blob: 58b14bc8d0718c28367bb290db689445f48ab4ca [file] [log] [blame]
Jingyue Wu13755602016-03-20 20:59:20 +00001//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// CUDA C/C++ includes memory space designation as variable type qualifers (such
11// as __global__ and __shared__). Knowing the space of a memory access allows
12// CUDA compilers to emit faster PTX loads and stores. For example, a load from
13// shared memory can be translated to `ld.shared` which is roughly 10% faster
14// than a generic `ld` on an NVIDIA Tesla K40c.
15//
16// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17// compilers must infer the memory space of an address expression from
18// type-qualified variables.
19//
20// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22// places only type-qualified variables in specific address spaces, and then
23// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24// (so-called the generic address space) for other instructions to use.
25//
26// For example, the Clang translates the following CUDA code
27// __shared__ float a[10];
28// float v = a[i];
29// to
30// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32// %v = load float, float* %1 ; emits ld.f32
33// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34// redirected to %0 (the generic version of @a).
35//
36// The optimization implemented in this file propagates specific address spaces
37// from type-qualified variable declarations to its users. For example, it
38// optimizes the above IR to
39// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42// codegen is able to emit ld.shared.f32 for %v.
43//
44// Address space inference works in two steps. First, it uses a data-flow
45// analysis to infer as many generic pointers as possible to point to only one
46// specific address space. In the above example, it can prove that %1 only
47// points to addrspace(3). This algorithm was published in
48// CUDA: Compiling and optimizing for a GPU platform
49// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50// ICCS 2012
51//
52// Then, address space inference replaces all refinable generic pointers with
53// equivalent specific pointers.
54//
55// The major challenge of implementing this optimization is handling PHINodes,
56// which may create loops in the data flow graph. This brings two complications.
57//
58// First, the data flow analysis in Step 1 needs to be circular. For example,
59// %generic.input = addrspacecast float addrspace(3)* %input to float*
60// loop:
61// %y = phi [ %generic.input, %y2 ]
62// %y2 = getelementptr %y, 1
63// %v = load %y2
64// br ..., label %loop, ...
65// proving %y specific requires proving both %generic.input and %y2 specific,
66// but proving %y2 specific circles back to %y. To address this complication,
67// the data flow analysis operates on a lattice:
68// uninitialized > specific address spaces > generic.
69// All address expressions (our implementation only considers phi, bitcast,
70// addrspacecast, and getelementptr) start with the uninitialized address space.
71// The monotone transfer function moves the address space of a pointer down a
72// lattice path from uninitialized to specific and then to generic. A join
73// operation of two different specific address spaces pushes the expression down
74// to the generic address space. The analysis completes once it reaches a fixed
75// point.
76//
77// Second, IR rewriting in Step 2 also needs to be circular. For example,
78// converting %y to addrspace(3) requires the compiler to know the converted
79// %y2, but converting %y2 needs the converted %y. To address this complication,
80// we break these cycles using "undef" placeholders. When converting an
81// instruction `I` to a new address space, if its operand `Op` is not converted
82// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83// For instance, our algorithm first converts %y to
84// %y' = phi float addrspace(3)* [ %input, undef ]
85// Then, it converts %y2 to
86// %y2' = getelementptr %y', 1
87// Finally, it fixes the undef in %y' so that
88// %y' = phi float addrspace(3)* [ %input, %y2' ]
89//
Jingyue Wu13755602016-03-20 20:59:20 +000090//===----------------------------------------------------------------------===//
91
Jingyue Wu13755602016-03-20 20:59:20 +000092#include "llvm/ADT/DenseSet.h"
93#include "llvm/ADT/Optional.h"
94#include "llvm/ADT/SetVector.h"
Matt Arsenault42b64782017-01-30 23:02:12 +000095#include "llvm/Analysis/TargetTransformInfo.h"
Jingyue Wu13755602016-03-20 20:59:20 +000096#include "llvm/IR/Function.h"
Reid Kleckner0e8c4bb2017-09-07 23:27:44 +000097#include "llvm/IR/IRBuilder.h"
Jingyue Wu13755602016-03-20 20:59:20 +000098#include "llvm/IR/InstIterator.h"
99#include "llvm/IR/Instructions.h"
Reid Kleckner0e8c4bb2017-09-07 23:27:44 +0000100#include "llvm/IR/IntrinsicInst.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000101#include "llvm/IR/Operator.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000102#include "llvm/Support/Debug.h"
103#include "llvm/Support/raw_ostream.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000104#include "llvm/Transforms/Scalar.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000105#include "llvm/Transforms/Utils/Local.h"
106#include "llvm/Transforms/Utils/ValueMapper.h"
107
Matt Arsenault850657a2017-01-31 01:10:58 +0000108#define DEBUG_TYPE "infer-address-spaces"
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000109
Jingyue Wu13755602016-03-20 20:59:20 +0000110using namespace llvm;
111
112namespace {
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000113static const unsigned UninitializedAddressSpace = ~0u;
Jingyue Wu13755602016-03-20 20:59:20 +0000114
115using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
116
Matt Arsenault850657a2017-01-31 01:10:58 +0000117/// \brief InferAddressSpaces
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000118class InferAddressSpaces : public FunctionPass {
Matt Arsenault42b64782017-01-30 23:02:12 +0000119 /// Target specific address space which uses of should be replaced if
120 /// possible.
