blob: ff937d27c6ce791b401ba13753e2b75977b02d2d [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
Łukasz Langa288234f2013-01-18 13:40:43 +01007.. testsetup::
8
9 from math import fsum
Georg Brandl116aa622007-08-15 14:28:22 +000010
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040011--------------
12
Ned Batchelder6faad352019-05-17 05:59:14 -040013This module provides access to the mathematical functions defined by the C
14standard.
Georg Brandl116aa622007-08-15 14:28:22 +000015
16These functions cannot be used with complex numbers; use the functions of the
17same name from the :mod:`cmath` module if you require support for complex
18numbers. The distinction between functions which support complex numbers and
19those which don't is made since most users do not want to learn quite as much
20mathematics as required to understand complex numbers. Receiving an exception
21instead of a complex result allows earlier detection of the unexpected complex
22number used as a parameter, so that the programmer can determine how and why it
23was generated in the first place.
24
25The following functions are provided by this module. Except when explicitly
26noted otherwise, all return values are floats.
27
Georg Brandl116aa622007-08-15 14:28:22 +000028
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000029Number-theoretic and representation functions
30---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000031
32.. function:: ceil(x)
33
Georg Brandl2a033732008-04-05 17:37:09 +000034 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
35 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030036 :class:`~numbers.Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000037
38
Raymond Hettingerb7fade42019-06-01 15:01:46 -070039.. function:: comb(n, k)
40
41 Return the number of ways to choose *k* items from *n* items without repetition
42 and without order.
43
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070044 Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates
45 to zero when ``k > n``.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070046
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070047 Also called the binomial coefficient because it is equivalent
48 to the coefficient of k-th term in polynomial expansion of the
49 expression ``(1 + x) ** n``.
50
Raymond Hettinger8f4bbb52019-06-04 03:40:23 -070051 Raises :exc:`TypeError` if either of the arguments are not integers.
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070052 Raises :exc:`ValueError` if either of the arguments are negative.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070053
54 .. versionadded:: 3.8
55
56
Christian Heimes072c0f12008-01-03 23:01:04 +000057.. function:: copysign(x, y)
58
Andrew Kuchling8cb1ec32014-02-16 11:11:25 -050059 Return a float with the magnitude (absolute value) of *x* but the sign of
60 *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)``
61 returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000062
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030063
Georg Brandl116aa622007-08-15 14:28:22 +000064.. function:: fabs(x)
65
66 Return the absolute value of *x*.
67
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030068
Georg Brandlc28e1fa2008-06-10 19:20:26 +000069.. function:: factorial(x)
70
Akshay Sharma46126712019-05-31 22:11:17 +053071 Return *x* factorial as an integer. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000072 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000073
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030074
Georg Brandl116aa622007-08-15 14:28:22 +000075.. function:: floor(x)
76
Georg Brandl2a033732008-04-05 17:37:09 +000077 Return the floor of *x*, the largest integer less than or equal to *x*.
78 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030079 :class:`~numbers.Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000080
81
82.. function:: fmod(x, y)
83
84 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
85 Python expression ``x % y`` may not return the same result. The intent of the C
86 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
87 precision) equal to ``x - n*y`` for some integer *n* such that the result has
88 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
89 returns a result with the sign of *y* instead, and may not be exactly computable
90 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
91 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
92 represented exactly as a float, and rounds to the surprising ``1e100``. For
93 this reason, function :func:`fmod` is generally preferred when working with
94 floats, while Python's ``x % y`` is preferred when working with integers.
95
96
97.. function:: frexp(x)
98
99 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
100 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
101 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
102 apart" the internal representation of a float in a portable way.
103
104
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000105.. function:: fsum(iterable)
106
107 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000108 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000109
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000110 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +0000111 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000112 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
113 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000114
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000115 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
116 typical case where the rounding mode is half-even. On some non-Windows
117 builds, the underlying C library uses extended precision addition and may
118 occasionally double-round an intermediate sum causing it to be off in its
119 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000120
Raymond Hettinger477be822009-02-19 06:44:30 +0000121 For further discussion and two alternative approaches, see the `ASPN cookbook
122 recipes for accurate floating point summation
Georg Brandl5d941342016-02-26 19:37:12 +0100123 <https://code.activestate.com/recipes/393090/>`_\.
