blob: 277ac8bea5c128c230a5a87ed64926dda2cc8aa9 [file] [log] [blame]
Philip Reamesd16a9b12015-02-20 01:06:44 +00001//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
Philip Reamesabcdc5e2015-08-27 01:02:28 +000017#include "llvm/Analysis/InstructionSimplify.h"
Igor Laevskye0317182015-05-19 15:59:05 +000018#include "llvm/Analysis/TargetTransformInfo.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000019#include "llvm/ADT/SetOperations.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ADT/DenseSet.h"
Philip Reames4d80ede2015-04-10 23:11:26 +000022#include "llvm/ADT/SetVector.h"
Swaroop Sridhar665bc9c2015-05-20 01:07:23 +000023#include "llvm/ADT/StringRef.h"
Philip Reames15d55632015-09-09 23:26:08 +000024#include "llvm/ADT/MapVector.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000025#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/CallSite.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/InstIterator.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Module.h"
Sanjoy Das353a19e2015-06-02 22:33:37 +000035#include "llvm/IR/MDBuilder.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000036#include "llvm/IR/Statepoint.h"
37#include "llvm/IR/Value.h"
38#include "llvm/IR/Verifier.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Transforms/Utils/Cloning.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Transforms/Utils/PromoteMemToReg.h"
46
47#define DEBUG_TYPE "rewrite-statepoints-for-gc"
48
49using namespace llvm;
50
Philip Reamesd16a9b12015-02-20 01:06:44 +000051// Print the liveset found at the insert location
52static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
53 cl::init(false));
Philip Reames704e78b2015-04-10 22:34:56 +000054static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
55 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000056// Print out the base pointers for debugging
Philip Reames704e78b2015-04-10 22:34:56 +000057static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
58 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000059
Igor Laevskye0317182015-05-19 15:59:05 +000060// Cost threshold measuring when it is profitable to rematerialize value instead
61// of relocating it
62static cl::opt<unsigned>
63RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
64 cl::init(6));
65
Philip Reamese73300b2015-04-13 16:41:32 +000066#ifdef XDEBUG
67static bool ClobberNonLive = true;
68#else
69static bool ClobberNonLive = false;
70#endif
71static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
72 cl::location(ClobberNonLive),
73 cl::Hidden);
74
Sanjoy Das25ec1a32015-10-16 02:41:00 +000075static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden,
76 cl::init(false));
77static cl::opt<bool>
78 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
79 cl::Hidden, cl::init(true));
80
Philip Reames103d2382016-01-07 02:20:11 +000081/// Should we split vectors of pointers into their individual elements? This
82/// is known to be buggy, but the alternate implementation isn't yet ready.
83/// This is purely to provide a debugging and dianostic hook until the vector
84/// split is replaced with vector relocations.
85static cl::opt<bool> UseVectorSplit("rs4gc-split-vector-values", cl::Hidden,
86 cl::init(true));
87
Benjamin Kramer6f665452015-02-20 14:00:58 +000088namespace {
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000089struct RewriteStatepointsForGC : public ModulePass {
Philip Reamesd16a9b12015-02-20 01:06:44 +000090 static char ID; // Pass identification, replacement for typeid
91
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000092 RewriteStatepointsForGC() : ModulePass(ID) {
Philip Reamesd16a9b12015-02-20 01:06:44 +000093 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
94 }
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000095 bool runOnFunction(Function &F);
96 bool runOnModule(Module &M) override {
97 bool Changed = false;
98 for (Function &F : M)
99 Changed |= runOnFunction(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +0000100
101 if (Changed) {
Igor Laevskydde00292015-10-23 22:42:44 +0000102 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
Sanjoy Das353a19e2015-06-02 22:33:37 +0000103 // returns true for at least one function in the module. Since at least
104 // one function changed, we know that the precondition is satisfied.
Igor Laevskydde00292015-10-23 22:42:44 +0000105 stripNonValidAttributes(M);
Sanjoy Das353a19e2015-06-02 22:33:37 +0000106 }
107
Sanjoy Dasea45f0e2015-06-02 22:33:34 +0000108 return Changed;
109 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000110
111 void getAnalysisUsage(AnalysisUsage &AU) const override {
112 // We add and rewrite a bunch of instructions, but don't really do much
113 // else. We could in theory preserve a lot more analyses here.
114 AU.addRequired<DominatorTreeWrapperPass>();
Igor Laevskye0317182015-05-19 15:59:05 +0000115 AU.addRequired<TargetTransformInfoWrapperPass>();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000116 }
Sanjoy Das353a19e2015-06-02 22:33:37 +0000117
118 /// The IR fed into RewriteStatepointsForGC may have had attributes implying
119 /// dereferenceability that are no longer valid/correct after
120 /// RewriteStatepointsForGC has run. This is because semantically, after
121 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
Igor Laevskydde00292015-10-23 22:42:44 +0000122 /// heap. stripNonValidAttributes (conservatively) restores correctness
Sanjoy Das353a19e2015-06-02 22:33:37 +0000123 /// by erasing all attributes in the module that externally imply
124 /// dereferenceability.
Igor Laevsky1ef06552015-10-26 19:06:01 +0000125 /// Similar reasoning also applies to the noalias attributes. gc.statepoint
126 /// can touch the entire heap including noalias objects.
Igor Laevskydde00292015-10-23 22:42:44 +0000127 void stripNonValidAttributes(Module &M);
Sanjoy Das353a19e2015-06-02 22:33:37 +0000128
Igor Laevskydde00292015-10-23 22:42:44 +0000129 // Helpers for stripNonValidAttributes
130 void stripNonValidAttributesFromBody(Function &F);
131 void stripNonValidAttributesFromPrototype(Function &F);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000132};
Benjamin Kramer6f665452015-02-20 14:00:58 +0000133} // namespace
Philip Reamesd16a9b12015-02-20 01:06:44 +0000134
135char RewriteStatepointsForGC::ID = 0;
136
Sanjoy Dasea45f0e2015-06-02 22:33:34 +0000137ModulePass *llvm::createRewriteStatepointsForGCPass() {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000138 return new RewriteStatepointsForGC();
139}
140
141INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
142 "Make relocations explicit at statepoints", false, false)
143INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
144INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
145 "Make relocations explicit at statepoints", false, false)
146
147namespace {
Philip Reamesdf1ef082015-04-10 22:53:14 +0000148struct GCPtrLivenessData {
149 /// Values defined in this block.
150 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
151 /// Values used in this block (and thus live); does not included values
152 /// killed within this block.
153 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
154
155 /// Values live into this basic block (i.e. used by any
156 /// instruction in this basic block or ones reachable from here)
157 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
158
159 /// Values live out of this basic block (i.e. live into
160 /// any successor block)
161 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
162};
163
Philip Reamesd16a9b12015-02-20 01:06:44 +0000164// The type of the internal cache used inside the findBasePointers family
165// of functions. From the callers perspective, this is an opaque type and
166// should not be inspected.
167//
168// In the actual implementation this caches two relations:
169// - The base relation itself (i.e. this pointer is based on that one)
170// - The base defining value relation (i.e. before base_phi insertion)
171// Generally, after the execution of a full findBasePointer call, only the
172// base relation will remain. Internally, we add a mixture of the two
173// types, then update all the second type to the first type
Philip Reamese9c3b9b2015-02-20 22:48:20 +0000174typedef DenseMap<Value *, Value *> DefiningValueMapTy;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000175typedef DenseSet<Value *> StatepointLiveSetTy;
Sanjoy Das40bdd042015-10-07 21:32:35 +0000176typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
177 RematerializedValueMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000178
Philip Reamesd16a9b12015-02-20 01:06:44 +0000179struct PartiallyConstructedSafepointRecord {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000180 /// The set of values known to be live across this safepoint
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000181 StatepointLiveSetTy LiveSet;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000182
183 /// Mapping from live pointers to a base-defining-value
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000184 DenseMap<Value *, Value *> PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000185
Philip Reames0a3240f2015-02-20 21:34:11 +0000186 /// The *new* gc.statepoint instruction itself. This produces the token
187 /// that normal path gc.relocates and the gc.result are tied to.
188 Instruction *StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000189
Philip Reamesf2041322015-02-20 19:26:04 +0000190 /// Instruction to which exceptional gc relocates are attached
191 /// Makes it easier to iterate through them during relocationViaAlloca.
192 Instruction *UnwindToken;
Igor Laevskye0317182015-05-19 15:59:05 +0000193
194 /// Record live values we are rematerialized instead of relocating.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000195 /// They are not included into 'LiveSet' field.
Igor Laevskye0317182015-05-19 15:59:05 +0000196 /// Maps rematerialized copy to it's original value.
197 RematerializedValueMapTy RematerializedValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000198};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000199}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000200
Sanjoy Das25ec1a32015-10-16 02:41:00 +0000201static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
202 assert(UseDeoptBundles && "Should not be called otherwise!");
203
204 Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt");
205
206 if (!DeoptBundle.hasValue()) {
207 assert(AllowStatepointWithNoDeoptInfo &&
208 "Found non-leaf call without deopt info!");
209 return None;
210 }
211
212 return DeoptBundle.getValue().Inputs;
213}
214
Philip Reamesdf1ef082015-04-10 22:53:14 +0000215/// Compute the live-in set for every basic block in the function
216static void computeLiveInValues(DominatorTree &DT, Function &F,
217 GCPtrLivenessData &Data);
218
219/// Given results from the dataflow liveness computation, find the set of live
220/// Values at a particular instruction.
221static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
222 StatepointLiveSetTy &out);
223
Philip Reamesd16a9b12015-02-20 01:06:44 +0000224// TODO: Once we can get to the GCStrategy, this becomes
Philip Reamesee8f0552015-12-23 01:42:15 +0000225// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000226
Craig Toppere3dcce92015-08-01 22:20:21 +0000227static bool isGCPointerType(Type *T) {
228 if (auto *PT = dyn_cast<PointerType>(T))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000229 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
230 // GC managed heap. We know that a pointer into this heap needs to be
231 // updated and that no other pointer does.
232 return (1 == PT->getAddressSpace());
233 return false;
234}
235
Philip Reames8531d8c2015-04-10 21:48:25 +0000236// Return true if this type is one which a) is a gc pointer or contains a GC
237// pointer and b) is of a type this code expects to encounter as a live value.
238// (The insertion code will assert that a type which matches (a) and not (b)
Philip Reames704e78b2015-04-10 22:34:56 +0000239// is not encountered.)
Philip Reames8531d8c2015-04-10 21:48:25 +0000240static bool isHandledGCPointerType(Type *T) {
241 // We fully support gc pointers
242 if (isGCPointerType(T))
243 return true;
244 // We partially support vectors of gc pointers. The code will assert if it
245 // can't handle something.
246 if (auto VT = dyn_cast<VectorType>(T))
247 if (isGCPointerType(VT->getElementType()))
248 return true;
249 return false;
250}
251
252#ifndef NDEBUG
253/// Returns true if this type contains a gc pointer whether we know how to
254/// handle that type or not.
255static bool containsGCPtrType(Type *Ty) {
Philip Reames704e78b2015-04-10 22:34:56 +0000256 if (isGCPointerType(Ty))
Philip Reames8531d8c2015-04-10 21:48:25 +0000257 return true;
258 if (VectorType *VT = dyn_cast<VectorType>(Ty))
259 return isGCPointerType(VT->getScalarType());
260 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
261 return containsGCPtrType(AT->getElementType());
262 if (StructType *ST = dyn_cast<StructType>(Ty))
Craig Topperd896b032015-11-29 05:38:08 +0000263 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
264 containsGCPtrType);
Philip Reames8531d8c2015-04-10 21:48:25 +0000265 return false;
266}
267
268// Returns true if this is a type which a) is a gc pointer or contains a GC
269// pointer and b) is of a type which the code doesn't expect (i.e. first class
270// aggregates). Used to trip assertions.
271static bool isUnhandledGCPointerType(Type *Ty) {
272 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
273}
274#endif
275
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000276static bool order_by_name(Value *a, Value *b) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000277 if (a->hasName() && b->hasName()) {
278 return -1 == a->getName().compare(b->getName());
279 } else if (a->hasName() && !b->hasName()) {
280 return true;
281 } else if (!a->hasName() && b->hasName()) {
282 return false;
283 } else {
284 // Better than nothing, but not stable
285 return a < b;
286 }
287}
288
Philip Reamesece70b82015-09-09 23:57:18 +0000289// Return the name of the value suffixed with the provided value, or if the
290// value didn't have a name, the default value specified.
291static std::string suffixed_name_or(Value *V, StringRef Suffix,
292 StringRef DefaultName) {
293 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
294}
295
Philip Reamesdf1ef082015-04-10 22:53:14 +0000296// Conservatively identifies any definitions which might be live at the
297// given instruction. The analysis is performed immediately before the
298// given instruction. Values defined by that instruction are not considered
299// live. Values used by that instruction are considered live.
300static void analyzeParsePointLiveness(
301 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
302 const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000303 Instruction *inst = CS.getInstruction();
304
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000305 StatepointLiveSetTy LiveSet;
306 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000307
308 if (PrintLiveSet) {
309 // Note: This output is used by several of the test cases
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000310 // The order of elements in a set is not stable, put them in a vec and sort
Philip Reamesd16a9b12015-02-20 01:06:44 +0000311 // by name
Philip Reamesdab35f32015-09-02 21:11:44 +0000312 SmallVector<Value *, 64> Temp;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000313 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
Philip Reamesdab35f32015-09-02 21:11:44 +0000314 std::sort(Temp.begin(), Temp.end(), order_by_name);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000315 errs() << "Live Variables:\n";
Philip Reamesdab35f32015-09-02 21:11:44 +0000316 for (Value *V : Temp)
317 dbgs() << " " << V->getName() << " " << *V << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000318 }
319 if (PrintLiveSetSize) {
320 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000321 errs() << "Number live values: " << LiveSet.size() << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000322 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000323 result.LiveSet = LiveSet;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000324}
325
Philip Reamesf5b8e472015-09-03 21:34:30 +0000326static bool isKnownBaseResult(Value *V);
327namespace {
328/// A single base defining value - An immediate base defining value for an
329/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
330/// For instructions which have multiple pointer [vector] inputs or that
331/// transition between vector and scalar types, there is no immediate base
332/// defining value. The 'base defining value' for 'Def' is the transitive
333/// closure of this relation stopping at the first instruction which has no
334/// immediate base defining value. The b.d.v. might itself be a base pointer,
335/// but it can also be an arbitrary derived pointer.
336struct BaseDefiningValueResult {
337 /// Contains the value which is the base defining value.
338 Value * const BDV;
339 /// True if the base defining value is also known to be an actual base
340 /// pointer.
341 const bool IsKnownBase;
342 BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
343 : BDV(BDV), IsKnownBase(IsKnownBase) {
344#ifndef NDEBUG
345 // Check consistency between new and old means of checking whether a BDV is
346 // a base.
347 bool MustBeBase = isKnownBaseResult(BDV);
348 assert(!MustBeBase || MustBeBase == IsKnownBase);
349#endif
350 }
351};
352}
353
354static BaseDefiningValueResult findBaseDefiningValue(Value *I);
Philip Reames311f7102015-05-12 22:19:52 +0000355
Philip Reames8fe7f132015-06-26 22:47:37 +0000356/// Return a base defining value for the 'Index' element of the given vector
357/// instruction 'I'. If Index is null, returns a BDV for the entire vector
358/// 'I'. As an optimization, this method will try to determine when the
359/// element is known to already be a base pointer. If this can be established,
360/// the second value in the returned pair will be true. Note that either a
361/// vector or a pointer typed value can be returned. For the former, the
362/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
363/// If the later, the return pointer is a BDV (or possibly a base) for the
364/// particular element in 'I'.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000365static BaseDefiningValueResult
Philip Reames66287132015-09-09 23:40:12 +0000366findBaseDefiningValueOfVector(Value *I) {
Philip Reames8531d8c2015-04-10 21:48:25 +0000367 // Each case parallels findBaseDefiningValue below, see that code for
368 // detailed motivation.
369
370 if (isa<Argument>(I))
371 // An incoming argument to the function is a base pointer
Philip Reamesf5b8e472015-09-03 21:34:30 +0000372 return BaseDefiningValueResult(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000373
374 // We shouldn't see the address of a global as a vector value?
375 assert(!isa<GlobalVariable>(I) &&
376 "unexpected global variable found in base of vector");
377
378 // inlining could possibly introduce phi node that contains
379 // undef if callee has multiple returns
380 if (isa<UndefValue>(I))
381 // utterly meaningless, but useful for dealing with partially optimized
382 // code.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000383 return BaseDefiningValueResult(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000384
385 // Due to inheritance, this must be _after_ the global variable and undef
386 // checks
387 if (Constant *Con = dyn_cast<Constant>(I)) {
388 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
389 "order of checks wrong!");
390 assert(Con->isNullValue() && "null is the only case which makes sense");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000391 return BaseDefiningValueResult(Con, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000392 }
Philip Reames8fe7f132015-06-26 22:47:37 +0000393
Philip Reames8531d8c2015-04-10 21:48:25 +0000394 if (isa<LoadInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000395 return BaseDefiningValueResult(I, true);
Philip Reamesf5b8e472015-09-03 21:34:30 +0000396
Philip Reames66287132015-09-09 23:40:12 +0000397 if (isa<InsertElementInst>(I))
Philip Reames8fe7f132015-06-26 22:47:37 +0000398 // We don't know whether this vector contains entirely base pointers or
399 // not. To be conservatively correct, we treat it as a BDV and will
400 // duplicate code as needed to construct a parallel vector of bases.
Philip Reames66287132015-09-09 23:40:12 +0000401 return BaseDefiningValueResult(I, false);
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +0000402
Philip Reames8fe7f132015-06-26 22:47:37 +0000403 if (isa<ShuffleVectorInst>(I))
404 // We don't know whether this vector contains entirely base pointers or
405 // not. To be conservatively correct, we treat it as a BDV and will
406 // duplicate code as needed to construct a parallel vector of bases.