121 unsigned FlatAddrSpace;
122
Jingyue Wu13755602016-03-20 20:59:20 +0000123public:
124 static char ID;
125
Matt Arsenault850657a2017-01-31 01:10:58 +0000126 InferAddressSpaces() : FunctionPass(ID) {}
Jingyue Wu13755602016-03-20 20:59:20 +0000127
Matt Arsenault32b96002017-01-27 17:30:39 +0000128 void getAnalysisUsage(AnalysisUsage &AU) const override {
129 AU.setPreservesCFG();
Matt Arsenault42b64782017-01-30 23:02:12 +0000130 AU.addRequired<TargetTransformInfoWrapperPass>();
Matt Arsenault32b96002017-01-27 17:30:39 +0000131 }
132
Jingyue Wu13755602016-03-20 20:59:20 +0000133 bool runOnFunction(Function &F) override;
134
135private:
136 // Returns the new address space of V if updated; otherwise, returns None.
137 Optional<unsigned>
138 updateAddressSpace(const Value &V,
Matt Arsenault42b64782017-01-30 23:02:12 +0000139 const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000140
141 // Tries to infer the specific address space of each address expression in
142 // Postorder.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000143 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
Matt Arsenault42b64782017-01-30 23:02:12 +0000144 ValueToAddrSpaceMapTy *InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000145
Matt Arsenault72f259b2017-01-31 02:17:32 +0000146 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
147
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000148 // Changes the flat address expressions in function F to point to specific
Jingyue Wu13755602016-03-20 20:59:20 +0000149 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000150 // all flat expressions in the use-def graph of function F.
Jingyue Wu13755602016-03-20 20:59:20 +0000151 bool
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000152 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
Jingyue Wu13755602016-03-20 20:59:20 +0000153 const ValueToAddrSpaceMapTy &InferredAddrSpace,
Matt Arsenault42b64782017-01-30 23:02:12 +0000154 Function *F) const;
155
156 void appendsFlatAddressExpressionToPostorderStack(
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000157 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
158 DenseSet<Value *> &Visited) const;
Matt Arsenault42b64782017-01-30 23:02:12 +0000159
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000160 bool rewriteIntrinsicOperands(IntrinsicInst *II,
161 Value *OldV, Value *NewV) const;
162 void collectRewritableIntrinsicOperands(
163 IntrinsicInst *II,
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000164 std::vector<std::pair<Value *, bool>> &PostorderStack,
165 DenseSet<Value *> &Visited) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000166
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000167 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000168
Matt Arsenault42b64782017-01-30 23:02:12 +0000169 Value *cloneValueWithNewAddressSpace(
170 Value *V, unsigned NewAddrSpace,
171 const ValueToValueMapTy &ValueWithNewAddrSpace,
172 SmallVectorImpl<const Use *> *UndefUsesToFix) const;
173 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000174};
175} // end anonymous namespace
176
Matt Arsenault850657a2017-01-31 01:10:58 +0000177char InferAddressSpaces::ID = 0;
Jingyue Wu13755602016-03-20 20:59:20 +0000178
179namespace llvm {
Matt Arsenault850657a2017-01-31 01:10:58 +0000180void initializeInferAddressSpacesPass(PassRegistry &);
Jingyue Wu13755602016-03-20 20:59:20 +0000181}
Matt Arsenault850657a2017-01-31 01:10:58 +0000182
183INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
Jingyue Wu13755602016-03-20 20:59:20 +0000184 false, false)
185
186// Returns true if V is an address expression.
187// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
188// getelementptr operators.
189static bool isAddressExpression(const Value &V) {
190 if (!isa<Operator>(V))
191 return false;
192
193 switch (cast<Operator>(V).getOpcode()) {
194 case Instruction::PHI:
195 case Instruction::BitCast:
196 case Instruction::AddrSpaceCast:
197 case Instruction::GetElementPtr:
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000198 case Instruction::Select:
Jingyue Wu13755602016-03-20 20:59:20 +0000199 return true;
200 default:
201 return false;
202 }
203}
204
205// Returns the pointer operands of V.
206//
207// Precondition: V is an address expression.
208static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000209 const Operator &Op = cast<Operator>(V);
Jingyue Wu13755602016-03-20 20:59:20 +0000210 switch (Op.getOpcode()) {
211 case Instruction::PHI: {
212 auto IncomingValues = cast<PHINode>(Op).incoming_values();
213 return SmallVector<Value *, 2>(IncomingValues.begin(),
214 IncomingValues.end());
215 }
216 case Instruction::BitCast:
217 case Instruction::AddrSpaceCast:
218 case Instruction::GetElementPtr:
219 return {Op.getOperand(0)};
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000220 case Instruction::Select:
221 return {Op.getOperand(1), Op.getOperand(2)};
Jingyue Wu13755602016-03-20 20:59:20 +0000222 default:
223 llvm_unreachable("Unexpected instruction type.");
224 }
225}
226
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000227// TODO: Move logic to TTI?
228bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
229 Value *OldV,
230 Value *NewV) const {
231 Module *M = II->getParent()->getParent()->getParent();
232
233 switch (II->getIntrinsicID()) {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000234 case Intrinsic::amdgcn_atomic_inc:
Matt Arsenault79f837c2017-03-30 22:21:40 +0000235 case Intrinsic::amdgcn_atomic_dec:{
236 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
Craig Topper79ab6432017-07-06 18:39:47 +0000237 if (!IsVolatile || !IsVolatile->isZero())
Matt Arsenault79f837c2017-03-30 22:21:40 +0000238 return false;
239
240 LLVM_FALLTHROUGH;
241 }
242 case Intrinsic::objectsize: {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000243 Type *DestTy = II->getType();
244 Type *SrcTy = NewV->getType();
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000245 Function *NewDecl =
246 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000247 II->setArgOperand(0, NewV);
248 II->setCalledFunction(NewDecl);
249 return true;
250 }
251 default:
252 return false;
253 }
254}
255
256// TODO: Move logic to TTI?
257void InferAddressSpaces::collectRewritableIntrinsicOperands(
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000258 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
259 DenseSet<Value *> &Visited) const {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000260 switch (II->getIntrinsicID()) {
261 case Intrinsic::objectsize:
262 case Intrinsic::amdgcn_atomic_inc:
263 case Intrinsic::amdgcn_atomic_dec:
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000264 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
265 PostorderStack, Visited);
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000266 break;
267 default:
268 break;
269 }
270}
271
272// Returns all flat address expressions in function F. The elements are
Matt Arsenault42b64782017-01-30 23:02:12 +0000273// If V is an unvisited flat address expression, appends V to PostorderStack
Jingyue Wu13755602016-03-20 20:59:20 +0000274// and marks it as visited.
Matt Arsenault850657a2017-01-31 01:10:58 +0000275void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000276 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
277 DenseSet<Value *> &Visited) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000278 assert(V->getType()->isPointerTy());
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000279
280 // Generic addressing expressions may be hidden in nested constant
281 // expressions.
282 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
283 // TODO: Look in non-address parts, like icmp operands.
284 if (isAddressExpression(*CE) && Visited.insert(CE).second)
285 PostorderStack.push_back(std::make_pair(CE, false));
286
287 return;
288 }
289
Jingyue Wu13755602016-03-20 20:59:20 +0000290 if (isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000291 V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000292 if (Visited.insert(V).second) {
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000293 PostorderStack.push_back(std::make_pair(V, false));
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000294
295 Operator *Op = cast<Operator>(V);
296 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
297 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
298 if (isAddressExpression(*CE) && Visited.insert(CE).second)
299 PostorderStack.emplace_back(CE, false);
300 }
301 }
302 }
Jingyue Wu13755602016-03-20 20:59:20 +0000303 }
304}
305
Matt Arsenault42b64782017-01-30 23:02:12 +0000306// Returns all flat address expressions in function F. The elements are ordered
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000307// ordered in postorder.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000308std::vector<WeakTrackingVH>
Matt Arsenault850657a2017-01-31 01:10:58 +0000309InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000310 // This function implements a non-recursive postorder traversal of a partial
311 // use-def graph of function F.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000312 std::vector<std::pair<Value *, bool>> PostorderStack;
Jingyue Wu13755602016-03-20 20:59:20 +0000313 // The set of visited expressions.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000314 DenseSet<Value *> Visited;
Matt Arsenault6c907a92017-01-31 01:40:38 +0000315
316 auto PushPtrOperand = [&](Value *Ptr) {
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000317 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
318 Visited);
Matt Arsenault6c907a92017-01-31 01:40:38 +0000319 };
320
Matt Arsenaultc07bda72017-04-21 21:35:04 +0000321 // Look at operations that may be interesting accelerate by moving to a known
322 // address space. We aim at generating after loads and stores, but pure
323 // addressing calculations may also be faster.
Jingyue Wu13755602016-03-20 20:59:20 +0000324 for (Instruction &I : instructions(F)) {
Matt Arsenaultc07bda72017-04-21 21:35:04 +0000325 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
326 if (!GEP->getType()->isVectorTy())
327 PushPtrOperand(GEP->getPointerOperand());
328 } else if (auto *LI = dyn_cast<LoadInst>(&I))
Matt Arsenault6c907a92017-01-31 01:40:38 +0000329 PushPtrOperand(LI->getPointerOperand());
330 else if (auto *SI = dyn_cast<StoreInst>(&I))
331 PushPtrOperand(SI->getPointerOperand());
332 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
333 PushPtrOperand(RMW->getPointerOperand());
334 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
335 PushPtrOperand(CmpX->getPointerOperand());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000336 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
337 // For memset/memcpy/memmove, any pointer operand can be replaced.