Raymond Hettinger477be822009-02-19 06:44:30 +0000124
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000125
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300126.. function:: gcd(a, b)
127
128 Return the greatest common divisor of the integers *a* and *b*. If either
129 *a* or *b* is nonzero, then the value of ``gcd(a, b)`` is the largest
130 positive integer that divides both *a* and *b*. ``gcd(0, 0)`` returns
131 ``0``.
132
Benjamin Petersone960d182015-05-12 17:24:17 -0400133 .. versionadded:: 3.5
134
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300135
Tal Einatd5519ed2015-05-31 22:05:00 +0300136.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
137
138 Return ``True`` if the values *a* and *b* are close to each other and
139 ``False`` otherwise.
140
141 Whether or not two values are considered close is determined according to
142 given absolute and relative tolerances.
143
144 *rel_tol* is the relative tolerance -- it is the maximum allowed difference
145 between *a* and *b*, relative to the larger absolute value of *a* or *b*.
146 For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
147 tolerance is ``1e-09``, which assures that the two values are the same
148 within about 9 decimal digits. *rel_tol* must be greater than zero.
149
150 *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
151 zero. *abs_tol* must be at least zero.
152
153 If no errors occur, the result will be:
154 ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
155
156 The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
157 handled according to IEEE rules. Specifically, ``NaN`` is not considered
158 close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
159 considered close to themselves.
160
161 .. versionadded:: 3.5
162
163 .. seealso::
164
165 :pep:`485` -- A function for testing approximate equality
166
167
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000168.. function:: isfinite(x)
169
170 Return ``True`` if *x* is neither an infinity nor a NaN, and
171 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
172
Mark Dickinsonc7622422010-07-11 19:47:37 +0000173 .. versionadded:: 3.2
174
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000175
Christian Heimes072c0f12008-01-03 23:01:04 +0000176.. function:: isinf(x)
177
Mark Dickinsonc7622422010-07-11 19:47:37 +0000178 Return ``True`` if *x* is a positive or negative infinity, and
179 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000180
Christian Heimes072c0f12008-01-03 23:01:04 +0000181
182.. function:: isnan(x)
183
Mark Dickinsonc7622422010-07-11 19:47:37 +0000184 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000185
Christian Heimes072c0f12008-01-03 23:01:04 +0000186
Mark Dickinson73934b92019-05-18 12:29:50 +0100187.. function:: isqrt(n)
188
189 Return the integer square root of the nonnegative integer *n*. This is the
190 floor of the exact square root of *n*, or equivalently the greatest integer
191 *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
192
193 For some applications, it may be more convenient to have the least integer
194 *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
195 the exact square root of *n*. For positive *n*, this can be computed using
196 ``a = 1 + isqrt(n - 1)``.
197
198 .. versionadded:: 3.8
199
200
Georg Brandl116aa622007-08-15 14:28:22 +0000201.. function:: ldexp(x, i)
202
203 Return ``x * (2**i)``. This is essentially the inverse of function
204 :func:`frexp`.
205
206
207.. function:: modf(x)
208
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000209 Return the fractional and integer parts of *x*. Both results carry the sign
210 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000211
Christian Heimes400adb02008-02-01 08:12:03 +0000212
Raymond Hettingere119b3d2019-06-08 08:58:11 -0700213.. function:: perm(n, k=None)
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300214
215 Return the number of ways to choose *k* items from *n* items
216 without repetition and with order.
217
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700218 Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
219 to zero when ``k > n``.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300220
Raymond Hettingere119b3d2019-06-08 08:58:11 -0700221 If *k* is not specified or is None, then *k* defaults to *n*
222 and the function returns ``n!``.
223
Raymond Hettinger8f4bbb52019-06-04 03:40:23 -0700224 Raises :exc:`TypeError` if either of the arguments are not integers.
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700225 Raises :exc:`ValueError` if either of the arguments are negative.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300226
227 .. versionadded:: 3.8
228
229
Pablo Galindobc098512019-02-07 07:04:02 +0000230.. function:: prod(iterable, *, start=1)
231
232 Calculate the product of all the elements in the input *iterable*.
233 The default *start* value for the product is ``1``.
234
235 When the iterable is empty, return the start value. This function is
236 intended specifically for use with numeric values and may reject
237 non-numeric types.