407 // TODO: There a number of local optimizations which could be applied here
408 // for particular sufflevector patterns.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000409 return BaseDefiningValueResult(I, false);
Philip Reames8fe7f132015-06-26 22:47:37 +0000410
411 // A PHI or Select is a base defining value. The outer findBasePointer
412 // algorithm is responsible for constructing a base value for this BDV.
413 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
414 "unknown vector instruction - no base found for vector element");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000415 return BaseDefiningValueResult(I, false);
Philip Reames8531d8c2015-04-10 21:48:25 +0000416}
417
Philip Reamesd16a9b12015-02-20 01:06:44 +0000418/// Helper function for findBasePointer - Will return a value which either a)
Philip Reames9ac4e382015-08-12 21:00:20 +0000419/// defines the base pointer for the input, b) blocks the simple search
420/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
421/// from pointer to vector type or back.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000422static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
Manuel Jacob0593cfd2016-01-09 03:08:49 +0000423 assert(I->getType()->isPtrOrPtrVectorTy() &&
424 "Illegal to ask for the base pointer of a non-pointer type");
425
Philip Reames8fe7f132015-06-26 22:47:37 +0000426 if (I->getType()->isVectorTy())
Philip Reamesf5b8e472015-09-03 21:34:30 +0000427 return findBaseDefiningValueOfVector(I);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000428
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000429 if (isa<Argument>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000430 // An incoming argument to the function is a base pointer
431 // We should have never reached here if this argument isn't an gc value
Philip Reamesf5b8e472015-09-03 21:34:30 +0000432 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000433
Manuel Jacob75cbfdc2016-01-05 04:06:21 +0000434 if (isa<Constant>(I))
435 // We assume that objects with a constant base (e.g. a global) can't move
436 // and don't need to be reported to the collector because they are always
437 // live. All constants have constant bases. Besides global references, all
438 // kinds of constants (e.g. undef, constant expressions, null pointers) can
439 // be introduced by the inliner or the optimizer, especially on dynamically
440 // dead paths. See e.g. test4 in constants.ll.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000441 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000442
Philip Reamesd16a9b12015-02-20 01:06:44 +0000443 if (CastInst *CI = dyn_cast<CastInst>(I)) {
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000444 Value *Def = CI->stripPointerCasts();
Manuel Jacob8050a492015-12-21 01:26:46 +0000445 // If stripping pointer casts changes the address space there is an
446 // addrspacecast in between.
447 assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
448 cast<PointerType>(CI->getType())->getAddressSpace() &&
449 "unsupported addrspacecast");
David Blaikie82ad7872015-02-20 23:44:24 +0000450 // If we find a cast instruction here, it means we've found a cast which is
451 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
452 // handle int->ptr conversion.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000453 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
454 return findBaseDefiningValue(Def);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000455 }
456
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000457 if (isa<LoadInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000458 // The value loaded is an gc base itself
459 return BaseDefiningValueResult(I, true);
460
Philip Reamesd16a9b12015-02-20 01:06:44 +0000461
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000462 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
463 // The base of this GEP is the base
464 return findBaseDefiningValue(GEP->getPointerOperand());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000465
466 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
467 switch (II->getIntrinsicID()) {
468 default:
469 // fall through to general call handling
470 break;
471 case Intrinsic::experimental_gc_statepoint:
Manuel Jacob4e4f60d2015-12-22 18:44:45 +0000472 llvm_unreachable("statepoints don't produce pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000473 case Intrinsic::experimental_gc_relocate: {
474 // Rerunning safepoint insertion after safepoints are already
475 // inserted is not supported. It could probably be made to work,
476 // but why are you doing this? There's no good reason.
477 llvm_unreachable("repeat safepoint insertion is not supported");
478 }
479 case Intrinsic::gcroot:
480 // Currently, this mechanism hasn't been extended to work with gcroot.
481 // There's no reason it couldn't be, but I haven't thought about the
482 // implications much.
483 llvm_unreachable(
484 "interaction with the gcroot mechanism is not supported");
485 }
486 }
487 // We assume that functions in the source language only return base
488 // pointers. This should probably be generalized via attributes to support
489 // both source language and internal functions.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000490 if (isa<CallInst>(I) || isa<InvokeInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000491 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000492
493 // I have absolutely no idea how to implement this part yet. It's not
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000494 // necessarily hard, I just haven't really looked at it yet.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000495 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
496
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000497 if (isa<AtomicCmpXchgInst>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000498 // A CAS is effectively a atomic store and load combined under a
499 // predicate. From the perspective of base pointers, we just treat it
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000500 // like a load.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000501 return BaseDefiningValueResult(I, true);
Philip Reames704e78b2015-04-10 22:34:56 +0000502
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000503 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
Philip Reames704e78b2015-04-10 22:34:56 +0000504 "binary ops which don't apply to pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000505
506 // The aggregate ops. Aggregates can either be in the heap or on the
507 // stack, but in either case, this is simply a field load. As a result,
508 // this is a defining definition of the base just like a load is.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000509 if (isa<ExtractValueInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000510 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000511
512 // We should never see an insert vector since that would require we be
513 // tracing back a struct value not a pointer value.
514 assert(!isa<InsertValueInst>(I) &&
515 "Base pointer for a struct is meaningless");
516
Philip Reames9ac4e382015-08-12 21:00:20 +0000517 // An extractelement produces a base result exactly when it's input does.
518 // We may need to insert a parallel instruction to extract the appropriate
519 // element out of the base vector corresponding to the input. Given this,
520 // it's analogous to the phi and select case even though it's not a merge.
Philip Reames66287132015-09-09 23:40:12 +0000521 if (isa<ExtractElementInst>(I))
522 // Note: There a lot of obvious peephole cases here. This are deliberately
523 // handled after the main base pointer inference algorithm to make writing
524 // test cases to exercise that code easier.
525 return BaseDefiningValueResult(I, false);
Philip Reames9ac4e382015-08-12 21:00:20 +0000526
Philip Reamesd16a9b12015-02-20 01:06:44 +0000527 // The last two cases here don't return a base pointer. Instead, they
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000528 // return a value which dynamically selects from among several base
Philip Reamesd16a9b12015-02-20 01:06:44 +0000529 // derived pointers (each with it's own base potentially). It's the job of
530 // the caller to resolve these.
Philip Reames704e78b2015-04-10 22:34:56 +0000531 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000532 "missing instruction case in findBaseDefiningValing");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000533 return BaseDefiningValueResult(I, false);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000534}
535
536/// Returns the base defining value for this value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000537static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
538 Value *&Cached = Cache[I];
Benjamin Kramer6f665452015-02-20 14:00:58 +0000539 if (!Cached) {
Philip Reamesf5b8e472015-09-03 21:34:30 +0000540 Cached = findBaseDefiningValue(I).BDV;
Philip Reames2a892a62015-07-23 22:25:26 +0000541 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
542 << Cached->getName() << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000543 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000544 assert(Cache[I] != nullptr);
Benjamin Kramer6f665452015-02-20 14:00:58 +0000545 return Cached;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000546}
547
548/// Return a base pointer for this value if known. Otherwise, return it's
549/// base defining value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000550static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
551 Value *Def = findBaseDefiningValueCached(I, Cache);
552 auto Found = Cache.find(Def);
553 if (Found != Cache.end()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000554 // Either a base-of relation, or a self reference. Caller must check.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000555 return Found->second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000556 }
557 // Only a BDV available
Philip Reames18d0feb2015-03-27 05:39:32 +0000558 return Def;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000559}
560
561/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
562/// is it known to be a base pointer? Or do we need to continue searching.
Philip Reames18d0feb2015-03-27 05:39:32 +0000563static bool isKnownBaseResult(Value *V) {
Philip Reames66287132015-09-09 23:40:12 +0000564 if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
565 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
566 !isa<ShuffleVectorInst>(V)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000567 // no recursion possible
568 return true;
569 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000570 if (isa<Instruction>(V) &&
571 cast<Instruction>(V)->getMetadata("is_base_value")) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000572 // This is a previously inserted base phi or select. We know
573 // that this is a base value.
574 return true;
575 }
576
577 // We need to keep searching
578 return false;
579}
580
Philip Reamesd16a9b12015-02-20 01:06:44 +0000581namespace {
Philip Reames9b141ed2015-07-23 22:49:14 +0000582/// Models the state of a single base defining value in the findBasePointer
583/// algorithm for determining where a new instruction is needed to propagate
584/// the base of this BDV.
585class BDVState {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000586public:
587 enum Status { Unknown, Base, Conflict };
588
Philip Reames9b141ed2015-07-23 22:49:14 +0000589 BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000590 assert(status != Base || b);
591 }
Philip Reames9b141ed2015-07-23 22:49:14 +0000592 explicit BDVState(Value *b) : status(Base), base(b) {}
593 BDVState() : status(Unknown), base(nullptr) {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000594
595 Status getStatus() const { return status; }
596 Value *getBase() const { return base; }
597
598 bool isBase() const { return getStatus() == Base; }
599 bool isUnknown() const { return getStatus() == Unknown; }
600 bool isConflict() const { return getStatus() == Conflict; }
601
Philip Reames9b141ed2015-07-23 22:49:14 +0000602 bool operator==(const BDVState &other) const {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000603 return base == other.base && status == other.status;
604 }
605
Philip Reames9b141ed2015-07-23 22:49:14 +0000606 bool operator!=(const BDVState &other) const { return !(*this == other); }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000607
Philip Reames2a892a62015-07-23 22:25:26 +0000608 LLVM_DUMP_METHOD
609 void dump() const { print(dbgs()); dbgs() << '\n'; }
610
611 void print(raw_ostream &OS) const {
Philip Reamesdab35f32015-09-02 21:11:44 +0000612 switch (status) {
613 case Unknown:
614 OS << "U";
615 break;
616 case Base:
617 OS << "B";
618 break;
619 case Conflict:
620 OS << "C";
621 break;
622 };
623 OS << " (" << base << " - "
Philip Reames2a892a62015-07-23 22:25:26 +0000624 << (base ? base->getName() : "nullptr") << "): ";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000625 }
626
627private:
628 Status status;
Philip Reamesdd0948a2015-12-18 03:53:28 +0000629 AssertingVH<Value> base; // non null only if status == base
Philip Reamesd16a9b12015-02-20 01:06:44 +0000630};
Philip Reamesb3967cd2015-09-02 22:30:53 +0000631}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000632
Philip Reames6906e922015-09-02 21:57:17 +0000633#ifndef NDEBUG
Philip Reamesb3967cd2015-09-02 22:30:53 +0000634static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
Philip Reames2a892a62015-07-23 22:25:26 +0000635 State.print(OS);
636 return OS;
637}
Philip Reames6906e922015-09-02 21:57:17 +0000638#endif
Philip Reames2a892a62015-07-23 22:25:26 +0000639
Philip Reamesb3967cd2015-09-02 22:30:53 +0000640namespace {
Philip Reames9b141ed2015-07-23 22:49:14 +0000641// Values of type BDVState form a lattice, and this is a helper
Philip Reamesd16a9b12015-02-20 01:06:44 +0000642// class that implementes the meet operation. The meat of the meet
Philip Reames9b141ed2015-07-23 22:49:14 +0000643// operation is implemented in MeetBDVStates::pureMeet
644class MeetBDVStates {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000645public:
Philip Reames273e6bb2015-07-23 21:41:27 +0000646 /// Initializes the currentResult to the TOP state so that if can be met with
647 /// any other state to produce that state.
Philip Reames9b141ed2015-07-23 22:49:14 +0000648 MeetBDVStates() {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000649
Philip Reames9b141ed2015-07-23 22:49:14 +0000650 // Destructively meet the current result with the given BDVState
651 void meetWith(BDVState otherState) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000652 currentResult = meet(otherState, currentResult);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000653 }
654
Philip Reames9b141ed2015-07-23 22:49:14 +0000655 BDVState getResult() const { return currentResult; }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000656
657private:
Philip Reames9b141ed2015-07-23 22:49:14 +0000658 BDVState currentResult;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000659
Philip Reames9b141ed2015-07-23 22:49:14 +0000660 /// Perform a meet operation on two elements of the BDVState lattice.
661 static BDVState meet(BDVState LHS, BDVState RHS) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000662 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
663 "math is wrong: meet does not commute!");
Philip Reames9b141ed2015-07-23 22:49:14 +0000664 BDVState Result = pureMeet(LHS, RHS);
Philip Reames2a892a62015-07-23 22:25:26 +0000665 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
666 << " produced " << Result << "\n");
667 return Result;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000668 }
669
Philip Reames9b141ed2015-07-23 22:49:14 +0000670 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000671 switch (stateA.getStatus()) {
Philip Reames9b141ed2015-07-23 22:49:14 +0000672 case BDVState::Unknown:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000673 return stateB;
674
Philip Reames9b141ed2015-07-23 22:49:14 +0000675 case BDVState::Base:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000676 assert(stateA.getBase() && "can't be null");
David Blaikie82ad7872015-02-20 23:44:24 +0000677 if (stateB.isUnknown())
Philip Reamesd16a9b12015-02-20 01:06:44 +0000678 return stateA;
David Blaikie82ad7872015-02-20 23:44:24 +0000679
680 if (stateB.isBase()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000681 if (stateA.getBase() == stateB.getBase()) {
682 assert(stateA == stateB && "equality broken!");
683 return stateA;
684 }
Philip Reames9b141ed2015-07-23 22:49:14 +0000685 return BDVState(BDVState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000686 }
David Blaikie82ad7872015-02-20 23:44:24 +0000687 assert(stateB.isConflict() && "only three states!");
Philip Reames9b141ed2015-07-23 22:49:14 +0000688 return BDVState(BDVState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000689
Philip Reames9b141ed2015-07-23 22:49:14 +0000690 case BDVState::Conflict:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000691 return stateA;
692 }
Reid Klecknera070ee52015-02-20 19:46:02 +0000693 llvm_unreachable("only three states!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000694 }
695};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000696}
Philip Reamesb3967cd2015-09-02 22:30:53 +0000697
698
Philip Reamesd16a9b12015-02-20 01:06:44 +0000699/// For a given value or instruction, figure out what base ptr it's derived
700/// from. For gc objects, this is simply itself. On success, returns a value
701/// which is the base pointer. (This is reliable and can be used for
702/// relocation.) On failure, returns nullptr.
Philip Reamesba198492015-04-14 00:41:34 +0000703static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000704 Value *def = findBaseOrBDV(I, cache);
705
706 if (isKnownBaseResult(def)) {
707 return def;
708 }
709
710 // Here's the rough algorithm:
711 // - For every SSA value, construct a mapping to either an actual base
712 // pointer or a PHI which obscures the base pointer.
713 // - Construct a mapping from PHI to unknown TOP state. Use an
714 // optimistic algorithm to propagate base pointer information. Lattice
715 // looks like:
716 // UNKNOWN
717 // b1 b2 b3 b4
718 // CONFLICT
719 // When algorithm terminates, all PHIs will either have a single concrete
720 // base or be in a conflict state.
721 // - For every conflict, insert a dummy PHI node without arguments. Add
722 // these to the base[Instruction] = BasePtr mapping. For every
723 // non-conflict, add the actual base.
724 // - For every conflict, add arguments for the base[a] of each input
725 // arguments.
726 //
727 // Note: A simpler form of this would be to add the conflict form of all
728 // PHIs without running the optimistic algorithm. This would be
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000729 // analogous to pessimistic data flow and would likely lead to an
Philip Reamesd16a9b12015-02-20 01:06:44 +0000730 // overall worse solution.
731
Philip Reames29e9ae72015-07-24 00:42:55 +0000732#ifndef NDEBUG
Philip Reames88958b22015-07-24 00:02:11 +0000733 auto isExpectedBDVType = [](Value *BDV) {
Philip Reames66287132015-09-09 23:40:12 +0000734 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
735 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
Philip Reames88958b22015-07-24 00:02:11 +0000736 };
Philip Reames29e9ae72015-07-24 00:42:55 +0000737#endif
Philip Reames88958b22015-07-24 00:02:11 +0000738
739 // Once populated, will contain a mapping from each potentially non-base BDV
740 // to a lattice value (described above) which corresponds to that BDV.
Philip Reames15d55632015-09-09 23:26:08 +0000741 // We use the order of insertion (DFS over the def/use graph) to provide a
742 // stable deterministic ordering for visiting DenseMaps (which are unordered)
743 // below. This is important for deterministic compilation.
Philip Reames34d7a742015-09-10 00:22:49 +0000744 MapVector<Value *, BDVState> States;
Philip Reames15d55632015-09-09 23:26:08 +0000745
746 // Recursively fill in all base defining values reachable from the initial
747 // one for which we don't already know a definite base value for
Philip Reames88958b22015-07-24 00:02:11 +0000748 /* scope */ {
Philip Reames88958b22015-07-24 00:02:11 +0000749 SmallVector<Value*, 16> Worklist;
750 Worklist.push_back(def);
Philip Reames34d7a742015-09-10 00:22:49 +0000751 States.insert(std::make_pair(def, BDVState()));
Philip Reames88958b22015-07-24 00:02:11 +0000752 while (!Worklist.empty()) {
753 Value *Current = Worklist.pop_back_val();
754 assert(!isKnownBaseResult(Current) && "why did it get added?");
755
756 auto visitIncomingValue = [&](Value *InVal) {
757 Value *Base = findBaseOrBDV(InVal, cache);
758 if (isKnownBaseResult(Base))
759 // Known bases won't need new instructions introduced and can be
760 // ignored safely
761 return;
762 assert(isExpectedBDVType(Base) && "the only non-base values "
763 "we see should be base defining values");
Philip Reames34d7a742015-09-10 00:22:49 +0000764 if (States.insert(std::make_pair(Base, BDVState())).second)
Philip Reames88958b22015-07-24 00:02:11 +0000765 Worklist.push_back(Base);
766 };
767 if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
768 for (Value *InVal : Phi->incoming_values())
769 visitIncomingValue(InVal);
Philip Reames9ac4e382015-08-12 21:00:20 +0000770 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
Philip Reames88958b22015-07-24 00:02:11 +0000771 visitIncomingValue(Sel->getTrueValue());
772 visitIncomingValue(Sel->getFalseValue());
Philip Reames9ac4e382015-08-12 21:00:20 +0000773 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
774 visitIncomingValue(EE->getVectorOperand());
Philip Reames66287132015-09-09 23:40:12 +0000775 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
776 visitIncomingValue(IE->getOperand(0)); // vector operand
777 visitIncomingValue(IE->getOperand(1)); // scalar operand
Philip Reames9ac4e382015-08-12 21:00:20 +0000778 } else {
Philip Reames66287132015-09-09 23:40:12 +0000779 // There is one known class of instructions we know we don't handle.
