blob: e25087e6911c5ace3e7cb5ba94e0b8f3c982a832 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000021#include "llvm/Analysis/LoopInfo.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000022#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000023#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000026#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000027#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000028#include "llvm/IR/GlobalAlias.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Metadata.h"
34#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000035#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000036#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000037#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000038#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000039#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000040using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000041using namespace llvm::PatternMatch;
42
43const unsigned MaxDepth = 6;
44
Philip Reames1c292272015-03-10 22:43:20 +000045/// Enable an experimental feature to leverage information about dominating
46/// conditions to compute known bits. The individual options below control how
Benjamin Kramerdf005cb2015-08-08 18:27:36 +000047/// hard we search. The defaults are chosen to be fairly aggressive. If you
Philip Reames1c292272015-03-10 22:43:20 +000048/// run into compile time problems when testing, scale them back and report
49/// your findings.
50static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
51 cl::Hidden, cl::init(false));
52
53// This is expensive, so we only do it for the top level query value.
54// (TODO: evaluate cost vs profit, consider higher thresholds)
55static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
56 cl::Hidden, cl::init(1));
57
58/// How many dominating blocks should be scanned looking for dominating
59/// conditions?
60static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
61 cl::Hidden,
Igor Laevskycea9ede2015-09-29 14:57:52 +000062 cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000063
64// Controls the number of uses of the value searched for possible
65// dominating comparisons.
66static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000067 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000068
69// If true, don't consider only compares whose only use is a branch.
70static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
71 cl::Hidden, cl::init(false));
72
Sanjay Patelaee84212014-11-04 16:27:42 +000073/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
74/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000075static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000076 if (unsigned BitWidth = Ty->getScalarSizeInBits())
77 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000078
Mehdi Aminia28d91d2015-03-10 02:37:25 +000079 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000080}
Chris Lattner965c7692008-06-02 01:18:21 +000081
Hal Finkel60db0582014-09-07 18:57:58 +000082// Many of these functions have internal versions that take an assumption
83// exclusion set. This is because of the potential for mutual recursion to
84// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
85// classic case of this is assume(x = y), which will attempt to determine
86// bits in x from bits in y, which will attempt to determine bits in y from
87// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
88// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
89// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
90typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
91
Benjamin Kramercfd8d902014-09-12 08:56:53 +000092namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000093// Simplifying using an assume can only be done in a particular control-flow
94// context (the context instruction provides that context). If an assume and
95// the context instruction are not in the same block then the DT helps in
96// figuring out if we can use it.
97struct Query {
98 ExclInvsSet ExclInvs;
Chandler Carruth66b31302015-01-04 12:03:27 +000099 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000100 const Instruction *CxtI;
101 const DominatorTree *DT;
102
Chandler Carruth66b31302015-01-04 12:03:27 +0000103 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
Hal Finkel60db0582014-09-07 18:57:58 +0000104 const DominatorTree *DT = nullptr)
Chandler Carruth66b31302015-01-04 12:03:27 +0000105 : AC(AC), CxtI(CxtI), DT(DT) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000106
107 Query(const Query &Q, const Value *NewExcl)
Chandler Carruth66b31302015-01-04 12:03:27 +0000108 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000109 ExclInvs.insert(NewExcl);
110 }
111};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000112} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000113
Sanjay Patel547e9752014-11-04 16:09:50 +0000114// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000115// the preferred context instruction (if any).
116static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
117 // If we've been provided with a context instruction, then use that (provided
118 // it has been inserted).
119 if (CxtI && CxtI->getParent())
120 return CxtI;
121
122 // If the value is really an already-inserted instruction, then use that.
123 CxtI = dyn_cast<Instruction>(V);
124 if (CxtI && CxtI->getParent())
125 return CxtI;
126
127 return nullptr;
128}
129
130static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000131 const DataLayout &DL, unsigned Depth,
132 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000133
134void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000135 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000136 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000137 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000138 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000139 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000140}
141
Jingyue Wuca321902015-05-14 23:53:19 +0000142bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
143 AssumptionCache *AC, const Instruction *CxtI,
144 const DominatorTree *DT) {
145 assert(LHS->getType() == RHS->getType() &&
146 "LHS and RHS should have the same type");
147 assert(LHS->getType()->isIntOrIntVectorTy() &&
148 "LHS and RHS should be integers");
149 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
150 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
151 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
152 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
153 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
154 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
155}
156
Hal Finkel60db0582014-09-07 18:57:58 +0000157static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000158 const DataLayout &DL, unsigned Depth,
159 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000160
161void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000162 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000163 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000166 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000167}
168
169static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000170 const Query &Q, const DataLayout &DL);
Hal Finkel60db0582014-09-07 18:57:58 +0000171
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000172bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000173 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000174 const Instruction *CxtI,
175 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
177 Query(AC, safeCxtI(V, CxtI), DT), DL);
178}
179
180static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
181 const Query &Q);
182
183bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
184 AssumptionCache *AC, const Instruction *CxtI,
185 const DominatorTree *DT) {
186 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
187}
188
Jingyue Wu10fcea52015-08-20 18:27:04 +0000189bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
190 AssumptionCache *AC, const Instruction *CxtI,
191 const DominatorTree *DT) {
192 bool NonNegative, Negative;
193 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
194 return NonNegative;
195}
196
James Molloy1d88d6f2015-10-22 13:18:42 +0000197static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
198 const Query &Q);
199
200bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
201 AssumptionCache *AC, const Instruction *CxtI,
202 const DominatorTree *DT) {
203 return ::isKnownNonEqual(V1, V2, DL, Query(AC,
204 safeCxtI(V1, safeCxtI(V2, CxtI)),
205 DT));
206}
207
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000208static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
209 unsigned Depth, const Query &Q);
210
211bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
212 unsigned Depth, AssumptionCache *AC,
213 const Instruction *CxtI, const DominatorTree *DT) {
214 return ::MaskedValueIsZero(V, Mask, DL, Depth,
215 Query(AC, safeCxtI(V, CxtI), DT));
216}
217
218static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
219 unsigned Depth, const Query &Q);
220
221unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
222 unsigned Depth, AssumptionCache *AC,
223 const Instruction *CxtI,
224 const DominatorTree *DT) {
225 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000226}
227
Jay Foada0653a32014-05-14 21:14:37 +0000228static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
229 APInt &KnownZero, APInt &KnownOne,
230 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000232 const Query &Q) {
233 if (!Add) {
234 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
235 // We know that the top bits of C-X are clear if X contains less bits
236 // than C (i.e. no wrap-around can happen). For example, 20-X is
237 // positive if we can prove that X is >= 0 and < 16.
238 if (!CLHS->getValue().isNegative()) {
239 unsigned BitWidth = KnownZero.getBitWidth();
240 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
241 // NLZ can't be BitWidth with no sign bit
242 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000243 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000244
245 // If all of the MaskV bits are known to be zero, then we know the
246 // output top bits are zero, because we now know that the output is
247 // from [0-C].
248 if ((KnownZero2 & MaskV) == MaskV) {
249 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
250 // Top bits known zero.
251 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
252 }
253 }
254 }
255 }
256
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000257 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000258
David Majnemer97ddca32014-08-22 00:40:43 +0000259 // If an initial sequence of bits in the result is not needed, the
260 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000261 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000262 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
263 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000264
David Majnemer97ddca32014-08-22 00:40:43 +0000265 // Carry in a 1 for a subtract, rather than a 0.
266 APInt CarryIn(BitWidth, 0);
267 if (!Add) {
268 // Sum = LHS + ~RHS + 1
269 std::swap(KnownZero2, KnownOne2);
270 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000271 }
272
David Majnemer97ddca32014-08-22 00:40:43 +0000273 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
274 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
275
276 // Compute known bits of the carry.
277 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
278 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
279
280 // Compute set of known bits (where all three relevant bits are known).
281 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
282 APInt RHSKnown = KnownZero2 | KnownOne2;
283 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
284 APInt Known = LHSKnown & RHSKnown & CarryKnown;
285
286 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
287 "known bits of sum differ");
288
289 // Compute known bits of the result.
290 KnownZero = ~PossibleSumOne & Known;
291 KnownOne = PossibleSumOne & Known;
292
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000293 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000294 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000295 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000296 // Adding two non-negative numbers, or subtracting a negative number from
297 // a non-negative one, can't wrap into negative.
298 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
299 KnownZero |= APInt::getSignBit(BitWidth);
300 // Adding two negative numbers, or subtracting a non-negative number from
301 // a negative one, can't wrap into non-negative.
302 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
303 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000304 }
305 }
306}
307
Jay Foada0653a32014-05-14 21:14:37 +0000308static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
309 APInt &KnownZero, APInt &KnownOne,
310 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000311 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000312 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000313 unsigned BitWidth = KnownZero.getBitWidth();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000314 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
315 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000316
317 bool isKnownNegative = false;
318 bool isKnownNonNegative = false;
319 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000320 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321 if (Op0 == Op1) {
322 // The product of a number with itself is non-negative.
323 isKnownNonNegative = true;
324 } else {
325 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
326 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
327 bool isKnownNegativeOp1 = KnownOne.isNegative();
328 bool isKnownNegativeOp0 = KnownOne2.isNegative();
329 // The product of two numbers with the same sign is non-negative.
330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
332 // The product of a negative number and a non-negative number is either
333 // negative or zero.
334 if (!isKnownNonNegative)
335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000336 isKnownNonZero(Op0, DL, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000338 isKnownNonZero(Op1, DL, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000339 }
340 }
341
342 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000343 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 // More trickiness is possible, but this is sufficient for the
345 // interesting case of alignment computation.
346 KnownOne.clearAllBits();
347 unsigned TrailZ = KnownZero.countTrailingOnes() +
348 KnownZero2.countTrailingOnes();
349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
350 KnownZero2.countLeadingOnes(),
351 BitWidth) - BitWidth;
352
353 TrailZ = std::min(TrailZ, BitWidth);
354 LeadZ = std::min(LeadZ, BitWidth);
355 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
356 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000357
358 // Only make use of no-wrap flags if we failed to compute the sign bit
359 // directly. This matters if the multiplication always overflows, in
360 // which case we prefer to follow the result of the direct computation,
361 // though as the program is invoking undefined behaviour we can choose
362 // whatever we like here.
363 if (isKnownNonNegative && !KnownOne.isNegative())
364 KnownZero.setBit(BitWidth - 1);
365 else if (isKnownNegative && !KnownZero.isNegative())
366 KnownOne.setBit(BitWidth - 1);
367}
368
Jingyue Wu37fcb592014-06-19 16:50:16 +0000369void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
370 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000371 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000372 unsigned NumRanges = Ranges.getNumOperands() / 2;
373 assert(NumRanges >= 1);
374
375 // Use the high end of the ranges to find leading zeros.
376 unsigned MinLeadingZeros = BitWidth;
377 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000378 ConstantInt *Lower =
379 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
380 ConstantInt *Upper =
381 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000382 ConstantRange Range(Lower->getValue(), Upper->getValue());
Sanjoy Das63d2b772015-10-27 01:36:06 +0000383 unsigned LeadingZeros = Range.getUnsignedMax().countLeadingZeros();
Rafael Espindola53190532012-03-30 15:52:11 +0000384 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
385 }
386
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000387 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000388}
Jay Foad5a29c362014-05-15 12:12:55 +0000389
Hal Finkel60db0582014-09-07 18:57:58 +0000390static bool isEphemeralValueOf(Instruction *I, const Value *E) {
391 SmallVector<const Value *, 16> WorkSet(1, I);
392 SmallPtrSet<const Value *, 32> Visited;
393 SmallPtrSet<const Value *, 16> EphValues;
394
Hal Finkelf2199b22015-10-23 20:37:08 +0000395 // The instruction defining an assumption's condition itself is always
396 // considered ephemeral to that assumption (even if it has other
397 // non-ephemeral users). See r246696's test case for an example.
398 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
399 return true;
400
Hal Finkel60db0582014-09-07 18:57:58 +0000401 while (!WorkSet.empty()) {
402 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000403 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000404 continue;
405
406 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000407 if (std::all_of(V->user_begin(), V->user_end(),
408 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000409 if (V == E)
410 return true;
411
412 EphValues.insert(V);
413 if (const User *U = dyn_cast<User>(V))
414 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
415 J != JE; ++J) {
416 if (isSafeToSpeculativelyExecute(*J))
417 WorkSet.push_back(*J);
418 }
419 }
420 }
421
422 return false;
423}
424
425// Is this an intrinsic that cannot be speculated but also cannot trap?
426static bool isAssumeLikeIntrinsic(const Instruction *I) {
427 if (const CallInst *CI = dyn_cast<CallInst>(I))
428 if (Function *F = CI->getCalledFunction())
429 switch (F->getIntrinsicID()) {
430 default: break;
431 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
432 case Intrinsic::assume:
433 case Intrinsic::dbg_declare:
434 case Intrinsic::dbg_value:
435 case Intrinsic::invariant_start:
436 case Intrinsic::invariant_end:
437 case Intrinsic::lifetime_start:
438 case Intrinsic::lifetime_end:
439 case Intrinsic::objectsize:
440 case Intrinsic::ptr_annotation:
441 case Intrinsic::var_annotation:
442 return true;
443 }
444
445 return false;
446}
447
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000448static bool isValidAssumeForContext(Value *V, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000449 Instruction *Inv = cast<Instruction>(V);
450
451 // There are two restrictions on the use of an assume:
452 // 1. The assume must dominate the context (or the control flow must
453 // reach the assume whenever it reaches the context).
454 // 2. The context must not be in the assume's set of ephemeral values
455 // (otherwise we will use the assume to prove that the condition
456 // feeding the assume is trivially true, thus causing the removal of
457 // the assume).
458
459 if (Q.DT) {
460 if (Q.DT->dominates(Inv, Q.CxtI)) {
461 return true;
462 } else if (Inv->getParent() == Q.CxtI->getParent()) {
463 // The context comes first, but they're both in the same block. Make sure
464 // there is nothing in between that might interrupt the control flow.
465 for (BasicBlock::const_iterator I =
466 std::next(BasicBlock::const_iterator(Q.CxtI)),
467 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000468 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000469 return false;
470
471 return !isEphemeralValueOf(Inv, Q.CxtI);
472 }
473
474 return false;
475 }
476
477 // When we don't have a DT, we do a limited search...
478 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
479 return true;
480 } else if (Inv->getParent() == Q.CxtI->getParent()) {
481 // Search forward from the assume until we reach the context (or the end
482 // of the block); the common case is that the assume will come first.
483 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
484 IE = Inv->getParent()->end(); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000485 if (&*I == Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000486 return true;
487
488 // The context must come first...
