blob: d3ec172c9d4c6f2e71459899c72e823925e4a3e0 [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000015#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000016#include "AArch64PerfectShuffle.h"
17#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000018#include "AArch64TargetMachine.h"
19#include "AArch64TargetObjectFile.h"
20#include "MCTargetDesc/AArch64AddressingModes.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Type.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetOptions.h"
34using namespace llvm;
35
36#define DEBUG_TYPE "aarch64-lower"
37
38STATISTIC(NumTailCalls, "Number of tail calls");
39STATISTIC(NumShiftInserts, "Number of vector shift inserts");
40
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000041namespace {
Tim Northover3b0846e2014-05-24 12:50:23 +000042enum AlignMode {
43 StrictAlign,
44 NoStrictAlign
45};
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000046}
Tim Northover3b0846e2014-05-24 12:50:23 +000047
48static cl::opt<AlignMode>
49Align(cl::desc("Load/store alignment support"),
50 cl::Hidden, cl::init(NoStrictAlign),
51 cl::values(
52 clEnumValN(StrictAlign, "aarch64-strict-align",
53 "Disallow all unaligned memory accesses"),
54 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
55 "Allow unaligned memory accesses"),
56 clEnumValEnd));
57
58// Place holder until extr generation is tested fully.
59static cl::opt<bool>
60EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
61 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
62 cl::init(true));
63
64static cl::opt<bool>
65EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
66 cl::desc("Allow AArch64 SLI/SRI formation"),
67 cl::init(false));
68
69//===----------------------------------------------------------------------===//
70// AArch64 Lowering public interface.
71//===----------------------------------------------------------------------===//
Eric Christopher89958332014-05-31 00:07:32 +000072static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
73 if (TT.isOSBinFormatMachO())
Tim Northover3b0846e2014-05-24 12:50:23 +000074 return new AArch64_MachoTargetObjectFile();
75
76 return new AArch64_ELFTargetObjectFile();
77}
78
Eric Christopher841da852014-06-10 23:26:45 +000079AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM)
Eric Christopher89958332014-05-31 00:07:32 +000080 : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
Tim Northover3b0846e2014-05-24 12:50:23 +000081 Subtarget = &TM.getSubtarget<AArch64Subtarget>();
82
83 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
84 // we have to make something up. Arbitrarily, choose ZeroOrOne.
85 setBooleanContents(ZeroOrOneBooleanContent);
86 // When comparing vectors the result sets the different elements in the
87 // vector to all-one or all-zero.
88 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
89
90 // Set up the register classes.
91 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
92 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
93
94 if (Subtarget->hasFPARMv8()) {
95 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
96 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
97 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
98 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
99 }
100
101 if (Subtarget->hasNEON()) {
102 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
103 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
104 // Someone set us up the NEON.
105 addDRTypeForNEON(MVT::v2f32);
106 addDRTypeForNEON(MVT::v8i8);
107 addDRTypeForNEON(MVT::v4i16);
108 addDRTypeForNEON(MVT::v2i32);
109 addDRTypeForNEON(MVT::v1i64);
110 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000111 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000112
113 addQRTypeForNEON(MVT::v4f32);
114 addQRTypeForNEON(MVT::v2f64);
115 addQRTypeForNEON(MVT::v16i8);
116 addQRTypeForNEON(MVT::v8i16);
117 addQRTypeForNEON(MVT::v4i32);
118 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000119 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000120 }
121
122 // Compute derived properties from the register classes
123 computeRegisterProperties();
124
125 // Provide all sorts of operation actions
126 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
127 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
128 setOperationAction(ISD::SETCC, MVT::i32, Custom);
129 setOperationAction(ISD::SETCC, MVT::i64, Custom);
130 setOperationAction(ISD::SETCC, MVT::f32, Custom);
131 setOperationAction(ISD::SETCC, MVT::f64, Custom);
132 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
133 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
134 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
135 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
136 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
137 setOperationAction(ISD::SELECT, MVT::i32, Custom);
138 setOperationAction(ISD::SELECT, MVT::i64, Custom);
139 setOperationAction(ISD::SELECT, MVT::f32, Custom);
140 setOperationAction(ISD::SELECT, MVT::f64, Custom);
141 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
143 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
144 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
145 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
146 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
147
148 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
149 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
150 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
151
152 setOperationAction(ISD::FREM, MVT::f32, Expand);
153 setOperationAction(ISD::FREM, MVT::f64, Expand);
154 setOperationAction(ISD::FREM, MVT::f80, Expand);
155
156 // Custom lowering hooks are needed for XOR
157 // to fold it into CSINC/CSINV.
158 setOperationAction(ISD::XOR, MVT::i32, Custom);
159 setOperationAction(ISD::XOR, MVT::i64, Custom);
160
161 // Virtually no operation on f128 is legal, but LLVM can't expand them when
162 // there's a valid register class, so we need custom operations in most cases.
163 setOperationAction(ISD::FABS, MVT::f128, Expand);
164 setOperationAction(ISD::FADD, MVT::f128, Custom);
165 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
166 setOperationAction(ISD::FCOS, MVT::f128, Expand);
167 setOperationAction(ISD::FDIV, MVT::f128, Custom);
168 setOperationAction(ISD::FMA, MVT::f128, Expand);
169 setOperationAction(ISD::FMUL, MVT::f128, Custom);
170 setOperationAction(ISD::FNEG, MVT::f128, Expand);
171 setOperationAction(ISD::FPOW, MVT::f128, Expand);
172 setOperationAction(ISD::FREM, MVT::f128, Expand);
173 setOperationAction(ISD::FRINT, MVT::f128, Expand);
174 setOperationAction(ISD::FSIN, MVT::f128, Expand);
175 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
176 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
177 setOperationAction(ISD::FSUB, MVT::f128, Custom);
178 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
179 setOperationAction(ISD::SETCC, MVT::f128, Custom);
180 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
181 setOperationAction(ISD::SELECT, MVT::f128, Custom);
182 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
183 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
184
185 // Lowering for many of the conversions is actually specified by the non-f128
186 // type. The LowerXXX function will be trivial when f128 isn't involved.
187 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
188 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
189 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
190 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
191 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
192 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
193 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
194 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
195 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
196 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
197 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
198 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
199 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
200 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
201
202 // Variable arguments.
203 setOperationAction(ISD::VASTART, MVT::Other, Custom);
204 setOperationAction(ISD::VAARG, MVT::Other, Custom);
205 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
206 setOperationAction(ISD::VAEND, MVT::Other, Expand);
207
208 // Variable-sized objects.
209 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
210 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
211 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
212
213 // Exception handling.
214 // FIXME: These are guesses. Has this been defined yet?
215 setExceptionPointerRegister(AArch64::X0);
216 setExceptionSelectorRegister(AArch64::X1);
217
218 // Constant pool entries
219 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
220
221 // BlockAddress
222 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
223
224 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
225 setOperationAction(ISD::ADDC, MVT::i32, Custom);
226 setOperationAction(ISD::ADDE, MVT::i32, Custom);
227 setOperationAction(ISD::SUBC, MVT::i32, Custom);
228 setOperationAction(ISD::SUBE, MVT::i32, Custom);
229 setOperationAction(ISD::ADDC, MVT::i64, Custom);
230 setOperationAction(ISD::ADDE, MVT::i64, Custom);
231 setOperationAction(ISD::SUBC, MVT::i64, Custom);
232 setOperationAction(ISD::SUBE, MVT::i64, Custom);
233
234 // AArch64 lacks both left-rotate and popcount instructions.
235 setOperationAction(ISD::ROTL, MVT::i32, Expand);
236 setOperationAction(ISD::ROTL, MVT::i64, Expand);
237
238 // AArch64 doesn't have {U|S}MUL_LOHI.
239 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
240 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
241
242
243 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
244 // counterparts, which AArch64 supports directly.
245 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
246 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
247 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
248 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
249
250 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
251 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
252
253 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
254 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
255 setOperationAction(ISD::SREM, MVT::i32, Expand);
256 setOperationAction(ISD::SREM, MVT::i64, Expand);
257 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
258 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
259 setOperationAction(ISD::UREM, MVT::i32, Expand);
260 setOperationAction(ISD::UREM, MVT::i64, Expand);
261
262 // Custom lower Add/Sub/Mul with overflow.
263 setOperationAction(ISD::SADDO, MVT::i32, Custom);
264 setOperationAction(ISD::SADDO, MVT::i64, Custom);
265 setOperationAction(ISD::UADDO, MVT::i32, Custom);
266 setOperationAction(ISD::UADDO, MVT::i64, Custom);
267 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
268 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
269 setOperationAction(ISD::USUBO, MVT::i32, Custom);
270 setOperationAction(ISD::USUBO, MVT::i64, Custom);
271 setOperationAction(ISD::SMULO, MVT::i32, Custom);
272 setOperationAction(ISD::SMULO, MVT::i64, Custom);
273 setOperationAction(ISD::UMULO, MVT::i32, Custom);
274 setOperationAction(ISD::UMULO, MVT::i64, Custom);
275
276 setOperationAction(ISD::FSIN, MVT::f32, Expand);
277 setOperationAction(ISD::FSIN, MVT::f64, Expand);
278 setOperationAction(ISD::FCOS, MVT::f32, Expand);
279 setOperationAction(ISD::FCOS, MVT::f64, Expand);
280 setOperationAction(ISD::FPOW, MVT::f32, Expand);
281 setOperationAction(ISD::FPOW, MVT::f64, Expand);
282 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
283 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
284
Oliver Stannardf5469be2014-08-18 14:22:39 +0000285 // f16 is storage-only, so we promote operations to f32 if we know this is
286 // valid, and ignore them otherwise. The operations not mentioned here will
287 // fail to select, but this is not a major problem as no source language
288 // should be emitting native f16 operations yet.
289 setOperationAction(ISD::FADD, MVT::f16, Promote);
290 setOperationAction(ISD::FDIV, MVT::f16, Promote);
291 setOperationAction(ISD::FMUL, MVT::f16, Promote);
292 setOperationAction(ISD::FSUB, MVT::f16, Promote);
293
Oliver Stannard89d15422014-08-27 16:16:04 +0000294 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
295 // known to be safe.
296 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
297 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
298 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
299 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
300 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
301 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
302 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
303 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
304 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
305 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
306 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
307 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
308
309 // Expand all other v4f16 operations.
310 // FIXME: We could generate better code by promoting some operations to
311 // a pair of v4f32s
312 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
313 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
314 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
315 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
316 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
317 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
318 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
319 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
320 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
321 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
322 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
323 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
324 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
325 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
326 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
327 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
328 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
329 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
330 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
331 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
332 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
333 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
334 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
335 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
336 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
337 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
338
339
340 // v8f16 is also a storage-only type, so expand it.
341 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
342 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
343 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
344 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
345 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
346 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
347 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
348 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
349 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
350 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
351 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
352 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
353 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
354 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
355 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
356 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
357 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
358 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
359 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
360 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
361 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
362 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
363 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
364 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
365 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
366 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
367 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
368 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
369 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
370 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
371 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
372
Tim Northover3b0846e2014-05-24 12:50:23 +0000373 // AArch64 has implementations of a lot of rounding-like FP operations.
374 static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
375 for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
376 MVT Ty = RoundingTypes[I];
377 setOperationAction(ISD::FFLOOR, Ty, Legal);
378 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
379 setOperationAction(ISD::FCEIL, Ty, Legal);
380 setOperationAction(ISD::FRINT, Ty, Legal);
381 setOperationAction(ISD::FTRUNC, Ty, Legal);
382 setOperationAction(ISD::FROUND, Ty, Legal);
383 }
384
385 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
386
387 if (Subtarget->isTargetMachO()) {
388 // For iOS, we don't want to the normal expansion of a libcall to
389 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
390 // traffic.
391 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
392 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
393 } else {
394 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
395 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
396 }
397
398 // AArch64 does not have floating-point extending loads, i1 sign-extending
399 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Tim Northoverb94f0852014-07-18 13:01:31 +0000400 setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000401 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
402 setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
403 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
404 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
405 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
406 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
407 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
408 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
409 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
410 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
411 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000412
413 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
414 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
415
Tim Northover3b0846e2014-05-24 12:50:23 +0000416 // Indexed loads and stores are supported.
417 for (unsigned im = (unsigned)ISD::PRE_INC;
418 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
419 setIndexedLoadAction(im, MVT::i8, Legal);
420 setIndexedLoadAction(im, MVT::i16, Legal);
421 setIndexedLoadAction(im, MVT::i32, Legal);
422 setIndexedLoadAction(im, MVT::i64, Legal);
423 setIndexedLoadAction(im, MVT::f64, Legal);
424 setIndexedLoadAction(im, MVT::f32, Legal);
425 setIndexedStoreAction(im, MVT::i8, Legal);
426 setIndexedStoreAction(im, MVT::i16, Legal);
427 setIndexedStoreAction(im, MVT::i32, Legal);
428 setIndexedStoreAction(im, MVT::i64, Legal);
429 setIndexedStoreAction(im, MVT::f64, Legal);
430 setIndexedStoreAction(im, MVT::f32, Legal);
431 }
432
433 // Trap.
434 setOperationAction(ISD::TRAP, MVT::Other, Legal);
435
436 // We combine OR nodes for bitfield operations.
437 setTargetDAGCombine(ISD::OR);
438
439 // Vector add and sub nodes may conceal a high-half opportunity.
440 // Also, try to fold ADD into CSINC/CSINV..
441 setTargetDAGCombine(ISD::ADD);
442 setTargetDAGCombine(ISD::SUB);
443
444 setTargetDAGCombine(ISD::XOR);
445 setTargetDAGCombine(ISD::SINT_TO_FP);
446 setTargetDAGCombine(ISD::UINT_TO_FP);
447
448 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
449
450 setTargetDAGCombine(ISD::ANY_EXTEND);
451 setTargetDAGCombine(ISD::ZERO_EXTEND);
452 setTargetDAGCombine(ISD::SIGN_EXTEND);
453 setTargetDAGCombine(ISD::BITCAST);
454 setTargetDAGCombine(ISD::CONCAT_VECTORS);
455 setTargetDAGCombine(ISD::STORE);
456
457 setTargetDAGCombine(ISD::MUL);
458
459 setTargetDAGCombine(ISD::SELECT);
460 setTargetDAGCombine(ISD::VSELECT);
461
462 setTargetDAGCombine(ISD::INTRINSIC_VOID);
463 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
464 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
465
466 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
467 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
468 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
469
470 setStackPointerRegisterToSaveRestore(AArch64::SP);
471
472 setSchedulingPreference(Sched::Hybrid);
473
474 // Enable TBZ/TBNZ
475 MaskAndBranchFoldingIsLegal = true;
476
477 setMinFunctionAlignment(2);
478
479 RequireStrictAlign = (Align == StrictAlign);
480
481 setHasExtractBitsInsn(true);
482
483 if (Subtarget->hasNEON()) {
484 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
485 // silliness like this:
486 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
487 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
488 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
489 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
490 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
491 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
492 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
493 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
494 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
495 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
496 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
497 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
498 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
499 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
500 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
501 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
502 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
503 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
504 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
505 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
506 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
507 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
508 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
509 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
510 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
511
512 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
513 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
514 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
515 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
516 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
517
518 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
519
520 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
521 // elements smaller than i32, so promote the input to i32 first.
522 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
523 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
524 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
525 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
526 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
527 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
528 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
529 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
530 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
531
532 // AArch64 doesn't have MUL.2d:
533 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
534 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
535 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
536 // Likewise, narrowing and extending vector loads/stores aren't handled
537 // directly.
538 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
539 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
540
541 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
542 Expand);
543
544 setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
545 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
546 setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
547 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
548
549 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
550
551 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
552 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
553 setTruncStoreAction((MVT::SimpleValueType)VT,
554 (MVT::SimpleValueType)InnerVT, Expand);
555 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
556 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
557 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
558 }
559
560 // AArch64 has implementations of a lot of rounding-like FP operations.
561 static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
562 for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
563 MVT Ty = RoundingVecTypes[I];
564 setOperationAction(ISD::FFLOOR, Ty, Legal);
565 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
566 setOperationAction(ISD::FCEIL, Ty, Legal);
567 setOperationAction(ISD::FRINT, Ty, Legal);
568 setOperationAction(ISD::FTRUNC, Ty, Legal);
569 setOperationAction(ISD::FROUND, Ty, Legal);
570 }
571 }
James Molloyf089ab72014-08-06 10:42:18 +0000572
573 // Prefer likely predicted branches to selects on out-of-order cores.
574 if (Subtarget->isCortexA57())
575 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000576}
577
578void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000579 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000580 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
581 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
582
583 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
584 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000585 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000586 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
587 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
588
589 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
590 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
591 }
592
593 // Mark vector float intrinsics as expand.
594 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
595 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
596 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
597 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
598 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
599 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
600 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
601 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
602 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
603 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
604 }
605
606 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
607 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
608 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
609 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
610 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
611 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
612 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
613 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
614 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
615 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
616 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
617 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
618
619 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
620 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
621 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
622 setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
623
624 // CNT supports only B element sizes.
625 if (VT != MVT::v8i8 && VT != MVT::v16i8)
626 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
627
628 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
629 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
630 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
631 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
632 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
633
634 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
635 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
636
637 if (Subtarget->isLittleEndian()) {
638 for (unsigned im = (unsigned)ISD::PRE_INC;
639 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
640 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
641 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
642 }
643 }
644}
645
646void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
647 addRegisterClass(VT, &AArch64::FPR64RegClass);
648 addTypeForNEON(VT, MVT::v2i32);
649}
650
651void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
652 addRegisterClass(VT, &AArch64::FPR128RegClass);
653 addTypeForNEON(VT, MVT::v4i32);
654}
655
656EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
657 if (!VT.isVector())
658 return MVT::i32;
659 return VT.changeVectorElementTypeToInteger();
660}
661
662/// computeKnownBitsForTargetNode - Determine which of the bits specified in
663/// Mask are known to be either zero or one and return them in the
664/// KnownZero/KnownOne bitsets.
665void AArch64TargetLowering::computeKnownBitsForTargetNode(
666 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
667 const SelectionDAG &DAG, unsigned Depth) const {
668 switch (Op.getOpcode()) {
669 default:
670 break;
671 case AArch64ISD::CSEL: {
672 APInt KnownZero2, KnownOne2;
673 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
674 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
675 KnownZero &= KnownZero2;
676 KnownOne &= KnownOne2;
677 break;
678 }
679 case ISD::INTRINSIC_W_CHAIN: {
680 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
681 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
682 switch (IntID) {
683 default: return;
684 case Intrinsic::aarch64_ldaxr:
685 case Intrinsic::aarch64_ldxr: {
686 unsigned BitWidth = KnownOne.getBitWidth();
687 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
688 unsigned MemBits = VT.getScalarType().getSizeInBits();
689 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
690 return;
691 }
692 }
693 break;
694 }
695 case ISD::INTRINSIC_WO_CHAIN:
696 case ISD::INTRINSIC_VOID: {
697 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
698 switch (IntNo) {
699 default:
700 break;
701 case Intrinsic::aarch64_neon_umaxv:
702 case Intrinsic::aarch64_neon_uminv: {
703 // Figure out the datatype of the vector operand. The UMINV instruction
704 // will zero extend the result, so we can mark as known zero all the
705 // bits larger than the element datatype. 32-bit or larget doesn't need
706 // this as those are legal types and will be handled by isel directly.
707 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
708 unsigned BitWidth = KnownZero.getBitWidth();
709 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
710 assert(BitWidth >= 8 && "Unexpected width!");
711 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
712 KnownZero |= Mask;
713 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
714 assert(BitWidth >= 16 && "Unexpected width!");
715 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
716 KnownZero |= Mask;
717 }
718 break;
719 } break;
720 }
721 }
722 }
723}
724
725MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
726 return MVT::i64;
727}
728
729unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
730 // FIXME: On AArch64, this depends on the type.
Tim Northover21feb2e2014-07-01 19:47:09 +0000731 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
Tim Northover3b0846e2014-05-24 12:50:23 +0000732 // and the offset has to be a multiple of the related size in bytes.
733 return 4095;
734}
735
736FastISel *
737AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
738 const TargetLibraryInfo *libInfo) const {
739 return AArch64::createFastISel(funcInfo, libInfo);
740}
741
742const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
743 switch (Opcode) {
744 default:
745 return nullptr;
746 case AArch64ISD::CALL: return "AArch64ISD::CALL";
747 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
748 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
749 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
750 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
751 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
752 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
753 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
754 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
755 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
756 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
757 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
758 case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL";
759 case AArch64ISD::ADC: return "AArch64ISD::ADC";
760 case AArch64ISD::SBC: return "AArch64ISD::SBC";
761 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
762 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
763 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
764 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
765 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
766 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
767 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
768 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
769 case AArch64ISD::DUP: return "AArch64ISD::DUP";
770 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
771 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
772 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
773 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
774 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
775 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
776 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
777 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
778 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
779 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
780 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
781 case AArch64ISD::BICi: return "AArch64ISD::BICi";
782 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
783 case AArch64ISD::BSL: return "AArch64ISD::BSL";
784 case AArch64ISD::NEG: return "AArch64ISD::NEG";
785 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
786 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
787 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
788 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
789 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
790 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
791 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
792 case AArch64ISD::REV16: return "AArch64ISD::REV16";
793 case AArch64ISD::REV32: return "AArch64ISD::REV32";
794 case AArch64ISD::REV64: return "AArch64ISD::REV64";
795 case AArch64ISD::EXT: return "AArch64ISD::EXT";
796 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
797 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
798 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
799 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
800 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
801 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
802 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
803 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
804 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
805 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
806 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
807 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
808 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
809 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
810 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
811 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
812 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
813 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
814 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
815 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
816 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
817 case AArch64ISD::NOT: return "AArch64ISD::NOT";
818 case AArch64ISD::BIT: return "AArch64ISD::BIT";
819 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
820 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
821 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
822 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
823 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
824 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
825 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
826 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
827 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
828 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
829 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
830 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
831 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
832 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
833 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
834 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
835 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
836 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
837 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
838 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
839 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
840 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
841 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
842 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
843 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
844 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
845 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
846 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
847 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
848 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
849 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
850 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
851 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
852 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
853 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
854 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
855 }
856}
857
858MachineBasicBlock *
859AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
860 MachineBasicBlock *MBB) const {
861 // We materialise the F128CSEL pseudo-instruction as some control flow and a
862 // phi node:
863
864 // OrigBB:
865 // [... previous instrs leading to comparison ...]
866 // b.ne TrueBB
867 // b EndBB
868 // TrueBB:
869 // ; Fallthrough
870 // EndBB:
871 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
872
Eric Christopherd9134482014-08-04 21:25:23 +0000873 const TargetInstrInfo *TII =
874 getTargetMachine().getSubtargetImpl()->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000875 MachineFunction *MF = MBB->getParent();
876 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
877 DebugLoc DL = MI->getDebugLoc();
878 MachineFunction::iterator It = MBB;
879 ++It;
880
881 unsigned DestReg = MI->getOperand(0).getReg();
882 unsigned IfTrueReg = MI->getOperand(1).getReg();
883 unsigned IfFalseReg = MI->getOperand(2).getReg();
884 unsigned CondCode = MI->getOperand(3).getImm();
885 bool NZCVKilled = MI->getOperand(4).isKill();
886
887 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
888 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
889 MF->insert(It, TrueBB);
890 MF->insert(It, EndBB);
891
892 // Transfer rest of current basic-block to EndBB
893 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
894 MBB->end());
895 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
896
897 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
898 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
899 MBB->addSuccessor(TrueBB);
900 MBB->addSuccessor(EndBB);
901
902 // TrueBB falls through to the end.
903 TrueBB->addSuccessor(EndBB);
904
905 if (!NZCVKilled) {
906 TrueBB->addLiveIn(AArch64::NZCV);
907 EndBB->addLiveIn(AArch64::NZCV);
908 }
909
910 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
911 .addReg(IfTrueReg)
912 .addMBB(TrueBB)
913 .addReg(IfFalseReg)
914 .addMBB(MBB);
915
916 MI->eraseFromParent();
917 return EndBB;
918}
919
920MachineBasicBlock *
921AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
922 MachineBasicBlock *BB) const {
923 switch (MI->getOpcode()) {
924 default:
925#ifndef NDEBUG
926 MI->dump();
927#endif
Craig Topper35b2f752014-06-19 06:10:58 +0000928 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +0000929
930 case AArch64::F128CSEL:
931 return EmitF128CSEL(MI, BB);
932
933 case TargetOpcode::STACKMAP:
934 case TargetOpcode::PATCHPOINT:
935 return emitPatchPoint(MI, BB);
936 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000937}
938
939//===----------------------------------------------------------------------===//
940// AArch64 Lowering private implementation.
941//===----------------------------------------------------------------------===//
942
943//===----------------------------------------------------------------------===//
944// Lowering Code
945//===----------------------------------------------------------------------===//
946
947/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
948/// CC
949static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
950 switch (CC) {
951 default:
952 llvm_unreachable("Unknown condition code!");
953 case ISD::SETNE:
954 return AArch64CC::NE;
955 case ISD::SETEQ:
956 return AArch64CC::EQ;
957 case ISD::SETGT:
958 return AArch64CC::GT;
959 case ISD::SETGE:
960 return AArch64CC::GE;
961 case ISD::SETLT:
962 return AArch64CC::LT;
963 case ISD::SETLE:
964 return AArch64CC::LE;
965 case ISD::SETUGT:
966 return AArch64CC::HI;
967 case ISD::SETUGE:
968 return AArch64CC::HS;
969 case ISD::SETULT:
970 return AArch64CC::LO;
971 case ISD::SETULE:
972 return AArch64CC::LS;
973 }
974}
975
976/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
977static void changeFPCCToAArch64CC(ISD::CondCode CC,
978 AArch64CC::CondCode &CondCode,
979 AArch64CC::CondCode &CondCode2) {
980 CondCode2 = AArch64CC::AL;
981 switch (CC) {
982 default:
983 llvm_unreachable("Unknown FP condition!");
984 case ISD::SETEQ:
985 case ISD::SETOEQ:
986 CondCode = AArch64CC::EQ;
987 break;
988 case ISD::SETGT:
989 case ISD::SETOGT:
990 CondCode = AArch64CC::GT;
991 break;
992 case ISD::SETGE:
993 case ISD::SETOGE:
994 CondCode = AArch64CC::GE;
995 break;
996 case ISD::SETOLT:
997 CondCode = AArch64CC::MI;
998 break;
999 case ISD::SETOLE:
1000 CondCode = AArch64CC::LS;
1001 break;
1002 case ISD::SETONE:
1003 CondCode = AArch64CC::MI;
1004 CondCode2 = AArch64CC::GT;
1005 break;
1006 case ISD::SETO:
1007 CondCode = AArch64CC::VC;
1008 break;
1009 case ISD::SETUO:
1010 CondCode = AArch64CC::VS;
1011 break;
1012 case ISD::SETUEQ:
1013 CondCode = AArch64CC::EQ;
1014 CondCode2 = AArch64CC::VS;
1015 break;
1016 case ISD::SETUGT:
1017 CondCode = AArch64CC::HI;
1018 break;
1019 case ISD::SETUGE:
1020 CondCode = AArch64CC::PL;
1021 break;
1022 case ISD::SETLT:
1023 case ISD::SETULT:
1024 CondCode = AArch64CC::LT;
1025 break;
1026 case ISD::SETLE:
1027 case ISD::SETULE:
1028 CondCode = AArch64CC::LE;
1029 break;
1030 case ISD::SETNE:
1031 case ISD::SETUNE:
1032 CondCode = AArch64CC::NE;
1033 break;
1034 }
1035}
1036
1037/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1038/// CC usable with the vector instructions. Fewer operations are available
1039/// without a real NZCV register, so we have to use less efficient combinations
1040/// to get the same effect.
1041static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1042 AArch64CC::CondCode &CondCode,
1043 AArch64CC::CondCode &CondCode2,
1044 bool &Invert) {
1045 Invert = false;
1046 switch (CC) {
1047 default:
1048 // Mostly the scalar mappings work fine.
1049 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1050 break;
1051 case ISD::SETUO:
1052 Invert = true; // Fallthrough
1053 case ISD::SETO:
1054 CondCode = AArch64CC::MI;
1055 CondCode2 = AArch64CC::GE;
1056 break;
1057 case ISD::SETUEQ:
1058 case ISD::SETULT:
1059 case ISD::SETULE:
1060 case ISD::SETUGT:
1061 case ISD::SETUGE:
1062 // All of the compare-mask comparisons are ordered, but we can switch
1063 // between the two by a double inversion. E.g. ULE == !OGT.
1064 Invert = true;
1065 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1066 break;
1067 }
1068}
1069
1070static bool isLegalArithImmed(uint64_t C) {
1071 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1072 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1073}
1074
1075static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1076 SDLoc dl, SelectionDAG &DAG) {
1077 EVT VT = LHS.getValueType();
1078
1079 if (VT.isFloatingPoint())
1080 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1081
1082 // The CMP instruction is just an alias for SUBS, and representing it as
1083 // SUBS means that it's possible to get CSE with subtract operations.
1084 // A later phase can perform the optimization of setting the destination
1085 // register to WZR/XZR if it ends up being unused.
1086 unsigned Opcode = AArch64ISD::SUBS;
1087
1088 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1089 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1090 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1091 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1092 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1093 // can be set differently by this operation. It comes down to whether
1094 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1095 // everything is fine. If not then the optimization is wrong. Thus general
1096 // comparisons are only valid if op2 != 0.
1097
1098 // So, finally, the only LLVM-native comparisons that don't mention C and V
1099 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1100 // the absence of information about op2.
1101 Opcode = AArch64ISD::ADDS;
1102 RHS = RHS.getOperand(1);
1103 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1104 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1105 !isUnsignedIntSetCC(CC)) {
1106 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1107 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1108 // of the signed comparisons.
1109 Opcode = AArch64ISD::ANDS;
1110 RHS = LHS.getOperand(1);
1111 LHS = LHS.getOperand(0);
1112 }
1113
1114 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1115 .getValue(1);
1116}
1117
1118static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1119 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
David Xuee978202014-08-28 04:59:53 +00001120 SDValue Cmp;
1121 AArch64CC::CondCode AArch64CC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001122 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1123 EVT VT = RHS.getValueType();
1124 uint64_t C = RHSC->getZExtValue();
1125 if (!isLegalArithImmed(C)) {
1126 // Constant does not fit, try adjusting it by one?
