blob: f5b48d4d7fe349f3ca31520311f1e4669edd02dd [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
105 The file :file:`example/example3.cpp` contains a complete example that
106 demonstrates how to work with overloaded operators in more detail.
107
108Callbacks and passing anonymous functions
109=========================================
110
111The C++11 standard brought lambda functions and the generic polymorphic
112function wrapper ``std::function<>`` to the C++ programming language, which
113enable powerful new ways of working with functions. Lambda functions come in
114two flavors: stateless lambda function resemble classic function pointers that
115link to an anonymous piece of code, while stateful lambda functions
116additionally depend on captured variables that are stored in an anonymous
117*lambda closure object*.
118
119Here is a simple example of a C++ function that takes an arbitrary function
120(stateful or stateless) with signature ``int -> int`` as an argument and runs
121it with the value 10.
122
123.. code-block:: cpp
124
125 int func_arg(const std::function<int(int)> &f) {
126 return f(10);
127 }
128
129The example below is more involved: it takes a function of signature ``int -> int``
130and returns another function of the same kind. The return value is a stateful
131lambda function, which stores the value ``f`` in the capture object and adds 1 to
132its return value upon execution.
133
134.. code-block:: cpp
135
136 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
137 return [f](int i) {
138 return f(i) + 1;
139 };
140 }
141
Brad Harmon835fc062016-06-16 13:19:15 -0500142This example demonstrates using python named parameters in C++ callbacks which
143requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
144methods of classes:
145
146.. code-block:: cpp
147
148 py::cpp_function func_cpp() {
149 return py::cpp_function([](int i) { return i+1; },
150 py::arg("number"));
151 }
152
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200153After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500154trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200155
156.. code-block:: cpp
157
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200158 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200160 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200161 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200162
163 m.def("func_arg", &func_arg);
164 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500165 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 return m.ptr();
168 }
169
170The following interactive session shows how to call them from Python.
171
Wenzel Jakob99279f72016-06-03 11:19:29 +0200172.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200173
174 $ python
175 >>> import example
176 >>> def square(i):
177 ... return i * i
178 ...
179 >>> example.func_arg(square)
180 100L
181 >>> square_plus_1 = example.func_ret(square)
182 >>> square_plus_1(4)
183 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500184 >>> plus_1 = func_cpp()
185 >>> plus_1(number=43)
186 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200187
188.. note::
189
190 This functionality is very useful when generating bindings for callbacks in
191 C++ libraries (e.g. a graphical user interface library).
192
193 The file :file:`example/example5.cpp` contains a complete example that
194 demonstrates how to work with callbacks and anonymous functions in more detail.
195
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100196.. warning::
197
198 Keep in mind that passing a function from C++ to Python (or vice versa)
199 will instantiate a piece of wrapper code that translates function
200 invocations between the two languages. Copying the same function back and
201 forth between Python and C++ many times in a row will cause these wrappers
202 to accumulate, which can decrease performance.
203
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200204Overriding virtual functions in Python
205======================================
206
Wenzel Jakob93296692015-10-13 23:21:54 +0200207Suppose that a C++ class or interface has a virtual function that we'd like to
208to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
209given as a specific example of how one would do this with traditional C++
210code).
211
212.. code-block:: cpp
213
214 class Animal {
215 public:
216 virtual ~Animal() { }
217 virtual std::string go(int n_times) = 0;
218 };
219
220 class Dog : public Animal {
221 public:
222 std::string go(int n_times) {
223 std::string result;
224 for (int i=0; i<n_times; ++i)
225 result += "woof! ";
226 return result;
227 }
228 };
229
230Let's also suppose that we are given a plain function which calls the
231function ``go()`` on an arbitrary ``Animal`` instance.
232
233.. code-block:: cpp
234
235 std::string call_go(Animal *animal) {
236 return animal->go(3);
237 }
238
239Normally, the binding code for these classes would look as follows:
240
241.. code-block:: cpp
242
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200243 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200244 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200245
246 py::class_<Animal> animal(m, "Animal");
247 animal
248 .def("go", &Animal::go);
249
250 py::class_<Dog>(m, "Dog", animal)
251 .def(py::init<>());
252
253 m.def("call_go", &call_go);
254
255 return m.ptr();
256 }
257
258However, these bindings are impossible to extend: ``Animal`` is not
259constructible, and we clearly require some kind of "trampoline" that
260redirects virtual calls back to Python.
261
262Defining a new type of ``Animal`` from within Python is possible but requires a
263helper class that is defined as follows:
264
265.. code-block:: cpp
266
267 class PyAnimal : public Animal {
268 public:
269 /* Inherit the constructors */
270 using Animal::Animal;
271
272 /* Trampoline (need one for each virtual function) */
273 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200274 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200275 std::string, /* Return type */
276 Animal, /* Parent class */
277 go, /* Name of function */
278 n_times /* Argument(s) */
279 );
280 }
281 };
282
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200283The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
284functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200285a default implementation.
286
287There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
288:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
289after the *Name of the function* slot. This is useful when the C++ and Python
290versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
291
292The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200293
294.. code-block:: cpp
295 :emphasize-lines: 4,6,7
296
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200297 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200298 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200299
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200300 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200301 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200302 .def(py::init<>())
303 .def("go", &Animal::go);
304
305 py::class_<Dog>(m, "Dog", animal)
306 .def(py::init<>());
307
308 m.def("call_go", &call_go);
309
310 return m.ptr();
311 }
312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313Importantly, pybind11 is made aware of the trampoline trampoline helper class
314by specifying it as the *third* template argument to :class:`class_`. The
315second argument with the unique pointer is simply the default holder type used
316by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200317
318The Python session below shows how to override ``Animal::go`` and invoke it via
319a virtual method call.
