blob: 2067c893006bcf17794cf33cdd5368bf17e337be [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
105 The file :file:`example/example3.cpp` contains a complete example that
106 demonstrates how to work with overloaded operators in more detail.
107
108Callbacks and passing anonymous functions
109=========================================
110
111The C++11 standard brought lambda functions and the generic polymorphic
112function wrapper ``std::function<>`` to the C++ programming language, which
113enable powerful new ways of working with functions. Lambda functions come in
114two flavors: stateless lambda function resemble classic function pointers that
115link to an anonymous piece of code, while stateful lambda functions
116additionally depend on captured variables that are stored in an anonymous
117*lambda closure object*.
118
119Here is a simple example of a C++ function that takes an arbitrary function
120(stateful or stateless) with signature ``int -> int`` as an argument and runs
121it with the value 10.
122
123.. code-block:: cpp
124
125 int func_arg(const std::function<int(int)> &f) {
126 return f(10);
127 }
128
129The example below is more involved: it takes a function of signature ``int -> int``
130and returns another function of the same kind. The return value is a stateful
131lambda function, which stores the value ``f`` in the capture object and adds 1 to
132its return value upon execution.
133
134.. code-block:: cpp
135
136 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
137 return [f](int i) {
138 return f(i) + 1;
139 };
140 }
141
Brad Harmon835fc062016-06-16 13:19:15 -0500142This example demonstrates using python named parameters in C++ callbacks which
143requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
144methods of classes:
145
146.. code-block:: cpp
147
148 py::cpp_function func_cpp() {
149 return py::cpp_function([](int i) { return i+1; },
150 py::arg("number"));
151 }
152
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200153After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500154trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200155
156.. code-block:: cpp
157
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200158 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200160 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200161 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200162
163 m.def("func_arg", &func_arg);
164 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500165 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 return m.ptr();
168 }
169
170The following interactive session shows how to call them from Python.
171
Wenzel Jakob99279f72016-06-03 11:19:29 +0200172.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200173
174 $ python
175 >>> import example
176 >>> def square(i):
177 ... return i * i
178 ...
179 >>> example.func_arg(square)
180 100L
181 >>> square_plus_1 = example.func_ret(square)
182 >>> square_plus_1(4)
183 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500184 >>> plus_1 = func_cpp()
185 >>> plus_1(number=43)
186 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200187
188.. note::
189
190 This functionality is very useful when generating bindings for callbacks in
191 C++ libraries (e.g. a graphical user interface library).
192
193 The file :file:`example/example5.cpp` contains a complete example that
194 demonstrates how to work with callbacks and anonymous functions in more detail.
195
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100196.. warning::
197
198 Keep in mind that passing a function from C++ to Python (or vice versa)
199 will instantiate a piece of wrapper code that translates function
200 invocations between the two languages. Copying the same function back and
201 forth between Python and C++ many times in a row will cause these wrappers
202 to accumulate, which can decrease performance.
203
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200204Overriding virtual functions in Python
205======================================
206
Wenzel Jakob93296692015-10-13 23:21:54 +0200207Suppose that a C++ class or interface has a virtual function that we'd like to
208to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
209given as a specific example of how one would do this with traditional C++
210code).
211
212.. code-block:: cpp
213
214 class Animal {
215 public:
216 virtual ~Animal() { }
217 virtual std::string go(int n_times) = 0;
218 };
219
220 class Dog : public Animal {
221 public:
222 std::string go(int n_times) {
223 std::string result;
224 for (int i=0; i<n_times; ++i)
225 result += "woof! ";
226 return result;
227 }
228 };
229
230Let's also suppose that we are given a plain function which calls the
231function ``go()`` on an arbitrary ``Animal`` instance.
232
233.. code-block:: cpp
234
235 std::string call_go(Animal *animal) {
236 return animal->go(3);
237 }
238
239Normally, the binding code for these classes would look as follows:
240
241.. code-block:: cpp
242
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200243 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200244 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200245
246 py::class_<Animal> animal(m, "Animal");
247 animal
248 .def("go", &Animal::go);
249
250 py::class_<Dog>(m, "Dog", animal)
251 .def(py::init<>());
252
253 m.def("call_go", &call_go);
254
255 return m.ptr();
256 }
257
258However, these bindings are impossible to extend: ``Animal`` is not
259constructible, and we clearly require some kind of "trampoline" that
260redirects virtual calls back to Python.
261
262Defining a new type of ``Animal`` from within Python is possible but requires a
263helper class that is defined as follows:
264
265.. code-block:: cpp
266
267 class PyAnimal : public Animal {
268 public:
269 /* Inherit the constructors */
270 using Animal::Animal;
271
272 /* Trampoline (need one for each virtual function) */
273 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200274 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200275 std::string, /* Return type */
276 Animal, /* Parent class */
277 go, /* Name of function */
278 n_times /* Argument(s) */
279 );
280 }
281 };
282
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200283The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
284functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200285a default implementation.
286
287There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
288:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
289after the *Name of the function* slot. This is useful when the C++ and Python
290versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
291
292The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200293
294.. code-block:: cpp
295 :emphasize-lines: 4,6,7
296
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200297 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200298 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200299
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200300 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200301 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200302 .def(py::init<>())
303 .def("go", &Animal::go);
304
305 py::class_<Dog>(m, "Dog", animal)
306 .def(py::init<>());
307
308 m.def("call_go", &call_go);
309
310 return m.ptr();
311 }
312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313Importantly, pybind11 is made aware of the trampoline trampoline helper class
314by specifying it as the *third* template argument to :class:`class_`. The
315second argument with the unique pointer is simply the default holder type used
316by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200317
318The Python session below shows how to override ``Animal::go`` and invoke it via
319a virtual method call.