780 assert(isa<ShuffleVectorInst>(Current));
Philip Reames9ac4e382015-08-12 21:00:20 +0000781 llvm_unreachable("unimplemented instruction case");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000782 }
783 }
784 }
785
Philip Reamesdab35f32015-09-02 21:11:44 +0000786#ifndef NDEBUG
787 DEBUG(dbgs() << "States after initialization:\n");
Philip Reames34d7a742015-09-10 00:22:49 +0000788 for (auto Pair : States) {
Philip Reamesdab35f32015-09-02 21:11:44 +0000789 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000790 }
Philip Reamesdab35f32015-09-02 21:11:44 +0000791#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000792
Philip Reames273e6bb2015-07-23 21:41:27 +0000793 // Return a phi state for a base defining value. We'll generate a new
794 // base state for known bases and expect to find a cached state otherwise.
795 auto getStateForBDV = [&](Value *baseValue) {
796 if (isKnownBaseResult(baseValue))
Philip Reames9b141ed2015-07-23 22:49:14 +0000797 return BDVState(baseValue);
Philip Reames34d7a742015-09-10 00:22:49 +0000798 auto I = States.find(baseValue);
799 assert(I != States.end() && "lookup failed!");
Philip Reames273e6bb2015-07-23 21:41:27 +0000800 return I->second;
801 };
802
Philip Reamesd16a9b12015-02-20 01:06:44 +0000803 bool progress = true;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000804 while (progress) {
Yaron Keren42a7adf2015-02-28 13:11:24 +0000805#ifndef NDEBUG
Philip Reamesb4e55f32015-09-10 00:32:56 +0000806 const size_t oldSize = States.size();
Yaron Keren42a7adf2015-02-28 13:11:24 +0000807#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000808 progress = false;
Philip Reames15d55632015-09-09 23:26:08 +0000809 // We're only changing values in this loop, thus safe to keep iterators.
810 // Since this is computing a fixed point, the order of visit does not
811 // effect the result. TODO: We could use a worklist here and make this run
812 // much faster.
Philip Reames34d7a742015-09-10 00:22:49 +0000813 for (auto Pair : States) {
Philip Reamesece70b82015-09-09 23:57:18 +0000814 Value *BDV = Pair.first;
815 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reames273e6bb2015-07-23 21:41:27 +0000816
Philip Reames9b141ed2015-07-23 22:49:14 +0000817 // Given an input value for the current instruction, return a BDVState
Philip Reames273e6bb2015-07-23 21:41:27 +0000818 // instance which represents the BDV of that value.
819 auto getStateForInput = [&](Value *V) mutable {
820 Value *BDV = findBaseOrBDV(V, cache);
821 return getStateForBDV(BDV);
822 };
823
Philip Reames9b141ed2015-07-23 22:49:14 +0000824 MeetBDVStates calculateMeet;
Philip Reamesece70b82015-09-09 23:57:18 +0000825 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000826 calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
827 calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
Philip Reamesece70b82015-09-09 23:57:18 +0000828 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000829 for (Value *Val : Phi->incoming_values())
Philip Reames273e6bb2015-07-23 21:41:27 +0000830 calculateMeet.meetWith(getStateForInput(Val));
Philip Reamesece70b82015-09-09 23:57:18 +0000831 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000832 // The 'meet' for an extractelement is slightly trivial, but it's still
833 // useful in that it drives us to conflict if our input is.
Philip Reames9ac4e382015-08-12 21:00:20 +0000834 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
Philip Reames66287132015-09-09 23:40:12 +0000835 } else {
836 // Given there's a inherent type mismatch between the operands, will
837 // *always* produce Conflict.
Philip Reamesece70b82015-09-09 23:57:18 +0000838 auto *IE = cast<InsertElementInst>(BDV);
Philip Reames66287132015-09-09 23:40:12 +0000839 calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
840 calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
Philip Reames9ac4e382015-08-12 21:00:20 +0000841 }
842
Philip Reames34d7a742015-09-10 00:22:49 +0000843 BDVState oldState = States[BDV];
Philip Reames9b141ed2015-07-23 22:49:14 +0000844 BDVState newState = calculateMeet.getResult();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000845 if (oldState != newState) {
846 progress = true;
Philip Reames34d7a742015-09-10 00:22:49 +0000847 States[BDV] = newState;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000848 }
849 }
850
Philip Reamesb4e55f32015-09-10 00:32:56 +0000851 assert(oldSize == States.size() &&
852 "fixed point shouldn't be adding any new nodes to state");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000853 }
854
Philip Reamesdab35f32015-09-02 21:11:44 +0000855#ifndef NDEBUG
856 DEBUG(dbgs() << "States after meet iteration:\n");
Philip Reames34d7a742015-09-10 00:22:49 +0000857 for (auto Pair : States) {
Philip Reamesdab35f32015-09-02 21:11:44 +0000858 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000859 }
Philip Reamesdab35f32015-09-02 21:11:44 +0000860#endif
861
Philip Reamesd16a9b12015-02-20 01:06:44 +0000862 // Insert Phis for all conflicts
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000863 // TODO: adjust naming patterns to avoid this order of iteration dependency
Philip Reames34d7a742015-09-10 00:22:49 +0000864 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +0000865 Instruction *I = cast<Instruction>(Pair.first);
866 BDVState State = Pair.second;
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000867 assert(!isKnownBaseResult(I) && "why did it get added?");
868 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
Philip Reames9ac4e382015-08-12 21:00:20 +0000869
870 // extractelement instructions are a bit special in that we may need to
871 // insert an extract even when we know an exact base for the instruction.
872 // The problem is that we need to convert from a vector base to a scalar
873 // base for the particular indice we're interested in.
874 if (State.isBase() && isa<ExtractElementInst>(I) &&
875 isa<VectorType>(State.getBase()->getType())) {
876 auto *EE = cast<ExtractElementInst>(I);
877 // TODO: In many cases, the new instruction is just EE itself. We should
878 // exploit this, but can't do it here since it would break the invariant
879 // about the BDV not being known to be a base.
880 auto *BaseInst = ExtractElementInst::Create(State.getBase(),
881 EE->getIndexOperand(),
882 "base_ee", EE);
883 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
Philip Reames34d7a742015-09-10 00:22:49 +0000884 States[I] = BDVState(BDVState::Base, BaseInst);
Philip Reames9ac4e382015-08-12 21:00:20 +0000885 }
Philip Reames66287132015-09-09 23:40:12 +0000886
887 // Since we're joining a vector and scalar base, they can never be the
888 // same. As a result, we should always see insert element having reached
889 // the conflict state.
890 if (isa<InsertElementInst>(I)) {
891 assert(State.isConflict());
892 }
Philip Reames9ac4e382015-08-12 21:00:20 +0000893
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000894 if (!State.isConflict())
Philip Reamesf986d682015-02-28 00:54:41 +0000895 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000896
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000897 /// Create and insert a new instruction which will represent the base of
898 /// the given instruction 'I'.
899 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
900 if (isa<PHINode>(I)) {
901 BasicBlock *BB = I->getParent();
902 int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
903 assert(NumPreds > 0 && "how did we reach here");
Philip Reamesece70b82015-09-09 23:57:18 +0000904 std::string Name = suffixed_name_or(I, ".base", "base_phi");
Philip Reamesfa2c6302015-07-24 19:01:39 +0000905 return PHINode::Create(I->getType(), NumPreds, Name, I);
Philip Reames9ac4e382015-08-12 21:00:20 +0000906 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
907 // The undef will be replaced later
908 UndefValue *Undef = UndefValue::get(Sel->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000909 std::string Name = suffixed_name_or(I, ".base", "base_select");
Philip Reames9ac4e382015-08-12 21:00:20 +0000910 return SelectInst::Create(Sel->getCondition(), Undef,
911 Undef, Name, Sel);
Philip Reames66287132015-09-09 23:40:12 +0000912 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000913 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000914 std::string Name = suffixed_name_or(I, ".base", "base_ee");
Philip Reames9ac4e382015-08-12 21:00:20 +0000915 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
916 EE);
Philip Reames66287132015-09-09 23:40:12 +0000917 } else {
918 auto *IE = cast<InsertElementInst>(I);
919 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
920 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000921 std::string Name = suffixed_name_or(I, ".base", "base_ie");
Philip Reames66287132015-09-09 23:40:12 +0000922 return InsertElementInst::Create(VecUndef, ScalarUndef,
923 IE->getOperand(2), Name, IE);
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000924 }
Philip Reames66287132015-09-09 23:40:12 +0000925
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000926 };
927 Instruction *BaseInst = MakeBaseInstPlaceholder(I);
928 // Add metadata marking this as a base value
929 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
Philip Reames34d7a742015-09-10 00:22:49 +0000930 States[I] = BDVState(BDVState::Conflict, BaseInst);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000931 }
932
Philip Reames3ea15892015-09-03 21:57:40 +0000933 // Returns a instruction which produces the base pointer for a given
934 // instruction. The instruction is assumed to be an input to one of the BDVs
935 // seen in the inference algorithm above. As such, we must either already
936 // know it's base defining value is a base, or have inserted a new
937 // instruction to propagate the base of it's BDV and have entered that newly
938 // introduced instruction into the state table. In either case, we are
939 // assured to be able to determine an instruction which produces it's base
940 // pointer.
941 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
942 Value *BDV = findBaseOrBDV(Input, cache);
943 Value *Base = nullptr;
944 if (isKnownBaseResult(BDV)) {
945 Base = BDV;
946 } else {
947 // Either conflict or base.
Philip Reames34d7a742015-09-10 00:22:49 +0000948 assert(States.count(BDV));
949 Base = States[BDV].getBase();
Philip Reames3ea15892015-09-03 21:57:40 +0000950 }
951 assert(Base && "can't be null");
952 // The cast is needed since base traversal may strip away bitcasts
953 if (Base->getType() != Input->getType() &&
954 InsertPt) {
955 Base = new BitCastInst(Base, Input->getType(), "cast",
956 InsertPt);
957 }
958 return Base;
959 };
960
Philip Reames15d55632015-09-09 23:26:08 +0000961 // Fixup all the inputs of the new PHIs. Visit order needs to be
962 // deterministic and predictable because we're naming newly created
963 // instructions.
Philip Reames34d7a742015-09-10 00:22:49 +0000964 for (auto Pair : States) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000965 Instruction *BDV = cast<Instruction>(Pair.first);
Philip Reamesc8ded462015-09-10 00:27:50 +0000966 BDVState State = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000967
Philip Reames7540e3a2015-09-10 00:01:53 +0000968 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reamesc8ded462015-09-10 00:27:50 +0000969 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
970 if (!State.isConflict())
Philip Reames28e61ce2015-02-28 01:57:44 +0000971 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000972
Philip Reamesc8ded462015-09-10 00:27:50 +0000973 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000974 PHINode *phi = cast<PHINode>(BDV);
Philip Reames28e61ce2015-02-28 01:57:44 +0000975 unsigned NumPHIValues = phi->getNumIncomingValues();
976 for (unsigned i = 0; i < NumPHIValues; i++) {
977 Value *InVal = phi->getIncomingValue(i);
978 BasicBlock *InBB = phi->getIncomingBlock(i);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000979
Philip Reames28e61ce2015-02-28 01:57:44 +0000980 // If we've already seen InBB, add the same incoming value
981 // we added for it earlier. The IR verifier requires phi
982 // nodes with multiple entries from the same basic block
983 // to have the same incoming value for each of those
984 // entries. If we don't do this check here and basephi
985 // has a different type than base, we'll end up adding two
986 // bitcasts (and hence two distinct values) as incoming
987 // values for the same basic block.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000988
Philip Reames28e61ce2015-02-28 01:57:44 +0000989 int blockIndex = basephi->getBasicBlockIndex(InBB);
990 if (blockIndex != -1) {
991 Value *oldBase = basephi->getIncomingValue(blockIndex);
992 basephi->addIncoming(oldBase, InBB);
Philip Reames3ea15892015-09-03 21:57:40 +0000993
Philip Reamesd16a9b12015-02-20 01:06:44 +0000994#ifndef NDEBUG
Philip Reames3ea15892015-09-03 21:57:40 +0000995 Value *Base = getBaseForInput(InVal, nullptr);
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000996 // In essence this assert states: the only way two
Philip Reames28e61ce2015-02-28 01:57:44 +0000997 // values incoming from the same basic block may be
998 // different is by being different bitcasts of the same
999 // value. A cleanup that remains TODO is changing
1000 // findBaseOrBDV to return an llvm::Value of the correct
1001 // type (and still remain pure). This will remove the
1002 // need to add bitcasts.
Philip Reames3ea15892015-09-03 21:57:40 +00001003 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
Philip Reames28e61ce2015-02-28 01:57:44 +00001004 "sanity -- findBaseOrBDV should be pure!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001005#endif
Philip Reames28e61ce2015-02-28 01:57:44 +00001006 continue;
1007 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001008
Philip Reames3ea15892015-09-03 21:57:40 +00001009 // Find the instruction which produces the base for each input. We may
1010 // need to insert a bitcast in the incoming block.
1011 // TODO: Need to split critical edges if insertion is needed
1012 Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1013 basephi->addIncoming(Base, InBB);
Philip Reames28e61ce2015-02-28 01:57:44 +00001014 }
1015 assert(basephi->getNumIncomingValues() == NumPHIValues);
Philip Reamesc8ded462015-09-10 00:27:50 +00001016 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +00001017 SelectInst *Sel = cast<SelectInst>(BDV);
Philip Reames28e61ce2015-02-28 01:57:44 +00001018 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
1019 // something more safe and less hacky.
1020 for (int i = 1; i <= 2; i++) {
Philip Reames3ea15892015-09-03 21:57:40 +00001021 Value *InVal = Sel->getOperand(i);
1022 // Find the instruction which produces the base for each input. We may
1023 // need to insert a bitcast.
1024 Value *Base = getBaseForInput(InVal, BaseSel);
1025 BaseSel->setOperand(i, Base);
Philip Reames28e61ce2015-02-28 01:57:44 +00001026 }
Philip Reamesc8ded462015-09-10 00:27:50 +00001027 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +00001028 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
Philip Reames3ea15892015-09-03 21:57:40 +00001029 // Find the instruction which produces the base for each input. We may
1030 // need to insert a bitcast.
1031 Value *Base = getBaseForInput(InVal, BaseEE);
Philip Reames9ac4e382015-08-12 21:00:20 +00001032 BaseEE->setOperand(0, Base);
Philip Reames66287132015-09-09 23:40:12 +00001033 } else {
Philip Reamesc8ded462015-09-10 00:27:50 +00001034 auto *BaseIE = cast<InsertElementInst>(State.getBase());
Philip Reames7540e3a2015-09-10 00:01:53 +00001035 auto *BdvIE = cast<InsertElementInst>(BDV);
Philip Reames66287132015-09-09 23:40:12 +00001036 auto UpdateOperand = [&](int OperandIdx) {
1037 Value *InVal = BdvIE->getOperand(OperandIdx);
Philip Reames953817b2015-09-10 00:44:10 +00001038 Value *Base = getBaseForInput(InVal, BaseIE);
Philip Reames66287132015-09-09 23:40:12 +00001039 BaseIE->setOperand(OperandIdx, Base);
1040 };
1041 UpdateOperand(0); // vector operand
1042 UpdateOperand(1); // scalar operand
Philip Reamesd16a9b12015-02-20 01:06:44 +00001043 }
Philip Reames66287132015-09-09 23:40:12 +00001044
Philip Reamesd16a9b12015-02-20 01:06:44 +00001045 }
1046
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001047 // Now that we're done with the algorithm, see if we can optimize the
1048 // results slightly by reducing the number of new instructions needed.
1049 // Arguably, this should be integrated into the algorithm above, but
1050 // doing as a post process step is easier to reason about for the moment.
1051 DenseMap<Value *, Value *> ReverseMap;
1052 SmallPtrSet<Instruction *, 16> NewInsts;
Philip Reames9546f362015-09-02 22:25:07 +00001053 SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
Philip Reames246e6182015-09-03 20:24:29 +00001054 // Note: We need to visit the states in a deterministic order. We uses the
1055 // Keys we sorted above for this purpose. Note that we are papering over a
1056 // bigger problem with the algorithm above - it's visit order is not
1057 // deterministic. A larger change is needed to fix this.
