blob: 4c1dbbe15ecc2244fb197c167bc7c032a2e9a41d [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes53876d92008-04-19 00:31:39 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Mark Dickinson664b5112009-12-16 20:23:42 +000056#include "_math.h"
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Serhiy Storchakac9ea9332017-01-19 18:13:09 +020058#include "clinic/mathmodule.c.h"
59
60/*[clinic input]
61module math
62[clinic start generated code]*/
63/*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
64
65
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000066/*
67 sin(pi*x), giving accurate results for all finite x (especially x
68 integral or close to an integer). This is here for use in the
69 reflection formula for the gamma function. It conforms to IEEE
70 754-2008 for finite arguments, but not for infinities or nans.
71*/
Tim Petersa40c7932001-09-05 22:36:56 +000072
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000073static const double pi = 3.141592653589793238462643383279502884197;
Mark Dickinson9c91eb82010-07-07 16:17:31 +000074static const double logpi = 1.144729885849400174143427351353058711647;
Louie Lu7a264642017-03-31 01:05:10 +080075#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
76static const double sqrtpi = 1.772453850905516027298167483341145182798;
77#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000078
Raymond Hettingercfd735e2019-01-29 20:39:53 -080079
80/* Version of PyFloat_AsDouble() with in-line fast paths
81 for exact floats and integers. Gives a substantial
82 speed improvement for extracting float arguments.
83*/
84
85#define ASSIGN_DOUBLE(target_var, obj, error_label) \
86 if (PyFloat_CheckExact(obj)) { \
87 target_var = PyFloat_AS_DOUBLE(obj); \
88 } \
89 else if (PyLong_CheckExact(obj)) { \
90 target_var = PyLong_AsDouble(obj); \
91 if (target_var == -1.0 && PyErr_Occurred()) { \
92 goto error_label; \
93 } \
94 } \
95 else { \
96 target_var = PyFloat_AsDouble(obj); \
97 if (target_var == -1.0 && PyErr_Occurred()) { \
98 goto error_label; \
99 } \
100 }
101
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000102static double
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000103m_sinpi(double x)
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000104{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000105 double y, r;
106 int n;
107 /* this function should only ever be called for finite arguments */
108 assert(Py_IS_FINITE(x));
109 y = fmod(fabs(x), 2.0);
110 n = (int)round(2.0*y);
111 assert(0 <= n && n <= 4);
112 switch (n) {
113 case 0:
114 r = sin(pi*y);
115 break;
116 case 1:
117 r = cos(pi*(y-0.5));
118 break;
119 case 2:
120 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
121 -0.0 instead of 0.0 when y == 1.0. */
122 r = sin(pi*(1.0-y));
123 break;
124 case 3:
125 r = -cos(pi*(y-1.5));
126 break;
127 case 4:
128 r = sin(pi*(y-2.0));
129 break;
130 default:
Barry Warsawb2e57942017-09-14 18:13:16 -0700131 Py_UNREACHABLE();
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000132 }
133 return copysign(1.0, x)*r;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000134}
135
136/* Implementation of the real gamma function. In extensive but non-exhaustive
137 random tests, this function proved accurate to within <= 10 ulps across the
138 entire float domain. Note that accuracy may depend on the quality of the
139 system math functions, the pow function in particular. Special cases
140 follow C99 annex F. The parameters and method are tailored to platforms
141 whose double format is the IEEE 754 binary64 format.
142
143 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
144 and g=6.024680040776729583740234375; these parameters are amongst those
145 used by the Boost library. Following Boost (again), we re-express the
146 Lanczos sum as a rational function, and compute it that way. The
147 coefficients below were computed independently using MPFR, and have been
148 double-checked against the coefficients in the Boost source code.
149
150 For x < 0.0 we use the reflection formula.
151
152 There's one minor tweak that deserves explanation: Lanczos' formula for
153 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
154 values, x+g-0.5 can be represented exactly. However, in cases where it
155 can't be represented exactly the small error in x+g-0.5 can be magnified
156 significantly by the pow and exp calls, especially for large x. A cheap
157 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
158 involved in the computation of x+g-0.5 (that is, e = computed value of
159 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
160
161 Correction factor
162 -----------------
163 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
164 double, and e is tiny. Then:
165
166 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
167 = pow(y, x-0.5)/exp(y) * C,
168
169 where the correction_factor C is given by
170
171 C = pow(1-e/y, x-0.5) * exp(e)
172
173 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
174
175 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
176
177 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
178
179 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
180
181 Note that for accuracy, when computing r*C it's better to do
182
183 r + e*g/y*r;
184
185 than
186
187 r * (1 + e*g/y);
188
189 since the addition in the latter throws away most of the bits of
190 information in e*g/y.
191*/
192
193#define LANCZOS_N 13
194static const double lanczos_g = 6.024680040776729583740234375;
195static const double lanczos_g_minus_half = 5.524680040776729583740234375;
196static const double lanczos_num_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000197 23531376880.410759688572007674451636754734846804940,
198 42919803642.649098768957899047001988850926355848959,
199 35711959237.355668049440185451547166705960488635843,
200 17921034426.037209699919755754458931112671403265390,
201 6039542586.3520280050642916443072979210699388420708,
202 1439720407.3117216736632230727949123939715485786772,
203 248874557.86205415651146038641322942321632125127801,
204 31426415.585400194380614231628318205362874684987640,
205 2876370.6289353724412254090516208496135991145378768,
206 186056.26539522349504029498971604569928220784236328,
207 8071.6720023658162106380029022722506138218516325024,
208 210.82427775157934587250973392071336271166969580291,
209 2.5066282746310002701649081771338373386264310793408
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000210};
211
212/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
213static const double lanczos_den_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000214 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
215 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000216
217/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
218#define NGAMMA_INTEGRAL 23
219static const double gamma_integral[NGAMMA_INTEGRAL] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000220 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
221 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
222 1307674368000.0, 20922789888000.0, 355687428096000.0,
223 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
224 51090942171709440000.0, 1124000727777607680000.0,
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000225};
226
227/* Lanczos' sum L_g(x), for positive x */
228
229static double
230lanczos_sum(double x)
231{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000232 double num = 0.0, den = 0.0;
233 int i;
234 assert(x > 0.0);
235 /* evaluate the rational function lanczos_sum(x). For large
236 x, the obvious algorithm risks overflow, so we instead
237 rescale the denominator and numerator of the rational
238 function by x**(1-LANCZOS_N) and treat this as a
239 rational function in 1/x. This also reduces the error for
240 larger x values. The choice of cutoff point (5.0 below) is
241 somewhat arbitrary; in tests, smaller cutoff values than
242 this resulted in lower accuracy. */
243 if (x < 5.0) {
244 for (i = LANCZOS_N; --i >= 0; ) {
245 num = num * x + lanczos_num_coeffs[i];
246 den = den * x + lanczos_den_coeffs[i];
247 }
248 }
249 else {
250 for (i = 0; i < LANCZOS_N; i++) {
251 num = num / x + lanczos_num_coeffs[i];
252 den = den / x + lanczos_den_coeffs[i];
253 }
254 }
255 return num/den;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000256}
257
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000258/* Constant for +infinity, generated in the same way as float('inf'). */
259
260static double
261m_inf(void)
262{
263#ifndef PY_NO_SHORT_FLOAT_REPR
264 return _Py_dg_infinity(0);
265#else
266 return Py_HUGE_VAL;
267#endif
268}
269
270/* Constant nan value, generated in the same way as float('nan'). */
271/* We don't currently assume that Py_NAN is defined everywhere. */
272
273#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
274
275static double
276m_nan(void)
277{
278#ifndef PY_NO_SHORT_FLOAT_REPR
279 return _Py_dg_stdnan(0);
280#else
281 return Py_NAN;
282#endif
283}
284
285#endif
286
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000287static double
288m_tgamma(double x)
289{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000290 double absx, r, y, z, sqrtpow;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000291
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000292 /* special cases */
293 if (!Py_IS_FINITE(x)) {
294 if (Py_IS_NAN(x) || x > 0.0)
295 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
296 else {
297 errno = EDOM;
298 return Py_NAN; /* tgamma(-inf) = nan, invalid */
299 }
300 }
301 if (x == 0.0) {
302 errno = EDOM;
Mark Dickinson50203a62011-09-25 15:26:43 +0100303 /* tgamma(+-0.0) = +-inf, divide-by-zero */
304 return copysign(Py_HUGE_VAL, x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000305 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000306
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000307 /* integer arguments */
308 if (x == floor(x)) {
309 if (x < 0.0) {
310 errno = EDOM; /* tgamma(n) = nan, invalid for */
311 return Py_NAN; /* negative integers n */
312 }
313 if (x <= NGAMMA_INTEGRAL)
314 return gamma_integral[(int)x - 1];
315 }
316 absx = fabs(x);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000317
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000318 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
319 if (absx < 1e-20) {
320 r = 1.0/x;
321 if (Py_IS_INFINITY(r))
322 errno = ERANGE;
323 return r;
324 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000325
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000326 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
327 x > 200, and underflows to +-0.0 for x < -200, not a negative
328 integer. */
329 if (absx > 200.0) {
330 if (x < 0.0) {
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000331 return 0.0/m_sinpi(x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000332 }
333 else {
334 errno = ERANGE;
335 return Py_HUGE_VAL;
336 }
337 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000338
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000339 y = absx + lanczos_g_minus_half;
340 /* compute error in sum */
341 if (absx > lanczos_g_minus_half) {
342 /* note: the correction can be foiled by an optimizing
343 compiler that (incorrectly) thinks that an expression like
344 a + b - a - b can be optimized to 0.0. This shouldn't
345 happen in a standards-conforming compiler. */
346 double q = y - absx;
347 z = q - lanczos_g_minus_half;
348 }
349 else {
350 double q = y - lanczos_g_minus_half;
351 z = q - absx;
352 }
353 z = z * lanczos_g / y;
354 if (x < 0.0) {
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000355 r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000356 r -= z * r;
357 if (absx < 140.0) {
358 r /= pow(y, absx - 0.5);
359 }
360 else {
361 sqrtpow = pow(y, absx / 2.0 - 0.25);
362 r /= sqrtpow;
363 r /= sqrtpow;
364 }
365 }
366 else {
367 r = lanczos_sum(absx) / exp(y);
368 r += z * r;
369 if (absx < 140.0) {
370 r *= pow(y, absx - 0.5);
371 }
372 else {
373 sqrtpow = pow(y, absx / 2.0 - 0.25);
374 r *= sqrtpow;
375 r *= sqrtpow;
376 }
377 }
378 if (Py_IS_INFINITY(r))
379 errno = ERANGE;
380 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000381}
382
Christian Heimes53876d92008-04-19 00:31:39 +0000383/*
Mark Dickinson05d2e082009-12-11 20:17:17 +0000384 lgamma: natural log of the absolute value of the Gamma function.
385 For large arguments, Lanczos' formula works extremely well here.
386*/
387
388static double
389m_lgamma(double x)
390{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200391 double r;
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200392 double absx;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000393
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000394 /* special cases */
395 if (!Py_IS_FINITE(x)) {
396 if (Py_IS_NAN(x))
397 return x; /* lgamma(nan) = nan */
398 else
399 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
400 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000401
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000402 /* integer arguments */
403 if (x == floor(x) && x <= 2.0) {
404 if (x <= 0.0) {
405 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
406 return Py_HUGE_VAL; /* integers n <= 0 */
407 }
408 else {
409 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
410 }
411 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000412
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000413 absx = fabs(x);
414 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
415 if (absx < 1e-20)
416 return -log(absx);
Mark Dickinson05d2e082009-12-11 20:17:17 +0000417
Mark Dickinson9c91eb82010-07-07 16:17:31 +0000418 /* Lanczos' formula. We could save a fraction of a ulp in accuracy by
419 having a second set of numerator coefficients for lanczos_sum that
420 absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
421 subtraction below; it's probably not worth it. */
422 r = log(lanczos_sum(absx)) - lanczos_g;
423 r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
424 if (x < 0.0)
425 /* Use reflection formula to get value for negative x. */
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000426 r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000427 if (Py_IS_INFINITY(r))
428 errno = ERANGE;
429 return r;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000430}
431
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200432#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
433
Mark Dickinson45f992a2009-12-19 11:20:49 +0000434/*
435 Implementations of the error function erf(x) and the complementary error
436 function erfc(x).
437
Brett Cannon45adb312016-01-15 09:38:24 -0800438 Method: we use a series approximation for erf for small x, and a continued
439 fraction approximation for erfc(x) for larger x;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000440 combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
441 this gives us erf(x) and erfc(x) for all x.
442
443 The series expansion used is:
444
445 erf(x) = x*exp(-x*x)/sqrt(pi) * [
446 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
447
448 The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
449 This series converges well for smallish x, but slowly for larger x.
450
451 The continued fraction expansion used is:
452
453 erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
454 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
455
456 after the first term, the general term has the form:
457
458 k*(k-0.5)/(2*k+0.5 + x**2 - ...).
459
460 This expansion converges fast for larger x, but convergence becomes
461 infinitely slow as x approaches 0.0. The (somewhat naive) continued
462 fraction evaluation algorithm used below also risks overflow for large x;
463 but for large x, erfc(x) == 0.0 to within machine precision. (For
464 example, erfc(30.0) is approximately 2.56e-393).
