [diff] [blame] | 47 | .. function:: factorial(x) |
| 48 | |
Mark Dickinson | f88f739 | 2008-06-18 09:20:17 +0000 | [diff] [blame] | 49 | Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or |
Raymond Hettinger | ecbdd2e | 2008-06-09 06:54:45 +0000 | [diff] [blame] | 50 | is negative. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 51 | |
Georg Brandl | 5da652e | 2008-06-18 09:28:22 +0000 | [diff] [blame] | 52 | .. versionadded:: 2.6 |
| 53 | |
| 54 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 55 | .. function:: floor(x) |
| 56 | |
Jeffrey Yasskin | 9871d8f | 2008-01-05 08:47:13 +0000 | [diff] [blame] | 57 | Return the floor of *x* as a float, the largest integer value less than or equal |
| 58 | to *x*. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 59 | |
Georg Brandl | 9749e15 | 2008-01-05 19:28:16 +0000 | [diff] [blame] | 60 | .. versionchanged:: 2.6 |
| 61 | Added :meth:`__floor__` delegation. |
| 62 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 63 | |
| 64 | .. function:: fmod(x, y) |
| 65 | |
| 66 | Return ``fmod(x, y)``, as defined by the platform C library. Note that the |
| 67 | Python expression ``x % y`` may not return the same result. The intent of the C |
| 68 | standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite |
| 69 | precision) equal to ``x - n*y`` for some integer *n* such that the result has |
| 70 | the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y`` |
| 71 | returns a result with the sign of *y* instead, and may not be exactly computable |
| 72 | for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but |
| 73 | the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be |
| 74 | represented exactly as a float, and rounds to the surprising ``1e100``. For |
| 75 | this reason, function :func:`fmod` is generally preferred when working with |
| 76 | floats, while Python's ``x % y`` is preferred when working with integers. |
| 77 | |
| 78 | |
| 79 | .. function:: frexp(x) |
| 80 | |
| 81 | Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float |
| 82 | and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero, |
| 83 | returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick |
| 84 | apart" the internal representation of a float in a portable way. |
| 85 | |
| 86 | |
Mark Dickinson | fef6b13 | 2008-07-30 16:20:10 +0000 | [diff] [blame] | 87 | .. function:: fsum(iterable) |
| 88 | |
| 89 | Return an accurate floating point sum of values in the iterable. Avoids |
Raymond Hettinger | 7d85495 | 2009-02-19 05:51:41 +0000 | [diff] [blame] | 90 | loss of precision by tracking multiple intermediate partial sums:: |
Mark Dickinson | fef6b13 | 2008-07-30 16:20:10 +0000 | [diff] [blame] | 91 | |
Raymond Hettinger | 7d85495 | 2009-02-19 05:51:41 +0000 | [diff] [blame] | 92 | >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]) |
Mark Dickinson | 6b87f11 | 2009-11-24 14:27:02 +0000 | [diff] [blame] | 93 | 0.9999999999999999 |
Raymond Hettinger | 7d85495 | 2009-02-19 05:51:41 +0000 | [diff] [blame] | 94 | >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]) |
| 95 | 1.0 |
Mark Dickinson | 23957cb | 2008-07-30 20:23:15 +0000 | [diff] [blame] | 96 | |
Raymond Hettinger | 7d85495 | 2009-02-19 05:51:41 +0000 | [diff] [blame] | 97 | The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the |
| 98 | typical case where the rounding mode is half-even. On some non-Windows |
| 99 | builds, the underlying C library uses extended precision addition and may |