320
Wenzel Jakob99279f72016-06-03 11:19:29 +0200321.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200322
323 >>> from example import *
324 >>> d = Dog()
325 >>> call_go(d)
326 u'woof! woof! woof! '
327 >>> class Cat(Animal):
328 ... def go(self, n_times):
329 ... return "meow! " * n_times
330 ...
331 >>> c = Cat()
332 >>> call_go(c)
333 u'meow! meow! meow! '
334
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200335Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200336
Wenzel Jakob93296692015-10-13 23:21:54 +0200337.. seealso::
338
339 The file :file:`example/example12.cpp` contains a complete example that
340 demonstrates how to override virtual functions using pybind11 in more
341 detail.
342
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100343
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200344.. _macro_notes:
345
346General notes regarding convenience macros
347==========================================
348
349pybind11 provides a few convenience macros such as
350:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
351``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
352in the preprocessor (which has no concept of types), they *will* get confused
353by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
354T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
355the beginnning of the next parameter. Use a ``typedef`` to bind the template to
356another name and use it in the macro to avoid this problem.
357
358
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100359Global Interpreter Lock (GIL)
360=============================
361
362The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
363used to acquire and release the global interpreter lock in the body of a C++
364function call. In this way, long-running C++ code can be parallelized using
365multiple Python threads. Taking the previous section as an example, this could
366be realized as follows (important changes highlighted):
367
368.. code-block:: cpp
369 :emphasize-lines: 8,9,33,34
370
371 class PyAnimal : public Animal {
372 public:
373 /* Inherit the constructors */
374 using Animal::Animal;
375
376 /* Trampoline (need one for each virtual function) */
377 std::string go(int n_times) {
378 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100379 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100380
381 PYBIND11_OVERLOAD_PURE(
382 std::string, /* Return type */
383 Animal, /* Parent class */
384 go, /* Name of function */
385 n_times /* Argument(s) */
386 );
387 }
388 };
389
390 PYBIND11_PLUGIN(example) {
391 py::module m("example", "pybind11 example plugin");
392
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200393 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100394 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100395 .def(py::init<>())
396 .def("go", &Animal::go);
397
398 py::class_<Dog>(m, "Dog", animal)
399 .def(py::init<>());
400
401 m.def("call_go", [](Animal *animal) -> std::string {
402 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100403 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100404 return call_go(animal);
405 });
406
407 return m.ptr();
408 }
409
Wenzel Jakob93296692015-10-13 23:21:54 +0200410Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200411===========================
412
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200413When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200414between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
415and the Python ``list``, ``set`` and ``dict`` data structures are automatically
416enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
417out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200418
419.. note::
420
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100421 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200422
423.. seealso::
424
425 The file :file:`example/example2.cpp` contains a complete example that
426 demonstrates how to pass STL data types in more detail.
427
Wenzel Jakobb2825952016-04-13 23:33:00 +0200428Binding sequence data types, iterators, the slicing protocol, etc.
429==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200430
431Please refer to the supplemental example for details.
432
433.. seealso::
434
435 The file :file:`example/example6.cpp` contains a complete example that
436 shows how to bind a sequence data type, including length queries
437 (``__len__``), iterators (``__iter__``), the slicing protocol and other
438 kinds of useful operations.
439
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200440Return value policies
441=====================
442
Wenzel Jakob93296692015-10-13 23:21:54 +0200443Python and C++ use wildly different ways of managing the memory and lifetime of
444objects managed by them. This can lead to issues when creating bindings for
445functions that return a non-trivial type. Just by looking at the type
446information, it is not clear whether Python should take charge of the returned
447value and eventually free its resources, or if this is handled on the C++ side.
448For this reason, pybind11 provides a several `return value policy` annotations
449that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100450functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200451
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200452.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
453
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200454+--------------------------------------------------+----------------------------------------------------------------------------+
455| Return value policy | Description |
456+==================================================+============================================================================+
457| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
458| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200459| | pointer. Otherwise, it uses :enum:`return_value::move` or |
460| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200461| | See below for a description of what all of these different policies do. |
462+--------------------------------------------------+----------------------------------------------------------------------------+
463| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200464| | return value is a pointer. This is the default conversion policy for |
465| | function arguments when calling Python functions manually from C++ code |
466| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200467+--------------------------------------------------+----------------------------------------------------------------------------+
468| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
469| | ownership. Python will call the destructor and delete operator when the |
470| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200471| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200472+--------------------------------------------------+----------------------------------------------------------------------------+
473| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
474| | This policy is comparably safe because the lifetimes of the two instances |
475| | are decoupled. |
476+--------------------------------------------------+----------------------------------------------------------------------------+
477| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
478| | that will be owned by Python. This policy is comparably safe because the |
479| | lifetimes of the two instances (move source and destination) are decoupled.|
480+--------------------------------------------------+----------------------------------------------------------------------------+
481| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
482| | responsible for managing the object's lifetime and deallocating it when |
483| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200484| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200485+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200486| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
487| | object without taking ownership similar to the above |
488| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
489| | the function or property's implicit ``this`` argument (called the *parent*)|
490| | is considered to be the the owner of the return value (the *child*). |
491| | pybind11 then couples the lifetime of the parent to the child via a |
492| | reference relationship that ensures that the parent cannot be garbage |
493| | collected while Python is still using the child. More advanced variations |
494| | of this scheme are also possible using combinations of |
495| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
496| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200497+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200498
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200499The following example snippet shows a use case of the
Wenzel Jakob93296692015-10-13 23:21:54 +0200500:enum:`return_value_policy::reference_internal` policy.
501
502.. code-block:: cpp
503
504 class Example {
505 public:
506 Internal &get_internal() { return internal; }
507 private:
508 Internal internal;
509 };
510
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200511 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200512 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200513
514 py::class_<Example>(m, "Example")
515 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200516 .def("get_internal", &Example::get_internal, "Return the internal data",
517 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200518
519 return m.ptr();
520 }
521
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200522.. warning::
523
524 Code with invalid call policies might access unitialized memory or free
525 data structures multiple times, which can lead to hard-to-debug
526 non-determinism and segmentation faults, hence it is worth spending the
527 time to understand all the different options in the table above.
528
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200529 It is worth highlighting one common issue where a method (e.g. a getter)
530 returns a reference (or pointer) to the first attribute of a class. In this
531 case, the class and attribute will be located at the same address in
532 memory, which pybind11 will recongnize and return the parent instance
533 instead of creating a new Python object that represents the attribute.
534 Here, the :enum:`return_value_policy::reference_internal` policy should be
535 used rather than relying on the automatic one.
nafur717df752016-06-28 18:07:11 +0200536
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200537.. note::
538
539 The next section on :ref:`call_policies` discusses *call policies* that can be
540 specified *in addition* to a return value policy from the list above. Call
541 policies indicate reference relationships that can involve both return values
542 and parameters of functions.
543
544.. note::
545
546 As an alternative to elaborate call policies and lifetime management logic,
547 consider using smart pointers (see the section on :ref:`smart_pointers` for
548 details). Smart pointers can tell whether an object is still referenced from
549 C++ or Python, which generally eliminates the kinds of inconsistencies that
550 can lead to crashes or undefined behavior. For functions returning smart
551 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100552
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200553.. _call_policies:
554
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100555Additional call policies
556========================
557
558In addition to the above return value policies, further `call policies` can be
559specified to indicate dependencies between parameters. There is currently just
560one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
561argument with index ``Patient`` should be kept alive at least until the
562argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200563indices start at one, while zero refers to the return value. For methods, index
564one refers to the implicit ``this`` pointer, while regular arguments begin at
565index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100566
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200567Consider the following example: the binding code for a list append operation
568that ties the lifetime of the newly added element to the underlying container
569might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100570
571.. code-block:: cpp
572
573 py::class_<List>(m, "List")
574 .def("append", &List::append, py::keep_alive<1, 2>());
575
576.. note::
577
578 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
579 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
580 0) policies from Boost.Python.
581
Wenzel Jakob61587162016-01-18 22:38:52 +0100582.. seealso::
583
584 The file :file:`example/example13.cpp` contains a complete example that
585 demonstrates using :class:`keep_alive` in more detail.
586
Wenzel Jakob93296692015-10-13 23:21:54 +0200587Implicit type conversions
588=========================
589
590Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200591that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200592could be a fixed and an arbitrary precision number type).
593
594.. code-block:: cpp
595
596 py::class_<A>(m, "A")
597 /// ... members ...
598
599 py::class_<B>(m, "B")
600 .def(py::init<A>())
601 /// ... members ...
602
603 m.def("func",
604 [](const B &) { /* .... */ }
605 );
606
607To invoke the function ``func`` using a variable ``a`` containing an ``A``
608instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
609will automatically apply an implicit type conversion, which makes it possible
610to directly write ``func(a)``.
611
612In this situation (i.e. where ``B`` has a constructor that converts from
613``A``), the following statement enables similar implicit conversions on the
614Python side:
615
616.. code-block:: cpp
617
618 py::implicitly_convertible<A, B>();
619
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200620.. _static_properties:
621
622Static properties
623=================
624
625The section on :ref:`properties` discussed the creation of instance properties
626that are implemented in terms of C++ getters and setters.
627
628Static properties can also be created in a similar way to expose getters and
629setters of static class attributes. It is important to note that the implicit
630``self`` argument also exists in this case and is used to pass the Python
631``type`` subclass instance. This parameter will often not be needed by the C++
632side, and the following example illustrates how to instantiate a lambda getter
633function that ignores it:
634
635.. code-block:: cpp
636
637 py::class_<Foo>(m, "Foo")
638 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
639
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200640Unique pointers
641===============
642
643Given a class ``Example`` with Python bindings, it's possible to return
644instances wrapped in C++11 unique pointers, like so
645
646.. code-block:: cpp
647
648 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
649
650.. code-block:: cpp
651
652 m.def("create_example", &create_example);
653
654In other words, there is nothing special that needs to be done. While returning
655unique pointers in this way is allowed, it is *illegal* to use them as function
656arguments. For instance, the following function signature cannot be processed
657by pybind11.
658
659.. code-block:: cpp
660
661 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
662
663The above signature would imply that Python needs to give up ownership of an
664object that is passed to this function, which is generally not possible (for
665instance, the object might be referenced elsewhere).
666
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200667.. _smart_pointers:
668
Wenzel Jakob93296692015-10-13 23:21:54 +0200669Smart pointers
670==============
671
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200672This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200673types with internal reference counting. For the simpler C++11 unique pointers,
674refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200675
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200676The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200677template type, which denotes a special *holder* type that is used to manage
678references to the object. When wrapping a type named ``Type``, the default
679value of this template parameter is ``std::unique_ptr<Type>``, which means that
680the object is deallocated when Python's reference count goes to zero.
681
Wenzel Jakob1853b652015-10-18 15:38:50 +0200682It is possible to switch to other types of reference counting wrappers or smart
683pointers, which is useful in codebases that rely on them. For instance, the
684following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200685
686.. code-block:: cpp
687
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100688 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100689
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100690Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200691
Wenzel Jakob1853b652015-10-18 15:38:50 +0200692To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100693argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200694be declared at the top level before any binding code:
695
696.. code-block:: cpp
697
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200698 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200699
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100700.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100701
702 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
703 placeholder name that is used as a template parameter of the second
704 argument. Thus, feel free to use any identifier, but use it consistently on
705 both sides; also, don't use the name of a type that already exists in your
706 codebase.
707
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100708One potential stumbling block when using holder types is that they need to be
709applied consistently. Can you guess what's broken about the following binding
710code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100711
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100712.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100713
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100714 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100715
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100716 class Parent {
717 public:
718 Parent() : child(std::make_shared<Child>()) { }
719 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
720 private:
721 std::shared_ptr<Child> child;
722 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100723
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100724 PYBIND11_PLUGIN(example) {
725 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100726
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100727 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
728
729 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
730 .def(py::init<>())
731 .def("get_child", &Parent::get_child);
732
733 return m.ptr();
734 }
735
736The following Python code will cause undefined behavior (and likely a
737segmentation fault).
738
739.. code-block:: python
740
741 from example import Parent
742 print(Parent().get_child())
743
744The problem is that ``Parent::get_child()`` returns a pointer to an instance of
745``Child``, but the fact that this instance is already managed by
746``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
747pybind11 will create a second independent ``std::shared_ptr<...>`` that also
748claims ownership of the pointer. In the end, the object will be freed **twice**
749since these shared pointers have no way of knowing about each other.
750
751There are two ways to resolve this issue:
752
7531. For types that are managed by a smart pointer class, never use raw pointers
754 in function arguments or return values. In other words: always consistently
755 wrap pointers into their designated holder types (such as
756 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
757 should be modified as follows:
758
759.. code-block:: cpp
760
761 std::shared_ptr<Child> get_child() { return child; }
762
7632. Adjust the definition of ``Child`` by specifying
764 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
765 base class. This adds a small bit of information to ``Child`` that allows
766 pybind11 to realize that there is already an existing
767 ``std::shared_ptr<...>`` and communicate with it. In this case, the
768 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100769
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100770.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
771
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100772.. code-block:: cpp
773
774 class Child : public std::enable_shared_from_this<Child> { };
775
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200776
777Please take a look at the :ref:`macro_notes` before using this feature.
778
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100779.. seealso::
780
781 The file :file:`example/example8.cpp` contains a complete example that
782 demonstrates how to work with custom reference-counting holder types in
783 more detail.
784
Wenzel Jakob93296692015-10-13 23:21:54 +0200785.. _custom_constructors:
786
787Custom constructors
788===================
789
790The syntax for binding constructors was previously introduced, but it only
791works when a constructor with the given parameters actually exists on the C++
792side. To extend this to more general cases, let's take a look at what actually
793happens under the hood: the following statement
794
795.. code-block:: cpp
796
797 py::class_<Example>(m, "Example")
798 .def(py::init<int>());
799
800is short hand notation for
801
802.. code-block:: cpp
803
804 py::class_<Example>(m, "Example")
805 .def("__init__",
806 [](Example &instance, int arg) {
807 new (&instance) Example(arg);
808 }
809 );
810
811In other words, :func:`init` creates an anonymous function that invokes an
812in-place constructor. Memory allocation etc. is already take care of beforehand
813within pybind11.
814
815Catching and throwing exceptions
816================================
817
818When C++ code invoked from Python throws an ``std::exception``, it is
819automatically converted into a Python ``Exception``. pybind11 defines multiple
820special exception classes that will map to different types of Python
821exceptions:
822
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200823.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
824
Wenzel Jakob978e3762016-04-07 18:00:41 +0200825+--------------------------------------+------------------------------+
826| C++ exception type | Python exception type |
827+======================================+==============================+
828| :class:`std::exception` | ``RuntimeError`` |
829+--------------------------------------+------------------------------+
830| :class:`std::bad_alloc` | ``MemoryError`` |
831+--------------------------------------+------------------------------+
832| :class:`std::domain_error` | ``ValueError`` |
833+--------------------------------------+------------------------------+
834| :class:`std::invalid_argument` | ``ValueError`` |
835+--------------------------------------+------------------------------+
836| :class:`std::length_error` | ``ValueError`` |
837+--------------------------------------+------------------------------+
838| :class:`std::out_of_range` | ``ValueError`` |
839+--------------------------------------+------------------------------+
840| :class:`std::range_error` | ``ValueError`` |
841+--------------------------------------+------------------------------+
842| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
843| | implement custom iterators) |
844+--------------------------------------+------------------------------+
845| :class:`pybind11::index_error` | ``IndexError`` (used to |
846| | indicate out of bounds |
847| | accesses in ``__getitem__``, |
848| | ``__setitem__``, etc.) |
849+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400850| :class:`pybind11::value_error` | ``ValueError`` (used to |
851| | indicate wrong value passed |
852| | in ``container.remove(...)`` |
853+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200854| :class:`pybind11::error_already_set` | Indicates that the Python |
855| | exception flag has already |
856| | been initialized |
857+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200858
859When a Python function invoked from C++ throws an exception, it is converted
860into a C++ exception of type :class:`error_already_set` whose string payload
861contains a textual summary.
862
863There is also a special exception :class:`cast_error` that is thrown by
864:func:`handle::call` when the input arguments cannot be converted to Python
865objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200866
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200867.. _opaque:
868
869Treating STL data structures as opaque objects
870==============================================
871
872pybind11 heavily relies on a template matching mechanism to convert parameters
873and return values that are constructed from STL data types such as vectors,
874linked lists, hash tables, etc. This even works in a recursive manner, for
875instance to deal with lists of hash maps of pairs of elementary and custom
876types, etc.
877
878However, a fundamental limitation of this approach is that internal conversions
879between Python and C++ types involve a copy operation that prevents
880pass-by-reference semantics. What does this mean?
881
882Suppose we bind the following function
883
884.. code-block:: cpp
885
886 void append_1(std::vector<int> &v) {
887 v.push_back(1);
888 }
889
890and call it from Python, the following happens:
891
Wenzel Jakob99279f72016-06-03 11:19:29 +0200892.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200893
894 >>> v = [5, 6]
895 >>> append_1(v)
896 >>> print(v)
897 [5, 6]
898
899As you can see, when passing STL data structures by reference, modifications
900are not propagated back the Python side. A similar situation arises when
901exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
902functions:
903
904.. code-block:: cpp
905
906 /* ... definition ... */
907
908 class MyClass {
909 std::vector<int> contents;
910 };
911
912 /* ... binding code ... */
913
914 py::class_<MyClass>(m, "MyClass")
915 .def(py::init<>)
916 .def_readwrite("contents", &MyClass::contents);
917
918In this case, properties can be read and written in their entirety. However, an
919``append`` operaton involving such a list type has no effect:
920
Wenzel Jakob99279f72016-06-03 11:19:29 +0200921.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200922
923 >>> m = MyClass()
924 >>> m.contents = [5, 6]
925 >>> print(m.contents)
926 [5, 6]
927 >>> m.contents.append(7)
928 >>> print(m.contents)
929 [5, 6]
930
931To deal with both of the above situations, pybind11 provides a macro named
932``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
933machinery of types, thus rendering them *opaque*. The contents of opaque
934objects are never inspected or extracted, hence they can be passed by
935reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
936the declaration
937
938.. code-block:: cpp
939
940 PYBIND11_MAKE_OPAQUE(std::vector<int>);
941
942before any binding code (e.g. invocations to ``class_::def()``, etc.). This
943macro must be specified at the top level, since instantiates a partial template
944overload. If your binding code consists of multiple compilation units, it must
945be present in every file preceding any usage of ``std::vector<int>``. Opaque
946types must also have a corresponding ``class_`` declaration to associate them
947with a name in Python, and to define a set of available operations:
948
949.. code-block:: cpp
950
951 py::class_<std::vector<int>>(m, "IntVector")
952 .def(py::init<>())
953 .def("clear", &std::vector<int>::clear)
954 .def("pop_back", &std::vector<int>::pop_back)
955 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
956 .def("__iter__", [](std::vector<int> &v) {
957 return py::make_iterator(v.begin(), v.end());
958 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
959 // ....
960
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200961Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200962
963.. seealso::
964
965 The file :file:`example/example14.cpp` contains a complete example that
966 demonstrates how to create and expose opaque types using pybind11 in more
967 detail.
968
969.. _eigen:
970
971Transparent conversion of dense and sparse Eigen data types
972===========================================================
973
974Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
975its popularity and widespread adoption, pybind11 provides transparent
976conversion support between Eigen and Scientific Python linear algebra data types.
977
978Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +0100979pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200980
9811. Static and dynamic Eigen dense vectors and matrices to instances of
982 ``numpy.ndarray`` (and vice versa).
983
9841. Eigen sparse vectors and matrices to instances of
985 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
986
987This makes it possible to bind most kinds of functions that rely on these types.
988One major caveat are functions that take Eigen matrices *by reference* and modify
989them somehow, in which case the information won't be propagated to the caller.
990
991.. code-block:: cpp
992
993 /* The Python bindings of this function won't replicate
994 the intended effect of modifying the function argument */
995 void scale_by_2(Eigen::Vector3f &v) {
996 v *= 2;
997 }
998
999To see why this is, refer to the section on :ref:`opaque` (although that
1000section specifically covers STL data types, the underlying issue is the same).
1001The next two sections discuss an efficient alternative for exposing the
1002underlying native Eigen types as opaque objects in a way that still integrates
1003with NumPy and SciPy.
1004
1005.. [#f1] http://eigen.tuxfamily.org
1006
1007.. seealso::
1008
1009 The file :file:`example/eigen.cpp` contains a complete example that
1010 shows how to pass Eigen sparse and dense data types in more detail.
1011
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001012Buffer protocol
1013===============
1014
1015Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001016data between plugin libraries. Types can expose a buffer view [#f2]_, which
1017provides fast direct access to the raw internal data representation. Suppose we
1018want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001019
1020.. code-block:: cpp
1021
1022 class Matrix {
1023 public:
1024 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1025 m_data = new float[rows*cols];
1026 }
1027 float *data() { return m_data; }
1028 size_t rows() const { return m_rows; }
1029 size_t cols() const { return m_cols; }
1030 private:
1031 size_t m_rows, m_cols;
1032 float *m_data;
1033 };
1034
1035The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001036making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001037completely avoid copy operations with Python expressions like
1038``np.array(matrix_instance, copy = False)``.
1039
1040.. code-block:: cpp
1041
1042 py::class_<Matrix>(m, "Matrix")
1043 .def_buffer([](Matrix &m) -> py::buffer_info {
1044 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001045 m.data(), /* Pointer to buffer */
1046 sizeof(float), /* Size of one scalar */
1047 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
1048 2, /* Number of dimensions */
1049 { m.rows(), m.cols() }, /* Buffer dimensions */
1050 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001051 sizeof(float) }
1052 );
1053 });
1054
1055The snippet above binds a lambda function, which can create ``py::buffer_info``
1056description records on demand describing a given matrix. The contents of
1057``py::buffer_info`` mirror the Python buffer protocol specification.
1058
1059.. code-block:: cpp
1060
1061 struct buffer_info {
1062 void *ptr;
1063 size_t itemsize;
1064 std::string format;
1065 int ndim;
1066 std::vector<size_t> shape;
1067 std::vector<size_t> strides;
1068 };
1069
1070To create a C++ function that can take a Python buffer object as an argument,
1071simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1072in a great variety of configurations, hence some safety checks are usually
1073necessary in the function body. Below, you can see an basic example on how to
1074define a custom constructor for the Eigen double precision matrix
1075(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001076buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001077
1078.. code-block:: cpp
1079
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001080 /* Bind MatrixXd (or some other Eigen type) to Python */
1081 typedef Eigen::MatrixXd Matrix;
1082
1083 typedef Matrix::Scalar Scalar;
1084 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1085
1086 py::class_<Matrix>(m, "Matrix")
1087 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001088 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001089
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001090 /* Request a buffer descriptor from Python */
1091 py::buffer_info info = b.request();
1092
1093 /* Some sanity checks ... */
Wenzel Jakobe7628532016-05-05 10:04:44 +02001094 if (info.format != py::format_descriptor<Scalar>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001095 throw std::runtime_error("Incompatible format: expected a double array!");
1096
1097 if (info.ndim != 2)
1098 throw std::runtime_error("Incompatible buffer dimension!");
1099
Wenzel Jakobe7628532016-05-05 10:04:44 +02001100 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001101 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1102 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001103
1104 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001105 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001106
1107 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001108 });
1109
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001110For reference, the ``def_buffer()`` call for this Eigen data type should look
1111as follows:
1112
1113.. code-block:: cpp
1114
1115 .def_buffer([](Matrix &m) -> py::buffer_info {
1116 return py::buffer_info(
1117 m.data(), /* Pointer to buffer */
1118 sizeof(Scalar), /* Size of one scalar */
1119 /* Python struct-style format descriptor */
1120 py::format_descriptor<Scalar>::value,
1121 /* Number of dimensions */
1122 2,
1123 /* Buffer dimensions */
1124 { (size_t) m.rows(),
1125 (size_t) m.cols() },
1126 /* Strides (in bytes) for each index */
1127 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1128 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1129 );
1130 })
1131
1132For a much easier approach of binding Eigen types (although with some
1133limitations), refer to the section on :ref:`eigen`.
1134
Wenzel Jakob93296692015-10-13 23:21:54 +02001135.. seealso::
1136
1137 The file :file:`example/example7.cpp` contains a complete example that
1138 demonstrates using the buffer protocol with pybind11 in more detail.
1139
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001140.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001141
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001142NumPy support
1143=============
1144
1145By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1146restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001147type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001148
1149In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001150array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001151template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001152NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001153
1154.. code-block:: cpp
1155
Wenzel Jakob93296692015-10-13 23:21:54 +02001156 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001157
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001158When it is invoked with a different type (e.g. an integer or a list of
1159integers), the binding code will attempt to cast the input into a NumPy array
1160of the requested type. Note that this feature requires the
1161:file:``pybind11/numpy.h`` header to be included.
1162
1163Data in NumPy arrays is not guaranteed to packed in a dense manner;
1164furthermore, entries can be separated by arbitrary column and row strides.
1165Sometimes, it can be useful to require a function to only accept dense arrays
1166using either the C (row-major) or Fortran (column-major) ordering. This can be
1167accomplished via a second template argument with values ``py::array::c_style``
1168or ``py::array::f_style``.
1169
1170.. code-block:: cpp
1171
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001172 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001173
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001174The ``py::array::forcecast`` argument is the default value of the second
1175template paramenter, and it ensures that non-conforming arguments are converted
1176into an array satisfying the specified requirements instead of trying the next
1177function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001178
1179Vectorizing functions
1180=====================
1181
1182Suppose we want to bind a function with the following signature to Python so
1183that it can process arbitrary NumPy array arguments (vectors, matrices, general
1184N-D arrays) in addition to its normal arguments:
1185
1186.. code-block:: cpp
1187
1188 double my_func(int x, float y, double z);
1189
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001190After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001191
1192.. code-block:: cpp
1193
1194 m.def("vectorized_func", py::vectorize(my_func));
1195
1196Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001197each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001198solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1199entirely on the C++ side and can be crunched down into a tight, optimized loop
1200by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001201``numpy.dtype.float64``.
1202
Wenzel Jakob99279f72016-06-03 11:19:29 +02001203.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001204
1205 >>> x = np.array([[1, 3],[5, 7]])
1206 >>> y = np.array([[2, 4],[6, 8]])
1207 >>> z = 3
1208 >>> result = vectorized_func(x, y, z)
1209
1210The scalar argument ``z`` is transparently replicated 4 times. The input
1211arrays ``x`` and ``y`` are automatically converted into the right types (they
1212are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1213``numpy.dtype.float32``, respectively)
1214
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001215Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001216because it makes little sense to wrap it in a NumPy array. For instance,
1217suppose the function signature was
1218
1219.. code-block:: cpp
1220
1221 double my_func(int x, float y, my_custom_type *z);
1222
1223This can be done with a stateful Lambda closure:
1224
1225.. code-block:: cpp
1226
1227 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1228 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001229 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001230 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1231 return py::vectorize(stateful_closure)(x, y);
1232 }
1233 );
1234
Wenzel Jakob61587162016-01-18 22:38:52 +01001235In cases where the computation is too complicated to be reduced to
1236``vectorize``, it will be necessary to create and access the buffer contents
1237manually. The following snippet contains a complete example that shows how this
1238works (the code is somewhat contrived, since it could have been done more
1239simply using ``vectorize``).
1240
1241.. code-block:: cpp
1242
1243 #include <pybind11/pybind11.h>
1244 #include <pybind11/numpy.h>
1245
1246 namespace py = pybind11;
1247
1248 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1249 auto buf1 = input1.request(), buf2 = input2.request();
1250
1251 if (buf1.ndim != 1 || buf2.ndim != 1)
1252 throw std::runtime_error("Number of dimensions must be one");
1253
1254 if (buf1.shape[0] != buf2.shape[0])
1255 throw std::runtime_error("Input shapes must match");
1256
1257 auto result = py::array(py::buffer_info(
1258 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1259 sizeof(double), /* Size of one item */
Nils Wernerf7048f22016-05-19 11:17:17 +02001260 py::format_descriptor<double>::value(), /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001261 buf1.ndim, /* How many dimensions? */
1262 { buf1.shape[0] }, /* Number of elements for each dimension */
1263 { sizeof(double) } /* Strides for each dimension */
1264 ));
1265
1266 auto buf3 = result.request();
1267
1268 double *ptr1 = (double *) buf1.ptr,
1269 *ptr2 = (double *) buf2.ptr,
1270 *ptr3 = (double *) buf3.ptr;
1271
1272 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1273 ptr3[idx] = ptr1[idx] + ptr2[idx];
1274
1275 return result;
1276 }
1277
1278 PYBIND11_PLUGIN(test) {
1279 py::module m("test");
1280 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1281 return m.ptr();
1282 }
1283
Wenzel Jakob93296692015-10-13 23:21:54 +02001284.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001285
Wenzel Jakob93296692015-10-13 23:21:54 +02001286 The file :file:`example/example10.cpp` contains a complete example that
1287 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001288
Wenzel Jakob93296692015-10-13 23:21:54 +02001289Functions taking Python objects as arguments
1290============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001291
Wenzel Jakob93296692015-10-13 23:21:54 +02001292pybind11 exposes all major Python types using thin C++ wrapper classes. These
1293wrapper classes can also be used as parameters of functions in bindings, which
1294makes it possible to directly work with native Python types on the C++ side.
1295For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001296
Wenzel Jakob93296692015-10-13 23:21:54 +02001297.. code-block:: cpp
1298
1299 void print_dict(py::dict dict) {
1300 /* Easily interact with Python types */
1301 for (auto item : dict)
1302 std::cout << "key=" << item.first << ", "
1303 << "value=" << item.second << std::endl;
1304 }
1305
1306Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001307:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001308:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1309:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1310:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001311
Wenzel Jakob436b7312015-10-20 01:04:30 +02001312In this kind of mixed code, it is often necessary to convert arbitrary C++
1313types to Python, which can be done using :func:`cast`:
1314
1315.. code-block:: cpp
1316
1317 MyClass *cls = ..;
1318 py::object obj = py::cast(cls);
1319
1320The reverse direction uses the following syntax:
1321
1322.. code-block:: cpp
1323
1324 py::object obj = ...;
1325 MyClass *cls = obj.cast<MyClass *>();
1326
1327When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001328It is also possible to call python functions via ``operator()``.
1329
1330.. code-block:: cpp
1331
1332 py::function f = <...>;
1333 py::object result_py = f(1234, "hello", some_instance);
1334 MyClass &result = result_py.cast<MyClass>();
1335
1336The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1337supply arbitrary argument and keyword lists, although these cannot be mixed
1338with other parameters.
1339
1340.. code-block:: cpp
1341
1342 py::function f = <...>;
1343 py::tuple args = py::make_tuple(1234);
1344 py::dict kwargs;
1345 kwargs["y"] = py::cast(5678);
1346 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001347
Wenzel Jakob93296692015-10-13 23:21:54 +02001348.. seealso::
1349
1350 The file :file:`example/example2.cpp` contains a complete example that
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001351 demonstrates passing native Python types in more detail. The file
1352 :file:`example/example11.cpp` discusses usage of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001353
1354Default arguments revisited
1355===========================
1356
1357The section on :ref:`default_args` previously discussed basic usage of default
1358arguments using pybind11. One noteworthy aspect of their implementation is that
1359default arguments are converted to Python objects right at declaration time.
1360Consider the following example:
1361
1362.. code-block:: cpp
1363
1364 py::class_<MyClass>("MyClass")
1365 .def("myFunction", py::arg("arg") = SomeType(123));
1366
1367In this case, pybind11 must already be set up to deal with values of the type
1368``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1369exception will be thrown.
1370
1371Another aspect worth highlighting is that the "preview" of the default argument
1372in the function signature is generated using the object's ``__repr__`` method.
1373If not available, the signature may not be very helpful, e.g.:
1374
Wenzel Jakob99279f72016-06-03 11:19:29 +02001375.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001376
1377 FUNCTIONS
1378 ...
1379 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001380 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001381 ...
1382
1383The first way of addressing this is by defining ``SomeType.__repr__``.
1384Alternatively, it is possible to specify the human-readable preview of the
1385default argument manually using the ``arg_t`` notation:
1386
1387.. code-block:: cpp
1388
1389 py::class_<MyClass>("MyClass")
1390 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1391
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001392Sometimes it may be necessary to pass a null pointer value as a default
1393argument. In this case, remember to cast it to the underlying type in question,
1394like so:
1395
1396.. code-block:: cpp
1397
1398 py::class_<MyClass>("MyClass")
1399 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1400
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001401Binding functions that accept arbitrary numbers of arguments and keywords arguments
1402===================================================================================
1403
1404Python provides a useful mechanism to define functions that accept arbitrary
1405numbers of arguments and keyword arguments:
1406
1407.. code-block:: cpp
1408
1409 def generic(*args, **kwargs):
1410 # .. do something with args and kwargs
1411
1412Such functions can also be created using pybind11:
1413
1414.. code-block:: cpp
1415
1416 void generic(py::args args, py::kwargs kwargs) {
1417 /// .. do something with args
1418 if (kwargs)
1419 /// .. do something with kwargs
1420 }
1421
1422 /// Binding code
1423 m.def("generic", &generic);
1424
1425(See ``example/example11.cpp``). The class ``py::args`` derives from
1426``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note that the
1427``kwargs`` argument is invalid if no keyword arguments were actually provided.
1428Please refer to the other examples for details on how to iterate over these,
1429and on how to cast their entries into C++ objects.
1430
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001431Partitioning code over multiple extension modules
1432=================================================
1433
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001434It's straightforward to split binding code over multiple extension modules,
1435while referencing types that are declared elsewhere. Everything "just" works
1436without any special precautions. One exception to this rule occurs when
1437extending a type declared in another extension module. Recall the basic example
1438from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001439
1440.. code-block:: cpp
1441
1442 py::class_<Pet> pet(m, "Pet");
1443 pet.def(py::init<const std::string &>())
1444 .def_readwrite("name", &Pet::name);
1445
1446 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1447 .def(py::init<const std::string &>())
1448 .def("bark", &Dog::bark);
1449
1450Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1451whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1452course that the variable ``pet`` is not available anymore though it is needed
1453to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1454However, it can be acquired as follows:
1455
1456.. code-block:: cpp
1457
1458 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1459
1460 py::class_<Dog>(m, "Dog", pet)
1461 .def(py::init<const std::string &>())
1462 .def("bark", &Dog::bark);
1463
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001464Alternatively, we can rely on the ``base`` tag, which performs an automated
1465lookup of the corresponding Python type. However, this also requires invoking
1466the ``import`` function once to ensure that the pybind11 binding code of the
1467module ``basic`` has been executed.
1468
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001469.. code-block:: cpp
1470
1471 py::module::import("basic");
1472
1473 py::class_<Dog>(m, "Dog", py::base<Pet>())
1474 .def(py::init<const std::string &>())
1475 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001476
Wenzel Jakob978e3762016-04-07 18:00:41 +02001477Naturally, both methods will fail when there are cyclic dependencies.
1478
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001479Note that compiling code which has its default symbol visibility set to
1480*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1481ability to access types defined in another extension module. Workarounds
1482include changing the global symbol visibility (not recommended, because it will
1483lead unnecessarily large binaries) or manually exporting types that are
1484accessed by multiple extension modules:
1485
1486.. code-block:: cpp
1487
1488 #ifdef _WIN32
1489 # define EXPORT_TYPE __declspec(dllexport)
1490 #else
1491 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1492 #endif
1493
1494 class EXPORT_TYPE Dog : public Animal {
1495 ...
1496 };
1497
1498
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001499Pickling support
1500================
1501
1502Python's ``pickle`` module provides a powerful facility to serialize and
1503de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001504unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001505Suppose the class in question has the following signature:
1506
1507.. code-block:: cpp
1508
1509 class Pickleable {
1510 public:
1511 Pickleable(const std::string &value) : m_value(value) { }
1512 const std::string &value() const { return m_value; }
1513
1514 void setExtra(int extra) { m_extra = extra; }
1515 int extra() const { return m_extra; }
1516 private:
1517 std::string m_value;
1518 int m_extra = 0;
1519 };
1520
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001521The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001522looks as follows:
1523
1524.. code-block:: cpp
1525
1526 py::class_<Pickleable>(m, "Pickleable")
1527 .def(py::init<std::string>())
1528 .def("value", &Pickleable::value)
1529 .def("extra", &Pickleable::extra)
1530 .def("setExtra", &Pickleable::setExtra)
1531 .def("__getstate__", [](const Pickleable &p) {
1532 /* Return a tuple that fully encodes the state of the object */
1533 return py::make_tuple(p.value(), p.extra());
1534 })
1535 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1536 if (t.size() != 2)
1537 throw std::runtime_error("Invalid state!");
1538
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001539 /* Invoke the in-place constructor. Note that this is needed even
1540 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001541 new (&p) Pickleable(t[0].cast<std::string>());
1542
1543 /* Assign any additional state */
1544 p.setExtra(t[1].cast<int>());
1545 });
1546
1547An instance can now be pickled as follows:
1548
1549.. code-block:: python
1550
1551 try:
1552 import cPickle as pickle # Use cPickle on Python 2.7
1553 except ImportError:
1554 import pickle
1555
1556 p = Pickleable("test_value")
1557 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001558 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001559
Wenzel Jakob81e09752016-04-30 23:13:03 +02001560Note that only the cPickle module is supported on Python 2.7. The second
1561argument to ``dumps`` is also crucial: it selects the pickle protocol version
15622, since the older version 1 is not supported. Newer versions are also fine—for
1563instance, specify ``-1`` to always use the latest available version. Beware:
1564failure to follow these instructions will cause important pybind11 memory
1565allocation routines to be skipped during unpickling, which will likely lead to
1566memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001567
1568.. seealso::
1569
1570 The file :file:`example/example15.cpp` contains a complete example that
1571 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1572
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001573.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001574
1575Generating documentation using Sphinx
1576=====================================
1577
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001578Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001579strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001580documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001581simple example repository which uses this approach.
1582
1583There are two potential gotchas when using this approach: first, make sure that
1584the resulting strings do not contain any :kbd:`TAB` characters, which break the
1585docstring parsing routines. You may want to use C++11 raw string literals,
1586which are convenient for multi-line comments. Conveniently, any excess
1587indentation will be automatically be removed by Sphinx. However, for this to
1588work, it is important that all lines are indented consistently, i.e.:
1589
1590.. code-block:: cpp
1591
1592 // ok
1593 m.def("foo", &foo, R"mydelimiter(
1594 The foo function
1595
1596 Parameters
1597 ----------
1598 )mydelimiter");
1599
1600 // *not ok*
1601 m.def("foo", &foo, R"mydelimiter(The foo function
1602
1603 Parameters
1604 ----------
1605 )mydelimiter");
1606
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001607.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001608.. [#f5] http://github.com/pybind/python_example