465
466 Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
467 continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
468 ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
469 numbers of terms to use for the relevant expansions. */
470
471#define ERF_SERIES_CUTOFF 1.5
472#define ERF_SERIES_TERMS 25
473#define ERFC_CONTFRAC_CUTOFF 30.0
474#define ERFC_CONTFRAC_TERMS 50
475
476/*
477 Error function, via power series.
478
479 Given a finite float x, return an approximation to erf(x).
480 Converges reasonably fast for small x.
481*/
482
483static double
484m_erf_series(double x)
485{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000486 double x2, acc, fk, result;
487 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000488
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000489 x2 = x * x;
490 acc = 0.0;
491 fk = (double)ERF_SERIES_TERMS + 0.5;
492 for (i = 0; i < ERF_SERIES_TERMS; i++) {
493 acc = 2.0 + x2 * acc / fk;
494 fk -= 1.0;
495 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000496 /* Make sure the exp call doesn't affect errno;
497 see m_erfc_contfrac for more. */
498 saved_errno = errno;
499 result = acc * x * exp(-x2) / sqrtpi;
500 errno = saved_errno;
501 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000502}
503
504/*
505 Complementary error function, via continued fraction expansion.
506
507 Given a positive float x, return an approximation to erfc(x). Converges
508 reasonably fast for x large (say, x > 2.0), and should be safe from
509 overflow if x and nterms are not too large. On an IEEE 754 machine, with x
510 <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
511 than the smallest representable nonzero float. */
512
513static double
514m_erfc_contfrac(double x)
515{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000516 double x2, a, da, p, p_last, q, q_last, b, result;
517 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000518
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000519 if (x >= ERFC_CONTFRAC_CUTOFF)
520 return 0.0;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000521
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000522 x2 = x*x;
523 a = 0.0;
524 da = 0.5;
525 p = 1.0; p_last = 0.0;
526 q = da + x2; q_last = 1.0;
527 for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
528 double temp;
529 a += da;
530 da += 2.0;
531 b = da + x2;
532 temp = p; p = b*p - a*p_last; p_last = temp;
533 temp = q; q = b*q - a*q_last; q_last = temp;
534 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000535 /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
536 save the current errno value so that we can restore it later. */
537 saved_errno = errno;
538 result = p / q * x * exp(-x2) / sqrtpi;
539 errno = saved_errno;
540 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000541}
542
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200543#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
544
Mark Dickinson45f992a2009-12-19 11:20:49 +0000545/* Error function erf(x), for general x */
546
547static double
548m_erf(double x)
549{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200550#ifdef HAVE_ERF
551 return erf(x);
552#else
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000553 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000554
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000555 if (Py_IS_NAN(x))
556 return x;
557 absx = fabs(x);
558 if (absx < ERF_SERIES_CUTOFF)
559 return m_erf_series(x);
560 else {
561 cf = m_erfc_contfrac(absx);
562 return x > 0.0 ? 1.0 - cf : cf - 1.0;
563 }
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200564#endif
Mark Dickinson45f992a2009-12-19 11:20:49 +0000565}
566
567/* Complementary error function erfc(x), for general x. */
568
569static double
570m_erfc(double x)
571{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200572#ifdef HAVE_ERFC
573 return erfc(x);
574#else
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000575 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000576
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000577 if (Py_IS_NAN(x))
578 return x;
579 absx = fabs(x);
580 if (absx < ERF_SERIES_CUTOFF)
581 return 1.0 - m_erf_series(x);
582 else {
583 cf = m_erfc_contfrac(absx);
584 return x > 0.0 ? cf : 2.0 - cf;
585 }
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200586#endif
Mark Dickinson45f992a2009-12-19 11:20:49 +0000587}
Mark Dickinson05d2e082009-12-11 20:17:17 +0000588
589/*
Christian Heimese57950f2008-04-21 13:08:03 +0000590 wrapper for atan2 that deals directly with special cases before
591 delegating to the platform libm for the remaining cases. This
592 is necessary to get consistent behaviour across platforms.
593 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
594 always follow C99.
595*/
596
597static double
598m_atan2(double y, double x)
599{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000600 if (Py_IS_NAN(x) || Py_IS_NAN(y))
601 return Py_NAN;
602 if (Py_IS_INFINITY(y)) {
603 if (Py_IS_INFINITY(x)) {
604 if (copysign(1., x) == 1.)
605 /* atan2(+-inf, +inf) == +-pi/4 */
606 return copysign(0.25*Py_MATH_PI, y);
607 else
608 /* atan2(+-inf, -inf) == +-pi*3/4 */
609 return copysign(0.75*Py_MATH_PI, y);
610 }
611 /* atan2(+-inf, x) == +-pi/2 for finite x */
612 return copysign(0.5*Py_MATH_PI, y);
613 }
614 if (Py_IS_INFINITY(x) || y == 0.) {
615 if (copysign(1., x) == 1.)
616 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
617 return copysign(0., y);
618 else
619 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
620 return copysign(Py_MATH_PI, y);
621 }
622 return atan2(y, x);
Christian Heimese57950f2008-04-21 13:08:03 +0000623}
624
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100625
626/* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
627 multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754
628 binary floating-point format, the result is always exact. */
629
630static double
631m_remainder(double x, double y)
632{
633 /* Deal with most common case first. */
634 if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
635 double absx, absy, c, m, r;
636
637 if (y == 0.0) {
638 return Py_NAN;
639 }
640
641 absx = fabs(x);
642 absy = fabs(y);
643 m = fmod(absx, absy);
644
645 /*
646 Warning: some subtlety here. What we *want* to know at this point is
647 whether the remainder m is less than, equal to, or greater than half
648 of absy. However, we can't do that comparison directly because we
Mark Dickinson01484702019-07-13 16:50:03 +0100649 can't be sure that 0.5*absy is representable (the multiplication
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100650 might incur precision loss due to underflow). So instead we compare
651 m with the complement c = absy - m: m < 0.5*absy if and only if m <
652 c, and so on. The catch is that absy - m might also not be
653 representable, but it turns out that it doesn't matter:
654
655 - if m > 0.5*absy then absy - m is exactly representable, by
656 Sterbenz's lemma, so m > c
657 - if m == 0.5*absy then again absy - m is exactly representable
658 and m == c
659 - if m < 0.5*absy then either (i) 0.5*absy is exactly representable,
660 in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m <
661 c, or (ii) absy is tiny, either subnormal or in the lowest normal
662 binade. Then absy - m is exactly representable and again m < c.
663 */
664
665 c = absy - m;
666 if (m < c) {
667 r = m;
668 }
669 else if (m > c) {
670 r = -c;
671 }
672 else {
673 /*
674 Here absx is exactly halfway between two multiples of absy,
675 and we need to choose the even multiple. x now has the form
676
677 absx = n * absy + m
678
679 for some integer n (recalling that m = 0.5*absy at this point).
680 If n is even we want to return m; if n is odd, we need to
681 return -m.
682
683 So
684
685 0.5 * (absx - m) = (n/2) * absy
686
687 and now reducing modulo absy gives us:
688
689 | m, if n is odd
690 fmod(0.5 * (absx - m), absy) = |
691 | 0, if n is even
692
693 Now m - 2.0 * fmod(...) gives the desired result: m
694 if n is even, -m if m is odd.
695
696 Note that all steps in fmod(0.5 * (absx - m), absy)
697 will be computed exactly, with no rounding error
698 introduced.
699 */
700 assert(m == c);
701 r = m - 2.0 * fmod(0.5 * (absx - m), absy);
702 }
703 return copysign(1.0, x) * r;
704 }
705
706 /* Special values. */
707 if (Py_IS_NAN(x)) {
708 return x;
709 }
710 if (Py_IS_NAN(y)) {
711 return y;
712 }
713 if (Py_IS_INFINITY(x)) {
714 return Py_NAN;
715 }
716 assert(Py_IS_INFINITY(y));
717 return x;
718}
719
720
Christian Heimese57950f2008-04-21 13:08:03 +0000721/*
Mark Dickinsone675f082008-12-11 21:56:00 +0000722 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
723 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
724 special values directly, passing positive non-special values through to
725 the system log/log10.
726 */
727
728static double
729m_log(double x)
730{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000731 if (Py_IS_FINITE(x)) {
732 if (x > 0.0)
733 return log(x);
734 errno = EDOM;
735 if (x == 0.0)
736 return -Py_HUGE_VAL; /* log(0) = -inf */
737 else
738 return Py_NAN; /* log(-ve) = nan */
739 }
740 else if (Py_IS_NAN(x))
741 return x; /* log(nan) = nan */
742 else if (x > 0.0)
743 return x; /* log(inf) = inf */
744 else {
745 errno = EDOM;
746 return Py_NAN; /* log(-inf) = nan */
747 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000748}
749
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200750/*
751 log2: log to base 2.
752
753 Uses an algorithm that should:
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100754
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200755 (a) produce exact results for powers of 2, and
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100756 (b) give a monotonic log2 (for positive finite floats),
757 assuming that the system log is monotonic.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200758*/
759
760static double
761m_log2(double x)
762{
763 if (!Py_IS_FINITE(x)) {
764 if (Py_IS_NAN(x))
765 return x; /* log2(nan) = nan */
766 else if (x > 0.0)
767 return x; /* log2(+inf) = +inf */
768 else {
769 errno = EDOM;
770 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
771 }
772 }
773
774 if (x > 0.0) {
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200775#ifdef HAVE_LOG2
776 return log2(x);
777#else
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200778 double m;
779 int e;
780 m = frexp(x, &e);
781 /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when
782 * x is just greater than 1.0: in that case e is 1, log(m) is negative,
783 * and we get significant cancellation error from the addition of
784 * log(m) / log(2) to e. The slight rewrite of the expression below
785 * avoids this problem.
786 */
787 if (x >= 1.0) {
788 return log(2.0 * m) / log(2.0) + (e - 1);
789 }
790 else {
791 return log(m) / log(2.0) + e;
792 }
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200793#endif
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200794 }
795 else if (x == 0.0) {
796 errno = EDOM;
797 return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
798 }
799 else {
800 errno = EDOM;
Mark Dickinson23442582011-05-09 08:05:00 +0100801 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200802 }
803}
804
Mark Dickinsone675f082008-12-11 21:56:00 +0000805static double
806m_log10(double x)
807{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000808 if (Py_IS_FINITE(x)) {
809 if (x > 0.0)
810 return log10(x);
811 errno = EDOM;
812 if (x == 0.0)
813 return -Py_HUGE_VAL; /* log10(0) = -inf */
814 else
815 return Py_NAN; /* log10(-ve) = nan */
816 }
817 else if (Py_IS_NAN(x))
818 return x; /* log10(nan) = nan */
819 else if (x > 0.0)
820 return x; /* log10(inf) = inf */
821 else {
822 errno = EDOM;
823 return Py_NAN; /* log10(-inf) = nan */
824 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000825}
826
827
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200828/*[clinic input]
829math.gcd
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300830
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200831 x as a: object
832 y as b: object
833 /
834
835greatest common divisor of x and y
836[clinic start generated code]*/
837
838static PyObject *
839math_gcd_impl(PyObject *module, PyObject *a, PyObject *b)
840/*[clinic end generated code: output=7b2e0c151bd7a5d8 input=c2691e57fb2a98fa]*/
841{
842 PyObject *g;
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300843
844 a = PyNumber_Index(a);
845 if (a == NULL)
846 return NULL;
847 b = PyNumber_Index(b);
848 if (b == NULL) {
849 Py_DECREF(a);
850 return NULL;
851 }
852 g = _PyLong_GCD(a, b);
853 Py_DECREF(a);
854 Py_DECREF(b);
855 return g;
856}
857
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300858
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000859/* Call is_error when errno != 0, and where x is the result libm
860 * returned. is_error will usually set up an exception and return
861 * true (1), but may return false (0) without setting up an exception.
862 */
863static int
864is_error(double x)
865{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000866 int result = 1; /* presumption of guilt */
867 assert(errno); /* non-zero errno is a precondition for calling */
868 if (errno == EDOM)
869 PyErr_SetString(PyExc_ValueError, "math domain error");
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000870
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000871 else if (errno == ERANGE) {
872 /* ANSI C generally requires libm functions to set ERANGE
873 * on overflow, but also generally *allows* them to set
874 * ERANGE on underflow too. There's no consistency about
875 * the latter across platforms.
876 * Alas, C99 never requires that errno be set.
877 * Here we suppress the underflow errors (libm functions
878 * should return a zero on underflow, and +- HUGE_VAL on
879 * overflow, so testing the result for zero suffices to
880 * distinguish the cases).
881 *
882 * On some platforms (Ubuntu/ia64) it seems that errno can be
883 * set to ERANGE for subnormal results that do *not* underflow
884 * to zero. So to be safe, we'll ignore ERANGE whenever the
885 * function result is less than one in absolute value.
886 */
887 if (fabs(x) < 1.0)
888 result = 0;
889 else
890 PyErr_SetString(PyExc_OverflowError,
891 "math range error");
892 }
893 else
894 /* Unexpected math error */
895 PyErr_SetFromErrno(PyExc_ValueError);
896 return result;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000897}
898
Mark Dickinsone675f082008-12-11 21:56:00 +0000899/*
Christian Heimes53876d92008-04-19 00:31:39 +0000900 math_1 is used to wrap a libm function f that takes a double
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200901 argument and returns a double.
Christian Heimes53876d92008-04-19 00:31:39 +0000902
903 The error reporting follows these rules, which are designed to do
904 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
905 platforms.
906
907 - a NaN result from non-NaN inputs causes ValueError to be raised
908 - an infinite result from finite inputs causes OverflowError to be
909 raised if can_overflow is 1, or raises ValueError if can_overflow
910 is 0.
911 - if the result is finite and errno == EDOM then ValueError is
912 raised
913 - if the result is finite and nonzero and errno == ERANGE then
914 OverflowError is raised
915
916 The last rule is used to catch overflow on platforms which follow
917 C89 but for which HUGE_VAL is not an infinity.
918
919 For the majority of one-argument functions these rules are enough
920 to ensure that Python's functions behave as specified in 'Annex F'
921 of the C99 standard, with the 'invalid' and 'divide-by-zero'
922 floating-point exceptions mapping to Python's ValueError and the
923 'overflow' floating-point exception mapping to OverflowError.
924 math_1 only works for functions that don't have singularities *and*
925 the possibility of overflow; fortunately, that covers everything we
926 care about right now.
927*/
928
Barry Warsaw8b43b191996-12-09 22:32:36 +0000929static PyObject *
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000930math_1_to_whatever(PyObject *arg, double (*func) (double),
Christian Heimes53876d92008-04-19 00:31:39 +0000931 PyObject *(*from_double_func) (double),
932 int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000933{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000934 double x, r;
935 x = PyFloat_AsDouble(arg);
936 if (x == -1.0 && PyErr_Occurred())
937 return NULL;
938 errno = 0;
939 PyFPE_START_PROTECT("in math_1", return 0);
940 r = (*func)(x);
941 PyFPE_END_PROTECT(r);
942 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
943 PyErr_SetString(PyExc_ValueError,
944 "math domain error"); /* invalid arg */
945 return NULL;
946 }
947 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
Benjamin Peterson2354a752012-03-13 16:13:09 -0500948 if (can_overflow)
949 PyErr_SetString(PyExc_OverflowError,
950 "math range error"); /* overflow */
951 else
952 PyErr_SetString(PyExc_ValueError,
953 "math domain error"); /* singularity */
954 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000955 }
956 if (Py_IS_FINITE(r) && errno && is_error(r))
957 /* this branch unnecessary on most platforms */
958 return NULL;
Mark Dickinsonde429622008-05-01 00:19:23 +0000959
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000960 return (*from_double_func)(r);
Christian Heimes53876d92008-04-19 00:31:39 +0000961}
962
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000963/* variant of math_1, to be used when the function being wrapped is known to
964 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
965 errno = ERANGE for overflow). */
966
967static PyObject *
968math_1a(PyObject *arg, double (*func) (double))
969{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000970 double x, r;
971 x = PyFloat_AsDouble(arg);
972 if (x == -1.0 && PyErr_Occurred())
973 return NULL;
974 errno = 0;
975 PyFPE_START_PROTECT("in math_1a", return 0);
976 r = (*func)(x);
977 PyFPE_END_PROTECT(r);
978 if (errno && is_error(r))
979 return NULL;
980 return PyFloat_FromDouble(r);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000981}
982
Christian Heimes53876d92008-04-19 00:31:39 +0000983/*
984 math_2 is used to wrap a libm function f that takes two double
985 arguments and returns a double.