| 100 | occasionally double-round an intermediate sum causing it to be off in its |
| 101 | least significant bit. |
Mark Dickinson | 23957cb | 2008-07-30 20:23:15 +0000 | [diff] [blame] | 102 | |
Raymond Hettinger | 749e6d0 | 2009-02-19 06:55:03 +0000 | [diff] [blame] | 103 | For further discussion and two alternative approaches, see the `ASPN cookbook |
| 104 | recipes for accurate floating point summation |
| 105 | <http://code.activestate.com/recipes/393090/>`_\. |
| 106 | |
Mark Dickinson | fef6b13 | 2008-07-30 16:20:10 +0000 | [diff] [blame] | 107 | .. versionadded:: 2.6 |
| 108 | |
| 109 | |
Christian Heimes | e2ca424 | 2008-01-03 20:23:15 +0000 | [diff] [blame] | 110 | .. function:: isinf(x) |
| 111 | |
Mark Dickinson | 99e73f9 | 2010-04-06 19:50:03 +0000 | [diff] [blame] | 112 | Check if the float *x* is positive or negative infinity. |
Christian Heimes | e2ca424 | 2008-01-03 20:23:15 +0000 | [diff] [blame] | 113 | |
Andrew M. Kuchling | 54966a5 | 2008-01-04 18:25:05 +0000 | [diff] [blame] | 114 | .. versionadded:: 2.6 |
Christian Heimes | e2ca424 | 2008-01-03 20:23:15 +0000 | [diff] [blame] | 115 | |
| 116 | |
| 117 | .. function:: isnan(x) |
| 118 | |
Mark Dickinson | 99e73f9 | 2010-04-06 19:50:03 +0000 | [diff] [blame] | 119 | Check if the float *x* is a NaN (not a number). For more information |
| 120 | on NaNs, see the IEEE 754 standards. |
Christian Heimes | e2ca424 | 2008-01-03 20:23:15 +0000 | [diff] [blame] | 121 | |
Andrew M. Kuchling | 54966a5 | 2008-01-04 18:25:05 +0000 | [diff] [blame] | 122 | .. versionadded:: 2.6 |
Christian Heimes | e2ca424 | 2008-01-03 20:23:15 +0000 | [diff] [blame] | 123 | |
| 124 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 125 | .. function:: ldexp(x, i) |
| 126 | |
| 127 | Return ``x * (2**i)``. This is essentially the inverse of function |
| 128 | :func:`frexp`. |
| 129 | |
| 130 | |
| 131 | .. function:: modf(x) |
| 132 | |
Benjamin Peterson | 2d54e72 | 2008-12-20 02:48:02 +0000 | [diff] [blame] | 133 | Return the fractional and integer parts of *x*. Both results carry the sign |
Benjamin Peterson | 9de7298 | 2008-12-20 22:49:24 +0000 | [diff] [blame] | 134 | of *x* and are floats. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 135 | |
Georg Brandl | 5da652e | 2008-06-18 09:28:22 +0000 | [diff] [blame] | 136 | |
Jeffrey Yasskin | ca2b69f | 2008-02-01 06:22:46 +0000 | [diff] [blame] | 137 | .. function:: trunc(x) |
| 138 | |
| 139 | Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually |
| 140 | a long integer). Delegates to ``x.__trunc__()``. |
| 141 | |
| 142 | .. versionadded:: 2.6 |
| 143 | |
Georg Brandl | 5da652e | 2008-06-18 09:28:22 +0000 | [diff] [blame] | 144 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 145 | Note that :func:`frexp` and :func:`modf` have a different call/return pattern |
| 146 | than their C equivalents: they take a single argument and return a pair of |
| 147 | values, rather than returning their second return value through an 'output |
| 148 | parameter' (there is no such thing in Python). |
| 149 | |
| 150 | For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all* |
| 151 | floating-point numbers of sufficiently large magnitude are exact integers. |
| 152 | Python floats typically carry no more than 53 bits of precision (the same as the |
| 153 | platform C double type), in which case any float *x* with ``abs(x) >= 2**52`` |
| 154 | necessarily has no fractional bits. |
| 155 | |
Benjamin Peterson | 4f6ec9d | 2008-12-20 02:51:26 +0000 | [diff] [blame] | 156 | |
| 157 | Power and logarithmic functions |