1127 switch (CC) {
1128 default:
1129 break;
1130 case ISD::SETLT:
1131 case ISD::SETGE:
1132 if ((VT == MVT::i32 && C != 0x80000000 &&
1133 isLegalArithImmed((uint32_t)(C - 1))) ||
1134 (VT == MVT::i64 && C != 0x80000000ULL &&
1135 isLegalArithImmed(C - 1ULL))) {
1136 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1137 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1138 RHS = DAG.getConstant(C, VT);
1139 }
1140 break;
1141 case ISD::SETULT:
1142 case ISD::SETUGE:
1143 if ((VT == MVT::i32 && C != 0 &&
1144 isLegalArithImmed((uint32_t)(C - 1))) ||
1145 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1146 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1147 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1148 RHS = DAG.getConstant(C, VT);
1149 }
1150 break;
1151 case ISD::SETLE:
1152 case ISD::SETGT:
1153 if ((VT == MVT::i32 && C != 0x7fffffff &&
1154 isLegalArithImmed((uint32_t)(C + 1))) ||
1155 (VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
1156 isLegalArithImmed(C + 1ULL))) {
1157 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1158 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1159 RHS = DAG.getConstant(C, VT);
1160 }
1161 break;
1162 case ISD::SETULE:
1163 case ISD::SETUGT:
1164 if ((VT == MVT::i32 && C != 0xffffffff &&
1165 isLegalArithImmed((uint32_t)(C + 1))) ||
1166 (VT == MVT::i64 && C != 0xfffffffffffffffULL &&
1167 isLegalArithImmed(C + 1ULL))) {
1168 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1169 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1170 RHS = DAG.getConstant(C, VT);
1171 }
1172 break;
1173 }
1174 }
1175 }
David Xuee978202014-08-28 04:59:53 +00001176 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1177 // For the i8 operand, the largest immediate is 255, so this can be easily
1178 // encoded in the compare instruction. For the i16 operand, however, the
1179 // largest immediate cannot be encoded in the compare.
1180 // Therefore, use a sign extending load and cmn to avoid materializing the -1
1181 // constant. For example,
1182 // movz w1, #65535
1183 // ldrh w0, [x0, #0]
1184 // cmp w0, w1
1185 // >
1186 // ldrsh w0, [x0, #0]
1187 // cmn w0, #1
1188 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1189 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1190 // both the LHS and RHS are truely zero extended and to make sure the
1191 // transformation is profitable.
1192 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1193 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1194 isa<LoadSDNode>(LHS)) {
1195 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1196 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1197 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1198 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1199 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1200 SDValue SExt =
1201 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1202 DAG.getValueType(MVT::i16));
1203 Cmp = emitComparison(SExt,
1204 DAG.getConstant(ValueofRHS, RHS.getValueType()),
1205 CC, dl, DAG);
1206 AArch64CC = changeIntCCToAArch64CC(CC);
1207 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1208 return Cmp;
1209 }
1210 }
1211 }
1212 }
1213 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1214 AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001215 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1216 return Cmp;
1217}
1218
1219static std::pair<SDValue, SDValue>
1220getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1221 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1222 "Unsupported value type");
1223 SDValue Value, Overflow;
1224 SDLoc DL(Op);
1225 SDValue LHS = Op.getOperand(0);
1226 SDValue RHS = Op.getOperand(1);
1227 unsigned Opc = 0;
1228 switch (Op.getOpcode()) {
1229 default:
1230 llvm_unreachable("Unknown overflow instruction!");
1231 case ISD::SADDO:
1232 Opc = AArch64ISD::ADDS;
1233 CC = AArch64CC::VS;
1234 break;
1235 case ISD::UADDO:
1236 Opc = AArch64ISD::ADDS;
1237 CC = AArch64CC::HS;
1238 break;
1239 case ISD::SSUBO:
1240 Opc = AArch64ISD::SUBS;
1241 CC = AArch64CC::VS;
1242 break;
1243 case ISD::USUBO:
1244 Opc = AArch64ISD::SUBS;
1245 CC = AArch64CC::LO;
1246 break;
1247 // Multiply needs a little bit extra work.
1248 case ISD::SMULO:
1249 case ISD::UMULO: {
1250 CC = AArch64CC::NE;
1251 bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1252 if (Op.getValueType() == MVT::i32) {
1253 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1254 // For a 32 bit multiply with overflow check we want the instruction
1255 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1256 // need to generate the following pattern:
1257 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1258 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1259 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1260 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1261 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1262 DAG.getConstant(0, MVT::i64));
1263 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1264 // operation. We need to clear out the upper 32 bits, because we used a
1265 // widening multiply that wrote all 64 bits. In the end this should be a
1266 // noop.
1267 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1268 if (IsSigned) {
1269 // The signed overflow check requires more than just a simple check for
1270 // any bit set in the upper 32 bits of the result. These bits could be
1271 // just the sign bits of a negative number. To perform the overflow
1272 // check we have to arithmetic shift right the 32nd bit of the result by
1273 // 31 bits. Then we compare the result to the upper 32 bits.
1274 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1275 DAG.getConstant(32, MVT::i64));
1276 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1277 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1278 DAG.getConstant(31, MVT::i64));
1279 // It is important that LowerBits is last, otherwise the arithmetic
1280 // shift will not be folded into the compare (SUBS).
1281 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1282 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1283 .getValue(1);
1284 } else {
1285 // The overflow check for unsigned multiply is easy. We only need to
1286 // check if any of the upper 32 bits are set. This can be done with a
1287 // CMP (shifted register). For that we need to generate the following
1288 // pattern:
1289 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1290 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1291 DAG.getConstant(32, MVT::i64));
1292 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1293 Overflow =
1294 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1295 UpperBits).getValue(1);
1296 }
1297 break;
1298 }
1299 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1300 // For the 64 bit multiply
1301 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1302 if (IsSigned) {
1303 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1304 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1305 DAG.getConstant(63, MVT::i64));
1306 // It is important that LowerBits is last, otherwise the arithmetic
1307 // shift will not be folded into the compare (SUBS).
1308 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1309 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1310 .getValue(1);
1311 } else {
1312 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1313 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1314 Overflow =
1315 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1316 UpperBits).getValue(1);
1317 }
1318 break;
1319 }
1320 } // switch (...)
1321
1322 if (Opc) {
1323 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1324
1325 // Emit the AArch64 operation with overflow check.
1326 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1327 Overflow = Value.getValue(1);
1328 }
1329 return std::make_pair(Value, Overflow);
1330}
1331
1332SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1333 RTLIB::Libcall Call) const {
1334 SmallVector<SDValue, 2> Ops;
1335 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1336 Ops.push_back(Op.getOperand(i));
1337
1338 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1339 SDLoc(Op)).first;
1340}
1341
1342static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1343 SDValue Sel = Op.getOperand(0);
1344 SDValue Other = Op.getOperand(1);
1345
1346 // If neither operand is a SELECT_CC, give up.
1347 if (Sel.getOpcode() != ISD::SELECT_CC)
1348 std::swap(Sel, Other);
1349 if (Sel.getOpcode() != ISD::SELECT_CC)
1350 return Op;
1351
1352 // The folding we want to perform is:
1353 // (xor x, (select_cc a, b, cc, 0, -1) )
1354 // -->
1355 // (csel x, (xor x, -1), cc ...)
1356 //
1357 // The latter will get matched to a CSINV instruction.
1358
1359 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1360 SDValue LHS = Sel.getOperand(0);
1361 SDValue RHS = Sel.getOperand(1);
1362 SDValue TVal = Sel.getOperand(2);
1363 SDValue FVal = Sel.getOperand(3);
1364 SDLoc dl(Sel);
1365
1366 // FIXME: This could be generalized to non-integer comparisons.
1367 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1368 return Op;
1369
1370 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1371 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1372
1373 // The the values aren't constants, this isn't the pattern we're looking for.
1374 if (!CFVal || !CTVal)
1375 return Op;
1376
1377 // We can commute the SELECT_CC by inverting the condition. This
1378 // might be needed to make this fit into a CSINV pattern.
1379 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1380 std::swap(TVal, FVal);
1381 std::swap(CTVal, CFVal);
1382 CC = ISD::getSetCCInverse(CC, true);
1383 }
1384
1385 // If the constants line up, perform the transform!
1386 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1387 SDValue CCVal;
1388 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1389
1390 FVal = Other;
1391 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1392 DAG.getConstant(-1ULL, Other.getValueType()));
1393
1394 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1395 CCVal, Cmp);
1396 }
1397
1398 return Op;
1399}
1400
1401static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1402 EVT VT = Op.getValueType();
1403
1404 // Let legalize expand this if it isn't a legal type yet.
1405 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1406 return SDValue();
1407
1408 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1409
1410 unsigned Opc;
1411 bool ExtraOp = false;
1412 switch (Op.getOpcode()) {
1413 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001414 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001415 case ISD::ADDC:
1416 Opc = AArch64ISD::ADDS;
1417 break;
1418 case ISD::SUBC:
1419 Opc = AArch64ISD::SUBS;
1420 break;
1421 case ISD::ADDE:
1422 Opc = AArch64ISD::ADCS;
1423 ExtraOp = true;
1424 break;
1425 case ISD::SUBE:
1426 Opc = AArch64ISD::SBCS;
1427 ExtraOp = true;
1428 break;
1429 }
1430
1431 if (!ExtraOp)
1432 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1433 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1434 Op.getOperand(2));
1435}
1436
1437static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1438 // Let legalize expand this if it isn't a legal type yet.
1439 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1440 return SDValue();
1441
1442 AArch64CC::CondCode CC;
1443 // The actual operation that sets the overflow or carry flag.
1444 SDValue Value, Overflow;
1445 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1446
1447 // We use 0 and 1 as false and true values.
1448 SDValue TVal = DAG.getConstant(1, MVT::i32);
1449 SDValue FVal = DAG.getConstant(0, MVT::i32);
1450
1451 // We use an inverted condition, because the conditional select is inverted
1452 // too. This will allow it to be selected to a single instruction:
1453 // CSINC Wd, WZR, WZR, invert(cond).
1454 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1455 Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1456 CCVal, Overflow);
1457
1458 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1459 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1460}
1461
1462// Prefetch operands are:
1463// 1: Address to prefetch
1464// 2: bool isWrite
1465// 3: int locality (0 = no locality ... 3 = extreme locality)
1466// 4: bool isDataCache
1467static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1468 SDLoc DL(Op);
1469 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1470 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001471 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001472
1473 bool IsStream = !Locality;
1474 // When the locality number is set
1475 if (Locality) {
1476 // The front-end should have filtered out the out-of-range values
1477 assert(Locality <= 3 && "Prefetch locality out-of-range");
1478 // The locality degree is the opposite of the cache speed.
1479 // Put the number the other way around.
1480 // The encoding starts at 0 for level 1
1481 Locality = 3 - Locality;
1482 }
1483
1484 // built the mask value encoding the expected behavior.
1485 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001486 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001487 (Locality << 1) | // Cache level bits
1488 (unsigned)IsStream; // Stream bit
1489 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1490 DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1491}
1492
1493SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1494 SelectionDAG &DAG) const {
1495 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1496
1497 RTLIB::Libcall LC;
1498 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1499
1500 return LowerF128Call(Op, DAG, LC);
1501}
1502
1503SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1504 SelectionDAG &DAG) const {
1505 if (Op.getOperand(0).getValueType() != MVT::f128) {
1506 // It's legal except when f128 is involved
1507 return Op;
1508 }
1509
1510 RTLIB::Libcall LC;
1511 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1512
1513 // FP_ROUND node has a second operand indicating whether it is known to be
1514 // precise. That doesn't take part in the LibCall so we can't directly use
1515 // LowerF128Call.
1516 SDValue SrcVal = Op.getOperand(0);
1517 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1518 /*isSigned*/ false, SDLoc(Op)).first;
1519}
1520
1521static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1522 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1523 // Any additional optimization in this function should be recorded
1524 // in the cost tables.
1525 EVT InVT = Op.getOperand(0).getValueType();
1526 EVT VT = Op.getValueType();
1527
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001528 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001529 SDLoc dl(Op);
1530 SDValue Cv =
1531 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1532 Op.getOperand(0));
1533 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001534 }
1535
1536 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001537 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001538 MVT ExtVT =
1539 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1540 VT.getVectorNumElements());
1541 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001542 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1543 }
1544
1545 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001546 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001547}
1548
1549SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1550 SelectionDAG &DAG) const {
1551 if (Op.getOperand(0).getValueType().isVector())
1552 return LowerVectorFP_TO_INT(Op, DAG);
1553
1554 if (Op.getOperand(0).getValueType() != MVT::f128) {
1555 // It's legal except when f128 is involved
1556 return Op;
1557 }
1558
1559 RTLIB::Libcall LC;
1560 if (Op.getOpcode() == ISD::FP_TO_SINT)
1561 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1562 else
1563 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1564
1565 SmallVector<SDValue, 2> Ops;
1566 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1567 Ops.push_back(Op.getOperand(i));
1568
1569 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1570 SDLoc(Op)).first;
1571}
1572
1573static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1574 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1575 // Any additional optimization in this function should be recorded
1576 // in the cost tables.
1577 EVT VT = Op.getValueType();
1578 SDLoc dl(Op);
1579 SDValue In = Op.getOperand(0);
1580 EVT InVT = In.getValueType();
1581
Tim Northoveref0d7602014-06-15 09:27:06 +00001582 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1583 MVT CastVT =
1584 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1585 InVT.getVectorNumElements());
1586 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1587 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001588 }
1589
Tim Northoveref0d7602014-06-15 09:27:06 +00001590 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1591 unsigned CastOpc =
1592 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1593 EVT CastVT = VT.changeVectorElementTypeToInteger();
1594 In = DAG.getNode(CastOpc, dl, CastVT, In);
1595 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001596 }
1597
Tim Northoveref0d7602014-06-15 09:27:06 +00001598 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001599}
1600
1601SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1602 SelectionDAG &DAG) const {
1603 if (Op.getValueType().isVector())
1604 return LowerVectorINT_TO_FP(Op, DAG);
1605
1606 // i128 conversions are libcalls.
1607 if (Op.getOperand(0).getValueType() == MVT::i128)
1608 return SDValue();
1609
1610 // Other conversions are legal, unless it's to the completely software-based
1611 // fp128.
1612 if (Op.getValueType() != MVT::f128)
1613 return Op;
1614
1615 RTLIB::Libcall LC;
1616 if (Op.getOpcode() == ISD::SINT_TO_FP)
1617 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1618 else
1619 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1620
1621 return LowerF128Call(Op, DAG, LC);
1622}
1623
1624SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1625 SelectionDAG &DAG) const {
1626 // For iOS, we want to call an alternative entry point: __sincos_stret,
1627 // which returns the values in two S / D registers.
1628 SDLoc dl(Op);
1629 SDValue Arg = Op.getOperand(0);
1630 EVT ArgVT = Arg.getValueType();
1631 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1632
1633 ArgListTy Args;
1634 ArgListEntry Entry;
1635
1636 Entry.Node = Arg;
1637 Entry.Ty = ArgTy;
1638 Entry.isSExt = false;
1639 Entry.isZExt = false;
1640 Args.push_back(Entry);
1641
1642 const char *LibcallName =
1643 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1644 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1645
1646 StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
1647 TargetLowering::CallLoweringInfo CLI(DAG);
1648 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001649 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001650
1651 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1652 return CallResult.first;
1653}
1654
Tim Northoverf8bfe212014-07-18 13:07:05 +00001655static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1656 if (Op.getValueType() != MVT::f16)
1657 return SDValue();
1658
1659 assert(Op.getOperand(0).getValueType() == MVT::i16);
1660 SDLoc DL(Op);
1661
1662 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1663 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1664 return SDValue(
1665 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
1666 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
1667 0);
1668}
1669
1670
Tim Northover3b0846e2014-05-24 12:50:23 +00001671SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1672 SelectionDAG &DAG) const {
1673 switch (Op.getOpcode()) {
1674 default:
1675 llvm_unreachable("unimplemented operand");
1676 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00001677 case ISD::BITCAST:
1678 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001679 case ISD::GlobalAddress:
1680 return LowerGlobalAddress(Op, DAG);
1681 case ISD::GlobalTLSAddress:
1682 return LowerGlobalTLSAddress(Op, DAG);
1683 case ISD::SETCC:
1684 return LowerSETCC(Op, DAG);
1685 case ISD::BR_CC:
1686 return LowerBR_CC(Op, DAG);
1687 case ISD::SELECT:
1688 return LowerSELECT(Op, DAG);
1689 case ISD::SELECT_CC:
1690 return LowerSELECT_CC(Op, DAG);
1691 case ISD::JumpTable:
1692 return LowerJumpTable(Op, DAG);
1693 case ISD::ConstantPool:
1694 return LowerConstantPool(Op, DAG);
1695 case ISD::BlockAddress:
1696 return LowerBlockAddress(Op, DAG);
1697 case ISD::VASTART:
1698 return LowerVASTART(Op, DAG);
1699 case ISD::VACOPY:
1700 return LowerVACOPY(Op, DAG);
1701 case ISD::VAARG:
1702 return LowerVAARG(Op, DAG);
1703 case ISD::ADDC:
1704 case ISD::ADDE:
1705 case ISD::SUBC:
1706 case ISD::SUBE:
1707 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1708 case ISD::SADDO:
1709 case ISD::UADDO:
1710 case ISD::SSUBO:
1711 case ISD::USUBO:
1712 case ISD::SMULO:
1713 case ISD::UMULO:
1714 return LowerXALUO(Op, DAG);
1715 case ISD::FADD:
1716 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1717 case ISD::FSUB:
1718 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1719 case ISD::FMUL:
1720 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1721 case ISD::FDIV:
1722 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1723 case ISD::FP_ROUND:
1724 return LowerFP_ROUND(Op, DAG);
1725 case ISD::FP_EXTEND:
1726 return LowerFP_EXTEND(Op, DAG);
1727 case ISD::FRAMEADDR:
1728 return LowerFRAMEADDR(Op, DAG);
1729 case ISD::RETURNADDR:
1730 return LowerRETURNADDR(Op, DAG);
1731 case ISD::INSERT_VECTOR_ELT:
1732 return LowerINSERT_VECTOR_ELT(Op, DAG);
1733 case ISD::EXTRACT_VECTOR_ELT:
1734 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1735 case ISD::BUILD_VECTOR:
1736 return LowerBUILD_VECTOR(Op, DAG);
1737 case ISD::VECTOR_SHUFFLE:
1738 return LowerVECTOR_SHUFFLE(Op, DAG);
1739 case ISD::EXTRACT_SUBVECTOR:
1740 return LowerEXTRACT_SUBVECTOR(Op, DAG);
1741 case ISD::SRA:
1742 case ISD::SRL:
1743 case ISD::SHL:
1744 return LowerVectorSRA_SRL_SHL(Op, DAG);
1745 case ISD::SHL_PARTS:
1746 return LowerShiftLeftParts(Op, DAG);
1747 case ISD::SRL_PARTS:
1748 case ISD::SRA_PARTS:
1749 return LowerShiftRightParts(Op, DAG);
1750 case ISD::CTPOP:
1751 return LowerCTPOP(Op, DAG);
1752 case ISD::FCOPYSIGN:
1753 return LowerFCOPYSIGN(Op, DAG);
1754 case ISD::AND:
1755 return LowerVectorAND(Op, DAG);
1756 case ISD::OR:
1757 return LowerVectorOR(Op, DAG);
1758 case ISD::XOR:
1759 return LowerXOR(Op, DAG);
1760 case ISD::PREFETCH:
1761 return LowerPREFETCH(Op, DAG);
1762 case ISD::SINT_TO_FP:
1763 case ISD::UINT_TO_FP:
1764 return LowerINT_TO_FP(Op, DAG);
1765 case ISD::FP_TO_SINT:
1766 case ISD::FP_TO_UINT:
1767 return LowerFP_TO_INT(Op, DAG);
1768 case ISD::FSINCOS:
1769 return LowerFSINCOS(Op, DAG);
1770 }
1771}
1772
1773/// getFunctionAlignment - Return the Log2 alignment of this function.
1774unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1775 return 2;
1776}
1777
1778//===----------------------------------------------------------------------===//
1779// Calling Convention Implementation
1780//===----------------------------------------------------------------------===//
1781
1782#include "AArch64GenCallingConv.inc"
1783
1784/// Selects the correct CCAssignFn for a the given CallingConvention
1785/// value.
1786CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1787 bool IsVarArg) const {
1788 switch (CC) {
1789 default:
1790 llvm_unreachable("Unsupported calling convention.");
1791 case CallingConv::WebKit_JS:
1792 return CC_AArch64_WebKit_JS;
1793 case CallingConv::C:
1794 case CallingConv::Fast:
1795 if (!Subtarget->isTargetDarwin())
1796 return CC_AArch64_AAPCS;
1797 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
1798 }
1799}
1800
1801SDValue AArch64TargetLowering::LowerFormalArguments(
1802 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1803 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1804 SmallVectorImpl<SDValue> &InVals) const {
1805 MachineFunction &MF = DAG.getMachineFunction();
1806 MachineFrameInfo *MFI = MF.getFrameInfo();
1807
1808 // Assign locations to all of the incoming arguments.
1809 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00001810 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1811 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00001812
1813 // At this point, Ins[].VT may already be promoted to i32. To correctly
1814 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
1815 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
1816 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
1817 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
1818 // LocVT.
1819 unsigned NumArgs = Ins.size();
1820 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
1821 unsigned CurArgIdx = 0;
1822 for (unsigned i = 0; i != NumArgs; ++i) {
1823 MVT ValVT = Ins[i].VT;
1824 std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
1825 CurArgIdx = Ins[i].OrigArgIndex;
1826
1827 // Get type of the original argument.
1828 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
1829 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
1830 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00001831 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00001832 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00001833 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00001834 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00001835
1836 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
1837 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00001838 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00001839 assert(!Res && "Call operand has unhandled type");
1840 (void)Res;
1841 }
1842 assert(ArgLocs.size() == Ins.size());
1843 SmallVector<SDValue, 16> ArgValues;
1844 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1845 CCValAssign &VA = ArgLocs[i];
1846
1847 if (Ins[i].Flags.isByVal()) {
1848 // Byval is used for HFAs in the PCS, but the system should work in a
1849 // non-compliant manner for larger structs.
1850 EVT PtrTy = getPointerTy();
1851 int Size = Ins[i].Flags.getByValSize();
1852 unsigned NumRegs = (Size + 7) / 8;
1853
1854 // FIXME: This works on big-endian for composite byvals, which are the common
1855 // case. It should also work for fundamental types too.
1856 unsigned FrameIdx =
1857 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
1858 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
1859 InVals.push_back(FrameIdxN);
1860
1861 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00001862 }
1863
1864 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001865 // Arguments stored in registers.
1866 EVT RegVT = VA.getLocVT();
1867
1868 SDValue ArgValue;
1869 const TargetRegisterClass *RC;
1870
1871 if (RegVT == MVT::i32)
1872 RC = &AArch64::GPR32RegClass;
1873 else if (RegVT == MVT::i64)
1874 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00001875 else if (RegVT == MVT::f16)
1876 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00001877 else if (RegVT == MVT::f32)
1878 RC = &AArch64::FPR32RegClass;
1879 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
1880 RC = &AArch64::FPR64RegClass;
1881 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
1882 RC = &AArch64::FPR128RegClass;
1883 else
1884 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1885
1886 // Transform the arguments in physical registers into virtual ones.
1887 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1888 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
1889
1890 // If this is an 8, 16 or 32-bit value, it is really passed promoted
1891 // to 64 bits. Insert an assert[sz]ext to capture this, then
1892 // truncate to the right size.
1893 switch (VA.getLocInfo()) {
1894 default:
1895 llvm_unreachable("Unknown loc info!");
1896 case CCValAssign::Full:
1897 break;
1898 case CCValAssign::BCvt:
1899 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
1900 break;
Tim Northover47e003c2014-05-26 17:21:53 +00001901 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00001902 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00001903 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00001904 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
1905 // nodes after our lowering.
1906 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00001907 break;
1908 }
1909
1910 InVals.push_back(ArgValue);
1911
1912 } else { // VA.isRegLoc()
1913 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
1914 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00001915 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00001916
1917 uint32_t BEAlign = 0;
1918 if (ArgSize < 8 && !Subtarget->isLittleEndian())
1919 BEAlign = 8 - ArgSize;
1920
1921 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
1922
1923 // Create load nodes to retrieve arguments from the stack.
1924 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1925 SDValue ArgValue;
1926
Jiangning Liucc4f38b2014-06-03 03:25:09 +00001927 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00001928 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00001929 MVT MemVT = VA.getValVT();
1930
Tim Northover47e003c2014-05-26 17:21:53 +00001931 switch (VA.getLocInfo()) {
1932 default:
1933 break;
Tim Northover6890add2014-06-03 13:54:53 +00001934 case CCValAssign::BCvt:
1935 MemVT = VA.getLocVT();
1936 break;
Tim Northover47e003c2014-05-26 17:21:53 +00001937 case CCValAssign::SExt:
1938 ExtType = ISD::SEXTLOAD;
1939 break;
1940 case CCValAssign::ZExt:
1941 ExtType = ISD::ZEXTLOAD;
1942 break;
1943 case CCValAssign::AExt:
1944 ExtType = ISD::EXTLOAD;
1945 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00001946 }
1947
Tim Northover6890add2014-06-03 13:54:53 +00001948 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
Tim Northover47e003c2014-05-26 17:21:53 +00001949 MachinePointerInfo::getFixedStack(FI),
Louis Gerbarg67474e32014-07-31 21:45:05 +00001950 MemVT, false, false, false, 0, nullptr);
Tim Northover47e003c2014-05-26 17:21:53 +00001951
Tim Northover3b0846e2014-05-24 12:50:23 +00001952 InVals.push_back(ArgValue);
1953 }
1954 }
1955
1956 // varargs
1957 if (isVarArg) {
1958 if (!Subtarget->isTargetDarwin()) {
1959 // The AAPCS variadic function ABI is identical to the non-variadic
1960 // one. As a result there may be more arguments in registers and we should
1961 // save them for future reference.
1962 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
1963 }
1964
1965 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1966 // This will point to the next argument passed via stack.
1967 unsigned StackOffset = CCInfo.getNextStackOffset();
1968 // We currently pass all varargs at 8-byte alignment.
1969 StackOffset = ((StackOffset + 7) & ~7);
1970 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
1971 }
1972
1973 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1974 unsigned StackArgSize = CCInfo.getNextStackOffset();
1975 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1976 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1977 // This is a non-standard ABI so by fiat I say we're allowed to make full
1978 // use of the stack area to be popped, which must be aligned to 16 bytes in
1979 // any case:
1980 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1981
1982 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1983 // a multiple of 16.
1984 FuncInfo->setArgumentStackToRestore(StackArgSize);
1985
1986 // This realignment carries over to the available bytes below. Our own
1987 // callers will guarantee the space is free by giving an aligned value to
1988 // CALLSEQ_START.
1989 }
1990 // Even if we're not expected to free up the space, it's useful to know how
1991 // much is there while considering tail calls (because we can reuse it).
1992 FuncInfo->setBytesInStackArgArea(StackArgSize);
1993
1994 return Chain;
1995}
1996
1997void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
1998 SelectionDAG &DAG, SDLoc DL,
1999 SDValue &Chain) const {
2000 MachineFunction &MF = DAG.getMachineFunction();
2001 MachineFrameInfo *MFI = MF.getFrameInfo();
2002 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2003
2004 SmallVector<SDValue, 8> MemOps;
2005
2006 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2007 AArch64::X3, AArch64::X4, AArch64::X5,
2008 AArch64::X6, AArch64::X7 };
2009 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
2010 unsigned FirstVariadicGPR =
2011 CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
2012
2013 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2014 int GPRIdx = 0;
2015 if (GPRSaveSize != 0) {
2016 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2017
2018 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2019
2020 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2021 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2022 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2023 SDValue Store =
2024 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2025 MachinePointerInfo::getStack(i * 8), false, false, 0);
2026 MemOps.push_back(Store);
2027 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2028 DAG.getConstant(8, getPointerTy()));
2029 }
2030 }
2031 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2032 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2033
2034 if (Subtarget->hasFPARMv8()) {
2035 static const MCPhysReg FPRArgRegs[] = {
2036 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2037 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2038 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
2039 unsigned FirstVariadicFPR =
2040 CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
2041
2042 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2043 int FPRIdx = 0;
2044 if (FPRSaveSize != 0) {
2045 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2046
2047 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2048
2049 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2050 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2051 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2052
2053 SDValue Store =
2054 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2055 MachinePointerInfo::getStack(i * 16), false, false, 0);
2056 MemOps.push_back(Store);
2057 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2058 DAG.getConstant(16, getPointerTy()));
2059 }
2060 }
2061 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2062 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2063 }
2064
2065 if (!MemOps.empty()) {
2066 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2067 }
2068}
2069
2070/// LowerCallResult - Lower the result values of a call into the
2071/// appropriate copies out of appropriate physical registers.
2072SDValue AArch64TargetLowering::LowerCallResult(
2073 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2074 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2075 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2076 SDValue ThisVal) const {
2077 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2078 ? RetCC_AArch64_WebKit_JS
2079 : RetCC_AArch64_AAPCS;
2080 // Assign locations to each value returned by this call.
2081 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002082 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2083 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002084 CCInfo.AnalyzeCallResult(Ins, RetCC);
2085
2086 // Copy all of the result registers out of their specified physreg.
2087 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2088 CCValAssign VA = RVLocs[i];
2089
2090 // Pass 'this' value directly from the argument to return value, to avoid
2091 // reg unit interference
2092 if (i == 0 && isThisReturn) {
2093 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2094 "unexpected return calling convention register assignment");
2095 InVals.push_back(ThisVal);
2096 continue;
2097 }
2098
2099 SDValue Val =
2100 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2101 Chain = Val.getValue(1);
2102 InFlag = Val.getValue(2);
2103
2104 switch (VA.getLocInfo()) {
2105 default:
2106 llvm_unreachable("Unknown loc info!");
2107 case CCValAssign::Full:
2108 break;
2109 case CCValAssign::BCvt:
2110 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2111 break;
2112 }
2113
2114 InVals.push_back(Val);
2115 }
2116
2117 return Chain;
2118}
2119
2120bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2121 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2122 bool isCalleeStructRet, bool isCallerStructRet,
2123 const SmallVectorImpl<ISD::OutputArg> &Outs,
2124 const SmallVectorImpl<SDValue> &OutVals,
2125 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2126 // For CallingConv::C this function knows whether the ABI needs
2127 // changing. That's not true for other conventions so they will have to opt in
2128 // manually.
2129 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2130 return false;
2131
2132 const MachineFunction &MF = DAG.getMachineFunction();
2133 const Function *CallerF = MF.getFunction();
2134 CallingConv::ID CallerCC = CallerF->getCallingConv();
2135 bool CCMatch = CallerCC == CalleeCC;
2136
2137 // Byval parameters hand the function a pointer directly into the stack area
2138 // we want to reuse during a tail call. Working around this *is* possible (see
2139 // X86) but less efficient and uglier in LowerCall.