986
987 The error reporting follows these rules, which are designed to do
988 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
989 platforms.
990
991 - a NaN result from non-NaN inputs causes ValueError to be raised
992 - an infinite result from finite inputs causes OverflowError to be
993 raised.
994 - if the result is finite and errno == EDOM then ValueError is
995 raised
996 - if the result is finite and nonzero and errno == ERANGE then
997 OverflowError is raised
998
999 The last rule is used to catch overflow on platforms which follow
1000 C89 but for which HUGE_VAL is not an infinity.
1001
1002 For most two-argument functions (copysign, fmod, hypot, atan2)
1003 these rules are enough to ensure that Python's functions behave as
1004 specified in 'Annex F' of the C99 standard, with the 'invalid' and
1005 'divide-by-zero' floating-point exceptions mapping to Python's
1006 ValueError and the 'overflow' floating-point exception mapping to
1007 OverflowError.
1008*/
1009
1010static PyObject *
1011math_1(PyObject *arg, double (*func) (double), int can_overflow)
1012{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001013 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
Jeffrey Yasskinc2155832008-01-05 20:03:11 +00001014}
1015
1016static PyObject *
Christian Heimes53876d92008-04-19 00:31:39 +00001017math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
Jeffrey Yasskinc2155832008-01-05 20:03:11 +00001018{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001019 return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001020}
1021
Barry Warsaw8b43b191996-12-09 22:32:36 +00001022static PyObject *
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001023math_2(PyObject *const *args, Py_ssize_t nargs,
1024 double (*func) (double, double), const char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001025{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001026 double x, y, r;
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001027 if (!_PyArg_CheckPositional(funcname, nargs, 2, 2))
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001028 return NULL;
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001029 x = PyFloat_AsDouble(args[0]);
1030 y = PyFloat_AsDouble(args[1]);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001031 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1032 return NULL;
1033 errno = 0;
1034 PyFPE_START_PROTECT("in math_2", return 0);
1035 r = (*func)(x, y);
1036 PyFPE_END_PROTECT(r);
1037 if (Py_IS_NAN(r)) {
1038 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1039 errno = EDOM;
1040 else
1041 errno = 0;
1042 }
1043 else if (Py_IS_INFINITY(r)) {
1044 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1045 errno = ERANGE;
1046 else
1047 errno = 0;
1048 }
1049 if (errno && is_error(r))
1050 return NULL;
1051 else
1052 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001053}
1054
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001055#define FUNC1(funcname, func, can_overflow, docstring) \
1056 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
1057 return math_1(args, func, can_overflow); \
1058 }\
1059 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001060
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001061#define FUNC1A(funcname, func, docstring) \
1062 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
1063 return math_1a(args, func); \
1064 }\
1065 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +00001066
Fred Drake40c48682000-07-03 18:11:56 +00001067#define FUNC2(funcname, func, docstring) \
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001068 static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \
1069 return math_2(args, nargs, func, #funcname); \
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001070 }\
1071 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001072
Christian Heimes53876d92008-04-19 00:31:39 +00001073FUNC1(acos, acos, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001074 "acos($module, x, /)\n--\n\n"
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -04001075 "Return the arc cosine (measured in radians) of x.\n\n"
1076 "The result is between 0 and pi.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001077FUNC1(acosh, m_acosh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001078 "acosh($module, x, /)\n--\n\n"
1079 "Return the inverse hyperbolic cosine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001080FUNC1(asin, asin, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001081 "asin($module, x, /)\n--\n\n"
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -04001082 "Return the arc sine (measured in radians) of x.\n\n"
1083 "The result is between -pi/2 and pi/2.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001084FUNC1(asinh, m_asinh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001085 "asinh($module, x, /)\n--\n\n"
1086 "Return the inverse hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001087FUNC1(atan, atan, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001088 "atan($module, x, /)\n--\n\n"
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -04001089 "Return the arc tangent (measured in radians) of x.\n\n"
1090 "The result is between -pi/2 and pi/2.")
Christian Heimese57950f2008-04-21 13:08:03 +00001091FUNC2(atan2, m_atan2,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001092 "atan2($module, y, x, /)\n--\n\n"
1093 "Return the arc tangent (measured in radians) of y/x.\n\n"
Tim Petersfe71f812001-08-07 22:10:00 +00001094 "Unlike atan(y/x), the signs of both x and y are considered.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001095FUNC1(atanh, m_atanh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001096 "atanh($module, x, /)\n--\n\n"
1097 "Return the inverse hyperbolic tangent of x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +00001098
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001099/*[clinic input]
1100math.ceil
1101
1102 x as number: object
1103 /
1104
1105Return the ceiling of x as an Integral.
1106
1107This is the smallest integer >= x.
1108[clinic start generated code]*/
1109
1110static PyObject *
1111math_ceil(PyObject *module, PyObject *number)
1112/*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
1113{
Benjamin Petersonce798522012-01-22 11:24:29 -05001114 _Py_IDENTIFIER(__ceil__);
Mark Dickinson6d02d9c2010-07-02 16:05:15 +00001115 PyObject *method, *result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001116
Benjamin Petersonce798522012-01-22 11:24:29 -05001117 method = _PyObject_LookupSpecial(number, &PyId___ceil__);
Benjamin Petersonf751bc92010-07-02 13:46:42 +00001118 if (method == NULL) {
1119 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001120 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001121 return math_1_to_int(number, ceil, 0);
Benjamin Petersonf751bc92010-07-02 13:46:42 +00001122 }
Victor Stinnerf17c3de2016-12-06 18:46:19 +01001123 result = _PyObject_CallNoArg(method);
Mark Dickinson6d02d9c2010-07-02 16:05:15 +00001124 Py_DECREF(method);
1125 return result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001126}
1127
Christian Heimes072c0f12008-01-03 23:01:04 +00001128FUNC2(copysign, copysign,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001129 "copysign($module, x, y, /)\n--\n\n"
1130 "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
1131 "On platforms that support signed zeros, copysign(1.0, -0.0)\n"
1132 "returns -1.0.\n")
Christian Heimes53876d92008-04-19 00:31:39 +00001133FUNC1(cos, cos, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001134 "cos($module, x, /)\n--\n\n"
1135 "Return the cosine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001136FUNC1(cosh, cosh, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001137 "cosh($module, x, /)\n--\n\n"
1138 "Return the hyperbolic cosine of x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +00001139FUNC1A(erf, m_erf,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001140 "erf($module, x, /)\n--\n\n"
1141 "Error function at x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +00001142FUNC1A(erfc, m_erfc,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001143 "erfc($module, x, /)\n--\n\n"
1144 "Complementary error function at x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001145FUNC1(exp, exp, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001146 "exp($module, x, /)\n--\n\n"
1147 "Return e raised to the power of x.")
Mark Dickinson664b5112009-12-16 20:23:42 +00001148FUNC1(expm1, m_expm1, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001149 "expm1($module, x, /)\n--\n\n"
1150 "Return exp(x)-1.\n\n"
Mark Dickinson664b5112009-12-16 20:23:42 +00001151 "This function avoids the loss of precision involved in the direct "
1152 "evaluation of exp(x)-1 for small x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001153FUNC1(fabs, fabs, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001154 "fabs($module, x, /)\n--\n\n"
1155 "Return the absolute value of the float x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +00001156
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001157/*[clinic input]
1158math.floor
1159
1160 x as number: object
1161 /
1162
1163Return the floor of x as an Integral.
1164
1165This is the largest integer <= x.
1166[clinic start generated code]*/
1167
1168static PyObject *
1169math_floor(PyObject *module, PyObject *number)
1170/*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
1171{
Benjamin Petersonce798522012-01-22 11:24:29 -05001172 _Py_IDENTIFIER(__floor__);
Benjamin Petersonb0125892010-07-02 13:35:17 +00001173 PyObject *method, *result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001174
Benjamin Petersonce798522012-01-22 11:24:29 -05001175 method = _PyObject_LookupSpecial(number, &PyId___floor__);
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001176 if (method == NULL) {
1177 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001178 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001179 return math_1_to_int(number, floor, 0);
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001180 }
Victor Stinnerf17c3de2016-12-06 18:46:19 +01001181 result = _PyObject_CallNoArg(method);
Benjamin Petersonb0125892010-07-02 13:35:17 +00001182 Py_DECREF(method);
1183 return result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001184}
1185
Mark Dickinson12c4bdb2009-09-28 19:21:11 +00001186FUNC1A(gamma, m_tgamma,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001187 "gamma($module, x, /)\n--\n\n"
1188 "Gamma function at x.")
Mark Dickinson05d2e082009-12-11 20:17:17 +00001189FUNC1A(lgamma, m_lgamma,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001190 "lgamma($module, x, /)\n--\n\n"
1191 "Natural logarithm of absolute value of Gamma function at x.")
Mark Dickinsonbe64d952010-07-07 16:21:29 +00001192FUNC1(log1p, m_log1p, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001193 "log1p($module, x, /)\n--\n\n"
1194 "Return the natural logarithm of 1+x (base e).\n\n"
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001195 "The result is computed in a way which is accurate for x near zero.")
Mark Dickinsona0ce3752017-04-05 18:34:27 +01001196FUNC2(remainder, m_remainder,
1197 "remainder($module, x, y, /)\n--\n\n"
1198 "Difference between x and the closest integer multiple of y.\n\n"
1199 "Return x - n*y where n*y is the closest integer multiple of y.\n"
1200 "In the case where x is exactly halfway between two multiples of\n"
1201 "y, the nearest even value of n is used. The result is always exact.")
Christian Heimes53876d92008-04-19 00:31:39 +00001202FUNC1(sin, sin, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001203 "sin($module, x, /)\n--\n\n"
1204 "Return the sine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001205FUNC1(sinh, sinh, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001206 "sinh($module, x, /)\n--\n\n"
1207 "Return the hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001208FUNC1(sqrt, sqrt, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001209 "sqrt($module, x, /)\n--\n\n"
1210 "Return the square root of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001211FUNC1(tan, tan, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001212 "tan($module, x, /)\n--\n\n"
1213 "Return the tangent of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001214FUNC1(tanh, tanh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001215 "tanh($module, x, /)\n--\n\n"
1216 "Return the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001217
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001218/* Precision summation function as msum() by Raymond Hettinger in
1219 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
1220 enhanced with the exact partials sum and roundoff from Mark
1221 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
1222 See those links for more details, proofs and other references.
1223
1224 Note 1: IEEE 754R floating point semantics are assumed,
1225 but the current implementation does not re-establish special
1226 value semantics across iterations (i.e. handling -Inf + Inf).
1227
1228 Note 2: No provision is made for intermediate overflow handling;
Georg Brandlf78e02b2008-06-10 17:40:04 +00001229 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001230 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
1231 overflow of the first partial sum.
1232
Benjamin Petersonfea6a942008-07-02 16:11:42 +00001233 Note 3: The intermediate values lo, yr, and hi are declared volatile so
1234 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Georg Brandlf78e02b2008-06-10 17:40:04 +00001235 Also, the volatile declaration forces the values to be stored in memory as
1236 regular doubles instead of extended long precision (80-bit) values. This
Benjamin Petersonfea6a942008-07-02 16:11:42 +00001237 prevents double rounding because any addition or subtraction of two doubles
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001238 can be resolved exactly into double-sized hi and lo values. As long as the
Georg Brandlf78e02b2008-06-10 17:40:04 +00001239 hi value gets forced into a double before yr and lo are computed, the extra
1240 bits in downstream extended precision operations (x87 for example) will be
1241 exactly zero and therefore can be losslessly stored back into a double,
1242 thereby preventing double rounding.
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001243
1244 Note 4: A similar implementation is in Modules/cmathmodule.c.
1245 Be sure to update both when making changes.
1246
Serhiy Storchakaa60c2fe2015-03-12 21:56:08 +02001247 Note 5: The signature of math.fsum() differs from builtins.sum()
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001248 because the start argument doesn't make sense in the context of
1249 accurate summation. Since the partials table is collapsed before
1250 returning a result, sum(seq2, start=sum(seq1)) may not equal the
1251 accurate result returned by sum(itertools.chain(seq1, seq2)).
1252*/
1253
1254#define NUM_PARTIALS 32 /* initial partials array size, on stack */
1255
1256/* Extend the partials array p[] by doubling its size. */
1257static int /* non-zero on error */
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001258_fsum_realloc(double **p_ptr, Py_ssize_t n,
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001259 double *ps, Py_ssize_t *m_ptr)
1260{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001261 void *v = NULL;
1262 Py_ssize_t m = *m_ptr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001263
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001264 m += m; /* double */
Victor Stinner049e5092014-08-17 22:20:00 +02001265 if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001266 double *p = *p_ptr;
1267 if (p == ps) {
1268 v = PyMem_Malloc(sizeof(double) * m);
1269 if (v != NULL)
1270 memcpy(v, ps, sizeof(double) * n);
1271 }
1272 else
1273 v = PyMem_Realloc(p, sizeof(double) * m);
1274 }
1275 if (v == NULL) { /* size overflow or no memory */
1276 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
1277 return 1;
1278 }
1279 *p_ptr = (double*) v;
1280 *m_ptr = m;
1281 return 0;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001282}
1283
1284/* Full precision summation of a sequence of floats.
1285
1286 def msum(iterable):
1287 partials = [] # sorted, non-overlapping partial sums
1288 for x in iterable:
Mark Dickinsonfdb0acc2010-06-25 20:22:24 +00001289 i = 0
1290 for y in partials:
1291 if abs(x) < abs(y):
1292 x, y = y, x
1293 hi = x + y
1294 lo = y - (hi - x)
1295 if lo:
1296 partials[i] = lo
1297 i += 1
1298 x = hi
1299 partials[i:] = [x]
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001300 return sum_exact(partials)
1301
1302 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
1303 are exactly equal to x+y. The inner loop applies hi/lo summation to each
1304 partial so that the list of partial sums remains exact.
1305
1306 Sum_exact() adds the partial sums exactly and correctly rounds the final
1307 result (using the round-half-to-even rule). The items in partials remain
1308 non-zero, non-special, non-overlapping and strictly increasing in
1309 magnitude, but possibly not all having the same sign.