320
Wenzel Jakob99279f72016-06-03 11:19:29 +0200321.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200322
323 >>> from example import *
324 >>> d = Dog()
325 >>> call_go(d)
326 u'woof! woof! woof! '
327 >>> class Cat(Animal):
328 ... def go(self, n_times):
329 ... return "meow! " * n_times
330 ...
331 >>> c = Cat()
332 >>> call_go(c)
333 u'meow! meow! meow! '
334
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200335Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200336
Wenzel Jakob93296692015-10-13 23:21:54 +0200337.. seealso::
338
339 The file :file:`example/example12.cpp` contains a complete example that
340 demonstrates how to override virtual functions using pybind11 in more
341 detail.
342
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100343
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200344.. _macro_notes:
345
346General notes regarding convenience macros
347==========================================
348
349pybind11 provides a few convenience macros such as
350:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
351``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
352in the preprocessor (which has no concept of types), they *will* get confused
353by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
354T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
355the beginnning of the next parameter. Use a ``typedef`` to bind the template to
356another name and use it in the macro to avoid this problem.
357
358
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100359Global Interpreter Lock (GIL)
360=============================
361
362The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
363used to acquire and release the global interpreter lock in the body of a C++
364function call. In this way, long-running C++ code can be parallelized using
365multiple Python threads. Taking the previous section as an example, this could
366be realized as follows (important changes highlighted):
367
368.. code-block:: cpp
369 :emphasize-lines: 8,9,33,34
370
371 class PyAnimal : public Animal {
372 public:
373 /* Inherit the constructors */
374 using Animal::Animal;
375
376 /* Trampoline (need one for each virtual function) */
377 std::string go(int n_times) {
378 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100379 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100380
381 PYBIND11_OVERLOAD_PURE(
382 std::string, /* Return type */
383 Animal, /* Parent class */
384 go, /* Name of function */
385 n_times /* Argument(s) */
386 );
387 }
388 };
389
390 PYBIND11_PLUGIN(example) {
391 py::module m("example", "pybind11 example plugin");
392
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200393 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100394 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100395 .def(py::init<>())
396 .def("go", &Animal::go);
397
398 py::class_<Dog>(m, "Dog", animal)
399 .def(py::init<>());
400
401 m.def("call_go", [](Animal *animal) -> std::string {
402 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100403 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100404 return call_go(animal);
405 });
406
407 return m.ptr();
408 }
409
Wenzel Jakob93296692015-10-13 23:21:54 +0200410Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200411===========================
412
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200413When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200414between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
415and the Python ``list``, ``set`` and ``dict`` data structures are automatically
416enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
417out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200418
419.. note::
420
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100421 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200422
423.. seealso::
424
425 The file :file:`example/example2.cpp` contains a complete example that
426 demonstrates how to pass STL data types in more detail.
427
Wenzel Jakobb2825952016-04-13 23:33:00 +0200428Binding sequence data types, iterators, the slicing protocol, etc.
429==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200430
431Please refer to the supplemental example for details.
432
433.. seealso::
434
435 The file :file:`example/example6.cpp` contains a complete example that
436 shows how to bind a sequence data type, including length queries
437 (``__len__``), iterators (``__iter__``), the slicing protocol and other
438 kinds of useful operations.
439
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200440Return value policies
441=====================
442
Wenzel Jakob93296692015-10-13 23:21:54 +0200443Python and C++ use wildly different ways of managing the memory and lifetime of
444objects managed by them. This can lead to issues when creating bindings for
445functions that return a non-trivial type. Just by looking at the type
446information, it is not clear whether Python should take charge of the returned
447value and eventually free its resources, or if this is handled on the C++ side.
448For this reason, pybind11 provides a several `return value policy` annotations
449that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100450functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200451
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200452.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
453
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200454+--------------------------------------------------+----------------------------------------------------------------------------+
455| Return value policy | Description |
456+==================================================+============================================================================+
457| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
458| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200459| | pointer. Otherwise, it uses :enum:`return_value::move` or |
460| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200461| | See below for a description of what all of these different policies do. |
462+--------------------------------------------------+----------------------------------------------------------------------------+
463| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200464| | return value is a pointer. This is the default conversion policy for |
465| | function arguments when calling Python functions manually from C++ code |
466| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200467+--------------------------------------------------+----------------------------------------------------------------------------+
468| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
469| | ownership. Python will call the destructor and delete operator when the |
470| | object's reference count reaches zero. Undefined behavior ensues when the |
471| | C++ side does the same.. |
472+--------------------------------------------------+----------------------------------------------------------------------------+
473| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
474| | This policy is comparably safe because the lifetimes of the two instances |
475| | are decoupled. |
476+--------------------------------------------------+----------------------------------------------------------------------------+
477| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
478| | that will be owned by Python. This policy is comparably safe because the |
479| | lifetimes of the two instances (move source and destination) are decoupled.|
480+--------------------------------------------------+----------------------------------------------------------------------------+
481| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
482| | responsible for managing the object's lifetime and deallocating it when |
483| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200484| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200485+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200486| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
487| | object without taking ownership similar to the above |
488| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
489| | the function or property's implicit ``this`` argument (called the *parent*)|
490| | is considered to be the the owner of the return value (the *child*). |
491| | pybind11 then couples the lifetime of the parent to the child via a |
492| | reference relationship that ensures that the parent cannot be garbage |
493| | collected while Python is still using the child. More advanced variations |
494| | of this scheme are also possible using combinations of |
495| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
496| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200497+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200498
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200499The following example snippet shows a use case of the
Wenzel Jakob93296692015-10-13 23:21:54 +0200500:enum:`return_value_policy::reference_internal` policy.