338 PushPtrOperand(MI->getRawDest());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000339
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000340 // Handle 2nd operand for memcpy/memmove.
341 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000342 PushPtrOperand(MTI->getRawSource());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000343 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000344 collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
Matt Arsenault72f259b2017-01-31 02:17:32 +0000345 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
346 // FIXME: Handle vectors of pointers
347 if (Cmp->getOperand(0)->getType()->isPointerTy()) {
348 PushPtrOperand(Cmp->getOperand(0));
349 PushPtrOperand(Cmp->getOperand(1));
350 }
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000351 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
352 if (!ASC->getType()->isVectorTy())
353 PushPtrOperand(ASC->getPointerOperand());
Matt Arsenault72f259b2017-01-31 02:17:32 +0000354 }
Jingyue Wu13755602016-03-20 20:59:20 +0000355 }
356
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000357 std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
Jingyue Wu13755602016-03-20 20:59:20 +0000358 while (!PostorderStack.empty()) {
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000359 Value *TopVal = PostorderStack.back().first;
Jingyue Wu13755602016-03-20 20:59:20 +0000360 // If the operands of the expression on the top are already explored,
361 // adds that expression to the resultant postorder.
362 if (PostorderStack.back().second) {
Yaxun Liub909f112017-07-07 02:40:13 +0000363 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
364 Postorder.push_back(TopVal);
Jingyue Wu13755602016-03-20 20:59:20 +0000365 PostorderStack.pop_back();
366 continue;
367 }
368 // Otherwise, adds its operands to the stack and explores them.
369 PostorderStack.back().second = true;
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000370 for (Value *PtrOperand : getPointerOperands(*TopVal)) {
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000371 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
372 Visited);
Jingyue Wu13755602016-03-20 20:59:20 +0000373 }
374 }
375 return Postorder;
376}
377
378// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
379// of OperandUse.get() in the new address space. If the clone is not ready yet,
380// returns an undef in the new address space as a placeholder.
381static Value *operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000382 const Use &OperandUse, unsigned NewAddrSpace,
383 const ValueToValueMapTy &ValueWithNewAddrSpace,
384 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000385 Value *Operand = OperandUse.get();
Matt Arsenault30083602017-02-02 03:37:22 +0000386
387 Type *NewPtrTy =
388 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
389
390 if (Constant *C = dyn_cast<Constant>(Operand))
391 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
392
Jingyue Wu13755602016-03-20 20:59:20 +0000393 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
394 return NewOperand;
395
396 UndefUsesToFix->push_back(&OperandUse);
Matt Arsenault30083602017-02-02 03:37:22 +0000397 return UndefValue::get(NewPtrTy);
Jingyue Wu13755602016-03-20 20:59:20 +0000398}
399
400// Returns a clone of `I` with its operands converted to those specified in
401// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
402// operand whose address space needs to be modified might not exist in
403// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
404// adds that operand use to UndefUsesToFix so that caller can fix them later.
405//
406// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
407// from a pointer whose type already matches. Therefore, this function returns a
408// Value* instead of an Instruction*.
409static Value *cloneInstructionWithNewAddressSpace(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000410 Instruction *I, unsigned NewAddrSpace,
411 const ValueToValueMapTy &ValueWithNewAddrSpace,
412 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000413 Type *NewPtrType =
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000414 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000415
416 if (I->getOpcode() == Instruction::AddrSpaceCast) {
417 Value *Src = I->getOperand(0);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000418 // Because `I` is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000419 // Therefore, the inferred address space must be the source space, according
420 // to our algorithm.
421 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
422 if (Src->getType() != NewPtrType)
423 return new BitCastInst(Src, NewPtrType);
424 return Src;
425 }
426
427 // Computes the converted pointer operands.
428 SmallVector<Value *, 4> NewPointerOperands;
429 for (const Use &OperandUse : I->operands()) {
430 if (!OperandUse.get()->getType()->isPointerTy())
431 NewPointerOperands.push_back(nullptr);
432 else
433 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000434 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
Jingyue Wu13755602016-03-20 20:59:20 +0000435 }
436
437 switch (I->getOpcode()) {
438 case Instruction::BitCast:
439 return new BitCastInst(NewPointerOperands[0], NewPtrType);
440 case Instruction::PHI: {
441 assert(I->getType()->isPointerTy());
442 PHINode *PHI = cast<PHINode>(I);
443 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
444 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
445 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
446 NewPHI->addIncoming(NewPointerOperands[OperandNo],
447 PHI->getIncomingBlock(Index));
448 }
449 return NewPHI;
450 }
451 case Instruction::GetElementPtr: {
452 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
453 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000454 GEP->getSourceElementType(), NewPointerOperands[0],
455 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
Jingyue Wu13755602016-03-20 20:59:20 +0000456 NewGEP->setIsInBounds(GEP->isInBounds());
457 return NewGEP;
458 }
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000459 case Instruction::Select: {
460 assert(I->getType()->isPointerTy());
461 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
462 NewPointerOperands[2], "", nullptr, I);
463 }
Jingyue Wu13755602016-03-20 20:59:20 +0000464 default:
465 llvm_unreachable("Unexpected opcode");
466 }
467}
468
469// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
470// constant expression `CE` with its operands replaced as specified in
471// ValueWithNewAddrSpace.