1310
1311 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
1312*/
1313
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001314/*[clinic input]
1315math.fsum
1316
1317 seq: object
1318 /
1319
1320Return an accurate floating point sum of values in the iterable seq.
1321
1322Assumes IEEE-754 floating point arithmetic.
1323[clinic start generated code]*/
1324
1325static PyObject *
1326math_fsum(PyObject *module, PyObject *seq)
1327/*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001328{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001329 PyObject *item, *iter, *sum = NULL;
1330 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
1331 double x, y, t, ps[NUM_PARTIALS], *p = ps;
1332 double xsave, special_sum = 0.0, inf_sum = 0.0;
1333 volatile double hi, yr, lo;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001334
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001335 iter = PyObject_GetIter(seq);
1336 if (iter == NULL)
1337 return NULL;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001338
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001339 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001340
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001341 for(;;) { /* for x in iterable */
1342 assert(0 <= n && n <= m);
1343 assert((m == NUM_PARTIALS && p == ps) ||
1344 (m > NUM_PARTIALS && p != NULL));
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001345
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001346 item = PyIter_Next(iter);
1347 if (item == NULL) {
1348 if (PyErr_Occurred())
1349 goto _fsum_error;
1350 break;
1351 }
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001352 ASSIGN_DOUBLE(x, item, error_with_item);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001353 Py_DECREF(item);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001354
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001355 xsave = x;
1356 for (i = j = 0; j < n; j++) { /* for y in partials */
1357 y = p[j];
1358 if (fabs(x) < fabs(y)) {
1359 t = x; x = y; y = t;
1360 }
1361 hi = x + y;
1362 yr = hi - x;
1363 lo = y - yr;
1364 if (lo != 0.0)
1365 p[i++] = lo;
1366 x = hi;
1367 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001368
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001369 n = i; /* ps[i:] = [x] */
1370 if (x != 0.0) {
1371 if (! Py_IS_FINITE(x)) {
1372 /* a nonfinite x could arise either as
1373 a result of intermediate overflow, or
1374 as a result of a nan or inf in the
1375 summands */
1376 if (Py_IS_FINITE(xsave)) {
1377 PyErr_SetString(PyExc_OverflowError,
1378 "intermediate overflow in fsum");
1379 goto _fsum_error;
1380 }
1381 if (Py_IS_INFINITY(xsave))
1382 inf_sum += xsave;
1383 special_sum += xsave;
1384 /* reset partials */
1385 n = 0;
1386 }
1387 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
1388 goto _fsum_error;
1389 else
1390 p[n++] = x;
1391 }
1392 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001393
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001394 if (special_sum != 0.0) {
1395 if (Py_IS_NAN(inf_sum))
1396 PyErr_SetString(PyExc_ValueError,
1397 "-inf + inf in fsum");
1398 else
1399 sum = PyFloat_FromDouble(special_sum);
1400 goto _fsum_error;
1401 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001402
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001403 hi = 0.0;
1404 if (n > 0) {
1405 hi = p[--n];
1406 /* sum_exact(ps, hi) from the top, stop when the sum becomes
1407 inexact. */
1408 while (n > 0) {
1409 x = hi;
1410 y = p[--n];
1411 assert(fabs(y) < fabs(x));
1412 hi = x + y;
1413 yr = hi - x;
1414 lo = y - yr;
1415 if (lo != 0.0)
1416 break;
1417 }
1418 /* Make half-even rounding work across multiple partials.
1419 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
1420 digit to two instead of down to zero (the 1e-16 makes the 1
1421 slightly closer to two). With a potential 1 ULP rounding
1422 error fixed-up, math.fsum() can guarantee commutativity. */
1423 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
1424 (lo > 0.0 && p[n-1] > 0.0))) {
1425 y = lo * 2.0;
1426 x = hi + y;
1427 yr = x - hi;
1428 if (y == yr)
1429 hi = x;
1430 }
1431 }
1432 sum = PyFloat_FromDouble(hi);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001433
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001434 _fsum_error:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001435 PyFPE_END_PROTECT(hi)
1436 Py_DECREF(iter);
1437 if (p != ps)
1438 PyMem_Free(p);
1439 return sum;
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001440
1441 error_with_item:
1442 Py_DECREF(item);
1443 goto _fsum_error;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001444}
1445
1446#undef NUM_PARTIALS
1447
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001448
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001449/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
1450 * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
1451 * count_leading_zero_bits(x)
1452 */
1453
1454/* XXX: This routine does more or less the same thing as
1455 * bits_in_digit() in Objects/longobject.c. Someday it would be nice to
1456 * consolidate them. On BSD, there's a library function called fls()
1457 * that we could use, and GCC provides __builtin_clz().
1458 */
1459
1460static unsigned long
1461bit_length(unsigned long n)
1462{
1463 unsigned long len = 0;
1464 while (n != 0) {
1465 ++len;
1466 n >>= 1;
1467 }
1468 return len;
1469}
1470
1471static unsigned long
1472count_set_bits(unsigned long n)
1473{
1474 unsigned long count = 0;
1475 while (n != 0) {
1476 ++count;
1477 n &= n - 1; /* clear least significant bit */
1478 }
1479 return count;
1480}
1481
Mark Dickinson73934b92019-05-18 12:29:50 +01001482/* Integer square root
1483
1484Given a nonnegative integer `n`, we want to compute the largest integer
1485`a` for which `a * a <= n`, or equivalently the integer part of the exact
1486square root of `n`.
1487
1488We use an adaptive-precision pure-integer version of Newton's iteration. Given
1489a positive integer `n`, the algorithm produces at each iteration an integer
1490approximation `a` to the square root of `n >> s` for some even integer `s`,
1491with `s` decreasing as the iterations progress. On the final iteration, `s` is
1492zero and we have an approximation to the square root of `n` itself.
1493
1494At every step, the approximation `a` is strictly within 1.0 of the true square
1495root, so we have
1496
1497 (a - 1)**2 < (n >> s) < (a + 1)**2
1498
1499After the final iteration, a check-and-correct step is needed to determine
1500whether `a` or `a - 1` gives the desired integer square root of `n`.
1501
1502The algorithm is remarkable in its simplicity. There's no need for a
1503per-iteration check-and-correct step, and termination is straightforward: the
1504number of iterations is known in advance (it's exactly `floor(log2(log2(n)))`
1505for `n > 1`). The only tricky part of the correctness proof is in establishing
1506that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one
1507iteration to the next. A sketch of the proof of this is given below.
1508
1509In addition to the proof sketch, a formal, computer-verified proof
1510of correctness (using Lean) of an equivalent recursive algorithm can be found
1511here:
1512
1513 https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean
1514
1515
1516Here's Python code equivalent to the C implementation below:
1517
1518 def isqrt(n):
1519 """
1520 Return the integer part of the square root of the input.
1521 """
1522 n = operator.index(n)
1523
1524 if n < 0:
1525 raise ValueError("isqrt() argument must be nonnegative")
1526 if n == 0:
1527 return 0
1528
1529 c = (n.bit_length() - 1) // 2
1530 a = 1
1531 d = 0
1532 for s in reversed(range(c.bit_length())):
Mark Dickinson2dfeaa92019-06-16 17:53:21 +01001533 # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2
Mark Dickinson73934b92019-05-18 12:29:50 +01001534 e = d
1535 d = c >> s
1536 a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
Mark Dickinson73934b92019-05-18 12:29:50 +01001537
1538 return a - (a*a > n)
1539
1540
1541Sketch of proof of correctness
1542------------------------------
1543
1544The delicate part of the correctness proof is showing that the loop invariant
1545is preserved from one iteration to the next. That is, just before the line
1546
1547 a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
1548
1549is executed in the above code, we know that
1550
1551 (1) (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2.
1552
1553(since `e` is always the value of `d` from the previous iteration). We must
1554prove that after that line is executed, we have
1555
1556 (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2
1557
Min ho Kimf7d72e42019-07-06 07:39:32 +10001558To facilitate the proof, we make some changes of notation. Write `m` for
Mark Dickinson73934b92019-05-18 12:29:50 +01001559`n >> 2*(c-d)`, and write `b` for the new value of `a`, so
1560
1561 b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
1562
1563or equivalently:
1564
1565 (2) b = (a << d - e - 1) + (m >> d - e + 1) // a
1566
1567Then we can rewrite (1) as:
1568
1569 (3) (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2
1570
1571and we must show that (b - 1)**2 < m < (b + 1)**2.
1572
1573From this point on, we switch to mathematical notation, so `/` means exact
1574division rather than integer division and `^` is used for exponentiation. We
1575use the `√` symbol for the exact square root. In (3), we can remove the
1576implicit floor operation to give:
1577
1578 (4) (a - 1)^2 < m / 4^(d - e) < (a + 1)^2
1579
1580Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives
1581
1582 (5) 0 <= | 2^(d-e)a - √m | < 2^(d-e)
1583
1584Squaring and dividing through by `2^(d-e+1) a` gives
1585
1586 (6) 0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a
1587
1588We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the
1589right-hand side of (6) with `1`, and now replacing the central
1590term `m / (2^(d-e+1) a)` with its floor in (6) gives
1591
1592 (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1
1593
1594Or equivalently, from (2):
1595
1596 (7) -1 < b - √m < 1
1597
1598and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed
1599to prove.
1600
1601We're not quite done: we still have to prove the inequality `2^(d - e - 1) <=
1602a` that was used to get line (7) above. From the definition of `c`, we have
1603`4^c <= n`, which implies
1604
1605 (8) 4^d <= m
1606
1607also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows
1608that `2d - 2e - 1 <= d` and hence that
1609
1610 (9) 4^(2d - 2e - 1) <= m
1611
1612Dividing both sides by `4^(d - e)` gives
1613
1614 (10) 4^(d - e - 1) <= m / 4^(d - e)
1615
1616But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence
1617
1618 (11) 4^(d - e - 1) < (a + 1)^2
1619
1620Now taking square roots of both sides and observing that both `2^(d-e-1)` and
1621`a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This
1622completes the proof sketch.
1623
1624*/
1625
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001626
1627/* Approximate square root of a large 64-bit integer.
1628
1629 Given `n` satisfying `2**62 <= n < 2**64`, return `a`
1630 satisfying `(a - 1)**2 < n < (a + 1)**2`. */
1631
1632static uint64_t
1633_approximate_isqrt(uint64_t n)
1634{
1635 uint32_t u = 1U + (n >> 62);
1636 u = (u << 1) + (n >> 59) / u;
1637 u = (u << 3) + (n >> 53) / u;
1638 u = (u << 7) + (n >> 41) / u;
1639 return (u << 15) + (n >> 17) / u;
1640}
1641
Mark Dickinson73934b92019-05-18 12:29:50 +01001642/*[clinic input]
1643math.isqrt
1644
1645 n: object
1646 /
1647
1648Return the integer part of the square root of the input.
1649[clinic start generated code]*/
1650
1651static PyObject *
1652math_isqrt(PyObject *module, PyObject *n)
1653/*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
1654{
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001655 int a_too_large, c_bit_length;
Mark Dickinson73934b92019-05-18 12:29:50 +01001656 size_t c, d;
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001657 uint64_t m, u;
Mark Dickinson73934b92019-05-18 12:29:50 +01001658 PyObject *a = NULL, *b;
1659
1660 n = PyNumber_Index(n);
1661 if (n == NULL) {
1662 return NULL;
1663 }
1664
1665 if (_PyLong_Sign(n) < 0) {
1666 PyErr_SetString(
1667 PyExc_ValueError,
1668 "isqrt() argument must be nonnegative");
1669 goto error;
1670 }
1671 if (_PyLong_Sign(n) == 0) {
1672 Py_DECREF(n);
1673 return PyLong_FromLong(0);
1674 }
1675
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001676 /* c = (n.bit_length() - 1) // 2 */
Mark Dickinson73934b92019-05-18 12:29:50 +01001677 c = _PyLong_NumBits(n);
1678 if (c == (size_t)(-1)) {
1679 goto error;
1680 }
1681 c = (c - 1U) / 2U;
1682
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001683 /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
1684 fast, almost branch-free algorithm. In the final correction, we use `u*u
1685 - 1 >= m` instead of the simpler `u*u > m` in order to get the correct
1686 result in the corner case where `u=2**32`. */
1687 if (c <= 31U) {
1688 m = (uint64_t)PyLong_AsUnsignedLongLong(n);
1689 Py_DECREF(n);
1690 if (m == (uint64_t)(-1) && PyErr_Occurred()) {
1691 return NULL;
1692 }
1693 u = _approximate_isqrt(m << (62U - 2U*c)) >> (31U - c);
1694 u -= u * u - 1U >= m;
1695 return PyLong_FromUnsignedLongLong((unsigned long long)u);
Mark Dickinson73934b92019-05-18 12:29:50 +01001696 }
1697
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001698 /* Slow path: n >= 2**64. We perform the first five iterations in C integer
1699 arithmetic, then switch to using Python long integers. */
1700
1701 /* From n >= 2**64 it follows that c.bit_length() >= 6. */
1702 c_bit_length = 6;
1703 while ((c >> c_bit_length) > 0U) {
1704 ++c_bit_length;
1705 }
1706
1707 /* Initialise d and a. */
1708 d = c >> (c_bit_length - 5);
1709 b = _PyLong_Rshift(n, 2U*c - 62U);
1710 if (b == NULL) {
1711 goto error;
1712 }
1713 m = (uint64_t)PyLong_AsUnsignedLongLong(b);
1714 Py_DECREF(b);
1715 if (m == (uint64_t)(-1) && PyErr_Occurred()) {
1716 goto error;
1717 }
1718 u = _approximate_isqrt(m) >> (31U - d);
1719 a = PyLong_FromUnsignedLongLong((unsigned long long)u);
Mark Dickinson73934b92019-05-18 12:29:50 +01001720 if (a == NULL) {
1721 goto error;
1722 }
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001723
1724 for (int s = c_bit_length - 6; s >= 0; --s) {
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001725 PyObject *q;
Mark Dickinson73934b92019-05-18 12:29:50 +01001726 size_t e = d;
1727
1728 d = c >> s;
1729
1730 /* q = (n >> 2*c - e - d + 1) // a */
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001731 q = _PyLong_Rshift(n, 2U*c - d - e + 1U);
Mark Dickinson73934b92019-05-18 12:29:50 +01001732 if (q == NULL) {
1733 goto error;
1734 }
1735 Py_SETREF(q, PyNumber_FloorDivide(q, a));
1736 if (q == NULL) {
1737 goto error;
1738 }
1739
1740 /* a = (a << d - 1 - e) + q */
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001741 Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e));
Mark Dickinson73934b92019-05-18 12:29:50 +01001742 if (a == NULL) {
1743 Py_DECREF(q);
1744 goto error;
1745 }
1746 Py_SETREF(a, PyNumber_Add(a, q));
1747 Py_DECREF(q);
1748 if (a == NULL) {
1749 goto error;
1750 }
1751 }
1752
1753 /* The correct result is either a or a - 1. Figure out which, and
1754 decrement a if necessary. */
1755
1756 /* a_too_large = n < a * a */
1757 b = PyNumber_Multiply(a, a);
1758 if (b == NULL) {
1759 goto error;
1760 }
1761 a_too_large = PyObject_RichCompareBool(n, b, Py_LT);
1762 Py_DECREF(b);
1763 if (a_too_large == -1) {
1764 goto error;
1765 }
1766
1767 if (a_too_large) {
1768 Py_SETREF(a, PyNumber_Subtract(a, _PyLong_One));
1769 }
1770 Py_DECREF(n);
1771 return a;
1772
1773 error:
1774 Py_XDECREF(a);
1775 Py_DECREF(n);
1776 return NULL;
1777}
1778
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001779/* Divide-and-conquer factorial algorithm
1780 *
Raymond Hettinger15f44ab2016-08-30 10:47:49 -07001781 * Based on the formula and pseudo-code provided at:
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001782 * http://www.luschny.de/math/factorial/binarysplitfact.html
1783 *
1784 * Faster algorithms exist, but they're more complicated and depend on
Ezio Melotti9527afd2010-07-08 15:03:02 +00001785 * a fast prime factorization algorithm.