2140 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2141 e = CallerF->arg_end();
2142 i != e; ++i)
2143 if (i->hasByValAttr())
2144 return false;
2145
2146 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2147 if (IsTailCallConvention(CalleeCC) && CCMatch)
2148 return true;
2149 return false;
2150 }
2151
Oliver Stannard12993dd2014-08-18 12:42:15 +00002152 // Externally-defined functions with weak linkage should not be
2153 // tail-called on AArch64 when the OS does not support dynamic
2154 // pre-emption of symbols, as the AAELF spec requires normal calls
2155 // to undefined weak functions to be replaced with a NOP or jump to the
2156 // next instruction. The behaviour of branch instructions in this
2157 // situation (as used for tail calls) is implementation-defined, so we
2158 // cannot rely on the linker replacing the tail call with a return.
2159 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2160 const GlobalValue *GV = G->getGlobal();
2161 if (GV->hasExternalWeakLinkage())
2162 return false;
2163 }
2164
Tim Northover3b0846e2014-05-24 12:50:23 +00002165 // Now we search for cases where we can use a tail call without changing the
2166 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2167 // concept.
2168
2169 // I want anyone implementing a new calling convention to think long and hard
2170 // about this assert.
2171 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2172 "Unexpected variadic calling convention");
2173
2174 if (isVarArg && !Outs.empty()) {
2175 // At least two cases here: if caller is fastcc then we can't have any
2176 // memory arguments (we'd be expected to clean up the stack afterwards). If
2177 // caller is C then we could potentially use its argument area.
2178
2179 // FIXME: for now we take the most conservative of these in both cases:
2180 // disallow all variadic memory operands.
2181 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002182 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2183 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002184
2185 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2186 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2187 if (!ArgLocs[i].isRegLoc())
2188 return false;
2189 }
2190
2191 // If the calling conventions do not match, then we'd better make sure the
2192 // results are returned in the same way as what the caller expects.
2193 if (!CCMatch) {
2194 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002195 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2196 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002197 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2198
2199 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002200 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2201 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002202 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2203
2204 if (RVLocs1.size() != RVLocs2.size())
2205 return false;
2206 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2207 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2208 return false;
2209 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2210 return false;
2211 if (RVLocs1[i].isRegLoc()) {
2212 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2213 return false;
2214 } else {
2215 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2216 return false;
2217 }
2218 }
2219 }
2220
2221 // Nothing more to check if the callee is taking no arguments
2222 if (Outs.empty())
2223 return true;
2224
2225 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002226 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2227 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002228
2229 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2230
2231 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2232
2233 // If the stack arguments for this call would fit into our own save area then
2234 // the call can be made tail.
2235 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2236}
2237
2238SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2239 SelectionDAG &DAG,
2240 MachineFrameInfo *MFI,
2241 int ClobberedFI) const {
2242 SmallVector<SDValue, 8> ArgChains;
2243 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2244 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2245
2246 // Include the original chain at the beginning of the list. When this is
2247 // used by target LowerCall hooks, this helps legalize find the
2248 // CALLSEQ_BEGIN node.
2249 ArgChains.push_back(Chain);
2250
2251 // Add a chain value for each stack argument corresponding
2252 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2253 UE = DAG.getEntryNode().getNode()->use_end();
2254 U != UE; ++U)
2255 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2256 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2257 if (FI->getIndex() < 0) {
2258 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2259 int64_t InLastByte = InFirstByte;
2260 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2261
2262 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2263 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2264 ArgChains.push_back(SDValue(L, 1));
2265 }
2266
2267 // Build a tokenfactor for all the chains.
2268 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2269}
2270
2271bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2272 bool TailCallOpt) const {
2273 return CallCC == CallingConv::Fast && TailCallOpt;
2274}
2275
2276bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2277 return CallCC == CallingConv::Fast;
2278}
2279
2280/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2281/// and add input and output parameter nodes.
2282SDValue
2283AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2284 SmallVectorImpl<SDValue> &InVals) const {
2285 SelectionDAG &DAG = CLI.DAG;
2286 SDLoc &DL = CLI.DL;
2287 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2288 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2289 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2290 SDValue Chain = CLI.Chain;
2291 SDValue Callee = CLI.Callee;
2292 bool &IsTailCall = CLI.IsTailCall;
2293 CallingConv::ID CallConv = CLI.CallConv;
2294 bool IsVarArg = CLI.IsVarArg;
2295
2296 MachineFunction &MF = DAG.getMachineFunction();
2297 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2298 bool IsThisReturn = false;
2299
2300 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2301 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2302 bool IsSibCall = false;
2303
2304 if (IsTailCall) {
2305 // Check if it's really possible to do a tail call.
2306 IsTailCall = isEligibleForTailCallOptimization(
2307 Callee, CallConv, IsVarArg, IsStructRet,
2308 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2309 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2310 report_fatal_error("failed to perform tail call elimination on a call "
2311 "site marked musttail");
2312
2313 // A sibling call is one where we're under the usual C ABI and not planning
2314 // to change that but can still do a tail call:
2315 if (!TailCallOpt && IsTailCall)
2316 IsSibCall = true;
2317
2318 if (IsTailCall)
2319 ++NumTailCalls;
2320 }
2321
2322 // Analyze operands of the call, assigning locations to each operand.
2323 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002324 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2325 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002326
2327 if (IsVarArg) {
2328 // Handle fixed and variable vector arguments differently.
2329 // Variable vector arguments always go into memory.
2330 unsigned NumArgs = Outs.size();
2331
2332 for (unsigned i = 0; i != NumArgs; ++i) {
2333 MVT ArgVT = Outs[i].VT;
2334 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2335 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2336 /*IsVarArg=*/ !Outs[i].IsFixed);
2337 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2338 assert(!Res && "Call operand has unhandled type");
2339 (void)Res;
2340 }
2341 } else {
2342 // At this point, Outs[].VT may already be promoted to i32. To correctly
2343 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2344 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2345 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2346 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2347 // LocVT.
2348 unsigned NumArgs = Outs.size();
2349 for (unsigned i = 0; i != NumArgs; ++i) {
2350 MVT ValVT = Outs[i].VT;
2351 // Get type of the original argument.
2352 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2353 /*AllowUnknown*/ true);
2354 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2355 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2356 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002357 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002358 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002359 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002360 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002361
2362 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002363 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002364 assert(!Res && "Call operand has unhandled type");
2365 (void)Res;
2366 }
2367 }
2368
2369 // Get a count of how many bytes are to be pushed on the stack.
2370 unsigned NumBytes = CCInfo.getNextStackOffset();
2371
2372 if (IsSibCall) {
2373 // Since we're not changing the ABI to make this a tail call, the memory
2374 // operands are already available in the caller's incoming argument space.
2375 NumBytes = 0;
2376 }
2377
2378 // FPDiff is the byte offset of the call's argument area from the callee's.
2379 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2380 // by this amount for a tail call. In a sibling call it must be 0 because the
2381 // caller will deallocate the entire stack and the callee still expects its
2382 // arguments to begin at SP+0. Completely unused for non-tail calls.
2383 int FPDiff = 0;
2384
2385 if (IsTailCall && !IsSibCall) {
2386 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2387
2388 // Since callee will pop argument stack as a tail call, we must keep the
2389 // popped size 16-byte aligned.
2390 NumBytes = RoundUpToAlignment(NumBytes, 16);
2391
2392 // FPDiff will be negative if this tail call requires more space than we
2393 // would automatically have in our incoming argument space. Positive if we
2394 // can actually shrink the stack.
2395 FPDiff = NumReusableBytes - NumBytes;
2396
2397 // The stack pointer must be 16-byte aligned at all times it's used for a
2398 // memory operation, which in practice means at *all* times and in
2399 // particular across call boundaries. Therefore our own arguments started at
2400 // a 16-byte aligned SP and the delta applied for the tail call should
2401 // satisfy the same constraint.
2402 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2403 }
2404
2405 // Adjust the stack pointer for the new arguments...
2406 // These operations are automatically eliminated by the prolog/epilog pass
2407 if (!IsSibCall)
2408 Chain =
2409 DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2410
2411 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2412
2413 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2414 SmallVector<SDValue, 8> MemOpChains;
2415
2416 // Walk the register/memloc assignments, inserting copies/loads.
2417 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2418 ++i, ++realArgIdx) {
2419 CCValAssign &VA = ArgLocs[i];
2420 SDValue Arg = OutVals[realArgIdx];
2421 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2422
2423 // Promote the value if needed.
2424 switch (VA.getLocInfo()) {
2425 default:
2426 llvm_unreachable("Unknown loc info!");
2427 case CCValAssign::Full:
2428 break;
2429 case CCValAssign::SExt:
2430 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2431 break;
2432 case CCValAssign::ZExt:
2433 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2434 break;
2435 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002436 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2437 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2438 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2439 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2440 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002441 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2442 break;
2443 case CCValAssign::BCvt:
2444 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2445 break;
2446 case CCValAssign::FPExt:
2447 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2448 break;
2449 }
2450
2451 if (VA.isRegLoc()) {
2452 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2453 assert(VA.getLocVT() == MVT::i64 &&
2454 "unexpected calling convention register assignment");
2455 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2456 "unexpected use of 'returned'");
2457 IsThisReturn = true;
2458 }
2459 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2460 } else {
2461 assert(VA.isMemLoc());
2462
2463 SDValue DstAddr;
2464 MachinePointerInfo DstInfo;
2465
2466 // FIXME: This works on big-endian for composite byvals, which are the
2467 // common case. It should also work for fundamental types too.
2468 uint32_t BEAlign = 0;
2469 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00002470 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00002471 OpSize = (OpSize + 7) / 8;
2472 if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
2473 if (OpSize < 8)
2474 BEAlign = 8 - OpSize;
2475 }
2476 unsigned LocMemOffset = VA.getLocMemOffset();
2477 int32_t Offset = LocMemOffset + BEAlign;
2478 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2479 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2480
2481 if (IsTailCall) {
2482 Offset = Offset + FPDiff;
2483 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2484
2485 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2486 DstInfo = MachinePointerInfo::getFixedStack(FI);
2487
2488 // Make sure any stack arguments overlapping with where we're storing
2489 // are loaded before this eventual operation. Otherwise they'll be
2490 // clobbered.
2491 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2492 } else {
2493 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2494
2495 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2496 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2497 }
2498
2499 if (Outs[i].Flags.isByVal()) {
2500 SDValue SizeNode =
2501 DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2502 SDValue Cpy = DAG.getMemcpy(
2503 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Jim Grosbach8e810ba2014-08-11 22:42:28 +00002504 /*isVol = */ false,
2505 /*AlwaysInline = */ false, DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00002506
2507 MemOpChains.push_back(Cpy);
2508 } else {
2509 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2510 // promoted to a legal register type i32, we should truncate Arg back to
2511 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00002512 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2513 VA.getValVT() == MVT::i16)
2514 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00002515
2516 SDValue Store =
2517 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2518 MemOpChains.push_back(Store);
2519 }
2520 }
2521 }
2522
2523 if (!MemOpChains.empty())
2524 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2525
2526 // Build a sequence of copy-to-reg nodes chained together with token chain
2527 // and flag operands which copy the outgoing args into the appropriate regs.
2528 SDValue InFlag;
2529 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2530 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2531 RegsToPass[i].second, InFlag);
2532 InFlag = Chain.getValue(1);
2533 }
2534
2535 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2536 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2537 // node so that legalize doesn't hack it.
2538 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2539 Subtarget->isTargetMachO()) {
2540 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2541 const GlobalValue *GV = G->getGlobal();
2542 bool InternalLinkage = GV->hasInternalLinkage();
2543 if (InternalLinkage)
2544 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2545 else {
2546 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2547 AArch64II::MO_GOT);
2548 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2549 }
2550 } else if (ExternalSymbolSDNode *S =
2551 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2552 const char *Sym = S->getSymbol();
2553 Callee =
2554 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2555 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2556 }
2557 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2558 const GlobalValue *GV = G->getGlobal();
2559 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2560 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2561 const char *Sym = S->getSymbol();
2562 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2563 }
2564
2565 // We don't usually want to end the call-sequence here because we would tidy
2566 // the frame up *after* the call, however in the ABI-changing tail-call case
2567 // we've carefully laid out the parameters so that when sp is reset they'll be
2568 // in the correct location.
2569 if (IsTailCall && !IsSibCall) {
2570 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2571 DAG.getIntPtrConstant(0, true), InFlag, DL);
2572 InFlag = Chain.getValue(1);
2573 }
2574
2575 std::vector<SDValue> Ops;
2576 Ops.push_back(Chain);
2577 Ops.push_back(Callee);
2578
2579 if (IsTailCall) {
2580 // Each tail call may have to adjust the stack by a different amount, so
2581 // this information must travel along with the operation for eventual
2582 // consumption by emitEpilogue.
2583 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2584 }
2585
2586 // Add argument registers to the end of the list so that they are known live
2587 // into the call.
2588 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2589 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2590 RegsToPass[i].second.getValueType()));
2591
2592 // Add a register mask operand representing the call-preserved registers.
2593 const uint32_t *Mask;
Eric Christopherd9134482014-08-04 21:25:23 +00002594 const TargetRegisterInfo *TRI =
2595 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002596 const AArch64RegisterInfo *ARI =
2597 static_cast<const AArch64RegisterInfo *>(TRI);
2598 if (IsThisReturn) {
2599 // For 'this' returns, use the X0-preserving mask if applicable
2600 Mask = ARI->getThisReturnPreservedMask(CallConv);
2601 if (!Mask) {
2602 IsThisReturn = false;
2603 Mask = ARI->getCallPreservedMask(CallConv);
2604 }
2605 } else
2606 Mask = ARI->getCallPreservedMask(CallConv);
2607
2608 assert(Mask && "Missing call preserved mask for calling convention");
2609 Ops.push_back(DAG.getRegisterMask(Mask));
2610
2611 if (InFlag.getNode())
2612 Ops.push_back(InFlag);
2613
2614 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2615
2616 // If we're doing a tall call, use a TC_RETURN here rather than an
2617 // actual call instruction.
2618 if (IsTailCall)
2619 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2620
2621 // Returns a chain and a flag for retval copy to use.
2622 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2623 InFlag = Chain.getValue(1);
2624
2625 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2626 ? RoundUpToAlignment(NumBytes, 16)
2627 : 0;
2628
2629 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2630 DAG.getIntPtrConstant(CalleePopBytes, true),
2631 InFlag, DL);
2632 if (!Ins.empty())
2633 InFlag = Chain.getValue(1);
2634
2635 // Handle result values, copying them out of physregs into vregs that we
2636 // return.
2637 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2638 InVals, IsThisReturn,
2639 IsThisReturn ? OutVals[0] : SDValue());
2640}
2641
2642bool AArch64TargetLowering::CanLowerReturn(
2643 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2644 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2645 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2646 ? RetCC_AArch64_WebKit_JS
2647 : RetCC_AArch64_AAPCS;
2648 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002649 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00002650 return CCInfo.CheckReturn(Outs, RetCC);
2651}
2652
2653SDValue
2654AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2655 bool isVarArg,
2656 const SmallVectorImpl<ISD::OutputArg> &Outs,
2657 const SmallVectorImpl<SDValue> &OutVals,
2658 SDLoc DL, SelectionDAG &DAG) const {
2659 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2660 ? RetCC_AArch64_WebKit_JS
2661 : RetCC_AArch64_AAPCS;
2662 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002663 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2664 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002665 CCInfo.AnalyzeReturn(Outs, RetCC);
2666
2667 // Copy the result values into the output registers.
2668 SDValue Flag;
2669 SmallVector<SDValue, 4> RetOps(1, Chain);
2670 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2671 ++i, ++realRVLocIdx) {
2672 CCValAssign &VA = RVLocs[i];
2673 assert(VA.isRegLoc() && "Can only return in registers!");
2674 SDValue Arg = OutVals[realRVLocIdx];
2675
2676 switch (VA.getLocInfo()) {
2677 default:
2678 llvm_unreachable("Unknown loc info!");
2679 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00002680 if (Outs[i].ArgVT == MVT::i1) {
2681 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2682 // value. This is strictly redundant on Darwin (which uses "zeroext
2683 // i1"), but will be optimised out before ISel.
2684 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2685 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2686 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002687 break;
2688 case CCValAssign::BCvt:
2689 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2690 break;
2691 }
2692
2693 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2694 Flag = Chain.getValue(1);
2695 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2696 }
2697
2698 RetOps[0] = Chain; // Update chain.
2699
2700 // Add the flag if we have it.
2701 if (Flag.getNode())
2702 RetOps.push_back(Flag);
2703
2704 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2705}
2706
2707//===----------------------------------------------------------------------===//
2708// Other Lowering Code
2709//===----------------------------------------------------------------------===//
2710
2711SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2712 SelectionDAG &DAG) const {
2713 EVT PtrVT = getPointerTy();
2714 SDLoc DL(Op);
2715 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2716 unsigned char OpFlags =
2717 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2718
2719 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2720 "unexpected offset in global node");
2721
2722 // This also catched the large code model case for Darwin.
2723 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2724 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2725 // FIXME: Once remat is capable of dealing with instructions with register
2726 // operands, expand this into two nodes instead of using a wrapper node.
2727 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2728 }
2729
2730 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2731 const unsigned char MO_NC = AArch64II::MO_NC;
2732 return DAG.getNode(
2733 AArch64ISD::WrapperLarge, DL, PtrVT,
2734 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2735 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2736 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2737 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2738 } else {
2739 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2740 // the only correct model on Darwin.
2741 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2742 OpFlags | AArch64II::MO_PAGE);
2743 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2744 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2745
2746 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2747 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2748 }
2749}
2750
2751/// \brief Convert a TLS address reference into the correct sequence of loads
2752/// and calls to compute the variable's address (for Darwin, currently) and
2753/// return an SDValue containing the final node.
2754
2755/// Darwin only has one TLS scheme which must be capable of dealing with the
2756/// fully general situation, in the worst case. This means:
2757/// + "extern __thread" declaration.
2758/// + Defined in a possibly unknown dynamic library.
2759///
2760/// The general system is that each __thread variable has a [3 x i64] descriptor
2761/// which contains information used by the runtime to calculate the address. The
2762/// only part of this the compiler needs to know about is the first xword, which
2763/// contains a function pointer that must be called with the address of the
2764/// entire descriptor in "x0".
2765///
2766/// Since this descriptor may be in a different unit, in general even the
2767/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2768/// is:
2769/// adrp x0, _var@TLVPPAGE
2770/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
2771/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
2772/// ; the function pointer
2773/// blr x1 ; Uses descriptor address in x0
2774/// ; Address of _var is now in x0.
2775///
2776/// If the address of _var's descriptor *is* known to the linker, then it can
2777/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
2778/// a slight efficiency gain.
2779SDValue
2780AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
2781 SelectionDAG &DAG) const {
2782 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2783
2784 SDLoc DL(Op);
2785 MVT PtrVT = getPointerTy();
2786 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2787
2788 SDValue TLVPAddr =
2789 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2790 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
2791
2792 // The first entry in the descriptor is a function pointer that we must call
2793 // to obtain the address of the variable.
2794 SDValue Chain = DAG.getEntryNode();
2795 SDValue FuncTLVGet =
2796 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
2797 false, true, true, 8);
2798 Chain = FuncTLVGet.getValue(1);
2799
2800 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2801 MFI->setAdjustsStack(true);
2802
2803 // TLS calls preserve all registers except those that absolutely must be
2804 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2805 // silly).
Eric Christopherd9134482014-08-04 21:25:23 +00002806 const TargetRegisterInfo *TRI =
2807 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002808 const AArch64RegisterInfo *ARI =
2809 static_cast<const AArch64RegisterInfo *>(TRI);
2810 const uint32_t *Mask = ARI->getTLSCallPreservedMask();
2811
2812 // Finally, we can make the call. This is just a degenerate version of a
2813 // normal AArch64 call node: x0 takes the address of the descriptor, and
2814 // returns the address of the variable in this thread.
2815 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
2816 Chain =
2817 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2818 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
2819 DAG.getRegisterMask(Mask), Chain.getValue(1));
2820 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
2821}
2822
2823/// When accessing thread-local variables under either the general-dynamic or
2824/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
2825/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
2826/// is a function pointer to carry out the resolution. This function takes the
2827/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
2828/// other registers (except LR, NZCV) are preserved.
2829///
2830/// Thus, the ideal call sequence on AArch64 is:
2831///
2832/// adrp x0, :tlsdesc:thread_var
2833/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
2834/// add x0, x0, :tlsdesc_lo12:thread_var
2835/// .tlsdesccall thread_var
2836/// blr x8
2837/// (TPIDR_EL0 offset now in x0).
2838///
2839/// The ".tlsdesccall" directive instructs the assembler to insert a particular
2840/// relocation to help the linker relax this sequence if it turns out to be too
2841/// conservative.
2842///
2843/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
2844/// is harmless.
2845SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
2846 SDValue DescAddr, SDLoc DL,
2847 SelectionDAG &DAG) const {
2848 EVT PtrVT = getPointerTy();
2849
2850 // The function we need to call is simply the first entry in the GOT for this
2851 // descriptor, load it in preparation.
2852 SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
2853
2854 // TLS calls preserve all registers except those that absolutely must be
2855 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2856 // silly).
Eric Christopherd9134482014-08-04 21:25:23 +00002857 const TargetRegisterInfo *TRI =
2858 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002859 const AArch64RegisterInfo *ARI =
2860 static_cast<const AArch64RegisterInfo *>(TRI);
2861 const uint32_t *Mask = ARI->getTLSCallPreservedMask();
2862
2863 // The function takes only one argument: the address of the descriptor itself
2864 // in X0.
2865 SDValue Glue, Chain;
2866 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2867 Glue = Chain.getValue(1);
2868
2869 // We're now ready to populate the argument list, as with a normal call:
2870 SmallVector<SDValue, 6> Ops;
2871 Ops.push_back(Chain);
2872 Ops.push_back(Func);
2873 Ops.push_back(SymAddr);
2874 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2875 Ops.push_back(DAG.getRegisterMask(Mask));
2876 Ops.push_back(Glue);
2877
2878 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2879 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
2880 Glue = Chain.getValue(1);
2881
2882 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2883}
2884
2885SDValue
2886AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
2887 SelectionDAG &DAG) const {
2888 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
2889 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2890 "ELF TLS only supported in small memory model");
2891 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2892
2893 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2894
2895 SDValue TPOff;
2896 EVT PtrVT = getPointerTy();
2897 SDLoc DL(Op);
2898 const GlobalValue *GV = GA->getGlobal();
2899
2900 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2901
2902 if (Model == TLSModel::LocalExec) {
2903 SDValue HiVar = DAG.getTargetGlobalAddress(
2904 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
2905 SDValue LoVar = DAG.getTargetGlobalAddress(
2906 GV, DL, PtrVT, 0,
2907 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
2908
2909 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
2910 DAG.getTargetConstant(16, MVT::i32)),
2911 0);
2912 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
2913 DAG.getTargetConstant(0, MVT::i32)),
2914 0);
2915 } else if (Model == TLSModel::InitialExec) {
2916 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2917 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
2918 } else if (Model == TLSModel::LocalDynamic) {
2919 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2920 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2921 // the beginning of the module's TLS region, followed by a DTPREL offset
2922 // calculation.
2923
2924 // These accesses will need deduplicating if there's more than one.
2925 AArch64FunctionInfo *MFI =
2926 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
2927 MFI->incNumLocalDynamicTLSAccesses();
2928
2929 // Accesses used in this sequence go via the TLS descriptor which lives in
2930 // the GOT. Prepare an address we can use to handle this.
2931 SDValue HiDesc = DAG.getTargetExternalSymbol(
2932 "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
2933 SDValue LoDesc = DAG.getTargetExternalSymbol(
2934 "_TLS_MODULE_BASE_", PtrVT,
2935 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2936
2937 // First argument to the descriptor call is the address of the descriptor
2938 // itself.
2939 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
2940 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
2941
2942 // The call needs a relocation too for linker relaxation. It doesn't make
2943 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
2944 // the address.
2945 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2946 AArch64II::MO_TLS);
2947
2948 // Now we can calculate the offset from TPIDR_EL0 to this module's
2949 // thread-local area.
2950 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
2951
2952 // Now use :dtprel_whatever: operations to calculate this variable's offset
2953 // in its thread-storage area.
2954 SDValue HiVar = DAG.getTargetGlobalAddress(
2955 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
2956 SDValue LoVar = DAG.getTargetGlobalAddress(
2957 GV, DL, MVT::i64, 0,
2958 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
2959
2960 SDValue DTPOff =
2961 SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
2962 DAG.getTargetConstant(16, MVT::i32)),
2963 0);
2964 DTPOff =
2965 SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
2966 DAG.getTargetConstant(0, MVT::i32)),
2967 0);
2968
2969 TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
2970 } else if (Model == TLSModel::GeneralDynamic) {
2971 // Accesses used in this sequence go via the TLS descriptor which lives in
2972 // the GOT. Prepare an address we can use to handle this.
2973 SDValue HiDesc = DAG.getTargetGlobalAddress(
2974 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
2975 SDValue LoDesc = DAG.getTargetGlobalAddress(
2976 GV, DL, PtrVT, 0,
2977 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2978
2979 // First argument to the descriptor call is the address of the descriptor
2980 // itself.
2981 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
2982 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
2983
2984 // The call needs a relocation too for linker relaxation. It doesn't make
2985 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
2986 // the address.
2987 SDValue SymAddr =
2988 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2989
2990 // Finally we can make a call to calculate the offset from tpidr_el0.
2991 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
2992 } else
2993 llvm_unreachable("Unsupported ELF TLS access model");
2994
2995 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2996}
2997
2998SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2999 SelectionDAG &DAG) const {
3000 if (Subtarget->isTargetDarwin())
3001 return LowerDarwinGlobalTLSAddress(Op, DAG);
3002 else if (Subtarget->isTargetELF())
3003 return LowerELFGlobalTLSAddress(Op, DAG);
3004
3005 llvm_unreachable("Unexpected platform trying to use TLS");
3006}
3007SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3008 SDValue Chain = Op.getOperand(0);
3009 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3010 SDValue LHS = Op.getOperand(2);
3011 SDValue RHS = Op.getOperand(3);
3012 SDValue Dest = Op.getOperand(4);
3013 SDLoc dl(Op);
3014
3015 // Handle f128 first, since lowering it will result in comparing the return
3016 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3017 // is expecting to deal with.
3018 if (LHS.getValueType() == MVT::f128) {
3019 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3020
3021 // If softenSetCCOperands returned a scalar, we need to compare the result
3022 // against zero to select between true and false values.
3023 if (!RHS.getNode()) {
3024 RHS = DAG.getConstant(0, LHS.getValueType());
3025 CC = ISD::SETNE;
3026 }
3027 }
3028
3029 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3030 // instruction.
3031 unsigned Opc = LHS.getOpcode();
3032 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3033 cast<ConstantSDNode>(RHS)->isOne() &&
3034 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3035 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3036 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3037 "Unexpected condition code.");
3038 // Only lower legal XALUO ops.
3039 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3040 return SDValue();
3041
3042 // The actual operation with overflow check.
3043 AArch64CC::CondCode OFCC;
3044 SDValue Value, Overflow;
3045 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3046
3047 if (CC == ISD::SETNE)
3048 OFCC = getInvertedCondCode(OFCC);
3049 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3050
3051 return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
3052 CCVal, Overflow);
3053 }
3054
3055 if (LHS.getValueType().isInteger()) {
3056 assert((LHS.getValueType() == RHS.getValueType()) &&
3057 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3058
3059 // If the RHS of the comparison is zero, we can potentially fold this
3060 // to a specialized branch.
3061 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3062 if (RHSC && RHSC->getZExtValue() == 0) {
3063 if (CC == ISD::SETEQ) {
3064 // See if we can use a TBZ to fold in an AND as well.
3065 // TBZ has a smaller branch displacement than CBZ. If the offset is
3066 // out of bounds, a late MI-layer pass rewrites branches.
3067 // 403.gcc is an example that hits this case.
3068 if (LHS.getOpcode() == ISD::AND &&
3069 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3070 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3071 SDValue Test = LHS.getOperand(0);
3072 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003073 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3074 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3075 }
3076
3077 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3078 } else if (CC == ISD::SETNE) {
3079 // See if we can use a TBZ to fold in an AND as well.
3080 // TBZ has a smaller branch displacement than CBZ. If the offset is
3081 // out of bounds, a late MI-layer pass rewrites branches.
3082 // 403.gcc is an example that hits this case.
3083 if (LHS.getOpcode() == ISD::AND &&
3084 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3085 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3086 SDValue Test = LHS.getOperand(0);
3087 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003088 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3089 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3090 }
3091
3092 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003093 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3094 // Don't combine AND since emitComparison converts the AND to an ANDS
3095 // (a.k.a. TST) and the test in the test bit and branch instruction
3096 // becomes redundant. This would also increase register pressure.
3097 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3098 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3099 DAG.getConstant(Mask, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003100 }
3101 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003102 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3103 LHS.getOpcode() != ISD::AND) {
3104 // Don't combine AND since emitComparison converts the AND to an ANDS
3105 // (a.k.a. TST) and the test in the test bit and branch instruction
3106 // becomes redundant. This would also increase register pressure.
3107 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3108 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3109 DAG.getConstant(Mask, MVT::i64), Dest);
3110 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003111
3112 SDValue CCVal;
3113 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3114 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3115 Cmp);
3116 }
3117
3118 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3119
3120 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3121 // clean. Some of them require two branches to implement.
3122 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3123 AArch64CC::CondCode CC1, CC2;
3124 changeFPCCToAArch64CC(CC, CC1, CC2);
3125 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3126 SDValue BR1 =
3127 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3128 if (CC2 != AArch64CC::AL) {
3129 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3130 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3131 Cmp);
3132 }
3133
3134 return BR1;
3135}
3136
3137SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3138 SelectionDAG &DAG) const {
3139 EVT VT = Op.getValueType();
3140 SDLoc DL(Op);
3141
3142 SDValue In1 = Op.getOperand(0);
3143 SDValue In2 = Op.getOperand(1);
3144 EVT SrcVT = In2.getValueType();
3145 if (SrcVT != VT) {
3146 if (SrcVT == MVT::f32 && VT == MVT::f64)
3147 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3148 else if (SrcVT == MVT::f64 && VT == MVT::f32)
3149 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
3150 else
3151 // FIXME: Src type is different, bail out for now. Can VT really be a
3152 // vector type?
3153 return SDValue();
3154 }
3155
3156 EVT VecVT;
3157 EVT EltVT;
3158 SDValue EltMask, VecVal1, VecVal2;
3159 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3160 EltVT = MVT::i32;
3161 VecVT = MVT::v4i32;
3162 EltMask = DAG.getConstant(0x80000000ULL, EltVT);
3163
3164 if (!VT.isVector()) {
3165 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3166 DAG.getUNDEF(VecVT), In1);
3167 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3168 DAG.getUNDEF(VecVT), In2);
3169 } else {
3170 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3171 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3172 }
3173 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3174 EltVT = MVT::i64;
3175 VecVT = MVT::v2i64;
3176
3177 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3178 // immediate moves cannot materialize that in a single instruction for
3179 // 64-bit elements. Instead, materialize zero and then negate it.