472static Value *cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000473 ConstantExpr *CE, unsigned NewAddrSpace,
474 const ValueToValueMapTy &ValueWithNewAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000475 Type *TargetType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000476 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000477
478 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000479 // Because CE is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000480 // Therefore, the inferred address space must be the source space according
481 // to our algorithm.
482 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
483 NewAddrSpace);
484 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
485 }
486
Matt Arsenaultc18b6772017-02-17 00:32:19 +0000487 if (CE->getOpcode() == Instruction::BitCast) {
488 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
489 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
490 return ConstantExpr::getAddrSpaceCast(CE, TargetType);
491 }
492
Matt Arsenault30083602017-02-02 03:37:22 +0000493 if (CE->getOpcode() == Instruction::Select) {
494 Constant *Src0 = CE->getOperand(1);
495 Constant *Src1 = CE->getOperand(2);
496 if (Src0->getType()->getPointerAddressSpace() ==
497 Src1->getType()->getPointerAddressSpace()) {
498
499 return ConstantExpr::getSelect(
500 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
501 ConstantExpr::getAddrSpaceCast(Src1, TargetType));
502 }
503 }
504
Jingyue Wu13755602016-03-20 20:59:20 +0000505 // Computes the operands of the new constant expression.
Nirav Dave62fb8492017-06-08 13:20:55 +0000506 bool IsNew = false;
Jingyue Wu13755602016-03-20 20:59:20 +0000507 SmallVector<Constant *, 4> NewOperands;
508 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
509 Constant *Operand = CE->getOperand(Index);
510 // If the address space of `Operand` needs to be modified, the new operand
511 // with the new address space should already be in ValueWithNewAddrSpace
512 // because (1) the constant expressions we consider (i.e. addrspacecast,
513 // bitcast, and getelementptr) do not incur cycles in the data flow graph
514 // and (2) this function is called on constant expressions in postorder.
515 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
Nirav Dave62fb8492017-06-08 13:20:55 +0000516 IsNew = true;
Jingyue Wu13755602016-03-20 20:59:20 +0000517 NewOperands.push_back(cast<Constant>(NewOperand));
518 } else {
519 // Otherwise, reuses the old operand.
520 NewOperands.push_back(Operand);
521 }
522 }
523
Nirav Dave62fb8492017-06-08 13:20:55 +0000524 // If !IsNew, we will replace the Value with itself. However, replaced values
525 // are assumed to wrapped in a addrspace cast later so drop it now.
526 if (!IsNew)
527 return nullptr;
528
Jingyue Wu13755602016-03-20 20:59:20 +0000529 if (CE->getOpcode() == Instruction::GetElementPtr) {
530 // Needs to specify the source type while constructing a getelementptr
531 // constant expression.
532 return CE->getWithOperands(
Matt Arsenault850657a2017-01-31 01:10:58 +0000533 NewOperands, TargetType, /*OnlyIfReduced=*/false,
534 NewOperands[0]->getType()->getPointerElementType());
Jingyue Wu13755602016-03-20 20:59:20 +0000535 }
536
537 return CE->getWithOperands(NewOperands, TargetType);
538}
539
540// Returns a clone of the value `V`, with its operands replaced as specified in
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000541// ValueWithNewAddrSpace. This function is called on every flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000542// expression whose address space needs to be modified, in postorder.
543//
544// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
Matt Arsenault850657a2017-01-31 01:10:58 +0000545Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
Matt Arsenault42b64782017-01-30 23:02:12 +0000546 Value *V, unsigned NewAddrSpace,
547 const ValueToValueMapTy &ValueWithNewAddrSpace,
548 SmallVectorImpl<const Use *> *UndefUsesToFix) const {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000549 // All values in Postorder are flat address expressions.
Jingyue Wu13755602016-03-20 20:59:20 +0000550 assert(isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000551 V->getType()->getPointerAddressSpace() == FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000552
553 if (Instruction *I = dyn_cast<Instruction>(V)) {
554 Value *NewV = cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000555 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000556 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
557 if (NewI->getParent() == nullptr) {
558 NewI->insertBefore(I);
559 NewI->takeName(I);
560 }
561 }
562 return NewV;
563 }
564
565 return cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000566 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000567}
568
569// Defines the join operation on the address space lattice (see the file header
570// comments).
Matt Arsenault850657a2017-01-31 01:10:58 +0000571unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
572 unsigned AS2) const {
Matt Arsenault42b64782017-01-30 23:02:12 +0000573 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
574 return FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000575
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000576 if (AS1 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000577 return AS2;
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000578 if (AS2 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000579 return AS1;
580
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000581 // The join of two different specific address spaces is flat.