Philip Reames34d7a742015-09-10 00:22:49 +00001058 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +00001059 auto *BDV = Pair.first;
1060 auto State = Pair.second;
Philip Reames246e6182015-09-03 20:24:29 +00001061 Value *Base = State.getBase();
Philip Reames15d55632015-09-09 23:26:08 +00001062 assert(BDV && Base);
1063 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001064 assert(isKnownBaseResult(Base) &&
1065 "must be something we 'know' is a base pointer");
Philip Reames246e6182015-09-03 20:24:29 +00001066 if (!State.isConflict())
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001067 continue;
1068
Philip Reames15d55632015-09-09 23:26:08 +00001069 ReverseMap[Base] = BDV;
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001070 if (auto *BaseI = dyn_cast<Instruction>(Base)) {
1071 NewInsts.insert(BaseI);
1072 Worklist.insert(BaseI);
1073 }
1074 }
Philip Reames9546f362015-09-02 22:25:07 +00001075 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
1076 Value *Replacement) {
1077 // Add users which are new instructions (excluding self references)
1078 for (User *U : BaseI->users())
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001079 if (auto *UI = dyn_cast<Instruction>(U))
Philip Reames9546f362015-09-02 22:25:07 +00001080 if (NewInsts.count(UI) && UI != BaseI)
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001081 Worklist.insert(UI);
Philip Reames9546f362015-09-02 22:25:07 +00001082 // Then do the actual replacement
1083 NewInsts.erase(BaseI);
1084 ReverseMap.erase(BaseI);
1085 BaseI->replaceAllUsesWith(Replacement);
Philip Reames34d7a742015-09-10 00:22:49 +00001086 assert(States.count(BDV));
1087 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
1088 States[BDV] = BDVState(BDVState::Conflict, Replacement);
Philip Reamesdd0948a2015-12-18 03:53:28 +00001089 BaseI->eraseFromParent();
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001090 };
1091 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
1092 while (!Worklist.empty()) {
1093 Instruction *BaseI = Worklist.pop_back_val();
Philip Reamesdab35f32015-09-02 21:11:44 +00001094 assert(NewInsts.count(BaseI));
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001095 Value *Bdv = ReverseMap[BaseI];
1096 if (auto *BdvI = dyn_cast<Instruction>(Bdv))
1097 if (BaseI->isIdenticalTo(BdvI)) {
1098 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
Philip Reames9546f362015-09-02 22:25:07 +00001099 ReplaceBaseInstWith(Bdv, BaseI, Bdv);
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001100 continue;
1101 }
1102 if (Value *V = SimplifyInstruction(BaseI, DL)) {
1103 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
Philip Reames9546f362015-09-02 22:25:07 +00001104 ReplaceBaseInstWith(Bdv, BaseI, V);
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001105 continue;
1106 }
1107 }
1108
Philip Reamesd16a9b12015-02-20 01:06:44 +00001109 // Cache all of our results so we can cheaply reuse them
1110 // NOTE: This is actually two caches: one of the base defining value
1111 // relation and one of the base pointer relation! FIXME
Philip Reames34d7a742015-09-10 00:22:49 +00001112 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +00001113 auto *BDV = Pair.first;
1114 Value *base = Pair.second.getBase();
1115 assert(BDV && base);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001116
Philip Reamesece70b82015-09-09 23:57:18 +00001117 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
Philip Reamesdab35f32015-09-02 21:11:44 +00001118 DEBUG(dbgs() << "Updating base value cache"
Philip Reamesece70b82015-09-09 23:57:18 +00001119 << " for: " << BDV->getName()
Philip Reamesdab35f32015-09-02 21:11:44 +00001120 << " from: " << fromstr
Philip Reamesece70b82015-09-09 23:57:18 +00001121 << " to: " << base->getName() << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001122
Philip Reames15d55632015-09-09 23:26:08 +00001123 if (cache.count(BDV)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001124 // Once we transition from the BDV relation being store in the cache to
1125 // the base relation being stored, it must be stable
Philip Reames15d55632015-09-09 23:26:08 +00001126 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001127 "base relation should be stable");
1128 }
Philip Reames15d55632015-09-09 23:26:08 +00001129 cache[BDV] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001130 }
Manuel Jacob67f1d3a2015-12-29 22:16:41 +00001131 assert(cache.count(def));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001132 return cache[def];
1133}
1134
1135// For a set of live pointers (base and/or derived), identify the base
1136// pointer of the object which they are derived from. This routine will
1137// mutate the IR graph as needed to make the 'base' pointer live at the
1138// definition site of 'derived'. This ensures that any use of 'derived' can
1139// also use 'base'. This may involve the insertion of a number of
1140// additional PHI nodes.
1141//
1142// preconditions: live is a set of pointer type Values
1143//
1144// side effects: may insert PHI nodes into the existing CFG, will preserve
1145// CFG, will not remove or mutate any existing nodes
1146//
Philip Reamesf2041322015-02-20 19:26:04 +00001147// post condition: PointerToBase contains one (derived, base) pair for every
Philip Reamesd16a9b12015-02-20 01:06:44 +00001148// pointer in live. Note that derived can be equal to base if the original
1149// pointer was a base pointer.
Philip Reames704e78b2015-04-10 22:34:56 +00001150static void
1151findBasePointers(const StatepointLiveSetTy &live,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001152 DenseMap<Value *, Value *> &PointerToBase,
Philip Reamesba198492015-04-14 00:41:34 +00001153 DominatorTree *DT, DefiningValueMapTy &DVCache) {
Philip Reames2e5bcbe2015-02-28 01:52:09 +00001154 // For the naming of values inserted to be deterministic - which makes for
1155 // much cleaner and more stable tests - we need to assign an order to the
1156 // live values. DenseSets do not provide a deterministic order across runs.
Philip Reames704e78b2015-04-10 22:34:56 +00001157 SmallVector<Value *, 64> Temp;
Philip Reames2e5bcbe2015-02-28 01:52:09 +00001158 Temp.insert(Temp.end(), live.begin(), live.end());
1159 std::sort(Temp.begin(), Temp.end(), order_by_name);
1160 for (Value *ptr : Temp) {
Philip Reamesba198492015-04-14 00:41:34 +00001161 Value *base = findBasePointer(ptr, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001162 assert(base && "failed to find base pointer");
Philip Reamesf2041322015-02-20 19:26:04 +00001163 PointerToBase[ptr] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001164 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1165 DT->dominates(cast<Instruction>(base)->getParent(),
1166 cast<Instruction>(ptr)->getParent())) &&
1167 "The base we found better dominate the derived pointer");
1168
David Blaikie82ad7872015-02-20 23:44:24 +00001169 // If you see this trip and like to live really dangerously, the code should
1170 // be correct, just with idioms the verifier can't handle. You can try
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001171 // disabling the verifier at your own substantial risk.
Philip Reames704e78b2015-04-10 22:34:56 +00001172 assert(!isa<ConstantPointerNull>(base) &&
Philip Reames24c6cd52015-03-27 05:47:00 +00001173 "the relocation code needs adjustment to handle the relocation of "
1174 "a null pointer constant without causing false positives in the "
1175 "safepoint ir verifier.");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001176 }
1177}
1178
1179/// Find the required based pointers (and adjust the live set) for the given
1180/// parse point.
1181static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1182 const CallSite &CS,
1183 PartiallyConstructedSafepointRecord &result) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001184 DenseMap<Value *, Value *> PointerToBase;
1185 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001186
1187 if (PrintBasePointers) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001188 // Note: Need to print these in a stable order since this is checked in
1189 // some tests.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001190 errs() << "Base Pairs (w/o Relocation):\n";
Philip Reames704e78b2015-04-10 22:34:56 +00001191 SmallVector<Value *, 64> Temp;
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001192 Temp.reserve(PointerToBase.size());
Philip Reamesf2041322015-02-20 19:26:04 +00001193 for (auto Pair : PointerToBase) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001194 Temp.push_back(Pair.first);
1195 }
1196 std::sort(Temp.begin(), Temp.end(), order_by_name);
1197 for (Value *Ptr : Temp) {
1198 Value *Base = PointerToBase[Ptr];
Manuel Jacoba4efd8a2015-12-23 00:19:45 +00001199 errs() << " derived ";
1200 Ptr->printAsOperand(errs(), false);
1201 errs() << " base ";
1202 Base->printAsOperand(errs(), false);
1203 errs() << "\n";;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001204 }
1205 }
1206
Philip Reamesf2041322015-02-20 19:26:04 +00001207 result.PointerToBase = PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001208}
1209
Philip Reamesdf1ef082015-04-10 22:53:14 +00001210/// Given an updated version of the dataflow liveness results, update the
1211/// liveset and base pointer maps for the call site CS.
1212static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1213 const CallSite &CS,
1214 PartiallyConstructedSafepointRecord &result);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001215
Philip Reamesdf1ef082015-04-10 22:53:14 +00001216static void recomputeLiveInValues(
Justin Bogner843fb202015-12-15 19:40:57 +00001217 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
Philip Reamesd2b66462015-02-20 22:39:41 +00001218 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001219 // TODO-PERF: reuse the original liveness, then simply run the dataflow
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001220 // again. The old values are still live and will help it stabilize quickly.
Philip Reamesdf1ef082015-04-10 22:53:14 +00001221 GCPtrLivenessData RevisedLivenessData;
1222 computeLiveInValues(DT, F, RevisedLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001223 for (size_t i = 0; i < records.size(); i++) {
1224 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001225 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001226 recomputeLiveInValues(RevisedLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001227 }
1228}
1229
Sanjoy Das7ad67642015-10-20 01:06:24 +00001230// When inserting gc.relocate and gc.result calls, we need to ensure there are
1231// no uses of the original value / return value between the gc.statepoint and
1232// the gc.relocate / gc.result call. One case which can arise is a phi node
1233// starting one of the successor blocks. We also need to be able to insert the
1234// gc.relocates only on the path which goes through the statepoint. We might
1235// need to split an edge to make this possible.
Philip Reamesf209a152015-04-13 20:00:30 +00001236static BasicBlock *
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00001237normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1238 DominatorTree &DT) {
Philip Reames69e51ca2015-04-13 18:07:21 +00001239 BasicBlock *Ret = BB;
Sanjoy Dasff3dba72015-10-20 01:06:17 +00001240 if (!BB->getUniquePredecessor())
Chandler Carruth96ada252015-07-22 09:52:54 +00001241 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001242
Sanjoy Das7ad67642015-10-20 01:06:24 +00001243 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
Philip Reames69e51ca2015-04-13 18:07:21 +00001244 // from it
1245 FoldSingleEntryPHINodes(Ret);
Sanjoy Dasff3dba72015-10-20 01:06:17 +00001246 assert(!isa<PHINode>(Ret->begin()) &&
1247 "All PHI nodes should have been removed!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001248
Sanjoy Das7ad67642015-10-20 01:06:24 +00001249 // At this point, we can safely insert a gc.relocate or gc.result as the first
1250 // instruction in Ret if needed.
Philip Reames69e51ca2015-04-13 18:07:21 +00001251 return Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001252}
1253
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001254// Create new attribute set containing only attributes which can be transferred
Philip Reamesd16a9b12015-02-20 01:06:44 +00001255// from original call to the safepoint.
1256static AttributeSet legalizeCallAttributes(AttributeSet AS) {
Sanjoy Das810a59d2015-10-16 02:41:11 +00001257 AttributeSet Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001258
1259 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
Sanjoy Das810a59d2015-10-16 02:41:11 +00001260 unsigned Index = AS.getSlotIndex(Slot);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001261
Sanjoy Das810a59d2015-10-16 02:41:11 +00001262 if (Index == AttributeSet::ReturnIndex ||
1263 Index == AttributeSet::FunctionIndex) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001264
Sanjoy Das810a59d2015-10-16 02:41:11 +00001265 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001266
1267 // Do not allow certain attributes - just skip them
1268 // Safepoint can not be read only or read none.
Sanjoy Das810a59d2015-10-16 02:41:11 +00001269 if (Attr.hasAttribute(Attribute::ReadNone) ||
1270 Attr.hasAttribute(Attribute::ReadOnly))
Philip Reamesd16a9b12015-02-20 01:06:44 +00001271 continue;
1272
Sanjoy Das58fae7c2015-10-16 02:41:23 +00001273 // These attributes control the generation of the gc.statepoint call /
1274 // invoke itself; and once the gc.statepoint is in place, they're of no
1275 // use.
1276 if (Attr.hasAttribute("statepoint-num-patch-bytes") ||
1277 Attr.hasAttribute("statepoint-id"))
1278 continue;
1279
Sanjoy Das810a59d2015-10-16 02:41:11 +00001280 Ret = Ret.addAttributes(
1281 AS.getContext(), Index,
1282 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001283 }
1284 }
1285
1286 // Just skip parameter attributes for now
1287 }
1288
Sanjoy Das810a59d2015-10-16 02:41:11 +00001289 return Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001290}
1291
1292/// Helper function to place all gc relocates necessary for the given
1293/// statepoint.
1294/// Inputs:
1295/// liveVariables - list of variables to be relocated.
1296/// liveStart - index of the first live variable.
1297/// basePtrs - base pointers.
1298/// statepointToken - statepoint instruction to which relocates should be
1299/// bound.
1300/// Builder - Llvm IR builder to be used to construct new calls.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001301static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
Sanjoy Das5665c992015-05-11 23:47:27 +00001302 const int LiveStart,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001303 ArrayRef<Value *> BasePtrs,
Sanjoy Das5665c992015-05-11 23:47:27 +00001304 Instruction *StatepointToken,
Benjamin Kramerf044d3f2015-03-09 16:23:46 +00001305 IRBuilder<> Builder) {
Philip Reames94babb72015-07-21 17:18:03 +00001306 if (LiveVariables.empty())
1307 return;
Sanjoy Dasb1942f12015-10-20 01:06:28 +00001308
1309 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1310 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1311 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1312 size_t Index = std::distance(LiveVec.begin(), ValIt);
1313 assert(Index < LiveVec.size() && "Bug in std::find?");
1314 return Index;
1315 };
Philip Reames74ce2e72015-07-21 16:51:17 +00001316 Module *M = StatepointToken->getModule();
Philip Reames5715f572016-01-09 01:31:13 +00001317
1318 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1319 // element type is i8 addrspace(1)*). We originally generated unique
1320 // declarations for each pointer type, but this proved problematic because
1321 // the intrinsic mangling code is incomplete and fragile. Since we're moving
1322 // towards a single unified pointer type anyways, we can just cast everything
1323 // to an i8* of the right address space. A bitcast is added later to convert
1324 // gc_relocate to the actual value's type.
1325 auto getGCRelocateDecl = [&] (Type *Ty) {
1326 assert(isHandledGCPointerType(Ty));
1327 auto AS = Ty->getScalarType()->getPointerAddressSpace();
1328 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1329 if (auto *VT = dyn_cast<VectorType>(Ty))
1330 NewTy = VectorType::get(NewTy, VT->getNumElements());
1331 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1332 {NewTy});
1333 };
1334
1335 // Lazily populated map from input types to the canonicalized form mentioned
1336 // in the comment above. This should probably be cached somewhere more
1337 // broadly.
1338 DenseMap<Type*, Value*> TypeToDeclMap;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001339
Sanjoy Das5665c992015-05-11 23:47:27 +00001340 for (unsigned i = 0; i < LiveVariables.size(); i++) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001341 // Generate the gc.relocate call and save the result
Sanjoy Das5665c992015-05-11 23:47:27 +00001342 Value *BaseIdx =
Sanjoy Dasb1942f12015-10-20 01:06:28 +00001343 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
Sanjoy Das3020b1b2015-10-20 01:06:31 +00001344 Value *LiveIdx = Builder.getInt32(LiveStart + i);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001345
Philip Reames5715f572016-01-09 01:31:13 +00001346 Type *Ty = LiveVariables[i]->getType();
1347 if (!TypeToDeclMap.count(Ty))
1348 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1349 Value *GCRelocateDecl = TypeToDeclMap[Ty];
1350
Philip Reamesd16a9b12015-02-20 01:06:44 +00001351 // only specify a debug name if we can give a useful one
Philip Reames74ce2e72015-07-21 16:51:17 +00001352 CallInst *Reloc = Builder.CreateCall(
David Blaikieff6409d2015-05-18 22:13:54 +00001353 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
Philip Reamesece70b82015-09-09 23:57:18 +00001354 suffixed_name_or(LiveVariables[i], ".relocated", ""));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001355 // Trick CodeGen into thinking there are lots of free registers at this
1356 // fake call.
Philip Reames74ce2e72015-07-21 16:51:17 +00001357 Reloc->setCallingConv(CallingConv::Cold);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001358 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001359}
1360
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001361namespace {
1362
1363/// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
1364/// avoids having to worry about keeping around dangling pointers to Values.
1365class DeferredReplacement {
1366 AssertingVH<Instruction> Old;
1367 AssertingVH<Instruction> New;
1368
1369public:
1370 explicit DeferredReplacement(Instruction *Old, Instruction *New) :
1371 Old(Old), New(New) {
1372 assert(Old != New && "Not allowed!");
1373 }
1374
1375 /// Does the task represented by this instance.
1376 void doReplacement() {
1377 Instruction *OldI = Old;
1378 Instruction *NewI = New;
1379
1380 assert(OldI != NewI && "Disallowed at construction?!");
1381
1382 Old = nullptr;
1383 New = nullptr;
1384
1385 if (NewI)
1386 OldI->replaceAllUsesWith(NewI);
1387 OldI->eraseFromParent();
1388 }
1389};
1390}
1391
Philip Reamesd16a9b12015-02-20 01:06:44 +00001392static void
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001393makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1394 const SmallVectorImpl<Value *> &BasePtrs,
1395 const SmallVectorImpl<Value *> &LiveVariables,
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001396 PartiallyConstructedSafepointRecord &Result,
1397 std::vector<DeferredReplacement> &Replacements) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001398 assert(BasePtrs.size() == LiveVariables.size());
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001399 assert((UseDeoptBundles || isStatepoint(CS)) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001400 "This method expects to be rewriting a statepoint");
1401
Philip Reamesd16a9b12015-02-20 01:06:44 +00001402 // Then go ahead and use the builder do actually do the inserts. We insert
1403 // immediately before the previous instruction under the assumption that all
1404 // arguments will be available here. We can't insert afterwards since we may
1405 // be replacing a terminator.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001406 Instruction *InsertBefore = CS.getInstruction();
1407 IRBuilder<> Builder(InsertBefore);
1408
Sanjoy Das3c520a12015-10-08 23:18:38 +00001409 ArrayRef<Value *> GCArgs(LiveVariables);
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001410 uint64_t StatepointID = 0xABCDEF00;
1411 uint32_t NumPatchBytes = 0;
1412 uint32_t Flags = uint32_t(StatepointFlags::None);
Sanjoy Das3c520a12015-10-08 23:18:38 +00001413
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001414 ArrayRef<Use> CallArgs;
1415 ArrayRef<Use> DeoptArgs;
1416 ArrayRef<Use> TransitionArgs;
1417
1418 Value *CallTarget = nullptr;
1419
1420 if (UseDeoptBundles) {
1421 CallArgs = {CS.arg_begin(), CS.arg_end()};
1422 DeoptArgs = GetDeoptBundleOperands(CS);
1423 // TODO: we don't fill in TransitionArgs or Flags in this branch, but we
1424 // could have an operand bundle for that too.