238
239 .. versionadded:: 3.8
240
241
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100242.. function:: remainder(x, y)
243
244 Return the IEEE 754-style remainder of *x* with respect to *y*. For
245 finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
246 where ``n`` is the closest integer to the exact value of the quotient ``x /
247 y``. If ``x / y`` is exactly halfway between two consecutive integers, the
248 nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
249 y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
250
251 Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
252 *x* for any finite *x*, and ``remainder(x, 0)`` and
253 ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
254 If the result of the remainder operation is zero, that zero will have
255 the same sign as *x*.
256
257 On platforms using IEEE 754 binary floating-point, the result of this
258 operation is always exactly representable: no rounding error is introduced.
259
260 .. versionadded:: 3.7
261
262
Christian Heimes400adb02008-02-01 08:12:03 +0000263.. function:: trunc(x)
264
Serhiy Storchakabfdcd432013-10-13 23:09:14 +0300265 Return the :class:`~numbers.Real` value *x* truncated to an
266 :class:`~numbers.Integral` (usually an integer). Delegates to
Eric Appelt308eab92018-03-10 02:44:12 -0600267 :meth:`x.__trunc__() <object.__trunc__>`.
Christian Heimes400adb02008-02-01 08:12:03 +0000268
Christian Heimes400adb02008-02-01 08:12:03 +0000269
Georg Brandl116aa622007-08-15 14:28:22 +0000270Note that :func:`frexp` and :func:`modf` have a different call/return pattern
271than their C equivalents: they take a single argument and return a pair of
272values, rather than returning their second return value through an 'output
273parameter' (there is no such thing in Python).
274
275For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
276floating-point numbers of sufficiently large magnitude are exact integers.
277Python floats typically carry no more than 53 bits of precision (the same as the
278platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
279necessarily has no fractional bits.
280
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000281
282Power and logarithmic functions
283-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000284
Georg Brandl116aa622007-08-15 14:28:22 +0000285.. function:: exp(x)
286
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300287 Return *e* raised to the power *x*, where *e* = 2.718281... is the base
288 of natural logarithms. This is usually more accurate than ``math.e ** x``
289 or ``pow(math.e, x)``.
290
Georg Brandl116aa622007-08-15 14:28:22 +0000291
Mark Dickinson664b5112009-12-16 20:23:42 +0000292.. function:: expm1(x)
293
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300294 Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural
295 logarithms. For small floats *x*, the subtraction in ``exp(x) - 1``
Raymond Hettinger1081d482011-03-31 12:04:53 -0700296 can result in a `significant loss of precision
Georg Brandl5d941342016-02-26 19:37:12 +0100297 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
Raymond Hettinger1081d482011-03-31 12:04:53 -0700298 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000299
300 >>> from math import exp, expm1
301 >>> exp(1e-5) - 1 # gives result accurate to 11 places
302 1.0000050000069649e-05
303 >>> expm1(1e-5) # result accurate to full precision
304 1.0000050000166668e-05
305
Mark Dickinson45f992a2009-12-19 11:20:49 +0000306 .. versionadded:: 3.2
307
Mark Dickinson664b5112009-12-16 20:23:42 +0000308
Georg Brandl116aa622007-08-15 14:28:22 +0000309.. function:: log(x[, base])
310
Georg Brandla6053b42009-09-01 08:11:14 +0000311 With one argument, return the natural logarithm of *x* (to base *e*).
312
313 With two arguments, return the logarithm of *x* to the given *base*,
314 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000315
Georg Brandl116aa622007-08-15 14:28:22 +0000316
Christian Heimes53876d92008-04-19 00:31:39 +0000317.. function:: log1p(x)
318
319 Return the natural logarithm of *1+x* (base *e*). The
320 result is calculated in a way which is accurate for *x* near zero.
321
Christian Heimes53876d92008-04-19 00:31:39 +0000322
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200323.. function:: log2(x)
324
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500325 Return the base-2 logarithm of *x*. This is usually more accurate than
326 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200327
328 .. versionadded:: 3.3
329
Victor Stinner9415afc2011-09-21 03:35:18 +0200330 .. seealso::
331
332 :meth:`int.bit_length` returns the number of bits necessary to represent
333 an integer in binary, excluding the sign and leading zeros.