Matt Arsenault42b64782017-01-30 23:02:12 +0000582 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000583}
584
Matt Arsenault850657a2017-01-31 01:10:58 +0000585bool InferAddressSpaces::runOnFunction(Function &F) {
Andrew Kaylor87b10dd2016-04-26 23:44:31 +0000586 if (skipFunction(F))
587 return false;
588
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000589 const TargetTransformInfo &TTI =
590 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Matt Arsenault42b64782017-01-30 23:02:12 +0000591 FlatAddrSpace = TTI.getFlatAddressSpace();
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000592 if (FlatAddrSpace == UninitializedAddressSpace)
Matt Arsenault42b64782017-01-30 23:02:12 +0000593 return false;
594
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000595 // Collects all flat address expressions in postorder.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000596 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
Jingyue Wu13755602016-03-20 20:59:20 +0000597
598 // Runs a data-flow analysis to refine the address spaces of every expression
599 // in Postorder.
600 ValueToAddrSpaceMapTy InferredAddrSpace;
601 inferAddressSpaces(Postorder, &InferredAddrSpace);
602
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000603 // Changes the address spaces of the flat address expressions who are inferred
604 // to point to a specific address space.
Jingyue Wu13755602016-03-20 20:59:20 +0000605 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
606}
607
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000608// Constants need to be tracked through RAUW to handle cases with nested
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000609// constant expressions, so wrap values in WeakTrackingVH.
Matt Arsenault850657a2017-01-31 01:10:58 +0000610void InferAddressSpaces::inferAddressSpaces(
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000611 ArrayRef<WeakTrackingVH> Postorder,
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000612 ValueToAddrSpaceMapTy *InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000613 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
614 // Initially, all expressions are in the uninitialized address space.
615 for (Value *V : Postorder)
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000616 (*InferredAddrSpace)[V] = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000617
618 while (!Worklist.empty()) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000619 Value *V = Worklist.pop_back_val();
Jingyue Wu13755602016-03-20 20:59:20 +0000620
621 // Tries to update the address space of the stack top according to the
622 // address spaces of its operands.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000623 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000624 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
625 if (!NewAS.hasValue())
626 continue;
627 // If any updates are made, grabs its users to the worklist because
628 // their address spaces can also be possibly updated.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000629 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000630 (*InferredAddrSpace)[V] = NewAS.getValue();
631
632 for (Value *User : V->users()) {
633 // Skip if User is already in the worklist.
634 if (Worklist.count(User))
635 continue;
636
637 auto Pos = InferredAddrSpace->find(User);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000638 // Our algorithm only updates the address spaces of flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000639 // expressions, which are those in InferredAddrSpace.
640 if (Pos == InferredAddrSpace->end())
641 continue;
642
643 // Function updateAddressSpace moves the address space down a lattice
Matt Arsenault850657a2017-01-31 01:10:58 +0000644 // path. Therefore, nothing to do if User is already inferred as flat (the
645 // bottom element in the lattice).
Matt Arsenault42b64782017-01-30 23:02:12 +0000646 if (Pos->second == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000647 continue;
648
649 Worklist.insert(User);
650 }
651 }
652}
653
Matt Arsenault850657a2017-01-31 01:10:58 +0000654Optional<unsigned> InferAddressSpaces::updateAddressSpace(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000655 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000656 assert(InferredAddrSpace.count(&V));
657
658 // The new inferred address space equals the join of the address spaces
659 // of all its pointer operands.
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000660 unsigned NewAS = UninitializedAddressSpace;
Matt Arsenault850657a2017-01-31 01:10:58 +0000661
Matt Arsenault30083602017-02-02 03:37:22 +0000662 const Operator &Op = cast<Operator>(V);
663 if (Op.getOpcode() == Instruction::Select) {
664 Value *Src0 = Op.getOperand(1);
665 Value *Src1 = Op.getOperand(2);
666
667 auto I = InferredAddrSpace.find(Src0);
668 unsigned Src0AS = (I != InferredAddrSpace.end()) ?
669 I->second : Src0->getType()->getPointerAddressSpace();
670
671 auto J = InferredAddrSpace.find(Src1);
672 unsigned Src1AS = (J != InferredAddrSpace.end()) ?
673 J->second : Src1->getType()->getPointerAddressSpace();
674
675 auto *C0 = dyn_cast<Constant>(Src0);
676 auto *C1 = dyn_cast<Constant>(Src1);
677
678 // If one of the inputs is a constant, we may be able to do a constant
679 // addrspacecast of it. Defer inferring the address space until the input
680 // address space is known.
681 if ((C1 && Src0AS == UninitializedAddressSpace) ||
682 (C0 && Src1AS == UninitializedAddressSpace))
683 return None;
684
685 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
686 NewAS = Src1AS;
687 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
688 NewAS = Src0AS;
689 else
690 NewAS = joinAddressSpaces(Src0AS, Src1AS);
691 } else {
692 for (Value *PtrOperand : getPointerOperands(V)) {
693 auto I = InferredAddrSpace.find(PtrOperand);
694 unsigned OperandAS = I != InferredAddrSpace.end() ?