3180 EltMask = DAG.getConstant(0, EltVT);
3181
3182 if (!VT.isVector()) {
3183 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3184 DAG.getUNDEF(VecVT), In1);
3185 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3186 DAG.getUNDEF(VecVT), In2);
3187 } else {
3188 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3189 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3190 }
3191 } else {
3192 llvm_unreachable("Invalid type for copysign!");
3193 }
3194
3195 std::vector<SDValue> BuildVectorOps;
3196 for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
3197 BuildVectorOps.push_back(EltMask);
3198
3199 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
3200
3201 // If we couldn't materialize the mask above, then the mask vector will be
3202 // the zero vector, and we need to negate it here.
3203 if (VT == MVT::f64 || VT == MVT::v2f64) {
3204 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3205 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3206 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3207 }
3208
3209 SDValue Sel =
3210 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3211
3212 if (VT == MVT::f32)
3213 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3214 else if (VT == MVT::f64)
3215 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3216 else
3217 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3218}
3219
3220SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3221 if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
3222 AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
3223 return SDValue();
3224
3225 // While there is no integer popcount instruction, it can
3226 // be more efficiently lowered to the following sequence that uses
3227 // AdvSIMD registers/instructions as long as the copies to/from
3228 // the AdvSIMD registers are cheap.
3229 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3230 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3231 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3232 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3233 SDValue Val = Op.getOperand(0);
3234 SDLoc DL(Op);
3235 EVT VT = Op.getValueType();
3236 SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
3237
3238 SDValue VecVal;
3239 if (VT == MVT::i32) {
3240 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
3241 VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
3242 VecVal);
3243 } else {
3244 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3245 }
3246
3247 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
3248 SDValue UaddLV = DAG.getNode(
3249 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3250 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3251
3252 if (VT == MVT::i64)
3253 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3254 return UaddLV;
3255}
3256
3257SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3258
3259 if (Op.getValueType().isVector())
3260 return LowerVSETCC(Op, DAG);
3261
3262 SDValue LHS = Op.getOperand(0);
3263 SDValue RHS = Op.getOperand(1);
3264 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3265 SDLoc dl(Op);
3266
3267 // We chose ZeroOrOneBooleanContents, so use zero and one.
3268 EVT VT = Op.getValueType();
3269 SDValue TVal = DAG.getConstant(1, VT);
3270 SDValue FVal = DAG.getConstant(0, VT);
3271
3272 // Handle f128 first, since one possible outcome is a normal integer
3273 // comparison which gets picked up by the next if statement.
3274 if (LHS.getValueType() == MVT::f128) {
3275 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3276
3277 // If softenSetCCOperands returned a scalar, use it.
3278 if (!RHS.getNode()) {
3279 assert(LHS.getValueType() == Op.getValueType() &&
3280 "Unexpected setcc expansion!");
3281 return LHS;
3282 }
3283 }
3284
3285 if (LHS.getValueType().isInteger()) {
3286 SDValue CCVal;
3287 SDValue Cmp =
3288 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3289
3290 // Note that we inverted the condition above, so we reverse the order of
3291 // the true and false operands here. This will allow the setcc to be
3292 // matched to a single CSINC instruction.
3293 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3294 }
3295
3296 // Now we know we're dealing with FP values.
3297 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3298
3299 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3300 // and do the comparison.
3301 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3302
3303 AArch64CC::CondCode CC1, CC2;
3304 changeFPCCToAArch64CC(CC, CC1, CC2);
3305 if (CC2 == AArch64CC::AL) {
3306 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3307 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3308
3309 // Note that we inverted the condition above, so we reverse the order of
3310 // the true and false operands here. This will allow the setcc to be
3311 // matched to a single CSINC instruction.
3312 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3313 } else {
3314 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3315 // totally clean. Some of them require two CSELs to implement. As is in
3316 // this case, we emit the first CSEL and then emit a second using the output
3317 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3318
3319 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3320 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3321 SDValue CS1 =
3322 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3323
3324 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3325 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3326 }
3327}
3328
3329/// A SELECT_CC operation is really some kind of max or min if both values being
3330/// compared are, in some sense, equal to the results in either case. However,
3331/// it is permissible to compare f32 values and produce directly extended f64
3332/// values.
3333///
3334/// Extending the comparison operands would also be allowed, but is less likely
3335/// to happen in practice since their use is right here. Note that truncate
3336/// operations would *not* be semantically equivalent.
3337static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3338 if (Cmp == Result)
3339 return true;
3340
3341 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3342 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3343 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3344 Result.getValueType() == MVT::f64) {
3345 bool Lossy;
3346 APFloat CmpVal = CCmp->getValueAPF();
3347 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3348 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3349 }
3350
3351 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3352}
3353
3354SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3355 SelectionDAG &DAG) const {
3356 SDValue CC = Op->getOperand(0);
3357 SDValue TVal = Op->getOperand(1);
3358 SDValue FVal = Op->getOperand(2);
3359 SDLoc DL(Op);
3360
3361 unsigned Opc = CC.getOpcode();
3362 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3363 // instruction.
3364 if (CC.getResNo() == 1 &&
3365 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3366 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3367 // Only lower legal XALUO ops.
3368 if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3369 return SDValue();
3370
3371 AArch64CC::CondCode OFCC;
3372 SDValue Value, Overflow;
3373 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3374 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3375
3376 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3377 CCVal, Overflow);
3378 }
3379
3380 if (CC.getOpcode() == ISD::SETCC)
3381 return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3382 cast<CondCodeSDNode>(CC.getOperand(2))->get());
3383 else
3384 return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3385 FVal, ISD::SETNE);
3386}
3387
3388SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3389 SelectionDAG &DAG) const {
3390 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3391 SDValue LHS = Op.getOperand(0);
3392 SDValue RHS = Op.getOperand(1);
3393 SDValue TVal = Op.getOperand(2);
3394 SDValue FVal = Op.getOperand(3);
3395 SDLoc dl(Op);
3396
3397 // Handle f128 first, because it will result in a comparison of some RTLIB
3398 // call result against zero.
3399 if (LHS.getValueType() == MVT::f128) {
3400 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3401
3402 // If softenSetCCOperands returned a scalar, we need to compare the result
3403 // against zero to select between true and false values.
3404 if (!RHS.getNode()) {
3405 RHS = DAG.getConstant(0, LHS.getValueType());
3406 CC = ISD::SETNE;
3407 }
3408 }
3409
3410 // Handle integers first.
3411 if (LHS.getValueType().isInteger()) {
3412 assert((LHS.getValueType() == RHS.getValueType()) &&
3413 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3414
3415 unsigned Opcode = AArch64ISD::CSEL;
3416
3417 // If both the TVal and the FVal are constants, see if we can swap them in
3418 // order to for a CSINV or CSINC out of them.
3419 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3420 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3421
3422 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3423 std::swap(TVal, FVal);
3424 std::swap(CTVal, CFVal);
3425 CC = ISD::getSetCCInverse(CC, true);
3426 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3427 std::swap(TVal, FVal);
3428 std::swap(CTVal, CFVal);
3429 CC = ISD::getSetCCInverse(CC, true);
3430 } else if (TVal.getOpcode() == ISD::XOR) {
3431 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3432 // with a CSINV rather than a CSEL.
3433 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3434
3435 if (CVal && CVal->isAllOnesValue()) {
3436 std::swap(TVal, FVal);
3437 std::swap(CTVal, CFVal);
3438 CC = ISD::getSetCCInverse(CC, true);
3439 }
3440 } else if (TVal.getOpcode() == ISD::SUB) {
3441 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3442 // that we can match with a CSNEG rather than a CSEL.
3443 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3444
3445 if (CVal && CVal->isNullValue()) {
3446 std::swap(TVal, FVal);
3447 std::swap(CTVal, CFVal);
3448 CC = ISD::getSetCCInverse(CC, true);
3449 }
3450 } else if (CTVal && CFVal) {
3451 const int64_t TrueVal = CTVal->getSExtValue();
3452 const int64_t FalseVal = CFVal->getSExtValue();
3453 bool Swap = false;
3454
3455 // If both TVal and FVal are constants, see if FVal is the
3456 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3457 // instead of a CSEL in that case.
3458 if (TrueVal == ~FalseVal) {
3459 Opcode = AArch64ISD::CSINV;
3460 } else if (TrueVal == -FalseVal) {
3461 Opcode = AArch64ISD::CSNEG;
3462 } else if (TVal.getValueType() == MVT::i32) {
3463 // If our operands are only 32-bit wide, make sure we use 32-bit
3464 // arithmetic for the check whether we can use CSINC. This ensures that
3465 // the addition in the check will wrap around properly in case there is
3466 // an overflow (which would not be the case if we do the check with
3467 // 64-bit arithmetic).
3468 const uint32_t TrueVal32 = CTVal->getZExtValue();
3469 const uint32_t FalseVal32 = CFVal->getZExtValue();
3470
3471 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3472 Opcode = AArch64ISD::CSINC;
3473
3474 if (TrueVal32 > FalseVal32) {
3475 Swap = true;
3476 }
3477 }
3478 // 64-bit check whether we can use CSINC.
3479 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3480 Opcode = AArch64ISD::CSINC;
3481
3482 if (TrueVal > FalseVal) {
3483 Swap = true;
3484 }
3485 }
3486
3487 // Swap TVal and FVal if necessary.
3488 if (Swap) {
3489 std::swap(TVal, FVal);
3490 std::swap(CTVal, CFVal);
3491 CC = ISD::getSetCCInverse(CC, true);
3492 }
3493
3494 if (Opcode != AArch64ISD::CSEL) {
3495 // Drop FVal since we can get its value by simply inverting/negating
3496 // TVal.
3497 FVal = TVal;
3498 }
3499 }
3500
3501 SDValue CCVal;
3502 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3503
3504 EVT VT = Op.getValueType();
3505 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3506 }
3507
3508 // Now we know we're dealing with FP values.
3509 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3510 assert(LHS.getValueType() == RHS.getValueType());
3511 EVT VT = Op.getValueType();
3512
3513 // Try to match this select into a max/min operation, which have dedicated
3514 // opcode in the instruction set.
3515 // FIXME: This is not correct in the presence of NaNs, so we only enable this
3516 // in no-NaNs mode.
3517 if (getTargetMachine().Options.NoNaNsFPMath) {
3518 SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3519 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3520 selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3521 CC = ISD::getSetCCSwappedOperands(CC);
3522 std::swap(MinMaxLHS, MinMaxRHS);
3523 }
3524
3525 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3526 selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3527 switch (CC) {
3528 default:
3529 break;
3530 case ISD::SETGT:
3531 case ISD::SETGE:
3532 case ISD::SETUGT:
3533 case ISD::SETUGE:
3534 case ISD::SETOGT:
3535 case ISD::SETOGE:
3536 return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3537 break;
3538 case ISD::SETLT:
3539 case ISD::SETLE:
3540 case ISD::SETULT:
3541 case ISD::SETULE:
3542 case ISD::SETOLT:
3543 case ISD::SETOLE:
3544 return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3545 break;
3546 }
3547 }
3548 }
3549
3550 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3551 // and do the comparison.
3552 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3553
3554 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3555 // clean. Some of them require two CSELs to implement.
3556 AArch64CC::CondCode CC1, CC2;
3557 changeFPCCToAArch64CC(CC, CC1, CC2);
3558 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3559 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3560
3561 // If we need a second CSEL, emit it, using the output of the first as the
3562 // RHS. We're effectively OR'ing the two CC's together.
3563 if (CC2 != AArch64CC::AL) {
3564 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3565 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3566 }
3567
3568 // Otherwise, return the output of the first CSEL.
3569 return CS1;
3570}
3571
3572SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3573 SelectionDAG &DAG) const {
3574 // Jump table entries as PC relative offsets. No additional tweaking
3575 // is necessary here. Just get the address of the jump table.
3576 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3577 EVT PtrVT = getPointerTy();
3578 SDLoc DL(Op);
3579
3580 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3581 !Subtarget->isTargetMachO()) {
3582 const unsigned char MO_NC = AArch64II::MO_NC;
3583 return DAG.getNode(
3584 AArch64ISD::WrapperLarge, DL, PtrVT,
3585 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3586 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3587 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3588 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3589 AArch64II::MO_G0 | MO_NC));
3590 }
3591
3592 SDValue Hi =
3593 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3594 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3595 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3596 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3597 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3598}
3599
3600SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3601 SelectionDAG &DAG) const {
3602 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3603 EVT PtrVT = getPointerTy();
3604 SDLoc DL(Op);
3605
3606 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3607 // Use the GOT for the large code model on iOS.
3608 if (Subtarget->isTargetMachO()) {
3609 SDValue GotAddr = DAG.getTargetConstantPool(
3610 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3611 AArch64II::MO_GOT);
3612 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3613 }
3614
3615 const unsigned char MO_NC = AArch64II::MO_NC;
3616 return DAG.getNode(
3617 AArch64ISD::WrapperLarge, DL, PtrVT,
3618 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3619 CP->getOffset(), AArch64II::MO_G3),
3620 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3621 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3622 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3623 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3624 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3625 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3626 } else {
3627 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3628 // ELF, the only valid one on Darwin.
3629 SDValue Hi =
3630 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3631 CP->getOffset(), AArch64II::MO_PAGE);
3632 SDValue Lo = DAG.getTargetConstantPool(
3633 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3634 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3635
3636 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3637 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3638 }
3639}
3640
3641SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3642 SelectionDAG &DAG) const {
3643 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3644 EVT PtrVT = getPointerTy();
3645 SDLoc DL(Op);
3646 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3647 !Subtarget->isTargetMachO()) {
3648 const unsigned char MO_NC = AArch64II::MO_NC;
3649 return DAG.getNode(
3650 AArch64ISD::WrapperLarge, DL, PtrVT,
3651 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3652 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3653 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3654 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3655 } else {
3656 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3657 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3658 AArch64II::MO_NC);
3659 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3660 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3661 }
3662}
3663
3664SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3665 SelectionDAG &DAG) const {
3666 AArch64FunctionInfo *FuncInfo =
3667 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3668
3669 SDLoc DL(Op);
3670 SDValue FR =
3671 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3672 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3673 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3674 MachinePointerInfo(SV), false, false, 0);
3675}
3676
3677SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3678 SelectionDAG &DAG) const {
3679 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3680 // Standard, section B.3.
3681 MachineFunction &MF = DAG.getMachineFunction();
3682 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3683 SDLoc DL(Op);
3684
3685 SDValue Chain = Op.getOperand(0);
3686 SDValue VAList = Op.getOperand(1);
3687 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3688 SmallVector<SDValue, 4> MemOps;
3689
3690 // void *__stack at offset 0
3691 SDValue Stack =
3692 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3693 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3694 MachinePointerInfo(SV), false, false, 8));
3695
3696 // void *__gr_top at offset 8
3697 int GPRSize = FuncInfo->getVarArgsGPRSize();
3698 if (GPRSize > 0) {
3699 SDValue GRTop, GRTopAddr;
3700
3701 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3702 DAG.getConstant(8, getPointerTy()));
3703
3704 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3705 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3706 DAG.getConstant(GPRSize, getPointerTy()));
3707
3708 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3709 MachinePointerInfo(SV, 8), false, false, 8));
3710 }
3711
3712 // void *__vr_top at offset 16
3713 int FPRSize = FuncInfo->getVarArgsFPRSize();
3714 if (FPRSize > 0) {
3715 SDValue VRTop, VRTopAddr;
3716 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3717 DAG.getConstant(16, getPointerTy()));
3718
3719 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3720 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3721 DAG.getConstant(FPRSize, getPointerTy()));
3722
3723 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3724 MachinePointerInfo(SV, 16), false, false, 8));
3725 }
3726
3727 // int __gr_offs at offset 24
3728 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3729 DAG.getConstant(24, getPointerTy()));
3730 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3731 GROffsAddr, MachinePointerInfo(SV, 24), false,
3732 false, 4));
3733
3734 // int __vr_offs at offset 28
3735 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3736 DAG.getConstant(28, getPointerTy()));
3737 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3738 VROffsAddr, MachinePointerInfo(SV, 28), false,
3739 false, 4));
3740
3741 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3742}
3743
3744SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3745 SelectionDAG &DAG) const {
3746 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3747 : LowerAAPCS_VASTART(Op, DAG);
3748}
3749
3750SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3751 SelectionDAG &DAG) const {
3752 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3753 // pointer.
3754 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3755 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3756 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3757
3758 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3759 Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3760 8, false, false, MachinePointerInfo(DestSV),
3761 MachinePointerInfo(SrcSV));
3762}
3763
3764SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3765 assert(Subtarget->isTargetDarwin() &&
3766 "automatic va_arg instruction only works on Darwin");
3767
3768 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3769 EVT VT = Op.getValueType();
3770 SDLoc DL(Op);
3771 SDValue Chain = Op.getOperand(0);
3772 SDValue Addr = Op.getOperand(1);
3773 unsigned Align = Op.getConstantOperandVal(3);
3774
3775 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3776 MachinePointerInfo(V), false, false, false, 0);
3777 Chain = VAList.getValue(1);
3778
3779 if (Align > 8) {
3780 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3781 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3782 DAG.getConstant(Align - 1, getPointerTy()));
3783 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
3784 DAG.getConstant(-(int64_t)Align, getPointerTy()));
3785 }
3786
3787 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
3788 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
3789
3790 // Scalar integer and FP values smaller than 64 bits are implicitly extended
3791 // up to 64 bits. At the very least, we have to increase the striding of the
3792 // vaargs list to match this, and for FP values we need to introduce
3793 // FP_ROUND nodes as well.
3794 if (VT.isInteger() && !VT.isVector())
3795 ArgSize = 8;
3796 bool NeedFPTrunc = false;
3797 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
3798 ArgSize = 8;
3799 NeedFPTrunc = true;
3800 }
3801
3802 // Increment the pointer, VAList, to the next vaarg
3803 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3804 DAG.getConstant(ArgSize, getPointerTy()));
3805 // Store the incremented VAList to the legalized pointer
3806 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
3807 false, false, 0);
3808
3809 // Load the actual argument out of the pointer VAList
3810 if (NeedFPTrunc) {
3811 // Load the value as an f64.
3812 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
3813 MachinePointerInfo(), false, false, false, 0);
3814 // Round the value down to an f32.
3815 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
3816 DAG.getIntPtrConstant(1));
3817 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
3818 // Merge the rounded value with the chain output of the load.
3819 return DAG.getMergeValues(Ops, DL);
3820 }
3821
3822 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
3823 false, false, 0);
3824}
3825
3826SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
3827 SelectionDAG &DAG) const {
3828 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3829 MFI->setFrameAddressIsTaken(true);
3830
3831 EVT VT = Op.getValueType();
3832 SDLoc DL(Op);
3833 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3834 SDValue FrameAddr =
3835 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
3836 while (Depth--)
3837 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
3838 MachinePointerInfo(), false, false, false, 0);
3839 return FrameAddr;
3840}
3841
3842// FIXME? Maybe this could be a TableGen attribute on some registers and
3843// this table could be generated automatically from RegInfo.
3844unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
3845 EVT VT) const {
3846 unsigned Reg = StringSwitch<unsigned>(RegName)
3847 .Case("sp", AArch64::SP)
3848 .Default(0);
3849 if (Reg)
3850 return Reg;
3851 report_fatal_error("Invalid register name global variable");
3852}
3853
3854SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
3855 SelectionDAG &DAG) const {
3856 MachineFunction &MF = DAG.getMachineFunction();
3857 MachineFrameInfo *MFI = MF.getFrameInfo();
3858 MFI->setReturnAddressIsTaken(true);
3859
3860 EVT VT = Op.getValueType();
3861 SDLoc DL(Op);
3862 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3863 if (Depth) {
3864 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3865 SDValue Offset = DAG.getConstant(8, getPointerTy());
3866 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3867 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3868 MachinePointerInfo(), false, false, false, 0);
3869 }
3870
3871 // Return LR, which contains the return address. Mark it an implicit live-in.
3872 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
3873 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
3874}
3875
3876/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3877/// i64 values and take a 2 x i64 value to shift plus a shift amount.
3878SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
3879 SelectionDAG &DAG) const {
3880 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3881 EVT VT = Op.getValueType();
3882 unsigned VTBits = VT.getSizeInBits();
3883 SDLoc dl(Op);
3884 SDValue ShOpLo = Op.getOperand(0);
3885 SDValue ShOpHi = Op.getOperand(1);
3886 SDValue ShAmt = Op.getOperand(2);
3887 SDValue ARMcc;
3888 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3889
3890 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3891
3892 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
3893 DAG.getConstant(VTBits, MVT::i64), ShAmt);
3894 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3895 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
3896 DAG.getConstant(VTBits, MVT::i64));
3897 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3898
3899 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
3900 ISD::SETGE, dl, DAG);
3901 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
3902
3903 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3904 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3905 SDValue Lo =
3906 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
3907
3908 // AArch64 shifts larger than the register width are wrapped rather than
3909 // clamped, so we can't just emit "hi >> x".
3910 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3911 SDValue TrueValHi = Opc == ISD::SRA
3912 ? DAG.getNode(Opc, dl, VT, ShOpHi,
3913 DAG.getConstant(VTBits - 1, MVT::i64))
3914 : DAG.getConstant(0, VT);
3915 SDValue Hi =
3916 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
3917
3918 SDValue Ops[2] = { Lo, Hi };
3919 return DAG.getMergeValues(Ops, dl);
3920}
3921
3922/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3923/// i64 values and take a 2 x i64 value to shift plus a shift amount.
3924SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
3925 SelectionDAG &DAG) const {
3926 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3927 EVT VT = Op.getValueType();
3928 unsigned VTBits = VT.getSizeInBits();
3929 SDLoc dl(Op);
3930 SDValue ShOpLo = Op.getOperand(0);
3931 SDValue ShOpHi = Op.getOperand(1);
3932 SDValue ShAmt = Op.getOperand(2);
3933 SDValue ARMcc;
3934
3935 assert(Op.getOpcode() == ISD::SHL_PARTS);
3936 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
3937 DAG.getConstant(VTBits, MVT::i64), ShAmt);
3938 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3939 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
3940 DAG.getConstant(VTBits, MVT::i64));
3941 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3942 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3943
3944 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3945
3946 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
3947 ISD::SETGE, dl, DAG);
3948 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
3949 SDValue Hi =
3950 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
3951
3952 // AArch64 shifts of larger than register sizes are wrapped rather than
3953 // clamped, so we can't just emit "lo << a" if a is too big.
3954 SDValue TrueValLo = DAG.getConstant(0, VT);
3955 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3956 SDValue Lo =
3957 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
3958
3959 SDValue Ops[2] = { Lo, Hi };
3960 return DAG.getMergeValues(Ops, dl);
3961}
3962
3963bool AArch64TargetLowering::isOffsetFoldingLegal(
3964 const GlobalAddressSDNode *GA) const {
3965 // The AArch64 target doesn't support folding offsets into global addresses.
3966 return false;
3967}
3968
3969bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3970 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
3971 // FIXME: We should be able to handle f128 as well with a clever lowering.
3972 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
3973 return true;
3974
3975 if (VT == MVT::f64)
3976 return AArch64_AM::getFP64Imm(Imm) != -1;
3977 else if (VT == MVT::f32)
3978 return AArch64_AM::getFP32Imm(Imm) != -1;
3979 return false;
3980}
3981
3982//===----------------------------------------------------------------------===//
3983// AArch64 Optimization Hooks
3984//===----------------------------------------------------------------------===//
3985
3986//===----------------------------------------------------------------------===//
3987// AArch64 Inline Assembly Support
3988//===----------------------------------------------------------------------===//
3989
3990// Table of Constraints
3991// TODO: This is the current set of constraints supported by ARM for the
3992// compiler, not all of them may make sense, e.g. S may be difficult to support.
3993//
3994// r - A general register
3995// w - An FP/SIMD register of some size in the range v0-v31
3996// x - An FP/SIMD register of some size in the range v0-v15
3997// I - Constant that can be used with an ADD instruction
3998// J - Constant that can be used with a SUB instruction
3999// K - Constant that can be used with a 32-bit logical instruction
4000// L - Constant that can be used with a 64-bit logical instruction
4001// M - Constant that can be used as a 32-bit MOV immediate
4002// N - Constant that can be used as a 64-bit MOV immediate
4003// Q - A memory reference with base register and no offset
4004// S - A symbolic address
4005// Y - Floating point constant zero
4006// Z - Integer constant zero
4007//
4008// Note that general register operands will be output using their 64-bit x
4009// register name, whatever the size of the variable, unless the asm operand
4010// is prefixed by the %w modifier. Floating-point and SIMD register operands
4011// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4012// %q modifier.
4013
4014/// getConstraintType - Given a constraint letter, return the type of
4015/// constraint it is for this target.
4016AArch64TargetLowering::ConstraintType
4017AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4018 if (Constraint.size() == 1) {
4019 switch (Constraint[0]) {
4020 default:
4021 break;
4022 case 'z':
4023 return C_Other;
4024 case 'x':
4025 case 'w':
4026 return C_RegisterClass;
4027 // An address with a single base register. Due to the way we
4028 // currently handle addresses it is the same as 'r'.
4029 case 'Q':
4030 return C_Memory;
4031 }
4032 }
4033 return TargetLowering::getConstraintType(Constraint);
4034}
4035
4036/// Examine constraint type and operand type and determine a weight value.
4037/// This object must already have been set up with the operand type
4038/// and the current alternative constraint selected.
4039TargetLowering::ConstraintWeight
4040AArch64TargetLowering::getSingleConstraintMatchWeight(
4041 AsmOperandInfo &info, const char *constraint) const {
4042 ConstraintWeight weight = CW_Invalid;
4043 Value *CallOperandVal = info.CallOperandVal;
4044 // If we don't have a value, we can't do a match,
4045 // but allow it at the lowest weight.
4046 if (!CallOperandVal)
4047 return CW_Default;
4048 Type *type = CallOperandVal->getType();
4049 // Look at the constraint type.
4050 switch (*constraint) {
4051 default:
4052 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4053 break;
4054 case 'x':
4055 case 'w':
4056 if (type->isFloatingPointTy() || type->isVectorTy())
4057 weight = CW_Register;
4058 break;
4059 case 'z':
4060 weight = CW_Constant;
4061 break;
4062 }
4063 return weight;
4064}
4065
4066std::pair<unsigned, const TargetRegisterClass *>
4067AArch64TargetLowering::getRegForInlineAsmConstraint(
4068 const std::string &Constraint, MVT VT) const {
4069 if (Constraint.size() == 1) {
4070 switch (Constraint[0]) {
4071 case 'r':
4072 if (VT.getSizeInBits() == 64)
4073 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4074 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4075 case 'w':
4076 if (VT == MVT::f32)
4077 return std::make_pair(0U, &AArch64::FPR32RegClass);
4078 if (VT.getSizeInBits() == 64)
4079 return std::make_pair(0U, &AArch64::FPR64RegClass);
4080 if (VT.getSizeInBits() == 128)
4081 return std::make_pair(0U, &AArch64::FPR128RegClass);
4082 break;
4083 // The instructions that this constraint is designed for can
4084 // only take 128-bit registers so just use that regclass.
4085 case 'x':
4086 if (VT.getSizeInBits() == 128)
4087 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4088 break;
4089 }
4090 }
4091 if (StringRef("{cc}").equals_lower(Constraint))
4092 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4093
4094 // Use the default implementation in TargetLowering to convert the register
4095 // constraint into a member of a register class.
4096 std::pair<unsigned, const TargetRegisterClass *> Res;
4097 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4098
4099 // Not found as a standard register?
4100 if (!Res.second) {
4101 unsigned Size = Constraint.size();
4102 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4103 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4104 const std::string Reg =
4105 std::string(&Constraint[2], &Constraint[Size - 1]);
4106 int RegNo = atoi(Reg.c_str());
4107 if (RegNo >= 0 && RegNo <= 31) {
4108 // v0 - v31 are aliases of q0 - q31.
4109 // By default we'll emit v0-v31 for this unless there's a modifier where
4110 // we'll emit the correct register as well.
4111 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4112 Res.second = &AArch64::FPR128RegClass;
4113 }
4114 }
4115 }
4116
4117 return Res;
4118}
4119
4120/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4121/// vector. If it is invalid, don't add anything to Ops.
4122void AArch64TargetLowering::LowerAsmOperandForConstraint(
4123 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4124 SelectionDAG &DAG) const {
4125 SDValue Result;
4126
4127 // Currently only support length 1 constraints.
4128 if (Constraint.length() != 1)
4129 return;
4130
4131 char ConstraintLetter = Constraint[0];
4132 switch (ConstraintLetter) {
4133 default:
4134 break;
4135
4136 // This set of constraints deal with valid constants for various instructions.
4137 // Validate and return a target constant for them if we can.
4138 case 'z': {
4139 // 'z' maps to xzr or wzr so it needs an input of 0.
4140 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4141 if (!C || C->getZExtValue() != 0)
4142 return;
4143
4144 if (Op.getValueType() == MVT::i64)
4145 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4146 else
4147 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4148 break;
4149 }
4150
4151 case 'I':
4152 case 'J':
4153 case 'K':
4154 case 'L':
4155 case 'M':
4156 case 'N':
4157 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4158 if (!C)
4159 return;
4160
4161 // Grab the value and do some validation.
4162 uint64_t CVal = C->getZExtValue();
4163 switch (ConstraintLetter) {
4164 // The I constraint applies only to simple ADD or SUB immediate operands:
4165 // i.e. 0 to 4095 with optional shift by 12
4166 // The J constraint applies only to ADD or SUB immediates that would be
4167 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4168 // instruction [or vice versa], in other words -1 to -4095 with optional
4169 // left shift by 12.
4170 case 'I':
4171 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4172 break;
4173 return;
4174 case 'J': {
4175 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004176 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4177 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004178 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004179 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004180 return;
4181 }
4182 // The K and L constraints apply *only* to logical immediates, including
4183 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4184 // been removed and MOV should be used). So these constraints have to
4185 // distinguish between bit patterns that are valid 32-bit or 64-bit
4186 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4187 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4188 // versa.
4189 case 'K':
4190 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4191 break;
4192 return;
4193 case 'L':
4194 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4195 break;
4196 return;
4197 // The M and N constraints are a superset of K and L respectively, for use
4198 // with the MOV (immediate) alias. As well as the logical immediates they
4199 // also match 32 or 64-bit immediates that can be loaded either using a
4200 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4201 // (M) or 64-bit 0x1234000000000000 (N) etc.
4202 // As a note some of this code is liberally stolen from the asm parser.