334
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200335
Georg Brandl116aa622007-08-15 14:28:22 +0000336.. function:: log10(x)
337
Georg Brandla6053b42009-09-01 08:11:14 +0000338 Return the base-10 logarithm of *x*. This is usually more accurate
339 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000340
341
342.. function:: pow(x, y)
343
Christian Heimesa342c012008-04-20 21:01:16 +0000344 Return ``x`` raised to the power ``y``. Exceptional cases follow
345 Annex 'F' of the C99 standard as far as possible. In particular,
346 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
347 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
348 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
349 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000350
Ezio Melotti739d5492013-02-23 04:53:44 +0200351 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
352 its arguments to type :class:`float`. Use ``**`` or the built-in
353 :func:`pow` function for computing exact integer powers.
354
Georg Brandl116aa622007-08-15 14:28:22 +0000355
356.. function:: sqrt(x)
357
358 Return the square root of *x*.
359
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300360
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000361Trigonometric functions
362-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000363
Georg Brandl116aa622007-08-15 14:28:22 +0000364.. function:: acos(x)
365
366 Return the arc cosine of *x*, in radians.
367
368
369.. function:: asin(x)
370
371 Return the arc sine of *x*, in radians.
372
373
374.. function:: atan(x)
375
376 Return the arc tangent of *x*, in radians.
377
378
379.. function:: atan2(y, x)
380
381 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
382 The vector in the plane from the origin to point ``(x, y)`` makes this angle
383 with the positive X axis. The point of :func:`atan2` is that the signs of both
384 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000385 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000386 -1)`` is ``-3*pi/4``.
387
388
389.. function:: cos(x)
390
391 Return the cosine of *x* radians.
392
393
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700394.. function:: dist(p, q)
395
396 Return the Euclidean distance between two points *p* and *q*, each
397 given as a tuple of coordinates. The two tuples must be the same size.
398
399 Roughly equivalent to::
400
401 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
402
403 .. versionadded:: 3.8
404
405
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700406.. function:: hypot(*coordinates)
Georg Brandl116aa622007-08-15 14:28:22 +0000407
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700408 Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
409 This is the length of the vector from the origin to the point
410 given by the coordinates.
411
412 For a two dimensional point ``(x, y)``, this is equivalent to computing
413 the hypotenuse of a right triangle using the Pythagorean theorem,
414 ``sqrt(x*x + y*y)``.
415
416 .. versionchanged:: 3.8
417 Added support for n-dimensional points. Formerly, only the two
418 dimensional case was supported.
Georg Brandl116aa622007-08-15 14:28:22 +0000419
420
421.. function:: sin(x)
422
423 Return the sine of *x* radians.
424
425
426.. function:: tan(x)
427
428 Return the tangent of *x* radians.
429
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300430
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000431Angular conversion
432------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000433
Georg Brandl116aa622007-08-15 14:28:22 +0000434.. function:: degrees(x)
435
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400436 Convert angle *x* from radians to degrees.
Georg Brandl116aa622007-08-15 14:28:22 +0000437
438
439.. function:: radians(x)
440
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400441 Convert angle *x* from degrees to radians.
Georg Brandl116aa622007-08-15 14:28:22 +0000442
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300443
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000444Hyperbolic functions
445--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000446
Georg Brandl5d941342016-02-26 19:37:12 +0100447`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
Raymond Hettinger1081d482011-03-31 12:04:53 -0700448are analogs of trigonometric functions that are based on hyperbolas
449instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000450
Christian Heimesa342c012008-04-20 21:01:16 +0000451.. function:: acosh(x)
452
453 Return the inverse hyperbolic cosine of *x*.
454
Christian Heimesa342c012008-04-20 21:01:16 +0000455
456.. function:: asinh(x)
457
458 Return the inverse hyperbolic sine of *x*.
459
Christian Heimesa342c012008-04-20 21:01:16 +0000460
461.. function:: atanh(x)
462
463 Return the inverse hyperbolic tangent of *x*.
464
Christian Heimesa342c012008-04-20 21:01:16 +0000465
Georg Brandl116aa622007-08-15 14:28:22 +0000466.. function:: cosh(x)
467
468 Return the hyperbolic cosine of *x*.
469
470
471.. function:: sinh(x)
472
473 Return the hyperbolic sine of *x*.
474
475
476.. function:: tanh(x)
477
478 Return the hyperbolic tangent of *x*.
479
Christian Heimes53876d92008-04-19 00:31:39 +0000480
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000481Special functions
482-----------------
483
Mark Dickinson45f992a2009-12-19 11:20:49 +0000484.. function:: erf(x)
485
Georg Brandl5d941342016-02-26 19:37:12 +0100486 Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
Raymond Hettinger1081d482011-03-31 12:04:53 -0700487 *x*.