695 I->second : PtrOperand->getType()->getPointerAddressSpace();
696
697 // join(flat, *) = flat. So we can break if NewAS is already flat.
698 NewAS = joinAddressSpaces(NewAS, OperandAS);
699 if (NewAS == FlatAddrSpace)
700 break;
701 }
Jingyue Wu13755602016-03-20 20:59:20 +0000702 }
703
704 unsigned OldAS = InferredAddrSpace.lookup(&V);
Matt Arsenault42b64782017-01-30 23:02:12 +0000705 assert(OldAS != FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000706 if (OldAS == NewAS)
707 return None;
708 return NewAS;
709}
710
Matt Arsenault6c907a92017-01-31 01:40:38 +0000711/// \p returns true if \p U is the pointer operand of a memory instruction with
712/// a single pointer operand that can have its address space changed by simply
713/// mutating the use to a new value.
714static bool isSimplePointerUseValidToReplace(Use &U) {
715 User *Inst = U.getUser();
716 unsigned OpNo = U.getOperandNo();
717
718 if (auto *LI = dyn_cast<LoadInst>(Inst))
719 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
720
721 if (auto *SI = dyn_cast<StoreInst>(Inst))
722 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
723
724 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
725 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
726
727 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
728 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
729 !CmpX->isVolatile();
730 }
731
732 return false;
733}
734
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000735/// Update memory intrinsic uses that require more complex processing than
736/// simple memory instructions. Thse require re-mangling and may have multiple
737/// pointer operands.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000738static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
739 Value *NewV) {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000740 IRBuilder<> B(MI);
741 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
742 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
743 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
744
745 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
746 B.CreateMemSet(NewV, MSI->getValue(),
747 MSI->getLength(), MSI->getAlignment(),
748 false, // isVolatile
749 TBAA, ScopeMD, NoAliasMD);
750 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
751 Value *Src = MTI->getRawSource();
752 Value *Dest = MTI->getRawDest();
753
754 // Be careful in case this is a self-to-self copy.
755 if (Src == OldV)
756 Src = NewV;
757
758 if (Dest == OldV)
759 Dest = NewV;
760
761 if (isa<MemCpyInst>(MTI)) {
762 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
763 B.CreateMemCpy(Dest, Src, MTI->getLength(),
764 MTI->getAlignment(),
765 false, // isVolatile
766 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
767 } else {
768 assert(isa<MemMoveInst>(MTI));
769 B.CreateMemMove(Dest, Src, MTI->getLength(),
770 MTI->getAlignment(),
771 false, // isVolatile
772 TBAA, ScopeMD, NoAliasMD);
773 }
774 } else
775 llvm_unreachable("unhandled MemIntrinsic");
776
777 MI->eraseFromParent();
778 return true;
779}
780
Matt Arsenault72f259b2017-01-31 02:17:32 +0000781// \p returns true if it is OK to change the address space of constant \p C with
782// a ConstantExpr addrspacecast.
783bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
Matt Arsenault30083602017-02-02 03:37:22 +0000784 assert(NewAS != UninitializedAddressSpace);
785
Matt Arsenault2a46d812017-01-31 23:48:40 +0000786 unsigned SrcAS = C->getType()->getPointerAddressSpace();
787 if (SrcAS == NewAS || isa<UndefValue>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000788 return true;
789
Matt Arsenault2a46d812017-01-31 23:48:40 +0000790 // Prevent illegal casts between different non-flat address spaces.
791 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
792 return false;
793
794 if (isa<ConstantPointerNull>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000795 return true;
796
797 if (auto *Op = dyn_cast<Operator>(C)) {
798 // If we already have a constant addrspacecast, it should be safe to cast it
799 // off.
800 if (Op->getOpcode() == Instruction::AddrSpaceCast)
801 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
802
803 if (Op->getOpcode() == Instruction::IntToPtr &&
804 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
805 return true;
806 }
807
808 return false;
809}
810
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000811static Value::use_iterator skipToNextUser(Value::use_iterator I,
812 Value::use_iterator End) {
813 User *CurUser = I->getUser();
814 ++I;
815
816 while (I != End && I->getUser() == CurUser)
817 ++I;
818
819 return I;
820}
821
Matt Arsenault850657a2017-01-31 01:10:58 +0000822bool InferAddressSpaces::rewriteWithNewAddressSpaces(
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000823 ArrayRef<WeakTrackingVH> Postorder,
824 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000825 // For each address expression to be modified, creates a clone of it with its
826 // pointer operands converted to the new address space. Since the pointer
827 // operands are converted, the clone is naturally in the new address space by
828 // construction.