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001786 *
1787 * Notes on the algorithm
1788 * ----------------------
1789 *
1790 * factorial(n) is written in the form 2**k * m, with m odd. k and m are
1791 * computed separately, and then combined using a left shift.
1792 *
1793 * The function factorial_odd_part computes the odd part m (i.e., the greatest
1794 * odd divisor) of factorial(n), using the formula:
1795 *
1796 * factorial_odd_part(n) =
1797 *
1798 * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
1799 *
1800 * Example: factorial_odd_part(20) =
1801 *
1802 * (1) *
1803 * (1) *
1804 * (1 * 3 * 5) *
1805 * (1 * 3 * 5 * 7 * 9)
1806 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1807 *
1808 * Here i goes from large to small: the first term corresponds to i=4 (any
1809 * larger i gives an empty product), and the last term corresponds to i=0.
1810 * Each term can be computed from the last by multiplying by the extra odd
1811 * numbers required: e.g., to get from the penultimate term to the last one,
1812 * we multiply by (11 * 13 * 15 * 17 * 19).
1813 *
1814 * To see a hint of why this formula works, here are the same numbers as above
1815 * but with the even parts (i.e., the appropriate powers of 2) included. For
1816 * each subterm in the product for i, we multiply that subterm by 2**i:
1817 *
1818 * factorial(20) =
1819 *
1820 * (16) *
1821 * (8) *
1822 * (4 * 12 * 20) *
1823 * (2 * 6 * 10 * 14 * 18) *
1824 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1825 *
1826 * The factorial_partial_product function computes the product of all odd j in
1827 * range(start, stop) for given start and stop. It's used to compute the
1828 * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
1829 * operates recursively, repeatedly splitting the range into two roughly equal
1830 * pieces until the subranges are small enough to be computed using only C
1831 * integer arithmetic.
1832 *
1833 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
1834 * the factorial) is computed independently in the main math_factorial
1835 * function. By standard results, its value is:
1836 *
1837 * two_valuation = n//2 + n//4 + n//8 + ....
1838 *
1839 * It can be shown (e.g., by complete induction on n) that two_valuation is
1840 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
1841 * '1'-bits in the binary expansion of n.
1842 */
1843
1844/* factorial_partial_product: Compute product(range(start, stop, 2)) using
1845 * divide and conquer. Assumes start and stop are odd and stop > start.
1846 * max_bits must be >= bit_length(stop - 2). */
1847
1848static PyObject *
1849factorial_partial_product(unsigned long start, unsigned long stop,
1850 unsigned long max_bits)
1851{
1852 unsigned long midpoint, num_operands;
1853 PyObject *left = NULL, *right = NULL, *result = NULL;
1854
1855 /* If the return value will fit an unsigned long, then we can
1856 * multiply in a tight, fast loop where each multiply is O(1).
1857 * Compute an upper bound on the number of bits required to store
1858 * the answer.
1859 *
1860 * Storing some integer z requires floor(lg(z))+1 bits, which is
1861 * conveniently the value returned by bit_length(z). The
1862 * product x*y will require at most
1863 * bit_length(x) + bit_length(y) bits to store, based
1864 * on the idea that lg product = lg x + lg y.
1865 *
1866 * We know that stop - 2 is the largest number to be multiplied. From
1867 * there, we have: bit_length(answer) <= num_operands *
1868 * bit_length(stop - 2)
1869 */
1870
1871 num_operands = (stop - start) / 2;
1872 /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
1873 * unlikely case of an overflow in num_operands * max_bits. */
1874 if (num_operands <= 8 * SIZEOF_LONG &&
1875 num_operands * max_bits <= 8 * SIZEOF_LONG) {
1876 unsigned long j, total;
1877 for (total = start, j = start + 2; j < stop; j += 2)
1878 total *= j;
1879 return PyLong_FromUnsignedLong(total);
1880 }
1881
1882 /* find midpoint of range(start, stop), rounded up to next odd number. */
1883 midpoint = (start + num_operands) | 1;
1884 left = factorial_partial_product(start, midpoint,
1885 bit_length(midpoint - 2));
1886 if (left == NULL)
1887 goto error;
1888 right = factorial_partial_product(midpoint, stop, max_bits);
1889 if (right == NULL)
1890 goto error;
1891 result = PyNumber_Multiply(left, right);
1892
1893 error:
1894 Py_XDECREF(left);
1895 Py_XDECREF(right);
1896 return result;
1897}
1898
1899/* factorial_odd_part: compute the odd part of factorial(n). */
1900
1901static PyObject *
1902factorial_odd_part(unsigned long n)
1903{
1904 long i;
1905 unsigned long v, lower, upper;
1906 PyObject *partial, *tmp, *inner, *outer;
1907
1908 inner = PyLong_FromLong(1);
1909 if (inner == NULL)
1910 return NULL;
1911 outer = inner;
1912 Py_INCREF(outer);
1913
1914 upper = 3;
1915 for (i = bit_length(n) - 2; i >= 0; i--) {
1916 v = n >> i;
1917 if (v <= 2)
1918 continue;
1919 lower = upper;
1920 /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
1921 upper = (v + 1) | 1;
1922 /* Here inner is the product of all odd integers j in the range (0,
1923 n/2**(i+1)]. The factorial_partial_product call below gives the
1924 product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
1925 partial = factorial_partial_product(lower, upper, bit_length(upper-2));
1926 /* inner *= partial */
1927 if (partial == NULL)
1928 goto error;
1929 tmp = PyNumber_Multiply(inner, partial);
1930 Py_DECREF(partial);
1931 if (tmp == NULL)
1932 goto error;
1933 Py_DECREF(inner);
1934 inner = tmp;
1935 /* Now inner is the product of all odd integers j in the range (0,
1936 n/2**i], giving the inner product in the formula above. */
1937
1938 /* outer *= inner; */
1939 tmp = PyNumber_Multiply(outer, inner);
1940 if (tmp == NULL)
1941 goto error;
1942 Py_DECREF(outer);
1943 outer = tmp;
1944 }
Mark Dickinson76464492012-10-25 10:46:28 +01001945 Py_DECREF(inner);
1946 return outer;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001947
1948 error:
1949 Py_DECREF(outer);
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001950 Py_DECREF(inner);
Mark Dickinson76464492012-10-25 10:46:28 +01001951 return NULL;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001952}
1953
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001954
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001955/* Lookup table for small factorial values */
1956
1957static const unsigned long SmallFactorials[] = {
1958 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
1959 362880, 3628800, 39916800, 479001600,
1960#if SIZEOF_LONG >= 8
1961 6227020800, 87178291200, 1307674368000,
1962 20922789888000, 355687428096000, 6402373705728000,
1963 121645100408832000, 2432902008176640000
1964#endif
1965};
1966
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001967/*[clinic input]
1968math.factorial
1969
1970 x as arg: object
1971 /
1972
1973Find x!.
1974
1975Raise a ValueError if x is negative or non-integral.
1976[clinic start generated code]*/
1977
Barry Warsaw8b43b191996-12-09 22:32:36 +00001978static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001979math_factorial(PyObject *module, PyObject *arg)
1980/*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001981{
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001982 long x, two_valuation;
Mark Dickinson5990d282014-04-10 09:29:39 -04001983 int overflow;
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001984 PyObject *result, *odd_part, *pyint_form;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001985
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001986 if (PyFloat_Check(arg)) {
Serhiy Storchaka231aad32019-06-17 16:57:27 +03001987 if (PyErr_WarnEx(PyExc_DeprecationWarning,
1988 "Using factorial() with floats is deprecated",
1989 1) < 0)
1990 {
1991 return NULL;
1992 }
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001993 PyObject *lx;
1994 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
1995 if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
1996 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001997 "factorial() only accepts integral values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001998 return NULL;
1999 }
2000 lx = PyLong_FromDouble(dx);
2001 if (lx == NULL)
2002 return NULL;
Mark Dickinson5990d282014-04-10 09:29:39 -04002003 x = PyLong_AsLongAndOverflow(lx, &overflow);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002004 Py_DECREF(lx);
2005 }
Pablo Galindoe9ba3702018-09-03 22:20:06 +01002006 else {
2007 pyint_form = PyNumber_Index(arg);
2008 if (pyint_form == NULL) {
2009 return NULL;
2010 }
2011 x = PyLong_AsLongAndOverflow(pyint_form, &overflow);
2012 Py_DECREF(pyint_form);
2013 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002014
Mark Dickinson5990d282014-04-10 09:29:39 -04002015 if (x == -1 && PyErr_Occurred()) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002016 return NULL;
Mark Dickinson5990d282014-04-10 09:29:39 -04002017 }
2018 else if (overflow == 1) {
2019 PyErr_Format(PyExc_OverflowError,
2020 "factorial() argument should not exceed %ld",
2021 LONG_MAX);
2022 return NULL;
2023 }
2024 else if (overflow == -1 || x < 0) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002025 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002026 "factorial() not defined for negative values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002027 return NULL;
2028 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002029
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002030 /* use lookup table if x is small */
Victor Stinner63941882011-09-29 00:42:28 +02002031 if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002032 return PyLong_FromUnsignedLong(SmallFactorials[x]);
2033
2034 /* else express in the form odd_part * 2**two_valuation, and compute as
2035 odd_part << two_valuation. */
2036 odd_part = factorial_odd_part(x);
2037 if (odd_part == NULL)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002038 return NULL;
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03002039 two_valuation = x - count_set_bits(x);
2040 result = _PyLong_Lshift(odd_part, two_valuation);
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002041 Py_DECREF(odd_part);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002042 return result;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002043}
2044
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002045
2046/*[clinic input]
2047math.trunc
2048
2049 x: object
2050 /
2051
2052Truncates the Real x to the nearest Integral toward 0.
2053
2054Uses the __trunc__ magic method.
2055[clinic start generated code]*/
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002056
2057static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002058math_trunc(PyObject *module, PyObject *x)
2059/*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
Christian Heimes400adb02008-02-01 08:12:03 +00002060{
Benjamin Petersonce798522012-01-22 11:24:29 -05002061 _Py_IDENTIFIER(__trunc__);
Benjamin Petersonb0125892010-07-02 13:35:17 +00002062 PyObject *trunc, *result;
Christian Heimes400adb02008-02-01 08:12:03 +00002063
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002064 if (Py_TYPE(x)->tp_dict == NULL) {
2065 if (PyType_Ready(Py_TYPE(x)) < 0)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002066 return NULL;
2067 }
Christian Heimes400adb02008-02-01 08:12:03 +00002068
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002069 trunc = _PyObject_LookupSpecial(x, &PyId___trunc__);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002070 if (trunc == NULL) {
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00002071 if (!PyErr_Occurred())
2072 PyErr_Format(PyExc_TypeError,
2073 "type %.100s doesn't define __trunc__ method",
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002074 Py_TYPE(x)->tp_name);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002075 return NULL;
2076 }
Victor Stinnerf17c3de2016-12-06 18:46:19 +01002077 result = _PyObject_CallNoArg(trunc);
Benjamin Petersonb0125892010-07-02 13:35:17 +00002078 Py_DECREF(trunc);
2079 return result;
Christian Heimes400adb02008-02-01 08:12:03 +00002080}
2081
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002082
2083/*[clinic input]
2084math.frexp
2085
2086 x: double
2087 /
2088
2089Return the mantissa and exponent of x, as pair (m, e).
2090
2091m is a float and e is an int, such that x = m * 2.**e.
2092If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
2093[clinic start generated code]*/
Christian Heimes400adb02008-02-01 08:12:03 +00002094
2095static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002096math_frexp_impl(PyObject *module, double x)
2097/*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002098{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002099 int i;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002100 /* deal with special cases directly, to sidestep platform
2101 differences */
2102 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
2103 i = 0;
2104 }
2105 else {
2106 PyFPE_START_PROTECT("in math_frexp", return 0);
2107 x = frexp(x, &i);
2108 PyFPE_END_PROTECT(x);
2109 }
2110 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002111}
2112
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002113
2114/*[clinic input]
2115math.ldexp
2116
2117 x: double
2118 i: object
2119 /
2120
2121Return x * (2**i).
2122
2123This is essentially the inverse of frexp().
2124[clinic start generated code]*/
Guido van Rossumc6e22901998-12-04 19:26:43 +00002125
Barry Warsaw8b43b191996-12-09 22:32:36 +00002126static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002127math_ldexp_impl(PyObject *module, double x, PyObject *i)
2128/*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002129{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002130 double r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002131 long exp;
2132 int overflow;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002133
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002134 if (PyLong_Check(i)) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002135 /* on overflow, replace exponent with either LONG_MAX
2136 or LONG_MIN, depending on the sign. */
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002137 exp = PyLong_AsLongAndOverflow(i, &overflow);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002138 if (exp == -1 && PyErr_Occurred())
2139 return NULL;
2140 if (overflow)
2141 exp = overflow < 0 ? LONG_MIN : LONG_MAX;
2142 }
2143 else {
2144 PyErr_SetString(PyExc_TypeError,
Serhiy Storchaka95949422013-08-27 19:40:23 +03002145 "Expected an int as second argument to ldexp.");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002146 return NULL;
2147 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002148
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002149 if (x == 0. || !Py_IS_FINITE(x)) {
2150 /* NaNs, zeros and infinities are returned unchanged */
2151 r = x;
2152 errno = 0;
2153 } else if (exp > INT_MAX) {
2154 /* overflow */
2155 r = copysign(Py_HUGE_VAL, x);
2156 errno = ERANGE;
2157 } else if (exp < INT_MIN) {
2158 /* underflow to +-0 */
2159 r = copysign(0., x);
2160 errno = 0;
2161 } else {
2162 errno = 0;
2163 PyFPE_START_PROTECT("in math_ldexp", return 0);
2164 r = ldexp(x, (int)exp);
2165 PyFPE_END_PROTECT(r);
2166 if (Py_IS_INFINITY(r))
2167 errno = ERANGE;
2168 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002169
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002170 if (errno && is_error(r))
2171 return NULL;
2172 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002173}
2174
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002175
2176/*[clinic input]
2177math.modf
2178
2179 x: double
2180 /
2181
2182Return the fractional and integer parts of x.