1425 AttributeSet OriginalAttrs = CS.getAttributes();
1426
1427 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex,
1428 "statepoint-id");
1429 if (AttrID.isStringAttribute())
1430 AttrID.getValueAsString().getAsInteger(10, StatepointID);
1431
1432 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
1433 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
1434 if (AttrNumPatchBytes.isStringAttribute())
1435 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
1436
1437 CallTarget = CS.getCalledValue();
1438 } else {
1439 // This branch will be gone soon, and we will soon only support the
1440 // UseDeoptBundles == true configuration.
1441 Statepoint OldSP(CS);
1442 StatepointID = OldSP.getID();
1443 NumPatchBytes = OldSP.getNumPatchBytes();
1444 Flags = OldSP.getFlags();
1445
1446 CallArgs = {OldSP.arg_begin(), OldSP.arg_end()};
1447 DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()};
1448 TransitionArgs = {OldSP.gc_transition_args_begin(),
1449 OldSP.gc_transition_args_end()};
1450 CallTarget = OldSP.getCalledValue();
1451 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001452
1453 // Create the statepoint given all the arguments
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001454 Instruction *Token = nullptr;
1455 AttributeSet ReturnAttrs;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001456 if (CS.isCall()) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001457 CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
Sanjoy Das3c520a12015-10-08 23:18:38 +00001458 CallInst *Call = Builder.CreateGCStatepointCall(
1459 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1460 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1461
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001462 Call->setTailCall(ToReplace->isTailCall());
1463 Call->setCallingConv(ToReplace->getCallingConv());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001464
1465 // Currently we will fail on parameter attributes and on certain
1466 // function attributes.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001467 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001468 // In case if we can handle this set of attributes - set up function attrs
Philip Reamesd16a9b12015-02-20 01:06:44 +00001469 // directly on statepoint and return attrs later for gc_result intrinsic.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001470 Call->setAttributes(NewAttrs.getFnAttributes());
1471 ReturnAttrs = NewAttrs.getRetAttributes();
Philip Reamesd16a9b12015-02-20 01:06:44 +00001472
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001473 Token = Call;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001474
1475 // Put the following gc_result and gc_relocate calls immediately after the
1476 // the old call (which we're about to delete)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001477 assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1478 Builder.SetInsertPoint(ToReplace->getNextNode());
1479 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
David Blaikie82ad7872015-02-20 23:44:24 +00001480 } else {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001481 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001482
1483 // Insert the new invoke into the old block. We'll remove the old one in a
1484 // moment at which point this will become the new terminator for the
1485 // original block.
Sanjoy Das3c520a12015-10-08 23:18:38 +00001486 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1487 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1488 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1489 GCArgs, "statepoint_token");
1490
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001491 Invoke->setCallingConv(ToReplace->getCallingConv());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001492
1493 // Currently we will fail on parameter attributes and on certain
1494 // function attributes.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001495 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001496 // In case if we can handle this set of attributes - set up function attrs
Philip Reamesd16a9b12015-02-20 01:06:44 +00001497 // directly on statepoint and return attrs later for gc_result intrinsic.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001498 Invoke->setAttributes(NewAttrs.getFnAttributes());
1499 ReturnAttrs = NewAttrs.getRetAttributes();
Philip Reamesd16a9b12015-02-20 01:06:44 +00001500
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001501 Token = Invoke;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001502
1503 // Generate gc relocates in exceptional path
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001504 BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1505 assert(!isa<PHINode>(UnwindBlock->begin()) &&
1506 UnwindBlock->getUniquePredecessor() &&
Philip Reames69e51ca2015-04-13 18:07:21 +00001507 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001508
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001509 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001510 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001511
Chen Lid71999e2015-12-26 07:54:32 +00001512 // Attach exceptional gc relocates to the landingpad.
1513 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001514 Result.UnwindToken = ExceptionalToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001515
Sanjoy Das3c520a12015-10-08 23:18:38 +00001516 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001517 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1518 Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001519
1520 // Generate gc relocates and returns for normal block
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001521 BasicBlock *NormalDest = ToReplace->getNormalDest();
1522 assert(!isa<PHINode>(NormalDest->begin()) &&
1523 NormalDest->getUniquePredecessor() &&
Philip Reames69e51ca2015-04-13 18:07:21 +00001524 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001525
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001526 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001527
1528 // gc relocates will be generated later as if it were regular call
1529 // statepoint
Philip Reamesd16a9b12015-02-20 01:06:44 +00001530 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001531 assert(Token && "Should be set in one of the above branches!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001532
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001533 if (UseDeoptBundles) {
1534 Token->setName("statepoint_token");
1535 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1536 StringRef Name =
1537 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1538 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1539 GCResult->setAttributes(CS.getAttributes().getRetAttributes());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001540
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001541 // We cannot RAUW or delete CS.getInstruction() because it could be in the
1542 // live set of some other safepoint, in which case that safepoint's
1543 // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1544 // llvm::Instruction. Instead, we defer the replacement and deletion to
1545 // after the live sets have been made explicit in the IR, and we no longer
1546 // have raw pointers to worry about.
1547 Replacements.emplace_back(CS.getInstruction(), GCResult);
1548 } else {
1549 Replacements.emplace_back(CS.getInstruction(), nullptr);
1550 }
1551 } else {
1552 assert(!CS.getInstruction()->hasNUsesOrMore(2) &&
1553 "only valid use before rewrite is gc.result");
1554 assert(!CS.getInstruction()->hasOneUse() ||
1555 isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin())));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001556
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001557 // Take the name of the original statepoint token if there was one.
1558 Token->takeName(CS.getInstruction());
1559
1560 // Update the gc.result of the original statepoint (if any) to use the newly
1561 // inserted statepoint. This is safe to do here since the token can't be
1562 // considered a live reference.
1563 CS.getInstruction()->replaceAllUsesWith(Token);
1564 CS.getInstruction()->eraseFromParent();
1565 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001566
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001567 Result.StatepointToken = Token;
Philip Reames0a3240f2015-02-20 21:34:11 +00001568
Philip Reamesd16a9b12015-02-20 01:06:44 +00001569 // Second, create a gc.relocate for every live variable
Sanjoy Das3c520a12015-10-08 23:18:38 +00001570 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001571 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001572}
1573
1574namespace {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001575struct NameOrdering {
1576 Value *Base;
1577 Value *Derived;
1578
1579 bool operator()(NameOrdering const &a, NameOrdering const &b) {
1580 return -1 == a.Derived->getName().compare(b.Derived->getName());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001581 }
1582};
1583}
Philip Reamesd16a9b12015-02-20 01:06:44 +00001584
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001585static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
1586 SmallVectorImpl<Value *> &LiveVec) {
1587 assert(BaseVec.size() == LiveVec.size());
1588
1589 SmallVector<NameOrdering, 64> Temp;
1590 for (size_t i = 0; i < BaseVec.size(); i++) {
1591 NameOrdering v;
1592 v.Base = BaseVec[i];
1593 v.Derived = LiveVec[i];
1594 Temp.push_back(v);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001595 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001596
1597 std::sort(Temp.begin(), Temp.end(), NameOrdering());
1598 for (size_t i = 0; i < BaseVec.size(); i++) {
1599 BaseVec[i] = Temp[i].Base;
1600 LiveVec[i] = Temp[i].Derived;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001601 }
1602}
1603
1604// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1605// which make the relocations happening at this safepoint explicit.
Philip Reames704e78b2015-04-10 22:34:56 +00001606//
Philip Reamesd16a9b12015-02-20 01:06:44 +00001607// WARNING: Does not do any fixup to adjust users of the original live
1608// values. That's the callers responsibility.
1609static void
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001610makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001611 PartiallyConstructedSafepointRecord &Result,
1612 std::vector<DeferredReplacement> &Replacements) {
Sanjoy Das1ede5362015-10-08 23:18:22 +00001613 const auto &LiveSet = Result.LiveSet;
1614 const auto &PointerToBase = Result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001615
1616 // Convert to vector for efficient cross referencing.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001617 SmallVector<Value *, 64> BaseVec, LiveVec;
1618 LiveVec.reserve(LiveSet.size());
1619 BaseVec.reserve(LiveSet.size());
1620 for (Value *L : LiveSet) {
1621 LiveVec.push_back(L);
Philip Reames74ce2e72015-07-21 16:51:17 +00001622 assert(PointerToBase.count(L));
Sanjoy Das1ede5362015-10-08 23:18:22 +00001623 Value *Base = PointerToBase.find(L)->second;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001624 BaseVec.push_back(Base);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001625 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001626 assert(LiveVec.size() == BaseVec.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001627
1628 // To make the output IR slightly more stable (for use in diffs), ensure a
1629 // fixed order of the values in the safepoint (by sorting the value name).
1630 // The order is otherwise meaningless.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001631 StabilizeOrder(BaseVec, LiveVec);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001632
1633 // Do the actual rewriting and delete the old statepoint
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001634 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001635}
1636
1637// Helper function for the relocationViaAlloca.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001638//
1639// It receives iterator to the statepoint gc relocates and emits a store to the
1640// assigned location (via allocaMap) for the each one of them. It adds the
1641// visited values into the visitedLiveValues set, which we will later use them
1642// for sanity checking.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001643static void
Sanjoy Das5665c992015-05-11 23:47:27 +00001644insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1645 DenseMap<Value *, Value *> &AllocaMap,
1646 DenseSet<Value *> &VisitedLiveValues) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001647
Sanjoy Das5665c992015-05-11 23:47:27 +00001648 for (User *U : GCRelocs) {
Manuel Jacob83eefa62016-01-05 04:03:00 +00001649 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1650 if (!Relocate)
Philip Reamesd16a9b12015-02-20 01:06:44 +00001651 continue;
1652
Manuel Jacob83eefa62016-01-05 04:03:00 +00001653 Value *OriginalValue = const_cast<Value *>(Relocate->getDerivedPtr());
Sanjoy Das5665c992015-05-11 23:47:27 +00001654 assert(AllocaMap.count(OriginalValue));
1655 Value *Alloca = AllocaMap[OriginalValue];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001656
1657 // Emit store into the related alloca
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001658 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
Sanjoy Das89c54912015-05-11 18:49:34 +00001659 // the correct type according to alloca.
Manuel Jacob83eefa62016-01-05 04:03:00 +00001660 assert(Relocate->getNextNode() &&
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001661 "Should always have one since it's not a terminator");
Manuel Jacob83eefa62016-01-05 04:03:00 +00001662 IRBuilder<> Builder(Relocate->getNextNode());
Sanjoy Das89c54912015-05-11 18:49:34 +00001663 Value *CastedRelocatedValue =
Manuel Jacob83eefa62016-01-05 04:03:00 +00001664 Builder.CreateBitCast(Relocate,
Philip Reamesece70b82015-09-09 23:57:18 +00001665 cast<AllocaInst>(Alloca)->getAllocatedType(),
Manuel Jacob83eefa62016-01-05 04:03:00 +00001666 suffixed_name_or(Relocate, ".casted", ""));
Sanjoy Das89c54912015-05-11 18:49:34 +00001667
Sanjoy Das5665c992015-05-11 23:47:27 +00001668 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1669 Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001670
1671#ifndef NDEBUG
Sanjoy Das5665c992015-05-11 23:47:27 +00001672 VisitedLiveValues.insert(OriginalValue);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001673#endif
1674 }
1675}
1676
Igor Laevskye0317182015-05-19 15:59:05 +00001677// Helper function for the "relocationViaAlloca". Similar to the
1678// "insertRelocationStores" but works for rematerialized values.
1679static void
1680insertRematerializationStores(
1681 RematerializedValueMapTy RematerializedValues,
1682 DenseMap<Value *, Value *> &AllocaMap,
1683 DenseSet<Value *> &VisitedLiveValues) {
1684
1685 for (auto RematerializedValuePair: RematerializedValues) {
1686 Instruction *RematerializedValue = RematerializedValuePair.first;
1687 Value *OriginalValue = RematerializedValuePair.second;
1688
1689 assert(AllocaMap.count(OriginalValue) &&
1690 "Can not find alloca for rematerialized value");
1691 Value *Alloca = AllocaMap[OriginalValue];
1692
1693 StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1694 Store->insertAfter(RematerializedValue);
1695
1696#ifndef NDEBUG
1697 VisitedLiveValues.insert(OriginalValue);
1698#endif
1699 }
1700}
1701
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001702/// Do all the relocation update via allocas and mem2reg
Philip Reamesd16a9b12015-02-20 01:06:44 +00001703static void relocationViaAlloca(
Igor Laevsky285fe842015-05-19 16:29:43 +00001704 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001705 ArrayRef<PartiallyConstructedSafepointRecord> Records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001706#ifndef NDEBUG
Philip Reamesa6ebf072015-03-27 05:53:16 +00001707 // record initial number of (static) allocas; we'll check we have the same
1708 // number when we get done.
1709 int InitialAllocaNum = 0;
Philip Reames704e78b2015-04-10 22:34:56 +00001710 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1711 I++)
Philip Reamesa6ebf072015-03-27 05:53:16 +00001712 if (isa<AllocaInst>(*I))
1713 InitialAllocaNum++;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001714#endif
1715
1716 // TODO-PERF: change data structures, reserve
Igor Laevsky285fe842015-05-19 16:29:43 +00001717 DenseMap<Value *, Value *> AllocaMap;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001718 SmallVector<AllocaInst *, 200> PromotableAllocas;
Igor Laevskye0317182015-05-19 15:59:05 +00001719 // Used later to chack that we have enough allocas to store all values
1720 std::size_t NumRematerializedValues = 0;
Igor Laevsky285fe842015-05-19 16:29:43 +00001721 PromotableAllocas.reserve(Live.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001722
Igor Laevskye0317182015-05-19 15:59:05 +00001723 // Emit alloca for "LiveValue" and record it in "allocaMap" and
1724 // "PromotableAllocas"
1725 auto emitAllocaFor = [&](Value *LiveValue) {
1726 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1727 F.getEntryBlock().getFirstNonPHI());
Igor Laevsky285fe842015-05-19 16:29:43 +00001728 AllocaMap[LiveValue] = Alloca;
Igor Laevskye0317182015-05-19 15:59:05 +00001729 PromotableAllocas.push_back(Alloca);
1730 };
1731
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001732 // Emit alloca for each live gc pointer
1733 for (Value *V : Live)
1734 emitAllocaFor(V);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001735
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001736 // Emit allocas for rematerialized values
1737 for (const auto &Info : Records)
Igor Laevsky285fe842015-05-19 16:29:43 +00001738 for (auto RematerializedValuePair : Info.RematerializedValues) {
Igor Laevskye0317182015-05-19 15:59:05 +00001739 Value *OriginalValue = RematerializedValuePair.second;
Igor Laevsky285fe842015-05-19 16:29:43 +00001740 if (AllocaMap.count(OriginalValue) != 0)
Igor Laevskye0317182015-05-19 15:59:05 +00001741 continue;
1742
1743 emitAllocaFor(OriginalValue);
1744 ++NumRematerializedValues;
1745 }
Igor Laevsky285fe842015-05-19 16:29:43 +00001746
Philip Reamesd16a9b12015-02-20 01:06:44 +00001747 // The next two loops are part of the same conceptual operation. We need to
1748 // insert a store to the alloca after the original def and at each
1749 // redefinition. We need to insert a load before each use. These are split
1750 // into distinct loops for performance reasons.
1751
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001752 // Update gc pointer after each statepoint: either store a relocated value or
1753 // null (if no relocated value was found for this gc pointer and it is not a
1754 // gc_result). This must happen before we update the statepoint with load of
1755 // alloca otherwise we lose the link between statepoint and old def.
1756 for (const auto &Info : Records) {
Igor Laevsky285fe842015-05-19 16:29:43 +00001757 Value *Statepoint = Info.StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001758
1759 // This will be used for consistency check
Igor Laevsky285fe842015-05-19 16:29:43 +00001760 DenseSet<Value *> VisitedLiveValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001761
1762 // Insert stores for normal statepoint gc relocates
Igor Laevsky285fe842015-05-19 16:29:43 +00001763 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001764
1765 // In case if it was invoke statepoint
1766 // we will insert stores for exceptional path gc relocates.
Philip Reames0a3240f2015-02-20 21:34:11 +00001767 if (isa<InvokeInst>(Statepoint)) {
Igor Laevsky285fe842015-05-19 16:29:43 +00001768 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1769 VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001770 }
1771
Igor Laevskye0317182015-05-19 15:59:05 +00001772 // Do similar thing with rematerialized values
Igor Laevsky285fe842015-05-19 16:29:43 +00001773 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1774 VisitedLiveValues);
Igor Laevskye0317182015-05-19 15:59:05 +00001775
Philip Reamese73300b2015-04-13 16:41:32 +00001776 if (ClobberNonLive) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001777 // As a debugging aid, pretend that an unrelocated pointer becomes null at
Philip Reamese73300b2015-04-13 16:41:32 +00001778 // the gc.statepoint. This will turn some subtle GC problems into
1779 // slightly easier to debug SEGVs. Note that on large IR files with
1780 // lots of gc.statepoints this is extremely costly both memory and time
1781 // wise.