489 for (BasicBlock::const_iterator I =
490 std::next(BasicBlock::const_iterator(Q.CxtI)),
491 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000492 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000493 return false;
494
495 return !isEphemeralValueOf(Inv, Q.CxtI);
496 }
497
498 return false;
499}
500
501bool llvm::isValidAssumeForContext(const Instruction *I,
502 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000503 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000504 return ::isValidAssumeForContext(const_cast<Instruction *>(I),
505 Query(nullptr, CxtI, DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000506}
507
508template<typename LHS, typename RHS>
509inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
510 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
511m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
512 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
513}
514
515template<typename LHS, typename RHS>
516inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
517 BinaryOp_match<RHS, LHS, Instruction::And>>
518m_c_And(const LHS &L, const RHS &R) {
519 return m_CombineOr(m_And(L, R), m_And(R, L));
520}
521
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000522template<typename LHS, typename RHS>
523inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
524 BinaryOp_match<RHS, LHS, Instruction::Or>>
525m_c_Or(const LHS &L, const RHS &R) {
526 return m_CombineOr(m_Or(L, R), m_Or(R, L));
527}
528
529template<typename LHS, typename RHS>
530inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
531 BinaryOp_match<RHS, LHS, Instruction::Xor>>
532m_c_Xor(const LHS &L, const RHS &R) {
533 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
534}
535
Philip Reames1c292272015-03-10 22:43:20 +0000536/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
537/// true (at the context instruction.) This is mostly a utility function for
538/// the prototype dominating conditions reasoning below.
539static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
540 APInt &KnownZero,
541 APInt &KnownOne,
542 const DataLayout &DL,
543 unsigned Depth, const Query &Q) {
544 Value *LHS = Cmp->getOperand(0);
545 Value *RHS = Cmp->getOperand(1);
546 // TODO: We could potentially be more aggressive here. This would be worth
547 // evaluating. If we can, explore commoning this code with the assume
548 // handling logic.
549 if (LHS != V && RHS != V)
550 return;
551
552 const unsigned BitWidth = KnownZero.getBitWidth();
553
554 switch (Cmp->getPredicate()) {
555 default:
556 // We know nothing from this condition
557 break;
558 // TODO: implement unsigned bound from below (known one bits)
559 // TODO: common condition check implementations with assumes
560 // TODO: implement other patterns from assume (e.g. V & B == A)
561 case ICmpInst::ICMP_SGT:
562 if (LHS == V) {
563 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
564 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
565 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
566 // We know that the sign bit is zero.
567 KnownZero |= APInt::getSignBit(BitWidth);
568 }
569 }
570 break;
571 case ICmpInst::ICMP_EQ:
Jingyue Wu12b0c282015-06-15 05:46:29 +0000572 {
573 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
574 if (LHS == V)
575 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
576 else if (RHS == V)
577 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
578 else
579 llvm_unreachable("missing use?");
580 KnownZero |= KnownZeroTemp;
581 KnownOne |= KnownOneTemp;
582 }
Philip Reames1c292272015-03-10 22:43:20 +0000583 break;
584 case ICmpInst::ICMP_ULE:
585 if (LHS == V) {
586 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
587 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
588 // The known zero bits carry over
589 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
590 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
591 }
592 break;
593 case ICmpInst::ICMP_ULT:
594 if (LHS == V) {
595 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
596 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
597 // Whatever high bits in rhs are zero are known to be zero (if rhs is a
598 // power of 2, then one more).
599 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
600 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
601 SignBits++;
602 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
603 }
604 break;
605 };
606}
607
608/// Compute known bits in 'V' from conditions which are known to be true along
609/// all paths leading to the context instruction. In particular, look for
610/// cases where one branch of an interesting condition dominates the context
611/// instruction. This does not do general dataflow.
612/// NOTE: This code is EXPERIMENTAL and currently off by default.
613static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
614 APInt &KnownOne,
615 const DataLayout &DL,
616 unsigned Depth,
617 const Query &Q) {
618 // Need both the dominator tree and the query location to do anything useful
619 if (!Q.DT || !Q.CxtI)
620 return;
621 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
Philip Reames963febd2015-09-21 22:04:10 +0000622 // The context instruction might be in a statically unreachable block. If
623 // so, asking dominator queries may yield suprising results. (e.g. the block
624 // may not have a dom tree node)
625 if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
626 return;
Philip Reames1c292272015-03-10 22:43:20 +0000627
628 // Avoid useless work
629 if (auto VI = dyn_cast<Instruction>(V))
630 if (VI->getParent() == Cxt->getParent())
631 return;
632
633 // Note: We currently implement two options. It's not clear which of these
634 // will survive long term, we need data for that.
635 // Option 1 - Try walking the dominator tree looking for conditions which
636 // might apply. This works well for local conditions (loop guards, etc..),
637 // but not as well for things far from the context instruction (presuming a
638 // low max blocks explored). If we can set an high enough limit, this would
639 // be all we need.
640 // Option 2 - We restrict out search to those conditions which are uses of
641 // the value we're interested in. This is independent of dom structure,
642 // but is slightly less powerful without looking through lots of use chains.
643 // It does handle conditions far from the context instruction (e.g. early
644 // function exits on entry) really well though.
645
646 // Option 1 - Search the dom tree
647 unsigned NumBlocksExplored = 0;
648 BasicBlock *Current = Cxt->getParent();
649 while (true) {
650 // Stop searching if we've gone too far up the chain
651 if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
652 break;
653 NumBlocksExplored++;
654
655 if (!Q.DT->getNode(Current)->getIDom())
656 break;
657 Current = Q.DT->getNode(Current)->getIDom()->getBlock();
658 if (!Current)
659 // found function entry
660 break;
661
662 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
663 if (!BI || BI->isUnconditional())
664 continue;
665 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
666 if (!Cmp)
667 continue;
668
669 // We're looking for conditions that are guaranteed to hold at the context
670 // instruction. Finding a condition where one path dominates the context
671 // isn't enough because both the true and false cases could merge before
672 // the context instruction we're actually interested in. Instead, we need
Philip Reames963febd2015-09-21 22:04:10 +0000673 // to ensure that the taken *edge* dominates the context instruction. We
674 // know that the edge must be reachable since we started from a reachable
675 // block.
Philip Reames1c292272015-03-10 22:43:20 +0000676 BasicBlock *BB0 = BI->getSuccessor(0);
677 BasicBlockEdge Edge(BI->getParent(), BB0);
678 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
679 continue;
680
681 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
682 Q);
683 }
684
685 // Option 2 - Search the other uses of V
686 unsigned NumUsesExplored = 0;
687 for (auto U : V->users()) {
688 // Avoid massive lists
689 if (NumUsesExplored >= DomConditionsMaxUses)
690 break;
691 NumUsesExplored++;
692 // Consider only compare instructions uniquely controlling a branch
693 ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
694 if (!Cmp)
695 continue;
696
697 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
698 continue;
699
700 for (auto *CmpU : Cmp->users()) {
701 BranchInst *BI = dyn_cast<BranchInst>(CmpU);
702 if (!BI || BI->isUnconditional())
703 continue;
704 // We're looking for conditions that are guaranteed to hold at the
705 // context instruction. Finding a condition where one path dominates
706 // the context isn't enough because both the true and false cases could
707 // merge before the context instruction we're actually interested in.
708 // Instead, we need to ensure that the taken *edge* dominates the context
709 // instruction.
710 BasicBlock *BB0 = BI->getSuccessor(0);
711 BasicBlockEdge Edge(BI->getParent(), BB0);
712 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
713 continue;
714
715 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
716 Q);
717 }
718 }
719}
720
Hal Finkel60db0582014-09-07 18:57:58 +0000721static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000722 APInt &KnownOne, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +0000723 unsigned Depth, const Query &Q) {
724 // Use of assumptions is context-sensitive. If we don't have a context, we
725 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000726 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000727 return;
728
729 unsigned BitWidth = KnownZero.getBitWidth();
730
Chandler Carruth66b31302015-01-04 12:03:27 +0000731 for (auto &AssumeVH : Q.AC->assumptions()) {
732 if (!AssumeVH)
733 continue;
734 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000735 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000736 "Got assumption for the wrong function!");
Hal Finkel60db0582014-09-07 18:57:58 +0000737 if (Q.ExclInvs.count(I))
738 continue;
739
Philip Reames00d3b272014-11-24 23:44:28 +0000740 // Warning: This loop can end up being somewhat performance sensetive.
741 // We're running this loop for once for each value queried resulting in a
742 // runtime of ~O(#assumes * #values).
743
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000744 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000745 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000746
Philip Reames00d3b272014-11-24 23:44:28 +0000747 Value *Arg = I->getArgOperand(0);
748
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000749 if (Arg == V && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000750 assert(BitWidth == 1 && "assume operand is not i1?");
751 KnownZero.clearAllBits();
752 KnownOne.setAllBits();
753 return;
754 }
755
David Majnemer9b609752014-12-12 23:59:29 +0000756 // The remaining tests are all recursive, so bail out if we hit the limit.
757 if (Depth == MaxDepth)
758 continue;
759
Hal Finkel60db0582014-09-07 18:57:58 +0000760 Value *A, *B;
761 auto m_V = m_CombineOr(m_Specific(V),
762 m_CombineOr(m_PtrToInt(m_Specific(V)),
763 m_BitCast(m_Specific(V))));
764
765 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000766 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000767 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000768 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000769 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000770 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
771 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
772 KnownZero |= RHSKnownZero;
773 KnownOne |= RHSKnownOne;
774 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000775 } else if (match(Arg,
776 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
777 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
780 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
781 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
782
783 // For those bits in the mask that are known to be one, we can propagate
784 // known bits from the RHS to V.
785 KnownZero |= RHSKnownZero & MaskKnownOne;
786 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000787 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000788 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
789 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000790 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000791 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
792 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
793 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
794 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
795
796 // For those bits in the mask that are known to be one, we can propagate
797 // inverted known bits from the RHS to V.
798 KnownZero |= RHSKnownOne & MaskKnownOne;
799 KnownOne |= RHSKnownZero & MaskKnownOne;
800 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000801 } else if (match(Arg,
802 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
803 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000804 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
805 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
806 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
807 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
808
809 // For those bits in B that are known to be zero, we can propagate known
810 // bits from the RHS to V.
811 KnownZero |= RHSKnownZero & BKnownZero;
812 KnownOne |= RHSKnownOne & BKnownZero;
813 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000814 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
815 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000816 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000817 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
818 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
819 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
820 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
821
822 // For those bits in B that are known to be zero, we can propagate
823 // inverted known bits from the RHS to V.
824 KnownZero |= RHSKnownOne & BKnownZero;
825 KnownOne |= RHSKnownZero & BKnownZero;
826 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000827 } else if (match(Arg,
828 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
829 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000830 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
831 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
832 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
833 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
834
835 // For those bits in B that are known to be zero, we can propagate known
836 // bits from the RHS to V. For those bits in B that are known to be one,
837 // we can propagate inverted known bits from the RHS to V.
838 KnownZero |= RHSKnownZero & BKnownZero;
839 KnownOne |= RHSKnownOne & BKnownZero;
840 KnownZero |= RHSKnownOne & BKnownOne;
841 KnownOne |= RHSKnownZero & BKnownOne;
842 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000843 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
844 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000845 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000846 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
847 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
848 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
849 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
850
851 // For those bits in B that are known to be zero, we can propagate
852 // inverted known bits from the RHS to V. For those bits in B that are
853 // known to be one, we can propagate known bits from the RHS to V.
854 KnownZero |= RHSKnownOne & BKnownZero;
855 KnownOne |= RHSKnownZero & BKnownZero;
856 KnownZero |= RHSKnownZero & BKnownOne;
857 KnownOne |= RHSKnownOne & BKnownOne;
858 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000859 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
860 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000861 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000862 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
863 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
864 // For those bits in RHS that are known, we can propagate them to known
865 // bits in V shifted to the right by C.
866 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
867 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
868 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000869 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
870 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000871 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000872 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
873 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
874 // For those bits in RHS that are known, we can propagate them inverted
875 // to known bits in V shifted to the right by C.
876 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
877 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
878 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000879 } else if (match(Arg,
880 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000881 m_AShr(m_V, m_ConstantInt(C))),
882 m_Value(A))) &&
883 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000884 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
885 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
886 // For those bits in RHS that are known, we can propagate them to known
887 // bits in V shifted to the right by C.
888 KnownZero |= RHSKnownZero << C->getZExtValue();
889 KnownOne |= RHSKnownOne << C->getZExtValue();
890 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000891 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000892 m_LShr(m_V, m_ConstantInt(C)),
893 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000894 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000895 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000896 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
897 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
898 // For those bits in RHS that are known, we can propagate them inverted
899 // to known bits in V shifted to the right by C.
900 KnownZero |= RHSKnownOne << C->getZExtValue();
901 KnownOne |= RHSKnownZero << C->getZExtValue();
902 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000903 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000904 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000905 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
906 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
907
908 if (RHSKnownZero.isNegative()) {
909 // We know that the sign bit is zero.
910 KnownZero |= APInt::getSignBit(BitWidth);
911 }
912 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000913 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000914 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000915 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
916 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
917
918 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
919 // We know that the sign bit is zero.
920 KnownZero |= APInt::getSignBit(BitWidth);
921 }
922 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000923 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000924 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000925 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
926 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
927
928 if (RHSKnownOne.isNegative()) {
929 // We know that the sign bit is one.
930 KnownOne |= APInt::getSignBit(BitWidth);
931 }
932 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000933 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000934 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
937
938 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
939 // We know that the sign bit is one.
940 KnownOne |= APInt::getSignBit(BitWidth);
941 }
942 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000943 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000944 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000945 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
946 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
947
948 // Whatever high bits in c are zero are known to be zero.
949 KnownZero |=
950 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
951 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000952 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000953 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000954 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
955 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
956
957 // Whatever high bits in c are zero are known to be zero (if c is a power
958 // of 2, then one more).
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000959 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000960 KnownZero |=
961 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
962 else
963 KnownZero |=
964 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000965 }
966 }
967}
968
Hal Finkelf2199b22015-10-23 20:37:08 +0000969// Compute known bits from a shift operator, including those with a
970// non-constant shift amount. KnownZero and KnownOne are the outputs of this
971// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
972// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
973// functors that, given the known-zero or known-one bits respectively, and a
974// shift amount, compute the implied known-zero or known-one bits of the shift
975// operator's result respectively for that shift amount. The results from calling
976// KZF and KOF are conservatively combined for all permitted shift amounts.
977template <typename KZFunctor, typename KOFunctor>
978static void computeKnownBitsFromShiftOperator(Operator *I,
979 APInt &KnownZero, APInt &KnownOne,
980 APInt &KnownZero2, APInt &KnownOne2,
981 const DataLayout &DL, unsigned Depth, const Query &Q,
982 KZFunctor KZF, KOFunctor KOF) {
983 unsigned BitWidth = KnownZero.getBitWidth();
984
985 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
986 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
987
988 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
989 KnownZero = KZF(KnownZero, ShiftAmt);
990 KnownOne = KOF(KnownOne, ShiftAmt);
991 return;
992 }
993
994 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
995
996 // Note: We cannot use KnownZero.getLimitedValue() here, because if
997 // BitWidth > 64 and any upper bits are known, we'll end up returning the
998 // limit value (which implies all bits are known).
999 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
1000 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
1001
1002 // It would be more-clearly correct to use the two temporaries for this
1003 // calculation. Reusing the APInts here to prevent unnecessary allocations.