829 ValueToValueMapTy ValueWithNewAddrSpace;
830 SmallVector<const Use *, 32> UndefUsesToFix;
831 for (Value* V : Postorder) {
832 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
833 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
834 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000835 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000836 }
837 }
838
839 if (ValueWithNewAddrSpace.empty())
840 return false;
841
842 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000843 for (const Use *UndefUse : UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000844 User *V = UndefUse->getUser();
845 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
846 unsigned OperandNo = UndefUse->getOperandNo();
847 assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
848 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
849 }
850
Matt Arsenaultc20ccd22017-04-28 22:18:19 +0000851 SmallVector<Instruction *, 16> DeadInstructions;
852
Jingyue Wu13755602016-03-20 20:59:20 +0000853 // Replaces the uses of the old address expressions with the new ones.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000854 for (const WeakTrackingVH &WVH : Postorder) {
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000855 assert(WVH && "value was unexpectedly deleted");
856 Value *V = WVH;
Jingyue Wu13755602016-03-20 20:59:20 +0000857 Value *NewV = ValueWithNewAddrSpace.lookup(V);
858 if (NewV == nullptr)
859 continue;
860
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000861 DEBUG(dbgs() << "Replacing the uses of " << *V
862 << "\n with\n " << *NewV << '\n');
863
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000864 if (Constant *C = dyn_cast<Constant>(V)) {
865 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
866 C->getType());
867 if (C != Replace) {
868 DEBUG(dbgs() << "Inserting replacement const cast: "
869 << Replace << ": " << *Replace << '\n');
870 C->replaceAllUsesWith(Replace);
871 V = Replace;
872 }
873 }
874
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000875 Value::use_iterator I, E, Next;
876 for (I = V->use_begin(), E = V->use_end(); I != E; ) {
877 Use &U = *I;
878
879 // Some users may see the same pointer operand in multiple operands. Skip
880 // to the next instruction.
881 I = skipToNextUser(I, E);
882
883 if (isSimplePointerUseValidToReplace(U)) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000884 // If V is used as the pointer operand of a compatible memory operation,
885 // sets the pointer operand to NewV. This replacement does not change
886 // the element type, so the resultant load/store is still valid.
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000887 U.set(NewV);
888 continue;
889 }
890
891 User *CurUser = U.getUser();
892 // Handle more complex cases like intrinsic that need to be remangled.
893 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
894 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
895 continue;
896 }
897
898 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
899 if (rewriteIntrinsicOperands(II, V, NewV))
900 continue;
901 }
902
903 if (isa<Instruction>(CurUser)) {
Matt Arsenault72f259b2017-01-31 02:17:32 +0000904 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
905 // If we can infer that both pointers are in the same addrspace,
906 // transform e.g.
907 // %cmp = icmp eq float* %p, %q
908 // into
909 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
910
911 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
912 int SrcIdx = U.getOperandNo();
913 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
914 Value *OtherSrc = Cmp->getOperand(OtherIdx);
915
916 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
917 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
918 Cmp->setOperand(OtherIdx, OtherNewV);
919 Cmp->setOperand(SrcIdx, NewV);
920 continue;
921 }
922 }
923
924 // Even if the type mismatches, we can cast the constant.
925 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
926 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
927 Cmp->setOperand(SrcIdx, NewV);
928 Cmp->setOperand(OtherIdx,
929 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
930 continue;
931 }
932 }
933 }
934
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000935 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
936 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
937 if (ASC->getDestAddressSpace() == NewAS) {
938 ASC->replaceAllUsesWith(NewV);
Matt Arsenaultc20ccd22017-04-28 22:18:19 +0000939 DeadInstructions.push_back(ASC);
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000940 continue;
941 }
942 }
943
Matt Arsenault850657a2017-01-31 01:10:58 +0000944 // Otherwise, replaces the use with flat(NewV).
Jingyue Wu13755602016-03-20 20:59:20 +0000945 if (Instruction *I = dyn_cast<Instruction>(V)) {
946 BasicBlock::iterator InsertPos = std::next(I->getIterator());
947 while (isa<PHINode>(InsertPos))
948 ++InsertPos;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000949 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
Jingyue Wu13755602016-03-20 20:59:20 +0000950 } else {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000951 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
952 V->getType()));
Jingyue Wu13755602016-03-20 20:59:20 +0000953 }
954 }
955 }
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000956
Matt Arsenaultc20ccd22017-04-28 22:18:19 +0000957 if (V->use_empty()) {
958 if (Instruction *I = dyn_cast<Instruction>(V))
959 DeadInstructions.push_back(I);
960 }
Jingyue Wu13755602016-03-20 20:59:20 +0000961 }
962
Matt Arsenaultc20ccd22017-04-28 22:18:19 +0000963 for (Instruction *I : DeadInstructions)
964 RecursivelyDeleteTriviallyDeadInstructions(I);
965
Jingyue Wu13755602016-03-20 20:59:20 +0000966 return true;
967}
968
Matt Arsenault850657a2017-01-31 01:10:58 +0000969FunctionPass *llvm::createInferAddressSpacesPass() {
970 return new InferAddressSpaces();
Jingyue Wu13755602016-03-20 20:59:20 +0000971}