4203 case 'M': {
4204 if (!isUInt<32>(CVal))
4205 return;
4206 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4207 break;
4208 if ((CVal & 0xFFFF) == CVal)
4209 break;
4210 if ((CVal & 0xFFFF0000ULL) == CVal)
4211 break;
4212 uint64_t NCVal = ~(uint32_t)CVal;
4213 if ((NCVal & 0xFFFFULL) == NCVal)
4214 break;
4215 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4216 break;
4217 return;
4218 }
4219 case 'N': {
4220 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4221 break;
4222 if ((CVal & 0xFFFFULL) == CVal)
4223 break;
4224 if ((CVal & 0xFFFF0000ULL) == CVal)
4225 break;
4226 if ((CVal & 0xFFFF00000000ULL) == CVal)
4227 break;
4228 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4229 break;
4230 uint64_t NCVal = ~CVal;
4231 if ((NCVal & 0xFFFFULL) == NCVal)
4232 break;
4233 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4234 break;
4235 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4236 break;
4237 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4238 break;
4239 return;
4240 }
4241 default:
4242 return;
4243 }
4244
4245 // All assembler immediates are 64-bit integers.
4246 Result = DAG.getTargetConstant(CVal, MVT::i64);
4247 break;
4248 }
4249
4250 if (Result.getNode()) {
4251 Ops.push_back(Result);
4252 return;
4253 }
4254
4255 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4256}
4257
4258//===----------------------------------------------------------------------===//
4259// AArch64 Advanced SIMD Support
4260//===----------------------------------------------------------------------===//
4261
4262/// WidenVector - Given a value in the V64 register class, produce the
4263/// equivalent value in the V128 register class.
4264static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4265 EVT VT = V64Reg.getValueType();
4266 unsigned NarrowSize = VT.getVectorNumElements();
4267 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4268 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4269 SDLoc DL(V64Reg);
4270
4271 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4272 V64Reg, DAG.getConstant(0, MVT::i32));
4273}
4274
4275/// getExtFactor - Determine the adjustment factor for the position when
4276/// generating an "extract from vector registers" instruction.
4277static unsigned getExtFactor(SDValue &V) {
4278 EVT EltType = V.getValueType().getVectorElementType();
4279 return EltType.getSizeInBits() / 8;
4280}
4281
4282/// NarrowVector - Given a value in the V128 register class, produce the
4283/// equivalent value in the V64 register class.
4284static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4285 EVT VT = V128Reg.getValueType();
4286 unsigned WideSize = VT.getVectorNumElements();
4287 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4288 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4289 SDLoc DL(V128Reg);
4290
4291 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4292}
4293
4294// Gather data to see if the operation can be modelled as a
4295// shuffle in combination with VEXTs.
4296SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4297 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004298 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004299 SDLoc dl(Op);
4300 EVT VT = Op.getValueType();
4301 unsigned NumElts = VT.getVectorNumElements();
4302
Tim Northover7324e842014-07-24 15:39:55 +00004303 struct ShuffleSourceInfo {
4304 SDValue Vec;
4305 unsigned MinElt;
4306 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004307
Tim Northover7324e842014-07-24 15:39:55 +00004308 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4309 // be compatible with the shuffle we intend to construct. As a result
4310 // ShuffleVec will be some sliding window into the original Vec.
4311 SDValue ShuffleVec;
4312
4313 // Code should guarantee that element i in Vec starts at element "WindowBase
4314 // + i * WindowScale in ShuffleVec".
4315 int WindowBase;
4316 int WindowScale;
4317
4318 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4319 ShuffleSourceInfo(SDValue Vec)
4320 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4321 WindowScale(1) {}
4322 };
4323
4324 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4325 // node.
4326 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004327 for (unsigned i = 0; i < NumElts; ++i) {
4328 SDValue V = Op.getOperand(i);
4329 if (V.getOpcode() == ISD::UNDEF)
4330 continue;
4331 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4332 // A shuffle can only come from building a vector from various
4333 // elements of other vectors.
4334 return SDValue();
4335 }
4336
Tim Northover7324e842014-07-24 15:39:55 +00004337 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004338 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004339 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4340 if (Source == Sources.end())
4341 Sources.push_back(ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004342
Tim Northover7324e842014-07-24 15:39:55 +00004343 // Update the minimum and maximum lane number seen.
4344 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4345 Source->MinElt = std::min(Source->MinElt, EltNo);
4346 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004347 }
4348
4349 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004350 // are involved.
4351 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004352 return SDValue();
4353
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004354 // Find out the smallest element size among result and two sources, and use
4355 // it as element size to build the shuffle_vector.
4356 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004357 for (auto &Source : Sources) {
4358 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004359 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4360 SmallestEltTy = SrcEltTy;
4361 }
4362 }
4363 unsigned ResMultiplier =
4364 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004365 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4366 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004367
Tim Northover7324e842014-07-24 15:39:55 +00004368 // If the source vector is too wide or too narrow, we may nevertheless be able
4369 // to construct a compatible shuffle either by concatenating it with UNDEF or
4370 // extracting a suitable range of elements.
4371 for (auto &Src : Sources) {
4372 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004373
Tim Northover7324e842014-07-24 15:39:55 +00004374 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004375 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004376
4377 // This stage of the search produces a source with the same element type as
4378 // the original, but with a total width matching the BUILD_VECTOR output.
4379 EVT EltVT = SrcVT.getVectorElementType();
4380 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
4381 VT.getSizeInBits() / EltVT.getSizeInBits());
4382
4383 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4384 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004385 // We can pad out the smaller vector for free, so if it's part of a
4386 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004387 Src.ShuffleVec =
4388 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4389 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004390 continue;
4391 }
4392
Tim Northover7324e842014-07-24 15:39:55 +00004393 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004394
Tim Northover7324e842014-07-24 15:39:55 +00004395 if (Src.MaxElt - Src.MinElt >= NumElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004396 // Span too large for a VEXT to cope
4397 return SDValue();
4398 }
4399
Tim Northover7324e842014-07-24 15:39:55 +00004400 if (Src.MinElt >= NumElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004401 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004402 Src.ShuffleVec =
4403 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4404 DAG.getIntPtrConstant(NumElts));
4405 Src.WindowBase = -NumElts;
4406 } else if (Src.MaxElt < NumElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004407 // The extraction can just take the first half
Tim Northover7324e842014-07-24 15:39:55 +00004408 Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4409 Src.ShuffleVec, DAG.getIntPtrConstant(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00004410 } else {
4411 // An actual VEXT is needed
Tim Northover7324e842014-07-24 15:39:55 +00004412 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4413 Src.ShuffleVec, DAG.getIntPtrConstant(0));
4414 SDValue VEXTSrc2 =
4415 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4416 DAG.getIntPtrConstant(NumElts));
4417 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4418
4419 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004420 VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004421 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004422 }
4423 }
4424
Tim Northover7324e842014-07-24 15:39:55 +00004425 // Another possible incompatibility occurs from the vector element types. We
4426 // can fix this by bitcasting the source vectors to the same type we intend
4427 // for the shuffle.
4428 for (auto &Src : Sources) {
4429 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4430 if (SrcEltTy == SmallestEltTy)
4431 continue;
4432 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4433 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4434 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4435 Src.WindowBase *= Src.WindowScale;
4436 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004437
Tim Northover7324e842014-07-24 15:39:55 +00004438 // Final sanity check before we try to actually produce a shuffle.
4439 DEBUG(
4440 for (auto Src : Sources)
4441 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4442 );
4443
4444 // The stars all align, our next step is to produce the mask for the shuffle.
4445 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4446 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004447 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004448 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004449 if (Entry.getOpcode() == ISD::UNDEF)
4450 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004451
Tim Northover7324e842014-07-24 15:39:55 +00004452 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4453 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4454
4455 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4456 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4457 // segment.
4458 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4459 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4460 VT.getVectorElementType().getSizeInBits());
4461 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4462
4463 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4464 // starting at the appropriate offset.
4465 int *LaneMask = &Mask[i * ResMultiplier];
4466
4467 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4468 ExtractBase += NumElts * (Src - Sources.begin());
4469 for (int j = 0; j < LanesDefined; ++j)
4470 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004471 }
4472
4473 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004474 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4475 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004476
Tim Northover7324e842014-07-24 15:39:55 +00004477 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4478 for (unsigned i = 0; i < Sources.size(); ++i)
4479 ShuffleOps[i] = Sources[i].ShuffleVec;
4480
4481 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4482 ShuffleOps[1], &Mask[0]);
4483 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004484}
4485
4486// check if an EXT instruction can handle the shuffle mask when the
4487// vector sources of the shuffle are the same.
4488static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4489 unsigned NumElts = VT.getVectorNumElements();
4490
4491 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4492 if (M[0] < 0)
4493 return false;
4494
4495 Imm = M[0];
4496
4497 // If this is a VEXT shuffle, the immediate value is the index of the first
4498 // element. The other shuffle indices must be the successive elements after
4499 // the first one.
4500 unsigned ExpectedElt = Imm;
4501 for (unsigned i = 1; i < NumElts; ++i) {
4502 // Increment the expected index. If it wraps around, just follow it
4503 // back to index zero and keep going.
4504 ++ExpectedElt;
4505 if (ExpectedElt == NumElts)
4506 ExpectedElt = 0;
4507
4508 if (M[i] < 0)
4509 continue; // ignore UNDEF indices
4510 if (ExpectedElt != static_cast<unsigned>(M[i]))
4511 return false;
4512 }
4513
4514 return true;
4515}
4516
4517// check if an EXT instruction can handle the shuffle mask when the
4518// vector sources of the shuffle are different.
4519static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4520 unsigned &Imm) {
4521 // Look for the first non-undef element.
4522 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4523 [](int Elt) {return Elt >= 0;});
4524
4525 // Benefit form APInt to handle overflow when calculating expected element.
4526 unsigned NumElts = VT.getVectorNumElements();
4527 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4528 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4529 // The following shuffle indices must be the successive elements after the
4530 // first real element.
4531 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4532 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4533 if (FirstWrongElt != M.end())
4534 return false;
4535
4536 // The index of an EXT is the first element if it is not UNDEF.
4537 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4538 // value of the first element. E.g.
4539 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4540 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4541 // ExpectedElt is the last mask index plus 1.
4542 Imm = ExpectedElt.getZExtValue();
4543
4544 // There are two difference cases requiring to reverse input vectors.
4545 // For example, for vector <4 x i32> we have the following cases,
4546 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4547 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4548 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4549 // to reverse two input vectors.
4550 if (Imm < NumElts)
4551 ReverseEXT = true;
4552 else
4553 Imm -= NumElts;
4554
4555 return true;
4556}
4557
4558/// isREVMask - Check if a vector shuffle corresponds to a REV
4559/// instruction with the specified blocksize. (The order of the elements
4560/// within each block of the vector is reversed.)
4561static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4562 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4563 "Only possible block sizes for REV are: 16, 32, 64");
4564
4565 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4566 if (EltSz == 64)
4567 return false;
4568
4569 unsigned NumElts = VT.getVectorNumElements();
4570 unsigned BlockElts = M[0] + 1;
4571 // If the first shuffle index is UNDEF, be optimistic.
4572 if (M[0] < 0)
4573 BlockElts = BlockSize / EltSz;
4574
4575 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4576 return false;
4577
4578 for (unsigned i = 0; i < NumElts; ++i) {
4579 if (M[i] < 0)
4580 continue; // ignore UNDEF indices
4581 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4582 return false;
4583 }
4584
4585 return true;
4586}
4587
4588static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4589 unsigned NumElts = VT.getVectorNumElements();
4590 WhichResult = (M[0] == 0 ? 0 : 1);
4591 unsigned Idx = WhichResult * NumElts / 2;
4592 for (unsigned i = 0; i != NumElts; i += 2) {
4593 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4594 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4595 return false;
4596 Idx += 1;
4597 }
4598
4599 return true;
4600}
4601
4602static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4603 unsigned NumElts = VT.getVectorNumElements();
4604 WhichResult = (M[0] == 0 ? 0 : 1);
4605 for (unsigned i = 0; i != NumElts; ++i) {
4606 if (M[i] < 0)
4607 continue; // ignore UNDEF indices
4608 if ((unsigned)M[i] != 2 * i + WhichResult)
4609 return false;
4610 }
4611
4612 return true;
4613}
4614
4615static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4616 unsigned NumElts = VT.getVectorNumElements();
4617 WhichResult = (M[0] == 0 ? 0 : 1);
4618 for (unsigned i = 0; i < NumElts; i += 2) {
4619 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4620 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4621 return false;
4622 }
4623 return true;
4624}
4625
4626/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4627/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4628/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4629static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4630 unsigned NumElts = VT.getVectorNumElements();
4631 WhichResult = (M[0] == 0 ? 0 : 1);
4632 unsigned Idx = WhichResult * NumElts / 2;
4633 for (unsigned i = 0; i != NumElts; i += 2) {
4634 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4635 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4636 return false;
4637 Idx += 1;
4638 }
4639
4640 return true;
4641}
4642
4643/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4644/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4645/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4646static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4647 unsigned Half = VT.getVectorNumElements() / 2;
4648 WhichResult = (M[0] == 0 ? 0 : 1);
4649 for (unsigned j = 0; j != 2; ++j) {
4650 unsigned Idx = WhichResult;
4651 for (unsigned i = 0; i != Half; ++i) {
4652 int MIdx = M[i + j * Half];
4653 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4654 return false;
4655 Idx += 2;
4656 }
4657 }
4658
4659 return true;
4660}
4661
4662/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4663/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4664/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4665static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4666 unsigned NumElts = VT.getVectorNumElements();
4667 WhichResult = (M[0] == 0 ? 0 : 1);
4668 for (unsigned i = 0; i < NumElts; i += 2) {
4669 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4670 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4671 return false;
4672 }
4673 return true;
4674}
4675
4676static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4677 bool &DstIsLeft, int &Anomaly) {
4678 if (M.size() != static_cast<size_t>(NumInputElements))
4679 return false;
4680
4681 int NumLHSMatch = 0, NumRHSMatch = 0;
4682 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4683
4684 for (int i = 0; i < NumInputElements; ++i) {
4685 if (M[i] == -1) {
4686 ++NumLHSMatch;
4687 ++NumRHSMatch;
4688 continue;
4689 }
4690
4691 if (M[i] == i)
4692 ++NumLHSMatch;
4693 else
4694 LastLHSMismatch = i;
4695
4696 if (M[i] == i + NumInputElements)
4697 ++NumRHSMatch;
4698 else
4699 LastRHSMismatch = i;
4700 }
4701
4702 if (NumLHSMatch == NumInputElements - 1) {
4703 DstIsLeft = true;
4704 Anomaly = LastLHSMismatch;
4705 return true;
4706 } else if (NumRHSMatch == NumInputElements - 1) {
4707 DstIsLeft = false;
4708 Anomaly = LastRHSMismatch;
4709 return true;
4710 }
4711
4712 return false;
4713}
4714
4715static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4716 if (VT.getSizeInBits() != 128)
4717 return false;
4718
4719 unsigned NumElts = VT.getVectorNumElements();
4720
4721 for (int I = 0, E = NumElts / 2; I != E; I++) {
4722 if (Mask[I] != I)
4723 return false;
4724 }
4725
4726 int Offset = NumElts / 2;
4727 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4728 if (Mask[I] != I + SplitLHS * Offset)
4729 return false;
4730 }
4731
4732 return true;
4733}
4734
4735static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4736 SDLoc DL(Op);
4737 EVT VT = Op.getValueType();
4738 SDValue V0 = Op.getOperand(0);
4739 SDValue V1 = Op.getOperand(1);
4740 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4741
4742 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4743 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4744 return SDValue();
4745
4746 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4747
4748 if (!isConcatMask(Mask, VT, SplitV0))
4749 return SDValue();
4750
4751 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4752 VT.getVectorNumElements() / 2);
4753 if (SplitV0) {
4754 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4755 DAG.getConstant(0, MVT::i64));
4756 }
4757 if (V1.getValueType().getSizeInBits() == 128) {
4758 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4759 DAG.getConstant(0, MVT::i64));
4760 }
4761 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4762}
4763
4764/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4765/// the specified operations to build the shuffle.
4766static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4767 SDValue RHS, SelectionDAG &DAG,
4768 SDLoc dl) {
4769 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4770 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4771 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4772
4773 enum {
4774 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4775 OP_VREV,
4776 OP_VDUP0,
4777 OP_VDUP1,
4778 OP_VDUP2,
4779 OP_VDUP3,
4780 OP_VEXT1,
4781 OP_VEXT2,
4782 OP_VEXT3,
4783 OP_VUZPL, // VUZP, left result
4784 OP_VUZPR, // VUZP, right result
4785 OP_VZIPL, // VZIP, left result
4786 OP_VZIPR, // VZIP, right result
4787 OP_VTRNL, // VTRN, left result
4788 OP_VTRNR // VTRN, right result
4789 };
4790
4791 if (OpNum == OP_COPY) {
4792 if (LHSID == (1 * 9 + 2) * 9 + 3)
4793 return LHS;
4794 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
4795 return RHS;
4796 }
4797
4798 SDValue OpLHS, OpRHS;
4799 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4800 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4801 EVT VT = OpLHS.getValueType();
4802
4803 switch (OpNum) {
4804 default:
4805 llvm_unreachable("Unknown shuffle opcode!");
4806 case OP_VREV:
4807 // VREV divides the vector in half and swaps within the half.
4808 if (VT.getVectorElementType() == MVT::i32 ||
4809 VT.getVectorElementType() == MVT::f32)
4810 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
4811 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00004812 if (VT.getVectorElementType() == MVT::i16 ||
4813 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00004814 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
4815 // vrev <4 x i8> -> REV16
4816 assert(VT.getVectorElementType() == MVT::i8);
4817 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
4818 case OP_VDUP0:
4819 case OP_VDUP1:
4820 case OP_VDUP2:
4821 case OP_VDUP3: {
4822 EVT EltTy = VT.getVectorElementType();
4823 unsigned Opcode;
4824 if (EltTy == MVT::i8)
4825 Opcode = AArch64ISD::DUPLANE8;
4826 else if (EltTy == MVT::i16)
4827 Opcode = AArch64ISD::DUPLANE16;
4828 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
4829 Opcode = AArch64ISD::DUPLANE32;
4830 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
4831 Opcode = AArch64ISD::DUPLANE64;
4832 else
4833 llvm_unreachable("Invalid vector element type?");
4834
4835 if (VT.getSizeInBits() == 64)
4836 OpLHS = WidenVector(OpLHS, DAG);
4837 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
4838 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
4839 }
4840 case OP_VEXT1:
4841 case OP_VEXT2:
4842 case OP_VEXT3: {
4843 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
4844 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
4845 DAG.getConstant(Imm, MVT::i32));
4846 }
4847 case OP_VUZPL:
4848 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
4849 OpRHS);
4850 case OP_VUZPR:
4851 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
4852 OpRHS);
4853 case OP_VZIPL:
4854 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
4855 OpRHS);
4856 case OP_VZIPR:
4857 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
4858 OpRHS);
4859 case OP_VTRNL:
4860 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
4861 OpRHS);
4862 case OP_VTRNR:
4863 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
4864 OpRHS);
4865 }
4866}
4867
4868static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
4869 SelectionDAG &DAG) {
4870 // Check to see if we can use the TBL instruction.
4871 SDValue V1 = Op.getOperand(0);
4872 SDValue V2 = Op.getOperand(1);
4873 SDLoc DL(Op);
4874
4875 EVT EltVT = Op.getValueType().getVectorElementType();
4876 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
4877
4878 SmallVector<SDValue, 8> TBLMask;
4879 for (int Val : ShuffleMask) {
4880 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
4881 unsigned Offset = Byte + Val * BytesPerElt;
4882 TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
4883 }
4884 }
4885
4886 MVT IndexVT = MVT::v8i8;
4887 unsigned IndexLen = 8;
4888 if (Op.getValueType().getSizeInBits() == 128) {
4889 IndexVT = MVT::v16i8;
4890 IndexLen = 16;
4891 }
4892
4893 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
4894 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
4895
4896 SDValue Shuffle;
4897 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
4898 if (IndexLen == 8)
4899 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
4900 Shuffle = DAG.getNode(
4901 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4902 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
4903 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4904 makeArrayRef(TBLMask.data(), IndexLen)));
4905 } else {
4906 if (IndexLen == 8) {
4907 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
4908 Shuffle = DAG.getNode(
4909 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4910 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
4911 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4912 makeArrayRef(TBLMask.data(), IndexLen)));
4913 } else {
4914 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
4915 // cannot currently represent the register constraints on the input
4916 // table registers.
4917 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
4918 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4919 // &TBLMask[0], IndexLen));
4920 Shuffle = DAG.getNode(
4921 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4922 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
4923 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4924 makeArrayRef(TBLMask.data(), IndexLen)));
4925 }
4926 }
4927 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
4928}
4929
4930static unsigned getDUPLANEOp(EVT EltType) {
4931 if (EltType == MVT::i8)
4932 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00004933 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00004934 return AArch64ISD::DUPLANE16;
4935 if (EltType == MVT::i32 || EltType == MVT::f32)
4936 return AArch64ISD::DUPLANE32;
4937 if (EltType == MVT::i64 || EltType == MVT::f64)
4938 return AArch64ISD::DUPLANE64;
4939
4940 llvm_unreachable("Invalid vector element type?");
4941}
4942
4943SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4944 SelectionDAG &DAG) const {
4945 SDLoc dl(Op);
4946 EVT VT = Op.getValueType();
4947
4948 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4949
4950 // Convert shuffles that are directly supported on NEON to target-specific
4951 // DAG nodes, instead of keeping them as shuffles and matching them again
4952 // during code selection. This is more efficient and avoids the possibility
4953 // of inconsistencies between legalization and selection.
4954 ArrayRef<int> ShuffleMask = SVN->getMask();
4955
4956 SDValue V1 = Op.getOperand(0);
4957 SDValue V2 = Op.getOperand(1);
4958
4959 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
4960 V1.getValueType().getSimpleVT())) {
4961 int Lane = SVN->getSplatIndex();
4962 // If this is undef splat, generate it via "just" vdup, if possible.
4963 if (Lane == -1)
4964 Lane = 0;
4965
4966 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
4967 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
4968 V1.getOperand(0));
4969 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
4970 // constant. If so, we can just reference the lane's definition directly.
4971 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
4972 !isa<ConstantSDNode>(V1.getOperand(Lane)))
4973 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
4974
4975 // Otherwise, duplicate from the lane of the input vector.
4976 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
4977
4978 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
4979 // to make a vector of the same size as this SHUFFLE. We can ignore the
4980 // extract entirely, and canonicalise the concat using WidenVector.
4981 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
4982 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
4983 V1 = V1.getOperand(0);
4984 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
4985 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
4986 Lane -= Idx * VT.getVectorNumElements() / 2;
4987 V1 = WidenVector(V1.getOperand(Idx), DAG);
4988 } else if (VT.getSizeInBits() == 64)
4989 V1 = WidenVector(V1, DAG);
4990
4991 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
4992 }
4993
4994 if (isREVMask(ShuffleMask, VT, 64))
4995 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
4996 if (isREVMask(ShuffleMask, VT, 32))
4997 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
4998 if (isREVMask(ShuffleMask, VT, 16))
4999 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5000
5001 bool ReverseEXT = false;
5002 unsigned Imm;
5003 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5004 if (ReverseEXT)
5005 std::swap(V1, V2);
5006 Imm *= getExtFactor(V1);
5007 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5008 DAG.getConstant(Imm, MVT::i32));
5009 } else if (V2->getOpcode() == ISD::UNDEF &&
5010 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5011 Imm *= getExtFactor(V1);
5012 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5013 DAG.getConstant(Imm, MVT::i32));
5014 }
5015
5016 unsigned WhichResult;
5017 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5018 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5019 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5020 }
5021 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5022 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5023 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5024 }
5025 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5026 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5027 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5028 }
5029
5030 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5031 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5032 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5033 }
5034 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5035 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5036 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5037 }
5038 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5039 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5040 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5041 }
5042
5043 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5044 if (Concat.getNode())
5045 return Concat;
5046
5047 bool DstIsLeft;
5048 int Anomaly;
5049 int NumInputElements = V1.getValueType().getVectorNumElements();
5050 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5051 SDValue DstVec = DstIsLeft ? V1 : V2;
5052 SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
5053
5054 SDValue SrcVec = V1;
5055 int SrcLane = ShuffleMask[Anomaly];
5056 if (SrcLane >= NumInputElements) {
5057 SrcVec = V2;
5058 SrcLane -= VT.getVectorNumElements();
5059 }
5060 SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
5061
5062 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005063
5064 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005065 ScalarVT = MVT::i32;
5066
5067 return DAG.getNode(
5068 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5069 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5070 DstLaneV);
5071 }
5072
5073 // If the shuffle is not directly supported and it has 4 elements, use
5074 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5075 unsigned NumElts = VT.getVectorNumElements();
5076 if (NumElts == 4) {
5077 unsigned PFIndexes[4];
5078 for (unsigned i = 0; i != 4; ++i) {
5079 if (ShuffleMask[i] < 0)
5080 PFIndexes[i] = 8;
5081 else
5082 PFIndexes[i] = ShuffleMask[i];
5083 }
5084
5085 // Compute the index in the perfect shuffle table.
5086 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5087 PFIndexes[2] * 9 + PFIndexes[3];
5088 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5089 unsigned Cost = (PFEntry >> 30);
5090
5091 if (Cost <= 4)
5092 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5093 }
5094
5095 return GenerateTBL(Op, ShuffleMask, DAG);
5096}
5097
5098static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5099 APInt &UndefBits) {
5100 EVT VT = BVN->getValueType(0);
5101 APInt SplatBits, SplatUndef;
5102 unsigned SplatBitSize;
5103 bool HasAnyUndefs;
5104 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5105 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5106
5107 for (unsigned i = 0; i < NumSplats; ++i) {
5108 CnstBits <<= SplatBitSize;
5109 UndefBits <<= SplatBitSize;
5110 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5111 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5112 }
5113
5114 return true;
5115 }
5116
5117 return false;
5118}
5119
5120SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5121 SelectionDAG &DAG) const {
5122 BuildVectorSDNode *BVN =
5123 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5124 SDValue LHS = Op.getOperand(0);
5125 SDLoc dl(Op);
5126 EVT VT = Op.getValueType();
5127
5128 if (!BVN)
5129 return Op;
5130
5131 APInt CnstBits(VT.getSizeInBits(), 0);
5132 APInt UndefBits(VT.getSizeInBits(), 0);
5133 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5134 // We only have BIC vector immediate instruction, which is and-not.
5135 CnstBits = ~CnstBits;
5136
5137 // We make use of a little bit of goto ickiness in order to avoid having to
5138 // duplicate the immediate matching logic for the undef toggled case.
5139 bool SecondTry = false;
5140 AttemptModImm:
5141
5142 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5143 CnstBits = CnstBits.zextOrTrunc(64);
5144 uint64_t CnstVal = CnstBits.getZExtValue();
5145
5146 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5147 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5148 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5149 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5150 DAG.getConstant(CnstVal, MVT::i32),
5151 DAG.getConstant(0, MVT::i32));
5152 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5153 }
5154
5155 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5156 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5157 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5158 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5159 DAG.getConstant(CnstVal, MVT::i32),
5160 DAG.getConstant(8, MVT::i32));
5161 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5162 }
5163
5164 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5165 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5166 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5167 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5168 DAG.getConstant(CnstVal, MVT::i32),
5169 DAG.getConstant(16, MVT::i32));
5170 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5171 }
5172
5173 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5174 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5175 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5176 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5177 DAG.getConstant(CnstVal, MVT::i32),
5178 DAG.getConstant(24, MVT::i32));
5179 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5180 }
5181
5182 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5183 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5184 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5185 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5186 DAG.getConstant(CnstVal, MVT::i32),
5187 DAG.getConstant(0, MVT::i32));
5188 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5189 }
5190
5191 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5192 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5193 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5194 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5195 DAG.getConstant(CnstVal, MVT::i32),
5196 DAG.getConstant(8, MVT::i32));
5197 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5198 }
5199 }
5200
5201 if (SecondTry)
5202 goto FailedModImm;
5203 SecondTry = true;
5204 CnstBits = ~UndefBits;
5205 goto AttemptModImm;
5206 }
5207
5208// We can always fall back to a non-immediate AND.
5209FailedModImm:
5210 return Op;
5211}
5212
5213// Specialized code to quickly find if PotentialBVec is a BuildVector that
5214// consists of only the same constant int value, returned in reference arg
5215// ConstVal
5216static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5217 uint64_t &ConstVal) {
5218 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5219 if (!Bvec)
5220 return false;
5221 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5222 if (!FirstElt)
5223 return false;
5224 EVT VT = Bvec->getValueType(0);
5225 unsigned NumElts = VT.getVectorNumElements();
5226 for (unsigned i = 1; i < NumElts; ++i)
5227 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5228 return false;
5229 ConstVal = FirstElt->getZExtValue();
5230 return true;
5231}
5232
5233static unsigned getIntrinsicID(const SDNode *N) {
5234 unsigned Opcode = N->getOpcode();
5235 switch (Opcode) {
5236 default:
5237 return Intrinsic::not_intrinsic;
5238 case ISD::INTRINSIC_WO_CHAIN: {
5239 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5240 if (IID < Intrinsic::num_intrinsics)
5241 return IID;
5242 return Intrinsic::not_intrinsic;
5243 }
5244 }
5245}
5246
5247// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5248// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5249// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5250// Also, logical shift right -> sri, with the same structure.
5251static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5252 EVT VT = N->getValueType(0);
5253
5254 if (!VT.isVector())
5255 return SDValue();
5256
5257 SDLoc DL(N);
5258
5259 // Is the first op an AND?
5260 const SDValue And = N->getOperand(0);
5261 if (And.getOpcode() != ISD::AND)
5262 return SDValue();
5263
5264 // Is the second op an shl or lshr?
5265 SDValue Shift = N->getOperand(1);
5266 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5267 // or AArch64ISD::VLSHR vector, #shift
5268 unsigned ShiftOpc = Shift.getOpcode();
5269 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5270 return SDValue();
5271 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5272
5273 // Is the shift amount constant?
5274 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5275 if (!C2node)
5276 return SDValue();
5277
5278 // Is the and mask vector all constant?
5279 uint64_t C1;
5280 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5281 return SDValue();
5282
5283 // Is C1 == ~C2, taking into account how much one can shift elements of a
5284 // particular size?
5285 uint64_t C2 = C2node->getZExtValue();
5286 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5287 if (C2 > ElemSizeInBits)
5288 return SDValue();
5289 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5290 if ((C1 & ElemMask) != (~C2 & ElemMask))
5291 return SDValue();
5292
5293 SDValue X = And.getOperand(0);
5294 SDValue Y = Shift.getOperand(0);
5295
5296 unsigned Intrin =
5297 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5298 SDValue ResultSLI =
5299 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5300 DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5301
5302 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5303 DEBUG(N->dump(&DAG));
5304 DEBUG(dbgs() << "into: \n");
5305 DEBUG(ResultSLI->dump(&DAG));
5306
5307 ++NumShiftInserts;
5308 return ResultSLI;
5309}
5310
5311SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5312 SelectionDAG &DAG) const {
5313 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5314 if (EnableAArch64SlrGeneration) {
5315 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5316 if (Res.getNode())
5317 return Res;
5318 }
5319
5320 BuildVectorSDNode *BVN =
5321 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5322 SDValue LHS = Op.getOperand(1);
5323 SDLoc dl(Op);
5324 EVT VT = Op.getValueType();
5325
5326 // OR commutes, so try swapping the operands.