1004 KnownZero.clearAllBits(), KnownOne.clearAllBits();
1005
James Molloy493e57d2015-10-26 14:10:46 +00001006 // If we know the shifter operand is nonzero, we can sometimes infer more
1007 // known bits. However this is expensive to compute, so be lazy about it and
1008 // only compute it when absolutely necessary.
1009 Optional<bool> ShifterOperandIsNonZero;
1010
Hal Finkelf2199b22015-10-23 20:37:08 +00001011 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +00001012 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
1013 ShifterOperandIsNonZero =
1014 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
1015 if (!*ShifterOperandIsNonZero)
1016 return;
1017 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001018
1019 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
1020
1021 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
1022 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1023 // Combine the shifted known input bits only for those shift amounts
1024 // compatible with its known constraints.
1025 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1026 continue;
1027 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1028 continue;
James Molloy493e57d2015-10-26 14:10:46 +00001029 // If we know the shifter is nonzero, we may be able to infer more known
1030 // bits. This check is sunk down as far as possible to avoid the expensive
1031 // call to isKnownNonZero if the cheaper checks above fail.
1032 if (ShiftAmt == 0) {
1033 if (!ShifterOperandIsNonZero.hasValue())
1034 ShifterOperandIsNonZero =
1035 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
1036 if (*ShifterOperandIsNonZero)
1037 continue;
1038 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001039
1040 KnownZero &= KZF(KnownZero2, ShiftAmt);
1041 KnownOne &= KOF(KnownOne2, ShiftAmt);
1042 }
1043
1044 // If there are no compatible shift amounts, then we've proven that the shift
1045 // amount must be >= the BitWidth, and the result is undefined. We could
1046 // return anything we'd like, but we need to make sure the sets of known bits
1047 // stay disjoint (it should be better for some other code to actually
1048 // propagate the undef than to pick a value here using known bits).
1049 if ((KnownZero & KnownOne) != 0)
1050 KnownZero.clearAllBits(), KnownOne.clearAllBits();
1051}
1052
Jingyue Wu12b0c282015-06-15 05:46:29 +00001053static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
1054 APInt &KnownOne, const DataLayout &DL,
1055 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001056 unsigned BitWidth = KnownZero.getBitWidth();
1057
Chris Lattner965c7692008-06-02 01:18:21 +00001058 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001059 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001060 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +00001061 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001062 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001063 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +00001064 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001065 case Instruction::And: {
1066 // If either the LHS or the RHS are Zero, the result is zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001067 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1068 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001069
Chris Lattner965c7692008-06-02 01:18:21 +00001070 // Output known-1 bits are only known if set in both the LHS & RHS.
1071 KnownOne &= KnownOne2;
1072 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1073 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +00001074 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001075 }
1076 case Instruction::Or: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001077 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1078 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001079
Chris Lattner965c7692008-06-02 01:18:21 +00001080 // Output known-0 bits are only known if clear in both the LHS & RHS.
1081 KnownZero &= KnownZero2;
1082 // Output known-1 are known to be set if set in either the LHS | RHS.
1083 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +00001084 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001085 }
1086 case Instruction::Xor: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001087 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1088 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001089
Chris Lattner965c7692008-06-02 01:18:21 +00001090 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1091 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1092 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1093 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1094 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +00001095 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001096 }
1097 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001098 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001099 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
1100 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001101 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001102 }
1103 case Instruction::UDiv: {
1104 // For the purposes of computing leading zeros we can conservatively
1105 // treat a udiv as a logical right shift by the power of 2 known to
1106 // be less than the denominator.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001107 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001108 unsigned LeadZ = KnownZero2.countLeadingOnes();
1109
Jay Foad25a5e4c2010-12-01 08:53:58 +00001110 KnownOne2.clearAllBits();
1111 KnownZero2.clearAllBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001112 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001113 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1114 if (RHSUnknownLeadingOnes != BitWidth)
1115 LeadZ = std::min(BitWidth,
1116 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1117
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001118 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001119 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001120 }
1121 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001122 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
1123 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001124
1125 // Only known if known in both the LHS and RHS.
1126 KnownOne &= KnownOne2;
1127 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +00001128 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001129 case Instruction::FPTrunc:
1130 case Instruction::FPExt:
1131 case Instruction::FPToUI:
1132 case Instruction::FPToSI:
1133 case Instruction::SIToFP:
1134 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001135 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001136 case Instruction::PtrToInt:
1137 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001138 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001139 // FALL THROUGH and handle them the same as zext/trunc.
1140 case Instruction::ZExt:
1141 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001142 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001143
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001144 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001145 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1146 // which fall through here.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001147 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001148
1149 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001150 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1151 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001152 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001153 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1154 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001155 // Any top bits are known to be zero.
1156 if (BitWidth > SrcBitWidth)
1157 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001158 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001159 }
1160 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001161 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +00001162 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1163 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001164 // TODO: For now, not handling conversions like:
1165 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001166 !I->getType()->isVectorTy()) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001167 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001168 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001169 }
1170 break;
1171 }
1172 case Instruction::SExt: {
1173 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001174 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001175
Jay Foad583abbc2010-12-07 08:25:19 +00001176 KnownZero = KnownZero.trunc(SrcBitWidth);
1177 KnownOne = KnownOne.trunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001178 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001179 KnownZero = KnownZero.zext(BitWidth);
1180 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001181
1182 // If the sign bit of the input is known set or clear, then we know the
1183 // top bits of the result.
1184 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1185 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1186 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1187 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001188 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001189 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001190 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001191 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001192 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1193 return (KnownZero << ShiftAmt) |
1194 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1195 };
1196
1197 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1198 return KnownOne << ShiftAmt;
1199 };
1200
1201 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1202 KnownZero2, KnownOne2, DL, Depth, Q,
1203 KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001204 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001205 }
1206 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001207 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001208 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1209 return APIntOps::lshr(KnownZero, ShiftAmt) |
1210 // High bits known zero.
1211 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1212 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001213
Hal Finkelf2199b22015-10-23 20:37:08 +00001214 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1215 return APIntOps::lshr(KnownOne, ShiftAmt);
1216 };
1217
1218 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1219 KnownZero2, KnownOne2, DL, Depth, Q,
1220 KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001221 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001222 }
1223 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001224 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001225 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1226 return APIntOps::ashr(KnownZero, ShiftAmt);
1227 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001228
Hal Finkelf2199b22015-10-23 20:37:08 +00001229 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1230 return APIntOps::ashr(KnownOne, ShiftAmt);
1231 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001232
Hal Finkelf2199b22015-10-23 20:37:08 +00001233 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1234 KnownZero2, KnownOne2, DL, Depth, Q,
1235 KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001236 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001237 }
Chris Lattner965c7692008-06-02 01:18:21 +00001238 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001239 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001240 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001241 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1242 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001243 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001244 }
Chris Lattner965c7692008-06-02 01:18:21 +00001245 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001246 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001247 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001248 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1249 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001250 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001251 }
1252 case Instruction::SRem:
1253 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001254 APInt RA = Rem->getValue().abs();
1255 if (RA.isPowerOf2()) {
1256 APInt LowBits = RA - 1;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001257 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
1258 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001259
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001260 // The low bits of the first operand are unchanged by the srem.
1261 KnownZero = KnownZero2 & LowBits;
1262 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001263
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001264 // If the first operand is non-negative or has all low bits zero, then
1265 // the upper bits are all zero.
1266 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1267 KnownZero |= ~LowBits;
1268
1269 // If the first operand is negative and not all low bits are zero, then
1270 // the upper bits are all one.
1271 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1272 KnownOne |= ~LowBits;
1273
Craig Topper1bef2c82012-12-22 19:15:35 +00001274 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001275 }
1276 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001277
1278 // The sign bit is the LHS's sign bit, except when the result of the
1279 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001280 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001281 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001282 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
1283 Depth + 1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001284 // If it's known zero, our sign bit is also zero.
1285 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001286 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001287 }
1288
Chris Lattner965c7692008-06-02 01:18:21 +00001289 break;
1290 case Instruction::URem: {
1291 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1292 APInt RA = Rem->getValue();
1293 if (RA.isPowerOf2()) {
1294 APInt LowBits = (RA - 1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001295 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
1296 Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001297 KnownZero |= ~LowBits;
1298 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001299 break;
1300 }
1301 }
1302
1303 // Since the result is less than or equal to either operand, any leading
1304 // zero bits in either operand must also exist in the result.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001305 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
1306 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001307
Chris Lattner4612ae12009-01-20 18:22:57 +00001308 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001309 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001310 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001311 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001312 break;
1313 }
1314
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001315 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001316 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001317 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001318 if (Align == 0)
1319 Align = DL.getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001320
Chris Lattner965c7692008-06-02 01:18:21 +00001321 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001322 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001323 break;
1324 }
1325 case Instruction::GetElementPtr: {
1326 // Analyze all of the subscripts of this getelementptr instruction
1327 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001328 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001329 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
1330 Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001331 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1332
1333 gep_type_iterator GTI = gep_type_begin(I);
1334 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1335 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001336 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001337 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001338
1339 // Handle case when index is vector zeroinitializer
1340 Constant *CIndex = cast<Constant>(Index);
1341 if (CIndex->isZeroValue())
1342 continue;
1343
1344 if (CIndex->getType()->isVectorTy())
1345 Index = CIndex->getSplatValue();
1346
Chris Lattner965c7692008-06-02 01:18:21 +00001347 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001348 const StructLayout *SL = DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001349 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001350 TrailZ = std::min<unsigned>(TrailZ,
1351 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001352 } else {
1353 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001354 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001355 if (!IndexedTy->isSized()) {
1356 TrailZ = 0;
1357 break;
1358 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001359 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001360 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001361 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001362 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
1363 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001364 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001365 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001366 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001367 }
1368 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001369
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001370 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001371 break;
1372 }
1373 case Instruction::PHI: {
1374 PHINode *P = cast<PHINode>(I);
1375 // Handle the case of a simple two-predecessor recurrence PHI.
1376 // There's a lot more that could theoretically be done here, but
1377 // this is sufficient to catch some interesting cases.
1378 if (P->getNumIncomingValues() == 2) {
1379 for (unsigned i = 0; i != 2; ++i) {
1380 Value *L = P->getIncomingValue(i);
1381 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001382 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001383 if (!LU)
1384 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001385 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001386 // Check for operations that have the property that if
1387 // both their operands have low zero bits, the result
1388 // will have low zero bits.
1389 if (Opcode == Instruction::Add ||
1390 Opcode == Instruction::Sub ||
1391 Opcode == Instruction::And ||
1392 Opcode == Instruction::Or ||
1393 Opcode == Instruction::Mul) {
1394 Value *LL = LU->getOperand(0);
1395 Value *LR = LU->getOperand(1);
1396 // Find a recurrence.
1397 if (LL == I)
1398 L = LR;
1399 else if (LR == I)
1400 L = LL;
1401 else
1402 break;
1403 // Ok, we have a PHI of the form L op= R. Check for low
1404 // zero bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001405 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001406
1407 // We need to take the minimum number of known bits
1408 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001409 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001410
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001411 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001412 std::min(KnownZero2.countTrailingOnes(),
1413 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001414 break;
1415 }
1416 }
1417 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001418
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001419 // Unreachable blocks may have zero-operand PHI nodes.
1420 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001421 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001422
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001423 // Otherwise take the unions of the known bit sets of the operands,
1424 // taking conservative care to avoid excessive recursion.
1425 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001426 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001427 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001428 break;
1429
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001430 KnownZero = APInt::getAllOnesValue(BitWidth);
1431 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001432 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001433 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001434 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001435
1436 KnownZero2 = APInt(BitWidth, 0);
1437 KnownOne2 = APInt(BitWidth, 0);
1438 // Recurse, but cap the recursion to one level, because we don't
1439 // want to waste time spinning around in loops.
Pete Cooper833f34d2015-05-12 20:05:31 +00001440 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001441 MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001442 KnownZero &= KnownZero2;
1443 KnownOne &= KnownOne2;
1444 // If all bits have been ruled out, there's no need to check
1445 // more operands.
1446 if (!KnownZero && !KnownOne)
1447 break;
1448 }
1449 }
Chris Lattner965c7692008-06-02 01:18:21 +00001450 break;
1451 }
1452 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001453 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001454 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001455 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1456 // If a range metadata is attached to this IntrinsicInst, intersect the
1457 // explicit range specified by the metadata and the implicit range of
1458 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001459 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1460 switch (II->getIntrinsicID()) {
1461 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001462 case Intrinsic::bswap:
1463 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
1464 Depth + 1, Q);
1465 KnownZero |= KnownZero2.byteSwap();
1466 KnownOne |= KnownOne2.byteSwap();
1467 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001468 case Intrinsic::ctlz:
1469 case Intrinsic::cttz: {
1470 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001471 // If this call is undefined for 0, the result will be less than 2^n.
1472 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1473 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001474 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001475 break;
1476 }
1477 case Intrinsic::ctpop: {
Philip Reamesddcf6b32015-10-14 22:42:12 +00001478 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
1479 Depth + 1, Q);
1480 // We can bound the space the count needs. Also, bits known to be zero
1481 // can't contribute to the population.
1482 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1483 unsigned LeadingZeros =
1484 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001485 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001486 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1487 KnownOne &= ~KnownZero;
1488 // TODO: we could bound KnownOne using the lower bound on the number
1489 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001490 break;
1491 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001492 case Intrinsic::fabs: {
1493 Type *Ty = II->getType();
1494 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1495 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1496 break;
1497 }
Chad Rosierb3628842011-05-26 23:13:19 +00001498 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001499 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001500 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001501 }
1502 }
1503 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001504 case Instruction::ExtractValue:
1505 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1506 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1507 if (EVI->getNumIndices() != 1) break;
1508 if (EVI->getIndices()[0] == 0) {
1509 switch (II->getIntrinsicID()) {
1510 default: break;
1511 case Intrinsic::uadd_with_overflow:
1512 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001513 computeKnownBitsAddSub(true, II->getArgOperand(0),
1514 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001515 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001516 break;
1517 case Intrinsic::usub_with_overflow:
1518 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001519 computeKnownBitsAddSub(false, II->getArgOperand(0),
1520 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001521 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001522 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001523 case Intrinsic::umul_with_overflow:
1524 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001525 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1526 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1527 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001528 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001529 }
1530 }
1531 }
Chris Lattner965c7692008-06-02 01:18:21 +00001532 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001533}
1534
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001535static unsigned getAlignment(const Value *V, const DataLayout &DL) {
Artur Pilipenko029d8532015-09-30 11:55:45 +00001536 unsigned Align = 0;
1537 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1538 Align = GO->getAlignment();
1539 if (Align == 0) {
1540 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
1541 Type *ObjectType = GVar->getType()->getElementType();
1542 if (ObjectType->isSized()) {
1543 // If the object is defined in the current Module, we'll be giving
1544 // it the preferred alignment. Otherwise, we have to assume that it
1545 // may only have the minimum ABI alignment.
1546 if (GVar->isStrongDefinitionForLinker())
1547 Align = DL.getPreferredAlignment(GVar);
1548 else
1549 Align = DL.getABITypeAlignment(ObjectType);
1550 }
1551 }
1552 }
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001553 } else if (const Argument *A = dyn_cast<Argument>(V)) {
Artur Pilipenko029d8532015-09-30 11:55:45 +00001554 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1555
1556 if (!Align && A->hasStructRetAttr()) {
1557 // An sret parameter has at least the ABI alignment of the return type.