1782 SmallVector<AllocaInst *, 64> ToClobber;
Igor Laevsky285fe842015-05-19 16:29:43 +00001783 for (auto Pair : AllocaMap) {
Philip Reamese73300b2015-04-13 16:41:32 +00001784 Value *Def = Pair.first;
1785 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001786
Philip Reamese73300b2015-04-13 16:41:32 +00001787 // This value was relocated
Igor Laevsky285fe842015-05-19 16:29:43 +00001788 if (VisitedLiveValues.count(Def)) {
Philip Reamese73300b2015-04-13 16:41:32 +00001789 continue;
1790 }
1791 ToClobber.push_back(Alloca);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001792 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001793
Philip Reamese73300b2015-04-13 16:41:32 +00001794 auto InsertClobbersAt = [&](Instruction *IP) {
1795 for (auto *AI : ToClobber) {
1796 auto AIType = cast<PointerType>(AI->getType());
1797 auto PT = cast<PointerType>(AIType->getElementType());
1798 Constant *CPN = ConstantPointerNull::get(PT);
Igor Laevsky285fe842015-05-19 16:29:43 +00001799 StoreInst *Store = new StoreInst(CPN, AI);
1800 Store->insertBefore(IP);
Philip Reamese73300b2015-04-13 16:41:32 +00001801 }
1802 };
1803
1804 // Insert the clobbering stores. These may get intermixed with the
1805 // gc.results and gc.relocates, but that's fine.
1806 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001807 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1808 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
Philip Reamese73300b2015-04-13 16:41:32 +00001809 } else {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001810 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001811 }
David Blaikie82ad7872015-02-20 23:44:24 +00001812 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001813 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001814
1815 // Update use with load allocas and add store for gc_relocated.
Igor Laevsky285fe842015-05-19 16:29:43 +00001816 for (auto Pair : AllocaMap) {
1817 Value *Def = Pair.first;
1818 Value *Alloca = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001819
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001820 // We pre-record the uses of allocas so that we dont have to worry about
1821 // later update that changes the user information..
1822
Igor Laevsky285fe842015-05-19 16:29:43 +00001823 SmallVector<Instruction *, 20> Uses;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001824 // PERF: trade a linear scan for repeated reallocation
Igor Laevsky285fe842015-05-19 16:29:43 +00001825 Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1826 for (User *U : Def->users()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001827 if (!isa<ConstantExpr>(U)) {
1828 // If the def has a ConstantExpr use, then the def is either a
1829 // ConstantExpr use itself or null. In either case
1830 // (recursively in the first, directly in the second), the oop
1831 // it is ultimately dependent on is null and this particular
1832 // use does not need to be fixed up.
Igor Laevsky285fe842015-05-19 16:29:43 +00001833 Uses.push_back(cast<Instruction>(U));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001834 }
1835 }
1836
Igor Laevsky285fe842015-05-19 16:29:43 +00001837 std::sort(Uses.begin(), Uses.end());
1838 auto Last = std::unique(Uses.begin(), Uses.end());
1839 Uses.erase(Last, Uses.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001840
Igor Laevsky285fe842015-05-19 16:29:43 +00001841 for (Instruction *Use : Uses) {
1842 if (isa<PHINode>(Use)) {
1843 PHINode *Phi = cast<PHINode>(Use);
1844 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1845 if (Def == Phi->getIncomingValue(i)) {
1846 LoadInst *Load = new LoadInst(
1847 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1848 Phi->setIncomingValue(i, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001849 }
1850 }
1851 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001852 LoadInst *Load = new LoadInst(Alloca, "", Use);
1853 Use->replaceUsesOfWith(Def, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001854 }
1855 }
1856
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001857 // Emit store for the initial gc value. Store must be inserted after load,
1858 // otherwise store will be in alloca's use list and an extra load will be
1859 // inserted before it.
Igor Laevsky285fe842015-05-19 16:29:43 +00001860 StoreInst *Store = new StoreInst(Def, Alloca);
1861 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1862 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
Philip Reames6da37852015-03-04 00:13:52 +00001863 // InvokeInst is a TerminatorInst so the store need to be inserted
1864 // into its normal destination block.
Igor Laevsky285fe842015-05-19 16:29:43 +00001865 BasicBlock *NormalDest = Invoke->getNormalDest();
1866 Store->insertBefore(NormalDest->getFirstNonPHI());
Philip Reames6da37852015-03-04 00:13:52 +00001867 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001868 assert(!Inst->isTerminator() &&
Philip Reames6da37852015-03-04 00:13:52 +00001869 "The only TerminatorInst that can produce a value is "
1870 "InvokeInst which is handled above.");
Igor Laevsky285fe842015-05-19 16:29:43 +00001871 Store->insertAfter(Inst);
Philip Reames6da37852015-03-04 00:13:52 +00001872 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001873 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001874 assert(isa<Argument>(Def));
1875 Store->insertAfter(cast<Instruction>(Alloca));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001876 }
1877 }
1878
Igor Laevsky285fe842015-05-19 16:29:43 +00001879 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001880 "we must have the same allocas with lives");
1881 if (!PromotableAllocas.empty()) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001882 // Apply mem2reg to promote alloca to SSA
Philip Reamesd16a9b12015-02-20 01:06:44 +00001883 PromoteMemToReg(PromotableAllocas, DT);
1884 }
1885
1886#ifndef NDEBUG
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001887 for (auto &I : F.getEntryBlock())
1888 if (isa<AllocaInst>(I))
Philip Reamesa6ebf072015-03-27 05:53:16 +00001889 InitialAllocaNum--;
1890 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001891#endif
1892}
1893
1894/// Implement a unique function which doesn't require we sort the input
1895/// vector. Doing so has the effect of changing the output of a couple of
1896/// tests in ways which make them less useful in testing fused safepoints.
Philip Reamesd2b66462015-02-20 22:39:41 +00001897template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
Benjamin Kramer258ea0d2015-06-13 19:50:38 +00001898 SmallSet<T, 8> Seen;
1899 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1900 return !Seen.insert(V).second;
1901 }), Vec.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001902}
1903
Philip Reamesd16a9b12015-02-20 01:06:44 +00001904/// Insert holders so that each Value is obviously live through the entire
Philip Reamesf209a152015-04-13 20:00:30 +00001905/// lifetime of the call.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001906static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
Philip Reamesf209a152015-04-13 20:00:30 +00001907 SmallVectorImpl<CallInst *> &Holders) {
Philip Reames21142752015-04-13 19:07:47 +00001908 if (Values.empty())
1909 // No values to hold live, might as well not insert the empty holder
1910 return;
1911
Sanjay Patelaf674fb2015-12-14 17:24:23 +00001912 Module *M = CS.getInstruction()->getModule();
Philip Reamesf209a152015-04-13 20:00:30 +00001913 // Use a dummy vararg function to actually hold the values live
1914 Function *Func = cast<Function>(M->getOrInsertFunction(
1915 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001916 if (CS.isCall()) {
1917 // For call safepoints insert dummy calls right after safepoint
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001918 Holders.push_back(CallInst::Create(Func, Values, "",
1919 &*++CS.getInstruction()->getIterator()));
Philip Reamesf209a152015-04-13 20:00:30 +00001920 return;
1921 }
1922 // For invoke safepooints insert dummy calls both in normal and
1923 // exceptional destination blocks
1924 auto *II = cast<InvokeInst>(CS.getInstruction());
1925 Holders.push_back(CallInst::Create(
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001926 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
Philip Reamesf209a152015-04-13 20:00:30 +00001927 Holders.push_back(CallInst::Create(
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001928 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001929}
1930
1931static void findLiveReferences(
Justin Bogner843fb202015-12-15 19:40:57 +00001932 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
Philip Reamesd2b66462015-02-20 22:39:41 +00001933 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001934 GCPtrLivenessData OriginalLivenessData;
1935 computeLiveInValues(DT, F, OriginalLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001936 for (size_t i = 0; i < records.size(); i++) {
1937 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001938 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001939 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001940 }
1941}
1942
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001943/// Remove any vector of pointers from the live set by scalarizing them over the
1944/// statepoint instruction. Adds the scalarized pieces to the live set. It
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001945/// would be preferable to include the vector in the statepoint itself, but
Philip Reames8531d8c2015-04-10 21:48:25 +00001946/// the lowering code currently does not handle that. Extending it would be
1947/// slightly non-trivial since it requires a format change. Given how rare
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001948/// such cases are (for the moment?) scalarizing is an acceptable compromise.
Philip Reames8531d8c2015-04-10 21:48:25 +00001949static void splitVectorValues(Instruction *StatepointInst,
Philip Reames8fe7f132015-06-26 22:47:37 +00001950 StatepointLiveSetTy &LiveSet,
1951 DenseMap<Value *, Value *>& PointerToBase,
1952 DominatorTree &DT) {
Philip Reames8531d8c2015-04-10 21:48:25 +00001953 SmallVector<Value *, 16> ToSplit;
1954 for (Value *V : LiveSet)
1955 if (isa<VectorType>(V->getType()))
1956 ToSplit.push_back(V);
1957
1958 if (ToSplit.empty())
1959 return;
1960
Philip Reames8fe7f132015-06-26 22:47:37 +00001961 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
1962
Philip Reames8531d8c2015-04-10 21:48:25 +00001963 Function &F = *(StatepointInst->getParent()->getParent());
1964
Philip Reames704e78b2015-04-10 22:34:56 +00001965 DenseMap<Value *, AllocaInst *> AllocaMap;
Philip Reames8531d8c2015-04-10 21:48:25 +00001966 // First is normal return, second is exceptional return (invoke only)
Philip Reames704e78b2015-04-10 22:34:56 +00001967 DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001968 for (Value *V : ToSplit) {
Philip Reames704e78b2015-04-10 22:34:56 +00001969 AllocaInst *Alloca =
1970 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
Philip Reames8531d8c2015-04-10 21:48:25 +00001971 AllocaMap[V] = Alloca;
1972
1973 VectorType *VT = cast<VectorType>(V->getType());
1974 IRBuilder<> Builder(StatepointInst);
Philip Reames704e78b2015-04-10 22:34:56 +00001975 SmallVector<Value *, 16> Elements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001976 for (unsigned i = 0; i < VT->getNumElements(); i++)
1977 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
Philip Reames8fe7f132015-06-26 22:47:37 +00001978 ElementMapping[V] = Elements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001979
1980 auto InsertVectorReform = [&](Instruction *IP) {
1981 Builder.SetInsertPoint(IP);
1982 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1983 Value *ResultVec = UndefValue::get(VT);
1984 for (unsigned i = 0; i < VT->getNumElements(); i++)
1985 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1986 Builder.getInt32(i));
1987 return ResultVec;
1988 };
1989
1990 if (isa<CallInst>(StatepointInst)) {
1991 BasicBlock::iterator Next(StatepointInst);
1992 Next++;
1993 Instruction *IP = &*(Next);
1994 Replacements[V].first = InsertVectorReform(IP);
1995 Replacements[V].second = nullptr;
1996 } else {
1997 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
1998 // We've already normalized - check that we don't have shared destination
Philip Reames704e78b2015-04-10 22:34:56 +00001999 // blocks
Philip Reames8531d8c2015-04-10 21:48:25 +00002000 BasicBlock *NormalDest = Invoke->getNormalDest();
2001 assert(!isa<PHINode>(NormalDest->begin()));
2002 BasicBlock *UnwindDest = Invoke->getUnwindDest();
2003 assert(!isa<PHINode>(UnwindDest->begin()));
2004 // Insert insert element sequences in both successors
2005 Instruction *IP = &*(NormalDest->getFirstInsertionPt());
2006 Replacements[V].first = InsertVectorReform(IP);
2007 IP = &*(UnwindDest->getFirstInsertionPt());
2008 Replacements[V].second = InsertVectorReform(IP);
2009 }
2010 }
Philip Reames8fe7f132015-06-26 22:47:37 +00002011
Philip Reames8531d8c2015-04-10 21:48:25 +00002012 for (Value *V : ToSplit) {
2013 AllocaInst *Alloca = AllocaMap[V];
2014
2015 // Capture all users before we start mutating use lists
Philip Reames704e78b2015-04-10 22:34:56 +00002016 SmallVector<Instruction *, 16> Users;
Philip Reames8531d8c2015-04-10 21:48:25 +00002017 for (User *U : V->users())
2018 Users.push_back(cast<Instruction>(U));
2019
2020 for (Instruction *I : Users) {
2021 if (auto Phi = dyn_cast<PHINode>(I)) {
2022 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
2023 if (V == Phi->getIncomingValue(i)) {
Philip Reames704e78b2015-04-10 22:34:56 +00002024 LoadInst *Load = new LoadInst(
2025 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
Philip Reames8531d8c2015-04-10 21:48:25 +00002026 Phi->setIncomingValue(i, Load);
2027 }
2028 } else {
2029 LoadInst *Load = new LoadInst(Alloca, "", I);
2030 I->replaceUsesOfWith(V, Load);
2031 }
2032 }
2033
2034 // Store the original value and the replacement value into the alloca
2035 StoreInst *Store = new StoreInst(V, Alloca);
2036 if (auto I = dyn_cast<Instruction>(V))
2037 Store->insertAfter(I);
2038 else
2039 Store->insertAfter(Alloca);
Philip Reames704e78b2015-04-10 22:34:56 +00002040
Philip Reames8531d8c2015-04-10 21:48:25 +00002041 // Normal return for invoke, or call return
2042 Instruction *Replacement = cast<Instruction>(Replacements[V].first);
2043 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2044 // Unwind return for invoke only
2045 Replacement = cast_or_null<Instruction>(Replacements[V].second);
2046 if (Replacement)
2047 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2048 }
2049
2050 // apply mem2reg to promote alloca to SSA
Philip Reames704e78b2015-04-10 22:34:56 +00002051 SmallVector<AllocaInst *, 16> Allocas;
Philip Reames8531d8c2015-04-10 21:48:25 +00002052 for (Value *V : ToSplit)
2053 Allocas.push_back(AllocaMap[V]);
2054 PromoteMemToReg(Allocas, DT);
Philip Reames8fe7f132015-06-26 22:47:37 +00002055
2056 // Update our tracking of live pointers and base mappings to account for the
2057 // changes we just made.
2058 for (Value *V : ToSplit) {
2059 auto &Elements = ElementMapping[V];
2060
2061 LiveSet.erase(V);
2062 LiveSet.insert(Elements.begin(), Elements.end());
2063 // We need to update the base mapping as well.
2064 assert(PointerToBase.count(V));
2065 Value *OldBase = PointerToBase[V];
2066 auto &BaseElements = ElementMapping[OldBase];
2067 PointerToBase.erase(V);
2068 assert(Elements.size() == BaseElements.size());
2069 for (unsigned i = 0; i < Elements.size(); i++) {
2070 Value *Elem = Elements[i];
2071 PointerToBase[Elem] = BaseElements[i];
2072 }
2073 }
Philip Reames8531d8c2015-04-10 21:48:25 +00002074}
2075
Igor Laevskye0317182015-05-19 15:59:05 +00002076// Helper function for the "rematerializeLiveValues". It walks use chain
2077// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
2078// values are visited (currently it is GEP's and casts). Returns true if it
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002079// successfully reached "BaseValue" and false otherwise.
Igor Laevskye0317182015-05-19 15:59:05 +00002080// Fills "ChainToBase" array with all visited values. "BaseValue" is not
2081// recorded.
2082static bool findRematerializableChainToBasePointer(
2083 SmallVectorImpl<Instruction*> &ChainToBase,
2084 Value *CurrentValue, Value *BaseValue) {
2085
2086 // We have found a base value
2087 if (CurrentValue == BaseValue) {
2088 return true;
2089 }
2090
2091 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2092 ChainToBase.push_back(GEP);
2093 return findRematerializableChainToBasePointer(ChainToBase,
2094 GEP->getPointerOperand(),
2095 BaseValue);
2096 }
2097
2098 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
Igor Laevskye0317182015-05-19 15:59:05 +00002099 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2100 return false;
2101
2102 ChainToBase.push_back(CI);
Manuel Jacob9db5b932015-12-28 20:14:05 +00002103 return findRematerializableChainToBasePointer(ChainToBase,
2104 CI->getOperand(0), BaseValue);
Igor Laevskye0317182015-05-19 15:59:05 +00002105 }
2106
2107 // Not supported instruction in the chain
2108 return false;
2109}
2110
2111// Helper function for the "rematerializeLiveValues". Compute cost of the use
2112// chain we are going to rematerialize.
2113static unsigned
2114chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
2115 TargetTransformInfo &TTI) {
2116 unsigned Cost = 0;
2117
2118 for (Instruction *Instr : Chain) {
2119 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2120 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2121 "non noop cast is found during rematerialization");
2122
2123 Type *SrcTy = CI->getOperand(0)->getType();
2124 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
2125
2126 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2127 // Cost of the address calculation
2128 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
2129 Cost += TTI.getAddressComputationCost(ValTy);
2130
2131 // And cost of the GEP itself
2132 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2133 // allowed for the external usage)
2134 if (!GEP->hasAllConstantIndices())
2135 Cost += 2;
2136
2137 } else {
2138 llvm_unreachable("unsupported instruciton type during rematerialization");
2139 }
2140 }
2141
2142 return Cost;
2143}
2144
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002145// From the statepoint live set pick values that are cheaper to recompute then
2146// to relocate. Remove this values from the live set, rematerialize them after
Igor Laevskye0317182015-05-19 15:59:05 +00002147// statepoint and record them in "Info" structure. Note that similar to
2148// relocated values we don't do any user adjustments here.
2149static void rematerializeLiveValues(CallSite CS,
2150 PartiallyConstructedSafepointRecord &Info,
2151 TargetTransformInfo &TTI) {
Aaron Ballmanff7d4fa2015-05-20 14:53:50 +00002152 const unsigned int ChainLengthThreshold = 10;
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002153
Igor Laevskye0317182015-05-19 15:59:05 +00002154 // Record values we are going to delete from this statepoint live set.
2155 // We can not di this in following loop due to iterator invalidation.
2156 SmallVector<Value *, 32> LiveValuesToBeDeleted;
2157
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002158 for (Value *LiveValue: Info.LiveSet) {
Igor Laevskye0317182015-05-19 15:59:05 +00002159 // For each live pointer find it's defining chain
2160 SmallVector<Instruction *, 3> ChainToBase;
Philip Reames74ce2e72015-07-21 16:51:17 +00002161 assert(Info.PointerToBase.count(LiveValue));
Igor Laevskye0317182015-05-19 15:59:05 +00002162 bool FoundChain =
2163 findRematerializableChainToBasePointer(ChainToBase,
2164 LiveValue,
2165 Info.PointerToBase[LiveValue]);
2166 // Nothing to do, or chain is too long
2167 if (!FoundChain ||
2168 ChainToBase.size() == 0 ||
2169 ChainToBase.size() > ChainLengthThreshold)
2170 continue;
2171
2172 // Compute cost of this chain
2173 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2174 // TODO: We can also account for cases when we will be able to remove some
2175 // of the rematerialized values by later optimization passes. I.e if
2176 // we rematerialized several intersecting chains. Or if original values
2177 // don't have any uses besides this statepoint.
2178
2179 // For invokes we need to rematerialize each chain twice - for normal and
2180 // for unwind basic blocks. Model this by multiplying cost by two.
2181 if (CS.isInvoke()) {
2182 Cost *= 2;
2183 }
2184 // If it's too expensive - skip it
2185 if (Cost >= RematerializationThreshold)
2186 continue;
2187
2188 // Remove value from the live set
2189 LiveValuesToBeDeleted.push_back(LiveValue);
2190
2191 // Clone instructions and record them inside "Info" structure
2192
2193 // Walk backwards to visit top-most instructions first
2194 std::reverse(ChainToBase.begin(), ChainToBase.end());
2195
2196 // Utility function which clones all instructions from "ChainToBase"
2197 // and inserts them before "InsertBefore". Returns rematerialized value
2198 // which should be used after statepoint.
2199 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
2200 Instruction *LastClonedValue = nullptr;
2201 Instruction *LastValue = nullptr;
2202 for (Instruction *Instr: ChainToBase) {
2203 // Only GEP's and casts are suported as we need to be careful to not
2204 // introduce any new uses of pointers not in the liveset.
2205 // Note that it's fine to introduce new uses of pointers which were
2206 // otherwise not used after this statepoint.
2207 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2208
2209 Instruction *ClonedValue = Instr->clone();
2210 ClonedValue->insertBefore(InsertBefore);
2211 ClonedValue->setName(Instr->getName() + ".remat");
2212
2213 // If it is not first instruction in the chain then it uses previously
2214 // cloned value. We should update it to use cloned value.
2215 if (LastClonedValue) {
2216 assert(LastValue);
2217 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2218#ifndef NDEBUG
Igor Laevskyd83f6972015-05-21 13:02:14 +00002219 // Assert that cloned instruction does not use any instructions from
2220 // this chain other than LastClonedValue
2221 for (auto OpValue : ClonedValue->operand_values()) {
2222 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2223 ChainToBase.end() &&
2224 "incorrect use in rematerialization chain");
Igor Laevskye0317182015-05-19 15:59:05 +00002225 }
2226#endif
2227 }
2228
2229 LastClonedValue = ClonedValue;
2230 LastValue = Instr;
2231 }
2232 assert(LastClonedValue);
2233 return LastClonedValue;
2234 };
2235
2236 // Different cases for calls and invokes. For invokes we need to clone
2237 // instructions both on normal and unwind path.
2238 if (CS.isCall()) {
2239 Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2240 assert(InsertBefore);
2241 Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2242 Info.RematerializedValues[RematerializedValue] = LiveValue;
2243 } else {
2244 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2245
2246 Instruction *NormalInsertBefore =
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002247 &*Invoke->getNormalDest()->getFirstInsertionPt();
Igor Laevskye0317182015-05-19 15:59:05 +00002248 Instruction *UnwindInsertBefore =
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002249 &*Invoke->getUnwindDest()->getFirstInsertionPt();
Igor Laevskye0317182015-05-19 15:59:05 +00002250
2251 Instruction *NormalRematerializedValue =
2252 rematerializeChain(NormalInsertBefore);
2253 Instruction *UnwindRematerializedValue =
2254 rematerializeChain(UnwindInsertBefore);
2255
2256 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2257 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2258 }
2259 }
2260
2261 // Remove rematerializaed values from the live set
2262 for (auto LiveValue: LiveValuesToBeDeleted) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002263 Info.LiveSet.erase(LiveValue);
Igor Laevskye0317182015-05-19 15:59:05 +00002264 }
2265}
2266
Justin Bogner843fb202015-12-15 19:40:57 +00002267static bool insertParsePoints(Function &F, DominatorTree &DT,
2268 TargetTransformInfo &TTI,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002269 SmallVectorImpl<CallSite> &ToUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002270#ifndef NDEBUG
2271 // sanity check the input
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002272 std::set<CallSite> Uniqued;
2273 Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2274 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00002275
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002276 for (CallSite CS : ToUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002277 assert(CS.getInstruction()->getParent()->getParent() == &F);
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002278 assert((UseDeoptBundles || isStatepoint(CS)) &&
2279 "expected to already be a deopt statepoint");
Philip Reamesd16a9b12015-02-20 01:06:44 +00002280 }
2281#endif
2282
Philip Reames69e51ca2015-04-13 18:07:21 +00002283 // When inserting gc.relocates for invokes, we need to be able to insert at
2284 // the top of the successor blocks. See the comment on
2285 // normalForInvokeSafepoint on exactly what is needed. Note that this step
Philip Reamesf209a152015-04-13 20:00:30 +00002286 // may restructure the CFG.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002287 for (CallSite CS : ToUpdate) {
Philip Reamesf209a152015-04-13 20:00:30 +00002288 if (!CS.isInvoke())
2289 continue;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002290 auto *II = cast<InvokeInst>(CS.getInstruction());
2291 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2292 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
Philip Reamesf209a152015-04-13 20:00:30 +00002293 }
Philip Reames69e51ca2015-04-13 18:07:21 +00002294
Philip Reamesd16a9b12015-02-20 01:06:44 +00002295 // A list of dummy calls added to the IR to keep various values obviously
2296 // live in the IR. We'll remove all of these when done.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002297 SmallVector<CallInst *, 64> Holders;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002298
2299 // Insert a dummy call with all of the arguments to the vm_state we'll need
2300 // for the actual safepoint insertion. This ensures reference arguments in
2301 // the deopt argument list are considered live through the safepoint (and
2302 // thus makes sure they get relocated.)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002303 for (CallSite CS : ToUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002304 SmallVector<Value *, 64> DeoptValues;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002305
2306 iterator_range<const Use *> DeoptStateRange =
2307 UseDeoptBundles
2308 ? iterator_range<const Use *>(GetDeoptBundleOperands(CS))
2309 : iterator_range<const Use *>(Statepoint(CS).vm_state_args());
2310
2311 for (Value *Arg : DeoptStateRange) {
Philip Reames8531d8c2015-04-10 21:48:25 +00002312 assert(!isUnhandledGCPointerType(Arg->getType()) &&
2313 "support for FCA unimplemented");
2314 if (isHandledGCPointerType(Arg->getType()))
Philip Reamesd16a9b12015-02-20 01:06:44 +00002315 DeoptValues.push_back(Arg);
2316 }
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002317
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002318 insertUseHolderAfter(CS, DeoptValues, Holders);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002319 }
2320
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002321 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00002322
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002323 // A) Identify all gc pointers which are statically live at the given call
Philip Reamesd16a9b12015-02-20 01:06:44 +00002324 // site.
Justin Bogner843fb202015-12-15 19:40:57 +00002325 findLiveReferences(F, DT, ToUpdate, Records);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002326
2327 // B) Find the base pointers for each live pointer
2328 /* scope for caching */ {
2329 // Cache the 'defining value' relation used in the computation and
2330 // insertion of base phis and selects. This ensures that we don't insert
2331 // large numbers of duplicate base_phis.
2332 DefiningValueMapTy DVCache;
2333
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002334 for (size_t i = 0; i < Records.size(); i++) {
2335 PartiallyConstructedSafepointRecord &info = Records[i];
2336 findBasePointers(DT, DVCache, ToUpdate[i], info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002337 }
2338 } // end of cache scope
2339
2340 // The base phi insertion logic (for any safepoint) may have inserted new
2341 // instructions which are now live at some safepoint. The simplest such
2342 // example is:
2343 // loop:
2344 // phi a <-- will be a new base_phi here
2345 // safepoint 1 <-- that needs to be live here
2346 // gep a + 1
2347 // safepoint 2
2348 // br loop
Philip Reamesd16a9b12015-02-20 01:06:44 +00002349 // We insert some dummy calls after each safepoint to definitely hold live
2350 // the base pointers which were identified for that safepoint. We'll then
2351 // ask liveness for _every_ base inserted to see what is now live. Then we
2352 // remove the dummy calls.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002353 Holders.reserve(Holders.size() + Records.size());
2354 for (size_t i = 0; i < Records.size(); i++) {
2355 PartiallyConstructedSafepointRecord &Info = Records[i];
Philip Reamesd16a9b12015-02-20 01:06:44 +00002356
2357 SmallVector<Value *, 128> Bases;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002358 for (auto Pair : Info.PointerToBase)
Philip Reamesd16a9b12015-02-20 01:06:44 +00002359 Bases.push_back(Pair.second);
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002360
2361 insertUseHolderAfter(ToUpdate[i], Bases, Holders);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002362 }
2363
Philip Reamesdf1ef082015-04-10 22:53:14 +00002364 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2365 // need to rerun liveness. We may *also* have inserted new defs, but that's
2366 // not the key issue.
Justin Bogner843fb202015-12-15 19:40:57 +00002367 recomputeLiveInValues(F, DT, ToUpdate, Records);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002368
Philip Reamesd16a9b12015-02-20 01:06:44 +00002369 if (PrintBasePointers) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002370 for (auto &Info : Records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002371 errs() << "Base Pairs: (w/Relocation)\n";
Manuel Jacoba4efd8a2015-12-23 00:19:45 +00002372 for (auto Pair : Info.PointerToBase) {
2373 errs() << " derived ";
2374 Pair.first->printAsOperand(errs(), false);
2375 errs() << " base ";
2376 Pair.second->printAsOperand(errs(), false);
2377 errs() << "\n";
2378 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002379 }
2380 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002381
Manuel Jacob990dfa62015-12-22 16:50:44 +00002382 // It is possible that non-constant live variables have a constant base. For
2383 // example, a GEP with a variable offset from a global. In this case we can
2384 // remove it from the liveset. We already don't add constants to the liveset
2385 // because we assume they won't move at runtime and the GC doesn't need to be
2386 // informed about them. The same reasoning applies if the base is constant.
2387 // Note that the relocation placement code relies on this filtering for
2388 // correctness as it expects the base to be in the liveset, which isn't true
2389 // if the base is constant.
2390 for (auto &Info : Records)
2391 for (auto &BasePair : Info.PointerToBase)
2392 if (isa<Constant>(BasePair.second))
2393 Info.LiveSet.erase(BasePair.first);
2394
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002395 for (CallInst *CI : Holders)
2396 CI->eraseFromParent();
2397
2398 Holders.clear();
Philip Reamesd16a9b12015-02-20 01:06:44 +00002399
Philip Reames8fe7f132015-06-26 22:47:37 +00002400 // Do a limited scalarization of any live at safepoint vector values which
2401 // contain pointers. This enables this pass to run after vectorization at
Philip Reames103d2382016-01-07 02:20:11 +00002402 // the cost of some possible performance loss. Note: This is known to not
2403 // handle updating of the side tables correctly which can lead to relocation
2404 // bugs when the same vector is live at multiple statepoints. We're in the
2405 // process of implementing the alternate lowering - relocating the
2406 // vector-of-pointers as first class item and updating the backend to
2407 // understand that - but that's not yet complete.
2408 if (UseVectorSplit)
2409 for (size_t i = 0; i < Records.size(); i++) {
2410 PartiallyConstructedSafepointRecord &Info = Records[i];
2411 Instruction *Statepoint = ToUpdate[i].getInstruction();
2412 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
2413 Info.PointerToBase, DT);
2414 }
Philip Reames8fe7f132015-06-26 22:47:37 +00002415
Igor Laevskye0317182015-05-19 15:59:05 +00002416 // In order to reduce live set of statepoint we might choose to rematerialize
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002417 // some values instead of relocating them. This is purely an optimization and
Igor Laevskye0317182015-05-19 15:59:05 +00002418 // does not influence correctness.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002419 for (size_t i = 0; i < Records.size(); i++)
2420 rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
Igor Laevskye0317182015-05-19 15:59:05 +00002421
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002422 // We need this to safely RAUW and delete call or invoke return values that
2423 // may themselves be live over a statepoint. For details, please see usage in
2424 // makeStatepointExplicitImpl.
2425 std::vector<DeferredReplacement> Replacements;
2426
Philip Reamesd16a9b12015-02-20 01:06:44 +00002427 // Now run through and replace the existing statepoints with new ones with
2428 // the live variables listed. We do not yet update uses of the values being
2429 // relocated. We have references to live variables that need to
2430 // survive to the last iteration of this loop. (By construction, the
2431 // previous statepoint can not be a live variable, thus we can and remove
2432 // the old statepoint calls as we go.)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002433 for (size_t i = 0; i < Records.size(); i++)
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002434 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002435
2436 ToUpdate.clear(); // prevent accident use of invalid CallSites
Philip Reamesd16a9b12015-02-20 01:06:44 +00002437
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002438 for (auto &PR : Replacements)
2439 PR.doReplacement();
2440
2441 Replacements.clear();
2442
2443 for (auto &Info : Records) {
2444 // These live sets may contain state Value pointers, since we replaced calls
2445 // with operand bundles with calls wrapped in gc.statepoint, and some of
2446 // those calls may have been def'ing live gc pointers. Clear these out to
2447 // avoid accidentally using them.
2448 //
2449 // TODO: We should create a separate data structure that does not contain
2450 // these live sets, and migrate to using that data structure from this point
2451 // onward.
2452 Info.LiveSet.clear();
2453 Info.PointerToBase.clear();
2454 }
2455
Philip Reamesd16a9b12015-02-20 01:06:44 +00002456 // Do all the fixups of the original live variables to their relocated selves
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002457 SmallVector<Value *, 128> Live;
2458 for (size_t i = 0; i < Records.size(); i++) {
2459 PartiallyConstructedSafepointRecord &Info = Records[i];
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002460
Philip Reamesd16a9b12015-02-20 01:06:44 +00002461 // We can't simply save the live set from the original insertion. One of
2462 // the live values might be the result of a call which needs a safepoint.
2463 // That Value* no longer exists and we need to use the new gc_result.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002464 // Thankfully, the live set is embedded in the statepoint (and updated), so
Philip Reamesd16a9b12015-02-20 01:06:44 +00002465 // we just grab that.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002466 Statepoint Statepoint(Info.StatepointToken);
2467 Live.insert(Live.end(), Statepoint.gc_args_begin(),
2468 Statepoint.gc_args_end());
Philip Reames9a2e01d2015-04-13 17:35:55 +00002469#ifndef NDEBUG
2470 // Do some basic sanity checks on our liveness results before performing
2471 // relocation. Relocation can and will turn mistakes in liveness results
2472 // into non-sensical code which is must harder to debug.
2473 // TODO: It would be nice to test consistency as well
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002474 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
Philip Reames9a2e01d2015-04-13 17:35:55 +00002475 "statepoint must be reachable or liveness is meaningless");
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002476 for (Value *V : Statepoint.gc_args()) {
Philip Reames9a2e01d2015-04-13 17:35:55 +00002477 if (!isa<Instruction>(V))
2478 // Non-instruction values trivial dominate all possible uses
2479 continue;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002480 auto *LiveInst = cast<Instruction>(V);
Philip Reames9a2e01d2015-04-13 17:35:55 +00002481 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2482 "unreachable values should never be live");
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002483 assert(DT.dominates(LiveInst, Info.StatepointToken) &&
Philip Reames9a2e01d2015-04-13 17:35:55 +00002484 "basic SSA liveness expectation violated by liveness analysis");
2485 }
2486#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002487 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002488 unique_unsorted(Live);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002489
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002490#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +00002491 // sanity check
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002492 for (auto *Ptr : Live)
Philip Reames5715f572016-01-09 01:31:13 +00002493 assert(isHandledGCPointerType(Ptr->getType()) &&
2494 "must be a gc pointer type");
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002495#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002496
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002497 relocationViaAlloca(F, DT, Live, Records);
2498 return !Records.empty();
Philip Reamesd16a9b12015-02-20 01:06:44 +00002499}
2500
Sanjoy Das353a19e2015-06-02 22:33:37 +00002501// Handles both return values and arguments for Functions and CallSites.