| 158 | ------------------------------- |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 159 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 160 | .. function:: exp(x) |
| 161 | |
| 162 | Return ``e**x``. |
| 163 | |
| 164 | |
Mark Dickinson | 9cae178 | 2009-12-16 20:13:40 +0000 | [diff] [blame] | 165 | .. function:: expm1(x) |
| 166 | |
| 167 | Return ``e**x - 1``. For small floats *x*, the subtraction in |
| 168 | ``exp(x) - 1`` can result in a significant loss of precision; the |
| 169 | :func:`expm1` function provides a way to compute this quantity to |
| 170 | full precision:: |
| 171 | |
| 172 | >>> from math import exp, expm1 |
| 173 | >>> exp(1e-5) - 1 # gives result accurate to 11 places |
| 174 | 1.0000050000069649e-05 |
| 175 | >>> expm1(1e-5) # result accurate to full precision |
| 176 | 1.0000050000166668e-05 |
| 177 | |
Mark Dickinson | 5ff37ae | 2009-12-19 11:07:23 +0000 | [diff] [blame] | 178 | .. versionadded:: 2.7 |
| 179 | |
Mark Dickinson | 9cae178 | 2009-12-16 20:13:40 +0000 | [diff] [blame] | 180 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 181 | .. function:: log(x[, base]) |
| 182 | |
Georg Brandl | 018ad1c | 2009-09-01 07:53:37 +0000 | [diff] [blame] | 183 | With one argument, return the natural logarithm of *x* (to base *e*). |
| 184 | |
| 185 | With two arguments, return the logarithm of *x* to the given *base*, |
| 186 | calculated as ``log(x)/log(base)``. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 187 | |
| 188 | .. versionchanged:: 2.3 |
| 189 | *base* argument added. |
| 190 | |
| 191 | |
Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 192 | .. function:: log1p(x) |
| 193 | |
| 194 | Return the natural logarithm of *1+x* (base *e*). The |
| 195 | result is calculated in a way which is accurate for *x* near zero. |
| 196 | |
| 197 | .. versionadded:: 2.6 |
| 198 | |
| 199 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 200 | .. function:: log10(x) |
| 201 | |
Georg Brandl | 018ad1c | 2009-09-01 07:53:37 +0000 | [diff] [blame] | 202 | Return the base-10 logarithm of *x*. This is usually more accurate |
| 203 | than ``log(x, 10)``. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 204 | |
| 205 | |
| 206 | .. function:: pow(x, y) |
| 207 | |
Mark Dickinson | 48f7a4a | 2008-04-19 21:35:35 +0000 | [diff] [blame] | 208 | Return ``x`` raised to the power ``y``. Exceptional cases follow |
| 209 | Annex 'F' of the C99 standard as far as possible. In particular, |
| 210 | ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even |
| 211 | when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite, |
| 212 | ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)`` |
| 213 | is undefined, and raises :exc:`ValueError`. |
Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 214 | |
| 215 | .. versionchanged:: 2.6 |
Mark Dickinson | 48f7a4a | 2008-04-19 21:35:35 +0000 | [diff] [blame] | 216 | The outcome of ``1**nan`` and ``nan**0`` was undefined. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 217 | |
| 218 | |
| 219 | .. function:: sqrt(x) |
| 220 | |
| 221 | Return the square root of *x*. |
| 222 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 223 | |
Benjamin Peterson | 4f6ec9d | 2008-12-20 02:51:26 +0000 | [diff] [blame] | 224 | Trigonometric functions |
| 225 | ----------------------- |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 226 | |
| 227 | .. function:: acos(x) |
| 228 | |
| 229 | Return the arc cosine of *x*, in radians. |
| 230 | |
| 231 | |