501
502.. code-block:: cpp
503
504 class Example {
505 public:
506 Internal &get_internal() { return internal; }
507 private:
508 Internal internal;
509 };
510
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200511 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200512 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200513
514 py::class_<Example>(m, "Example")
515 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200516 .def("get_internal", &Example::get_internal, "Return the internal data",
517 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200518
519 return m.ptr();
520 }
521
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200522.. warning::
523
524 Code with invalid call policies might access unitialized memory or free
525 data structures multiple times, which can lead to hard-to-debug
526 non-determinism and segmentation faults, hence it is worth spending the
527 time to understand all the different options in the table above.
528
529.. note::
530
531 The next section on :ref:`call_policies` discusses *call policies* that can be
532 specified *in addition* to a return value policy from the list above. Call
533 policies indicate reference relationships that can involve both return values
534 and parameters of functions.
535
536.. note::
537
538 As an alternative to elaborate call policies and lifetime management logic,
539 consider using smart pointers (see the section on :ref:`smart_pointers` for
540 details). Smart pointers can tell whether an object is still referenced from
541 C++ or Python, which generally eliminates the kinds of inconsistencies that
542 can lead to crashes or undefined behavior. For functions returning smart
543 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100544
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200545.. _call_policies:
546
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100547Additional call policies
548========================
549
550In addition to the above return value policies, further `call policies` can be
551specified to indicate dependencies between parameters. There is currently just
552one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
553argument with index ``Patient`` should be kept alive at least until the
554argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200555indices start at one, while zero refers to the return value. For methods, index
556one refers to the implicit ``this`` pointer, while regular arguments begin at
557index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100558
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200559Consider the following example: the binding code for a list append operation
560that ties the lifetime of the newly added element to the underlying container
561might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100562
563.. code-block:: cpp
564
565 py::class_<List>(m, "List")
566 .def("append", &List::append, py::keep_alive<1, 2>());
567
568.. note::
569
570 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
571 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
572 0) policies from Boost.Python.
573
Wenzel Jakob61587162016-01-18 22:38:52 +0100574.. seealso::
575
576 The file :file:`example/example13.cpp` contains a complete example that
577 demonstrates using :class:`keep_alive` in more detail.
578
Wenzel Jakob93296692015-10-13 23:21:54 +0200579Implicit type conversions
580=========================
581
582Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200583that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200584could be a fixed and an arbitrary precision number type).
585
586.. code-block:: cpp
587
588 py::class_<A>(m, "A")
589 /// ... members ...
590
591 py::class_<B>(m, "B")
592 .def(py::init<A>())
593 /// ... members ...
594
595 m.def("func",
596 [](const B &) { /* .... */ }
597 );
598
599To invoke the function ``func`` using a variable ``a`` containing an ``A``
600instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
601will automatically apply an implicit type conversion, which makes it possible
602to directly write ``func(a)``.
603
604In this situation (i.e. where ``B`` has a constructor that converts from
605``A``), the following statement enables similar implicit conversions on the
606Python side:
607
608.. code-block:: cpp
609
610 py::implicitly_convertible<A, B>();
611
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200612.. _static_properties:
613
614Static properties
615=================
616
617The section on :ref:`properties` discussed the creation of instance properties
618that are implemented in terms of C++ getters and setters.
619
620Static properties can also be created in a similar way to expose getters and
621setters of static class attributes. It is important to note that the implicit
622``self`` argument also exists in this case and is used to pass the Python
623``type`` subclass instance. This parameter will often not be needed by the C++
624side, and the following example illustrates how to instantiate a lambda getter
625function that ignores it:
626
627.. code-block:: cpp
628
629 py::class_<Foo>(m, "Foo")
630 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
631
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200632Unique pointers
633===============
634
635Given a class ``Example`` with Python bindings, it's possible to return
636instances wrapped in C++11 unique pointers, like so
637
638.. code-block:: cpp
639
640 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
641
642.. code-block:: cpp
643
644 m.def("create_example", &create_example);
645
646In other words, there is nothing special that needs to be done. While returning
647unique pointers in this way is allowed, it is *illegal* to use them as function
648arguments. For instance, the following function signature cannot be processed
649by pybind11.
650
651.. code-block:: cpp
652
653 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
654
655The above signature would imply that Python needs to give up ownership of an
656object that is passed to this function, which is generally not possible (for
657instance, the object might be referenced elsewhere).
658
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200659.. _smart_pointers:
660
Wenzel Jakob93296692015-10-13 23:21:54 +0200661Smart pointers
662==============
663
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200664This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200665types with internal reference counting. For the simpler C++11 unique pointers,
666refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200667
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200668The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200669template type, which denotes a special *holder* type that is used to manage
670references to the object. When wrapping a type named ``Type``, the default
671value of this template parameter is ``std::unique_ptr<Type>``, which means that
672the object is deallocated when Python's reference count goes to zero.
673
Wenzel Jakob1853b652015-10-18 15:38:50 +0200674It is possible to switch to other types of reference counting wrappers or smart
675pointers, which is useful in codebases that rely on them. For instance, the
676following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200677
678.. code-block:: cpp
679
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100680 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100681
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100682Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200683
Wenzel Jakob1853b652015-10-18 15:38:50 +0200684To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100685argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200686be declared at the top level before any binding code:
687
688.. code-block:: cpp
689
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200690 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200691
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100692.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100693
694 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
695 placeholder name that is used as a template parameter of the second
696 argument. Thus, feel free to use any identifier, but use it consistently on
697 both sides; also, don't use the name of a type that already exists in your
698 codebase.