1558 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1559 if (EltTy->isSized())
1560 Align = DL.getABITypeAlignment(EltTy);
1561 }
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001562 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
1563 Align = AI->getAlignment();
1564 else if (auto CS = ImmutableCallSite(V))
1565 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
1566 else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1567 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
1568 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
1569 Align = CI->getLimitedValue();
1570 }
1571
Artur Pilipenko029d8532015-09-30 11:55:45 +00001572 return Align;
1573}
1574
Jingyue Wu12b0c282015-06-15 05:46:29 +00001575/// Determine which bits of V are known to be either zero or one and return
1576/// them in the KnownZero/KnownOne bit sets.
1577///
1578/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1579/// we cannot optimize based on the assumption that it is zero without changing
1580/// it to be an explicit zero. If we don't change it to zero, other code could
1581/// optimized based on the contradictory assumption that it is non-zero.
1582/// Because instcombine aggressively folds operations with undef args anyway,
1583/// this won't lose us code quality.
1584///
1585/// This function is defined on values with integer type, values with pointer
1586/// type, and vectors of integers. In the case
1587/// where V is a vector, known zero, and known one values are the
1588/// same width as the vector element, and the bit is set only if it is true
1589/// for all of the elements in the vector.
1590void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1591 const DataLayout &DL, unsigned Depth, const Query &Q) {
1592 assert(V && "No Value?");
1593 assert(Depth <= MaxDepth && "Limit Search Depth");
1594 unsigned BitWidth = KnownZero.getBitWidth();
1595
1596 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001597 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001598 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001599 "Not integer, floating point, or pointer type!");
Jingyue Wu12b0c282015-06-15 05:46:29 +00001600 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1601 (!V->getType()->isIntOrIntVectorTy() ||
1602 V->getType()->getScalarSizeInBits() == BitWidth) &&
1603 KnownZero.getBitWidth() == BitWidth &&
1604 KnownOne.getBitWidth() == BitWidth &&
1605 "V, KnownOne and KnownZero should have same BitWidth");
1606
1607 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1608 // We know all of the bits for a constant!
1609 KnownOne = CI->getValue();
1610 KnownZero = ~KnownOne;
1611 return;
1612 }
1613 // Null and aggregate-zero are all-zeros.
1614 if (isa<ConstantPointerNull>(V) ||
1615 isa<ConstantAggregateZero>(V)) {
1616 KnownOne.clearAllBits();
1617 KnownZero = APInt::getAllOnesValue(BitWidth);
1618 return;
1619 }
1620 // Handle a constant vector by taking the intersection of the known bits of
1621 // each element. There is no real need to handle ConstantVector here, because
1622 // we don't handle undef in any particularly useful way.
1623 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1624 // We know that CDS must be a vector of integers. Take the intersection of
1625 // each element.
1626 KnownZero.setAllBits(); KnownOne.setAllBits();
1627 APInt Elt(KnownZero.getBitWidth(), 0);
1628 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1629 Elt = CDS->getElementAsInteger(i);
1630 KnownZero &= ~Elt;
1631 KnownOne &= Elt;
1632 }
1633 return;
1634 }
1635
Jingyue Wu12b0c282015-06-15 05:46:29 +00001636 // Start out not knowing anything.
1637 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1638
1639 // Limit search depth.
1640 // All recursive calls that increase depth must come after this.
1641 if (Depth == MaxDepth)
1642 return;
1643
1644 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1645 // the bits of its aliasee.
1646 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1647 if (!GA->mayBeOverridden())
1648 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
1649 return;
1650 }
1651
1652 if (Operator *I = dyn_cast<Operator>(V))
1653 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001654
Artur Pilipenko029d8532015-09-30 11:55:45 +00001655 // Aligned pointers have trailing zeros - refine KnownZero set
1656 if (V->getType()->isPointerTy()) {
1657 unsigned Align = getAlignment(V, DL);
1658 if (Align)
1659 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1660 }
1661
Jingyue Wu12b0c282015-06-15 05:46:29 +00001662 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1663 // strictly refines KnownZero and KnownOne. Therefore, we run them after
1664 // computeKnownBitsFromOperator.
1665
1666 // Check whether a nearby assume intrinsic can determine some known bits.
1667 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
1668
1669 // Check whether there's a dominating condition which implies something about
1670 // this value at the given context.
1671 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1672 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
1673 Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001674
1675 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001676}
1677
Sanjay Patelaee84212014-11-04 16:27:42 +00001678/// Determine whether the sign bit is known to be zero or one.
1679/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001680void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001681 const DataLayout &DL, unsigned Depth, const Query &Q) {
1682 unsigned BitWidth = getBitWidth(V->getType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001683 if (!BitWidth) {
1684 KnownZero = false;
1685 KnownOne = false;
1686 return;
1687 }
1688 APInt ZeroBits(BitWidth, 0);
1689 APInt OneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001690 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001691 KnownOne = OneBits[BitWidth - 1];
1692 KnownZero = ZeroBits[BitWidth - 1];
1693}
1694
Sanjay Patelaee84212014-11-04 16:27:42 +00001695/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001696/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001697/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001698/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001699bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001700 const Query &Q, const DataLayout &DL) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001701 if (Constant *C = dyn_cast<Constant>(V)) {
1702 if (C->isNullValue())
1703 return OrZero;
1704 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1705 return CI->getValue().isPowerOf2();
1706 // TODO: Handle vector constants.
1707 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001708
1709 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1710 // it is shifted off the end then the result is undefined.
1711 if (match(V, m_Shl(m_One(), m_Value())))
1712 return true;
1713
1714 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1715 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001716 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001717 return true;
1718
1719 // The remaining tests are all recursive, so bail out if we hit the limit.
1720 if (Depth++ == MaxDepth)
1721 return false;
1722
Craig Topper9f008862014-04-15 04:59:12 +00001723 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001724 // A shift of a power of two is a power of two or zero.
1725 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1726 match(V, m_Shr(m_Value(X), m_Value()))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001727 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
Duncan Sands985ba632011-10-28 18:30:05 +00001728
Duncan Sandsd3951082011-01-25 09:38:29 +00001729 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001730 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001731
1732 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001733 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
1734 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
Duncan Sandsba286d72011-10-26 20:55:21 +00001735
Duncan Sandsba286d72011-10-26 20:55:21 +00001736 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1737 // A power of two and'd with anything is a power of two or zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001738 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
1739 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
Duncan Sandsba286d72011-10-26 20:55:21 +00001740 return true;
1741 // X & (-X) is always a power of two or zero.
1742 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1743 return true;
1744 return false;
1745 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001746
David Majnemerb7d54092013-07-30 21:01:36 +00001747 // Adding a power-of-two or zero to the same power-of-two or zero yields
1748 // either the original power-of-two, a larger power-of-two or zero.
1749 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1750 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1751 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1752 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1753 match(X, m_And(m_Value(), m_Specific(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001754 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001755 return true;
1756 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1757 match(Y, m_And(m_Value(), m_Specific(X))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001758 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001759 return true;
1760
1761 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1762 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001763 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001764
1765 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001766 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001767 // If i8 V is a power of two or zero:
1768 // ZeroBits: 1 1 1 0 1 1 1 1
1769 // ~ZeroBits: 0 0 0 1 0 0 0 0
1770 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1771 // If OrZero isn't set, we cannot give back a zero result.
1772 // Make sure either the LHS or RHS has a bit set.
1773 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1774 return true;
1775 }
1776 }
David Majnemerbeab5672013-05-18 19:30:37 +00001777
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001778 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001779 // is a power of two only if the first operand is a power of two and not
1780 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001781 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1782 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001783 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001784 Depth, Q, DL);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001785 }
1786
Duncan Sandsd3951082011-01-25 09:38:29 +00001787 return false;
1788}
1789
Chandler Carruth80d3e562012-12-07 02:08:58 +00001790/// \brief Test whether a GEP's result is known to be non-null.
1791///
1792/// Uses properties inherent in a GEP to try to determine whether it is known
1793/// to be non-null.
1794///
1795/// Currently this routine does not support vector GEPs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001796static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001797 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001798 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1799 return false;
1800
1801 // FIXME: Support vector-GEPs.
1802 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1803
1804 // If the base pointer is non-null, we cannot walk to a null address with an
1805 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001806 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001807 return true;
1808
Chandler Carruth80d3e562012-12-07 02:08:58 +00001809 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1810 // If so, then the GEP cannot produce a null pointer, as doing so would
1811 // inherently violate the inbounds contract within address space zero.
1812 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1813 GTI != GTE; ++GTI) {
1814 // Struct types are easy -- they must always be indexed by a constant.
1815 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1816 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1817 unsigned ElementIdx = OpC->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001818 const StructLayout *SL = DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001819 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1820 if (ElementOffset > 0)
1821 return true;
1822 continue;
1823 }
1824
1825 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001826 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001827 continue;
1828
1829 // Fast path the constant operand case both for efficiency and so we don't
1830 // increment Depth when just zipping down an all-constant GEP.
1831 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1832 if (!OpC->isZero())
1833 return true;
1834 continue;
1835 }
1836
1837 // We post-increment Depth here because while isKnownNonZero increments it
1838 // as well, when we pop back up that increment won't persist. We don't want
1839 // to recurse 10k times just because we have 10k GEP operands. We don't
1840 // bail completely out because we want to handle constant GEPs regardless
1841 // of depth.
1842 if (Depth++ >= MaxDepth)
1843 continue;
1844
Hal Finkel60db0582014-09-07 18:57:58 +00001845 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001846 return true;
1847 }
1848
1849 return false;
1850}
1851
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001852/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1853/// ensure that the value it's attached to is never Value? 'RangeType' is
1854/// is the type of the value described by the range.
1855static bool rangeMetadataExcludesValue(MDNode* Ranges,
1856 const APInt& Value) {
1857 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1858 assert(NumRanges >= 1);
1859 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001860 ConstantInt *Lower =
1861 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1862 ConstantInt *Upper =
1863 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001864 ConstantRange Range(Lower->getValue(), Upper->getValue());
1865 if (Range.contains(Value))
1866 return false;
1867 }
1868 return true;
1869}
1870
Sanjay Patelaee84212014-11-04 16:27:42 +00001871/// Return true if the given value is known to be non-zero when defined.
1872/// For vectors return true if every element is known to be non-zero when
1873/// defined. Supports values with integer or pointer type and vectors of
1874/// integers.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001875bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +00001876 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001877 if (Constant *C = dyn_cast<Constant>(V)) {
1878 if (C->isNullValue())
1879 return false;
1880 if (isa<ConstantInt>(C))
1881 // Must be non-zero due to null test above.
1882 return true;
1883 // TODO: Handle vectors
1884 return false;
1885 }
1886
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001887 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001888 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001889 // If the possible ranges don't contain zero, then the value is
1890 // definitely non-zero.
1891 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1892 const APInt ZeroValue(Ty->getBitWidth(), 0);
1893 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1894 return true;
1895 }
1896 }
1897 }
1898
Duncan Sandsd3951082011-01-25 09:38:29 +00001899 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001900 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001901 return false;
1902
Chandler Carruth80d3e562012-12-07 02:08:58 +00001903 // Check for pointer simplifications.
1904 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001905 if (isKnownNonNull(V))
1906 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001907 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001908 if (isGEPKnownNonNull(GEP, DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001909 return true;
1910 }
1911
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001912 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001913
1914 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001915 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001916 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001917 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001918
1919 // ext X != 0 if X != 0.
1920 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001921 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001922
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001923 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001924 // if the lowest bit is shifted off the end.
1925 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001926 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001927 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001928 if (BO->hasNoUnsignedWrap())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001929 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001930
Duncan Sandsd3951082011-01-25 09:38:29 +00001931 APInt KnownZero(BitWidth, 0);
1932 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001933 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001934 if (KnownOne[0])
1935 return true;
1936 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001937 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001938 // defined if the sign bit is shifted off the end.
1939 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001940 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001941 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001942 if (BO->isExact())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001943 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001944
Duncan Sandsd3951082011-01-25 09:38:29 +00001945 bool XKnownNonNegative, XKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001946 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001947 if (XKnownNegative)
1948 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001949
1950 // If the shifter operand is a constant, and all of the bits shifted
1951 // out are known to be zero, and X is known non-zero then at least one
1952 // non-zero bit must remain.
1953 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1954 APInt KnownZero(BitWidth, 0);
1955 APInt KnownOne(BitWidth, 0);
1956 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
1957
1958 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1959 // Is there a known one in the portion not shifted out?
1960 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1961 return true;
1962 // Are all the bits to be shifted out known zero?
1963 if (KnownZero.countTrailingOnes() >= ShiftVal)
1964 return isKnownNonZero(X, DL, Depth, Q);
1965 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001966 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001967 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001968 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001969 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001970 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001971 // X + Y.
1972 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1973 bool XKnownNonNegative, XKnownNegative;
1974 bool YKnownNonNegative, YKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001975 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
1976 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001977
1978 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001979 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001980 if (XKnownNonNegative && YKnownNonNegative)
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001981 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001982 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001983
1984 // If X and Y are both negative (as signed values) then their sum is not
1985 // zero unless both X and Y equal INT_MIN.
1986 if (BitWidth && XKnownNegative && YKnownNegative) {
1987 APInt KnownZero(BitWidth, 0);
1988 APInt KnownOne(BitWidth, 0);
1989 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1990 // The sign bit of X is set. If some other bit is set then X is not equal
1991 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001992 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001993 if ((KnownOne & Mask) != 0)
1994 return true;
1995 // The sign bit of Y is set. If some other bit is set then Y is not equal
1996 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001997 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001998 if ((KnownOne & Mask) != 0)
1999 return true;
2000 }
2001
2002 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00002003 if (XKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002004 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00002005 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00002006 if (YKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002007 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00002008 return true;
2009 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00002010 // X * Y.
2011 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2012 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2013 // If X and Y are non-zero then so is X * Y as long as the multiplication
2014 // does not overflow.
2015 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002016 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002017 return true;
2018 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002019 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2020 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002021 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
2022 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002023 return true;
2024 }
James Molloy897048b2015-09-29 14:08:45 +00002025 // PHI
2026 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2027 // Try and detect a recurrence that monotonically increases from a
2028 // starting value, as these are common as induction variables.
2029 if (PN->getNumIncomingValues() == 2) {
2030 Value *Start = PN->getIncomingValue(0);
2031 Value *Induction = PN->getIncomingValue(1);
2032 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2033 std::swap(Start, Induction);
2034 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2035 if (!C->isZero() && !C->isNegative()) {
2036 ConstantInt *X;
2037 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2038 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2039 !X->isNegative())
2040 return true;
2041 }
2042 }
2043 }
2044 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002045
2046 if (!BitWidth) return false;
2047 APInt KnownZero(BitWidth, 0);
2048 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002049 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002050 return KnownOne != 0;
2051}
2052
James Molloy1d88d6f2015-10-22 13:18:42 +00002053/// Return true if V2 == V1 + X, where X is known non-zero.