2183
2184Both results carry the sign of x and are floats.
2185[clinic start generated code]*/
Guido van Rossumc6e22901998-12-04 19:26:43 +00002186
Barry Warsaw8b43b191996-12-09 22:32:36 +00002187static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002188math_modf_impl(PyObject *module, double x)
2189/*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002190{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002191 double y;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002192 /* some platforms don't do the right thing for NaNs and
2193 infinities, so we take care of special cases directly. */
2194 if (!Py_IS_FINITE(x)) {
2195 if (Py_IS_INFINITY(x))
2196 return Py_BuildValue("(dd)", copysign(0., x), x);
2197 else if (Py_IS_NAN(x))
2198 return Py_BuildValue("(dd)", x, x);
2199 }
Christian Heimesa342c012008-04-20 21:01:16 +00002200
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002201 errno = 0;
2202 PyFPE_START_PROTECT("in math_modf", return 0);
2203 x = modf(x, &y);
2204 PyFPE_END_PROTECT(x);
2205 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002206}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00002207
Guido van Rossumc6e22901998-12-04 19:26:43 +00002208
Serhiy Storchaka95949422013-08-27 19:40:23 +03002209/* A decent logarithm is easy to compute even for huge ints, but libm can't
Tim Peters78526162001-09-05 00:53:45 +00002210 do that by itself -- loghelper can. func is log or log10, and name is
Serhiy Storchaka95949422013-08-27 19:40:23 +03002211 "log" or "log10". Note that overflow of the result isn't possible: an int
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00002212 can contain no more than INT_MAX * SHIFT bits, so has value certainly less
2213 than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
Tim Peters78526162001-09-05 00:53:45 +00002214 small enough to fit in an IEEE single. log and log10 are even smaller.
Serhiy Storchaka95949422013-08-27 19:40:23 +03002215 However, intermediate overflow is possible for an int if the number of bits
2216 in that int is larger than PY_SSIZE_T_MAX. */
Tim Peters78526162001-09-05 00:53:45 +00002217
2218static PyObject*
Serhiy Storchakaef1585e2015-12-25 20:01:53 +02002219loghelper(PyObject* arg, double (*func)(double), const char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00002220{
Serhiy Storchaka95949422013-08-27 19:40:23 +03002221 /* If it is int, do it ourselves. */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002222 if (PyLong_Check(arg)) {
Mark Dickinsonc6037172010-09-29 19:06:36 +00002223 double x, result;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002224 Py_ssize_t e;
Mark Dickinsonc6037172010-09-29 19:06:36 +00002225
2226 /* Negative or zero inputs give a ValueError. */
2227 if (Py_SIZE(arg) <= 0) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002228 PyErr_SetString(PyExc_ValueError,
2229 "math domain error");
2230 return NULL;
2231 }
Mark Dickinsonfa41e602010-09-28 07:22:27 +00002232
Mark Dickinsonc6037172010-09-29 19:06:36 +00002233 x = PyLong_AsDouble(arg);
2234 if (x == -1.0 && PyErr_Occurred()) {
2235 if (!PyErr_ExceptionMatches(PyExc_OverflowError))
2236 return NULL;
2237 /* Here the conversion to double overflowed, but it's possible
2238 to compute the log anyway. Clear the exception and continue. */
2239 PyErr_Clear();
2240 x = _PyLong_Frexp((PyLongObject *)arg, &e);
2241 if (x == -1.0 && PyErr_Occurred())
2242 return NULL;
2243 /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
2244 result = func(x) + func(2.0) * e;
2245 }
2246 else
2247 /* Successfully converted x to a double. */
2248 result = func(x);
2249 return PyFloat_FromDouble(result);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002250 }
Tim Peters78526162001-09-05 00:53:45 +00002251
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002252 /* Else let libm handle it by itself. */
2253 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00002254}
2255
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002256
2257/*[clinic input]
2258math.log
2259
2260 x: object
2261 [
2262 base: object(c_default="NULL") = math.e
2263 ]
2264 /
2265
2266Return the logarithm of x to the given base.
2267
2268If the base not specified, returns the natural logarithm (base e) of x.
2269[clinic start generated code]*/
2270
Tim Peters78526162001-09-05 00:53:45 +00002271static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002272math_log_impl(PyObject *module, PyObject *x, int group_right_1,
2273 PyObject *base)
2274/*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/
Tim Peters78526162001-09-05 00:53:45 +00002275{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002276 PyObject *num, *den;
2277 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00002278
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002279 num = loghelper(x, m_log, "log");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002280 if (num == NULL || base == NULL)
2281 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00002282
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002283 den = loghelper(base, m_log, "log");
2284 if (den == NULL) {
2285 Py_DECREF(num);
2286 return NULL;
2287 }
Raymond Hettinger866964c2002-12-14 19:51:34 +00002288
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002289 ans = PyNumber_TrueDivide(num, den);
2290 Py_DECREF(num);
2291 Py_DECREF(den);
2292 return ans;
Tim Peters78526162001-09-05 00:53:45 +00002293}
2294
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002295
2296/*[clinic input]
2297math.log2
2298
2299 x: object
2300 /
2301
2302Return the base 2 logarithm of x.
2303[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002304
2305static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002306math_log2(PyObject *module, PyObject *x)
2307/*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002308{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002309 return loghelper(x, m_log2, "log2");
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002310}
2311
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002312
2313/*[clinic input]
2314math.log10
2315
2316 x: object
2317 /
2318
2319Return the base 10 logarithm of x.
2320[clinic start generated code]*/
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002321
2322static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002323math_log10(PyObject *module, PyObject *x)
2324/*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
Tim Peters78526162001-09-05 00:53:45 +00002325{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002326 return loghelper(x, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00002327}
2328
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002329
2330/*[clinic input]
2331math.fmod
2332
2333 x: double
2334 y: double
2335 /
2336
2337Return fmod(x, y), according to platform C.
2338
2339x % y may differ.
2340[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002341
Christian Heimes53876d92008-04-19 00:31:39 +00002342static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002343math_fmod_impl(PyObject *module, double x, double y)
2344/*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
Christian Heimes53876d92008-04-19 00:31:39 +00002345{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002346 double r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002347 /* fmod(x, +/-Inf) returns x for finite x. */
2348 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
2349 return PyFloat_FromDouble(x);
2350 errno = 0;
2351 PyFPE_START_PROTECT("in math_fmod", return 0);
2352 r = fmod(x, y);
2353 PyFPE_END_PROTECT(r);
2354 if (Py_IS_NAN(r)) {
2355 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
2356 errno = EDOM;
2357 else
2358 errno = 0;
2359 }
2360 if (errno && is_error(r))
2361 return NULL;
2362 else
2363 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00002364}
2365
Raymond Hettinger13990742018-08-11 11:26:36 -07002366/*
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002367Given an *n* length *vec* of values and a value *max*, compute:
Raymond Hettinger13990742018-08-11 11:26:36 -07002368
Raymond Hettingerc630e102018-08-11 18:39:05 -07002369 max * sqrt(sum((x / max) ** 2 for x in vec))
Raymond Hettinger13990742018-08-11 11:26:36 -07002370
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002371The value of the *max* variable must be non-negative and
Raymond Hettinger216aaaa2018-11-09 01:06:02 -08002372equal to the absolute value of the largest magnitude
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002373entry in the vector. If n==0, then *max* should be 0.0.
2374If an infinity is present in the vec, *max* should be INF.
Raymond Hettingerc630e102018-08-11 18:39:05 -07002375
2376The *found_nan* variable indicates whether some member of
2377the *vec* is a NaN.
Raymond Hettinger21786f52018-08-28 22:47:24 -07002378
2379To improve accuracy and to increase the number of cases where
2380vector_norm() is commutative, we use a variant of Neumaier
2381summation specialized to exploit that we always know that
2382|csum| >= |x|.
2383
2384The *csum* variable tracks the cumulative sum and *frac* tracks
2385the cumulative fractional errors at each step. Since this
2386variant assumes that |csum| >= |x| at each step, we establish
2387the precondition by starting the accumulation from 1.0 which
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002388represents the largest possible value of (x/max)**2.
2389
2390After the loop is finished, the initial 1.0 is subtracted out
2391for a net zero effect on the final sum. Since *csum* will be
2392greater than 1.0, the subtraction of 1.0 will not cause
2393fractional digits to be dropped from *csum*.
Raymond Hettinger21786f52018-08-28 22:47:24 -07002394
Raymond Hettinger13990742018-08-11 11:26:36 -07002395*/
2396
2397static inline double
Raymond Hettingerc630e102018-08-11 18:39:05 -07002398vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
Raymond Hettinger13990742018-08-11 11:26:36 -07002399{
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002400 double x, csum = 1.0, oldcsum, frac = 0.0;
Raymond Hettinger13990742018-08-11 11:26:36 -07002401 Py_ssize_t i;
2402
Raymond Hettingerc630e102018-08-11 18:39:05 -07002403 if (Py_IS_INFINITY(max)) {
2404 return max;
2405 }
2406 if (found_nan) {
2407 return Py_NAN;
2408 }
Raymond Hettingerf3267142018-09-02 13:34:21 -07002409 if (max == 0.0 || n <= 1) {
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002410 return max;
Raymond Hettinger13990742018-08-11 11:26:36 -07002411 }
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002412 for (i=0 ; i < n ; i++) {
Raymond Hettinger13990742018-08-11 11:26:36 -07002413 x = vec[i];
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002414 assert(Py_IS_FINITE(x) && fabs(x) <= max);
Raymond Hettinger13990742018-08-11 11:26:36 -07002415 x /= max;
Raymond Hettinger21786f52018-08-28 22:47:24 -07002416 x = x*x;
Raymond Hettinger13990742018-08-11 11:26:36 -07002417 oldcsum = csum;
2418 csum += x;
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002419 assert(csum >= x);
Raymond Hettinger21786f52018-08-28 22:47:24 -07002420 frac += (oldcsum - csum) + x;
Raymond Hettinger13990742018-08-11 11:26:36 -07002421 }
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002422 return max * sqrt(csum - 1.0 + frac);
Raymond Hettinger13990742018-08-11 11:26:36 -07002423}
2424
Raymond Hettingerc630e102018-08-11 18:39:05 -07002425#define NUM_STACK_ELEMS 16
2426
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002427/*[clinic input]
2428math.dist
2429
Ammar Askarcb08a712019-01-12 01:23:41 -05002430 p: object(subclass_of='&PyTuple_Type')
2431 q: object(subclass_of='&PyTuple_Type')
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002432 /
2433
2434Return the Euclidean distance between two points p and q.
2435
2436The points should be specified as tuples of coordinates.
2437Both tuples must be the same size.
2438
2439Roughly equivalent to:
2440 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
2441[clinic start generated code]*/
2442
2443static PyObject *
2444math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
Ammar Askarcb08a712019-01-12 01:23:41 -05002445/*[clinic end generated code: output=56bd9538d06bbcfe input=937122eaa5f19272]*/
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002446{
2447 PyObject *item;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002448 double max = 0.0;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002449 double x, px, qx, result;
2450 Py_ssize_t i, m, n;
2451 int found_nan = 0;
Raymond Hettingerc630e102018-08-11 18:39:05 -07002452 double diffs_on_stack[NUM_STACK_ELEMS];
2453 double *diffs = diffs_on_stack;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002454
2455 m = PyTuple_GET_SIZE(p);
2456 n = PyTuple_GET_SIZE(q);
2457 if (m != n) {
2458 PyErr_SetString(PyExc_ValueError,
2459 "both points must have the same number of dimensions");
2460 return NULL;
2461
2462 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002463 if (n > NUM_STACK_ELEMS) {
2464 diffs = (double *) PyObject_Malloc(n * sizeof(double));
2465 if (diffs == NULL) {
Zackery Spytz4c49da02018-12-07 03:11:30 -07002466 return PyErr_NoMemory();
Raymond Hettingerc630e102018-08-11 18:39:05 -07002467 }
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002468 }
2469 for (i=0 ; i<n ; i++) {
2470 item = PyTuple_GET_ITEM(p, i);
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002471 ASSIGN_DOUBLE(px, item, error_exit);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002472 item = PyTuple_GET_ITEM(q, i);
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002473 ASSIGN_DOUBLE(qx, item, error_exit);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002474 x = fabs(px - qx);
2475 diffs[i] = x;
2476 found_nan |= Py_IS_NAN(x);
2477 if (x > max) {
2478 max = x;
2479 }
2480 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002481 result = vector_norm(n, diffs, max, found_nan);
2482 if (diffs != diffs_on_stack) {
2483 PyObject_Free(diffs);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002484 }
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002485 return PyFloat_FromDouble(result);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002486
2487 error_exit:
2488 if (diffs != diffs_on_stack) {
2489 PyObject_Free(diffs);
2490 }
2491 return NULL;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002492}
2493
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002494/* AC: cannot convert yet, waiting for *args support */
Christian Heimes53876d92008-04-19 00:31:39 +00002495static PyObject *
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002496math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
Christian Heimes53876d92008-04-19 00:31:39 +00002497{
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002498 Py_ssize_t i;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002499 PyObject *item;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002500 double max = 0.0;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002501 double x, result;
2502 int found_nan = 0;
Raymond Hettingerc630e102018-08-11 18:39:05 -07002503 double coord_on_stack[NUM_STACK_ELEMS];
2504 double *coordinates = coord_on_stack;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002505
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002506 if (nargs > NUM_STACK_ELEMS) {
2507 coordinates = (double *) PyObject_Malloc(nargs * sizeof(double));
Zackery Spytz4c49da02018-12-07 03:11:30 -07002508 if (coordinates == NULL) {
2509 return PyErr_NoMemory();
2510 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002511 }
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002512 for (i = 0; i < nargs; i++) {
2513 item = args[i];
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002514 ASSIGN_DOUBLE(x, item, error_exit);
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002515 x = fabs(x);
2516 coordinates[i] = x;
2517 found_nan |= Py_IS_NAN(x);
2518 if (x > max) {
2519 max = x;
2520 }
2521 }
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002522 result = vector_norm(nargs, coordinates, max, found_nan);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002523 if (coordinates != coord_on_stack) {
2524 PyObject_Free(coordinates);
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002525 }
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002526 return PyFloat_FromDouble(result);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002527
2528 error_exit:
2529 if (coordinates != coord_on_stack) {
2530 PyObject_Free(coordinates);
2531 }
2532 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +00002533}
2534
Raymond Hettingerc630e102018-08-11 18:39:05 -07002535#undef NUM_STACK_ELEMS
2536
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002537PyDoc_STRVAR(math_hypot_doc,
2538 "hypot(*coordinates) -> value\n\n\
2539Multidimensional Euclidean distance from the origin to a point.\n\
2540\n\
2541Roughly equivalent to:\n\
2542 sqrt(sum(x**2 for x in coordinates))\n\
2543\n\
2544For a two dimensional point (x, y), gives the hypotenuse\n\
2545using the Pythagorean theorem: sqrt(x*x + y*y).\n\
2546\n\
2547For example, the hypotenuse of a 3/4/5 right triangle is:\n\
2548\n\
2549 >>> hypot(3.0, 4.0)\n\
2550 5.0\n\
2551");
Christian Heimes53876d92008-04-19 00:31:39 +00002552
2553/* pow can't use math_2, but needs its own wrapper: the problem is
2554 that an infinite result can arise either as a result of overflow
2555 (in which case OverflowError should be raised) or as a result of
2556 e.g. 0.**-5. (for which ValueError needs to be raised.)