699
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100700One potential stumbling block when using holder types is that they need to be
701applied consistently. Can you guess what's broken about the following binding
702code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100703
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100704.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100705
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100706 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100707
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100708 class Parent {
709 public:
710 Parent() : child(std::make_shared<Child>()) { }
711 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
712 private:
713 std::shared_ptr<Child> child;
714 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100715
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100716 PYBIND11_PLUGIN(example) {
717 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100718
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100719 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
720
721 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
722 .def(py::init<>())
723 .def("get_child", &Parent::get_child);
724
725 return m.ptr();
726 }
727
728The following Python code will cause undefined behavior (and likely a
729segmentation fault).
730
731.. code-block:: python
732
733 from example import Parent
734 print(Parent().get_child())
735
736The problem is that ``Parent::get_child()`` returns a pointer to an instance of
737``Child``, but the fact that this instance is already managed by
738``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
739pybind11 will create a second independent ``std::shared_ptr<...>`` that also
740claims ownership of the pointer. In the end, the object will be freed **twice**
741since these shared pointers have no way of knowing about each other.
742
743There are two ways to resolve this issue:
744
7451. For types that are managed by a smart pointer class, never use raw pointers
746 in function arguments or return values. In other words: always consistently
747 wrap pointers into their designated holder types (such as
748 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
749 should be modified as follows:
750
751.. code-block:: cpp
752
753 std::shared_ptr<Child> get_child() { return child; }
754
7552. Adjust the definition of ``Child`` by specifying
756 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
757 base class. This adds a small bit of information to ``Child`` that allows
758 pybind11 to realize that there is already an existing
759 ``std::shared_ptr<...>`` and communicate with it. In this case, the
760 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100761
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100762.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
763
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100764.. code-block:: cpp
765
766 class Child : public std::enable_shared_from_this<Child> { };
767
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200768
769Please take a look at the :ref:`macro_notes` before using this feature.
770
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100771.. seealso::
772
773 The file :file:`example/example8.cpp` contains a complete example that
774 demonstrates how to work with custom reference-counting holder types in
775 more detail.
776
Wenzel Jakob93296692015-10-13 23:21:54 +0200777.. _custom_constructors:
778
779Custom constructors
780===================
781
782The syntax for binding constructors was previously introduced, but it only
783works when a constructor with the given parameters actually exists on the C++
784side. To extend this to more general cases, let's take a look at what actually
785happens under the hood: the following statement
786
787.. code-block:: cpp
788
789 py::class_<Example>(m, "Example")
790 .def(py::init<int>());
791
792is short hand notation for
793
794.. code-block:: cpp
795
796 py::class_<Example>(m, "Example")
797 .def("__init__",
798 [](Example &instance, int arg) {
799 new (&instance) Example(arg);
800 }
801 );
802
803In other words, :func:`init` creates an anonymous function that invokes an
804in-place constructor. Memory allocation etc. is already take care of beforehand
805within pybind11.
806
807Catching and throwing exceptions
808================================
809
810When C++ code invoked from Python throws an ``std::exception``, it is
811automatically converted into a Python ``Exception``. pybind11 defines multiple
812special exception classes that will map to different types of Python
813exceptions:
814
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200815.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
816
Wenzel Jakob978e3762016-04-07 18:00:41 +0200817+--------------------------------------+------------------------------+
818| C++ exception type | Python exception type |
819+======================================+==============================+
820| :class:`std::exception` | ``RuntimeError`` |
821+--------------------------------------+------------------------------+
822| :class:`std::bad_alloc` | ``MemoryError`` |
823+--------------------------------------+------------------------------+
824| :class:`std::domain_error` | ``ValueError`` |
825+--------------------------------------+------------------------------+
826| :class:`std::invalid_argument` | ``ValueError`` |
827+--------------------------------------+------------------------------+
828| :class:`std::length_error` | ``ValueError`` |
829+--------------------------------------+------------------------------+
830| :class:`std::out_of_range` | ``ValueError`` |
831+--------------------------------------+------------------------------+
832| :class:`std::range_error` | ``ValueError`` |
833+--------------------------------------+------------------------------+
834| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
835| | implement custom iterators) |
836+--------------------------------------+------------------------------+
837| :class:`pybind11::index_error` | ``IndexError`` (used to |
838| | indicate out of bounds |
839| | accesses in ``__getitem__``, |
840| | ``__setitem__``, etc.) |
841+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400842| :class:`pybind11::value_error` | ``ValueError`` (used to |
843| | indicate wrong value passed |
844| | in ``container.remove(...)`` |
845+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200846| :class:`pybind11::error_already_set` | Indicates that the Python |
847| | exception flag has already |
848| | been initialized |
849+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200850
851When a Python function invoked from C++ throws an exception, it is converted
852into a C++ exception of type :class:`error_already_set` whose string payload
853contains a textual summary.
854
855There is also a special exception :class:`cast_error` that is thrown by
856:func:`handle::call` when the input arguments cannot be converted to Python
857objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200858
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200859.. _opaque:
860
861Treating STL data structures as opaque objects
862==============================================
863
864pybind11 heavily relies on a template matching mechanism to convert parameters
865and return values that are constructed from STL data types such as vectors,
866linked lists, hash tables, etc. This even works in a recursive manner, for
867instance to deal with lists of hash maps of pairs of elementary and custom
868types, etc.
869
870However, a fundamental limitation of this approach is that internal conversions
871between Python and C++ types involve a copy operation that prevents
872pass-by-reference semantics. What does this mean?