2054static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL,
2055 const Query &Q) {
2056 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2057 if (!BO || BO->getOpcode() != Instruction::Add)
2058 return false;
2059 Value *Op = nullptr;
2060 if (V2 == BO->getOperand(0))
2061 Op = BO->getOperand(1);
2062 else if (V2 == BO->getOperand(1))
2063 Op = BO->getOperand(0);
2064 else
2065 return false;
2066 return isKnownNonZero(Op, DL, 0, Q);
2067}
2068
2069/// Return true if it is known that V1 != V2.
2070static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
2071 const Query &Q) {
2072 if (V1->getType()->isVectorTy() || V1 == V2)
2073 return false;
2074 if (V1->getType() != V2->getType())
2075 // We can't look through casts yet.
2076 return false;
2077 if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q))
2078 return true;
2079
2080 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2081 // Are any known bits in V1 contradictory to known bits in V2? If V1
2082 // has a known zero where V2 has a known one, they must not be equal.
2083 auto BitWidth = Ty->getBitWidth();
2084 APInt KnownZero1(BitWidth, 0);
2085 APInt KnownOne1(BitWidth, 0);
2086 computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q);
2087 APInt KnownZero2(BitWidth, 0);
2088 APInt KnownOne2(BitWidth, 0);
2089 computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q);
2090
2091 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2092 if (OppositeBits.getBoolValue())
2093 return true;
2094 }
2095 return false;
2096}
2097
Sanjay Patelaee84212014-11-04 16:27:42 +00002098/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2099/// simplify operations downstream. Mask is known to be zero for bits that V
2100/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002101///
2102/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002103/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002104/// where V is a vector, the mask, known zero, and known one values are the
2105/// same width as the vector element, and the bit is set only if it is true
2106/// for all of the elements in the vector.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002107bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
2108 unsigned Depth, const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002109 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002110 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002111 return (KnownZero & Mask) == Mask;
2112}
2113
2114
2115
Sanjay Patelaee84212014-11-04 16:27:42 +00002116/// Return the number of times the sign bit of the register is replicated into
2117/// the other bits. We know that at least 1 bit is always equal to the sign bit
2118/// (itself), but other cases can give us information. For example, immediately
2119/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2120/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00002121///
2122/// 'Op' must have a scalar integer type.
2123///
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002124unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
2125 const Query &Q) {
2126 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002127 unsigned Tmp, Tmp2;
2128 unsigned FirstAnswer = 1;
2129
Jay Foada0653a32014-05-14 21:14:37 +00002130 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002131 // below.
2132
Chris Lattner965c7692008-06-02 01:18:21 +00002133 if (Depth == 6)
2134 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002135
Dan Gohman80ca01c2009-07-17 20:47:02 +00002136 Operator *U = dyn_cast<Operator>(V);
2137 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002138 default: break;
2139 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002140 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002141 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002142
Nadav Rotemc99a3872015-03-06 00:23:58 +00002143 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002144 const APInt *Denominator;
2145 // sdiv X, C -> adds log(C) sign bits.
2146 if (match(U->getOperand(1), m_APInt(Denominator))) {
2147
2148 // Ignore non-positive denominator.
2149 if (!Denominator->isStrictlyPositive())
2150 break;
2151
2152 // Calculate the incoming numerator bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002153 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002154
2155 // Add floor(log(C)) bits to the numerator bits.
2156 return std::min(TyBits, NumBits + Denominator->logBase2());
2157 }
2158 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002159 }
2160
2161 case Instruction::SRem: {
2162 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002163 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2164 // positive constant. This let us put a lower bound on the number of sign
2165 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002166 if (match(U->getOperand(1), m_APInt(Denominator))) {
2167
2168 // Ignore non-positive denominator.
2169 if (!Denominator->isStrictlyPositive())
2170 break;
2171
2172 // Calculate the incoming numerator bits. SRem by a positive constant
2173 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002174 unsigned NumrBits =
2175 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002176
2177 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002178 // denominator. Given that the denominator is positive, there are two
2179 // cases:
2180 //
2181 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2182 // (1 << ceilLogBase2(C)).
2183 //
2184 // 2. the numerator is negative. Then the result range is (-C,0] and
2185 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2186 //
2187 // Thus a lower bound on the number of sign bits is `TyBits -
2188 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002189
Sanjoy Dase561fee2015-03-25 22:33:53 +00002190 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002191 return std::max(NumrBits, ResBits);
2192 }
2193 break;
2194 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002195
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002196 case Instruction::AShr: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002197 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002198 // ashr X, C -> adds C sign bits. Vectors too.
2199 const APInt *ShAmt;
2200 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2201 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002202 if (Tmp > TyBits) Tmp = TyBits;
2203 }
2204 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002205 }
2206 case Instruction::Shl: {
2207 const APInt *ShAmt;
2208 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002209 // shl destroys sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002210 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002211 Tmp2 = ShAmt->getZExtValue();
2212 if (Tmp2 >= TyBits || // Bad shift.
2213 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2214 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002215 }
2216 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002217 }
Chris Lattner965c7692008-06-02 01:18:21 +00002218 case Instruction::And:
2219 case Instruction::Or:
2220 case Instruction::Xor: // NOT is handled here.
2221 // Logical binary ops preserve the number of sign bits at the worst.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002222 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002223 if (Tmp != 1) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002224 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002225 FirstAnswer = std::min(Tmp, Tmp2);
2226 // We computed what we know about the sign bits as our first
2227 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002228 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002229 }
2230 break;
2231
2232 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002233 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002234 if (Tmp == 1) return 1; // Early out.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002235 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002236 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002237
Chris Lattner965c7692008-06-02 01:18:21 +00002238 case Instruction::Add:
2239 // Add can have at most one carry bit. Thus we know that the output
2240 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002241 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002242 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002243
Chris Lattner965c7692008-06-02 01:18:21 +00002244 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002245 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002246 if (CRHS->isAllOnesValue()) {
2247 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002248 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
2249 Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002250
Chris Lattner965c7692008-06-02 01:18:21 +00002251 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2252 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002253 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002254 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002255
Chris Lattner965c7692008-06-02 01:18:21 +00002256 // If we are subtracting one from a positive number, there is no carry
2257 // out of the result.
2258 if (KnownZero.isNegative())
2259 return Tmp;
2260 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002261
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002262 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002263 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002264 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002265
Chris Lattner965c7692008-06-02 01:18:21 +00002266 case Instruction::Sub:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002267 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002268 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002269
Chris Lattner965c7692008-06-02 01:18:21 +00002270 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002271 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002272 if (CLHS->isNullValue()) {
2273 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002274 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
2275 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002276 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2277 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002278 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002279 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002280
Chris Lattner965c7692008-06-02 01:18:21 +00002281 // If the input is known to be positive (the sign bit is known clear),
2282 // the output of the NEG has the same number of sign bits as the input.
2283 if (KnownZero.isNegative())
2284 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002285
Chris Lattner965c7692008-06-02 01:18:21 +00002286 // Otherwise, we treat this like a SUB.
2287 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002288
Chris Lattner965c7692008-06-02 01:18:21 +00002289 // Sub can have at most one carry bit. Thus we know that the output
2290 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002291 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002292 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002293 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002294
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002295 case Instruction::PHI: {
2296 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002297 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002298 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002299 if (NumIncomingValues > 4) break;
2300 // Unreachable blocks may have zero-operand PHI nodes.
2301 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002302
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002303 // Take the minimum of all incoming values. This can't infinitely loop
2304 // because of our depth threshold.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002305 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002306 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002307 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002308 Tmp = std::min(
2309 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002310 }
2311 return Tmp;
2312 }
2313
Chris Lattner965c7692008-06-02 01:18:21 +00002314 case Instruction::Trunc:
2315 // FIXME: it's tricky to do anything useful for this, but it is an important
2316 // case for targets like X86.
2317 break;
2318 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002319
Chris Lattner965c7692008-06-02 01:18:21 +00002320 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2321 // use this information.
2322 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002323 APInt Mask;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002324 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002325
Chris Lattner965c7692008-06-02 01:18:21 +00002326 if (KnownZero.isNegative()) { // sign bit is 0
2327 Mask = KnownZero;
2328 } else if (KnownOne.isNegative()) { // sign bit is 1;
2329 Mask = KnownOne;
2330 } else {
2331 // Nothing known.
2332 return FirstAnswer;
2333 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002334
Chris Lattner965c7692008-06-02 01:18:21 +00002335 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2336 // the number of identical bits in the top of the input value.
2337 Mask = ~Mask;
2338 Mask <<= Mask.getBitWidth()-TyBits;
2339 // Return # leading zeros. We use 'min' here in case Val was zero before
2340 // shifting. We don't want to return '64' as for an i32 "0".
2341 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2342}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002343
Sanjay Patelaee84212014-11-04 16:27:42 +00002344/// This function computes the integer multiple of Base that equals V.
2345/// If successful, it returns true and returns the multiple in
2346/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002347/// through SExt instructions only if LookThroughSExt is true.
2348bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002349 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002350 const unsigned MaxDepth = 6;
2351
Dan Gohman6a976bb2009-11-18 00:58:27 +00002352 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002353 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002354 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002355
Chris Lattner229907c2011-07-18 04:54:35 +00002356 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002357
Dan Gohman6a976bb2009-11-18 00:58:27 +00002358 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002359
2360 if (Base == 0)
2361 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002362
Victor Hernandez47444882009-11-10 08:28:35 +00002363 if (Base == 1) {
2364 Multiple = V;
2365 return true;
2366 }
2367
2368 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2369 Constant *BaseVal = ConstantInt::get(T, Base);
2370 if (CO && CO == BaseVal) {
2371 // Multiple is 1.
2372 Multiple = ConstantInt::get(T, 1);
2373 return true;
2374 }
2375
2376 if (CI && CI->getZExtValue() % Base == 0) {
2377 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002378 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002379 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002380
Victor Hernandez47444882009-11-10 08:28:35 +00002381 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002382
Victor Hernandez47444882009-11-10 08:28:35 +00002383 Operator *I = dyn_cast<Operator>(V);
2384 if (!I) return false;
2385
2386 switch (I->getOpcode()) {
2387 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002388 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002389 if (!LookThroughSExt) return false;
2390 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002391 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002392 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2393 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002394 case Instruction::Shl:
2395 case Instruction::Mul: {
2396 Value *Op0 = I->getOperand(0);
2397 Value *Op1 = I->getOperand(1);
2398
2399 if (I->getOpcode() == Instruction::Shl) {
2400 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2401 if (!Op1CI) return false;
2402 // Turn Op0 << Op1 into Op0 * 2^Op1
2403 APInt Op1Int = Op1CI->getValue();
2404 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002405 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002406 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002407 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002408 }
2409
Craig Topper9f008862014-04-15 04:59:12 +00002410 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002411 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2412 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2413 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002414 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002415 MulC->getType()->getPrimitiveSizeInBits())
2416 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002417 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002418 MulC->getType()->getPrimitiveSizeInBits())
2419 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002420
Chris Lattner72d283c2010-09-05 17:20:46 +00002421 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2422 Multiple = ConstantExpr::getMul(MulC, Op1C);
2423 return true;
2424 }
Victor Hernandez47444882009-11-10 08:28:35 +00002425
2426 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2427 if (Mul0CI->getValue() == 1) {
2428 // V == Base * Op1, so return Op1
2429 Multiple = Op1;
2430 return true;
2431 }
2432 }
2433
Craig Topper9f008862014-04-15 04:59:12 +00002434 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002435 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2436 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2437 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002438 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002439 MulC->getType()->getPrimitiveSizeInBits())
2440 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002441 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002442 MulC->getType()->getPrimitiveSizeInBits())
2443 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002444
Chris Lattner72d283c2010-09-05 17:20:46 +00002445 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2446 Multiple = ConstantExpr::getMul(MulC, Op0C);
2447 return true;
2448 }
Victor Hernandez47444882009-11-10 08:28:35 +00002449
2450 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2451 if (Mul1CI->getValue() == 1) {
2452 // V == Base * Op0, so return Op0
2453 Multiple = Op0;
2454 return true;
2455 }
2456 }
Victor Hernandez47444882009-11-10 08:28:35 +00002457 }
2458 }
2459
2460 // We could not determine if V is a multiple of Base.
2461 return false;
2462}
2463
Sanjay Patelaee84212014-11-04 16:27:42 +00002464/// Return true if we can prove that the specified FP value is never equal to
2465/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002466///
2467/// NOTE: this function will need to be revisited when we support non-default
2468/// rounding modes!
2469///
2470bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2471 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2472 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002473
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002474 // FIXME: Magic number! At the least, this should be given a name because it's
2475 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2476 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002477 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002478 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002479
Dan Gohman80ca01c2009-07-17 20:47:02 +00002480 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002481 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002482
2483 // Check if the nsz fast-math flag is set
2484 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2485 if (FPO->hasNoSignedZeros())
2486 return true;
2487
Chris Lattnera12a6de2008-06-02 01:29:46 +00002488 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002489 if (I->getOpcode() == Instruction::FAdd)
2490 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2491 if (CFP->isNullValue())
2492 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002493
Chris Lattnera12a6de2008-06-02 01:29:46 +00002494 // sitofp and uitofp turn into +0.0 for zero.
2495 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2496 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002497
Chris Lattnera12a6de2008-06-02 01:29:46 +00002498 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2499 // sqrt(-0.0) = -0.0, no other negative results are possible.
2500 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002501 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002502
Chris Lattnera12a6de2008-06-02 01:29:46 +00002503 if (const CallInst *CI = dyn_cast<CallInst>(I))
2504 if (const Function *F = CI->getCalledFunction()) {
2505 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002506 // abs(x) != -0.0
2507 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002508 // fabs[lf](x) != -0.0
2509 if (F->getName() == "fabs") return true;
2510 if (F->getName() == "fabsf") return true;
2511 if (F->getName() == "fabsl") return true;
2512 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2513 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002514 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002515 }
2516 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002517
Chris Lattnera12a6de2008-06-02 01:29:46 +00002518 return false;
2519}
2520
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002521bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2522 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2523 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2524
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002525 // FIXME: Magic number! At the least, this should be given a name because it's
2526 // used similarly in CannotBeNegativeZero(). A better fix may be to
2527 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002528 if (Depth == 6)
2529 return false; // Limit search depth.
2530
2531 const Operator *I = dyn_cast<Operator>(V);
2532 if (!I) return false;
2533
2534 switch (I->getOpcode()) {
2535 default: break;
2536 case Instruction::FMul:
2537 // x*x is always non-negative or a NaN.
2538 if (I->getOperand(0) == I->getOperand(1))
2539 return true;
2540 // Fall through
2541 case Instruction::FAdd:
2542 case Instruction::FDiv:
2543 case Instruction::FRem:
2544 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2545 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2546 case Instruction::FPExt:
2547 case Instruction::FPTrunc:
2548 // Widening/narrowing never change sign.