2502template <typename AttrHolder>
Igor Laevskydde00292015-10-23 22:42:44 +00002503static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2504 unsigned Index) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002505 AttrBuilder R;
2506 if (AH.getDereferenceableBytes(Index))
2507 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2508 AH.getDereferenceableBytes(Index)));
2509 if (AH.getDereferenceableOrNullBytes(Index))
2510 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2511 AH.getDereferenceableOrNullBytes(Index)));
Igor Laevsky1ef06552015-10-26 19:06:01 +00002512 if (AH.doesNotAlias(Index))
2513 R.addAttribute(Attribute::NoAlias);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002514
2515 if (!R.empty())
2516 AH.setAttributes(AH.getAttributes().removeAttributes(
2517 Ctx, Index, AttributeSet::get(Ctx, Index, R)));
Vasileios Kalintiris9f77f612015-06-03 08:51:30 +00002518}
Sanjoy Das353a19e2015-06-02 22:33:37 +00002519
2520void
Igor Laevskydde00292015-10-23 22:42:44 +00002521RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002522 LLVMContext &Ctx = F.getContext();
2523
2524 for (Argument &A : F.args())
2525 if (isa<PointerType>(A.getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002526 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002527
2528 if (isa<PointerType>(F.getReturnType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002529 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002530}
2531
Igor Laevskydde00292015-10-23 22:42:44 +00002532void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002533 if (F.empty())
2534 return;
2535
2536 LLVMContext &Ctx = F.getContext();
2537 MDBuilder Builder(Ctx);
2538
Nico Rieck78199512015-08-06 19:10:45 +00002539 for (Instruction &I : instructions(F)) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002540 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2541 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2542 bool IsImmutableTBAA =
2543 MD->getNumOperands() == 4 &&
2544 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2545
2546 if (!IsImmutableTBAA)
2547 continue; // no work to do, MD_tbaa is already marked mutable
2548
2549 MDNode *Base = cast<MDNode>(MD->getOperand(0));
2550 MDNode *Access = cast<MDNode>(MD->getOperand(1));
2551 uint64_t Offset =
2552 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2553
2554 MDNode *MutableTBAA =
2555 Builder.createTBAAStructTagNode(Base, Access, Offset);
2556 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2557 }
2558
2559 if (CallSite CS = CallSite(&I)) {
2560 for (int i = 0, e = CS.arg_size(); i != e; i++)
2561 if (isa<PointerType>(CS.getArgument(i)->getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002562 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002563 if (isa<PointerType>(CS.getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002564 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002565 }
2566 }
2567}
2568
Philip Reamesd16a9b12015-02-20 01:06:44 +00002569/// Returns true if this function should be rewritten by this pass. The main
2570/// point of this function is as an extension point for custom logic.
2571static bool shouldRewriteStatepointsIn(Function &F) {
2572 // TODO: This should check the GCStrategy
Philip Reames2ef029c2015-02-20 18:56:14 +00002573 if (F.hasGC()) {
Mehdi Amini599ebf22016-01-08 02:28:20 +00002574 const auto &FunctionGCName = F.getGC();
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002575 const StringRef StatepointExampleName("statepoint-example");
2576 const StringRef CoreCLRName("coreclr");
2577 return (StatepointExampleName == FunctionGCName) ||
NAKAMURA Takumi5582a6a2015-05-25 01:43:34 +00002578 (CoreCLRName == FunctionGCName);
2579 } else
Philip Reames2ef029c2015-02-20 18:56:14 +00002580 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002581}
2582
Igor Laevskydde00292015-10-23 22:42:44 +00002583void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002584#ifndef NDEBUG
2585 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2586 "precondition!");
2587#endif
2588
2589 for (Function &F : M)
Igor Laevskydde00292015-10-23 22:42:44 +00002590 stripNonValidAttributesFromPrototype(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002591
2592 for (Function &F : M)
Igor Laevskydde00292015-10-23 22:42:44 +00002593 stripNonValidAttributesFromBody(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002594}
2595
Philip Reamesd16a9b12015-02-20 01:06:44 +00002596bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2597 // Nothing to do for declarations.
2598 if (F.isDeclaration() || F.empty())
2599 return false;
2600
2601 // Policy choice says not to rewrite - the most common reason is that we're
2602 // compiling code without a GCStrategy.
2603 if (!shouldRewriteStatepointsIn(F))
2604 return false;
2605
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00002606 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
Justin Bogner843fb202015-12-15 19:40:57 +00002607 TargetTransformInfo &TTI =
2608 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Philip Reames704e78b2015-04-10 22:34:56 +00002609
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002610 auto NeedsRewrite = [](Instruction &I) {
2611 if (UseDeoptBundles) {
2612 if (ImmutableCallSite CS = ImmutableCallSite(&I))
2613 return !callsGCLeafFunction(CS);
2614 return false;
2615 }
2616
2617 return isStatepoint(I);
2618 };
2619
Philip Reames85b36a82015-04-10 22:07:04 +00002620 // Gather all the statepoints which need rewritten. Be careful to only
2621 // consider those in reachable code since we need to ask dominance queries
2622 // when rewriting. We'll delete the unreachable ones in a moment.
Philip Reamesd2b66462015-02-20 22:39:41 +00002623 SmallVector<CallSite, 64> ParsePointNeeded;
Philip Reamesf66d7372015-04-10 22:16:58 +00002624 bool HasUnreachableStatepoint = false;
Nico Rieck78199512015-08-06 19:10:45 +00002625 for (Instruction &I : instructions(F)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002626 // TODO: only the ones with the flag set!
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002627 if (NeedsRewrite(I)) {
Philip Reames85b36a82015-04-10 22:07:04 +00002628 if (DT.isReachableFromEntry(I.getParent()))
2629 ParsePointNeeded.push_back(CallSite(&I));
2630 else
Philip Reamesf66d7372015-04-10 22:16:58 +00002631 HasUnreachableStatepoint = true;
Philip Reames85b36a82015-04-10 22:07:04 +00002632 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002633 }
2634
Philip Reames85b36a82015-04-10 22:07:04 +00002635 bool MadeChange = false;
Philip Reames704e78b2015-04-10 22:34:56 +00002636
Philip Reames85b36a82015-04-10 22:07:04 +00002637 // Delete any unreachable statepoints so that we don't have unrewritten
2638 // statepoints surviving this pass. This makes testing easier and the
2639 // resulting IR less confusing to human readers. Rather than be fancy, we
2640 // just reuse a utility function which removes the unreachable blocks.
Philip Reamesf66d7372015-04-10 22:16:58 +00002641 if (HasUnreachableStatepoint)
Philip Reames85b36a82015-04-10 22:07:04 +00002642 MadeChange |= removeUnreachableBlocks(F);
2643
Philip Reamesd16a9b12015-02-20 01:06:44 +00002644 // Return early if no work to do.
2645 if (ParsePointNeeded.empty())
Philip Reames85b36a82015-04-10 22:07:04 +00002646 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002647
Philip Reames85b36a82015-04-10 22:07:04 +00002648 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2649 // These are created by LCSSA. They have the effect of increasing the size
2650 // of liveness sets for no good reason. It may be harder to do this post
2651 // insertion since relocations and base phis can confuse things.
2652 for (BasicBlock &BB : F)
2653 if (BB.getUniquePredecessor()) {
2654 MadeChange = true;
2655 FoldSingleEntryPHINodes(&BB);
2656 }
2657
Philip Reames971dc3a2015-08-12 22:11:45 +00002658 // Before we start introducing relocations, we want to tweak the IR a bit to
2659 // avoid unfortunate code generation effects. The main example is that we
2660 // want to try to make sure the comparison feeding a branch is after any
2661 // safepoints. Otherwise, we end up with a comparison of pre-relocation
2662 // values feeding a branch after relocation. This is semantically correct,
2663 // but results in extra register pressure since both the pre-relocation and
2664 // post-relocation copies must be available in registers. For code without
2665 // relocations this is handled elsewhere, but teaching the scheduler to
2666 // reverse the transform we're about to do would be slightly complex.
2667 // Note: This may extend the live range of the inputs to the icmp and thus
2668 // increase the liveset of any statepoint we move over. This is profitable
2669 // as long as all statepoints are in rare blocks. If we had in-register
2670 // lowering for live values this would be a much safer transform.
2671 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2672 if (auto *BI = dyn_cast<BranchInst>(TI))
2673 if (BI->isConditional())
2674 return dyn_cast<Instruction>(BI->getCondition());
2675 // TODO: Extend this to handle switches
2676 return nullptr;
2677 };
2678 for (BasicBlock &BB : F) {
2679 TerminatorInst *TI = BB.getTerminator();
2680 if (auto *Cond = getConditionInst(TI))
2681 // TODO: Handle more than just ICmps here. We should be able to move
2682 // most instructions without side effects or memory access.
2683 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2684 MadeChange = true;
2685 Cond->moveBefore(TI);
2686 }
2687 }
2688
Justin Bogner843fb202015-12-15 19:40:57 +00002689 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
Philip Reames85b36a82015-04-10 22:07:04 +00002690 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002691}
Philip Reamesdf1ef082015-04-10 22:53:14 +00002692
2693// liveness computation via standard dataflow
2694// -------------------------------------------------------------------
2695
2696// TODO: Consider using bitvectors for liveness, the set of potentially
2697// interesting values should be small and easy to pre-compute.
2698
Philip Reamesdf1ef082015-04-10 22:53:14 +00002699/// Compute the live-in set for the location rbegin starting from
2700/// the live-out set of the basic block
2701static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2702 BasicBlock::reverse_iterator rend,
2703 DenseSet<Value *> &LiveTmp) {
2704
2705 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2706 Instruction *I = &*ritr;
2707
2708 // KILL/Def - Remove this definition from LiveIn
2709 LiveTmp.erase(I);
2710
2711 // Don't consider *uses* in PHI nodes, we handle their contribution to
2712 // predecessor blocks when we seed the LiveOut sets
2713 if (isa<PHINode>(I))
2714 continue;
2715
2716 // USE - Add to the LiveIn set for this instruction
2717 for (Value *V : I->operands()) {
2718 assert(!isUnhandledGCPointerType(V->getType()) &&
2719 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002720 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2721 // The choice to exclude all things constant here is slightly subtle.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002722 // There are two independent reasons:
Philip Reames63294cb2015-04-26 19:48:03 +00002723 // - We assume that things which are constant (from LLVM's definition)
2724 // do not move at runtime. For example, the address of a global
2725 // variable is fixed, even though it's contents may not be.
2726 // - Second, we can't disallow arbitrary inttoptr constants even
2727 // if the language frontend does. Optimization passes are free to
2728 // locally exploit facts without respect to global reachability. This
2729 // can create sections of code which are dynamically unreachable and
2730 // contain just about anything. (see constants.ll in tests)
Philip Reamesdf1ef082015-04-10 22:53:14 +00002731 LiveTmp.insert(V);
2732 }
2733 }
2734 }
2735}
2736
2737static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2738
2739 for (BasicBlock *Succ : successors(BB)) {
2740 const BasicBlock::iterator E(Succ->getFirstNonPHI());
2741 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2742 PHINode *Phi = cast<PHINode>(&*I);
2743 Value *V = Phi->getIncomingValueForBlock(BB);
2744 assert(!isUnhandledGCPointerType(V->getType()) &&
2745 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002746 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002747 LiveTmp.insert(V);
2748 }
2749 }
2750 }
2751}
2752
2753static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2754 DenseSet<Value *> KillSet;
2755 for (Instruction &I : *BB)
2756 if (isHandledGCPointerType(I.getType()))
2757 KillSet.insert(&I);
2758 return KillSet;
2759}
2760
Philip Reames9638ff92015-04-11 00:06:47 +00002761#ifndef NDEBUG
Philip Reamesdf1ef082015-04-10 22:53:14 +00002762/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
2763/// sanity check for the liveness computation.
2764static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2765 TerminatorInst *TI, bool TermOkay = false) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002766 for (Value *V : Live) {
2767 if (auto *I = dyn_cast<Instruction>(V)) {
2768 // The terminator can be a member of the LiveOut set. LLVM's definition
2769 // of instruction dominance states that V does not dominate itself. As
2770 // such, we need to special case this to allow it.
2771 if (TermOkay && TI == I)
2772 continue;
2773 assert(DT.dominates(I, TI) &&
2774 "basic SSA liveness expectation violated by liveness analysis");
2775 }
2776 }
Philip Reamesdf1ef082015-04-10 22:53:14 +00002777}
2778
2779/// Check that all the liveness sets used during the computation of liveness
2780/// obey basic SSA properties. This is useful for finding cases where we miss
2781/// a def.
2782static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2783 BasicBlock &BB) {
2784 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2785 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2786 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2787}
Philip Reames9638ff92015-04-11 00:06:47 +00002788#endif
Philip Reamesdf1ef082015-04-10 22:53:14 +00002789
2790static void computeLiveInValues(DominatorTree &DT, Function &F,
2791 GCPtrLivenessData &Data) {
2792
Philip Reames4d80ede2015-04-10 23:11:26 +00002793 SmallSetVector<BasicBlock *, 200> Worklist;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002794 auto AddPredsToWorklist = [&](BasicBlock *BB) {
Philip Reames4d80ede2015-04-10 23:11:26 +00002795 // We use a SetVector so that we don't have duplicates in the worklist.
2796 Worklist.insert(pred_begin(BB), pred_end(BB));
Philip Reamesdf1ef082015-04-10 22:53:14 +00002797 };
2798 auto NextItem = [&]() {
2799 BasicBlock *BB = Worklist.back();
2800 Worklist.pop_back();
Philip Reamesdf1ef082015-04-10 22:53:14 +00002801 return BB;
2802 };
2803
2804 // Seed the liveness for each individual block
2805 for (BasicBlock &BB : F) {
2806 Data.KillSet[&BB] = computeKillSet(&BB);
2807 Data.LiveSet[&BB].clear();
2808 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2809
2810#ifndef NDEBUG
2811 for (Value *Kill : Data.KillSet[&BB])
2812 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2813#endif
2814
2815 Data.LiveOut[&BB] = DenseSet<Value *>();
2816 computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2817 Data.LiveIn[&BB] = Data.LiveSet[&BB];
2818 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2819 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2820 if (!Data.LiveIn[&BB].empty())
2821 AddPredsToWorklist(&BB);
2822 }
2823
2824 // Propagate that liveness until stable
2825 while (!Worklist.empty()) {
2826 BasicBlock *BB = NextItem();
2827
2828 // Compute our new liveout set, then exit early if it hasn't changed
2829 // despite the contribution of our successor.
2830 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2831 const auto OldLiveOutSize = LiveOut.size();
2832 for (BasicBlock *Succ : successors(BB)) {
2833 assert(Data.LiveIn.count(Succ));
2834 set_union(LiveOut, Data.LiveIn[Succ]);
2835 }
2836 // assert OutLiveOut is a subset of LiveOut
2837 if (OldLiveOutSize == LiveOut.size()) {
2838 // If the sets are the same size, then we didn't actually add anything
2839 // when unioning our successors LiveIn Thus, the LiveIn of this block
2840 // hasn't changed.
2841 continue;
2842 }
2843 Data.LiveOut[BB] = LiveOut;
2844
2845 // Apply the effects of this basic block
2846 DenseSet<Value *> LiveTmp = LiveOut;
2847 set_union(LiveTmp, Data.LiveSet[BB]);
2848 set_subtract(LiveTmp, Data.KillSet[BB]);
2849
2850 assert(Data.LiveIn.count(BB));
2851 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2852 // assert: OldLiveIn is a subset of LiveTmp
2853 if (OldLiveIn.size() != LiveTmp.size()) {
2854 Data.LiveIn[BB] = LiveTmp;
2855 AddPredsToWorklist(BB);
2856 }
2857 } // while( !worklist.empty() )
2858
2859#ifndef NDEBUG
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002860 // Sanity check our output against SSA properties. This helps catch any
Philip Reamesdf1ef082015-04-10 22:53:14 +00002861 // missing kills during the above iteration.
2862 for (BasicBlock &BB : F) {
2863 checkBasicSSA(DT, Data, BB);
2864 }
2865#endif
2866}
2867
2868static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2869 StatepointLiveSetTy &Out) {
2870
2871 BasicBlock *BB = Inst->getParent();
2872
2873 // Note: The copy is intentional and required
2874 assert(Data.LiveOut.count(BB));
2875 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2876
2877 // We want to handle the statepoint itself oddly. It's
2878 // call result is not live (normal), nor are it's arguments
2879 // (unless they're used again later). This adjustment is
2880 // specifically what we need to relocate
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002881 BasicBlock::reverse_iterator rend(Inst->getIterator());
Philip Reamesdf1ef082015-04-10 22:53:14 +00002882 computeLiveInValues(BB->rbegin(), rend, LiveOut);
2883 LiveOut.erase(Inst);
2884 Out.insert(LiveOut.begin(), LiveOut.end());
2885}
2886
2887static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2888 const CallSite &CS,
2889 PartiallyConstructedSafepointRecord &Info) {
2890 Instruction *Inst = CS.getInstruction();
2891 StatepointLiveSetTy Updated;
2892 findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2893
2894#ifndef NDEBUG
2895 DenseSet<Value *> Bases;
2896 for (auto KVPair : Info.PointerToBase) {
2897 Bases.insert(KVPair.second);
2898 }
2899#endif
2900 // We may have base pointers which are now live that weren't before. We need
2901 // to update the PointerToBase structure to reflect this.
2902 for (auto V : Updated)
2903 if (!Info.PointerToBase.count(V)) {
2904 assert(Bases.count(V) && "can't find base for unexpected live value");
2905 Info.PointerToBase[V] = V;
2906 continue;
2907 }
2908
2909#ifndef NDEBUG
2910 for (auto V : Updated) {
2911 assert(Info.PointerToBase.count(V) &&
2912 "must be able to find base for live value");
2913 }
2914#endif
2915
2916 // Remove any stale base mappings - this can happen since our liveness is
2917 // more precise then the one inherent in the base pointer analysis
2918 DenseSet<Value *> ToErase;
2919 for (auto KVPair : Info.PointerToBase)
2920 if (!Updated.count(KVPair.first))
2921 ToErase.insert(KVPair.first);
2922 for (auto V : ToErase)
2923 Info.PointerToBase.erase(V);
2924
2925#ifndef NDEBUG
2926 for (auto KVPair : Info.PointerToBase)
2927 assert(Updated.count(KVPair.first) && "record for non-live value");
2928#endif
2929
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002930 Info.LiveSet = Updated;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002931}