873
874Suppose we bind the following function
875
876.. code-block:: cpp
877
878 void append_1(std::vector<int> &v) {
879 v.push_back(1);
880 }
881
882and call it from Python, the following happens:
883
Wenzel Jakob99279f72016-06-03 11:19:29 +0200884.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200885
886 >>> v = [5, 6]
887 >>> append_1(v)
888 >>> print(v)
889 [5, 6]
890
891As you can see, when passing STL data structures by reference, modifications
892are not propagated back the Python side. A similar situation arises when
893exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
894functions:
895
896.. code-block:: cpp
897
898 /* ... definition ... */
899
900 class MyClass {
901 std::vector<int> contents;
902 };
903
904 /* ... binding code ... */
905
906 py::class_<MyClass>(m, "MyClass")
907 .def(py::init<>)
908 .def_readwrite("contents", &MyClass::contents);
909
910In this case, properties can be read and written in their entirety. However, an
911``append`` operaton involving such a list type has no effect:
912
Wenzel Jakob99279f72016-06-03 11:19:29 +0200913.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200914
915 >>> m = MyClass()
916 >>> m.contents = [5, 6]
917 >>> print(m.contents)
918 [5, 6]
919 >>> m.contents.append(7)
920 >>> print(m.contents)
921 [5, 6]
922
923To deal with both of the above situations, pybind11 provides a macro named
924``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
925machinery of types, thus rendering them *opaque*. The contents of opaque
926objects are never inspected or extracted, hence they can be passed by
927reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
928the declaration
929
930.. code-block:: cpp
931
932 PYBIND11_MAKE_OPAQUE(std::vector<int>);
933
934before any binding code (e.g. invocations to ``class_::def()``, etc.). This
935macro must be specified at the top level, since instantiates a partial template
936overload. If your binding code consists of multiple compilation units, it must
937be present in every file preceding any usage of ``std::vector<int>``. Opaque
938types must also have a corresponding ``class_`` declaration to associate them
939with a name in Python, and to define a set of available operations:
940
941.. code-block:: cpp
942
943 py::class_<std::vector<int>>(m, "IntVector")
944 .def(py::init<>())
945 .def("clear", &std::vector<int>::clear)
946 .def("pop_back", &std::vector<int>::pop_back)
947 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
948 .def("__iter__", [](std::vector<int> &v) {
949 return py::make_iterator(v.begin(), v.end());
950 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
951 // ....
952
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200953Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200954
955.. seealso::
956
957 The file :file:`example/example14.cpp` contains a complete example that
958 demonstrates how to create and expose opaque types using pybind11 in more
959 detail.
960
961.. _eigen:
962
963Transparent conversion of dense and sparse Eigen data types
964===========================================================
965
966Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
967its popularity and widespread adoption, pybind11 provides transparent
968conversion support between Eigen and Scientific Python linear algebra data types.
969
970Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +0100971pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200972
9731. Static and dynamic Eigen dense vectors and matrices to instances of
974 ``numpy.ndarray`` (and vice versa).
975
9761. Eigen sparse vectors and matrices to instances of
977 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
978
979This makes it possible to bind most kinds of functions that rely on these types.
980One major caveat are functions that take Eigen matrices *by reference* and modify
981them somehow, in which case the information won't be propagated to the caller.
982
983.. code-block:: cpp
984
985 /* The Python bindings of this function won't replicate
986 the intended effect of modifying the function argument */
987 void scale_by_2(Eigen::Vector3f &v) {
988 v *= 2;
989 }
990
991To see why this is, refer to the section on :ref:`opaque` (although that
992section specifically covers STL data types, the underlying issue is the same).
993The next two sections discuss an efficient alternative for exposing the
994underlying native Eigen types as opaque objects in a way that still integrates
995with NumPy and SciPy.
996
997.. [#f1] http://eigen.tuxfamily.org
998
999.. seealso::
1000
1001 The file :file:`example/eigen.cpp` contains a complete example that
1002 shows how to pass Eigen sparse and dense data types in more detail.
1003
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001004Buffer protocol
1005===============
1006
1007Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001008data between plugin libraries. Types can expose a buffer view [#f2]_, which
1009provides fast direct access to the raw internal data representation. Suppose we
1010want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001011
1012.. code-block:: cpp
1013
1014 class Matrix {
1015 public:
1016 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1017 m_data = new float[rows*cols];
1018 }
1019 float *data() { return m_data; }
1020 size_t rows() const { return m_rows; }
1021 size_t cols() const { return m_cols; }
1022 private:
1023 size_t m_rows, m_cols;
1024 float *m_data;
1025 };
1026
1027The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001028making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001029completely avoid copy operations with Python expressions like
1030``np.array(matrix_instance, copy = False)``.
1031
1032.. code-block:: cpp
1033
1034 py::class_<Matrix>(m, "Matrix")
1035 .def_buffer([](Matrix &m) -> py::buffer_info {
1036 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001037 m.data(), /* Pointer to buffer */
1038 sizeof(float), /* Size of one scalar */
1039 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
1040 2, /* Number of dimensions */
1041 { m.rows(), m.cols() }, /* Buffer dimensions */
1042 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001043 sizeof(float) }
1044 );
1045 });
1046
1047The snippet above binds a lambda function, which can create ``py::buffer_info``
1048description records on demand describing a given matrix. The contents of
1049``py::buffer_info`` mirror the Python buffer protocol specification.