2549 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2550 case Instruction::Call:
2551 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2552 switch (II->getIntrinsicID()) {
2553 default: break;
2554 case Intrinsic::exp:
2555 case Intrinsic::exp2:
2556 case Intrinsic::fabs:
2557 case Intrinsic::sqrt:
2558 return true;
2559 case Intrinsic::powi:
2560 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2561 // powi(x,n) is non-negative if n is even.
2562 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2563 return true;
2564 }
2565 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2566 case Intrinsic::fma:
2567 case Intrinsic::fmuladd:
2568 // x*x+y is non-negative if y is non-negative.
2569 return I->getOperand(0) == I->getOperand(1) &&
2570 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2571 }
2572 break;
2573 }
2574 return false;
2575}
2576
Sanjay Patelaee84212014-11-04 16:27:42 +00002577/// If the specified value can be set by repeating the same byte in memory,
2578/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002579/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2580/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2581/// byte store (e.g. i16 0x1234), return null.
2582Value *llvm::isBytewiseValue(Value *V) {
2583 // All byte-wide stores are splatable, even of arbitrary variables.
2584 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002585
2586 // Handle 'null' ConstantArrayZero etc.
2587 if (Constant *C = dyn_cast<Constant>(V))
2588 if (C->isNullValue())
2589 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002590
Chris Lattner9cb10352010-12-26 20:15:01 +00002591 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002592 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002593 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2594 if (CFP->getType()->isFloatTy())
2595 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2596 if (CFP->getType()->isDoubleTy())
2597 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2598 // Don't handle long double formats, which have strange constraints.
2599 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002600
Benjamin Kramer17d90152015-02-07 19:29:02 +00002601 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002602 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002603 if (CI->getBitWidth() % 8 == 0) {
2604 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002605
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002606 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002607 return nullptr;
2608 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002609 }
2610 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002611
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002612 // A ConstantDataArray/Vector is splatable if all its members are equal and
2613 // also splatable.
2614 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2615 Value *Elt = CA->getElementAsConstant(0);
2616 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002617 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002618 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002619
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002620 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2621 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002622 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002623
Chris Lattner9cb10352010-12-26 20:15:01 +00002624 return Val;
2625 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002626
Chris Lattner9cb10352010-12-26 20:15:01 +00002627 // Conceptually, we could handle things like:
2628 // %a = zext i8 %X to i16
2629 // %b = shl i16 %a, 8
2630 // %c = or i16 %a, %b
2631 // but until there is an example that actually needs this, it doesn't seem
2632 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002633 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002634}
2635
2636
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002637// This is the recursive version of BuildSubAggregate. It takes a few different
2638// arguments. Idxs is the index within the nested struct From that we are
2639// looking at now (which is of type IndexedType). IdxSkip is the number of
2640// indices from Idxs that should be left out when inserting into the resulting
2641// struct. To is the result struct built so far, new insertvalue instructions
2642// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002643static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002644 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002645 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002646 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002647 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002648 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002649 // Save the original To argument so we can modify it
2650 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002651 // General case, the type indexed by Idxs is a struct
2652 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2653 // Process each struct element recursively
2654 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002655 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002656 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002657 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002658 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002659 if (!To) {
2660 // Couldn't find any inserted value for this index? Cleanup
2661 while (PrevTo != OrigTo) {
2662 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2663 PrevTo = Del->getAggregateOperand();
2664 Del->eraseFromParent();
2665 }
2666 // Stop processing elements
2667 break;
2668 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002669 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002670 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002671 if (To)
2672 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002673 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002674 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2675 // the struct's elements had a value that was inserted directly. In the latter
2676 // case, perhaps we can't determine each of the subelements individually, but
2677 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002678
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002679 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002680 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002681
2682 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002683 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002684
2685 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002686 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002687 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002688}
2689
2690// This helper takes a nested struct and extracts a part of it (which is again a
2691// struct) into a new value. For example, given the struct:
2692// { a, { b, { c, d }, e } }
2693// and the indices "1, 1" this returns
2694// { c, d }.
2695//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002696// It does this by inserting an insertvalue for each element in the resulting
2697// struct, as opposed to just inserting a single struct. This will only work if
2698// each of the elements of the substruct are known (ie, inserted into From by an
2699// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002700//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002701// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002702static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002703 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002704 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002705 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002706 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002707 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002708 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002709 unsigned IdxSkip = Idxs.size();
2710
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002711 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002712}
2713
Sanjay Patelaee84212014-11-04 16:27:42 +00002714/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002715/// the scalar value indexed is already around as a register, for example if it
2716/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002717///
2718/// If InsertBefore is not null, this function will duplicate (modified)
2719/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002720Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2721 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002722 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002723 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002724 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002725 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002726 // We have indices, so V should have an indexable type.
2727 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2728 "Not looking at a struct or array?");
2729 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2730 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002731
Chris Lattner67058832012-01-25 06:48:06 +00002732 if (Constant *C = dyn_cast<Constant>(V)) {
2733 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002734 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002735 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2736 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002737
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002738 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002739 // Loop the indices for the insertvalue instruction in parallel with the
2740 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002741 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002742 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2743 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002744 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002745 // We can't handle this without inserting insertvalues
2746 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002747 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002748
2749 // The requested index identifies a part of a nested aggregate. Handle
2750 // this specially. For example,
2751 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2752 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2753 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2754 // This can be changed into
2755 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2756 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2757 // which allows the unused 0,0 element from the nested struct to be
2758 // removed.
2759 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2760 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002761 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002762
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002763 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002764 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002765 // looking for, then.
2766 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002767 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002768 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002769 }
2770 // If we end up here, the indices of the insertvalue match with those
2771 // requested (though possibly only partially). Now we recursively look at
2772 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002773 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002774 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002775 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002776 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002777
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002778 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002779 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002780 // something else, we can extract from that something else directly instead.
2781 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002782
2783 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002784 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002785 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002786 SmallVector<unsigned, 5> Idxs;
2787 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002788 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002789 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002790
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002791 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002792 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002793
Craig Topper1bef2c82012-12-22 19:15:35 +00002794 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002795 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002796
Jay Foad57aa6362011-07-13 10:26:04 +00002797 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002798 }
2799 // Otherwise, we don't know (such as, extracting from a function return value
2800 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002801 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002802}
Evan Chengda3db112008-06-30 07:31:25 +00002803
Sanjay Patelaee84212014-11-04 16:27:42 +00002804/// Analyze the specified pointer to see if it can be expressed as a base
2805/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002806Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002807 const DataLayout &DL) {
2808 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002809 APInt ByteOffset(BitWidth, 0);
2810 while (1) {
2811 if (Ptr->getType()->isVectorTy())
2812 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002813
Nuno Lopes368c4d02012-12-31 20:48:35 +00002814 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002815 APInt GEPOffset(BitWidth, 0);
2816 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2817 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002818
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002819 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002820
Nuno Lopes368c4d02012-12-31 20:48:35 +00002821 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002822 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2823 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002824 Ptr = cast<Operator>(Ptr)->getOperand(0);
2825 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2826 if (GA->mayBeOverridden())
2827 break;
2828 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002829 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002830 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002831 }
2832 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002833 Offset = ByteOffset.getSExtValue();
2834 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002835}
2836
2837
Sanjay Patelaee84212014-11-04 16:27:42 +00002838/// This function computes the length of a null-terminated C string pointed to
2839/// by V. If successful, it returns true and returns the string in Str.
2840/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002841bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2842 uint64_t Offset, bool TrimAtNul) {
2843 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002844
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002845 // Look through bitcast instructions and geps.
2846 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002847
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002848 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002849 // offset.
2850 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002851 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002852 if (GEP->getNumOperands() != 3)
2853 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002854
Evan Chengda3db112008-06-30 07:31:25 +00002855 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002856 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2857 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002858 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002859 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002860
Evan Chengda3db112008-06-30 07:31:25 +00002861 // Check to make sure that the first operand of the GEP is an integer and
2862 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002863 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002864 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002865 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002866
Evan Chengda3db112008-06-30 07:31:25 +00002867 // If the second index isn't a ConstantInt, then this is a variable index
2868 // into the array. If this occurs, we can't say anything meaningful about
2869 // the string.
2870 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002871 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002872 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002873 else
2874 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002875 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2876 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002877 }
Nick Lewycky46209882011-10-20 00:34:35 +00002878
Evan Chengda3db112008-06-30 07:31:25 +00002879 // The GEP instruction, constant or instruction, must reference a global
2880 // variable that is a constant and is initialized. The referenced constant
2881 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002882 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002883 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002884 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002885
Nick Lewycky46209882011-10-20 00:34:35 +00002886 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002887 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002888 // This is a degenerate case. The initializer is constant zero so the
2889 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002890 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002891 return true;
2892 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002893
Evan Chengda3db112008-06-30 07:31:25 +00002894 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002895 const ConstantDataArray *Array =
2896 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002897 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002898 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002899
Evan Chengda3db112008-06-30 07:31:25 +00002900 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002901 uint64_t NumElts = Array->getType()->getArrayNumElements();
2902
2903 // Start out with the entire array in the StringRef.
2904 Str = Array->getAsString();
2905
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002906 if (Offset > NumElts)
2907 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002908
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002909 // Skip over 'offset' bytes.
2910 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002911
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002912 if (TrimAtNul) {
2913 // Trim off the \0 and anything after it. If the array is not nul
2914 // terminated, we just return the whole end of string. The client may know
2915 // some other way that the string is length-bound.
2916 Str = Str.substr(0, Str.find('\0'));
2917 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002918 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002919}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002920
2921// These next two are very similar to the above, but also look through PHI
2922// nodes.
2923// TODO: See if we can integrate these two together.
2924
Sanjay Patelaee84212014-11-04 16:27:42 +00002925/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002926/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002927static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002928 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002929 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002930
2931 // If this is a PHI node, there are two cases: either we have already seen it
2932 // or we haven't.
2933 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002934 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002935 return ~0ULL; // already in the set.
2936
2937 // If it was new, see if all the input strings are the same length.
2938 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002939 for (Value *IncValue : PN->incoming_values()) {
2940 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002941 if (Len == 0) return 0; // Unknown length -> unknown.
2942
2943 if (Len == ~0ULL) continue;
2944
2945 if (Len != LenSoFar && LenSoFar != ~0ULL)
2946 return 0; // Disagree -> unknown.
2947 LenSoFar = Len;
2948 }
2949
2950 // Success, all agree.
2951 return LenSoFar;
2952 }
2953
2954 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2955 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2956 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2957 if (Len1 == 0) return 0;
2958 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2959 if (Len2 == 0) return 0;
2960 if (Len1 == ~0ULL) return Len2;
2961 if (Len2 == ~0ULL) return Len1;
2962 if (Len1 != Len2) return 0;
2963 return Len1;
2964 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002965
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002966 // Otherwise, see if we can read the string.
2967 StringRef StrData;
2968 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002969 return 0;
2970
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002971 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002972}
2973
Sanjay Patelaee84212014-11-04 16:27:42 +00002974/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002975/// the specified pointer, return 'len+1'. If we can't, return 0.
2976uint64_t llvm::GetStringLength(Value *V) {
2977 if (!V->getType()->isPointerTy()) return 0;
2978
2979 SmallPtrSet<PHINode*, 32> PHIs;
2980 uint64_t Len = GetStringLengthH(V, PHIs);
2981 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2982 // an empty string as a length.
2983 return Len == ~0ULL ? 1 : Len;
2984}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002985
Adam Nemete2b885c2015-04-23 20:09:20 +00002986/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2987/// previous iteration of the loop was referring to the same object as \p PN.
2988static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2989 // Find the loop-defined value.
2990 Loop *L = LI->getLoopFor(PN->getParent());
2991 if (PN->getNumIncomingValues() != 2)
2992 return true;
2993
2994 // Find the value from previous iteration.
2995 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2996 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2997 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2998 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2999 return true;
3000
3001 // If a new pointer is loaded in the loop, the pointer references a different
3002 // object in every iteration. E.g.:
3003 // for (i)
3004 // int *p = a[i];
3005 // ...
3006 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3007 if (!L->isLoopInvariant(Load->getPointerOperand()))
3008 return false;
3009 return true;
3010}
3011
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003012Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3013 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003014 if (!V->getType()->isPointerTy())
3015 return V;
3016 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3017 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3018 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003019 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3020 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003021 V = cast<Operator>(V)->getOperand(0);
3022 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3023 if (GA->mayBeOverridden())
3024 return V;
3025 V = GA->getAliasee();
3026 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00003027 // See if InstructionSimplify knows any relevant tricks.
3028 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003029 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003030 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003031 V = Simplified;
3032 continue;
3033 }
3034
Dan Gohmana4fcd242010-12-15 20:02:24 +00003035 return V;
3036 }
3037 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3038 }
3039 return V;
3040}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003041
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003042void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003043 const DataLayout &DL, LoopInfo *LI,
3044 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003045 SmallPtrSet<Value *, 4> Visited;
3046 SmallVector<Value *, 4> Worklist;
3047 Worklist.push_back(V);
3048 do {
3049 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003050 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003051
David Blaikie70573dc2014-11-19 07:49:26 +00003052 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003053 continue;
3054
3055 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3056 Worklist.push_back(SI->getTrueValue());
3057 Worklist.push_back(SI->getFalseValue());
3058 continue;
3059 }
3060
3061 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003062 // If this PHI changes the underlying object in every iteration of the
3063 // loop, don't look through it. Consider:
3064 // int **A;
3065 // for (i) {
3066 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3067 // Curr = A[i];
3068 // *Prev, *Curr;
3069 //
3070 // Prev is tracking Curr one iteration behind so they refer to different
3071 // underlying objects.
3072 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3073 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003074 for (Value *IncValue : PN->incoming_values())
3075 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003076 continue;
3077 }
3078
3079 Objects.push_back(P);
3080 } while (!Worklist.empty());
3081}
3082
Sanjay Patelaee84212014-11-04 16:27:42 +00003083/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003084bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003085 for (const User *U : V->users()) {
3086 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003087 if (!II) return false;
3088
3089 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3090 II->getIntrinsicID() != Intrinsic::lifetime_end)
3091 return false;
3092 }
3093 return true;
3094}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003095
Philip Reames5461d452015-04-23 17:36:48 +00003096static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003097 Type *Ty, const DataLayout &DL,
3098 const Instruction *CtxI,
3099 const DominatorTree *DT,
3100 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003101 assert(Offset.isNonNegative() && "offset can't be negative");
3102 assert(Ty->isSized() && "must be sized");
3103
3104 APInt DerefBytes(Offset.getBitWidth(), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003105 bool CheckForNonNull = false;
Philip Reames5461d452015-04-23 17:36:48 +00003106 if (const Argument *A = dyn_cast<Argument>(BV)) {
3107 DerefBytes = A->getDereferenceableBytes();
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003108 if (!DerefBytes.getBoolValue()) {
3109 DerefBytes = A->getDereferenceableOrNullBytes();
3110 CheckForNonNull = true;
3111 }
Philip Reames5461d452015-04-23 17:36:48 +00003112 } else if (auto CS = ImmutableCallSite(BV)) {
3113 DerefBytes = CS.getDereferenceableBytes(0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003114 if (!DerefBytes.getBoolValue()) {
3115 DerefBytes = CS.getDereferenceableOrNullBytes(0);
3116 CheckForNonNull = true;
3117 }
Sanjoy Dasf9995472015-05-19 20:10:19 +00003118 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
3119 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
3120 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3121 DerefBytes = CI->getLimitedValue();
3122 }
3123 if (!DerefBytes.getBoolValue()) {
3124 if (MDNode *MD =
3125 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
3126 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3127 DerefBytes = CI->getLimitedValue();
3128 }
3129 CheckForNonNull = true;
3130 }
Philip Reames5461d452015-04-23 17:36:48 +00003131 }
3132
3133 if (DerefBytes.getBoolValue())
3134 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003135 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
3136 return true;
3137
Philip Reames5461d452015-04-23 17:36:48 +00003138 return false;
3139}
3140
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003141static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
3142 const Instruction *CtxI,
3143 const DominatorTree *DT,
3144 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003145 Type *VTy = V->getType();
3146 Type *Ty = VTy->getPointerElementType();
3147 if (!Ty->isSized())
3148 return false;
3149
3150 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003151 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003152}
3153
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003154static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
3155 const DataLayout &DL) {
Artur Pilipenkoffd13282015-10-09 15:58:26 +00003156 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003157
3158 if (!BaseAlign) {
3159 Type *Ty = Base->getType()->getPointerElementType();
3160 BaseAlign = DL.getABITypeAlignment(Ty);
3161 }
3162
3163 APInt Alignment(Offset.getBitWidth(), Align);
3164
3165 assert(Alignment.isPowerOf2() && "must be a power of 2!");
3166 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3167}
3168
3169static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
3170 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0);
3171 return isAligned(Base, Offset, Align, DL);
3172}
3173
Philip Reames5461d452015-04-23 17:36:48 +00003174/// Test if V is always a pointer to allocated and suitably aligned memory for
3175/// a simple load or store.
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003176static bool isDereferenceableAndAlignedPointer(
3177 const Value *V, unsigned Align, const DataLayout &DL,
3178 const Instruction *CtxI, const DominatorTree *DT,
3179 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
Philip Reames5461d452015-04-23 17:36:48 +00003180 // Note that it is not safe to speculate into a malloc'd region because
3181 // malloc may return null.
3182
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003183 // These are obviously ok if aligned.
3184 if (isa<AllocaInst>(V))
3185 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003186
3187 // It's not always safe to follow a bitcast, for example:
3188 // bitcast i8* (alloca i8) to i32*
3189 // would result in a 4-byte load from a 1-byte alloca. However,
3190 // if we're casting from a pointer from a type of larger size
3191 // to a type of smaller size (or the same size), and the alignment
3192 // is at least as large as for the resulting pointer type, then
3193 // we can look through the bitcast.
3194 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3195 Type *STy = BC->getSrcTy()->getPointerElementType(),
3196 *DTy = BC->getDestTy()->getPointerElementType();
3197 if (STy->isSized() && DTy->isSized() &&
3198 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3199 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003200 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3201 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003202 }
3203
3204 // Global variables which can't collapse to null are ok.
3205 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003206 if (!GV->hasExternalWeakLinkage())
3207 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003208
3209 // byval arguments are okay.
3210 if (const Argument *A = dyn_cast<Argument>(V))
3211 if (A->hasByValAttr())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003212 return isAligned(V, Align, DL);
3213
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003214 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003215 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003216
3217 // For GEPs, determine if the indexing lands within the allocated object.
3218 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003219 Type *VTy = GEP->getType();
3220 Type *Ty = VTy->getPointerElementType();
3221 const Value *Base = GEP->getPointerOperand();
3222
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003223 // Conservatively require that the base pointer be fully dereferenceable
3224 // and aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003225 if (!Visited.insert(Base).second)
Philip Reames5461d452015-04-23 17:36:48 +00003226 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003227 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3228 Visited))
Philip Reames5461d452015-04-23 17:36:48 +00003229 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003230
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003231 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
3232 if (!GEP->accumulateConstantOffset(DL, Offset))
3233 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003234
3235 // Check if the load is within the bounds of the underlying object
3236 // and offset is aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003237 uint64_t LoadSize = DL.getTypeStoreSize(Ty);
3238 Type *BaseType = Base->getType()->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003239 assert(isPowerOf2_32(Align) && "must be a power of 2!");
3240 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3241 !(Offset & APInt(Offset.getBitWidth(), Align-1));
Philip Reames5461d452015-04-23 17:36:48 +00003242 }
3243
3244 // For gc.relocate, look through relocations
3245 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
3246 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
3247 GCRelocateOperands RelocateInst(I);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003248 return isDereferenceableAndAlignedPointer(
3249 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003250 }
3251
3252 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003253 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3254 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003255
3256 // If we don't know, assume the worst.
3257 return false;
3258}
3259
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003260bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3261 const DataLayout &DL,
3262 const Instruction *CtxI,
3263 const DominatorTree *DT,
3264 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003265 // When dereferenceability information is provided by a dereferenceable
3266 // attribute, we know exactly how many bytes are dereferenceable. If we can
3267 // determine the exact offset to the attributed variable, we can use that
3268 // information here.
3269 Type *VTy = V->getType();
3270 Type *Ty = VTy->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003271
3272 // Require ABI alignment for loads without alignment specification
3273 if (Align == 0)
3274 Align = DL.getABITypeAlignment(Ty);
3275
Philip Reames5461d452015-04-23 17:36:48 +00003276 if (Ty->isSized()) {
3277 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3278 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003279
Philip Reames5461d452015-04-23 17:36:48 +00003280 if (Offset.isNonNegative())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003281 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3282 isAligned(BV, Offset, Align, DL))
Philip Reames5461d452015-04-23 17:36:48 +00003283 return true;
3284 }
3285
3286 SmallPtrSet<const Value *, 32> Visited;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003287 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3288 Visited);
3289}
3290
3291bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3292 const Instruction *CtxI,
3293 const DominatorTree *DT,
3294 const TargetLibraryInfo *TLI) {
3295 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003296}
3297
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003298bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3299 const Instruction *CtxI,
3300 const DominatorTree *DT,
3301 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003302 const Operator *Inst = dyn_cast<Operator>(V);
3303 if (!Inst)
3304 return false;
3305
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003306 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3307 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3308 if (C->canTrap())
3309 return false;
3310
3311 switch (Inst->getOpcode()) {
3312 default:
3313 return true;
3314 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003315 case Instruction::URem: {
3316 // x / y is undefined if y == 0.
3317 const APInt *V;
3318 if (match(Inst->getOperand(1), m_APInt(V)))
3319 return *V != 0;
3320 return false;
3321 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003322 case Instruction::SDiv:
3323 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003324 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003325 const APInt *Numerator, *Denominator;
3326 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3327 return false;
3328 // We cannot hoist this division if the denominator is 0.
3329 if (*Denominator == 0)
3330 return false;
3331 // It's safe to hoist if the denominator is not 0 or -1.
3332 if (*Denominator != -1)
3333 return true;
3334 // At this point we know that the denominator is -1. It is safe to hoist as
3335 // long we know that the numerator is not INT_MIN.
3336 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3337 return !Numerator->isMinSignedValue();
3338 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003339 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003340 }
3341 case Instruction::Load: {
3342 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003343 if (!LI->isUnordered() ||
3344 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003345 LI->getParent()->getParent()->hasFnAttribute(
3346 Attribute::SanitizeThread) ||
3347 // Speculative load may load data from dirty regions.
3348 LI->getParent()->getParent()->hasFnAttribute(
3349 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003350 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003351 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003352 return isDereferenceableAndAlignedPointer(
3353 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003354 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003355 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003356 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3357 switch (II->getIntrinsicID()) {
3358 // These synthetic intrinsics have no side-effects and just mark
3359 // information about their operands.
3360 // FIXME: There are other no-op synthetic instructions that potentially
3361 // should be considered at least *safe* to speculate...
3362 case Intrinsic::dbg_declare:
3363 case Intrinsic::dbg_value:
3364 return true;
3365
3366 case Intrinsic::bswap:
3367 case Intrinsic::ctlz:
3368 case Intrinsic::ctpop:
3369 case Intrinsic::cttz:
3370 case Intrinsic::objectsize:
3371 case Intrinsic::sadd_with_overflow:
3372 case Intrinsic::smul_with_overflow:
3373 case Intrinsic::ssub_with_overflow:
3374 case Intrinsic::uadd_with_overflow:
3375 case Intrinsic::umul_with_overflow:
3376 case Intrinsic::usub_with_overflow:
3377 return true;
3378 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3379 // errno like libm sqrt would.
3380 case Intrinsic::sqrt:
3381 case Intrinsic::fma:
3382 case Intrinsic::fmuladd:
3383 case Intrinsic::fabs:
3384 case Intrinsic::minnum:
3385 case Intrinsic::maxnum:
3386 return true;
3387 // TODO: some fp intrinsics are marked as having the same error handling
3388 // as libm. They're safe to speculate when they won't error.
3389 // TODO: are convert_{from,to}_fp16 safe?
3390 // TODO: can we list target-specific intrinsics here?
3391 default: break;
3392 }
3393 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003394 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003395 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003396 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003397 case Instruction::VAArg:
3398 case Instruction::Alloca:
3399 case Instruction::Invoke:
3400 case Instruction::PHI:
3401 case Instruction::Store:
3402 case Instruction::Ret:
3403 case Instruction::Br:
3404 case Instruction::IndirectBr:
3405 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003406 case Instruction::Unreachable:
3407 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003408 case Instruction::AtomicRMW:
3409 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003410 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003411 case Instruction::Resume:
David Majnemer654e1302015-07-31 17:58:14 +00003412 case Instruction::CatchPad:
3413 case Instruction::CatchEndPad:
3414 case Instruction::CatchRet:
3415 case Instruction::CleanupPad:
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00003416 case Instruction::CleanupEndPad:
David Majnemer654e1302015-07-31 17:58:14 +00003417 case Instruction::CleanupRet:
3418 case Instruction::TerminatePad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003419 return false; // Misc instructions which have effects
3420 }
3421}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003422
Quentin Colombet6443cce2015-08-06 18:44:34 +00003423bool llvm::mayBeMemoryDependent(const Instruction &I) {
3424 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3425}
3426
Sanjay Patelaee84212014-11-04 16:27:42 +00003427/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003428bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003429 assert(V->getType()->isPointerTy() && "V must be pointer type");
3430
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003431 // Alloca never returns null, malloc might.
3432 if (isa<AllocaInst>(V)) return true;
3433
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003434 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003435 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003436 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003437
Pete Cooper6b716212015-08-27 03:16:29 +00003438 // A global variable in address space 0 is non null unless extern weak.
3439 // Other address spaces may have null as a valid address for a global,
3440 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003441 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003442 return !GV->hasExternalWeakLinkage() &&
3443 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003444
Philip Reamescdb72f32014-10-20 22:40:55 +00003445 // A Load tagged w/nonnull metadata is never null.
3446 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003447 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003448
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003449 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003450 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003451 return true;
3452
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003453 // operator new never returns null.
3454 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
3455 return true;
3456
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003457 return false;
3458}
David Majnemer491331a2015-01-02 07:29:43 +00003459
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003460static bool isKnownNonNullFromDominatingCondition(const Value *V,
3461 const Instruction *CtxI,
3462 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003463 assert(V->getType()->isPointerTy() && "V must be pointer type");
3464
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003465 unsigned NumUsesExplored = 0;
3466 for (auto U : V->users()) {
3467 // Avoid massive lists
3468 if (NumUsesExplored >= DomConditionsMaxUses)
3469 break;
3470 NumUsesExplored++;
3471 // Consider only compare instructions uniquely controlling a branch
3472 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3473 if (!Cmp)
3474 continue;
3475
3476 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3477 continue;
3478
3479 for (auto *CmpU : Cmp->users()) {
3480 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3481 if (!BI)
3482 continue;
3483
3484 assert(BI->isConditional() && "uses a comparison!");
3485
3486 BasicBlock *NonNullSuccessor = nullptr;
3487 CmpInst::Predicate Pred;
3488
3489 if (match(const_cast<ICmpInst*>(Cmp),
3490 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3491 if (Pred == ICmpInst::ICMP_EQ)
3492 NonNullSuccessor = BI->getSuccessor(1);
3493 else if (Pred == ICmpInst::ICMP_NE)
3494 NonNullSuccessor = BI->getSuccessor(0);
3495 }
3496
3497 if (NonNullSuccessor) {
3498 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3499 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3500 return true;
3501 }
3502 }
3503 }
3504
3505 return false;
3506}
3507
3508bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3509 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3510 if (isKnownNonNull(V, TLI))
3511 return true;
3512
3513 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3514}
3515
David Majnemer491331a2015-01-02 07:29:43 +00003516OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003517 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003518 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003519 const Instruction *CxtI,
3520 const DominatorTree *DT) {
3521 // Multiplying n * m significant bits yields a result of n + m significant
3522 // bits. If the total number of significant bits does not exceed the
3523 // result bit width (minus 1), there is no overflow.
3524 // This means if we have enough leading zero bits in the operands
3525 // we can guarantee that the result does not overflow.
3526 // Ref: "Hacker's Delight" by Henry Warren
3527 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3528 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003529 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003530 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003531 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003532 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3533 DT);
3534 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3535 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003536 // Note that underestimating the number of zero bits gives a more
3537 // conservative answer.
3538 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3539 RHSKnownZero.countLeadingOnes();
3540 // First handle the easy case: if we have enough zero bits there's
3541 // definitely no overflow.
3542 if (ZeroBits >= BitWidth)
3543 return OverflowResult::NeverOverflows;
3544
3545 // Get the largest possible values for each operand.
3546 APInt LHSMax = ~LHSKnownZero;
3547 APInt RHSMax = ~RHSKnownZero;
3548
3549 // We know the multiply operation doesn't overflow if the maximum values for
3550 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003551 bool MaxOverflow;
3552 LHSMax.umul_ov(RHSMax, MaxOverflow);
3553 if (!MaxOverflow)
3554 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003555
David Majnemerc8a576b2015-01-02 07:29:47 +00003556 // We know it always overflows if multiplying the smallest possible values for
3557 // the operands also results in overflow.
3558 bool MinOverflow;
3559 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3560 if (MinOverflow)
3561 return OverflowResult::AlwaysOverflows;
3562
3563 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003564}
David Majnemer5310c1e2015-01-07 00:39:50 +00003565
3566OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003567 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003568 AssumptionCache *AC,
3569 const Instruction *CxtI,
3570 const DominatorTree *DT) {
3571 bool LHSKnownNonNegative, LHSKnownNegative;
3572 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3573 AC, CxtI, DT);
3574 if (LHSKnownNonNegative || LHSKnownNegative) {
3575 bool RHSKnownNonNegative, RHSKnownNegative;
3576 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3577 AC, CxtI, DT);
3578
3579 if (LHSKnownNegative && RHSKnownNegative) {
3580 // The sign bit is set in both cases: this MUST overflow.
3581 // Create a simple add instruction, and insert it into the struct.
3582 return OverflowResult::AlwaysOverflows;
3583 }
3584
3585 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3586 // The sign bit is clear in both cases: this CANNOT overflow.
3587 // Create a simple add instruction, and insert it into the struct.
3588 return OverflowResult::NeverOverflows;
3589 }
3590 }
3591
3592 return OverflowResult::MayOverflow;
3593}
James Molloy71b91c22015-05-11 14:42:20 +00003594
Jingyue Wu10fcea52015-08-20 18:27:04 +00003595static OverflowResult computeOverflowForSignedAdd(
3596 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3597 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3598 if (Add && Add->hasNoSignedWrap()) {
3599 return OverflowResult::NeverOverflows;
3600 }
3601
3602 bool LHSKnownNonNegative, LHSKnownNegative;
3603 bool RHSKnownNonNegative, RHSKnownNegative;
3604 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3605 AC, CxtI, DT);
3606 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3607 AC, CxtI, DT);
3608
3609 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3610 (LHSKnownNegative && RHSKnownNonNegative)) {
3611 // The sign bits are opposite: this CANNOT overflow.
3612 return OverflowResult::NeverOverflows;
3613 }
3614
3615 // The remaining code needs Add to be available. Early returns if not so.
3616 if (!Add)
3617 return OverflowResult::MayOverflow;
3618
3619 // If the sign of Add is the same as at least one of the operands, this add
3620 // CANNOT overflow. This is particularly useful when the sum is
3621 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3622 // operands.
3623 bool LHSOrRHSKnownNonNegative =
3624 (LHSKnownNonNegative || RHSKnownNonNegative);
3625 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3626 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3627 bool AddKnownNonNegative, AddKnownNegative;
3628 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3629 /*Depth=*/0, AC, CxtI, DT);
3630 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3631 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3632 return OverflowResult::NeverOverflows;
3633 }
3634 }
3635
3636 return OverflowResult::MayOverflow;
3637}
3638
3639OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3640 const DataLayout &DL,
3641 AssumptionCache *AC,
3642 const Instruction *CxtI,
3643 const DominatorTree *DT) {
3644 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3645 Add, DL, AC, CxtI, DT);
3646}
3647
3648OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3649 const DataLayout &DL,
3650 AssumptionCache *AC,
3651 const Instruction *CxtI,
3652 const DominatorTree *DT) {
3653 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3654}
3655
Jingyue Wu42f1d672015-07-28 18:22:40 +00003656bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3657 // FIXME: This conservative implementation can be relaxed. E.g. most
3658 // atomic operations are guaranteed to terminate on most platforms
3659 // and most functions terminate.
3660
3661 return !I->isAtomic() && // atomics may never succeed on some platforms
3662 !isa<CallInst>(I) && // could throw and might not terminate
3663 !isa<InvokeInst>(I) && // might not terminate and could throw to
3664 // non-successor (see bug 24185 for details).
3665 !isa<ResumeInst>(I) && // has no successors
3666 !isa<ReturnInst>(I); // has no successors
3667}
3668
3669bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3670 const Loop *L) {
3671 // The loop header is guaranteed to be executed for every iteration.
3672 //
3673 // FIXME: Relax this constraint to cover all basic blocks that are
3674 // guaranteed to be executed at every iteration.
3675 if (I->getParent() != L->getHeader()) return false;
3676
3677 for (const Instruction &LI : *L->getHeader()) {
3678 if (&LI == I) return true;
3679 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3680 }
3681 llvm_unreachable("Instruction not contained in its own parent basic block.");
3682}
3683
3684bool llvm::propagatesFullPoison(const Instruction *I) {
3685 switch (I->getOpcode()) {
3686 case Instruction::Add:
3687 case Instruction::Sub:
3688 case Instruction::Xor:
3689 case Instruction::Trunc:
3690 case Instruction::BitCast:
3691 case Instruction::AddrSpaceCast:
3692 // These operations all propagate poison unconditionally. Note that poison
3693 // is not any particular value, so xor or subtraction of poison with
3694 // itself still yields poison, not zero.
3695 return true;
3696
3697 case Instruction::AShr:
3698 case Instruction::SExt:
3699 // For these operations, one bit of the input is replicated across
3700 // multiple output bits. A replicated poison bit is still poison.
3701 return true;
3702
3703 case Instruction::Shl: {
3704 // Left shift *by* a poison value is poison. The number of
3705 // positions to shift is unsigned, so no negative values are
3706 // possible there. Left shift by zero places preserves poison. So
3707 // it only remains to consider left shift of poison by a positive
3708 // number of places.
3709 //
3710 // A left shift by a positive number of places leaves the lowest order bit
3711 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3712 // make the poison operand violate that flag, yielding a fresh full-poison
3713 // value.
3714 auto *OBO = cast<OverflowingBinaryOperator>(I);
3715 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3716 }
3717
3718 case Instruction::Mul: {
3719 // A multiplication by zero yields a non-poison zero result, so we need to
3720 // rule out zero as an operand. Conservatively, multiplication by a
3721 // non-zero constant is not multiplication by zero.
3722 //
3723 // Multiplication by a non-zero constant can leave some bits
3724 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3725 // order bit unpoisoned. So we need to consider that.
3726 //
3727 // Multiplication by 1 preserves poison. If the multiplication has a
3728 // no-wrap flag, then we can make the poison operand violate that flag
3729 // when multiplied by any integer other than 0 and 1.
3730 auto *OBO = cast<OverflowingBinaryOperator>(I);
3731 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3732 for (Value *V : OBO->operands()) {
3733 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3734 // A ConstantInt cannot yield poison, so we can assume that it is
3735 // the other operand that is poison.
3736 return !CI->isZero();
3737 }
3738 }
3739 }
3740 return false;
3741 }
3742
3743 case Instruction::GetElementPtr:
3744 // A GEP implicitly represents a sequence of additions, subtractions,
3745 // truncations, sign extensions and multiplications. The multiplications
3746 // are by the non-zero sizes of some set of types, so we do not have to be
3747 // concerned with multiplication by zero. If the GEP is in-bounds, then
3748 // these operations are implicitly no-signed-wrap so poison is propagated
3749 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3750 return cast<GEPOperator>(I)->isInBounds();
3751
3752 default:
3753 return false;
3754 }
3755}
3756
3757const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3758 switch (I->getOpcode()) {
3759 case Instruction::Store:
3760 return cast<StoreInst>(I)->getPointerOperand();
3761
3762 case Instruction::Load:
3763 return cast<LoadInst>(I)->getPointerOperand();
3764
3765 case Instruction::AtomicCmpXchg:
3766 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3767
3768 case Instruction::AtomicRMW:
3769 return cast<AtomicRMWInst>(I)->getPointerOperand();
3770
3771 case Instruction::UDiv:
3772 case Instruction::SDiv:
3773 case Instruction::URem:
3774 case Instruction::SRem:
3775 return I->getOperand(1);
3776
3777 default:
3778 return nullptr;
3779 }
3780}
3781
3782bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3783 // We currently only look for uses of poison values within the same basic
3784 // block, as that makes it easier to guarantee that the uses will be
3785 // executed given that PoisonI is executed.
3786 //
3787 // FIXME: Expand this to consider uses beyond the same basic block. To do
3788 // this, look out for the distinction between post-dominance and strong
3789 // post-dominance.
3790 const BasicBlock *BB = PoisonI->getParent();
3791
3792 // Set of instructions that we have proved will yield poison if PoisonI
3793 // does.
3794 SmallSet<const Value *, 16> YieldsPoison;
3795 YieldsPoison.insert(PoisonI);
3796
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003797 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3798 I != E; ++I) {
3799 if (&*I != PoisonI) {
3800 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003801 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003802 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3803 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003804 }
3805
3806 // Mark poison that propagates from I through uses of I.
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003807 if (YieldsPoison.count(&*I)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003808 for (const User *User : I->users()) {
3809 const Instruction *UserI = cast<Instruction>(User);
3810 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3811 YieldsPoison.insert(User);
3812 }
3813 }
3814 }
3815 return false;
3816}
3817
James Molloy134bec22015-08-11 09:12:57 +00003818static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3819 if (FMF.noNaNs())
3820 return true;
3821
3822 if (auto *C = dyn_cast<ConstantFP>(V))
3823 return !C->isNaN();
3824 return false;
3825}
3826
3827static bool isKnownNonZero(Value *V) {
3828 if (auto *C = dyn_cast<ConstantFP>(V))
3829 return !C->isZero();
3830 return false;
3831}
3832
3833static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3834 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003835 Value *CmpLHS, Value *CmpRHS,
3836 Value *TrueVal, Value *FalseVal,
3837 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003838 LHS = CmpLHS;
3839 RHS = CmpRHS;
3840
James Molloy134bec22015-08-11 09:12:57 +00003841 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3842 // return inconsistent results between implementations.
3843 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3844 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3845 // Therefore we behave conservatively and only proceed if at least one of the
3846 // operands is known to not be zero, or if we don't care about signed zeroes.
3847 switch (Pred) {
3848 default: break;
3849 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3850 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3851 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3852 !isKnownNonZero(CmpRHS))
3853 return {SPF_UNKNOWN, SPNB_NA, false};
3854 }
3855
3856 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3857 bool Ordered = false;
3858
3859 // When given one NaN and one non-NaN input:
3860 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3861 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3862 // ordered comparison fails), which could be NaN or non-NaN.
3863 // so here we discover exactly what NaN behavior is required/accepted.
3864 if (CmpInst::isFPPredicate(Pred)) {
3865 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3866 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3867
3868 if (LHSSafe && RHSSafe) {
3869 // Both operands are known non-NaN.
3870 NaNBehavior = SPNB_RETURNS_ANY;
3871 } else if (CmpInst::isOrdered(Pred)) {
3872 // An ordered comparison will return false when given a NaN, so it
3873 // returns the RHS.
3874 Ordered = true;
3875 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003876 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003877 NaNBehavior = SPNB_RETURNS_NAN;
3878 else if (RHSSafe)
3879 NaNBehavior = SPNB_RETURNS_OTHER;
3880 else
3881 // Completely unsafe.
3882 return {SPF_UNKNOWN, SPNB_NA, false};
3883 } else {
3884 Ordered = false;
3885 // An unordered comparison will return true when given a NaN, so it
3886 // returns the LHS.
3887 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003888 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003889 NaNBehavior = SPNB_RETURNS_OTHER;
3890 else if (RHSSafe)
3891 NaNBehavior = SPNB_RETURNS_NAN;
3892 else
3893 // Completely unsafe.
3894 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003895 }
3896 }
3897
James Molloy71b91c22015-05-11 14:42:20 +00003898 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003899 std::swap(CmpLHS, CmpRHS);
3900 Pred = CmpInst::getSwappedPredicate(Pred);
3901 if (NaNBehavior == SPNB_RETURNS_NAN)
3902 NaNBehavior = SPNB_RETURNS_OTHER;
3903 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3904 NaNBehavior = SPNB_RETURNS_NAN;
3905 Ordered = !Ordered;
3906 }
3907
3908 // ([if]cmp X, Y) ? X : Y
3909 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003910 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003911 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003912 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003913 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003914 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003915 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003916 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003917 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003918 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003919 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3920 case FCmpInst::FCMP_UGT:
3921 case FCmpInst::FCMP_UGE:
3922 case FCmpInst::FCMP_OGT:
3923 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3924 case FCmpInst::FCMP_ULT:
3925 case FCmpInst::FCMP_ULE:
3926 case FCmpInst::FCMP_OLT:
3927 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003928 }
3929 }
3930
3931 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3932 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3933 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3934
3935 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3936 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3937 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003938 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003939 }
3940
3941 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3942 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3943 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003944 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003945 }
3946 }
3947
3948 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3949 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3950 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3951 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3952 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3953 LHS = TrueVal;
3954 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003955 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003956 }
3957 }
3958 }
3959
3960 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3961
James Molloy134bec22015-08-11 09:12:57 +00003962 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003963}
James Molloy270ef8c2015-05-15 16:04:50 +00003964
James Molloy569cea62015-09-02 17:25:25 +00003965static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3966 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003967 CastInst *CI = dyn_cast<CastInst>(V1);
3968 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003969 CastInst *CI2 = dyn_cast<CastInst>(V2);
3970 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003971 return nullptr;
3972 *CastOp = CI->getOpcode();
3973
James Molloy569cea62015-09-02 17:25:25 +00003974 if (CI2) {
3975 // If V1 and V2 are both the same cast from the same type, we can look
3976 // through V1.
3977 if (CI2->getOpcode() == CI->getOpcode() &&
3978 CI2->getSrcTy() == CI->getSrcTy())
3979 return CI2->getOperand(0);
3980 return nullptr;
3981 } else if (!C) {
3982 return nullptr;
3983 }
3984
James Molloy2b21a7c2015-05-20 18:41:25 +00003985 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
3986 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
3987 // This is only valid if the truncated value can be sign-extended
3988 // back to the original value.
3989 if (ConstantExpr::getSExt(T, C->getType()) == C)
3990 return T;
3991 return nullptr;
3992 }
3993 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00003994 return ConstantExpr::getTrunc(C, CI->getSrcTy());
3995
3996 if (isa<TruncInst>(CI))
3997 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3998
James Molloy134bec22015-08-11 09:12:57 +00003999 if (isa<FPToUIInst>(CI))
4000 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4001
4002 if (isa<FPToSIInst>(CI))
4003 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4004
4005 if (isa<UIToFPInst>(CI))
4006 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4007
4008 if (isa<SIToFPInst>(CI))
4009 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4010
4011 if (isa<FPTruncInst>(CI))
4012 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4013
4014 if (isa<FPExtInst>(CI))
4015 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4016
James Molloy270ef8c2015-05-15 16:04:50 +00004017 return nullptr;
4018}
4019
James Molloy134bec22015-08-11 09:12:57 +00004020SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00004021 Value *&LHS, Value *&RHS,
4022 Instruction::CastOps *CastOp) {
4023 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004024 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004025
James Molloy134bec22015-08-11 09:12:57 +00004026 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4027 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004028
James Molloy134bec22015-08-11 09:12:57 +00004029 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004030 Value *CmpLHS = CmpI->getOperand(0);
4031 Value *CmpRHS = CmpI->getOperand(1);
4032 Value *TrueVal = SI->getTrueValue();
4033 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004034 FastMathFlags FMF;
4035 if (isa<FPMathOperator>(CmpI))
4036 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004037
4038 // Bail out early.
4039 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004040 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004041
4042 // Deal with type mismatches.
4043 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004044 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004045 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004046 cast<CastInst>(TrueVal)->getOperand(0), C,
4047 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004048 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004049 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004050 C, cast<CastInst>(FalseVal)->getOperand(0),
4051 LHS, RHS);
4052 }
James Molloy134bec22015-08-11 09:12:57 +00004053 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004054 LHS, RHS);
4055}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004056
4057ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4058 const unsigned NumRanges = Ranges.getNumOperands() / 2;
4059 assert(NumRanges >= 1 && "Must have at least one range!");
4060 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4061
4062 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4063 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4064
4065 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4066
4067 for (unsigned i = 1; i < NumRanges; ++i) {
4068 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4069 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4070
4071 // Note: unionWith will potentially create a range that contains values not
4072 // contained in any of the original N ranges.
4073 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4074 }
4075
4076 return CR;
4077}