488
489 The :func:`erf` function can be used to compute traditional statistical
490 functions such as the `cumulative standard normal distribution
Georg Brandl5d941342016-02-26 19:37:12 +0100491 <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
Raymond Hettinger1081d482011-03-31 12:04:53 -0700492
493 def phi(x):
494 'Cumulative distribution function for the standard normal distribution'
495 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000496
497 .. versionadded:: 3.2
498
499
500.. function:: erfc(x)
501
Raymond Hettinger1081d482011-03-31 12:04:53 -0700502 Return the complementary error function at *x*. The `complementary error
Georg Brandl5d941342016-02-26 19:37:12 +0100503 function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700504 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
505 from one would cause a `loss of significance
Georg Brandl5d941342016-02-26 19:37:12 +0100506 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000507
508 .. versionadded:: 3.2
509
510
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000511.. function:: gamma(x)
512
Georg Brandl5d941342016-02-26 19:37:12 +0100513 Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700514 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000515
Mark Dickinson56e09662009-10-01 16:13:29 +0000516 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000517
518
Mark Dickinson05d2e082009-12-11 20:17:17 +0000519.. function:: lgamma(x)
520
521 Return the natural logarithm of the absolute value of the Gamma
522 function at *x*.
523
Mark Dickinson45f992a2009-12-19 11:20:49 +0000524 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000525
526
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000527Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000528---------
Georg Brandl116aa622007-08-15 14:28:22 +0000529
530.. data:: pi
531
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300532 The mathematical constant *π* = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000533
534
535.. data:: e
536
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300537 The mathematical constant *e* = 2.718281..., to available precision.
538
Georg Brandl116aa622007-08-15 14:28:22 +0000539
Guido van Rossum0a891d72016-08-15 09:12:52 -0700540.. data:: tau
541
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300542 The mathematical constant *τ* = 6.283185..., to available precision.
543 Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
Guido van Rossum0a891d72016-08-15 09:12:52 -0700544 its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
545 Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
Sanyam Khurana338cd832018-01-20 05:55:37 +0530546 `Tau day <https://tauday.com/>`_ by eating twice as much pie!
Christian Heimes53876d92008-04-19 00:31:39 +0000547
Georg Brandl4770d6e2016-08-16 07:08:46 +0200548 .. versionadded:: 3.6
549
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300550
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000551.. data:: inf
552
553 A floating-point positive infinity. (For negative infinity, use
554 ``-math.inf``.) Equivalent to the output of ``float('inf')``.
555
556 .. versionadded:: 3.5
557
558
559.. data:: nan
560
561 A floating-point "not a number" (NaN) value. Equivalent to the output of
562 ``float('nan')``.
563
564 .. versionadded:: 3.5
565
566
Georg Brandl495f7b52009-10-27 15:28:25 +0000567.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000568
569 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000570 math library functions. Behavior in exceptional cases follows Annex F of
571 the C99 standard where appropriate. The current implementation will raise
572 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
573 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
574 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000575 ``exp(1000.0)``). A NaN will not be returned from any of the functions
576 above unless one or more of the input arguments was a NaN; in that case,
577 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000578 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
579 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000580
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000581 Note that Python makes no effort to distinguish signaling NaNs from
582 quiet NaNs, and behavior for signaling NaNs remains unspecified.
583 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000584
Georg Brandl116aa622007-08-15 14:28:22 +0000585
586.. seealso::
587
588 Module :mod:`cmath`
589 Complex number versions of many of these functions.
Mark Dickinson73934b92019-05-18 12:29:50 +0100590
591.. |nbsp| unicode:: 0xA0
592 :trim: