blob: 366f06d8f5fba5f52727f5fe97c2cb3a6cc209d5 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
105 The file :file:`example/example3.cpp` contains a complete example that
106 demonstrates how to work with overloaded operators in more detail.
107
108Callbacks and passing anonymous functions
109=========================================
110
111The C++11 standard brought lambda functions and the generic polymorphic
112function wrapper ``std::function<>`` to the C++ programming language, which
113enable powerful new ways of working with functions. Lambda functions come in
114two flavors: stateless lambda function resemble classic function pointers that
115link to an anonymous piece of code, while stateful lambda functions
116additionally depend on captured variables that are stored in an anonymous
117*lambda closure object*.
118
119Here is a simple example of a C++ function that takes an arbitrary function
120(stateful or stateless) with signature ``int -> int`` as an argument and runs
121it with the value 10.
122
123.. code-block:: cpp
124
125 int func_arg(const std::function<int(int)> &f) {
126 return f(10);
127 }
128
129The example below is more involved: it takes a function of signature ``int -> int``
130and returns another function of the same kind. The return value is a stateful
131lambda function, which stores the value ``f`` in the capture object and adds 1 to
132its return value upon execution.
133
134.. code-block:: cpp
135
136 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
137 return [f](int i) {
138 return f(i) + 1;
139 };
140 }
141
Brad Harmon835fc062016-06-16 13:19:15 -0500142This example demonstrates using python named parameters in C++ callbacks which
143requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
144methods of classes:
145
146.. code-block:: cpp
147
148 py::cpp_function func_cpp() {
149 return py::cpp_function([](int i) { return i+1; },
150 py::arg("number"));
151 }
152
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200153After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500154trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200155
156.. code-block:: cpp
157
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200158 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200160 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200161 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200162
163 m.def("func_arg", &func_arg);
164 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500165 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 return m.ptr();
168 }
169
170The following interactive session shows how to call them from Python.
171
Wenzel Jakob99279f72016-06-03 11:19:29 +0200172.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200173
174 $ python
175 >>> import example
176 >>> def square(i):
177 ... return i * i
178 ...
179 >>> example.func_arg(square)
180 100L
181 >>> square_plus_1 = example.func_ret(square)
182 >>> square_plus_1(4)
183 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500184 >>> plus_1 = func_cpp()
185 >>> plus_1(number=43)
186 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200187
188.. note::
189
190 This functionality is very useful when generating bindings for callbacks in
191 C++ libraries (e.g. a graphical user interface library).
192
193 The file :file:`example/example5.cpp` contains a complete example that
194 demonstrates how to work with callbacks and anonymous functions in more detail.
195
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100196.. warning::
197
198 Keep in mind that passing a function from C++ to Python (or vice versa)
199 will instantiate a piece of wrapper code that translates function
200 invocations between the two languages. Copying the same function back and
201 forth between Python and C++ many times in a row will cause these wrappers
202 to accumulate, which can decrease performance.
203
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200204Overriding virtual functions in Python
205======================================
206
Wenzel Jakob93296692015-10-13 23:21:54 +0200207Suppose that a C++ class or interface has a virtual function that we'd like to
208to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
209given as a specific example of how one would do this with traditional C++
210code).
211
212.. code-block:: cpp
213
214 class Animal {
215 public:
216 virtual ~Animal() { }
217 virtual std::string go(int n_times) = 0;
218 };
219
220 class Dog : public Animal {
221 public:
222 std::string go(int n_times) {
223 std::string result;
224 for (int i=0; i<n_times; ++i)
225 result += "woof! ";
226 return result;
227 }
228 };
229
230Let's also suppose that we are given a plain function which calls the
231function ``go()`` on an arbitrary ``Animal`` instance.
232
233.. code-block:: cpp
234
235 std::string call_go(Animal *animal) {
236 return animal->go(3);
237 }
238
239Normally, the binding code for these classes would look as follows:
240
241.. code-block:: cpp
242
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200243 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200244 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200245
246 py::class_<Animal> animal(m, "Animal");
247 animal
248 .def("go", &Animal::go);
249
250 py::class_<Dog>(m, "Dog", animal)
251 .def(py::init<>());
252
253 m.def("call_go", &call_go);
254
255 return m.ptr();
256 }
257
258However, these bindings are impossible to extend: ``Animal`` is not
259constructible, and we clearly require some kind of "trampoline" that
260redirects virtual calls back to Python.
261
262Defining a new type of ``Animal`` from within Python is possible but requires a
263helper class that is defined as follows:
264
265.. code-block:: cpp
266
267 class PyAnimal : public Animal {
268 public:
269 /* Inherit the constructors */
270 using Animal::Animal;
271
272 /* Trampoline (need one for each virtual function) */
273 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200274 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200275 std::string, /* Return type */
276 Animal, /* Parent class */
277 go, /* Name of function */
278 n_times /* Argument(s) */
279 );
280 }
281 };
282
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200283The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
284functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200285a default implementation.
286
287There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
288:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
289after the *Name of the function* slot. This is useful when the C++ and Python
290versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
291
292The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200293
294.. code-block:: cpp
295 :emphasize-lines: 4,6,7
296
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200297 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200298 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200299
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200300 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200301 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200302 .def(py::init<>())
303 .def("go", &Animal::go);
304
305 py::class_<Dog>(m, "Dog", animal)
306 .def(py::init<>());
307
308 m.def("call_go", &call_go);
309
310 return m.ptr();
311 }
312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313Importantly, pybind11 is made aware of the trampoline trampoline helper class
314by specifying it as the *third* template argument to :class:`class_`. The
315second argument with the unique pointer is simply the default holder type used
316by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200317
318The Python session below shows how to override ``Animal::go`` and invoke it via
319a virtual method call.
320
Wenzel Jakob99279f72016-06-03 11:19:29 +0200321.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200322
323 >>> from example import *
324 >>> d = Dog()
325 >>> call_go(d)
326 u'woof! woof! woof! '
327 >>> class Cat(Animal):
328 ... def go(self, n_times):
329 ... return "meow! " * n_times
330 ...
331 >>> c = Cat()
332 >>> call_go(c)
333 u'meow! meow! meow! '
334
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200335Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200336
Wenzel Jakob93296692015-10-13 23:21:54 +0200337.. seealso::
338
339 The file :file:`example/example12.cpp` contains a complete example that
340 demonstrates how to override virtual functions using pybind11 in more
341 detail.
342
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100343
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200344.. _macro_notes:
345
346General notes regarding convenience macros
347==========================================
348
349pybind11 provides a few convenience macros such as
350:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
351``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
352in the preprocessor (which has no concept of types), they *will* get confused
353by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
354T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
355the beginnning of the next parameter. Use a ``typedef`` to bind the template to
356another name and use it in the macro to avoid this problem.
357
358
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100359Global Interpreter Lock (GIL)
360=============================
361
362The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
363used to acquire and release the global interpreter lock in the body of a C++
364function call. In this way, long-running C++ code can be parallelized using
365multiple Python threads. Taking the previous section as an example, this could
366be realized as follows (important changes highlighted):
367
368.. code-block:: cpp
369 :emphasize-lines: 8,9,33,34
370
371 class PyAnimal : public Animal {
372 public:
373 /* Inherit the constructors */
374 using Animal::Animal;
375
376 /* Trampoline (need one for each virtual function) */
377 std::string go(int n_times) {
378 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100379 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100380
381 PYBIND11_OVERLOAD_PURE(
382 std::string, /* Return type */
383 Animal, /* Parent class */
384 go, /* Name of function */
385 n_times /* Argument(s) */
386 );
387 }
388 };
389
390 PYBIND11_PLUGIN(example) {
391 py::module m("example", "pybind11 example plugin");
392
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200393 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100394 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100395 .def(py::init<>())
396 .def("go", &Animal::go);
397
398 py::class_<Dog>(m, "Dog", animal)
399 .def(py::init<>());
400
401 m.def("call_go", [](Animal *animal) -> std::string {
402 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100403 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100404 return call_go(animal);
405 });
406
407 return m.ptr();
408 }
409
Wenzel Jakob93296692015-10-13 23:21:54 +0200410Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200411===========================
412
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200413When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200414between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
415and the Python ``list``, ``set`` and ``dict`` data structures are automatically
416enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
417out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200418
419.. note::
420
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100421 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200422
423.. seealso::
424
425 The file :file:`example/example2.cpp` contains a complete example that
426 demonstrates how to pass STL data types in more detail.
427
Wenzel Jakobb2825952016-04-13 23:33:00 +0200428Binding sequence data types, iterators, the slicing protocol, etc.
429==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200430
431Please refer to the supplemental example for details.
432
433.. seealso::
434
435 The file :file:`example/example6.cpp` contains a complete example that
436 shows how to bind a sequence data type, including length queries
437 (``__len__``), iterators (``__iter__``), the slicing protocol and other
438 kinds of useful operations.
439
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200440Return value policies
441=====================
442
Wenzel Jakob93296692015-10-13 23:21:54 +0200443Python and C++ use wildly different ways of managing the memory and lifetime of
444objects managed by them. This can lead to issues when creating bindings for
445functions that return a non-trivial type. Just by looking at the type
446information, it is not clear whether Python should take charge of the returned
447value and eventually free its resources, or if this is handled on the C++ side.
448For this reason, pybind11 provides a several `return value policy` annotations
449that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100450functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200451
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200452.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
453
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200454+--------------------------------------------------+----------------------------------------------------------------------------+
455| Return value policy | Description |
456+==================================================+============================================================================+
457| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
458| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200459| | pointer. Otherwise, it uses :enum:`return_value::move` or |
460| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200461| | See below for a description of what all of these different policies do. |
462+--------------------------------------------------+----------------------------------------------------------------------------+
463| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200464| | return value is a pointer. This is the default conversion policy for |
465| | function arguments when calling Python functions manually from C++ code |
466| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200467+--------------------------------------------------+----------------------------------------------------------------------------+
468| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
469| | ownership. Python will call the destructor and delete operator when the |
470| | object's reference count reaches zero. Undefined behavior ensues when the |
nafur717df752016-06-28 18:07:11 +0200471| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200472+--------------------------------------------------+----------------------------------------------------------------------------+
473| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
474| | This policy is comparably safe because the lifetimes of the two instances |
475| | are decoupled. |
476+--------------------------------------------------+----------------------------------------------------------------------------+
477| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
478| | that will be owned by Python. This policy is comparably safe because the |
479| | lifetimes of the two instances (move source and destination) are decoupled.|
480+--------------------------------------------------+----------------------------------------------------------------------------+
481| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
482| | responsible for managing the object's lifetime and deallocating it when |
483| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200484| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200485+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200486| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
487| | object without taking ownership similar to the above |
488| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
489| | the function or property's implicit ``this`` argument (called the *parent*)|
490| | is considered to be the the owner of the return value (the *child*). |
491| | pybind11 then couples the lifetime of the parent to the child via a |
492| | reference relationship that ensures that the parent cannot be garbage |
493| | collected while Python is still using the child. More advanced variations |
494| | of this scheme are also possible using combinations of |
495| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
496| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200497+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200498
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200499The following example snippet shows a use case of the
Wenzel Jakob93296692015-10-13 23:21:54 +0200500:enum:`return_value_policy::reference_internal` policy.
501
502.. code-block:: cpp
503
504 class Example {
505 public:
506 Internal &get_internal() { return internal; }
507 private:
508 Internal internal;
509 };
510
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200511 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200512 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200513
514 py::class_<Example>(m, "Example")
515 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200516 .def("get_internal", &Example::get_internal, "Return the internal data",
517 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200518
519 return m.ptr();
520 }
521
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200522.. warning::
523
524 Code with invalid call policies might access unitialized memory or free
525 data structures multiple times, which can lead to hard-to-debug
526 non-determinism and segmentation faults, hence it is worth spending the
527 time to understand all the different options in the table above.
528
nafur717df752016-06-28 18:07:11 +0200529.. warning::
530
531 pybind11 tries to eliminate duplicate addresses by returning the same reference object.
532 If two addresses are the same, though they do not point to the same object semantically,
533 this may cause unexpected behaviour. An explicit policy should be used instead of
534 relying on `automatic`.
535 A common example is a reference to the first member of a class which has the same memory
536 location as its owning class.
537
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200538.. note::
539
540 The next section on :ref:`call_policies` discusses *call policies* that can be
541 specified *in addition* to a return value policy from the list above. Call
542 policies indicate reference relationships that can involve both return values
543 and parameters of functions.
544
545.. note::
546
547 As an alternative to elaborate call policies and lifetime management logic,
548 consider using smart pointers (see the section on :ref:`smart_pointers` for
549 details). Smart pointers can tell whether an object is still referenced from
550 C++ or Python, which generally eliminates the kinds of inconsistencies that
551 can lead to crashes or undefined behavior. For functions returning smart
552 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100553
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200554.. _call_policies:
555
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100556Additional call policies
557========================
558
559In addition to the above return value policies, further `call policies` can be
560specified to indicate dependencies between parameters. There is currently just
561one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
562argument with index ``Patient`` should be kept alive at least until the
563argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200564indices start at one, while zero refers to the return value. For methods, index
565one refers to the implicit ``this`` pointer, while regular arguments begin at
566index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100567
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200568Consider the following example: the binding code for a list append operation
569that ties the lifetime of the newly added element to the underlying container
570might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100571
572.. code-block:: cpp
573
574 py::class_<List>(m, "List")
575 .def("append", &List::append, py::keep_alive<1, 2>());
576
577.. note::
578
579 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
580 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
581 0) policies from Boost.Python.
582
Wenzel Jakob61587162016-01-18 22:38:52 +0100583.. seealso::
584
585 The file :file:`example/example13.cpp` contains a complete example that
586 demonstrates using :class:`keep_alive` in more detail.
587
Wenzel Jakob93296692015-10-13 23:21:54 +0200588Implicit type conversions
589=========================
590
591Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200592that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200593could be a fixed and an arbitrary precision number type).
594
595.. code-block:: cpp
596
597 py::class_<A>(m, "A")
598 /// ... members ...
599
600 py::class_<B>(m, "B")
601 .def(py::init<A>())
602 /// ... members ...
603
604 m.def("func",
605 [](const B &) { /* .... */ }
606 );
607
608To invoke the function ``func`` using a variable ``a`` containing an ``A``
609instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
610will automatically apply an implicit type conversion, which makes it possible
611to directly write ``func(a)``.
612
613In this situation (i.e. where ``B`` has a constructor that converts from
614``A``), the following statement enables similar implicit conversions on the
615Python side:
616
617.. code-block:: cpp
618
619 py::implicitly_convertible<A, B>();
620
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200621.. _static_properties:
622
623Static properties
624=================
625
626The section on :ref:`properties` discussed the creation of instance properties
627that are implemented in terms of C++ getters and setters.
628
629Static properties can also be created in a similar way to expose getters and
630setters of static class attributes. It is important to note that the implicit
631``self`` argument also exists in this case and is used to pass the Python
632``type`` subclass instance. This parameter will often not be needed by the C++
633side, and the following example illustrates how to instantiate a lambda getter
634function that ignores it:
635
636.. code-block:: cpp
637
638 py::class_<Foo>(m, "Foo")
639 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
640
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200641Unique pointers
642===============
643
644Given a class ``Example`` with Python bindings, it's possible to return
645instances wrapped in C++11 unique pointers, like so
646
647.. code-block:: cpp
648
649 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
650
651.. code-block:: cpp
652
653 m.def("create_example", &create_example);
654
655In other words, there is nothing special that needs to be done. While returning
656unique pointers in this way is allowed, it is *illegal* to use them as function
657arguments. For instance, the following function signature cannot be processed
658by pybind11.
659
660.. code-block:: cpp
661
662 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
663
664The above signature would imply that Python needs to give up ownership of an
665object that is passed to this function, which is generally not possible (for
666instance, the object might be referenced elsewhere).
667
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200668.. _smart_pointers:
669
Wenzel Jakob93296692015-10-13 23:21:54 +0200670Smart pointers
671==============
672
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200673This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200674types with internal reference counting. For the simpler C++11 unique pointers,
675refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200676
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200677The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200678template type, which denotes a special *holder* type that is used to manage
679references to the object. When wrapping a type named ``Type``, the default
680value of this template parameter is ``std::unique_ptr<Type>``, which means that
681the object is deallocated when Python's reference count goes to zero.
682
Wenzel Jakob1853b652015-10-18 15:38:50 +0200683It is possible to switch to other types of reference counting wrappers or smart
684pointers, which is useful in codebases that rely on them. For instance, the
685following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200686
687.. code-block:: cpp
688
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100689 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100690
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100691Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200692
Wenzel Jakob1853b652015-10-18 15:38:50 +0200693To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100694argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200695be declared at the top level before any binding code:
696
697.. code-block:: cpp
698
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200699 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200700
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100701.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100702
703 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
704 placeholder name that is used as a template parameter of the second
705 argument. Thus, feel free to use any identifier, but use it consistently on
706 both sides; also, don't use the name of a type that already exists in your
707 codebase.
708
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100709One potential stumbling block when using holder types is that they need to be
710applied consistently. Can you guess what's broken about the following binding
711code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100712
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100713.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100714
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100715 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100716
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100717 class Parent {
718 public:
719 Parent() : child(std::make_shared<Child>()) { }
720 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
721 private:
722 std::shared_ptr<Child> child;
723 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100724
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100725 PYBIND11_PLUGIN(example) {
726 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100727
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100728 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
729
730 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
731 .def(py::init<>())
732 .def("get_child", &Parent::get_child);
733
734 return m.ptr();
735 }
736
737The following Python code will cause undefined behavior (and likely a
738segmentation fault).
739
740.. code-block:: python
741
742 from example import Parent
743 print(Parent().get_child())
744
745The problem is that ``Parent::get_child()`` returns a pointer to an instance of
746``Child``, but the fact that this instance is already managed by
747``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
748pybind11 will create a second independent ``std::shared_ptr<...>`` that also
749claims ownership of the pointer. In the end, the object will be freed **twice**
750since these shared pointers have no way of knowing about each other.
751
752There are two ways to resolve this issue:
753
7541. For types that are managed by a smart pointer class, never use raw pointers
755 in function arguments or return values. In other words: always consistently
756 wrap pointers into their designated holder types (such as
757 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
758 should be modified as follows:
759
760.. code-block:: cpp
761
762 std::shared_ptr<Child> get_child() { return child; }
763
7642. Adjust the definition of ``Child`` by specifying
765 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
766 base class. This adds a small bit of information to ``Child`` that allows
767 pybind11 to realize that there is already an existing
768 ``std::shared_ptr<...>`` and communicate with it. In this case, the
769 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100770
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100771.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
772
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100773.. code-block:: cpp
774
775 class Child : public std::enable_shared_from_this<Child> { };
776
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200777
778Please take a look at the :ref:`macro_notes` before using this feature.
779
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100780.. seealso::
781
782 The file :file:`example/example8.cpp` contains a complete example that
783 demonstrates how to work with custom reference-counting holder types in
784 more detail.
785
Wenzel Jakob93296692015-10-13 23:21:54 +0200786.. _custom_constructors:
787
788Custom constructors
789===================
790
791The syntax for binding constructors was previously introduced, but it only
792works when a constructor with the given parameters actually exists on the C++
793side. To extend this to more general cases, let's take a look at what actually
794happens under the hood: the following statement
795
796.. code-block:: cpp
797
798 py::class_<Example>(m, "Example")
799 .def(py::init<int>());
800
801is short hand notation for
802
803.. code-block:: cpp
804
805 py::class_<Example>(m, "Example")
806 .def("__init__",
807 [](Example &instance, int arg) {
808 new (&instance) Example(arg);
809 }
810 );
811
812In other words, :func:`init` creates an anonymous function that invokes an
813in-place constructor. Memory allocation etc. is already take care of beforehand
814within pybind11.
815
816Catching and throwing exceptions
817================================
818
819When C++ code invoked from Python throws an ``std::exception``, it is
820automatically converted into a Python ``Exception``. pybind11 defines multiple
821special exception classes that will map to different types of Python
822exceptions:
823
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200824.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
825
Wenzel Jakob978e3762016-04-07 18:00:41 +0200826+--------------------------------------+------------------------------+
827| C++ exception type | Python exception type |
828+======================================+==============================+
829| :class:`std::exception` | ``RuntimeError`` |
830+--------------------------------------+------------------------------+
831| :class:`std::bad_alloc` | ``MemoryError`` |
832+--------------------------------------+------------------------------+
833| :class:`std::domain_error` | ``ValueError`` |
834+--------------------------------------+------------------------------+
835| :class:`std::invalid_argument` | ``ValueError`` |
836+--------------------------------------+------------------------------+
837| :class:`std::length_error` | ``ValueError`` |
838+--------------------------------------+------------------------------+
839| :class:`std::out_of_range` | ``ValueError`` |
840+--------------------------------------+------------------------------+
841| :class:`std::range_error` | ``ValueError`` |
842+--------------------------------------+------------------------------+
843| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
844| | implement custom iterators) |
845+--------------------------------------+------------------------------+
846| :class:`pybind11::index_error` | ``IndexError`` (used to |
847| | indicate out of bounds |
848| | accesses in ``__getitem__``, |
849| | ``__setitem__``, etc.) |
850+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400851| :class:`pybind11::value_error` | ``ValueError`` (used to |
852| | indicate wrong value passed |
853| | in ``container.remove(...)`` |
854+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200855| :class:`pybind11::error_already_set` | Indicates that the Python |
856| | exception flag has already |
857| | been initialized |
858+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200859
860When a Python function invoked from C++ throws an exception, it is converted
861into a C++ exception of type :class:`error_already_set` whose string payload
862contains a textual summary.
863
864There is also a special exception :class:`cast_error` that is thrown by
865:func:`handle::call` when the input arguments cannot be converted to Python
866objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200867
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200868.. _opaque:
869
870Treating STL data structures as opaque objects
871==============================================
872
873pybind11 heavily relies on a template matching mechanism to convert parameters
874and return values that are constructed from STL data types such as vectors,
875linked lists, hash tables, etc. This even works in a recursive manner, for
876instance to deal with lists of hash maps of pairs of elementary and custom
877types, etc.
878
879However, a fundamental limitation of this approach is that internal conversions
880between Python and C++ types involve a copy operation that prevents
881pass-by-reference semantics. What does this mean?
882
883Suppose we bind the following function
884
885.. code-block:: cpp
886
887 void append_1(std::vector<int> &v) {
888 v.push_back(1);
889 }
890
891and call it from Python, the following happens:
892
Wenzel Jakob99279f72016-06-03 11:19:29 +0200893.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200894
895 >>> v = [5, 6]
896 >>> append_1(v)
897 >>> print(v)
898 [5, 6]
899
900As you can see, when passing STL data structures by reference, modifications
901are not propagated back the Python side. A similar situation arises when
902exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
903functions:
904
905.. code-block:: cpp
906
907 /* ... definition ... */
908
909 class MyClass {
910 std::vector<int> contents;
911 };
912
913 /* ... binding code ... */
914
915 py::class_<MyClass>(m, "MyClass")
916 .def(py::init<>)
917 .def_readwrite("contents", &MyClass::contents);
918
919In this case, properties can be read and written in their entirety. However, an
920``append`` operaton involving such a list type has no effect:
921
Wenzel Jakob99279f72016-06-03 11:19:29 +0200922.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200923
924 >>> m = MyClass()
925 >>> m.contents = [5, 6]
926 >>> print(m.contents)
927 [5, 6]
928 >>> m.contents.append(7)
929 >>> print(m.contents)
930 [5, 6]
931
932To deal with both of the above situations, pybind11 provides a macro named
933``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
934machinery of types, thus rendering them *opaque*. The contents of opaque
935objects are never inspected or extracted, hence they can be passed by
936reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
937the declaration
938
939.. code-block:: cpp
940
941 PYBIND11_MAKE_OPAQUE(std::vector<int>);
942
943before any binding code (e.g. invocations to ``class_::def()``, etc.). This
944macro must be specified at the top level, since instantiates a partial template
945overload. If your binding code consists of multiple compilation units, it must
946be present in every file preceding any usage of ``std::vector<int>``. Opaque
947types must also have a corresponding ``class_`` declaration to associate them
948with a name in Python, and to define a set of available operations:
949
950.. code-block:: cpp
951
952 py::class_<std::vector<int>>(m, "IntVector")
953 .def(py::init<>())
954 .def("clear", &std::vector<int>::clear)
955 .def("pop_back", &std::vector<int>::pop_back)
956 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
957 .def("__iter__", [](std::vector<int> &v) {
958 return py::make_iterator(v.begin(), v.end());
959 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
960 // ....
961
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200962Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200963
964.. seealso::
965
966 The file :file:`example/example14.cpp` contains a complete example that
967 demonstrates how to create and expose opaque types using pybind11 in more
968 detail.
969
970.. _eigen:
971
972Transparent conversion of dense and sparse Eigen data types
973===========================================================
974
975Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
976its popularity and widespread adoption, pybind11 provides transparent
977conversion support between Eigen and Scientific Python linear algebra data types.
978
979Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +0100980pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200981
9821. Static and dynamic Eigen dense vectors and matrices to instances of
983 ``numpy.ndarray`` (and vice versa).
984
9851. Eigen sparse vectors and matrices to instances of
986 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
987
988This makes it possible to bind most kinds of functions that rely on these types.
989One major caveat are functions that take Eigen matrices *by reference* and modify
990them somehow, in which case the information won't be propagated to the caller.
991
992.. code-block:: cpp
993
994 /* The Python bindings of this function won't replicate
995 the intended effect of modifying the function argument */
996 void scale_by_2(Eigen::Vector3f &v) {
997 v *= 2;
998 }
999
1000To see why this is, refer to the section on :ref:`opaque` (although that
1001section specifically covers STL data types, the underlying issue is the same).
1002The next two sections discuss an efficient alternative for exposing the
1003underlying native Eigen types as opaque objects in a way that still integrates
1004with NumPy and SciPy.
1005
1006.. [#f1] http://eigen.tuxfamily.org
1007
1008.. seealso::
1009
1010 The file :file:`example/eigen.cpp` contains a complete example that
1011 shows how to pass Eigen sparse and dense data types in more detail.
1012
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001013Buffer protocol
1014===============
1015
1016Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001017data between plugin libraries. Types can expose a buffer view [#f2]_, which
1018provides fast direct access to the raw internal data representation. Suppose we
1019want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001020
1021.. code-block:: cpp
1022
1023 class Matrix {
1024 public:
1025 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1026 m_data = new float[rows*cols];
1027 }
1028 float *data() { return m_data; }
1029 size_t rows() const { return m_rows; }
1030 size_t cols() const { return m_cols; }
1031 private:
1032 size_t m_rows, m_cols;
1033 float *m_data;
1034 };
1035
1036The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001037making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001038completely avoid copy operations with Python expressions like
1039``np.array(matrix_instance, copy = False)``.
1040
1041.. code-block:: cpp
1042
1043 py::class_<Matrix>(m, "Matrix")
1044 .def_buffer([](Matrix &m) -> py::buffer_info {
1045 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001046 m.data(), /* Pointer to buffer */
1047 sizeof(float), /* Size of one scalar */
1048 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
1049 2, /* Number of dimensions */
1050 { m.rows(), m.cols() }, /* Buffer dimensions */
1051 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001052 sizeof(float) }
1053 );
1054 });
1055
1056The snippet above binds a lambda function, which can create ``py::buffer_info``
1057description records on demand describing a given matrix. The contents of
1058``py::buffer_info`` mirror the Python buffer protocol specification.
1059
1060.. code-block:: cpp
1061
1062 struct buffer_info {
1063 void *ptr;
1064 size_t itemsize;
1065 std::string format;
1066 int ndim;
1067 std::vector<size_t> shape;
1068 std::vector<size_t> strides;
1069 };
1070
1071To create a C++ function that can take a Python buffer object as an argument,
1072simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1073in a great variety of configurations, hence some safety checks are usually
1074necessary in the function body. Below, you can see an basic example on how to
1075define a custom constructor for the Eigen double precision matrix
1076(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001077buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001078
1079.. code-block:: cpp
1080
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001081 /* Bind MatrixXd (or some other Eigen type) to Python */
1082 typedef Eigen::MatrixXd Matrix;
1083
1084 typedef Matrix::Scalar Scalar;
1085 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1086
1087 py::class_<Matrix>(m, "Matrix")
1088 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001089 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001090
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001091 /* Request a buffer descriptor from Python */
1092 py::buffer_info info = b.request();
1093
1094 /* Some sanity checks ... */
Wenzel Jakobe7628532016-05-05 10:04:44 +02001095 if (info.format != py::format_descriptor<Scalar>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001096 throw std::runtime_error("Incompatible format: expected a double array!");
1097
1098 if (info.ndim != 2)
1099 throw std::runtime_error("Incompatible buffer dimension!");
1100
Wenzel Jakobe7628532016-05-05 10:04:44 +02001101 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001102 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1103 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001104
1105 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001106 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001107
1108 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001109 });
1110
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001111For reference, the ``def_buffer()`` call for this Eigen data type should look
1112as follows:
1113
1114.. code-block:: cpp
1115
1116 .def_buffer([](Matrix &m) -> py::buffer_info {
1117 return py::buffer_info(
1118 m.data(), /* Pointer to buffer */
1119 sizeof(Scalar), /* Size of one scalar */
1120 /* Python struct-style format descriptor */
1121 py::format_descriptor<Scalar>::value,
1122 /* Number of dimensions */
1123 2,
1124 /* Buffer dimensions */
1125 { (size_t) m.rows(),
1126 (size_t) m.cols() },
1127 /* Strides (in bytes) for each index */
1128 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1129 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1130 );
1131 })
1132
1133For a much easier approach of binding Eigen types (although with some
1134limitations), refer to the section on :ref:`eigen`.
1135
Wenzel Jakob93296692015-10-13 23:21:54 +02001136.. seealso::
1137
1138 The file :file:`example/example7.cpp` contains a complete example that
1139 demonstrates using the buffer protocol with pybind11 in more detail.
1140
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001141.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001142
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001143NumPy support
1144=============
1145
1146By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1147restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001148type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001149
1150In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001151array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001152template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001153NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001154
1155.. code-block:: cpp
1156
Wenzel Jakob93296692015-10-13 23:21:54 +02001157 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001158
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001159When it is invoked with a different type (e.g. an integer or a list of
1160integers), the binding code will attempt to cast the input into a NumPy array
1161of the requested type. Note that this feature requires the
1162:file:``pybind11/numpy.h`` header to be included.
1163
1164Data in NumPy arrays is not guaranteed to packed in a dense manner;
1165furthermore, entries can be separated by arbitrary column and row strides.
1166Sometimes, it can be useful to require a function to only accept dense arrays
1167using either the C (row-major) or Fortran (column-major) ordering. This can be
1168accomplished via a second template argument with values ``py::array::c_style``
1169or ``py::array::f_style``.
1170
1171.. code-block:: cpp
1172
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001173 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001174
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001175The ``py::array::forcecast`` argument is the default value of the second
1176template paramenter, and it ensures that non-conforming arguments are converted
1177into an array satisfying the specified requirements instead of trying the next
1178function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001179
1180Vectorizing functions
1181=====================
1182
1183Suppose we want to bind a function with the following signature to Python so
1184that it can process arbitrary NumPy array arguments (vectors, matrices, general
1185N-D arrays) in addition to its normal arguments:
1186
1187.. code-block:: cpp
1188
1189 double my_func(int x, float y, double z);
1190
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001191After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001192
1193.. code-block:: cpp
1194
1195 m.def("vectorized_func", py::vectorize(my_func));
1196
1197Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001198each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001199solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1200entirely on the C++ side and can be crunched down into a tight, optimized loop
1201by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001202``numpy.dtype.float64``.
1203
Wenzel Jakob99279f72016-06-03 11:19:29 +02001204.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001205
1206 >>> x = np.array([[1, 3],[5, 7]])
1207 >>> y = np.array([[2, 4],[6, 8]])
1208 >>> z = 3
1209 >>> result = vectorized_func(x, y, z)
1210
1211The scalar argument ``z`` is transparently replicated 4 times. The input
1212arrays ``x`` and ``y`` are automatically converted into the right types (they
1213are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1214``numpy.dtype.float32``, respectively)
1215
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001216Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001217because it makes little sense to wrap it in a NumPy array. For instance,
1218suppose the function signature was
1219
1220.. code-block:: cpp
1221
1222 double my_func(int x, float y, my_custom_type *z);
1223
1224This can be done with a stateful Lambda closure:
1225
1226.. code-block:: cpp
1227
1228 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1229 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001230 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001231 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1232 return py::vectorize(stateful_closure)(x, y);
1233 }
1234 );
1235
Wenzel Jakob61587162016-01-18 22:38:52 +01001236In cases where the computation is too complicated to be reduced to
1237``vectorize``, it will be necessary to create and access the buffer contents
1238manually. The following snippet contains a complete example that shows how this
1239works (the code is somewhat contrived, since it could have been done more
1240simply using ``vectorize``).
1241
1242.. code-block:: cpp
1243
1244 #include <pybind11/pybind11.h>
1245 #include <pybind11/numpy.h>
1246
1247 namespace py = pybind11;
1248
1249 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1250 auto buf1 = input1.request(), buf2 = input2.request();
1251
1252 if (buf1.ndim != 1 || buf2.ndim != 1)
1253 throw std::runtime_error("Number of dimensions must be one");
1254
1255 if (buf1.shape[0] != buf2.shape[0])
1256 throw std::runtime_error("Input shapes must match");
1257
1258 auto result = py::array(py::buffer_info(
1259 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1260 sizeof(double), /* Size of one item */
Nils Wernerf7048f22016-05-19 11:17:17 +02001261 py::format_descriptor<double>::value(), /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001262 buf1.ndim, /* How many dimensions? */
1263 { buf1.shape[0] }, /* Number of elements for each dimension */
1264 { sizeof(double) } /* Strides for each dimension */
1265 ));
1266
1267 auto buf3 = result.request();
1268
1269 double *ptr1 = (double *) buf1.ptr,
1270 *ptr2 = (double *) buf2.ptr,
1271 *ptr3 = (double *) buf3.ptr;
1272
1273 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1274 ptr3[idx] = ptr1[idx] + ptr2[idx];
1275
1276 return result;
1277 }
1278
1279 PYBIND11_PLUGIN(test) {
1280 py::module m("test");
1281 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1282 return m.ptr();
1283 }
1284
Wenzel Jakob93296692015-10-13 23:21:54 +02001285.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001286
Wenzel Jakob93296692015-10-13 23:21:54 +02001287 The file :file:`example/example10.cpp` contains a complete example that
1288 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001289
Wenzel Jakob93296692015-10-13 23:21:54 +02001290Functions taking Python objects as arguments
1291============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001292
Wenzel Jakob93296692015-10-13 23:21:54 +02001293pybind11 exposes all major Python types using thin C++ wrapper classes. These
1294wrapper classes can also be used as parameters of functions in bindings, which
1295makes it possible to directly work with native Python types on the C++ side.
1296For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001297
Wenzel Jakob93296692015-10-13 23:21:54 +02001298.. code-block:: cpp
1299
1300 void print_dict(py::dict dict) {
1301 /* Easily interact with Python types */
1302 for (auto item : dict)
1303 std::cout << "key=" << item.first << ", "
1304 << "value=" << item.second << std::endl;
1305 }
1306
1307Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001308:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001309:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1310:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1311:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001312
Wenzel Jakob436b7312015-10-20 01:04:30 +02001313In this kind of mixed code, it is often necessary to convert arbitrary C++
1314types to Python, which can be done using :func:`cast`:
1315
1316.. code-block:: cpp
1317
1318 MyClass *cls = ..;
1319 py::object obj = py::cast(cls);
1320
1321The reverse direction uses the following syntax:
1322
1323.. code-block:: cpp
1324
1325 py::object obj = ...;
1326 MyClass *cls = obj.cast<MyClass *>();
1327
1328When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001329It is also possible to call python functions via ``operator()``.
1330
1331.. code-block:: cpp
1332
1333 py::function f = <...>;
1334 py::object result_py = f(1234, "hello", some_instance);
1335 MyClass &result = result_py.cast<MyClass>();
1336
1337The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1338supply arbitrary argument and keyword lists, although these cannot be mixed
1339with other parameters.
1340
1341.. code-block:: cpp
1342
1343 py::function f = <...>;
1344 py::tuple args = py::make_tuple(1234);
1345 py::dict kwargs;
1346 kwargs["y"] = py::cast(5678);
1347 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001348
Wenzel Jakob93296692015-10-13 23:21:54 +02001349.. seealso::
1350
1351 The file :file:`example/example2.cpp` contains a complete example that
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001352 demonstrates passing native Python types in more detail. The file
1353 :file:`example/example11.cpp` discusses usage of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001354
1355Default arguments revisited
1356===========================
1357
1358The section on :ref:`default_args` previously discussed basic usage of default
1359arguments using pybind11. One noteworthy aspect of their implementation is that
1360default arguments are converted to Python objects right at declaration time.
1361Consider the following example:
1362
1363.. code-block:: cpp
1364
1365 py::class_<MyClass>("MyClass")
1366 .def("myFunction", py::arg("arg") = SomeType(123));
1367
1368In this case, pybind11 must already be set up to deal with values of the type
1369``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1370exception will be thrown.
1371
1372Another aspect worth highlighting is that the "preview" of the default argument
1373in the function signature is generated using the object's ``__repr__`` method.
1374If not available, the signature may not be very helpful, e.g.:
1375
Wenzel Jakob99279f72016-06-03 11:19:29 +02001376.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001377
1378 FUNCTIONS
1379 ...
1380 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001381 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001382 ...
1383
1384The first way of addressing this is by defining ``SomeType.__repr__``.
1385Alternatively, it is possible to specify the human-readable preview of the
1386default argument manually using the ``arg_t`` notation:
1387
1388.. code-block:: cpp
1389
1390 py::class_<MyClass>("MyClass")
1391 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1392
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001393Sometimes it may be necessary to pass a null pointer value as a default
1394argument. In this case, remember to cast it to the underlying type in question,
1395like so:
1396
1397.. code-block:: cpp
1398
1399 py::class_<MyClass>("MyClass")
1400 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1401
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001402Binding functions that accept arbitrary numbers of arguments and keywords arguments
1403===================================================================================
1404
1405Python provides a useful mechanism to define functions that accept arbitrary
1406numbers of arguments and keyword arguments:
1407
1408.. code-block:: cpp
1409
1410 def generic(*args, **kwargs):
1411 # .. do something with args and kwargs
1412
1413Such functions can also be created using pybind11:
1414
1415.. code-block:: cpp
1416
1417 void generic(py::args args, py::kwargs kwargs) {
1418 /// .. do something with args
1419 if (kwargs)
1420 /// .. do something with kwargs
1421 }
1422
1423 /// Binding code
1424 m.def("generic", &generic);
1425
1426(See ``example/example11.cpp``). The class ``py::args`` derives from
1427``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note that the
1428``kwargs`` argument is invalid if no keyword arguments were actually provided.
1429Please refer to the other examples for details on how to iterate over these,
1430and on how to cast their entries into C++ objects.
1431
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001432Partitioning code over multiple extension modules
1433=================================================
1434
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001435It's straightforward to split binding code over multiple extension modules,
1436while referencing types that are declared elsewhere. Everything "just" works
1437without any special precautions. One exception to this rule occurs when
1438extending a type declared in another extension module. Recall the basic example
1439from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001440
1441.. code-block:: cpp
1442
1443 py::class_<Pet> pet(m, "Pet");
1444 pet.def(py::init<const std::string &>())
1445 .def_readwrite("name", &Pet::name);
1446
1447 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1448 .def(py::init<const std::string &>())
1449 .def("bark", &Dog::bark);
1450
1451Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1452whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1453course that the variable ``pet`` is not available anymore though it is needed
1454to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1455However, it can be acquired as follows:
1456
1457.. code-block:: cpp
1458
1459 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1460
1461 py::class_<Dog>(m, "Dog", pet)
1462 .def(py::init<const std::string &>())
1463 .def("bark", &Dog::bark);
1464
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001465Alternatively, we can rely on the ``base`` tag, which performs an automated
1466lookup of the corresponding Python type. However, this also requires invoking
1467the ``import`` function once to ensure that the pybind11 binding code of the
1468module ``basic`` has been executed.
1469
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001470.. code-block:: cpp
1471
1472 py::module::import("basic");
1473
1474 py::class_<Dog>(m, "Dog", py::base<Pet>())
1475 .def(py::init<const std::string &>())
1476 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001477
Wenzel Jakob978e3762016-04-07 18:00:41 +02001478Naturally, both methods will fail when there are cyclic dependencies.
1479
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001480Note that compiling code which has its default symbol visibility set to
1481*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1482ability to access types defined in another extension module. Workarounds
1483include changing the global symbol visibility (not recommended, because it will
1484lead unnecessarily large binaries) or manually exporting types that are
1485accessed by multiple extension modules:
1486
1487.. code-block:: cpp
1488
1489 #ifdef _WIN32
1490 # define EXPORT_TYPE __declspec(dllexport)
1491 #else
1492 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1493 #endif
1494
1495 class EXPORT_TYPE Dog : public Animal {
1496 ...
1497 };
1498
1499
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001500Pickling support
1501================
1502
1503Python's ``pickle`` module provides a powerful facility to serialize and
1504de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001505unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001506Suppose the class in question has the following signature:
1507
1508.. code-block:: cpp
1509
1510 class Pickleable {
1511 public:
1512 Pickleable(const std::string &value) : m_value(value) { }
1513 const std::string &value() const { return m_value; }
1514
1515 void setExtra(int extra) { m_extra = extra; }
1516 int extra() const { return m_extra; }
1517 private:
1518 std::string m_value;
1519 int m_extra = 0;
1520 };
1521
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001522The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001523looks as follows:
1524
1525.. code-block:: cpp
1526
1527 py::class_<Pickleable>(m, "Pickleable")
1528 .def(py::init<std::string>())
1529 .def("value", &Pickleable::value)
1530 .def("extra", &Pickleable::extra)
1531 .def("setExtra", &Pickleable::setExtra)
1532 .def("__getstate__", [](const Pickleable &p) {
1533 /* Return a tuple that fully encodes the state of the object */
1534 return py::make_tuple(p.value(), p.extra());
1535 })
1536 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1537 if (t.size() != 2)
1538 throw std::runtime_error("Invalid state!");
1539
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001540 /* Invoke the in-place constructor. Note that this is needed even
1541 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001542 new (&p) Pickleable(t[0].cast<std::string>());
1543
1544 /* Assign any additional state */
1545 p.setExtra(t[1].cast<int>());
1546 });
1547
1548An instance can now be pickled as follows:
1549
1550.. code-block:: python
1551
1552 try:
1553 import cPickle as pickle # Use cPickle on Python 2.7
1554 except ImportError:
1555 import pickle
1556
1557 p = Pickleable("test_value")
1558 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001559 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001560
Wenzel Jakob81e09752016-04-30 23:13:03 +02001561Note that only the cPickle module is supported on Python 2.7. The second
1562argument to ``dumps`` is also crucial: it selects the pickle protocol version
15632, since the older version 1 is not supported. Newer versions are also fine—for
1564instance, specify ``-1`` to always use the latest available version. Beware:
1565failure to follow these instructions will cause important pybind11 memory
1566allocation routines to be skipped during unpickling, which will likely lead to
1567memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001568
1569.. seealso::
1570
1571 The file :file:`example/example15.cpp` contains a complete example that
1572 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1573
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001574.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001575
1576Generating documentation using Sphinx
1577=====================================
1578
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001579Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001580strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001581documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001582simple example repository which uses this approach.
1583
1584There are two potential gotchas when using this approach: first, make sure that
1585the resulting strings do not contain any :kbd:`TAB` characters, which break the
1586docstring parsing routines. You may want to use C++11 raw string literals,
1587which are convenient for multi-line comments. Conveniently, any excess
1588indentation will be automatically be removed by Sphinx. However, for this to
1589work, it is important that all lines are indented consistently, i.e.:
1590
1591.. code-block:: cpp
1592
1593 // ok
1594 m.def("foo", &foo, R"mydelimiter(
1595 The foo function
1596
1597 Parameters
1598 ----------
1599 )mydelimiter");
1600
1601 // *not ok*
1602 m.def("foo", &foo, R"mydelimiter(The foo function
1603
1604 Parameters
1605 ----------
1606 )mydelimiter");
1607
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001608.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001609.. [#f5] http://github.com/pybind/python_example