1050
1051.. code-block:: cpp
1052
1053 struct buffer_info {
1054 void *ptr;
1055 size_t itemsize;
1056 std::string format;
1057 int ndim;
1058 std::vector<size_t> shape;
1059 std::vector<size_t> strides;
1060 };
1061
1062To create a C++ function that can take a Python buffer object as an argument,
1063simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1064in a great variety of configurations, hence some safety checks are usually
1065necessary in the function body. Below, you can see an basic example on how to
1066define a custom constructor for the Eigen double precision matrix
1067(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001068buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001069
1070.. code-block:: cpp
1071
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001072 /* Bind MatrixXd (or some other Eigen type) to Python */
1073 typedef Eigen::MatrixXd Matrix;
1074
1075 typedef Matrix::Scalar Scalar;
1076 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1077
1078 py::class_<Matrix>(m, "Matrix")
1079 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001080 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001081
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001082 /* Request a buffer descriptor from Python */
1083 py::buffer_info info = b.request();
1084
1085 /* Some sanity checks ... */
Wenzel Jakobe7628532016-05-05 10:04:44 +02001086 if (info.format != py::format_descriptor<Scalar>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001087 throw std::runtime_error("Incompatible format: expected a double array!");
1088
1089 if (info.ndim != 2)
1090 throw std::runtime_error("Incompatible buffer dimension!");
1091
Wenzel Jakobe7628532016-05-05 10:04:44 +02001092 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001093 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1094 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001095
1096 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001097 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001098
1099 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001100 });
1101
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001102For reference, the ``def_buffer()`` call for this Eigen data type should look
1103as follows:
1104
1105.. code-block:: cpp
1106
1107 .def_buffer([](Matrix &m) -> py::buffer_info {
1108 return py::buffer_info(
1109 m.data(), /* Pointer to buffer */
1110 sizeof(Scalar), /* Size of one scalar */
1111 /* Python struct-style format descriptor */
1112 py::format_descriptor<Scalar>::value,
1113 /* Number of dimensions */
1114 2,
1115 /* Buffer dimensions */
1116 { (size_t) m.rows(),
1117 (size_t) m.cols() },
1118 /* Strides (in bytes) for each index */
1119 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1120 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1121 );
1122 })
1123
1124For a much easier approach of binding Eigen types (although with some
1125limitations), refer to the section on :ref:`eigen`.
1126
Wenzel Jakob93296692015-10-13 23:21:54 +02001127.. seealso::
1128
1129 The file :file:`example/example7.cpp` contains a complete example that
1130 demonstrates using the buffer protocol with pybind11 in more detail.
1131
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001132.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001133
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001134NumPy support
1135=============
1136
1137By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1138restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001139type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001140
1141In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001142array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001143template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001144NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001145
1146.. code-block:: cpp
1147
Wenzel Jakob93296692015-10-13 23:21:54 +02001148 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001149
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001150When it is invoked with a different type (e.g. an integer or a list of
1151integers), the binding code will attempt to cast the input into a NumPy array
1152of the requested type. Note that this feature requires the
1153:file:``pybind11/numpy.h`` header to be included.
1154
1155Data in NumPy arrays is not guaranteed to packed in a dense manner;
1156furthermore, entries can be separated by arbitrary column and row strides.
1157Sometimes, it can be useful to require a function to only accept dense arrays
1158using either the C (row-major) or Fortran (column-major) ordering. This can be
1159accomplished via a second template argument with values ``py::array::c_style``
1160or ``py::array::f_style``.
1161
1162.. code-block:: cpp
1163
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001164 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001165
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001166The ``py::array::forcecast`` argument is the default value of the second
1167template paramenter, and it ensures that non-conforming arguments are converted
1168into an array satisfying the specified requirements instead of trying the next
1169function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001170
1171Vectorizing functions
1172=====================
1173
1174Suppose we want to bind a function with the following signature to Python so
1175that it can process arbitrary NumPy array arguments (vectors, matrices, general
1176N-D arrays) in addition to its normal arguments:
1177
1178.. code-block:: cpp
1179
1180 double my_func(int x, float y, double z);
1181
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001182After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001183
1184.. code-block:: cpp
1185
1186 m.def("vectorized_func", py::vectorize(my_func));
1187
1188Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001189each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001190solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1191entirely on the C++ side and can be crunched down into a tight, optimized loop
1192by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001193``numpy.dtype.float64``.
1194
Wenzel Jakob99279f72016-06-03 11:19:29 +02001195.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001196
1197 >>> x = np.array([[1, 3],[5, 7]])
1198 >>> y = np.array([[2, 4],[6, 8]])
1199 >>> z = 3
1200 >>> result = vectorized_func(x, y, z)
1201
1202The scalar argument ``z`` is transparently replicated 4 times. The input
1203arrays ``x`` and ``y`` are automatically converted into the right types (they
1204are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1205``numpy.dtype.float32``, respectively)
1206
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001207Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001208because it makes little sense to wrap it in a NumPy array. For instance,
1209suppose the function signature was
1210
1211.. code-block:: cpp
1212
1213 double my_func(int x, float y, my_custom_type *z);
1214
1215This can be done with a stateful Lambda closure:
1216
1217.. code-block:: cpp
1218
1219 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1220 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001221 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001222 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1223 return py::vectorize(stateful_closure)(x, y);
1224 }
1225 );
1226
Wenzel Jakob61587162016-01-18 22:38:52 +01001227In cases where the computation is too complicated to be reduced to
1228``vectorize``, it will be necessary to create and access the buffer contents
1229manually. The following snippet contains a complete example that shows how this
1230works (the code is somewhat contrived, since it could have been done more
1231simply using ``vectorize``).