5327 if (!BVN) {
5328 LHS = Op.getOperand(0);
5329 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5330 }
5331 if (!BVN)
5332 return Op;
5333
5334 APInt CnstBits(VT.getSizeInBits(), 0);
5335 APInt UndefBits(VT.getSizeInBits(), 0);
5336 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5337 // We make use of a little bit of goto ickiness in order to avoid having to
5338 // duplicate the immediate matching logic for the undef toggled case.
5339 bool SecondTry = false;
5340 AttemptModImm:
5341
5342 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5343 CnstBits = CnstBits.zextOrTrunc(64);
5344 uint64_t CnstVal = CnstBits.getZExtValue();
5345
5346 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5347 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5348 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5349 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5350 DAG.getConstant(CnstVal, MVT::i32),
5351 DAG.getConstant(0, MVT::i32));
5352 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5353 }
5354
5355 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5356 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5357 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5358 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5359 DAG.getConstant(CnstVal, MVT::i32),
5360 DAG.getConstant(8, MVT::i32));
5361 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5362 }
5363
5364 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5365 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5366 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5367 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5368 DAG.getConstant(CnstVal, MVT::i32),
5369 DAG.getConstant(16, MVT::i32));
5370 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5371 }
5372
5373 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5374 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5375 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5376 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5377 DAG.getConstant(CnstVal, MVT::i32),
5378 DAG.getConstant(24, MVT::i32));
5379 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5380 }
5381
5382 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5383 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5384 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5385 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5386 DAG.getConstant(CnstVal, MVT::i32),
5387 DAG.getConstant(0, MVT::i32));
5388 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5389 }
5390
5391 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5392 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5393 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5394 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5395 DAG.getConstant(CnstVal, MVT::i32),
5396 DAG.getConstant(8, MVT::i32));
5397 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5398 }
5399 }
5400
5401 if (SecondTry)
5402 goto FailedModImm;
5403 SecondTry = true;
5404 CnstBits = UndefBits;
5405 goto AttemptModImm;
5406 }
5407
5408// We can always fall back to a non-immediate OR.
5409FailedModImm:
5410 return Op;
5411}
5412
Kevin Qin4473c192014-07-07 02:45:40 +00005413// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5414// be truncated to fit element width.
5415static SDValue NormalizeBuildVector(SDValue Op,
5416 SelectionDAG &DAG) {
5417 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005418 SDLoc dl(Op);
5419 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005420 EVT EltTy= VT.getVectorElementType();
5421
5422 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5423 return Op;
5424
5425 SmallVector<SDValue, 16> Ops;
5426 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5427 SDValue Lane = Op.getOperand(I);
5428 if (Lane.getOpcode() == ISD::Constant) {
5429 APInt LowBits(EltTy.getSizeInBits(),
5430 cast<ConstantSDNode>(Lane)->getZExtValue());
5431 Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
5432 }
5433 Ops.push_back(Lane);
5434 }
5435 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5436}
5437
5438SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5439 SelectionDAG &DAG) const {
5440 SDLoc dl(Op);
5441 EVT VT = Op.getValueType();
5442 Op = NormalizeBuildVector(Op, DAG);
5443 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005444
5445 APInt CnstBits(VT.getSizeInBits(), 0);
5446 APInt UndefBits(VT.getSizeInBits(), 0);
5447 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5448 // We make use of a little bit of goto ickiness in order to avoid having to
5449 // duplicate the immediate matching logic for the undef toggled case.
5450 bool SecondTry = false;
5451 AttemptModImm:
5452
5453 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5454 CnstBits = CnstBits.zextOrTrunc(64);
5455 uint64_t CnstVal = CnstBits.getZExtValue();
5456
5457 // Certain magic vector constants (used to express things like NOT
5458 // and NEG) are passed through unmodified. This allows codegen patterns
5459 // for these operations to match. Special-purpose patterns will lower
5460 // these immediates to MOVIs if it proves necessary.
5461 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5462 return Op;
5463
5464 // The many faces of MOVI...
5465 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5466 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5467 if (VT.getSizeInBits() == 128) {
5468 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5469 DAG.getConstant(CnstVal, MVT::i32));
5470 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5471 }
5472
5473 // Support the V64 version via subregister insertion.
5474 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5475 DAG.getConstant(CnstVal, MVT::i32));
5476 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5477 }
5478
5479 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5480 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5481 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5482 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5483 DAG.getConstant(CnstVal, MVT::i32),
5484 DAG.getConstant(0, MVT::i32));
5485 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5486 }
5487
5488 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5489 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5490 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5491 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5492 DAG.getConstant(CnstVal, MVT::i32),
5493 DAG.getConstant(8, MVT::i32));
5494 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5495 }
5496
5497 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5498 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5499 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5500 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5501 DAG.getConstant(CnstVal, MVT::i32),
5502 DAG.getConstant(16, MVT::i32));
5503 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5504 }
5505
5506 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5507 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5508 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5509 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5510 DAG.getConstant(CnstVal, MVT::i32),
5511 DAG.getConstant(24, MVT::i32));
5512 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5513 }
5514
5515 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5516 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5517 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5518 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5519 DAG.getConstant(CnstVal, MVT::i32),
5520 DAG.getConstant(0, MVT::i32));
5521 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5522 }
5523
5524 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5525 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5526 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5527 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5528 DAG.getConstant(CnstVal, MVT::i32),
5529 DAG.getConstant(8, MVT::i32));
5530 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5531 }
5532
5533 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5534 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5535 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5536 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5537 DAG.getConstant(CnstVal, MVT::i32),
5538 DAG.getConstant(264, MVT::i32));
5539 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5540 }
5541
5542 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5543 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5544 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5545 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5546 DAG.getConstant(CnstVal, MVT::i32),
5547 DAG.getConstant(272, MVT::i32));
5548 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5549 }
5550
5551 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5552 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5553 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5554 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5555 DAG.getConstant(CnstVal, MVT::i32));
5556 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5557 }
5558
5559 // The few faces of FMOV...
5560 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5561 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5562 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5563 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5564 DAG.getConstant(CnstVal, MVT::i32));
5565 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5566 }
5567
5568 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5569 VT.getSizeInBits() == 128) {
5570 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5571 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5572 DAG.getConstant(CnstVal, MVT::i32));
5573 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5574 }
5575
5576 // The many faces of MVNI...
5577 CnstVal = ~CnstVal;
5578 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5579 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5580 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5581 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5582 DAG.getConstant(CnstVal, MVT::i32),
5583 DAG.getConstant(0, MVT::i32));
5584 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5585 }
5586
5587 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5588 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5589 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5590 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5591 DAG.getConstant(CnstVal, MVT::i32),
5592 DAG.getConstant(8, MVT::i32));
5593 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5594 }
5595
5596 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5597 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5598 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5599 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5600 DAG.getConstant(CnstVal, MVT::i32),
5601 DAG.getConstant(16, MVT::i32));
5602 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5603 }
5604
5605 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5606 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5607 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5608 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5609 DAG.getConstant(CnstVal, MVT::i32),
5610 DAG.getConstant(24, MVT::i32));
5611 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5612 }
5613
5614 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5615 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5616 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5617 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5618 DAG.getConstant(CnstVal, MVT::i32),
5619 DAG.getConstant(0, MVT::i32));
5620 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5621 }
5622
5623 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5624 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5625 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5626 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5627 DAG.getConstant(CnstVal, MVT::i32),
5628 DAG.getConstant(8, MVT::i32));
5629 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5630 }
5631
5632 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5633 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5634 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5635 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5636 DAG.getConstant(CnstVal, MVT::i32),
5637 DAG.getConstant(264, MVT::i32));
5638 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5639 }
5640
5641 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5642 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5643 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5644 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5645 DAG.getConstant(CnstVal, MVT::i32),
5646 DAG.getConstant(272, MVT::i32));
5647 return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
5648 }
5649 }
5650
5651 if (SecondTry)
5652 goto FailedModImm;
5653 SecondTry = true;
5654 CnstBits = UndefBits;
5655 goto AttemptModImm;
5656 }
5657FailedModImm:
5658
5659 // Scan through the operands to find some interesting properties we can
5660 // exploit:
5661 // 1) If only one value is used, we can use a DUP, or
5662 // 2) if only the low element is not undef, we can just insert that, or
5663 // 3) if only one constant value is used (w/ some non-constant lanes),
5664 // we can splat the constant value into the whole vector then fill
5665 // in the non-constant lanes.
5666 // 4) FIXME: If different constant values are used, but we can intelligently
5667 // select the values we'll be overwriting for the non-constant
5668 // lanes such that we can directly materialize the vector
5669 // some other way (MOVI, e.g.), we can be sneaky.
5670 unsigned NumElts = VT.getVectorNumElements();
5671 bool isOnlyLowElement = true;
5672 bool usesOnlyOneValue = true;
5673 bool usesOnlyOneConstantValue = true;
5674 bool isConstant = true;
5675 unsigned NumConstantLanes = 0;
5676 SDValue Value;
5677 SDValue ConstantValue;
5678 for (unsigned i = 0; i < NumElts; ++i) {
5679 SDValue V = Op.getOperand(i);
5680 if (V.getOpcode() == ISD::UNDEF)
5681 continue;
5682 if (i > 0)
5683 isOnlyLowElement = false;
5684 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5685 isConstant = false;
5686
5687 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5688 ++NumConstantLanes;
5689 if (!ConstantValue.getNode())
5690 ConstantValue = V;
5691 else if (ConstantValue != V)
5692 usesOnlyOneConstantValue = false;
5693 }
5694
5695 if (!Value.getNode())
5696 Value = V;
5697 else if (V != Value)
5698 usesOnlyOneValue = false;
5699 }
5700
5701 if (!Value.getNode())
5702 return DAG.getUNDEF(VT);
5703
5704 if (isOnlyLowElement)
5705 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5706
5707 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5708 // i32 and try again.
5709 if (usesOnlyOneValue) {
5710 if (!isConstant) {
5711 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5712 Value.getValueType() != VT)
5713 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5714
5715 // This is actually a DUPLANExx operation, which keeps everything vectory.
5716
5717 // DUPLANE works on 128-bit vectors, widen it if necessary.
5718 SDValue Lane = Value.getOperand(1);
5719 Value = Value.getOperand(0);
5720 if (Value.getValueType().getSizeInBits() == 64)
5721 Value = WidenVector(Value, DAG);
5722
5723 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5724 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5725 }
5726
5727 if (VT.getVectorElementType().isFloatingPoint()) {
5728 SmallVector<SDValue, 8> Ops;
5729 MVT NewType =
5730 (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5731 for (unsigned i = 0; i < NumElts; ++i)
5732 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5733 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5734 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5735 Val = LowerBUILD_VECTOR(Val, DAG);
5736 if (Val.getNode())
5737 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5738 }
5739 }
5740
5741 // If there was only one constant value used and for more than one lane,
5742 // start by splatting that value, then replace the non-constant lanes. This
5743 // is better than the default, which will perform a separate initialization
5744 // for each lane.
5745 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5746 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5747 // Now insert the non-constant lanes.
5748 for (unsigned i = 0; i < NumElts; ++i) {
5749 SDValue V = Op.getOperand(i);
5750 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5751 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5752 // Note that type legalization likely mucked about with the VT of the
5753 // source operand, so we may have to convert it here before inserting.
5754 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5755 }
5756 }
5757 return Val;
5758 }
5759
5760 // If all elements are constants and the case above didn't get hit, fall back
5761 // to the default expansion, which will generate a load from the constant
5762 // pool.
5763 if (isConstant)
5764 return SDValue();
5765
5766 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5767 if (NumElts >= 4) {
5768 SDValue shuffle = ReconstructShuffle(Op, DAG);
5769 if (shuffle != SDValue())
5770 return shuffle;
5771 }
5772
5773 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5774 // know the default expansion would otherwise fall back on something even
5775 // worse. For a vector with one or two non-undef values, that's
5776 // scalar_to_vector for the elements followed by a shuffle (provided the
5777 // shuffle is valid for the target) and materialization element by element
5778 // on the stack followed by a load for everything else.
5779 if (!isConstant && !usesOnlyOneValue) {
5780 SDValue Vec = DAG.getUNDEF(VT);
5781 SDValue Op0 = Op.getOperand(0);
5782 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
5783 unsigned i = 0;
5784 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
5785 // a) Avoid a RMW dependency on the full vector register, and
5786 // b) Allow the register coalescer to fold away the copy if the
5787 // value is already in an S or D register.
5788 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
5789 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
5790 MachineSDNode *N =
5791 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
5792 DAG.getTargetConstant(SubIdx, MVT::i32));
5793 Vec = SDValue(N, 0);
5794 ++i;
5795 }
5796 for (; i < NumElts; ++i) {
5797 SDValue V = Op.getOperand(i);
5798 if (V.getOpcode() == ISD::UNDEF)
5799 continue;
5800 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5801 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5802 }
5803 return Vec;
5804 }
5805
5806 // Just use the default expansion. We failed to find a better alternative.
5807 return SDValue();
5808}
5809
5810SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
5811 SelectionDAG &DAG) const {
5812 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
5813
Tim Northovere4b8e132014-07-15 10:00:26 +00005814 // Check for non-constant or out of range lane.
5815 EVT VT = Op.getOperand(0).getValueType();
5816 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
5817 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00005818 return SDValue();
5819
Tim Northover3b0846e2014-05-24 12:50:23 +00005820
5821 // Insertion/extraction are legal for V128 types.
5822 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00005823 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
5824 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005825 return Op;
5826
5827 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00005828 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005829 return SDValue();
5830
5831 // For V64 types, we perform insertion by expanding the value
5832 // to a V128 type and perform the insertion on that.
5833 SDLoc DL(Op);
5834 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5835 EVT WideTy = WideVec.getValueType();
5836
5837 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
5838 Op.getOperand(1), Op.getOperand(2));
5839 // Re-narrow the resultant vector.
5840 return NarrowVector(Node, DAG);
5841}
5842
5843SDValue
5844AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5845 SelectionDAG &DAG) const {
5846 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
5847
Tim Northovere4b8e132014-07-15 10:00:26 +00005848 // Check for non-constant or out of range lane.
5849 EVT VT = Op.getOperand(0).getValueType();
5850 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5851 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00005852 return SDValue();
5853
Tim Northover3b0846e2014-05-24 12:50:23 +00005854
5855 // Insertion/extraction are legal for V128 types.
5856 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00005857 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
5858 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005859 return Op;
5860
5861 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00005862 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005863 return SDValue();
5864
5865 // For V64 types, we perform extraction by expanding the value
5866 // to a V128 type and perform the extraction on that.
5867 SDLoc DL(Op);
5868 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5869 EVT WideTy = WideVec.getValueType();
5870
5871 EVT ExtrTy = WideTy.getVectorElementType();
5872 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
5873 ExtrTy = MVT::i32;
5874
5875 // For extractions, we just return the result directly.
5876 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
5877 Op.getOperand(1));
5878}
5879
5880SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
5881 SelectionDAG &DAG) const {
5882 EVT VT = Op.getOperand(0).getValueType();
5883 SDLoc dl(Op);
5884 // Just in case...
5885 if (!VT.isVector())
5886 return SDValue();
5887
5888 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5889 if (!Cst)
5890 return SDValue();
5891 unsigned Val = Cst->getZExtValue();
5892
5893 unsigned Size = Op.getValueType().getSizeInBits();
5894 if (Val == 0) {
5895 switch (Size) {
5896 case 8:
5897 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
5898 Op.getOperand(0));
5899 case 16:
5900 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
5901 Op.getOperand(0));
5902 case 32:
5903 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
5904 Op.getOperand(0));
5905 case 64:
5906 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
5907 Op.getOperand(0));
5908 default:
5909 llvm_unreachable("Unexpected vector type in extract_subvector!");
5910 }
5911 }
5912 // If this is extracting the upper 64-bits of a 128-bit vector, we match
5913 // that directly.
5914 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
5915 return Op;
5916
5917 return SDValue();
5918}
5919
5920bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
5921 EVT VT) const {
5922 if (VT.getVectorNumElements() == 4 &&
5923 (VT.is128BitVector() || VT.is64BitVector())) {
5924 unsigned PFIndexes[4];
5925 for (unsigned i = 0; i != 4; ++i) {
5926 if (M[i] < 0)
5927 PFIndexes[i] = 8;
5928 else
5929 PFIndexes[i] = M[i];
5930 }
5931
5932 // Compute the index in the perfect shuffle table.
5933 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5934 PFIndexes[2] * 9 + PFIndexes[3];
5935 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5936 unsigned Cost = (PFEntry >> 30);
5937
5938 if (Cost <= 4)
5939 return true;
5940 }
5941
5942 bool DummyBool;
5943 int DummyInt;
5944 unsigned DummyUnsigned;
5945
5946 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
5947 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
5948 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
5949 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
5950 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
5951 isZIPMask(M, VT, DummyUnsigned) ||
5952 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
5953 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
5954 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
5955 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
5956 isConcatMask(M, VT, VT.getSizeInBits() == 128));
5957}
5958
5959/// getVShiftImm - Check if this is a valid build_vector for the immediate
5960/// operand of a vector shift operation, where all the elements of the
5961/// build_vector must have the same constant integer value.
5962static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5963 // Ignore bit_converts.
5964 while (Op.getOpcode() == ISD::BITCAST)
5965 Op = Op.getOperand(0);
5966 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5967 APInt SplatBits, SplatUndef;
5968 unsigned SplatBitSize;
5969 bool HasAnyUndefs;
5970 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
5971 HasAnyUndefs, ElementBits) ||
5972 SplatBitSize > ElementBits)
5973 return false;
5974 Cnt = SplatBits.getSExtValue();
5975 return true;
5976}
5977
5978/// isVShiftLImm - Check if this is a valid build_vector for the immediate
5979/// operand of a vector shift left operation. That value must be in the range:
5980/// 0 <= Value < ElementBits for a left shift; or
5981/// 0 <= Value <= ElementBits for a long left shift.
5982static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
5983 assert(VT.isVector() && "vector shift count is not a vector type");
5984 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5985 if (!getVShiftImm(Op, ElementBits, Cnt))
5986 return false;
5987 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
5988}
5989
5990/// isVShiftRImm - Check if this is a valid build_vector for the immediate
5991/// operand of a vector shift right operation. For a shift opcode, the value
5992/// is positive, but for an intrinsic the value count must be negative. The
5993/// absolute value must be in the range:
5994/// 1 <= |Value| <= ElementBits for a right shift; or
5995/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5996static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
5997 int64_t &Cnt) {
5998 assert(VT.isVector() && "vector shift count is not a vector type");
5999 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6000 if (!getVShiftImm(Op, ElementBits, Cnt))
6001 return false;
6002 if (isIntrinsic)
6003 Cnt = -Cnt;
6004 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6005}
6006
6007SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6008 SelectionDAG &DAG) const {
6009 EVT VT = Op.getValueType();
6010 SDLoc DL(Op);
6011 int64_t Cnt;
6012
6013 if (!Op.getOperand(1).getValueType().isVector())
6014 return Op;
6015 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6016
6017 switch (Op.getOpcode()) {
6018 default:
6019 llvm_unreachable("unexpected shift opcode");
6020
6021 case ISD::SHL:
6022 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6023 return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
6024 DAG.getConstant(Cnt, MVT::i32));
6025 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6026 DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
6027 Op.getOperand(0), Op.getOperand(1));
6028 case ISD::SRA:
6029 case ISD::SRL:
6030 // Right shift immediate
6031 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6032 Cnt < EltSize) {
6033 unsigned Opc =
6034 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6035 return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
6036 DAG.getConstant(Cnt, MVT::i32));
6037 }
6038
6039 // Right shift register. Note, there is not a shift right register
6040 // instruction, but the shift left register instruction takes a signed
6041 // value, where negative numbers specify a right shift.
6042 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6043 : Intrinsic::aarch64_neon_ushl;
6044 // negate the shift amount
6045 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6046 SDValue NegShiftLeft =
6047 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6048 DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
6049 return NegShiftLeft;
6050 }
6051
6052 return SDValue();
6053}
6054
6055static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6056 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6057 SDLoc dl, SelectionDAG &DAG) {
6058 EVT SrcVT = LHS.getValueType();
6059
6060 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6061 APInt CnstBits(VT.getSizeInBits(), 0);
6062 APInt UndefBits(VT.getSizeInBits(), 0);
6063 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6064 bool IsZero = IsCnst && (CnstBits == 0);
6065
6066 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6067 switch (CC) {
6068 default:
6069 return SDValue();
6070 case AArch64CC::NE: {
6071 SDValue Fcmeq;
6072 if (IsZero)
6073 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6074 else
6075 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6076 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6077 }
6078 case AArch64CC::EQ:
6079 if (IsZero)
6080 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6081 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6082 case AArch64CC::GE:
6083 if (IsZero)
6084 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6085 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6086 case AArch64CC::GT:
6087 if (IsZero)
6088 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6089 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6090 case AArch64CC::LS:
6091 if (IsZero)
6092 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6093 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6094 case AArch64CC::LT:
6095 if (!NoNans)
6096 return SDValue();
6097 // If we ignore NaNs then we can use to the MI implementation.
6098 // Fallthrough.
6099 case AArch64CC::MI:
6100 if (IsZero)
6101 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6102 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6103 }
6104 }
6105
6106 switch (CC) {
6107 default:
6108 return SDValue();
6109 case AArch64CC::NE: {
6110 SDValue Cmeq;
6111 if (IsZero)
6112 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6113 else
6114 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6115 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6116 }
6117 case AArch64CC::EQ:
6118 if (IsZero)
6119 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6120 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6121 case AArch64CC::GE:
6122 if (IsZero)
6123 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6124 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6125 case AArch64CC::GT:
6126 if (IsZero)
6127 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6128 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6129 case AArch64CC::LE:
6130 if (IsZero)
6131 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6132 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6133 case AArch64CC::LS:
6134 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6135 case AArch64CC::LO:
6136 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6137 case AArch64CC::LT:
6138 if (IsZero)
6139 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6140 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6141 case AArch64CC::HI:
6142 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6143 case AArch64CC::HS:
6144 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6145 }
6146}
6147
6148SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6149 SelectionDAG &DAG) const {
6150 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6151 SDValue LHS = Op.getOperand(0);
6152 SDValue RHS = Op.getOperand(1);
6153 SDLoc dl(Op);
6154
6155 if (LHS.getValueType().getVectorElementType().isInteger()) {
6156 assert(LHS.getValueType() == RHS.getValueType());
6157 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
6158 return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
6159 dl, DAG);
6160 }
6161
6162 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6163 LHS.getValueType().getVectorElementType() == MVT::f64);
6164
6165 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6166 // clean. Some of them require two branches to implement.
6167 AArch64CC::CondCode CC1, CC2;
6168 bool ShouldInvert;
6169 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6170
6171 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6172 SDValue Cmp =
6173 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
6174 if (!Cmp.getNode())
6175 return SDValue();
6176
6177 if (CC2 != AArch64CC::AL) {
6178 SDValue Cmp2 =
6179 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
6180 if (!Cmp2.getNode())
6181 return SDValue();
6182
6183 Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
6184 }
6185
6186 if (ShouldInvert)
6187 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6188
6189 return Cmp;
6190}
6191
6192/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6193/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6194/// specified in the intrinsic calls.
6195bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6196 const CallInst &I,
6197 unsigned Intrinsic) const {
6198 switch (Intrinsic) {
6199 case Intrinsic::aarch64_neon_ld2:
6200 case Intrinsic::aarch64_neon_ld3:
6201 case Intrinsic::aarch64_neon_ld4:
6202 case Intrinsic::aarch64_neon_ld1x2:
6203 case Intrinsic::aarch64_neon_ld1x3:
6204 case Intrinsic::aarch64_neon_ld1x4:
6205 case Intrinsic::aarch64_neon_ld2lane:
6206 case Intrinsic::aarch64_neon_ld3lane:
6207 case Intrinsic::aarch64_neon_ld4lane:
6208 case Intrinsic::aarch64_neon_ld2r:
6209 case Intrinsic::aarch64_neon_ld3r:
6210 case Intrinsic::aarch64_neon_ld4r: {
6211 Info.opc = ISD::INTRINSIC_W_CHAIN;
6212 // Conservatively set memVT to the entire set of vectors loaded.
6213 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6214 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6215 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6216 Info.offset = 0;
6217 Info.align = 0;
6218 Info.vol = false; // volatile loads with NEON intrinsics not supported
6219 Info.readMem = true;
6220 Info.writeMem = false;
6221 return true;
6222 }
6223 case Intrinsic::aarch64_neon_st2:
6224 case Intrinsic::aarch64_neon_st3:
6225 case Intrinsic::aarch64_neon_st4:
6226 case Intrinsic::aarch64_neon_st1x2:
6227 case Intrinsic::aarch64_neon_st1x3:
6228 case Intrinsic::aarch64_neon_st1x4:
6229 case Intrinsic::aarch64_neon_st2lane:
6230 case Intrinsic::aarch64_neon_st3lane:
6231 case Intrinsic::aarch64_neon_st4lane: {
6232 Info.opc = ISD::INTRINSIC_VOID;
6233 // Conservatively set memVT to the entire set of vectors stored.
6234 unsigned NumElts = 0;
6235 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6236 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6237 if (!ArgTy->isVectorTy())
6238 break;
6239 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6240 }
6241 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6242 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6243 Info.offset = 0;
6244 Info.align = 0;
6245 Info.vol = false; // volatile stores with NEON intrinsics not supported
6246 Info.readMem = false;
6247 Info.writeMem = true;
6248 return true;
6249 }
6250 case Intrinsic::aarch64_ldaxr:
6251 case Intrinsic::aarch64_ldxr: {
6252 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6253 Info.opc = ISD::INTRINSIC_W_CHAIN;
6254 Info.memVT = MVT::getVT(PtrTy->getElementType());
6255 Info.ptrVal = I.getArgOperand(0);
6256 Info.offset = 0;
6257 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6258 Info.vol = true;
6259 Info.readMem = true;
6260 Info.writeMem = false;
6261 return true;
6262 }
6263 case Intrinsic::aarch64_stlxr:
6264 case Intrinsic::aarch64_stxr: {
6265 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6266 Info.opc = ISD::INTRINSIC_W_CHAIN;
6267 Info.memVT = MVT::getVT(PtrTy->getElementType());
6268 Info.ptrVal = I.getArgOperand(1);
6269 Info.offset = 0;
6270 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6271 Info.vol = true;
6272 Info.readMem = false;
6273 Info.writeMem = true;
6274 return true;
6275 }
6276 case Intrinsic::aarch64_ldaxp:
6277 case Intrinsic::aarch64_ldxp: {
6278 Info.opc = ISD::INTRINSIC_W_CHAIN;
6279 Info.memVT = MVT::i128;
6280 Info.ptrVal = I.getArgOperand(0);
6281 Info.offset = 0;
6282 Info.align = 16;
6283 Info.vol = true;
6284 Info.readMem = true;
6285 Info.writeMem = false;
6286 return true;
6287 }
6288 case Intrinsic::aarch64_stlxp:
6289 case Intrinsic::aarch64_stxp: {
6290 Info.opc = ISD::INTRINSIC_W_CHAIN;
6291 Info.memVT = MVT::i128;
6292 Info.ptrVal = I.getArgOperand(2);
6293 Info.offset = 0;
6294 Info.align = 16;
6295 Info.vol = true;
6296 Info.readMem = false;
6297 Info.writeMem = true;
6298 return true;
6299 }
6300 default:
6301 break;
6302 }
6303
6304 return false;
6305}
6306
6307// Truncations from 64-bit GPR to 32-bit GPR is free.
6308bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6309 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6310 return false;
6311 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6312 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006313 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006314}
6315bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006316 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006317 return false;
6318 unsigned NumBits1 = VT1.getSizeInBits();
6319 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006320 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006321}
6322
6323// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6324// 64-bit GPR.
6325bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6326 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6327 return false;
6328 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6329 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006330 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006331}
6332bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006333 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006334 return false;
6335 unsigned NumBits1 = VT1.getSizeInBits();
6336 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006337 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006338}
6339
6340bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6341 EVT VT1 = Val.getValueType();
6342 if (isZExtFree(VT1, VT2)) {
6343 return true;
6344 }
6345
6346 if (Val.getOpcode() != ISD::LOAD)
6347 return false;
6348
6349 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006350 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6351 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6352 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006353}
6354
6355bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6356 unsigned &RequiredAligment) const {
6357 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6358 return false;
6359 // Cyclone supports unaligned accesses.
6360 RequiredAligment = 0;
6361 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6362 return NumBits == 32 || NumBits == 64;
6363}
6364
6365bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6366 unsigned &RequiredAligment) const {
6367 if (!LoadedType.isSimple() ||
6368 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6369 return false;
6370 // Cyclone supports unaligned accesses.
6371 RequiredAligment = 0;
6372 unsigned NumBits = LoadedType.getSizeInBits();
6373 return NumBits == 32 || NumBits == 64;
6374}
6375
6376static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6377 unsigned AlignCheck) {
6378 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6379 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6380}
6381
6382EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6383 unsigned SrcAlign, bool IsMemset,
6384 bool ZeroMemset,
6385 bool MemcpyStrSrc,
6386 MachineFunction &MF) const {
6387 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6388 // instruction to materialize the v2i64 zero and one store (with restrictive
6389 // addressing mode). Just do two i64 store of zero-registers.
6390 bool Fast;
6391 const Function *F = MF.getFunction();
6392 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
6393 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
6394 Attribute::NoImplicitFloat) &&
6395 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00006396 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00006397 return MVT::f128;
6398
6399 return Size >= 8 ? MVT::i64 : MVT::i32;
6400}
6401
6402// 12-bit optionally shifted immediates are legal for adds.
6403bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6404 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6405 return true;
6406 return false;
6407}
6408
6409// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6410// immediates is the same as for an add or a sub.
6411bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6412 if (Immed < 0)
6413 Immed *= -1;
6414 return isLegalAddImmediate(Immed);
6415}
6416
6417/// isLegalAddressingMode - Return true if the addressing mode represented
6418/// by AM is legal for this target, for a load/store of the specified type.
6419bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6420 Type *Ty) const {
6421 // AArch64 has five basic addressing modes:
6422 // reg
6423 // reg + 9-bit signed offset
6424 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6425 // reg1 + reg2
6426 // reg + SIZE_IN_BYTES * reg
6427
6428 // No global is ever allowed as a base.
6429 if (AM.BaseGV)
6430 return false;
6431
6432 // No reg+reg+imm addressing.
6433 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6434 return false;
6435
6436 // check reg + imm case:
6437 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6438 uint64_t NumBytes = 0;
6439 if (Ty->isSized()) {
6440 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6441 NumBytes = NumBits / 8;
6442 if (!isPowerOf2_64(NumBits))
6443 NumBytes = 0;
6444 }
6445
6446 if (!AM.Scale) {
6447 int64_t Offset = AM.BaseOffs;
6448
6449 // 9-bit signed offset
6450 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6451 return true;
6452
6453 // 12-bit unsigned offset
6454 unsigned shift = Log2_64(NumBytes);
6455 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6456 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6457 (Offset >> shift) << shift == Offset)
6458 return true;
6459 return false;
6460 }
6461
6462 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6463
6464 if (!AM.Scale || AM.Scale == 1 ||
6465 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6466 return true;
6467 return false;
6468}
6469
6470int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6471 Type *Ty) const {
6472 // Scaling factors are not free at all.
6473 // Operands | Rt Latency
6474 // -------------------------------------------
6475 // Rt, [Xn, Xm] | 4
6476 // -------------------------------------------
6477 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6478 // Rt, [Xn, Wm, <extend> #imm] |
6479 if (isLegalAddressingMode(AM, Ty))
6480 // Scale represents reg2 * scale, thus account for 1 if
6481 // it is not equal to 0 or 1.
6482 return AM.Scale != 0 && AM.Scale != 1;
6483 return -1;
6484}
6485
6486bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6487 VT = VT.getScalarType();
6488
6489 if (!VT.isSimple())
6490 return false;
6491
6492 switch (VT.getSimpleVT().SimpleTy) {
6493 case MVT::f32:
6494 case MVT::f64:
6495 return true;
6496 default:
6497 break;
6498 }
6499
6500 return false;
6501}
6502
6503const MCPhysReg *
6504AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6505 // LR is a callee-save register, but we must treat it as clobbered by any call
6506 // site. Hence we include LR in the scratch registers, which are in turn added
6507 // as implicit-defs for stackmaps and patchpoints.
6508 static const MCPhysReg ScratchRegs[] = {
6509 AArch64::X16, AArch64::X17, AArch64::LR, 0
6510 };
6511 return ScratchRegs;
6512}
6513
6514bool
6515AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6516 EVT VT = N->getValueType(0);
6517 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6518 // it with shift to let it be lowered to UBFX.
6519 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6520 isa<ConstantSDNode>(N->getOperand(1))) {
6521 uint64_t TruncMask = N->getConstantOperandVal(1);
6522 if (isMask_64(TruncMask) &&
6523 N->getOperand(0).getOpcode() == ISD::SRL &&
6524 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6525 return false;
6526 }
6527 return true;
6528}
6529
6530bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6531 Type *Ty) const {
6532 assert(Ty->isIntegerTy());
6533
6534 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6535 if (BitSize == 0)
6536 return false;
6537
6538 int64_t Val = Imm.getSExtValue();
6539 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6540 return true;
6541
6542 if ((int64_t)Val < 0)
6543 Val = ~Val;
6544 if (BitSize == 32)
6545 Val &= (1LL << 32) - 1;
6546
6547 unsigned LZ = countLeadingZeros((uint64_t)Val);
6548 unsigned Shift = (63 - LZ) / 16;
6549 // MOVZ is free so return true for one or fewer MOVK.
6550 return (Shift < 3) ? true : false;
6551}
6552
6553// Generate SUBS and CSEL for integer abs.
6554static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6555 EVT VT = N->getValueType(0);
6556
6557 SDValue N0 = N->getOperand(0);
6558 SDValue N1 = N->getOperand(1);
6559 SDLoc DL(N);
6560
6561 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6562 // and change it to SUB and CSEL.
6563 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6564 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6565 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6566 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6567 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6568 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6569 N0.getOperand(0));
6570 // Generate SUBS & CSEL.
6571 SDValue Cmp =
6572 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6573 N0.getOperand(0), DAG.getConstant(0, VT));
6574 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6575 DAG.getConstant(AArch64CC::PL, MVT::i32),
6576 SDValue(Cmp.getNode(), 1));
6577 }
6578 return SDValue();
6579}
6580
6581// performXorCombine - Attempts to handle integer ABS.
6582static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6583 TargetLowering::DAGCombinerInfo &DCI,
6584 const AArch64Subtarget *Subtarget) {
6585 if (DCI.isBeforeLegalizeOps())
6586 return SDValue();
6587
6588 return performIntegerAbsCombine(N, DAG);
6589}
6590
Chad Rosier17020f92014-07-23 14:57:52 +00006591SDValue
6592AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6593 SelectionDAG &DAG,
6594 std::vector<SDNode *> *Created) const {
6595 // fold (sdiv X, pow2)
6596 EVT VT = N->getValueType(0);
6597 if ((VT != MVT::i32 && VT != MVT::i64) ||
6598 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6599 return SDValue();
6600
6601 SDLoc DL(N);
6602 SDValue N0 = N->getOperand(0);
6603 unsigned Lg2 = Divisor.countTrailingZeros();
6604 SDValue Zero = DAG.getConstant(0, VT);
6605 SDValue Pow2MinusOne = DAG.getConstant((1 << Lg2) - 1, VT);
6606
6607 // Add (N0 < 0) ? Pow2 - 1 : 0;
6608 SDValue CCVal;
6609 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6610 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6611 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6612
6613 if (Created) {
6614 Created->push_back(Cmp.getNode());
6615 Created->push_back(Add.getNode());
6616 Created->push_back(CSel.getNode());
6617 }
6618
6619 // Divide by pow2.
6620 SDValue SRA =
6621 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
6622
6623 // If we're dividing by a positive value, we're done. Otherwise, we must
6624 // negate the result.
6625 if (Divisor.isNonNegative())
6626 return SRA;
6627
6628 if (Created)
6629 Created->push_back(SRA.getNode());
6630 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
6631}
6632
Tim Northover3b0846e2014-05-24 12:50:23 +00006633static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6634 TargetLowering::DAGCombinerInfo &DCI,
6635 const AArch64Subtarget *Subtarget) {
6636 if (DCI.isBeforeLegalizeOps())
6637 return SDValue();
6638
6639 // Multiplication of a power of two plus/minus one can be done more
6640 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6641 // future CPUs have a cheaper MADD instruction, this may need to be
6642 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6643 // 64-bit is 5 cycles, so this is always a win.
6644 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6645 APInt Value = C->getAPIntValue();
6646 EVT VT = N->getValueType(0);
Chad Rosiere6b87612014-06-30 14:51:14 +00006647 if (Value.isNonNegative()) {
6648 // (mul x, 2^N + 1) => (add (shl x, N), x)
6649 APInt VM1 = Value - 1;
6650 if (VM1.isPowerOf2()) {
6651 SDValue ShiftedVal =
6652 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6653 DAG.getConstant(VM1.logBase2(), MVT::i64));
6654 return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
6655 N->getOperand(0));
6656 }
6657 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6658 APInt VP1 = Value + 1;
6659 if (VP1.isPowerOf2()) {
6660 SDValue ShiftedVal =
6661 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6662 DAG.getConstant(VP1.logBase2(), MVT::i64));
6663 return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
6664 N->getOperand(0));
6665 }
6666 } else {
6667 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6668 APInt VNM1 = -Value - 1;
6669 if (VNM1.isPowerOf2()) {
6670 SDValue ShiftedVal =
6671 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6672 DAG.getConstant(VNM1.logBase2(), MVT::i64));
6673 SDValue Add =
6674 DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6675 return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
6676 }
6677 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6678 APInt VNP1 = -Value + 1;
6679 if (VNP1.isPowerOf2()) {
6680 SDValue ShiftedVal =
6681 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6682 DAG.getConstant(VNP1.logBase2(), MVT::i64));
6683 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
6684 ShiftedVal);
6685 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00006686 }
Tim Northover3b0846e2014-05-24 12:50:23 +00006687 }
6688 return SDValue();
6689}
6690
Jim Grosbachf7502c42014-07-18 00:40:52 +00006691static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
6692 SelectionDAG &DAG) {
6693 // Take advantage of vector comparisons producing 0 or -1 in each lane to
6694 // optimize away operation when it's from a constant.
6695 //
6696 // The general transformation is:
6697 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
6698 // AND(VECTOR_CMP(x,y), constant2)
6699 // constant2 = UNARYOP(constant)
6700
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006701 // Early exit if this isn't a vector operation, the operand of the
6702 // unary operation isn't a bitwise AND, or if the sizes of the operations
6703 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00006704 EVT VT = N->getValueType(0);
6705 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006706 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
6707 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006708 return SDValue();
6709
Jim Grosbach724e4382014-07-23 20:41:43 +00006710 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00006711 // make the transformation for non-constant splats as well, but it's unclear
6712 // that would be a benefit as it would not eliminate any operations, just
6713 // perform one more step in scalar code before moving to the vector unit.
6714 if (BuildVectorSDNode *BV =
6715 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00006716 // Bail out if the vector isn't a constant.
6717 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006718 return SDValue();
6719
6720 // Everything checks out. Build up the new and improved node.
6721 SDLoc DL(N);
6722 EVT IntVT = BV->getValueType(0);
6723 // Create a new constant of the appropriate type for the transformed
6724 // DAG.
6725 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
6726 // The AND node needs bitcasts to/from an integer vector type around it.
6727 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
6728 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
6729 N->getOperand(0)->getOperand(0), MaskConst);
6730 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
6731 return Res;
6732 }
6733
6734 return SDValue();
6735}
6736
Tim Northover3b0846e2014-05-24 12:50:23 +00006737static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00006738 // First try to optimize away the conversion when it's conditionally from
6739 // a constant. Vectors only.
6740 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
6741 if (Res != SDValue())
6742 return Res;
6743
Tim Northover3b0846e2014-05-24 12:50:23 +00006744 EVT VT = N->getValueType(0);
6745 if (VT != MVT::f32 && VT != MVT::f64)
6746 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00006747
Tim Northover3b0846e2014-05-24 12:50:23 +00006748 // Only optimize when the source and destination types have the same width.
6749 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6750 return SDValue();
6751
6752 // If the result of an integer load is only used by an integer-to-float
6753 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6754 // This eliminates an "integer-to-vector-move UOP and improve throughput.
6755 SDValue N0 = N->getOperand(0);
6756 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6757 // Do not change the width of a volatile load.
6758 !cast<LoadSDNode>(N0)->isVolatile()) {
6759 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6760 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6761 LN0->getPointerInfo(), LN0->isVolatile(),
6762 LN0->isNonTemporal(), LN0->isInvariant(),
6763 LN0->getAlignment());
6764
6765 // Make sure successors of the original load stay after it by updating them
6766 // to use the new Chain.
6767 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
6768
6769 unsigned Opcode =
6770 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
6771 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
6772 }
6773
6774 return SDValue();
6775}
6776
6777/// An EXTR instruction is made up of two shifts, ORed together. This helper
6778/// searches for and classifies those shifts.
6779static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
6780 bool &FromHi) {
6781 if (N.getOpcode() == ISD::SHL)
6782 FromHi = false;
6783 else if (N.getOpcode() == ISD::SRL)
6784 FromHi = true;
6785 else
6786 return false;
6787
6788 if (!isa<ConstantSDNode>(N.getOperand(1)))
6789 return false;
6790
6791 ShiftAmount = N->getConstantOperandVal(1);
6792 Src = N->getOperand(0);
6793 return true;
6794}
6795
6796/// EXTR instruction extracts a contiguous chunk of bits from two existing
6797/// registers viewed as a high/low pair. This function looks for the pattern:
6798/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
6799/// EXTR. Can't quite be done in TableGen because the two immediates aren't
6800/// independent.
6801static SDValue tryCombineToEXTR(SDNode *N,
6802 TargetLowering::DAGCombinerInfo &DCI) {
6803 SelectionDAG &DAG = DCI.DAG;
6804 SDLoc DL(N);
6805 EVT VT = N->getValueType(0);
6806
6807 assert(N->getOpcode() == ISD::OR && "Unexpected root");
6808
6809 if (VT != MVT::i32 && VT != MVT::i64)
6810 return SDValue();
6811
6812 SDValue LHS;
6813 uint32_t ShiftLHS = 0;
6814 bool LHSFromHi = 0;
6815 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
6816 return SDValue();
6817
6818 SDValue RHS;
6819 uint32_t ShiftRHS = 0;
6820 bool RHSFromHi = 0;
6821 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
6822 return SDValue();
6823
6824 // If they're both trying to come from the high part of the register, they're
6825 // not really an EXTR.
6826 if (LHSFromHi == RHSFromHi)
6827 return SDValue();
6828
6829 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
6830 return SDValue();
6831
6832 if (LHSFromHi) {
6833 std::swap(LHS, RHS);
6834 std::swap(ShiftLHS, ShiftRHS);
6835 }
6836
6837 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
6838 DAG.getConstant(ShiftRHS, MVT::i64));
6839}
6840
6841static SDValue tryCombineToBSL(SDNode *N,
6842 TargetLowering::DAGCombinerInfo &DCI) {
6843 EVT VT = N->getValueType(0);
6844 SelectionDAG &DAG = DCI.DAG;
6845 SDLoc DL(N);
6846
6847 if (!VT.isVector())
6848 return SDValue();
6849
6850 SDValue N0 = N->getOperand(0);
6851 if (N0.getOpcode() != ISD::AND)
6852 return SDValue();
6853
6854 SDValue N1 = N->getOperand(1);
6855 if (N1.getOpcode() != ISD::AND)
6856 return SDValue();
6857
6858 // We only have to look for constant vectors here since the general, variable
6859 // case can be handled in TableGen.
6860 unsigned Bits = VT.getVectorElementType().getSizeInBits();
6861 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
6862 for (int i = 1; i >= 0; --i)
6863 for (int j = 1; j >= 0; --j) {
6864 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
6865 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
6866 if (!BVN0 || !BVN1)
6867 continue;
6868
6869 bool FoundMatch = true;
6870 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
6871 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
6872 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
6873 if (!CN0 || !CN1 ||
6874 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
6875 FoundMatch = false;
6876 break;
6877 }
6878 }
6879
6880 if (FoundMatch)
6881 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
6882 N0->getOperand(1 - i), N1->getOperand(1 - j));
6883 }
6884
6885 return SDValue();
6886}
6887
6888static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
6889 const AArch64Subtarget *Subtarget) {
6890 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
6891 if (!EnableAArch64ExtrGeneration)
6892 return SDValue();
6893 SelectionDAG &DAG = DCI.DAG;
6894 EVT VT = N->getValueType(0);
6895
6896 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6897 return SDValue();
6898
6899 SDValue Res = tryCombineToEXTR(N, DCI);
6900 if (Res.getNode())
6901 return Res;
6902
6903 Res = tryCombineToBSL(N, DCI);
6904 if (Res.getNode())
6905 return Res;
6906
6907 return SDValue();
6908}
6909
6910static SDValue performBitcastCombine(SDNode *N,
6911 TargetLowering::DAGCombinerInfo &DCI,
6912 SelectionDAG &DAG) {
6913 // Wait 'til after everything is legalized to try this. That way we have
6914 // legal vector types and such.
6915 if (DCI.isBeforeLegalizeOps())
6916 return SDValue();
6917
6918 // Remove extraneous bitcasts around an extract_subvector.
6919 // For example,
6920 // (v4i16 (bitconvert
6921 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
6922 // becomes
6923 // (extract_subvector ((v8i16 ...), (i64 4)))
6924
6925 // Only interested in 64-bit vectors as the ultimate result.
6926 EVT VT = N->getValueType(0);
6927 if (!VT.isVector())
6928 return SDValue();
6929 if (VT.getSimpleVT().getSizeInBits() != 64)
6930 return SDValue();
6931 // Is the operand an extract_subvector starting at the beginning or halfway
6932 // point of the vector? A low half may also come through as an
6933 // EXTRACT_SUBREG, so look for that, too.
6934 SDValue Op0 = N->getOperand(0);
6935 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
6936 !(Op0->isMachineOpcode() &&
6937 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
6938 return SDValue();
6939 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
6940 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6941 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
6942 return SDValue();
6943 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
6944 if (idx != AArch64::dsub)
6945 return SDValue();
6946 // The dsub reference is equivalent to a lane zero subvector reference.
6947 idx = 0;
6948 }
6949 // Look through the bitcast of the input to the extract.
6950 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
6951 return SDValue();
6952 SDValue Source = Op0->getOperand(0)->getOperand(0);
6953 // If the source type has twice the number of elements as our destination
6954 // type, we know this is an extract of the high or low half of the vector.
6955 EVT SVT = Source->getValueType(0);
6956 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
6957 return SDValue();
6958
6959 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
6960
6961 // Create the simplified form to just extract the low or high half of the
6962 // vector directly rather than bothering with the bitcasts.
6963 SDLoc dl(N);
6964 unsigned NumElements = VT.getVectorNumElements();
6965 if (idx) {
6966 SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
6967 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
6968 } else {
6969 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
6970 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
6971 Source, SubReg),
6972 0);
6973 }
6974}
6975
6976static SDValue performConcatVectorsCombine(SDNode *N,
6977 TargetLowering::DAGCombinerInfo &DCI,
6978 SelectionDAG &DAG) {
6979 // Wait 'til after everything is legalized to try this. That way we have
6980 // legal vector types and such.
6981 if (DCI.isBeforeLegalizeOps())
6982 return SDValue();
6983
6984 SDLoc dl(N);
6985 EVT VT = N->getValueType(0);
6986
6987 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
6988 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
6989 // canonicalise to that.
6990 if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
6991 assert(VT.getVectorElementType().getSizeInBits() == 64);
6992 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
6993 WidenVector(N->getOperand(0), DAG),
6994 DAG.getConstant(0, MVT::i64));
6995 }
6996
6997 // Canonicalise concat_vectors so that the right-hand vector has as few
6998 // bit-casts as possible before its real operation. The primary matching
6999 // destination for these operations will be the narrowing "2" instructions,
7000 // which depend on the operation being performed on this right-hand vector.
7001 // For example,
7002 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7003 // becomes
7004 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7005
7006 SDValue Op1 = N->getOperand(1);
7007 if (Op1->getOpcode() != ISD::BITCAST)
7008 return SDValue();
7009 SDValue RHS = Op1->getOperand(0);
7010 MVT RHSTy = RHS.getValueType().getSimpleVT();
7011 // If the RHS is not a vector, this is not the pattern we're looking for.
7012 if (!RHSTy.isVector())
7013 return SDValue();
7014
7015 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7016
7017 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7018 RHSTy.getVectorNumElements() * 2);
7019 return DAG.getNode(
7020 ISD::BITCAST, dl, VT,
7021 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7022 DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
7023}
7024
7025static SDValue tryCombineFixedPointConvert(SDNode *N,
7026 TargetLowering::DAGCombinerInfo &DCI,
7027 SelectionDAG &DAG) {
7028 // Wait 'til after everything is legalized to try this. That way we have
7029 // legal vector types and such.
7030 if (DCI.isBeforeLegalizeOps())
7031 return SDValue();
7032 // Transform a scalar conversion of a value from a lane extract into a
7033 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7034 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7035 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7036 //
7037 // The second form interacts better with instruction selection and the
7038 // register allocator to avoid cross-class register copies that aren't
7039 // coalescable due to a lane reference.
7040
7041 // Check the operand and see if it originates from a lane extract.
7042 SDValue Op1 = N->getOperand(1);
7043 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7044 // Yep, no additional predication needed. Perform the transform.
7045 SDValue IID = N->getOperand(0);
7046 SDValue Shift = N->getOperand(2);
7047 SDValue Vec = Op1.getOperand(0);
7048 SDValue Lane = Op1.getOperand(1);
7049 EVT ResTy = N->getValueType(0);
7050 EVT VecResTy;
7051 SDLoc DL(N);
7052
7053 // The vector width should be 128 bits by the time we get here, even
7054 // if it started as 64 bits (the extract_vector handling will have
7055 // done so).
7056 assert(Vec.getValueType().getSizeInBits() == 128 &&
7057 "unexpected vector size on extract_vector_elt!");
7058 if (Vec.getValueType() == MVT::v4i32)
7059 VecResTy = MVT::v4f32;
7060 else if (Vec.getValueType() == MVT::v2i64)
7061 VecResTy = MVT::v2f64;
7062 else
Craig Topper2a30d782014-06-18 05:05:13 +00007063 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007064
7065 SDValue Convert =
7066 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7067 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7068 }
7069 return SDValue();
7070}
7071
7072// AArch64 high-vector "long" operations are formed by performing the non-high
7073// version on an extract_subvector of each operand which gets the high half:
7074//
7075// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7076//
7077// However, there are cases which don't have an extract_high explicitly, but
7078// have another operation that can be made compatible with one for free. For
7079// example:
7080//
7081// (dupv64 scalar) --> (extract_high (dup128 scalar))
7082//
7083// This routine does the actual conversion of such DUPs, once outer routines
7084// have determined that everything else is in order.
7085static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
7086 // We can handle most types of duplicate, but the lane ones have an extra
7087 // operand saying *which* lane, so we need to know.
7088 bool IsDUPLANE;
7089 switch (N.getOpcode()) {
7090 case AArch64ISD::DUP:
7091 IsDUPLANE = false;
7092 break;
7093 case AArch64ISD::DUPLANE8:
7094 case AArch64ISD::DUPLANE16:
7095 case AArch64ISD::DUPLANE32:
7096 case AArch64ISD::DUPLANE64:
7097 IsDUPLANE = true;
7098 break;
7099 default:
7100 return SDValue();
7101 }
7102
7103 MVT NarrowTy = N.getSimpleValueType();
7104 if (!NarrowTy.is64BitVector())
7105 return SDValue();
7106
7107 MVT ElementTy = NarrowTy.getVectorElementType();
7108 unsigned NumElems = NarrowTy.getVectorNumElements();
7109 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
7110
7111 SDValue NewDUP;
7112 if (IsDUPLANE)
7113 NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
7114 N.getOperand(1));
7115 else
7116 NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
7117
7118 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
7119 NewDUP, DAG.getConstant(NumElems, MVT::i64));
7120}
7121
7122static bool isEssentiallyExtractSubvector(SDValue N) {
7123 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7124 return true;
7125
7126 return N.getOpcode() == ISD::BITCAST &&
7127 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7128}
7129
7130/// \brief Helper structure to keep track of ISD::SET_CC operands.
7131struct GenericSetCCInfo {
7132 const SDValue *Opnd0;
7133 const SDValue *Opnd1;
7134 ISD::CondCode CC;
7135};
7136
7137/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7138struct AArch64SetCCInfo {
7139 const SDValue *Cmp;
7140 AArch64CC::CondCode CC;
7141};
7142
7143/// \brief Helper structure to keep track of SetCC information.
7144union SetCCInfo {
7145 GenericSetCCInfo Generic;
7146 AArch64SetCCInfo AArch64;
7147};
7148
7149/// \brief Helper structure to be able to read SetCC information. If set to
7150/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7151/// GenericSetCCInfo.
7152struct SetCCInfoAndKind {
7153 SetCCInfo Info;
7154 bool IsAArch64;
7155};
7156
7157/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7158/// an
7159/// AArch64 lowered one.
7160/// \p SetCCInfo is filled accordingly.
7161/// \post SetCCInfo is meanginfull only when this function returns true.
7162/// \return True when Op is a kind of SET_CC operation.
7163static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7164 // If this is a setcc, this is straight forward.
7165 if (Op.getOpcode() == ISD::SETCC) {
7166 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7167 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7168 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7169 SetCCInfo.IsAArch64 = false;
7170 return true;
7171 }
7172 // Otherwise, check if this is a matching csel instruction.
7173 // In other words:
7174 // - csel 1, 0, cc
7175 // - csel 0, 1, !cc
7176 if (Op.getOpcode() != AArch64ISD::CSEL)
7177 return false;
7178 // Set the information about the operands.
7179 // TODO: we want the operands of the Cmp not the csel
7180 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7181 SetCCInfo.IsAArch64 = true;
7182 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7183 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7184
7185 // Check that the operands matches the constraints:
7186 // (1) Both operands must be constants.
7187 // (2) One must be 1 and the other must be 0.
7188 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7189 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7190
7191 // Check (1).
7192 if (!TValue || !FValue)
7193 return false;
7194
7195 // Check (2).
7196 if (!TValue->isOne()) {
7197 // Update the comparison when we are interested in !cc.
7198 std::swap(TValue, FValue);
7199 SetCCInfo.Info.AArch64.CC =
7200 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7201 }
7202 return TValue->isOne() && FValue->isNullValue();
7203}
7204
7205// Returns true if Op is setcc or zext of setcc.
7206static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7207 if (isSetCC(Op, Info))
7208 return true;
7209 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7210 isSetCC(Op->getOperand(0), Info));
7211}
7212
7213// The folding we want to perform is:
7214// (add x, [zext] (setcc cc ...) )
7215// -->
7216// (csel x, (add x, 1), !cc ...)
7217//
7218// The latter will get matched to a CSINC instruction.
7219static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7220 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7221 SDValue LHS = Op->getOperand(0);
7222 SDValue RHS = Op->getOperand(1);
7223 SetCCInfoAndKind InfoAndKind;
7224
7225 // If neither operand is a SET_CC, give up.
7226 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7227 std::swap(LHS, RHS);
7228 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7229 return SDValue();
7230 }
7231
7232 // FIXME: This could be generatized to work for FP comparisons.
7233 EVT CmpVT = InfoAndKind.IsAArch64
7234 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7235 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7236 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7237 return SDValue();
7238
7239 SDValue CCVal;
7240 SDValue Cmp;
7241 SDLoc dl(Op);
7242 if (InfoAndKind.IsAArch64) {
7243 CCVal = DAG.getConstant(
7244 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
7245 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7246 } else
7247 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7248 *InfoAndKind.Info.Generic.Opnd1,
7249 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7250 CCVal, DAG, dl);
7251
7252 EVT VT = Op->getValueType(0);
7253 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
7254 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7255}
7256
7257// The basic add/sub long vector instructions have variants with "2" on the end
7258// which act on the high-half of their inputs. They are normally matched by
7259// patterns like:
7260//
7261// (add (zeroext (extract_high LHS)),
7262// (zeroext (extract_high RHS)))
7263// -> uaddl2 vD, vN, vM
7264//
7265// However, if one of the extracts is something like a duplicate, this
7266// instruction can still be used profitably. This function puts the DAG into a
7267// more appropriate form for those patterns to trigger.
7268static SDValue performAddSubLongCombine(SDNode *N,
7269 TargetLowering::DAGCombinerInfo &DCI,
7270 SelectionDAG &DAG) {
7271 if (DCI.isBeforeLegalizeOps())
7272 return SDValue();
7273
7274 MVT VT = N->getSimpleValueType(0);
7275 if (!VT.is128BitVector()) {
7276 if (N->getOpcode() == ISD::ADD)
7277 return performSetccAddFolding(N, DAG);
7278 return SDValue();
7279 }
7280
7281 // Make sure both branches are extended in the same way.
7282 SDValue LHS = N->getOperand(0);
7283 SDValue RHS = N->getOperand(1);
7284 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7285 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7286 LHS.getOpcode() != RHS.getOpcode())
7287 return SDValue();
7288
7289 unsigned ExtType = LHS.getOpcode();
7290
7291 // It's not worth doing if at least one of the inputs isn't already an
7292 // extract, but we don't know which it'll be so we have to try both.
7293 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7294 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7295 if (!RHS.getNode())
7296 return SDValue();
7297
7298 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7299 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7300 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7301 if (!LHS.getNode())
7302 return SDValue();
7303
7304 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7305 }
7306
7307 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7308}
7309
7310// Massage DAGs which we can use the high-half "long" operations on into
7311// something isel will recognize better. E.g.
7312//
7313// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7314// (aarch64_neon_umull (extract_high (v2i64 vec)))
7315// (extract_high (v2i64 (dup128 scalar)))))
7316//
7317static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7318 TargetLowering::DAGCombinerInfo &DCI,
7319 SelectionDAG &DAG) {
7320 if (DCI.isBeforeLegalizeOps())
7321 return SDValue();
7322
7323 SDValue LHS = N->getOperand(1);
7324 SDValue RHS = N->getOperand(2);
7325 assert(LHS.getValueType().is64BitVector() &&
7326 RHS.getValueType().is64BitVector() &&
7327 "unexpected shape for long operation");
7328
7329 // Either node could be a DUP, but it's not worth doing both of them (you'd
7330 // just as well use the non-high version) so look for a corresponding extract
7331 // operation on the other "wing".
7332 if (isEssentiallyExtractSubvector(LHS)) {
7333 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7334 if (!RHS.getNode())
7335 return SDValue();
7336 } else if (isEssentiallyExtractSubvector(RHS)) {
7337 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7338 if (!LHS.getNode())
7339 return SDValue();
7340 }
7341
7342 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7343 N->getOperand(0), LHS, RHS);
7344}
7345
7346static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7347 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7348 unsigned ElemBits = ElemTy.getSizeInBits();
7349
7350 int64_t ShiftAmount;
7351 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7352 APInt SplatValue, SplatUndef;
7353 unsigned SplatBitSize;
7354 bool HasAnyUndefs;
7355 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7356 HasAnyUndefs, ElemBits) ||
7357 SplatBitSize != ElemBits)
7358 return SDValue();
7359
7360 ShiftAmount = SplatValue.getSExtValue();
7361 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7362 ShiftAmount = CVN->getSExtValue();
7363 } else
7364 return SDValue();
7365
7366 unsigned Opcode;
7367 bool IsRightShift;
7368 switch (IID) {
7369 default:
7370 llvm_unreachable("Unknown shift intrinsic");
7371 case Intrinsic::aarch64_neon_sqshl:
7372 Opcode = AArch64ISD::SQSHL_I;
7373 IsRightShift = false;
7374 break;
7375 case Intrinsic::aarch64_neon_uqshl:
7376 Opcode = AArch64ISD::UQSHL_I;
7377 IsRightShift = false;
7378 break;
7379 case Intrinsic::aarch64_neon_srshl:
7380 Opcode = AArch64ISD::SRSHR_I;
7381 IsRightShift = true;
7382 break;
7383 case Intrinsic::aarch64_neon_urshl:
7384 Opcode = AArch64ISD::URSHR_I;
7385 IsRightShift = true;
7386 break;
7387 case Intrinsic::aarch64_neon_sqshlu:
7388 Opcode = AArch64ISD::SQSHLU_I;
7389 IsRightShift = false;
7390 break;
7391 }
7392
7393 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7394 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7395 DAG.getConstant(-ShiftAmount, MVT::i32));
James Molloy1e3b5a42014-06-16 10:39:21 +00007396 else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
Tim Northover3b0846e2014-05-24 12:50:23 +00007397 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7398 DAG.getConstant(ShiftAmount, MVT::i32));
7399
7400 return SDValue();
7401}
7402
7403// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7404// the intrinsics must be legal and take an i32, this means there's almost
7405// certainly going to be a zext in the DAG which we can eliminate.
7406static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7407 SDValue AndN = N->getOperand(2);
7408 if (AndN.getOpcode() != ISD::AND)
7409 return SDValue();
7410
7411 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7412 if (!CMask || CMask->getZExtValue() != Mask)
7413 return SDValue();
7414
7415 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7416 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7417}
7418
7419static SDValue performIntrinsicCombine(SDNode *N,
7420 TargetLowering::DAGCombinerInfo &DCI,
7421 const AArch64Subtarget *Subtarget) {
7422 SelectionDAG &DAG = DCI.DAG;
7423 unsigned IID = getIntrinsicID(N);
7424 switch (IID) {
7425 default:
7426 break;
7427 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7428 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7429 return tryCombineFixedPointConvert(N, DCI, DAG);
7430 break;
7431 case Intrinsic::aarch64_neon_fmax:
7432 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7433 N->getOperand(1), N->getOperand(2));
7434 case Intrinsic::aarch64_neon_fmin:
7435 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7436 N->getOperand(1), N->getOperand(2));
7437 case Intrinsic::aarch64_neon_smull:
7438 case Intrinsic::aarch64_neon_umull:
7439 case Intrinsic::aarch64_neon_pmull:
7440 case Intrinsic::aarch64_neon_sqdmull:
7441 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7442 case Intrinsic::aarch64_neon_sqshl:
7443 case Intrinsic::aarch64_neon_uqshl:
7444 case Intrinsic::aarch64_neon_sqshlu:
7445 case Intrinsic::aarch64_neon_srshl:
7446 case Intrinsic::aarch64_neon_urshl:
7447 return tryCombineShiftImm(IID, N, DAG);
7448 case Intrinsic::aarch64_crc32b:
7449 case Intrinsic::aarch64_crc32cb:
7450 return tryCombineCRC32(0xff, N, DAG);
7451 case Intrinsic::aarch64_crc32h:
7452 case Intrinsic::aarch64_crc32ch:
7453 return tryCombineCRC32(0xffff, N, DAG);
7454 }
7455 return SDValue();
7456}
7457
7458static SDValue performExtendCombine(SDNode *N,
7459 TargetLowering::DAGCombinerInfo &DCI,
7460 SelectionDAG &DAG) {
7461 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7462 // we can convert that DUP into another extract_high (of a bigger DUP), which
7463 // helps the backend to decide that an sabdl2 would be useful, saving a real
7464 // extract_high operation.
7465 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7466 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7467 SDNode *ABDNode = N->getOperand(0).getNode();
7468 unsigned IID = getIntrinsicID(ABDNode);
7469 if (IID == Intrinsic::aarch64_neon_sabd ||
7470 IID == Intrinsic::aarch64_neon_uabd) {
7471 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7472 if (!NewABD.getNode())
7473 return SDValue();
7474
7475 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7476 NewABD);
7477 }
7478 }
7479
7480 // This is effectively a custom type legalization for AArch64.
7481 //
7482 // Type legalization will split an extend of a small, legal, type to a larger
7483 // illegal type by first splitting the destination type, often creating
7484 // illegal source types, which then get legalized in isel-confusing ways,
7485 // leading to really terrible codegen. E.g.,
7486 // %result = v8i32 sext v8i8 %value
7487 // becomes
7488 // %losrc = extract_subreg %value, ...
7489 // %hisrc = extract_subreg %value, ...
7490 // %lo = v4i32 sext v4i8 %losrc
7491 // %hi = v4i32 sext v4i8 %hisrc
7492 // Things go rapidly downhill from there.
7493 //
7494 // For AArch64, the [sz]ext vector instructions can only go up one element
7495 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7496 // take two instructions.
7497 //
7498 // This implies that the most efficient way to do the extend from v8i8
7499 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7500 // the normal splitting to happen for the v8i16->v8i32.
7501
7502 // This is pre-legalization to catch some cases where the default
7503 // type legalization will create ill-tempered code.
7504 if (!DCI.isBeforeLegalizeOps())
7505 return SDValue();
7506
7507 // We're only interested in cleaning things up for non-legal vector types
7508 // here. If both the source and destination are legal, things will just
7509 // work naturally without any fiddling.
7510 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7511 EVT ResVT = N->getValueType(0);
7512 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7513 return SDValue();
7514 // If the vector type isn't a simple VT, it's beyond the scope of what
7515 // we're worried about here. Let legalization do its thing and hope for
7516 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00007517 SDValue Src = N->getOperand(0);
7518 EVT SrcVT = Src->getValueType(0);
7519 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00007520 return SDValue();
7521
Tim Northover3b0846e2014-05-24 12:50:23 +00007522 // If the source VT is a 64-bit vector, we can play games and get the
7523 // better results we want.
7524 if (SrcVT.getSizeInBits() != 64)
7525 return SDValue();
7526
7527 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7528 unsigned ElementCount = SrcVT.getVectorNumElements();
7529 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7530 SDLoc DL(N);
7531 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7532
7533 // Now split the rest of the operation into two halves, each with a 64
7534 // bit source.
7535 EVT LoVT, HiVT;
7536 SDValue Lo, Hi;
7537 unsigned NumElements = ResVT.getVectorNumElements();
7538 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7539 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7540 ResVT.getVectorElementType(), NumElements / 2);
7541
7542 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7543 LoVT.getVectorNumElements());
7544 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7545 DAG.getIntPtrConstant(0));
7546 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7547 DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
7548 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7549 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7550
7551 // Now combine the parts back together so we still have a single result
7552 // like the combiner expects.
7553 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7554}
7555
7556/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7557/// value. The load store optimizer pass will merge them to store pair stores.
7558/// This has better performance than a splat of the scalar followed by a split
7559/// vector store. Even if the stores are not merged it is four stores vs a dup,
7560/// followed by an ext.b and two stores.
7561static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7562 SDValue StVal = St->getValue();
7563 EVT VT = StVal.getValueType();
7564
7565 // Don't replace floating point stores, they possibly won't be transformed to
7566 // stp because of the store pair suppress pass.
7567 if (VT.isFloatingPoint())
7568 return SDValue();
7569
7570 // Check for insert vector elements.
7571 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7572 return SDValue();
7573
7574 // We can express a splat as store pair(s) for 2 or 4 elements.
7575 unsigned NumVecElts = VT.getVectorNumElements();
7576 if (NumVecElts != 4 && NumVecElts != 2)
7577 return SDValue();
7578 SDValue SplatVal = StVal.getOperand(1);
7579 unsigned RemainInsertElts = NumVecElts - 1;
7580
7581 // Check that this is a splat.
7582 while (--RemainInsertElts) {
7583 SDValue NextInsertElt = StVal.getOperand(0);
7584 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7585 return SDValue();
7586 if (NextInsertElt.getOperand(1) != SplatVal)
7587 return SDValue();
7588 StVal = NextInsertElt;
7589 }
7590 unsigned OrigAlignment = St->getAlignment();
7591 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7592 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7593
7594 // Create scalar stores. This is at least as good as the code sequence for a
7595 // split unaligned store wich is a dup.s, ext.b, and two stores.
7596 // Most of the time the three stores should be replaced by store pair
7597 // instructions (stp).
7598 SDLoc DL(St);
7599 SDValue BasePtr = St->getBasePtr();
7600 SDValue NewST1 =
7601 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7602 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7603
7604 unsigned Offset = EltOffset;
7605 while (--NumVecElts) {
7606 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7607 DAG.getConstant(Offset, MVT::i64));
7608 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7609 St->getPointerInfo(), St->isVolatile(),
7610 St->isNonTemporal(), Alignment);
7611 Offset += EltOffset;
7612 }
7613 return NewST1;
7614}
7615
7616static SDValue performSTORECombine(SDNode *N,
7617 TargetLowering::DAGCombinerInfo &DCI,
7618 SelectionDAG &DAG,
7619 const AArch64Subtarget *Subtarget) {
7620 if (!DCI.isBeforeLegalize())
7621 return SDValue();
7622
7623 StoreSDNode *S = cast<StoreSDNode>(N);
7624 if (S->isVolatile())
7625 return SDValue();
7626
7627 // Cyclone has bad performance on unaligned 16B stores when crossing line and
7628 // page boundries. We want to split such stores.
7629 if (!Subtarget->isCyclone())
7630 return SDValue();
7631
7632 // Don't split at Oz.
7633 MachineFunction &MF = DAG.getMachineFunction();
7634 bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
7635 AttributeSet::FunctionIndex, Attribute::MinSize);
7636 if (IsMinSize)
7637 return SDValue();
7638
7639 SDValue StVal = S->getValue();
7640 EVT VT = StVal.getValueType();
7641
7642 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7643 // those up regresses performance on micro-benchmarks and olden/bh.
7644 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7645 return SDValue();
7646
7647 // Split unaligned 16B stores. They are terrible for performance.
7648 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7649 // extensions can use this to mark that it does not want splitting to happen
7650 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7651 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7652 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7653 S->getAlignment() <= 2)
7654 return SDValue();
7655
7656 // If we get a splat of a scalar convert this vector store to a store of
7657 // scalars. They will be merged into store pairs thereby removing two
7658 // instructions.
7659 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7660 if (ReplacedSplat != SDValue())
7661 return ReplacedSplat;
7662
7663 SDLoc DL(S);
7664 unsigned NumElts = VT.getVectorNumElements() / 2;
7665 // Split VT into two.
7666 EVT HalfVT =
7667 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7668 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7669 DAG.getIntPtrConstant(0));
7670 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7671 DAG.getIntPtrConstant(NumElts));
7672 SDValue BasePtr = S->getBasePtr();
7673 SDValue NewST1 =
7674 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7675 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7676 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7677 DAG.getConstant(8, MVT::i64));
7678 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7679 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7680 S->getAlignment());
7681}
7682
7683/// Target-specific DAG combine function for post-increment LD1 (lane) and
7684/// post-increment LD1R.
7685static SDValue performPostLD1Combine(SDNode *N,
7686 TargetLowering::DAGCombinerInfo &DCI,
7687 bool IsLaneOp) {
7688 if (DCI.isBeforeLegalizeOps())
7689 return SDValue();
7690
7691 SelectionDAG &DAG = DCI.DAG;
7692 EVT VT = N->getValueType(0);
7693
7694 unsigned LoadIdx = IsLaneOp ? 1 : 0;
7695 SDNode *LD = N->getOperand(LoadIdx).getNode();
7696 // If it is not LOAD, can not do such combine.
7697 if (LD->getOpcode() != ISD::LOAD)
7698 return SDValue();
7699
7700 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7701 EVT MemVT = LoadSDN->getMemoryVT();
7702 // Check if memory operand is the same type as the vector element.
7703 if (MemVT != VT.getVectorElementType())
7704 return SDValue();
7705
7706 // Check if there are other uses. If so, do not combine as it will introduce
7707 // an extra load.
7708 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7709 ++UI) {
7710 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7711 continue;
7712 if (*UI != N)
7713 return SDValue();
7714 }
7715
7716 SDValue Addr = LD->getOperand(1);
7717 SDValue Vector = N->getOperand(0);
7718 // Search for a use of the address operand that is an increment.
7719 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7720 Addr.getNode()->use_end(); UI != UE; ++UI) {
7721 SDNode *User = *UI;
7722 if (User->getOpcode() != ISD::ADD
7723 || UI.getUse().getResNo() != Addr.getResNo())
7724 continue;
7725
7726 // Check that the add is independent of the load. Otherwise, folding it
7727 // would create a cycle.
7728 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7729 continue;
7730 // Also check that add is not used in the vector operand. This would also
7731 // create a cycle.
7732 if (User->isPredecessorOf(Vector.getNode()))
7733 continue;
7734
7735 // If the increment is a constant, it must match the memory ref size.
7736 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7737 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7738 uint32_t IncVal = CInc->getZExtValue();
7739 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7740 if (IncVal != NumBytes)
7741 continue;
7742 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7743 }
7744
7745 SmallVector<SDValue, 8> Ops;
7746 Ops.push_back(LD->getOperand(0)); // Chain
7747 if (IsLaneOp) {
7748 Ops.push_back(Vector); // The vector to be inserted
7749 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
7750 }
7751 Ops.push_back(Addr);
7752 Ops.push_back(Inc);
7753
7754 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00007755 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00007756 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
7757 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
7758 MemVT,
7759 LoadSDN->getMemOperand());
7760
7761 // Update the uses.
7762 std::vector<SDValue> NewResults;
7763 NewResults.push_back(SDValue(LD, 0)); // The result of load
7764 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
7765 DCI.CombineTo(LD, NewResults);
7766 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
7767 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
7768
7769 break;
7770 }
7771 return SDValue();
7772}
7773
7774/// Target-specific DAG combine function for NEON load/store intrinsics
7775/// to merge base address updates.
7776static SDValue performNEONPostLDSTCombine(SDNode *N,
7777 TargetLowering::DAGCombinerInfo &DCI,
7778 SelectionDAG &DAG) {
7779 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7780 return SDValue();
7781
7782 unsigned AddrOpIdx = N->getNumOperands() - 1;
7783 SDValue Addr = N->getOperand(AddrOpIdx);
7784
7785 // Search for a use of the address operand that is an increment.
7786 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7787 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7788 SDNode *User = *UI;
7789 if (User->getOpcode() != ISD::ADD ||
7790 UI.getUse().getResNo() != Addr.getResNo())
7791 continue;
7792
7793 // Check that the add is independent of the load/store. Otherwise, folding
7794 // it would create a cycle.
7795 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7796 continue;
7797
7798 // Find the new opcode for the updating load/store.
7799 bool IsStore = false;
7800 bool IsLaneOp = false;
7801 bool IsDupOp = false;
7802 unsigned NewOpc = 0;
7803 unsigned NumVecs = 0;
7804 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7805 switch (IntNo) {
7806 default: llvm_unreachable("unexpected intrinsic for Neon base update");
7807 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
7808 NumVecs = 2; break;
7809 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
7810 NumVecs = 3; break;
7811 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
7812 NumVecs = 4; break;
7813 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
7814 NumVecs = 2; IsStore = true; break;
7815 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
7816 NumVecs = 3; IsStore = true; break;
7817 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
7818 NumVecs = 4; IsStore = true; break;
7819 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
7820 NumVecs = 2; break;
7821 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
7822 NumVecs = 3; break;
7823 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
7824 NumVecs = 4; break;
7825 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
7826 NumVecs = 2; IsStore = true; break;
7827 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
7828 NumVecs = 3; IsStore = true; break;
7829 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
7830 NumVecs = 4; IsStore = true; break;
7831 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
7832 NumVecs = 2; IsDupOp = true; break;
7833 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
7834 NumVecs = 3; IsDupOp = true; break;
7835 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
7836 NumVecs = 4; IsDupOp = true; break;
7837 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
7838 NumVecs = 2; IsLaneOp = true; break;
7839 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
7840 NumVecs = 3; IsLaneOp = true; break;
7841 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
7842 NumVecs = 4; IsLaneOp = true; break;
7843 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
7844 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
7845 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
7846 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
7847 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
7848 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
7849 }
7850
7851 EVT VecTy;
7852 if (IsStore)
7853 VecTy = N->getOperand(2).getValueType();
7854 else
7855 VecTy = N->getValueType(0);
7856
7857 // If the increment is a constant, it must match the memory ref size.
7858 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7859 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7860 uint32_t IncVal = CInc->getZExtValue();
7861 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7862 if (IsLaneOp || IsDupOp)
7863 NumBytes /= VecTy.getVectorNumElements();
7864 if (IncVal != NumBytes)
7865 continue;
7866 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7867 }
7868 SmallVector<SDValue, 8> Ops;
7869 Ops.push_back(N->getOperand(0)); // Incoming chain
7870 // Load lane and store have vector list as input.
7871 if (IsLaneOp || IsStore)
7872 for (unsigned i = 2; i < AddrOpIdx; ++i)
7873 Ops.push_back(N->getOperand(i));
7874 Ops.push_back(Addr); // Base register
7875 Ops.push_back(Inc);
7876
7877 // Return Types.
7878 EVT Tys[6];
7879 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
7880 unsigned n;
7881 for (n = 0; n < NumResultVecs; ++n)
7882 Tys[n] = VecTy;
7883 Tys[n++] = MVT::i64; // Type of write back register
7884 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00007885 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00007886
7887 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7888 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
7889 MemInt->getMemoryVT(),
7890 MemInt->getMemOperand());
7891
7892 // Update the uses.
7893 std::vector<SDValue> NewResults;
7894 for (unsigned i = 0; i < NumResultVecs; ++i) {
7895 NewResults.push_back(SDValue(UpdN.getNode(), i));
7896 }
7897 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
7898 DCI.CombineTo(N, NewResults);
7899 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7900
7901 break;
7902 }
7903 return SDValue();
7904}
7905
7906// Optimize compare with zero and branch.
7907static SDValue performBRCONDCombine(SDNode *N,
7908 TargetLowering::DAGCombinerInfo &DCI,
7909 SelectionDAG &DAG) {
7910 SDValue Chain = N->getOperand(0);
7911 SDValue Dest = N->getOperand(1);
7912 SDValue CCVal = N->getOperand(2);
7913 SDValue Cmp = N->getOperand(3);
7914
7915 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
7916 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
7917 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
7918 return SDValue();
7919
7920 unsigned CmpOpc = Cmp.getOpcode();
7921 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
7922 return SDValue();
7923
7924 // Only attempt folding if there is only one use of the flag and no use of the
7925 // value.
7926 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
7927 return SDValue();
7928
7929 SDValue LHS = Cmp.getOperand(0);
7930 SDValue RHS = Cmp.getOperand(1);
7931
7932 assert(LHS.getValueType() == RHS.getValueType() &&
7933 "Expected the value type to be the same for both operands!");
7934 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
7935 return SDValue();
7936
7937 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
7938 std::swap(LHS, RHS);
7939
7940 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
7941 return SDValue();
7942
7943 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
7944 LHS.getOpcode() == ISD::SRL)
7945 return SDValue();
7946
7947 // Fold the compare into the branch instruction.
7948 SDValue BR;
7949 if (CC == AArch64CC::EQ)
7950 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
7951 else
7952 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
7953
7954 // Do not add new nodes to DAG combiner worklist.
7955 DCI.CombineTo(N, BR, false);
7956
7957 return SDValue();
7958}
7959
7960// vselect (v1i1 setcc) ->
7961// vselect (v1iXX setcc) (XX is the size of the compared operand type)
7962// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
7963// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
7964// such VSELECT.
7965static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
7966 SDValue N0 = N->getOperand(0);
7967 EVT CCVT = N0.getValueType();
7968
7969 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
7970 CCVT.getVectorElementType() != MVT::i1)
7971 return SDValue();
7972
7973 EVT ResVT = N->getValueType(0);
7974 EVT CmpVT = N0.getOperand(0).getValueType();
7975 // Only combine when the result type is of the same size as the compared
7976 // operands.
7977 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
7978 return SDValue();
7979
7980 SDValue IfTrue = N->getOperand(1);
7981 SDValue IfFalse = N->getOperand(2);
7982 SDValue SetCC =
7983 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
7984 N0.getOperand(0), N0.getOperand(1),
7985 cast<CondCodeSDNode>(N0.getOperand(2))->get());
7986 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
7987 IfTrue, IfFalse);
7988}
7989
7990/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
7991/// the compare-mask instructions rather than going via NZCV, even if LHS and
7992/// RHS are really scalar. This replaces any scalar setcc in the above pattern
7993/// with a vector one followed by a DUP shuffle on the result.
7994static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
7995 SDValue N0 = N->getOperand(0);
7996 EVT ResVT = N->getValueType(0);
7997
7998 if (!N->getOperand(1).getValueType().isVector())
7999 return SDValue();
8000
8001 if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
8002 return SDValue();
8003
8004 SDLoc DL(N0);
8005
8006 EVT SrcVT = N0.getOperand(0).getValueType();
8007 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT,
8008 ResVT.getSizeInBits() / SrcVT.getSizeInBits());
8009 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8010
8011 // First perform a vector comparison, where lane 0 is the one we're interested
8012 // in.
8013 SDValue LHS =
8014 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8015 SDValue RHS =
8016 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8017 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8018
8019 // Now duplicate the comparison mask we want across all other lanes.
8020 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8021 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
8022 Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(),
8023 Mask);
8024
8025 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8026}
8027
8028SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8029 DAGCombinerInfo &DCI) const {
8030 SelectionDAG &DAG = DCI.DAG;
8031 switch (N->getOpcode()) {
8032 default:
8033 break;
8034 case ISD::ADD:
8035 case ISD::SUB:
8036 return performAddSubLongCombine(N, DCI, DAG);
8037 case ISD::XOR:
8038 return performXorCombine(N, DAG, DCI, Subtarget);
8039 case ISD::MUL:
8040 return performMulCombine(N, DAG, DCI, Subtarget);
8041 case ISD::SINT_TO_FP:
8042 case ISD::UINT_TO_FP:
8043 return performIntToFpCombine(N, DAG);
8044 case ISD::OR:
8045 return performORCombine(N, DCI, Subtarget);
8046 case ISD::INTRINSIC_WO_CHAIN:
8047 return performIntrinsicCombine(N, DCI, Subtarget);
8048 case ISD::ANY_EXTEND:
8049 case ISD::ZERO_EXTEND:
8050 case ISD::SIGN_EXTEND:
8051 return performExtendCombine(N, DCI, DAG);
8052 case ISD::BITCAST:
8053 return performBitcastCombine(N, DCI, DAG);
8054 case ISD::CONCAT_VECTORS:
8055 return performConcatVectorsCombine(N, DCI, DAG);
8056 case ISD::SELECT:
8057 return performSelectCombine(N, DAG);
8058 case ISD::VSELECT:
8059 return performVSelectCombine(N, DCI.DAG);
8060 case ISD::STORE:
8061 return performSTORECombine(N, DCI, DAG, Subtarget);
8062 case AArch64ISD::BRCOND:
8063 return performBRCONDCombine(N, DCI, DAG);
8064 case AArch64ISD::DUP:
8065 return performPostLD1Combine(N, DCI, false);
8066 case ISD::INSERT_VECTOR_ELT:
8067 return performPostLD1Combine(N, DCI, true);
8068 case ISD::INTRINSIC_VOID:
8069 case ISD::INTRINSIC_W_CHAIN:
8070 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8071 case Intrinsic::aarch64_neon_ld2:
8072 case Intrinsic::aarch64_neon_ld3:
8073 case Intrinsic::aarch64_neon_ld4:
8074 case Intrinsic::aarch64_neon_ld1x2:
8075 case Intrinsic::aarch64_neon_ld1x3:
8076 case Intrinsic::aarch64_neon_ld1x4:
8077 case Intrinsic::aarch64_neon_ld2lane:
8078 case Intrinsic::aarch64_neon_ld3lane:
8079 case Intrinsic::aarch64_neon_ld4lane:
8080 case Intrinsic::aarch64_neon_ld2r:
8081 case Intrinsic::aarch64_neon_ld3r:
8082 case Intrinsic::aarch64_neon_ld4r:
8083 case Intrinsic::aarch64_neon_st2:
8084 case Intrinsic::aarch64_neon_st3:
8085 case Intrinsic::aarch64_neon_st4:
8086 case Intrinsic::aarch64_neon_st1x2:
8087 case Intrinsic::aarch64_neon_st1x3:
8088 case Intrinsic::aarch64_neon_st1x4:
8089 case Intrinsic::aarch64_neon_st2lane:
8090 case Intrinsic::aarch64_neon_st3lane:
8091 case Intrinsic::aarch64_neon_st4lane:
8092 return performNEONPostLDSTCombine(N, DCI, DAG);
8093 default:
8094 break;
8095 }
8096 }
8097 return SDValue();
8098}
8099
8100// Check if the return value is used as only a return value, as otherwise
8101// we can't perform a tail-call. In particular, we need to check for
8102// target ISD nodes that are returns and any other "odd" constructs
8103// that the generic analysis code won't necessarily catch.
8104bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8105 SDValue &Chain) const {
8106 if (N->getNumValues() != 1)
8107 return false;
8108 if (!N->hasNUsesOfValue(1, 0))
8109 return false;
8110
8111 SDValue TCChain = Chain;
8112 SDNode *Copy = *N->use_begin();
8113 if (Copy->getOpcode() == ISD::CopyToReg) {
8114 // If the copy has a glue operand, we conservatively assume it isn't safe to
8115 // perform a tail call.
8116 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8117 MVT::Glue)
8118 return false;
8119 TCChain = Copy->getOperand(0);
8120 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8121 return false;
8122
8123 bool HasRet = false;
8124 for (SDNode *Node : Copy->uses()) {
8125 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8126 return false;
8127 HasRet = true;
8128 }
8129
8130 if (!HasRet)
8131 return false;
8132
8133 Chain = TCChain;
8134 return true;
8135}
8136
8137// Return whether the an instruction can potentially be optimized to a tail
8138// call. This will cause the optimizers to attempt to move, or duplicate,
8139// return instructions to help enable tail call optimizations for this
8140// instruction.
8141bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8142 if (!CI->isTailCall())
8143 return false;
8144
8145 return true;
8146}
8147
8148bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8149 SDValue &Offset,
8150 ISD::MemIndexedMode &AM,
8151 bool &IsInc,
8152 SelectionDAG &DAG) const {
8153 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8154 return false;
8155
8156 Base = Op->getOperand(0);
8157 // All of the indexed addressing mode instructions take a signed
8158 // 9 bit immediate offset.
8159 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8160 int64_t RHSC = (int64_t)RHS->getZExtValue();
8161 if (RHSC >= 256 || RHSC <= -256)
8162 return false;
8163 IsInc = (Op->getOpcode() == ISD::ADD);
8164 Offset = Op->getOperand(1);
8165 return true;
8166 }
8167 return false;
8168}
8169
8170bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8171 SDValue &Offset,
8172 ISD::MemIndexedMode &AM,
8173 SelectionDAG &DAG) const {
8174 EVT VT;
8175 SDValue Ptr;
8176 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8177 VT = LD->getMemoryVT();
8178 Ptr = LD->getBasePtr();
8179 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8180 VT = ST->getMemoryVT();
8181 Ptr = ST->getBasePtr();
8182 } else
8183 return false;
8184
8185 bool IsInc;
8186 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8187 return false;
8188 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8189 return true;
8190}
8191
8192bool AArch64TargetLowering::getPostIndexedAddressParts(
8193 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8194 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8195 EVT VT;
8196 SDValue Ptr;
8197 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8198 VT = LD->getMemoryVT();
8199 Ptr = LD->getBasePtr();
8200 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8201 VT = ST->getMemoryVT();
8202 Ptr = ST->getBasePtr();
8203 } else
8204 return false;
8205
8206 bool IsInc;
8207 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8208 return false;
8209 // Post-indexing updates the base, so it's not a valid transform
8210 // if that's not the same as the load's pointer.
8211 if (Ptr != Base)
8212 return false;
8213 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8214 return true;
8215}
8216
Tim Northoverf8bfe212014-07-18 13:07:05 +00008217static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8218 SelectionDAG &DAG) {
8219 if (N->getValueType(0) != MVT::i16)
8220 return;
8221
8222 SDLoc DL(N);
8223 SDValue Op = N->getOperand(0);
8224 assert(Op.getValueType() == MVT::f16 &&
8225 "Inconsistent bitcast? Only 16-bit types should be i16 or f16");
8226 Op = SDValue(
8227 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8228 DAG.getUNDEF(MVT::i32), Op,
8229 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
8230 0);
8231 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8232 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
8233}
8234
Tim Northover3b0846e2014-05-24 12:50:23 +00008235void AArch64TargetLowering::ReplaceNodeResults(
8236 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
8237 switch (N->getOpcode()) {
8238 default:
8239 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00008240 case ISD::BITCAST:
8241 ReplaceBITCASTResults(N, Results, DAG);
8242 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00008243 case ISD::FP_TO_UINT:
8244 case ISD::FP_TO_SINT:
8245 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
8246 // Let normal code take care of it by not adding anything to Results.
8247 return;
8248 }
8249}
8250
8251bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
8252 // Loads and stores less than 128-bits are already atomic; ones above that
8253 // are doomed anyway, so defer to the default libcall and blame the OS when
8254 // things go wrong:
8255 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
8256 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128;
8257 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
8258 return LI->getType()->getPrimitiveSizeInBits() == 128;
8259
8260 // For the real atomic operations, we have ldxr/stxr up to 128 bits.
8261 return Inst->getType()->getPrimitiveSizeInBits() <= 128;
8262}
8263
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00008264bool AArch64TargetLowering::useLoadStackGuardNode() const {
8265 return true;
8266}
8267
Chandler Carruth9d010ff2014-07-03 00:23:43 +00008268TargetLoweringBase::LegalizeTypeAction
8269AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
8270 MVT SVT = VT.getSimpleVT();
8271 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
8272 // v4i16, v2i32 instead of to promote.
8273 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
8274 || SVT == MVT::v1f32)
8275 return TypeWidenVector;
8276
8277 return TargetLoweringBase::getPreferredVectorAction(VT);
8278}
8279
Tim Northover3b0846e2014-05-24 12:50:23 +00008280Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
8281 AtomicOrdering Ord) const {
8282 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8283 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00008284 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008285
8286 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
8287 // intrinsic must return {i64, i64} and we have to recombine them into a
8288 // single i128 here.
8289 if (ValTy->getPrimitiveSizeInBits() == 128) {
8290 Intrinsic::ID Int =
8291 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
8292 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
8293
8294 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8295 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
8296
8297 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
8298 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
8299 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
8300 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
8301 return Builder.CreateOr(
8302 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
8303 }
8304
8305 Type *Tys[] = { Addr->getType() };
8306 Intrinsic::ID Int =
8307 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
8308 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
8309
8310 return Builder.CreateTruncOrBitCast(
8311 Builder.CreateCall(Ldxr, Addr),
8312 cast<PointerType>(Addr->getType())->getElementType());
8313}
8314
8315Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
8316 Value *Val, Value *Addr,
8317 AtomicOrdering Ord) const {
8318 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00008319 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008320
8321 // Since the intrinsics must have legal type, the i128 intrinsics take two
8322 // parameters: "i64, i64". We must marshal Val into the appropriate form
8323 // before the call.
8324 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
8325 Intrinsic::ID Int =
8326 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
8327 Function *Stxr = Intrinsic::getDeclaration(M, Int);
8328 Type *Int64Ty = Type::getInt64Ty(M->getContext());
8329
8330 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
8331 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
8332 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8333 return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
8334 }
8335
8336 Intrinsic::ID Int =
8337 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
8338 Type *Tys[] = { Addr->getType() };
8339 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
8340
8341 return Builder.CreateCall2(
8342 Stxr, Builder.CreateZExtOrBitCast(
8343 Val, Stxr->getFunctionType()->getParamType(0)),
8344 Addr);
8345}