| 232 | .. function:: asin(x) |
| 233 | |
| 234 | Return the arc sine of *x*, in radians. |
| 235 | |
| 236 | |
| 237 | .. function:: atan(x) |
| 238 | |
| 239 | Return the arc tangent of *x*, in radians. |
| 240 | |
| 241 | |
| 242 | .. function:: atan2(y, x) |
| 243 | |
| 244 | Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``. |
| 245 | The vector in the plane from the origin to point ``(x, y)`` makes this angle |
| 246 | with the positive X axis. The point of :func:`atan2` is that the signs of both |
| 247 | inputs are known to it, so it can compute the correct quadrant for the angle. |
Mark Dickinson | 99e73f9 | 2010-04-06 19:50:03 +0000 | [diff] [blame] | 248 | For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1, |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 249 | -1)`` is ``-3*pi/4``. |
| 250 | |
| 251 | |
| 252 | .. function:: cos(x) |
| 253 | |
| 254 | Return the cosine of *x* radians. |
| 255 | |
| 256 | |
| 257 | .. function:: hypot(x, y) |
| 258 | |
| 259 | Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector |
| 260 | from the origin to point ``(x, y)``. |
| 261 | |
| 262 | |
| 263 | .. function:: sin(x) |
| 264 | |
| 265 | Return the sine of *x* radians. |
| 266 | |
| 267 | |
| 268 | .. function:: tan(x) |
| 269 | |
| 270 | Return the tangent of *x* radians. |
| 271 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 272 | |
Benjamin Peterson | 4f6ec9d | 2008-12-20 02:51:26 +0000 | [diff] [blame] | 273 | Angular conversion |
| 274 | ------------------ |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 275 | |
| 276 | .. function:: degrees(x) |
| 277 | |
| 278 | Converts angle *x* from radians to degrees. |
| 279 | |
| 280 | |
| 281 | .. function:: radians(x) |
| 282 | |
| 283 | Converts angle *x* from degrees to radians. |
| 284 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 285 | |
Benjamin Peterson | 4f6ec9d | 2008-12-20 02:51:26 +0000 | [diff] [blame] | 286 | Hyperbolic functions |
| 287 | -------------------- |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 288 | |
Mark Dickinson | 47a84aa | 2008-04-19 21:49:22 +0000 | [diff] [blame] | 289 | .. function:: acosh(x) |
| 290 | |
| 291 | Return the inverse hyperbolic cosine of *x*. |
| 292 | |
| 293 | .. versionadded:: 2.6 |
| 294 | |
| 295 | |
| 296 | .. function:: asinh(x) |
| 297 | |
| 298 | Return the inverse hyperbolic sine of *x*. |
| 299 | |
| 300 | .. versionadded:: 2.6 |
| 301 | |
| 302 | |
| 303 | .. function:: atanh(x) |
| 304 | |
| 305 | Return the inverse hyperbolic tangent of *x*. |
| 306 | |
| 307 | .. versionadded:: 2.6 |
| 308 | |
| 309 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 310 | .. function:: cosh(x) |
| 311 | |
| 312 | Return the hyperbolic cosine of *x*. |
| 313 | |
| 314 | |
| 315 | .. function:: sinh(x) |
| 316 | |
| 317 | Return the hyperbolic sine of *x*. |
| 318 | |
| 319 | |
| 320 | .. function:: tanh(x) |
| 321 | |
| 322 | Return the hyperbolic tangent of *x*. |
| 323 | |
Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 324 | |
Mark Dickinson | b93fff0 | 2009-09-28 18:54:55 +0000 | [diff] [blame] | 325 | Special functions |
| 326 | ----------------- |
| 327 | |
Mark Dickinson | 5ff37ae | 2009-12-19 11:07:23 +0000 | [diff] [blame] | 328 | .. function:: erf(x) |
| 329 | |
| 330 | Return the error function at *x*. |
| 331 | |
| 332 | .. versionadded:: 2.7 |
| 333 | |
| 334 | |
| 335 | .. function:: erfc(x) |
| 336 | |
| 337 | Return the complementary error function at *x*. |
| 338 | |
| 339 | .. versionadded:: 2.7 |
