Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 1 | """Random variable generators. |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 2 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 3 | integers |
| 4 | -------- |
| 5 | uniform within range |
| 6 | |
| 7 | sequences |
| 8 | --------- |
| 9 | pick random element |
Raymond Hettinger | f24eb35 | 2002-11-12 17:41:57 +0000 | [diff] [blame] | 10 | pick random sample |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 11 | generate random permutation |
| 12 | |
Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 13 | distributions on the real line: |
| 14 | ------------------------------ |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 15 | uniform |
Raymond Hettinger | bbc50ea | 2008-03-23 13:32:32 +0000 | [diff] [blame] | 16 | triangular |
Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 17 | normal (Gaussian) |
| 18 | lognormal |
| 19 | negative exponential |
| 20 | gamma |
| 21 | beta |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 22 | pareto |
| 23 | Weibull |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 24 | |
Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 25 | distributions on the circle (angles 0 to 2pi) |
| 26 | --------------------------------------------- |
| 27 | circular uniform |
| 28 | von Mises |
| 29 | |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 30 | General notes on the underlying Mersenne Twister core generator: |
Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 31 | |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 32 | * The period is 2**19937-1. |
Tim Peters | 0e11595 | 2006-06-10 22:51:45 +0000 | [diff] [blame] | 33 | * It is one of the most extensively tested generators in existence. |
| 34 | * Without a direct way to compute N steps forward, the semantics of |
| 35 | jumpahead(n) are weakened to simply jump to another distant state and rely |
| 36 | on the large period to avoid overlapping sequences. |
| 37 | * The random() method is implemented in C, executes in a single Python step, |
| 38 | and is, therefore, threadsafe. |
Tim Peters | e360d95 | 2001-01-26 10:00:39 +0000 | [diff] [blame] | 39 | |
Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 40 | """ |
Guido van Rossum | d03e119 | 1998-05-29 17:51:31 +0000 | [diff] [blame] | 41 | |
Raymond Hettinger | c4f7bab | 2008-03-23 19:37:53 +0000 | [diff] [blame] | 42 | from __future__ import division |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 43 | from warnings import warn as _warn |
| 44 | from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType |
Raymond Hettinger | 91e27c2 | 2005-08-19 01:36:35 +0000 | [diff] [blame] | 45 | from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 46 | from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin |
Raymond Hettinger | c1c43ca | 2004-09-05 00:00:42 +0000 | [diff] [blame] | 47 | from os import urandom as _urandom |
| 48 | from binascii import hexlify as _hexlify |
Raymond Hettinger | ffd2a42 | 2010-09-10 10:47:22 +0000 | [diff] [blame] | 49 | import hashlib as _hashlib |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 50 | |
Raymond Hettinger | f24eb35 | 2002-11-12 17:41:57 +0000 | [diff] [blame] | 51 | __all__ = ["Random","seed","random","uniform","randint","choice","sample", |
Skip Montanaro | 0de6580 | 2001-02-15 22:15:14 +0000 | [diff] [blame] | 52 | "randrange","shuffle","normalvariate","lognormvariate", |
Raymond Hettinger | bbc50ea | 2008-03-23 13:32:32 +0000 | [diff] [blame] | 53 | "expovariate","vonmisesvariate","gammavariate","triangular", |
Raymond Hettinger | f8a52d3 | 2003-08-05 12:23:19 +0000 | [diff] [blame] | 54 | "gauss","betavariate","paretovariate","weibullvariate", |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 55 | "getstate","setstate","jumpahead", "WichmannHill", "getrandbits", |
Raymond Hettinger | 23f1241 | 2004-09-13 22:23:21 +0000 | [diff] [blame] | 56 | "SystemRandom"] |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 57 | |
| 58 | NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0) |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 59 | TWOPI = 2.0*_pi |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 60 | LOG4 = _log(4.0) |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 61 | SG_MAGICCONST = 1.0 + _log(4.5) |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 62 | BPF = 53 # Number of bits in a float |
Tim Peters | 7c2a85b | 2004-08-31 02:19:55 +0000 | [diff] [blame] | 63 | RECIP_BPF = 2**-BPF |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 64 | |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 65 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 66 | # Translated by Guido van Rossum from C source provided by |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 67 | # Adrian Baddeley. Adapted by Raymond Hettinger for use with |
Raymond Hettinger | 3fa19d7 | 2004-08-31 01:05:15 +0000 | [diff] [blame] | 68 | # the Mersenne Twister and os.urandom() core generators. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 69 | |
Raymond Hettinger | 145a4a0 | 2003-01-07 10:25:55 +0000 | [diff] [blame] | 70 | import _random |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 71 | |
Raymond Hettinger | 145a4a0 | 2003-01-07 10:25:55 +0000 | [diff] [blame] | 72 | class Random(_random.Random): |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 73 | """Random number generator base class used by bound module functions. |
| 74 | |
| 75 | Used to instantiate instances of Random to get generators that don't |
| 76 | share state. Especially useful for multi-threaded programs, creating |
| 77 | a different instance of Random for each thread, and using the jumpahead() |
| 78 | method to ensure that the generated sequences seen by each thread don't |
| 79 | overlap. |
| 80 | |
| 81 | Class Random can also be subclassed if you want to use a different basic |
| 82 | generator of your own devising: in that case, override the following |
Benjamin Peterson | f2eb2b4 | 2008-07-30 13:46:53 +0000 | [diff] [blame] | 83 | methods: random(), seed(), getstate(), setstate() and jumpahead(). |
| 84 | Optionally, implement a getrandbits() method so that randrange() can cover |
| 85 | arbitrarily large ranges. |
Raymond Hettinger | ef4d4bd | 2002-05-23 23:58:17 +0000 | [diff] [blame] | 86 | |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 87 | """ |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 88 | |
Martin v. Löwis | 6b449f4 | 2007-12-03 19:20:02 +0000 | [diff] [blame] | 89 | VERSION = 3 # used by getstate/setstate |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 90 | |
| 91 | def __init__(self, x=None): |
| 92 | """Initialize an instance. |
| 93 | |
| 94 | Optional argument x controls seeding, as for Random.seed(). |
| 95 | """ |
| 96 | |
| 97 | self.seed(x) |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 98 | self.gauss_next = None |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 99 | |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 100 | def seed(self, a=None): |
| 101 | """Initialize internal state from hashable object. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 102 | |
Raymond Hettinger | 23f1241 | 2004-09-13 22:23:21 +0000 | [diff] [blame] | 103 | None or no argument seeds from current time or from an operating |
| 104 | system specific randomness source if available. |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 105 | |
Tim Peters | bcd725f | 2001-02-01 10:06:53 +0000 | [diff] [blame] | 106 | If a is not None or an int or long, hash(a) is used instead. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 107 | """ |
| 108 | |
Raymond Hettinger | 3081d59 | 2003-08-09 18:30:57 +0000 | [diff] [blame] | 109 | if a is None: |
Raymond Hettinger | c1c43ca | 2004-09-05 00:00:42 +0000 | [diff] [blame] | 110 | try: |
| 111 | a = long(_hexlify(_urandom(16)), 16) |
| 112 | except NotImplementedError: |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 113 | import time |
| 114 | a = long(time.time() * 256) # use fractional seconds |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 115 | |
Raymond Hettinger | 145a4a0 | 2003-01-07 10:25:55 +0000 | [diff] [blame] | 116 | super(Random, self).seed(a) |
Tim Peters | 46c04e1 | 2002-05-05 20:40:00 +0000 | [diff] [blame] | 117 | self.gauss_next = None |
| 118 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 119 | def getstate(self): |
| 120 | """Return internal state; can be passed to setstate() later.""" |
Raymond Hettinger | 145a4a0 | 2003-01-07 10:25:55 +0000 | [diff] [blame] | 121 | return self.VERSION, super(Random, self).getstate(), self.gauss_next |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 122 | |
| 123 | def setstate(self, state): |
| 124 | """Restore internal state from object returned by getstate().""" |
| 125 | version = state[0] |
Martin v. Löwis | 6b449f4 | 2007-12-03 19:20:02 +0000 | [diff] [blame] | 126 | if version == 3: |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 127 | version, internalstate, self.gauss_next = state |
Raymond Hettinger | 145a4a0 | 2003-01-07 10:25:55 +0000 | [diff] [blame] | 128 | super(Random, self).setstate(internalstate) |
Martin v. Löwis | 6b449f4 | 2007-12-03 19:20:02 +0000 | [diff] [blame] | 129 | elif version == 2: |
| 130 | version, internalstate, self.gauss_next = state |
| 131 | # In version 2, the state was saved as signed ints, which causes |
| 132 | # inconsistencies between 32/64-bit systems. The state is |
| 133 | # really unsigned 32-bit ints, so we convert negative ints from |
| 134 | # version 2 to positive longs for version 3. |
| 135 | try: |
| 136 | internalstate = tuple( long(x) % (2**32) for x in internalstate ) |
| 137 | except ValueError, e: |
| 138 | raise TypeError, e |
| 139 | super(Random, self).setstate(internalstate) |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 140 | else: |
| 141 | raise ValueError("state with version %s passed to " |
| 142 | "Random.setstate() of version %s" % |
| 143 | (version, self.VERSION)) |
| 144 | |
Raymond Hettinger | ffd2a42 | 2010-09-10 10:47:22 +0000 | [diff] [blame] | 145 | def jumpahead(self, n): |
| 146 | """Change the internal state to one that is likely far away |
| 147 | from the current state. This method will not be in Py3.x, |
| 148 | so it is better to simply reseed. |
| 149 | """ |
| 150 | # The super.jumpahead() method uses shuffling to change state, |
| 151 | # so it needs a large and "interesting" n to work with. Here, |
| 152 | # we use hashing to create a large n for the shuffle. |
| 153 | s = repr(n) + repr(self.getstate()) |
| 154 | n = int(_hashlib.new('sha512', s).hexdigest(), 16) |
| 155 | super(Random, self).jumpahead(n) |
| 156 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 157 | ## ---- Methods below this point do not need to be overridden when |
| 158 | ## ---- subclassing for the purpose of using a different core generator. |
| 159 | |
| 160 | ## -------------------- pickle support ------------------- |
| 161 | |
| 162 | def __getstate__(self): # for pickle |
| 163 | return self.getstate() |
| 164 | |
| 165 | def __setstate__(self, state): # for pickle |
| 166 | self.setstate(state) |
| 167 | |
Raymond Hettinger | 5f078ff | 2003-06-24 20:29:04 +0000 | [diff] [blame] | 168 | def __reduce__(self): |
| 169 | return self.__class__, (), self.getstate() |
| 170 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 171 | ## -------------------- integer methods ------------------- |
| 172 | |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 173 | def randrange(self, start, stop=None, step=1, int=int, default=None, |
| 174 | maxwidth=1L<<BPF): |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 175 | """Choose a random item from range(start, stop[, step]). |
| 176 | |
| 177 | This fixes the problem with randint() which includes the |
| 178 | endpoint; in Python this is usually not what you want. |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 179 | Do not supply the 'int', 'default', and 'maxwidth' arguments. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 180 | """ |
| 181 | |
| 182 | # This code is a bit messy to make it fast for the |
Tim Peters | 9146f27 | 2002-08-16 03:41:39 +0000 | [diff] [blame] | 183 | # common case while still doing adequate error checking. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 184 | istart = int(start) |
| 185 | if istart != start: |
| 186 | raise ValueError, "non-integer arg 1 for randrange()" |
| 187 | if stop is default: |
| 188 | if istart > 0: |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 189 | if istart >= maxwidth: |
| 190 | return self._randbelow(istart) |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 191 | return int(self.random() * istart) |
| 192 | raise ValueError, "empty range for randrange()" |
Tim Peters | 9146f27 | 2002-08-16 03:41:39 +0000 | [diff] [blame] | 193 | |
| 194 | # stop argument supplied. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 195 | istop = int(stop) |
| 196 | if istop != stop: |
| 197 | raise ValueError, "non-integer stop for randrange()" |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 198 | width = istop - istart |
| 199 | if step == 1 and width > 0: |
Tim Peters | 76ca1d4 | 2003-06-19 03:46:46 +0000 | [diff] [blame] | 200 | # Note that |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 201 | # int(istart + self.random()*width) |
Tim Peters | 76ca1d4 | 2003-06-19 03:46:46 +0000 | [diff] [blame] | 202 | # instead would be incorrect. For example, consider istart |
| 203 | # = -2 and istop = 0. Then the guts would be in |
| 204 | # -2.0 to 0.0 exclusive on both ends (ignoring that random() |
| 205 | # might return 0.0), and because int() truncates toward 0, the |
| 206 | # final result would be -1 or 0 (instead of -2 or -1). |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 207 | # istart + int(self.random()*width) |
Tim Peters | 76ca1d4 | 2003-06-19 03:46:46 +0000 | [diff] [blame] | 208 | # would also be incorrect, for a subtler reason: the RHS |
| 209 | # can return a long, and then randrange() would also return |
| 210 | # a long, but we're supposed to return an int (for backward |
| 211 | # compatibility). |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 212 | |
| 213 | if width >= maxwidth: |
Tim Peters | 58eb11c | 2004-01-18 20:29:55 +0000 | [diff] [blame] | 214 | return int(istart + self._randbelow(width)) |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 215 | return int(istart + int(self.random()*width)) |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 216 | if step == 1: |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 217 | raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width) |
Tim Peters | 9146f27 | 2002-08-16 03:41:39 +0000 | [diff] [blame] | 218 | |
| 219 | # Non-unit step argument supplied. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 220 | istep = int(step) |
| 221 | if istep != step: |
| 222 | raise ValueError, "non-integer step for randrange()" |
| 223 | if istep > 0: |
Raymond Hettinger | ffdb8bb | 2004-09-27 15:29:05 +0000 | [diff] [blame] | 224 | n = (width + istep - 1) // istep |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 225 | elif istep < 0: |
Raymond Hettinger | ffdb8bb | 2004-09-27 15:29:05 +0000 | [diff] [blame] | 226 | n = (width + istep + 1) // istep |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 227 | else: |
| 228 | raise ValueError, "zero step for randrange()" |
| 229 | |
| 230 | if n <= 0: |
| 231 | raise ValueError, "empty range for randrange()" |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 232 | |
| 233 | if n >= maxwidth: |
Raymond Hettinger | 94547f7 | 2006-12-20 06:42:06 +0000 | [diff] [blame] | 234 | return istart + istep*self._randbelow(n) |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 235 | return istart + istep*int(self.random() * n) |
| 236 | |
| 237 | def randint(self, a, b): |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 238 | """Return random integer in range [a, b], including both end points. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 239 | """ |
| 240 | |
| 241 | return self.randrange(a, b+1) |
| 242 | |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 243 | def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF, |
| 244 | _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType): |
| 245 | """Return a random int in the range [0,n) |
| 246 | |
| 247 | Handles the case where n has more bits than returned |
| 248 | by a single call to the underlying generator. |
| 249 | """ |
| 250 | |
| 251 | try: |
| 252 | getrandbits = self.getrandbits |
| 253 | except AttributeError: |
| 254 | pass |
| 255 | else: |
| 256 | # Only call self.getrandbits if the original random() builtin method |
| 257 | # has not been overridden or if a new getrandbits() was supplied. |
| 258 | # This assures that the two methods correspond. |
| 259 | if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method: |
| 260 | k = int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2) |
| 261 | r = getrandbits(k) |
| 262 | while r >= n: |
| 263 | r = getrandbits(k) |
| 264 | return r |
| 265 | if n >= _maxwidth: |
| 266 | _warn("Underlying random() generator does not supply \n" |
| 267 | "enough bits to choose from a population range this large") |
| 268 | return int(self.random() * n) |
| 269 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 270 | ## -------------------- sequence methods ------------------- |
| 271 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 272 | def choice(self, seq): |
| 273 | """Choose a random element from a non-empty sequence.""" |
Raymond Hettinger | 5dae505 | 2004-06-07 02:07:15 +0000 | [diff] [blame] | 274 | return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 275 | |
| 276 | def shuffle(self, x, random=None, int=int): |
| 277 | """x, random=random.random -> shuffle list x in place; return None. |
| 278 | |
| 279 | Optional arg random is a 0-argument function returning a random |
| 280 | float in [0.0, 1.0); by default, the standard random.random. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 281 | """ |
| 282 | |
| 283 | if random is None: |
| 284 | random = self.random |
Raymond Hettinger | 85c20a4 | 2003-11-06 14:06:48 +0000 | [diff] [blame] | 285 | for i in reversed(xrange(1, len(x))): |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 286 | # pick an element in x[:i+1] with which to exchange x[i] |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 287 | j = int(random() * (i+1)) |
| 288 | x[i], x[j] = x[j], x[i] |
| 289 | |
Raymond Hettinger | fdbe522 | 2003-06-13 07:01:51 +0000 | [diff] [blame] | 290 | def sample(self, population, k): |
Raymond Hettinger | f24eb35 | 2002-11-12 17:41:57 +0000 | [diff] [blame] | 291 | """Chooses k unique random elements from a population sequence. |
| 292 | |
Raymond Hettinger | c0b4034 | 2002-11-13 15:26:37 +0000 | [diff] [blame] | 293 | Returns a new list containing elements from the population while |
| 294 | leaving the original population unchanged. The resulting list is |
| 295 | in selection order so that all sub-slices will also be valid random |
| 296 | samples. This allows raffle winners (the sample) to be partitioned |
| 297 | into grand prize and second place winners (the subslices). |
Raymond Hettinger | f24eb35 | 2002-11-12 17:41:57 +0000 | [diff] [blame] | 298 | |
Raymond Hettinger | c0b4034 | 2002-11-13 15:26:37 +0000 | [diff] [blame] | 299 | Members of the population need not be hashable or unique. If the |
| 300 | population contains repeats, then each occurrence is a possible |
| 301 | selection in the sample. |
Raymond Hettinger | f24eb35 | 2002-11-12 17:41:57 +0000 | [diff] [blame] | 302 | |
Raymond Hettinger | c0b4034 | 2002-11-13 15:26:37 +0000 | [diff] [blame] | 303 | To choose a sample in a range of integers, use xrange as an argument. |
| 304 | This is especially fast and space efficient for sampling from a |
| 305 | large population: sample(xrange(10000000), 60) |
Raymond Hettinger | f24eb35 | 2002-11-12 17:41:57 +0000 | [diff] [blame] | 306 | """ |
| 307 | |
Raymond Hettinger | c0b4034 | 2002-11-13 15:26:37 +0000 | [diff] [blame] | 308 | # Sampling without replacement entails tracking either potential |
Raymond Hettinger | 91e27c2 | 2005-08-19 01:36:35 +0000 | [diff] [blame] | 309 | # selections (the pool) in a list or previous selections in a set. |
Raymond Hettinger | c0b4034 | 2002-11-13 15:26:37 +0000 | [diff] [blame] | 310 | |
Jeremy Hylton | 2b55d35 | 2004-02-23 17:27:57 +0000 | [diff] [blame] | 311 | # When the number of selections is small compared to the |
| 312 | # population, then tracking selections is efficient, requiring |
Raymond Hettinger | 91e27c2 | 2005-08-19 01:36:35 +0000 | [diff] [blame] | 313 | # only a small set and an occasional reselection. For |
Jeremy Hylton | 2b55d35 | 2004-02-23 17:27:57 +0000 | [diff] [blame] | 314 | # a larger number of selections, the pool tracking method is |
| 315 | # preferred since the list takes less space than the |
Raymond Hettinger | 91e27c2 | 2005-08-19 01:36:35 +0000 | [diff] [blame] | 316 | # set and it doesn't suffer from frequent reselections. |
Raymond Hettinger | c0b4034 | 2002-11-13 15:26:37 +0000 | [diff] [blame] | 317 | |
Raymond Hettinger | f24eb35 | 2002-11-12 17:41:57 +0000 | [diff] [blame] | 318 | n = len(population) |
| 319 | if not 0 <= k <= n: |
Raymond Hettinger | 22d8f7b | 2011-05-18 17:28:50 -0500 | [diff] [blame] | 320 | raise ValueError("sample larger than population") |
Raymond Hettinger | 8b9aa8d | 2003-01-04 05:20:33 +0000 | [diff] [blame] | 321 | random = self.random |
Raymond Hettinger | fdbe522 | 2003-06-13 07:01:51 +0000 | [diff] [blame] | 322 | _int = int |
Raymond Hettinger | c0b4034 | 2002-11-13 15:26:37 +0000 | [diff] [blame] | 323 | result = [None] * k |
Raymond Hettinger | 91e27c2 | 2005-08-19 01:36:35 +0000 | [diff] [blame] | 324 | setsize = 21 # size of a small set minus size of an empty list |
| 325 | if k > 5: |
Tim Peters | 9e34c04 | 2005-08-26 15:20:46 +0000 | [diff] [blame] | 326 | setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets |
Tim Peters | c17976e | 2006-04-01 00:26:53 +0000 | [diff] [blame] | 327 | if n <= setsize or hasattr(population, "keys"): |
| 328 | # An n-length list is smaller than a k-length set, or this is a |
| 329 | # mapping type so the other algorithm wouldn't work. |
Raymond Hettinger | 311f419 | 2002-11-18 09:01:24 +0000 | [diff] [blame] | 330 | pool = list(population) |
| 331 | for i in xrange(k): # invariant: non-selected at [0,n-i) |
Raymond Hettinger | fdbe522 | 2003-06-13 07:01:51 +0000 | [diff] [blame] | 332 | j = _int(random() * (n-i)) |
Raymond Hettinger | 311f419 | 2002-11-18 09:01:24 +0000 | [diff] [blame] | 333 | result[i] = pool[j] |
Raymond Hettinger | 8b9aa8d | 2003-01-04 05:20:33 +0000 | [diff] [blame] | 334 | pool[j] = pool[n-i-1] # move non-selected item into vacancy |
Raymond Hettinger | c0b4034 | 2002-11-13 15:26:37 +0000 | [diff] [blame] | 335 | else: |
Raymond Hettinger | 66d09f1 | 2003-09-06 04:25:54 +0000 | [diff] [blame] | 336 | try: |
Raymond Hettinger | 3c3346d | 2006-03-29 09:13:13 +0000 | [diff] [blame] | 337 | selected = set() |
| 338 | selected_add = selected.add |
| 339 | for i in xrange(k): |
Raymond Hettinger | fdbe522 | 2003-06-13 07:01:51 +0000 | [diff] [blame] | 340 | j = _int(random() * n) |
Raymond Hettinger | 3c3346d | 2006-03-29 09:13:13 +0000 | [diff] [blame] | 341 | while j in selected: |
| 342 | j = _int(random() * n) |
| 343 | selected_add(j) |
| 344 | result[i] = population[j] |
Tim Peters | c17976e | 2006-04-01 00:26:53 +0000 | [diff] [blame] | 345 | except (TypeError, KeyError): # handle (at least) sets |
Raymond Hettinger | 3c3346d | 2006-03-29 09:13:13 +0000 | [diff] [blame] | 346 | if isinstance(population, list): |
| 347 | raise |
Tim Peters | c17976e | 2006-04-01 00:26:53 +0000 | [diff] [blame] | 348 | return self.sample(tuple(population), k) |
Raymond Hettinger | 311f419 | 2002-11-18 09:01:24 +0000 | [diff] [blame] | 349 | return result |
Raymond Hettinger | f24eb35 | 2002-11-12 17:41:57 +0000 | [diff] [blame] | 350 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 351 | ## -------------------- real-valued distributions ------------------- |
| 352 | |
| 353 | ## -------------------- uniform distribution ------------------- |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 354 | |
| 355 | def uniform(self, a, b): |
Raymond Hettinger | 2c0cdca | 2009-06-11 23:14:53 +0000 | [diff] [blame] | 356 | "Get a random number in the range [a, b) or [a, b] depending on rounding." |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 357 | return a + (b-a) * self.random() |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 358 | |
Raymond Hettinger | bbc50ea | 2008-03-23 13:32:32 +0000 | [diff] [blame] | 359 | ## -------------------- triangular -------------------- |
| 360 | |
Raymond Hettinger | c4f7bab | 2008-03-23 19:37:53 +0000 | [diff] [blame] | 361 | def triangular(self, low=0.0, high=1.0, mode=None): |
Raymond Hettinger | bbc50ea | 2008-03-23 13:32:32 +0000 | [diff] [blame] | 362 | """Triangular distribution. |
| 363 | |
| 364 | Continuous distribution bounded by given lower and upper limits, |
| 365 | and having a given mode value in-between. |
| 366 | |
| 367 | http://en.wikipedia.org/wiki/Triangular_distribution |
| 368 | |
| 369 | """ |
| 370 | u = self.random() |
Raymond Hettinger | c4f7bab | 2008-03-23 19:37:53 +0000 | [diff] [blame] | 371 | c = 0.5 if mode is None else (mode - low) / (high - low) |
Raymond Hettinger | bbc50ea | 2008-03-23 13:32:32 +0000 | [diff] [blame] | 372 | if u > c: |
Raymond Hettinger | c4f7bab | 2008-03-23 19:37:53 +0000 | [diff] [blame] | 373 | u = 1.0 - u |
| 374 | c = 1.0 - c |
Raymond Hettinger | bbc50ea | 2008-03-23 13:32:32 +0000 | [diff] [blame] | 375 | low, high = high, low |
| 376 | return low + (high - low) * (u * c) ** 0.5 |
| 377 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 378 | ## -------------------- normal distribution -------------------- |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 379 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 380 | def normalvariate(self, mu, sigma): |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 381 | """Normal distribution. |
| 382 | |
| 383 | mu is the mean, and sigma is the standard deviation. |
Raymond Hettinger | ef4d4bd | 2002-05-23 23:58:17 +0000 | [diff] [blame] | 384 | |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 385 | """ |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 386 | # mu = mean, sigma = standard deviation |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 387 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 388 | # Uses Kinderman and Monahan method. Reference: Kinderman, |
| 389 | # A.J. and Monahan, J.F., "Computer generation of random |
| 390 | # variables using the ratio of uniform deviates", ACM Trans |
| 391 | # Math Software, 3, (1977), pp257-260. |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 392 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 393 | random = self.random |
Raymond Hettinger | 42406e6 | 2005-04-30 09:02:51 +0000 | [diff] [blame] | 394 | while 1: |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 395 | u1 = random() |
Raymond Hettinger | 73ced7e | 2003-01-04 09:26:32 +0000 | [diff] [blame] | 396 | u2 = 1.0 - random() |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 397 | z = NV_MAGICCONST*(u1-0.5)/u2 |
| 398 | zz = z*z/4.0 |
| 399 | if zz <= -_log(u2): |
| 400 | break |
| 401 | return mu + z*sigma |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 402 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 403 | ## -------------------- lognormal distribution -------------------- |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 404 | |
| 405 | def lognormvariate(self, mu, sigma): |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 406 | """Log normal distribution. |
| 407 | |
| 408 | If you take the natural logarithm of this distribution, you'll get a |
| 409 | normal distribution with mean mu and standard deviation sigma. |
| 410 | mu can have any value, and sigma must be greater than zero. |
Raymond Hettinger | ef4d4bd | 2002-05-23 23:58:17 +0000 | [diff] [blame] | 411 | |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 412 | """ |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 413 | return _exp(self.normalvariate(mu, sigma)) |
| 414 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 415 | ## -------------------- exponential distribution -------------------- |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 416 | |
| 417 | def expovariate(self, lambd): |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 418 | """Exponential distribution. |
| 419 | |
Mark Dickinson | e6dc531 | 2009-01-07 17:48:33 +0000 | [diff] [blame] | 420 | lambd is 1.0 divided by the desired mean. It should be |
| 421 | nonzero. (The parameter would be called "lambda", but that is |
| 422 | a reserved word in Python.) Returned values range from 0 to |
| 423 | positive infinity if lambd is positive, and from negative |
| 424 | infinity to 0 if lambd is negative. |
Raymond Hettinger | ef4d4bd | 2002-05-23 23:58:17 +0000 | [diff] [blame] | 425 | |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 426 | """ |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 427 | # lambd: rate lambd = 1/mean |
| 428 | # ('lambda' is a Python reserved word) |
| 429 | |
Raymond Hettinger | cba8731 | 2011-06-25 11:24:35 +0200 | [diff] [blame] | 430 | # we use 1-random() instead of random() to preclude the |
| 431 | # possibility of taking the log of zero. |
| 432 | return -_log(1.0 - self.random())/lambd |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 433 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 434 | ## -------------------- von Mises distribution -------------------- |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 435 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 436 | def vonmisesvariate(self, mu, kappa): |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 437 | """Circular data distribution. |
Raymond Hettinger | ef4d4bd | 2002-05-23 23:58:17 +0000 | [diff] [blame] | 438 | |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 439 | mu is the mean angle, expressed in radians between 0 and 2*pi, and |
| 440 | kappa is the concentration parameter, which must be greater than or |
| 441 | equal to zero. If kappa is equal to zero, this distribution reduces |
| 442 | to a uniform random angle over the range 0 to 2*pi. |
Raymond Hettinger | ef4d4bd | 2002-05-23 23:58:17 +0000 | [diff] [blame] | 443 | |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 444 | """ |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 445 | # mu: mean angle (in radians between 0 and 2*pi) |
| 446 | # kappa: concentration parameter kappa (>= 0) |
| 447 | # if kappa = 0 generate uniform random angle |
| 448 | |
| 449 | # Based upon an algorithm published in: Fisher, N.I., |
| 450 | # "Statistical Analysis of Circular Data", Cambridge |
| 451 | # University Press, 1993. |
| 452 | |
| 453 | # Thanks to Magnus Kessler for a correction to the |
| 454 | # implementation of step 4. |
| 455 | |
| 456 | random = self.random |
| 457 | if kappa <= 1e-6: |
| 458 | return TWOPI * random() |
| 459 | |
| 460 | a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa) |
| 461 | b = (a - _sqrt(2.0 * a))/(2.0 * kappa) |
| 462 | r = (1.0 + b * b)/(2.0 * b) |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 463 | |
Raymond Hettinger | 42406e6 | 2005-04-30 09:02:51 +0000 | [diff] [blame] | 464 | while 1: |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 465 | u1 = random() |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 466 | |
| 467 | z = _cos(_pi * u1) |
| 468 | f = (1.0 + r * z)/(r + z) |
| 469 | c = kappa * (r - f) |
| 470 | |
| 471 | u2 = random() |
| 472 | |
Raymond Hettinger | 42406e6 | 2005-04-30 09:02:51 +0000 | [diff] [blame] | 473 | if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c): |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 474 | break |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 475 | |
| 476 | u3 = random() |
| 477 | if u3 > 0.5: |
| 478 | theta = (mu % TWOPI) + _acos(f) |
| 479 | else: |
| 480 | theta = (mu % TWOPI) - _acos(f) |
| 481 | |
| 482 | return theta |
| 483 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 484 | ## -------------------- gamma distribution -------------------- |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 485 | |
| 486 | def gammavariate(self, alpha, beta): |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 487 | """Gamma distribution. Not the gamma function! |
| 488 | |
| 489 | Conditions on the parameters are alpha > 0 and beta > 0. |
| 490 | |
Raymond Hettinger | 405a471 | 2011-03-22 15:52:46 -0700 | [diff] [blame] | 491 | The probability distribution function is: |
| 492 | |
| 493 | x ** (alpha - 1) * math.exp(-x / beta) |
| 494 | pdf(x) = -------------------------------------- |
| 495 | math.gamma(alpha) * beta ** alpha |
| 496 | |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 497 | """ |
Tim Peters | 8ac1495 | 2002-05-23 15:15:30 +0000 | [diff] [blame] | 498 | |
Raymond Hettinger | b760efb | 2002-05-14 06:40:34 +0000 | [diff] [blame] | 499 | # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2 |
Tim Peters | 8ac1495 | 2002-05-23 15:15:30 +0000 | [diff] [blame] | 500 | |
Guido van Rossum | 570764d | 2002-05-14 14:08:12 +0000 | [diff] [blame] | 501 | # Warning: a few older sources define the gamma distribution in terms |
| 502 | # of alpha > -1.0 |
| 503 | if alpha <= 0.0 or beta <= 0.0: |
| 504 | raise ValueError, 'gammavariate: alpha and beta must be > 0.0' |
Tim Peters | 8ac1495 | 2002-05-23 15:15:30 +0000 | [diff] [blame] | 505 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 506 | random = self.random |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 507 | if alpha > 1.0: |
| 508 | |
| 509 | # Uses R.C.H. Cheng, "The generation of Gamma |
| 510 | # variables with non-integral shape parameters", |
| 511 | # Applied Statistics, (1977), 26, No. 1, p71-74 |
| 512 | |
Raymond Hettinger | ca6cdc2 | 2002-05-13 23:40:14 +0000 | [diff] [blame] | 513 | ainv = _sqrt(2.0 * alpha - 1.0) |
| 514 | bbb = alpha - LOG4 |
| 515 | ccc = alpha + ainv |
Tim Peters | 8ac1495 | 2002-05-23 15:15:30 +0000 | [diff] [blame] | 516 | |
Raymond Hettinger | 42406e6 | 2005-04-30 09:02:51 +0000 | [diff] [blame] | 517 | while 1: |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 518 | u1 = random() |
Raymond Hettinger | 73ced7e | 2003-01-04 09:26:32 +0000 | [diff] [blame] | 519 | if not 1e-7 < u1 < .9999999: |
| 520 | continue |
| 521 | u2 = 1.0 - random() |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 522 | v = _log(u1/(1.0-u1))/ainv |
| 523 | x = alpha*_exp(v) |
| 524 | z = u1*u1*u2 |
| 525 | r = bbb+ccc*v-x |
| 526 | if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z): |
Raymond Hettinger | b760efb | 2002-05-14 06:40:34 +0000 | [diff] [blame] | 527 | return x * beta |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 528 | |
| 529 | elif alpha == 1.0: |
| 530 | # expovariate(1) |
| 531 | u = random() |
| 532 | while u <= 1e-7: |
| 533 | u = random() |
Raymond Hettinger | b760efb | 2002-05-14 06:40:34 +0000 | [diff] [blame] | 534 | return -_log(u) * beta |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 535 | |
| 536 | else: # alpha is between 0 and 1 (exclusive) |
| 537 | |
| 538 | # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle |
| 539 | |
Raymond Hettinger | 42406e6 | 2005-04-30 09:02:51 +0000 | [diff] [blame] | 540 | while 1: |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 541 | u = random() |
| 542 | b = (_e + alpha)/_e |
| 543 | p = b*u |
| 544 | if p <= 1.0: |
Raymond Hettinger | 42406e6 | 2005-04-30 09:02:51 +0000 | [diff] [blame] | 545 | x = p ** (1.0/alpha) |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 546 | else: |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 547 | x = -_log((b-p)/alpha) |
| 548 | u1 = random() |
Raymond Hettinger | 42406e6 | 2005-04-30 09:02:51 +0000 | [diff] [blame] | 549 | if p > 1.0: |
| 550 | if u1 <= x ** (alpha - 1.0): |
| 551 | break |
| 552 | elif u1 <= _exp(-x): |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 553 | break |
Raymond Hettinger | b760efb | 2002-05-14 06:40:34 +0000 | [diff] [blame] | 554 | return x * beta |
| 555 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 556 | ## -------------------- Gauss (faster alternative) -------------------- |
Guido van Rossum | 95bfcda | 1994-03-09 14:21:05 +0000 | [diff] [blame] | 557 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 558 | def gauss(self, mu, sigma): |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 559 | """Gaussian distribution. |
| 560 | |
| 561 | mu is the mean, and sigma is the standard deviation. This is |
| 562 | slightly faster than the normalvariate() function. |
| 563 | |
| 564 | Not thread-safe without a lock around calls. |
Raymond Hettinger | ef4d4bd | 2002-05-23 23:58:17 +0000 | [diff] [blame] | 565 | |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 566 | """ |
Guido van Rossum | cc32ac9 | 1994-03-15 16:10:24 +0000 | [diff] [blame] | 567 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 568 | # When x and y are two variables from [0, 1), uniformly |
| 569 | # distributed, then |
| 570 | # |
| 571 | # cos(2*pi*x)*sqrt(-2*log(1-y)) |
| 572 | # sin(2*pi*x)*sqrt(-2*log(1-y)) |
| 573 | # |
| 574 | # are two *independent* variables with normal distribution |
| 575 | # (mu = 0, sigma = 1). |
| 576 | # (Lambert Meertens) |
| 577 | # (corrected version; bug discovered by Mike Miller, fixed by LM) |
Guido van Rossum | cc32ac9 | 1994-03-15 16:10:24 +0000 | [diff] [blame] | 578 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 579 | # Multithreading note: When two threads call this function |
| 580 | # simultaneously, it is possible that they will receive the |
| 581 | # same return value. The window is very small though. To |
| 582 | # avoid this, you have to use a lock around all calls. (I |
| 583 | # didn't want to slow this down in the serial case by using a |
| 584 | # lock here.) |
Guido van Rossum | d03e119 | 1998-05-29 17:51:31 +0000 | [diff] [blame] | 585 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 586 | random = self.random |
| 587 | z = self.gauss_next |
| 588 | self.gauss_next = None |
| 589 | if z is None: |
| 590 | x2pi = random() * TWOPI |
| 591 | g2rad = _sqrt(-2.0 * _log(1.0 - random())) |
| 592 | z = _cos(x2pi) * g2rad |
| 593 | self.gauss_next = _sin(x2pi) * g2rad |
Guido van Rossum | cc32ac9 | 1994-03-15 16:10:24 +0000 | [diff] [blame] | 594 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 595 | return mu + z*sigma |
Guido van Rossum | 95bfcda | 1994-03-09 14:21:05 +0000 | [diff] [blame] | 596 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 597 | ## -------------------- beta -------------------- |
Tim Peters | 85e2e47 | 2001-01-26 06:49:56 +0000 | [diff] [blame] | 598 | ## See |
Ezio Melotti | 1bb18cc | 2011-04-15 08:25:16 +0300 | [diff] [blame] | 599 | ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html |
Tim Peters | 85e2e47 | 2001-01-26 06:49:56 +0000 | [diff] [blame] | 600 | ## for Ivan Frohne's insightful analysis of why the original implementation: |
| 601 | ## |
| 602 | ## def betavariate(self, alpha, beta): |
| 603 | ## # Discrete Event Simulation in C, pp 87-88. |
| 604 | ## |
| 605 | ## y = self.expovariate(alpha) |
| 606 | ## z = self.expovariate(1.0/beta) |
| 607 | ## return z/(y+z) |
| 608 | ## |
| 609 | ## was dead wrong, and how it probably got that way. |
Guido van Rossum | 95bfcda | 1994-03-09 14:21:05 +0000 | [diff] [blame] | 610 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 611 | def betavariate(self, alpha, beta): |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 612 | """Beta distribution. |
| 613 | |
Raymond Hettinger | 1b0ce85 | 2007-01-19 18:07:18 +0000 | [diff] [blame] | 614 | Conditions on the parameters are alpha > 0 and beta > 0. |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 615 | Returned values range between 0 and 1. |
Raymond Hettinger | ef4d4bd | 2002-05-23 23:58:17 +0000 | [diff] [blame] | 616 | |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 617 | """ |
Raymond Hettinger | ef4d4bd | 2002-05-23 23:58:17 +0000 | [diff] [blame] | 618 | |
Tim Peters | 85e2e47 | 2001-01-26 06:49:56 +0000 | [diff] [blame] | 619 | # This version due to Janne Sinkkonen, and matches all the std |
| 620 | # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution"). |
| 621 | y = self.gammavariate(alpha, 1.) |
| 622 | if y == 0: |
| 623 | return 0.0 |
| 624 | else: |
| 625 | return y / (y + self.gammavariate(beta, 1.)) |
Guido van Rossum | 95bfcda | 1994-03-09 14:21:05 +0000 | [diff] [blame] | 626 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 627 | ## -------------------- Pareto -------------------- |
Guido van Rossum | cf4559a | 1997-12-02 02:47:39 +0000 | [diff] [blame] | 628 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 629 | def paretovariate(self, alpha): |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 630 | """Pareto distribution. alpha is the shape parameter.""" |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 631 | # Jain, pg. 495 |
Guido van Rossum | cf4559a | 1997-12-02 02:47:39 +0000 | [diff] [blame] | 632 | |
Raymond Hettinger | 73ced7e | 2003-01-04 09:26:32 +0000 | [diff] [blame] | 633 | u = 1.0 - self.random() |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 634 | return 1.0 / pow(u, 1.0/alpha) |
Guido van Rossum | cf4559a | 1997-12-02 02:47:39 +0000 | [diff] [blame] | 635 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 636 | ## -------------------- Weibull -------------------- |
Guido van Rossum | cf4559a | 1997-12-02 02:47:39 +0000 | [diff] [blame] | 637 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 638 | def weibullvariate(self, alpha, beta): |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 639 | """Weibull distribution. |
| 640 | |
| 641 | alpha is the scale parameter and beta is the shape parameter. |
Raymond Hettinger | ef4d4bd | 2002-05-23 23:58:17 +0000 | [diff] [blame] | 642 | |
Raymond Hettinger | c32f033 | 2002-05-23 19:44:49 +0000 | [diff] [blame] | 643 | """ |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 644 | # Jain, pg. 499; bug fix courtesy Bill Arms |
Guido van Rossum | cf4559a | 1997-12-02 02:47:39 +0000 | [diff] [blame] | 645 | |
Raymond Hettinger | 73ced7e | 2003-01-04 09:26:32 +0000 | [diff] [blame] | 646 | u = 1.0 - self.random() |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 647 | return alpha * pow(-_log(u), 1.0/beta) |
Guido van Rossum | 6c395ba | 1999-08-18 13:53:28 +0000 | [diff] [blame] | 648 | |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 649 | ## -------------------- Wichmann-Hill ------------------- |
| 650 | |
| 651 | class WichmannHill(Random): |
| 652 | |
| 653 | VERSION = 1 # used by getstate/setstate |
| 654 | |
| 655 | def seed(self, a=None): |
| 656 | """Initialize internal state from hashable object. |
| 657 | |
Raymond Hettinger | 23f1241 | 2004-09-13 22:23:21 +0000 | [diff] [blame] | 658 | None or no argument seeds from current time or from an operating |
| 659 | system specific randomness source if available. |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 660 | |
| 661 | If a is not None or an int or long, hash(a) is used instead. |
| 662 | |
| 663 | If a is an int or long, a is used directly. Distinct values between |
| 664 | 0 and 27814431486575L inclusive are guaranteed to yield distinct |
| 665 | internal states (this guarantee is specific to the default |
| 666 | Wichmann-Hill generator). |
| 667 | """ |
| 668 | |
| 669 | if a is None: |
Raymond Hettinger | c1c43ca | 2004-09-05 00:00:42 +0000 | [diff] [blame] | 670 | try: |
| 671 | a = long(_hexlify(_urandom(16)), 16) |
| 672 | except NotImplementedError: |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 673 | import time |
| 674 | a = long(time.time() * 256) # use fractional seconds |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 675 | |
| 676 | if not isinstance(a, (int, long)): |
| 677 | a = hash(a) |
| 678 | |
| 679 | a, x = divmod(a, 30268) |
| 680 | a, y = divmod(a, 30306) |
| 681 | a, z = divmod(a, 30322) |
| 682 | self._seed = int(x)+1, int(y)+1, int(z)+1 |
| 683 | |
| 684 | self.gauss_next = None |
| 685 | |
| 686 | def random(self): |
| 687 | """Get the next random number in the range [0.0, 1.0).""" |
| 688 | |
| 689 | # Wichman-Hill random number generator. |
| 690 | # |
| 691 | # Wichmann, B. A. & Hill, I. D. (1982) |
| 692 | # Algorithm AS 183: |
| 693 | # An efficient and portable pseudo-random number generator |
| 694 | # Applied Statistics 31 (1982) 188-190 |
| 695 | # |
| 696 | # see also: |
| 697 | # Correction to Algorithm AS 183 |
| 698 | # Applied Statistics 33 (1984) 123 |
| 699 | # |
| 700 | # McLeod, A. I. (1985) |
| 701 | # A remark on Algorithm AS 183 |
| 702 | # Applied Statistics 34 (1985),198-200 |
| 703 | |
| 704 | # This part is thread-unsafe: |
| 705 | # BEGIN CRITICAL SECTION |
| 706 | x, y, z = self._seed |
| 707 | x = (171 * x) % 30269 |
| 708 | y = (172 * y) % 30307 |
| 709 | z = (170 * z) % 30323 |
| 710 | self._seed = x, y, z |
| 711 | # END CRITICAL SECTION |
| 712 | |
| 713 | # Note: on a platform using IEEE-754 double arithmetic, this can |
| 714 | # never return 0.0 (asserted by Tim; proof too long for a comment). |
| 715 | return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0 |
| 716 | |
| 717 | def getstate(self): |
| 718 | """Return internal state; can be passed to setstate() later.""" |
| 719 | return self.VERSION, self._seed, self.gauss_next |
| 720 | |
| 721 | def setstate(self, state): |
| 722 | """Restore internal state from object returned by getstate().""" |
| 723 | version = state[0] |
| 724 | if version == 1: |
| 725 | version, self._seed, self.gauss_next = state |
| 726 | else: |
| 727 | raise ValueError("state with version %s passed to " |
| 728 | "Random.setstate() of version %s" % |
| 729 | (version, self.VERSION)) |
| 730 | |
| 731 | def jumpahead(self, n): |
| 732 | """Act as if n calls to random() were made, but quickly. |
| 733 | |
| 734 | n is an int, greater than or equal to 0. |
| 735 | |
| 736 | Example use: If you have 2 threads and know that each will |
| 737 | consume no more than a million random numbers, create two Random |
| 738 | objects r1 and r2, then do |
| 739 | r2.setstate(r1.getstate()) |
| 740 | r2.jumpahead(1000000) |
| 741 | Then r1 and r2 will use guaranteed-disjoint segments of the full |
| 742 | period. |
| 743 | """ |
| 744 | |
| 745 | if not n >= 0: |
| 746 | raise ValueError("n must be >= 0") |
| 747 | x, y, z = self._seed |
| 748 | x = int(x * pow(171, n, 30269)) % 30269 |
| 749 | y = int(y * pow(172, n, 30307)) % 30307 |
| 750 | z = int(z * pow(170, n, 30323)) % 30323 |
| 751 | self._seed = x, y, z |
| 752 | |
| 753 | def __whseed(self, x=0, y=0, z=0): |
| 754 | """Set the Wichmann-Hill seed from (x, y, z). |
| 755 | |
| 756 | These must be integers in the range [0, 256). |
| 757 | """ |
| 758 | |
| 759 | if not type(x) == type(y) == type(z) == int: |
| 760 | raise TypeError('seeds must be integers') |
| 761 | if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256): |
| 762 | raise ValueError('seeds must be in range(0, 256)') |
| 763 | if 0 == x == y == z: |
| 764 | # Initialize from current time |
| 765 | import time |
| 766 | t = long(time.time() * 256) |
| 767 | t = int((t&0xffffff) ^ (t>>24)) |
| 768 | t, x = divmod(t, 256) |
| 769 | t, y = divmod(t, 256) |
| 770 | t, z = divmod(t, 256) |
| 771 | # Zero is a poor seed, so substitute 1 |
| 772 | self._seed = (x or 1, y or 1, z or 1) |
| 773 | |
| 774 | self.gauss_next = None |
| 775 | |
| 776 | def whseed(self, a=None): |
| 777 | """Seed from hashable object's hash code. |
| 778 | |
| 779 | None or no argument seeds from current time. It is not guaranteed |
| 780 | that objects with distinct hash codes lead to distinct internal |
| 781 | states. |
| 782 | |
| 783 | This is obsolete, provided for compatibility with the seed routine |
| 784 | used prior to Python 2.1. Use the .seed() method instead. |
| 785 | """ |
| 786 | |
| 787 | if a is None: |
| 788 | self.__whseed() |
| 789 | return |
| 790 | a = hash(a) |
| 791 | a, x = divmod(a, 256) |
| 792 | a, y = divmod(a, 256) |
| 793 | a, z = divmod(a, 256) |
| 794 | x = (x + a) % 256 or 1 |
| 795 | y = (y + a) % 256 or 1 |
| 796 | z = (z + a) % 256 or 1 |
| 797 | self.__whseed(x, y, z) |
| 798 | |
Raymond Hettinger | 23f1241 | 2004-09-13 22:23:21 +0000 | [diff] [blame] | 799 | ## --------------- Operating System Random Source ------------------ |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 800 | |
Raymond Hettinger | 23f1241 | 2004-09-13 22:23:21 +0000 | [diff] [blame] | 801 | class SystemRandom(Random): |
| 802 | """Alternate random number generator using sources provided |
| 803 | by the operating system (such as /dev/urandom on Unix or |
| 804 | CryptGenRandom on Windows). |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 805 | |
| 806 | Not available on all systems (see os.urandom() for details). |
| 807 | """ |
| 808 | |
| 809 | def random(self): |
| 810 | """Get the next random number in the range [0.0, 1.0).""" |
Tim Peters | 7c2a85b | 2004-08-31 02:19:55 +0000 | [diff] [blame] | 811 | return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 812 | |
| 813 | def getrandbits(self, k): |
| 814 | """getrandbits(k) -> x. Generates a long int with k random bits.""" |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 815 | if k <= 0: |
| 816 | raise ValueError('number of bits must be greater than zero') |
| 817 | if k != int(k): |
| 818 | raise TypeError('number of bits should be an integer') |
| 819 | bytes = (k + 7) // 8 # bits / 8 and rounded up |
| 820 | x = long(_hexlify(_urandom(bytes)), 16) |
| 821 | return x >> (bytes * 8 - k) # trim excess bits |
| 822 | |
| 823 | def _stub(self, *args, **kwds): |
Raymond Hettinger | 23f1241 | 2004-09-13 22:23:21 +0000 | [diff] [blame] | 824 | "Stub method. Not used for a system random number generator." |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 825 | return None |
| 826 | seed = jumpahead = _stub |
| 827 | |
| 828 | def _notimplemented(self, *args, **kwds): |
Raymond Hettinger | 23f1241 | 2004-09-13 22:23:21 +0000 | [diff] [blame] | 829 | "Method should not be called for a system random number generator." |
| 830 | raise NotImplementedError('System entropy source does not have state.') |
Raymond Hettinger | 356a459 | 2004-08-30 06:14:31 +0000 | [diff] [blame] | 831 | getstate = setstate = _notimplemented |
| 832 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 833 | ## -------------------- test program -------------------- |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 834 | |
Raymond Hettinger | 6229713 | 2003-08-30 01:24:19 +0000 | [diff] [blame] | 835 | def _test_generator(n, func, args): |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 836 | import time |
Raymond Hettinger | 6229713 | 2003-08-30 01:24:19 +0000 | [diff] [blame] | 837 | print n, 'times', func.__name__ |
Raymond Hettinger | b98154e | 2003-05-24 17:26:02 +0000 | [diff] [blame] | 838 | total = 0.0 |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 839 | sqsum = 0.0 |
| 840 | smallest = 1e10 |
| 841 | largest = -1e10 |
| 842 | t0 = time.time() |
| 843 | for i in range(n): |
Raymond Hettinger | 6229713 | 2003-08-30 01:24:19 +0000 | [diff] [blame] | 844 | x = func(*args) |
Raymond Hettinger | b98154e | 2003-05-24 17:26:02 +0000 | [diff] [blame] | 845 | total += x |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 846 | sqsum = sqsum + x*x |
| 847 | smallest = min(x, smallest) |
| 848 | largest = max(x, largest) |
| 849 | t1 = time.time() |
| 850 | print round(t1-t0, 3), 'sec,', |
Raymond Hettinger | b98154e | 2003-05-24 17:26:02 +0000 | [diff] [blame] | 851 | avg = total/n |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 852 | stddev = _sqrt(sqsum/n - avg*avg) |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 853 | print 'avg %g, stddev %g, min %g, max %g' % \ |
| 854 | (avg, stddev, smallest, largest) |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 855 | |
Raymond Hettinger | f24eb35 | 2002-11-12 17:41:57 +0000 | [diff] [blame] | 856 | |
| 857 | def _test(N=2000): |
Raymond Hettinger | 6229713 | 2003-08-30 01:24:19 +0000 | [diff] [blame] | 858 | _test_generator(N, random, ()) |
| 859 | _test_generator(N, normalvariate, (0.0, 1.0)) |
| 860 | _test_generator(N, lognormvariate, (0.0, 1.0)) |
| 861 | _test_generator(N, vonmisesvariate, (0.0, 1.0)) |
| 862 | _test_generator(N, gammavariate, (0.01, 1.0)) |
| 863 | _test_generator(N, gammavariate, (0.1, 1.0)) |
| 864 | _test_generator(N, gammavariate, (0.1, 2.0)) |
| 865 | _test_generator(N, gammavariate, (0.5, 1.0)) |
| 866 | _test_generator(N, gammavariate, (0.9, 1.0)) |
| 867 | _test_generator(N, gammavariate, (1.0, 1.0)) |
| 868 | _test_generator(N, gammavariate, (2.0, 1.0)) |
| 869 | _test_generator(N, gammavariate, (20.0, 1.0)) |
| 870 | _test_generator(N, gammavariate, (200.0, 1.0)) |
| 871 | _test_generator(N, gauss, (0.0, 1.0)) |
| 872 | _test_generator(N, betavariate, (3.0, 3.0)) |
Raymond Hettinger | bbc50ea | 2008-03-23 13:32:32 +0000 | [diff] [blame] | 873 | _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0)) |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 874 | |
Tim Peters | 715c4c4 | 2001-01-26 22:56:56 +0000 | [diff] [blame] | 875 | # Create one instance, seeded from current time, and export its methods |
Raymond Hettinger | 40f6217 | 2002-12-29 23:03:38 +0000 | [diff] [blame] | 876 | # as module-level functions. The functions share state across all uses |
| 877 | #(both in the user's code and in the Python libraries), but that's fine |
| 878 | # for most programs and is easier for the casual user than making them |
| 879 | # instantiate their own Random() instance. |
| 880 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 881 | _inst = Random() |
| 882 | seed = _inst.seed |
| 883 | random = _inst.random |
| 884 | uniform = _inst.uniform |
Raymond Hettinger | bbc50ea | 2008-03-23 13:32:32 +0000 | [diff] [blame] | 885 | triangular = _inst.triangular |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 886 | randint = _inst.randint |
| 887 | choice = _inst.choice |
| 888 | randrange = _inst.randrange |
Raymond Hettinger | f24eb35 | 2002-11-12 17:41:57 +0000 | [diff] [blame] | 889 | sample = _inst.sample |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 890 | shuffle = _inst.shuffle |
| 891 | normalvariate = _inst.normalvariate |
| 892 | lognormvariate = _inst.lognormvariate |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 893 | expovariate = _inst.expovariate |
| 894 | vonmisesvariate = _inst.vonmisesvariate |
| 895 | gammavariate = _inst.gammavariate |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 896 | gauss = _inst.gauss |
| 897 | betavariate = _inst.betavariate |
| 898 | paretovariate = _inst.paretovariate |
| 899 | weibullvariate = _inst.weibullvariate |
| 900 | getstate = _inst.getstate |
| 901 | setstate = _inst.setstate |
Tim Peters | d52269b | 2001-01-25 06:23:18 +0000 | [diff] [blame] | 902 | jumpahead = _inst.jumpahead |
Raymond Hettinger | 2f726e9 | 2003-10-05 09:09:15 +0000 | [diff] [blame] | 903 | getrandbits = _inst.getrandbits |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 904 | |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 905 | if __name__ == '__main__': |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 906 | _test() |