2557*/
2558
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002559/*[clinic input]
2560math.pow
Christian Heimes53876d92008-04-19 00:31:39 +00002561
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002562 x: double
2563 y: double
2564 /
2565
2566Return x**y (x to the power of y).
2567[clinic start generated code]*/
2568
2569static PyObject *
2570math_pow_impl(PyObject *module, double x, double y)
2571/*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
2572{
2573 double r;
2574 int odd_y;
Christian Heimesa342c012008-04-20 21:01:16 +00002575
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002576 /* deal directly with IEEE specials, to cope with problems on various
2577 platforms whose semantics don't exactly match C99 */
2578 r = 0.; /* silence compiler warning */
2579 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
2580 errno = 0;
2581 if (Py_IS_NAN(x))
2582 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
2583 else if (Py_IS_NAN(y))
2584 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
2585 else if (Py_IS_INFINITY(x)) {
2586 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
2587 if (y > 0.)
2588 r = odd_y ? x : fabs(x);
2589 else if (y == 0.)
2590 r = 1.;
2591 else /* y < 0. */
2592 r = odd_y ? copysign(0., x) : 0.;
2593 }
2594 else if (Py_IS_INFINITY(y)) {
2595 if (fabs(x) == 1.0)
2596 r = 1.;
2597 else if (y > 0. && fabs(x) > 1.0)
2598 r = y;
2599 else if (y < 0. && fabs(x) < 1.0) {
2600 r = -y; /* result is +inf */
2601 if (x == 0.) /* 0**-inf: divide-by-zero */
2602 errno = EDOM;
2603 }
2604 else
2605 r = 0.;
2606 }
2607 }
2608 else {
2609 /* let libm handle finite**finite */
2610 errno = 0;
2611 PyFPE_START_PROTECT("in math_pow", return 0);
2612 r = pow(x, y);
2613 PyFPE_END_PROTECT(r);
2614 /* a NaN result should arise only from (-ve)**(finite
2615 non-integer); in this case we want to raise ValueError. */
2616 if (!Py_IS_FINITE(r)) {
2617 if (Py_IS_NAN(r)) {
2618 errno = EDOM;
2619 }
2620 /*
2621 an infinite result here arises either from:
2622 (A) (+/-0.)**negative (-> divide-by-zero)
2623 (B) overflow of x**y with x and y finite
2624 */
2625 else if (Py_IS_INFINITY(r)) {
2626 if (x == 0.)
2627 errno = EDOM;
2628 else
2629 errno = ERANGE;
2630 }
2631 }
2632 }
Christian Heimes53876d92008-04-19 00:31:39 +00002633
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002634 if (errno && is_error(r))
2635 return NULL;
2636 else
2637 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00002638}
2639
Christian Heimes53876d92008-04-19 00:31:39 +00002640
Christian Heimes072c0f12008-01-03 23:01:04 +00002641static const double degToRad = Py_MATH_PI / 180.0;
2642static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002643
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002644/*[clinic input]
2645math.degrees
2646
2647 x: double
2648 /
2649
2650Convert angle x from radians to degrees.
2651[clinic start generated code]*/
2652
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002653static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002654math_degrees_impl(PyObject *module, double x)
2655/*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002656{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002657 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002658}
2659
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002660
2661/*[clinic input]
2662math.radians
2663
2664 x: double
2665 /
2666
2667Convert angle x from degrees to radians.
2668[clinic start generated code]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002669
2670static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002671math_radians_impl(PyObject *module, double x)
2672/*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002673{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002674 return PyFloat_FromDouble(x * degToRad);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002675}
2676
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002677
2678/*[clinic input]
2679math.isfinite
2680
2681 x: double
2682 /
2683
2684Return True if x is neither an infinity nor a NaN, and False otherwise.
2685[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002686
Christian Heimes072c0f12008-01-03 23:01:04 +00002687static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002688math_isfinite_impl(PyObject *module, double x)
2689/*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002690{
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002691 return PyBool_FromLong((long)Py_IS_FINITE(x));
2692}
2693
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002694
2695/*[clinic input]
2696math.isnan
2697
2698 x: double
2699 /
2700
2701Return True if x is a NaN (not a number), and False otherwise.
2702[clinic start generated code]*/
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002703
2704static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002705math_isnan_impl(PyObject *module, double x)
2706/*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002707{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002708 return PyBool_FromLong((long)Py_IS_NAN(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00002709}
2710
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002711
2712/*[clinic input]
2713math.isinf
2714
2715 x: double
2716 /
2717
2718Return True if x is a positive or negative infinity, and False otherwise.
2719[clinic start generated code]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002720
2721static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002722math_isinf_impl(PyObject *module, double x)
2723/*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002724{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002725 return PyBool_FromLong((long)Py_IS_INFINITY(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00002726}
2727
Christian Heimes072c0f12008-01-03 23:01:04 +00002728
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002729/*[clinic input]
2730math.isclose -> bool
2731
2732 a: double
2733 b: double
2734 *
2735 rel_tol: double = 1e-09
2736 maximum difference for being considered "close", relative to the
2737 magnitude of the input values
2738 abs_tol: double = 0.0
2739 maximum difference for being considered "close", regardless of the
2740 magnitude of the input values
2741
2742Determine whether two floating point numbers are close in value.
2743
2744Return True if a is close in value to b, and False otherwise.
2745
2746For the values to be considered close, the difference between them
2747must be smaller than at least one of the tolerances.
2748
2749-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
2750is, NaN is not close to anything, even itself. inf and -inf are
2751only close to themselves.
2752[clinic start generated code]*/
2753
2754static int
2755math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
2756 double abs_tol)
2757/*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/
Tal Einatd5519ed2015-05-31 22:05:00 +03002758{
Tal Einatd5519ed2015-05-31 22:05:00 +03002759 double diff = 0.0;
Tal Einatd5519ed2015-05-31 22:05:00 +03002760
2761 /* sanity check on the inputs */
2762 if (rel_tol < 0.0 || abs_tol < 0.0 ) {
2763 PyErr_SetString(PyExc_ValueError,
2764 "tolerances must be non-negative");
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002765 return -1;
Tal Einatd5519ed2015-05-31 22:05:00 +03002766 }
2767
2768 if ( a == b ) {
2769 /* short circuit exact equality -- needed to catch two infinities of
2770 the same sign. And perhaps speeds things up a bit sometimes.
2771 */
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002772 return 1;
Tal Einatd5519ed2015-05-31 22:05:00 +03002773 }
2774
2775 /* This catches the case of two infinities of opposite sign, or
2776 one infinity and one finite number. Two infinities of opposite
2777 sign would otherwise have an infinite relative tolerance.
2778 Two infinities of the same sign are caught by the equality check
2779 above.
2780 */
2781
2782 if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002783 return 0;
Tal Einatd5519ed2015-05-31 22:05:00 +03002784 }
2785
2786 /* now do the regular computation
2787 this is essentially the "weak" test from the Boost library
2788 */
2789
2790 diff = fabs(b - a);
2791
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002792 return (((diff <= fabs(rel_tol * b)) ||
2793 (diff <= fabs(rel_tol * a))) ||
2794 (diff <= abs_tol));
Tal Einatd5519ed2015-05-31 22:05:00 +03002795}
2796
Pablo Galindo04114112019-03-09 19:18:08 +00002797static inline int
2798_check_long_mult_overflow(long a, long b) {
2799
2800 /* From Python2's int_mul code:
2801
2802 Integer overflow checking for * is painful: Python tried a couple ways, but
2803 they didn't work on all platforms, or failed in endcases (a product of
2804 -sys.maxint-1 has been a particular pain).
2805
2806 Here's another way:
2807
2808 The native long product x*y is either exactly right or *way* off, being
2809 just the last n bits of the true product, where n is the number of bits
2810 in a long (the delivered product is the true product plus i*2**n for
2811 some integer i).
2812
2813 The native double product (double)x * (double)y is subject to three
2814 rounding errors: on a sizeof(long)==8 box, each cast to double can lose
2815 info, and even on a sizeof(long)==4 box, the multiplication can lose info.
2816 But, unlike the native long product, it's not in *range* trouble: even
2817 if sizeof(long)==32 (256-bit longs), the product easily fits in the
2818 dynamic range of a double. So the leading 50 (or so) bits of the double
2819 product are correct.
2820
2821 We check these two ways against each other, and declare victory if they're
2822 approximately the same. Else, because the native long product is the only
2823 one that can lose catastrophic amounts of information, it's the native long
2824 product that must have overflowed.
2825
2826 */
2827
2828 long longprod = (long)((unsigned long)a * b);
2829 double doubleprod = (double)a * (double)b;
2830 double doubled_longprod = (double)longprod;
2831
2832 if (doubled_longprod == doubleprod) {
2833 return 0;
2834 }
2835
2836 const double diff = doubled_longprod - doubleprod;
2837 const double absdiff = diff >= 0.0 ? diff : -diff;
2838 const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod;
2839
2840 if (32.0 * absdiff <= absprod) {
2841 return 0;
2842 }
2843
2844 return 1;
2845}
Tal Einatd5519ed2015-05-31 22:05:00 +03002846
Pablo Galindobc098512019-02-07 07:04:02 +00002847/*[clinic input]
2848math.prod
2849
2850 iterable: object
2851 /
2852 *
2853 start: object(c_default="NULL") = 1
2854
2855Calculate the product of all the elements in the input iterable.
2856
2857The default start value for the product is 1.
2858
2859When the iterable is empty, return the start value. This function is
2860intended specifically for use with numeric values and may reject
2861non-numeric types.
2862[clinic start generated code]*/
2863
2864static PyObject *
2865math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
2866/*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/
2867{
2868 PyObject *result = start;
2869 PyObject *temp, *item, *iter;
2870
2871 iter = PyObject_GetIter(iterable);
2872 if (iter == NULL) {
2873 return NULL;
2874 }
2875
2876 if (result == NULL) {
2877 result = PyLong_FromLong(1);
2878 if (result == NULL) {
2879 Py_DECREF(iter);
2880 return NULL;
2881 }
2882 } else {
2883 Py_INCREF(result);
2884 }
2885#ifndef SLOW_PROD
2886 /* Fast paths for integers keeping temporary products in C.
2887 * Assumes all inputs are the same type.
2888 * If the assumption fails, default to use PyObjects instead.
2889 */
2890 if (PyLong_CheckExact(result)) {
2891 int overflow;
2892 long i_result = PyLong_AsLongAndOverflow(result, &overflow);
2893 /* If this already overflowed, don't even enter the loop. */
2894 if (overflow == 0) {
2895 Py_DECREF(result);
2896 result = NULL;
2897 }
2898 /* Loop over all the items in the iterable until we finish, we overflow
2899 * or we found a non integer element */
2900 while(result == NULL) {
2901 item = PyIter_Next(iter);
2902 if (item == NULL) {
2903 Py_DECREF(iter);
2904 if (PyErr_Occurred()) {
2905 return NULL;
2906 }
2907 return PyLong_FromLong(i_result);
2908 }
2909 if (PyLong_CheckExact(item)) {
2910 long b = PyLong_AsLongAndOverflow(item, &overflow);
Pablo Galindo04114112019-03-09 19:18:08 +00002911 if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) {
2912 long x = i_result * b;
Pablo Galindobc098512019-02-07 07:04:02 +00002913 i_result = x;
2914 Py_DECREF(item);
2915 continue;
2916 }
2917 }
2918 /* Either overflowed or is not an int.
2919 * Restore real objects and process normally */
2920 result = PyLong_FromLong(i_result);
2921 if (result == NULL) {
2922 Py_DECREF(item);
2923 Py_DECREF(iter);
2924 return NULL;
2925 }
2926 temp = PyNumber_Multiply(result, item);
2927 Py_DECREF(result);
2928 Py_DECREF(item);
2929 result = temp;
2930 if (result == NULL) {
2931 Py_DECREF(iter);
2932 return NULL;
2933 }
2934 }
2935 }
2936
2937 /* Fast paths for floats keeping temporary products in C.
2938 * Assumes all inputs are the same type.
2939 * If the assumption fails, default to use PyObjects instead.
2940 */
2941 if (PyFloat_CheckExact(result)) {
2942 double f_result = PyFloat_AS_DOUBLE(result);
2943 Py_DECREF(result);
2944 result = NULL;
2945 while(result == NULL) {
2946 item = PyIter_Next(iter);
2947 if (item == NULL) {
2948 Py_DECREF(iter);
2949 if (PyErr_Occurred()) {
2950 return NULL;
2951 }
2952 return PyFloat_FromDouble(f_result);
2953 }
2954 if (PyFloat_CheckExact(item)) {
2955 f_result *= PyFloat_AS_DOUBLE(item);
2956 Py_DECREF(item);
2957 continue;
2958 }
2959 if (PyLong_CheckExact(item)) {
2960 long value;
2961 int overflow;
2962 value = PyLong_AsLongAndOverflow(item, &overflow);
2963 if (!overflow) {
2964 f_result *= (double)value;
2965 Py_DECREF(item);
2966 continue;
2967 }
2968 }
2969 result = PyFloat_FromDouble(f_result);
2970 if (result == NULL) {
2971 Py_DECREF(item);
2972 Py_DECREF(iter);
2973 return NULL;
2974 }
2975 temp = PyNumber_Multiply(result, item);
2976 Py_DECREF(result);
2977 Py_DECREF(item);
2978 result = temp;
2979 if (result == NULL) {
2980 Py_DECREF(iter);
2981 return NULL;
2982 }
2983 }
2984 }
2985#endif
2986 /* Consume rest of the iterable (if any) that could not be handled
2987 * by specialized functions above.*/
2988 for(;;) {
2989 item = PyIter_Next(iter);
2990 if (item == NULL) {
2991 /* error, or end-of-sequence */
2992 if (PyErr_Occurred()) {
2993 Py_DECREF(result);
2994 result = NULL;
2995 }
2996 break;
2997 }
2998 temp = PyNumber_Multiply(result, item);
2999 Py_DECREF(result);
3000 Py_DECREF(item);
3001 result = temp;
3002 if (result == NULL)
3003 break;
3004 }
3005 Py_DECREF(iter);
3006 return result;
3007}
3008
3009
Yash Aggarwal4a686502019-06-01 12:51:27 +05303010/*[clinic input]
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003011math.perm
3012
3013 n: object
Raymond Hettingere119b3d2019-06-08 08:58:11 -07003014 k: object = None
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003015 /
3016
3017Number of ways to choose k items from n items without repetition and with order.
3018
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003019Evaluates to n! / (n - k)! when k <= n and evaluates
3020to zero when k > n.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003021
Raymond Hettingere119b3d2019-06-08 08:58:11 -07003022If k is not specified or is None, then k defaults to n
3023and the function returns n!.
3024
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003025Raises TypeError if either of the arguments are not integers.
3026Raises ValueError if either of the arguments are negative.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003027[clinic start generated code]*/
3028
3029static PyObject *
3030math_perm_impl(PyObject *module, PyObject *n, PyObject *k)
Raymond Hettingere119b3d2019-06-08 08:58:11 -07003031/*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003032{
3033 PyObject *result = NULL, *factor = NULL;
3034 int overflow, cmp;
3035 long long i, factors;
3036
Raymond Hettingere119b3d2019-06-08 08:58:11 -07003037 if (k == Py_None) {
3038 return math_factorial(module, n);
3039 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003040 n = PyNumber_Index(n);
3041 if (n == NULL) {
3042 return NULL;
3043 }
3044 if (!PyLong_CheckExact(n)) {
3045 Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
3046 if (n == NULL) {
3047 return NULL;
3048 }
3049 }
3050 k = PyNumber_Index(k);
3051 if (k == NULL) {
3052 Py_DECREF(n);
3053 return NULL;
3054 }
3055 if (!PyLong_CheckExact(k)) {
3056 Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
3057 if (k == NULL) {
3058 Py_DECREF(n);
3059 return NULL;
3060 }
3061 }
3062
3063 if (Py_SIZE(n) < 0) {
3064 PyErr_SetString(PyExc_ValueError,
3065 "n must be a non-negative integer");
3066 goto error;
3067 }
Mark Dickinson45e04112019-06-16 11:06:06 +01003068 if (Py_SIZE(k) < 0) {
3069 PyErr_SetString(PyExc_ValueError,
3070 "k must be a non-negative integer");
3071 goto error;
3072 }
3073
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003074 cmp = PyObject_RichCompareBool(n, k, Py_LT);
3075 if (cmp != 0) {
3076 if (cmp > 0) {
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003077 result = PyLong_FromLong(0);
3078 goto done;
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003079 }
3080 goto error;
3081 }
3082
3083 factors = PyLong_AsLongLongAndOverflow(k, &overflow);
3084 if (overflow > 0) {
3085 PyErr_Format(PyExc_OverflowError,
3086 "k must not exceed %lld",
3087 LLONG_MAX);
3088 goto error;
3089 }
Mark Dickinson45e04112019-06-16 11:06:06 +01003090 else if (factors == -1) {
3091 /* k is nonnegative, so a return value of -1 can only indicate error */
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003092 goto error;
3093 }
3094
3095 if (factors == 0) {
3096 result = PyLong_FromLong(1);
3097 goto done;
3098 }
3099
3100 result = n;
3101 Py_INCREF(result);
3102 if (factors == 1) {
3103 goto done;
3104 }
3105
3106 factor = n;
3107 Py_INCREF(factor);
3108 for (i = 1; i < factors; ++i) {
3109 Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One));
3110 if (factor == NULL) {
3111 goto error;
3112 }
3113 Py_SETREF(result, PyNumber_Multiply(result, factor));
3114 if (result == NULL) {
3115 goto error;
3116 }
3117 }
3118 Py_DECREF(factor);
3119
3120done:
3121 Py_DECREF(n);
3122 Py_DECREF(k);
3123 return result;
3124
3125error:
3126 Py_XDECREF(factor);
3127 Py_XDECREF(result);
3128 Py_DECREF(n);
3129 Py_DECREF(k);
3130 return NULL;
3131}
3132
3133
3134/*[clinic input]
Yash Aggarwal4a686502019-06-01 12:51:27 +05303135math.comb
3136
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003137 n: object
3138 k: object
3139 /
Yash Aggarwal4a686502019-06-01 12:51:27 +05303140
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003141Number of ways to choose k items from n items without repetition and without order.
Yash Aggarwal4a686502019-06-01 12:51:27 +05303142
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003143Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates
3144to zero when k > n.
Yash Aggarwal4a686502019-06-01 12:51:27 +05303145
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003146Also called the binomial coefficient because it is equivalent
3147to the coefficient of k-th term in polynomial expansion of the
3148expression (1 + x)**n.
3149
3150Raises TypeError if either of the arguments are not integers.
3151Raises ValueError if either of the arguments are negative.
Yash Aggarwal4a686502019-06-01 12:51:27 +05303152
3153[clinic start generated code]*/
3154
3155static PyObject *
3156math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003157/*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/
Yash Aggarwal4a686502019-06-01 12:51:27 +05303158{
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003159 PyObject *result = NULL, *factor = NULL, *temp;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303160 int overflow, cmp;
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003161 long long i, factors;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303162
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003163 n = PyNumber_Index(n);
3164 if (n == NULL) {
3165 return NULL;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303166 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003167 if (!PyLong_CheckExact(n)) {
3168 Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
3169 if (n == NULL) {
3170 return NULL;
3171 }
3172 }
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003173 k = PyNumber_Index(k);
3174 if (k == NULL) {
3175 Py_DECREF(n);
3176 return NULL;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303177 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003178 if (!PyLong_CheckExact(k)) {
3179 Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
3180 if (k == NULL) {
3181 Py_DECREF(n);
3182 return NULL;
3183 }
3184 }
Yash Aggarwal4a686502019-06-01 12:51:27 +05303185
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003186 if (Py_SIZE(n) < 0) {
3187 PyErr_SetString(PyExc_ValueError,
3188 "n must be a non-negative integer");
3189 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303190 }
Mark Dickinson45e04112019-06-16 11:06:06 +01003191 if (Py_SIZE(k) < 0) {
3192 PyErr_SetString(PyExc_ValueError,
3193 "k must be a non-negative integer");
3194 goto error;
3195 }
3196
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003197 /* k = min(k, n - k) */
3198 temp = PyNumber_Subtract(n, k);
3199 if (temp == NULL) {
3200 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303201 }
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003202 if (Py_SIZE(temp) < 0) {
3203 Py_DECREF(temp);
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003204 result = PyLong_FromLong(0);
3205 goto done;
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003206 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003207 cmp = PyObject_RichCompareBool(temp, k, Py_LT);
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003208 if (cmp > 0) {
3209 Py_SETREF(k, temp);
Yash Aggarwal4a686502019-06-01 12:51:27 +05303210 }
3211 else {
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003212 Py_DECREF(temp);
3213 if (cmp < 0) {
3214 goto error;
3215 }
Yash Aggarwal4a686502019-06-01 12:51:27 +05303216 }
3217
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003218 factors = PyLong_AsLongLongAndOverflow(k, &overflow);
3219 if (overflow > 0) {
Yash Aggarwal4a686502019-06-01 12:51:27 +05303220 PyErr_Format(PyExc_OverflowError,
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003221 "min(n - k, k) must not exceed %lld",
Yash Aggarwal4a686502019-06-01 12:51:27 +05303222 LLONG_MAX);
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003223 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303224 }
Mark Dickinson45e04112019-06-16 11:06:06 +01003225 if (factors == -1) {
3226 /* k is nonnegative, so a return value of -1 can only indicate error */
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003227 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303228 }
3229
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003230 if (factors == 0) {
3231 result = PyLong_FromLong(1);
3232 goto done;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303233 }
3234
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003235 result = n;
3236 Py_INCREF(result);
3237 if (factors == 1) {
3238 goto done;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303239 }
3240
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003241 factor = n;
3242 Py_INCREF(factor);
3243 for (i = 1; i < factors; ++i) {
3244 Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One));
3245 if (factor == NULL) {
3246 goto error;
3247 }
3248 Py_SETREF(result, PyNumber_Multiply(result, factor));
3249 if (result == NULL) {
3250 goto error;
3251 }
Yash Aggarwal4a686502019-06-01 12:51:27 +05303252
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003253 temp = PyLong_FromUnsignedLongLong((unsigned long long)i + 1);
3254 if (temp == NULL) {
3255 goto error;
3256 }
3257 Py_SETREF(result, PyNumber_FloorDivide(result, temp));
3258 Py_DECREF(temp);
3259 if (result == NULL) {
3260 goto error;
3261 }
3262 }
3263 Py_DECREF(factor);
Yash Aggarwal4a686502019-06-01 12:51:27 +05303264
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003265done:
3266 Py_DECREF(n);
3267 Py_DECREF(k);
3268 return result;
3269
3270error:
3271 Py_XDECREF(factor);
3272 Py_XDECREF(result);
3273 Py_DECREF(n);
3274 Py_DECREF(k);
Yash Aggarwal4a686502019-06-01 12:51:27 +05303275 return NULL;
3276}
3277
3278
Barry Warsaw8b43b191996-12-09 22:32:36 +00003279static PyMethodDef math_methods[] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003280 {"acos", math_acos, METH_O, math_acos_doc},
3281 {"acosh", math_acosh, METH_O, math_acosh_doc},
3282 {"asin", math_asin, METH_O, math_asin_doc},
3283 {"asinh", math_asinh, METH_O, math_asinh_doc},
3284 {"atan", math_atan, METH_O, math_atan_doc},
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003285 {"atan2", (PyCFunction)(void(*)(void))math_atan2, METH_FASTCALL, math_atan2_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003286 {"atanh", math_atanh, METH_O, math_atanh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003287 MATH_CEIL_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003288 {"copysign", (PyCFunction)(void(*)(void))math_copysign, METH_FASTCALL, math_copysign_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003289 {"cos", math_cos, METH_O, math_cos_doc},
3290 {"cosh", math_cosh, METH_O, math_cosh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003291 MATH_DEGREES_METHODDEF
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07003292 MATH_DIST_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003293 {"erf", math_erf, METH_O, math_erf_doc},
3294 {"erfc", math_erfc, METH_O, math_erfc_doc},
3295 {"exp", math_exp, METH_O, math_exp_doc},
3296 {"expm1", math_expm1, METH_O, math_expm1_doc},
3297 {"fabs", math_fabs, METH_O, math_fabs_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003298 MATH_FACTORIAL_METHODDEF
3299 MATH_FLOOR_METHODDEF
3300 MATH_FMOD_METHODDEF
3301 MATH_FREXP_METHODDEF
3302 MATH_FSUM_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003303 {"gamma", math_gamma, METH_O, math_gamma_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003304 MATH_GCD_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003305 {"hypot", (PyCFunction)(void(*)(void))math_hypot, METH_FASTCALL, math_hypot_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003306 MATH_ISCLOSE_METHODDEF
3307 MATH_ISFINITE_METHODDEF
3308 MATH_ISINF_METHODDEF
3309 MATH_ISNAN_METHODDEF
Mark Dickinson73934b92019-05-18 12:29:50 +01003310 MATH_ISQRT_METHODDEF
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003311 MATH_LDEXP_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003312 {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003313 MATH_LOG_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003314 {"log1p", math_log1p, METH_O, math_log1p_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003315 MATH_LOG10_METHODDEF
3316 MATH_LOG2_METHODDEF
3317 MATH_MODF_METHODDEF
3318 MATH_POW_METHODDEF
3319 MATH_RADIANS_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003320 {"remainder", (PyCFunction)(void(*)(void))math_remainder, METH_FASTCALL, math_remainder_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003321 {"sin", math_sin, METH_O, math_sin_doc},
3322 {"sinh", math_sinh, METH_O, math_sinh_doc},
3323 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
3324 {"tan", math_tan, METH_O, math_tan_doc},
3325 {"tanh", math_tanh, METH_O, math_tanh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003326 MATH_TRUNC_METHODDEF
Pablo Galindobc098512019-02-07 07:04:02 +00003327 MATH_PROD_METHODDEF
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003328 MATH_PERM_METHODDEF
Yash Aggarwal4a686502019-06-01 12:51:27 +05303329 MATH_COMB_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003330 {NULL, NULL} /* sentinel */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003331};
3332
Guido van Rossumc6e22901998-12-04 19:26:43 +00003333
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00003334PyDoc_STRVAR(module_doc,
Ned Batchelder6faad352019-05-17 05:59:14 -04003335"This module provides access to the mathematical functions\n"
3336"defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00003337
Martin v. Löwis1a214512008-06-11 05:26:20 +00003338
3339static struct PyModuleDef mathmodule = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003340 PyModuleDef_HEAD_INIT,
3341 "math",
3342 module_doc,
3343 -1,
3344 math_methods,
3345 NULL,
3346 NULL,
3347 NULL,
3348 NULL
Martin v. Löwis1a214512008-06-11 05:26:20 +00003349};
3350
Mark Hammondfe51c6d2002-08-02 02:27:13 +00003351PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00003352PyInit_math(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003353{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003354 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00003355
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003356 m = PyModule_Create(&mathmodule);
3357 if (m == NULL)
3358 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00003359
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003360 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
3361 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Guido van Rossum0a891d72016-08-15 09:12:52 -07003362 PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU)); /* 2pi */
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +00003363 PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf()));
3364#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
3365 PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan()));
3366#endif
Barry Warsawfc93f751996-12-17 00:47:03 +00003367
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +00003368 finally:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003369 return m;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003370}