| 340 | |
| 341 | |
Mark Dickinson | b93fff0 | 2009-09-28 18:54:55 +0000 | [diff] [blame] | 342 | .. function:: gamma(x) |
| 343 | |
| 344 | Return the Gamma function at *x*. |
| 345 | |
| 346 | .. versionadded:: 2.7 |
| 347 | |
| 348 | |
Mark Dickinson | 9be87bc | 2009-12-11 17:29:33 +0000 | [diff] [blame] | 349 | .. function:: lgamma(x) |
| 350 | |
| 351 | Return the natural logarithm of the absolute value of the Gamma |
| 352 | function at *x*. |
| 353 | |
| 354 | .. versionadded:: 2.7 |
| 355 | |
| 356 | |
Benjamin Peterson | 4f6ec9d | 2008-12-20 02:51:26 +0000 | [diff] [blame] | 357 | Constants |
| 358 | --------- |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 359 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 360 | .. data:: pi |
| 361 | |
Mark Dickinson | 99e73f9 | 2010-04-06 19:50:03 +0000 | [diff] [blame] | 362 | The mathematical constant π = 3.141592..., to available precision. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 363 | |
| 364 | |
| 365 | .. data:: e |
| 366 | |
Mark Dickinson | 99e73f9 | 2010-04-06 19:50:03 +0000 | [diff] [blame] | 367 | The mathematical constant e = 2.718281..., to available precision. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 368 | |
Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 369 | |
Georg Brandl | 6c14e58 | 2009-10-22 11:48:10 +0000 | [diff] [blame] | 370 | .. impl-detail:: |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 371 | |
| 372 | The :mod:`math` module consists mostly of thin wrappers around the platform C |
Mark Dickinson | 99e73f9 | 2010-04-06 19:50:03 +0000 | [diff] [blame] | 373 | math library functions. Behavior in exceptional cases follows Annex F of |
| 374 | the C99 standard where appropriate. The current implementation will raise |
| 375 | :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)`` |
| 376 | (where C99 Annex F recommends signaling invalid operation or divide-by-zero), |
| 377 | and :exc:`OverflowError` for results that overflow (for example, |
Mark Dickinson | ad971d6 | 2010-04-06 22:18:23 +0000 | [diff] [blame^] | 378 | ``exp(1000.0)``). A NaN will not be returned from any of the functions |
| 379 | above unless one or more of the input arguments was a NaN; in that case, |
| 380 | most functions will return a NaN, but (again following C99 Annex F) there |
Mark Dickinson | 99e73f9 | 2010-04-06 19:50:03 +0000 | [diff] [blame] | 381 | are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or |
| 382 | ``hypot(float('nan'), float('inf'))``. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 383 | |
Mark Dickinson | e07acb5 | 2010-04-06 22:10:55 +0000 | [diff] [blame] | 384 | Note that Python makes no effort to distinguish signaling NaNs from |
| 385 | quiet NaNs, and behavior for signaling NaNs remains unspecified. |
| 386 | Typical behavior is to treat all NaNs as though they were quiet. |
Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 387 | |
Georg Brandl | 173b739 | 2008-05-12 17:43:13 +0000 | [diff] [blame] | 388 | .. versionchanged:: 2.6 |
Mark Dickinson | 99e73f9 | 2010-04-06 19:50:03 +0000 | [diff] [blame] | 389 | Behavior in special cases now aims to follow C99 Annex F. In earlier |
| 390 | versions of Python the behavior in special cases was loosely specified. |
Christian Heimes | 6f34109 | 2008-04-18 23:13:07 +0000 | [diff] [blame] | 391 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 392 | |
| 393 | .. seealso:: |
| 394 | |
| 395 | Module :mod:`cmath` |
| 396 | Complex number versions of many of these functions. |