1232
1233.. code-block:: cpp
1234
1235 #include <pybind11/pybind11.h>
1236 #include <pybind11/numpy.h>
1237
1238 namespace py = pybind11;
1239
1240 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1241 auto buf1 = input1.request(), buf2 = input2.request();
1242
1243 if (buf1.ndim != 1 || buf2.ndim != 1)
1244 throw std::runtime_error("Number of dimensions must be one");
1245
1246 if (buf1.shape[0] != buf2.shape[0])
1247 throw std::runtime_error("Input shapes must match");
1248
1249 auto result = py::array(py::buffer_info(
1250 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1251 sizeof(double), /* Size of one item */
Nils Wernerf7048f22016-05-19 11:17:17 +02001252 py::format_descriptor<double>::value(), /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001253 buf1.ndim, /* How many dimensions? */
1254 { buf1.shape[0] }, /* Number of elements for each dimension */
1255 { sizeof(double) } /* Strides for each dimension */
1256 ));
1257
1258 auto buf3 = result.request();
1259
1260 double *ptr1 = (double *) buf1.ptr,
1261 *ptr2 = (double *) buf2.ptr,
1262 *ptr3 = (double *) buf3.ptr;
1263
1264 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1265 ptr3[idx] = ptr1[idx] + ptr2[idx];
1266
1267 return result;
1268 }
1269
1270 PYBIND11_PLUGIN(test) {
1271 py::module m("test");
1272 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1273 return m.ptr();
1274 }
1275
Wenzel Jakob93296692015-10-13 23:21:54 +02001276.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001277
Wenzel Jakob93296692015-10-13 23:21:54 +02001278 The file :file:`example/example10.cpp` contains a complete example that
1279 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001280
Wenzel Jakob93296692015-10-13 23:21:54 +02001281Functions taking Python objects as arguments
1282============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001283
Wenzel Jakob93296692015-10-13 23:21:54 +02001284pybind11 exposes all major Python types using thin C++ wrapper classes. These
1285wrapper classes can also be used as parameters of functions in bindings, which
1286makes it possible to directly work with native Python types on the C++ side.
1287For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001288
Wenzel Jakob93296692015-10-13 23:21:54 +02001289.. code-block:: cpp
1290
1291 void print_dict(py::dict dict) {
1292 /* Easily interact with Python types */
1293 for (auto item : dict)
1294 std::cout << "key=" << item.first << ", "
1295 << "value=" << item.second << std::endl;
1296 }
1297
1298Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001299:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001300:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1301:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1302:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001303
Wenzel Jakob436b7312015-10-20 01:04:30 +02001304In this kind of mixed code, it is often necessary to convert arbitrary C++
1305types to Python, which can be done using :func:`cast`:
1306
1307.. code-block:: cpp
1308
1309 MyClass *cls = ..;
1310 py::object obj = py::cast(cls);
1311
1312The reverse direction uses the following syntax:
1313
1314.. code-block:: cpp
1315
1316 py::object obj = ...;
1317 MyClass *cls = obj.cast<MyClass *>();
1318
1319When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001320It is also possible to call python functions via ``operator()``.
1321
1322.. code-block:: cpp
1323
1324 py::function f = <...>;
1325 py::object result_py = f(1234, "hello", some_instance);
1326 MyClass &result = result_py.cast<MyClass>();
1327
1328The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1329supply arbitrary argument and keyword lists, although these cannot be mixed
1330with other parameters.
1331
1332.. code-block:: cpp
1333
1334 py::function f = <...>;
1335 py::tuple args = py::make_tuple(1234);
1336 py::dict kwargs;
1337 kwargs["y"] = py::cast(5678);
1338 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001339
Wenzel Jakob93296692015-10-13 23:21:54 +02001340.. seealso::
1341
1342 The file :file:`example/example2.cpp` contains a complete example that
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001343 demonstrates passing native Python types in more detail. The file
1344 :file:`example/example11.cpp` discusses usage of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001345
1346Default arguments revisited
1347===========================
1348
1349The section on :ref:`default_args` previously discussed basic usage of default
1350arguments using pybind11. One noteworthy aspect of their implementation is that
1351default arguments are converted to Python objects right at declaration time.
1352Consider the following example:
1353
1354.. code-block:: cpp
1355
1356 py::class_<MyClass>("MyClass")
1357 .def("myFunction", py::arg("arg") = SomeType(123));
1358
1359In this case, pybind11 must already be set up to deal with values of the type
1360``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1361exception will be thrown.
1362
1363Another aspect worth highlighting is that the "preview" of the default argument
1364in the function signature is generated using the object's ``__repr__`` method.
1365If not available, the signature may not be very helpful, e.g.:
1366
Wenzel Jakob99279f72016-06-03 11:19:29 +02001367.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001368
1369 FUNCTIONS
1370 ...
1371 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001372 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001373 ...
1374
1375The first way of addressing this is by defining ``SomeType.__repr__``.
1376Alternatively, it is possible to specify the human-readable preview of the
1377default argument manually using the ``arg_t`` notation:
1378
1379.. code-block:: cpp
1380
1381 py::class_<MyClass>("MyClass")
1382 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1383
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001384Sometimes it may be necessary to pass a null pointer value as a default
1385argument. In this case, remember to cast it to the underlying type in question,
1386like so:
1387
1388.. code-block:: cpp
1389
1390 py::class_<MyClass>("MyClass")
1391 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1392
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001393Binding functions that accept arbitrary numbers of arguments and keywords arguments
1394===================================================================================
1395
1396Python provides a useful mechanism to define functions that accept arbitrary
1397numbers of arguments and keyword arguments:
1398
1399.. code-block:: cpp
1400
1401 def generic(*args, **kwargs):
1402 # .. do something with args and kwargs
1403
1404Such functions can also be created using pybind11:
1405
1406.. code-block:: cpp
1407
1408 void generic(py::args args, py::kwargs kwargs) {
1409 /// .. do something with args
1410 if (kwargs)
1411 /// .. do something with kwargs
1412 }
1413
1414 /// Binding code
1415 m.def("generic", &generic);
1416
1417(See ``example/example11.cpp``). The class ``py::args`` derives from
1418``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note that the
1419``kwargs`` argument is invalid if no keyword arguments were actually provided.
1420Please refer to the other examples for details on how to iterate over these,
1421and on how to cast their entries into C++ objects.
1422
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001423Partitioning code over multiple extension modules
1424=================================================
1425
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001426It's straightforward to split binding code over multiple extension modules,
1427while referencing types that are declared elsewhere. Everything "just" works
1428without any special precautions. One exception to this rule occurs when
1429extending a type declared in another extension module. Recall the basic example
1430from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001431
1432.. code-block:: cpp
1433
1434 py::class_<Pet> pet(m, "Pet");
1435 pet.def(py::init<const std::string &>())
1436 .def_readwrite("name", &Pet::name);
1437
1438 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1439 .def(py::init<const std::string &>())
1440 .def("bark", &Dog::bark);
1441
1442Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1443whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1444course that the variable ``pet`` is not available anymore though it is needed
1445to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1446However, it can be acquired as follows:
1447
1448.. code-block:: cpp
1449
1450 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1451
1452 py::class_<Dog>(m, "Dog", pet)
1453 .def(py::init<const std::string &>())
1454 .def("bark", &Dog::bark);
1455
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001456Alternatively, we can rely on the ``base`` tag, which performs an automated
1457lookup of the corresponding Python type. However, this also requires invoking
1458the ``import`` function once to ensure that the pybind11 binding code of the
1459module ``basic`` has been executed.
1460
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001461.. code-block:: cpp
1462
1463 py::module::import("basic");
1464
1465 py::class_<Dog>(m, "Dog", py::base<Pet>())
1466 .def(py::init<const std::string &>())
1467 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001468
Wenzel Jakob978e3762016-04-07 18:00:41 +02001469Naturally, both methods will fail when there are cyclic dependencies.
1470
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001471Note that compiling code which has its default symbol visibility set to
1472*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1473ability to access types defined in another extension module. Workarounds
1474include changing the global symbol visibility (not recommended, because it will
1475lead unnecessarily large binaries) or manually exporting types that are
1476accessed by multiple extension modules:
1477
1478.. code-block:: cpp
1479
1480 #ifdef _WIN32
1481 # define EXPORT_TYPE __declspec(dllexport)
1482 #else
1483 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1484 #endif
1485
1486 class EXPORT_TYPE Dog : public Animal {
1487 ...
1488 };
1489
1490
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001491Pickling support
1492================
1493
1494Python's ``pickle`` module provides a powerful facility to serialize and
1495de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001496unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001497Suppose the class in question has the following signature:
1498
1499.. code-block:: cpp
1500
1501 class Pickleable {
1502 public:
1503 Pickleable(const std::string &value) : m_value(value) { }
1504 const std::string &value() const { return m_value; }
1505
1506 void setExtra(int extra) { m_extra = extra; }
1507 int extra() const { return m_extra; }
1508 private:
1509 std::string m_value;
1510 int m_extra = 0;
1511 };
1512
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001513The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001514looks as follows:
1515
1516.. code-block:: cpp
1517
1518 py::class_<Pickleable>(m, "Pickleable")
1519 .def(py::init<std::string>())
1520 .def("value", &Pickleable::value)
1521 .def("extra", &Pickleable::extra)
1522 .def("setExtra", &Pickleable::setExtra)
1523 .def("__getstate__", [](const Pickleable &p) {
1524 /* Return a tuple that fully encodes the state of the object */
1525 return py::make_tuple(p.value(), p.extra());
1526 })
1527 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1528 if (t.size() != 2)
1529 throw std::runtime_error("Invalid state!");
1530
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001531 /* Invoke the in-place constructor. Note that this is needed even
1532 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001533 new (&p) Pickleable(t[0].cast<std::string>());
1534
1535 /* Assign any additional state */
1536 p.setExtra(t[1].cast<int>());
1537 });
1538
1539An instance can now be pickled as follows:
1540
1541.. code-block:: python
1542
1543 try:
1544 import cPickle as pickle # Use cPickle on Python 2.7
1545 except ImportError:
1546 import pickle
1547
1548 p = Pickleable("test_value")
1549 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001550 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001551
Wenzel Jakob81e09752016-04-30 23:13:03 +02001552Note that only the cPickle module is supported on Python 2.7. The second
1553argument to ``dumps`` is also crucial: it selects the pickle protocol version
15542, since the older version 1 is not supported. Newer versions are also fine—for
1555instance, specify ``-1`` to always use the latest available version. Beware:
1556failure to follow these instructions will cause important pybind11 memory
1557allocation routines to be skipped during unpickling, which will likely lead to
1558memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001559
1560.. seealso::
1561
1562 The file :file:`example/example15.cpp` contains a complete example that
1563 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1564
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001565.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001566
1567Generating documentation using Sphinx
1568=====================================
1569
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001570Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001571strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001572documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001573simple example repository which uses this approach.
1574
1575There are two potential gotchas when using this approach: first, make sure that
1576the resulting strings do not contain any :kbd:`TAB` characters, which break the
1577docstring parsing routines. You may want to use C++11 raw string literals,
1578which are convenient for multi-line comments. Conveniently, any excess
1579indentation will be automatically be removed by Sphinx. However, for this to
1580work, it is important that all lines are indented consistently, i.e.:
1581
1582.. code-block:: cpp
1583
1584 // ok
1585 m.def("foo", &foo, R"mydelimiter(
1586 The foo function
1587
1588 Parameters
1589 ----------
1590 )mydelimiter");
1591
1592 // *not ok*
1593 m.def("foo", &foo, R"mydelimiter(The foo function
1594
1595 Parameters
1596 ----------
1597 )mydelimiter");
1598
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001599.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001600.. [#f5] http://github.com/pybind/python_example