blob: 5caffee8fe73ba7729737c1c4e2c3b485adebb15 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000016#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000017#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000020#include "llvm/Analysis/LoopInfo.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000021#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000022#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000023#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000025#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000026#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/GlobalAlias.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/LLVMContext.h"
32#include "llvm/IR/Metadata.h"
33#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000034#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000035#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000036#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000037#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000038#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000039using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000040using namespace llvm::PatternMatch;
41
42const unsigned MaxDepth = 6;
43
Philip Reames1c292272015-03-10 22:43:20 +000044/// Enable an experimental feature to leverage information about dominating
45/// conditions to compute known bits. The individual options below control how
Benjamin Kramerdf005cb2015-08-08 18:27:36 +000046/// hard we search. The defaults are chosen to be fairly aggressive. If you
Philip Reames1c292272015-03-10 22:43:20 +000047/// run into compile time problems when testing, scale them back and report
48/// your findings.
49static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
50 cl::Hidden, cl::init(false));
51
52// This is expensive, so we only do it for the top level query value.
53// (TODO: evaluate cost vs profit, consider higher thresholds)
54static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
55 cl::Hidden, cl::init(1));
56
57/// How many dominating blocks should be scanned looking for dominating
58/// conditions?
59static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
60 cl::Hidden,
Igor Laevskycea9ede2015-09-29 14:57:52 +000061 cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000062
63// Controls the number of uses of the value searched for possible
64// dominating comparisons.
65static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000066 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000067
68// If true, don't consider only compares whose only use is a branch.
69static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
70 cl::Hidden, cl::init(false));
71
Sanjay Patelaee84212014-11-04 16:27:42 +000072/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
73/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000074static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000075 if (unsigned BitWidth = Ty->getScalarSizeInBits())
76 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000077
Mehdi Aminia28d91d2015-03-10 02:37:25 +000078 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000079}
Chris Lattner965c7692008-06-02 01:18:21 +000080
Hal Finkel60db0582014-09-07 18:57:58 +000081// Many of these functions have internal versions that take an assumption
82// exclusion set. This is because of the potential for mutual recursion to
83// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
84// classic case of this is assume(x = y), which will attempt to determine
85// bits in x from bits in y, which will attempt to determine bits in y from
86// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
87// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
88// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
89typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
90
Benjamin Kramercfd8d902014-09-12 08:56:53 +000091namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000092// Simplifying using an assume can only be done in a particular control-flow
93// context (the context instruction provides that context). If an assume and
94// the context instruction are not in the same block then the DT helps in
95// figuring out if we can use it.
96struct Query {
97 ExclInvsSet ExclInvs;
Chandler Carruth66b31302015-01-04 12:03:27 +000098 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000099 const Instruction *CxtI;
100 const DominatorTree *DT;
101
Chandler Carruth66b31302015-01-04 12:03:27 +0000102 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
Hal Finkel60db0582014-09-07 18:57:58 +0000103 const DominatorTree *DT = nullptr)
Chandler Carruth66b31302015-01-04 12:03:27 +0000104 : AC(AC), CxtI(CxtI), DT(DT) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000105
106 Query(const Query &Q, const Value *NewExcl)
Chandler Carruth66b31302015-01-04 12:03:27 +0000107 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000108 ExclInvs.insert(NewExcl);
109 }
110};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000111} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000112
Sanjay Patel547e9752014-11-04 16:09:50 +0000113// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000114// the preferred context instruction (if any).
115static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
116 // If we've been provided with a context instruction, then use that (provided
117 // it has been inserted).
118 if (CxtI && CxtI->getParent())
119 return CxtI;
120
121 // If the value is really an already-inserted instruction, then use that.
122 CxtI = dyn_cast<Instruction>(V);
123 if (CxtI && CxtI->getParent())
124 return CxtI;
125
126 return nullptr;
127}
128
129static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000130 const DataLayout &DL, unsigned Depth,
131 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000132
133void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000134 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000135 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000136 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000137 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000138 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000139}
140
Jingyue Wuca321902015-05-14 23:53:19 +0000141bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
142 AssumptionCache *AC, const Instruction *CxtI,
143 const DominatorTree *DT) {
144 assert(LHS->getType() == RHS->getType() &&
145 "LHS and RHS should have the same type");
146 assert(LHS->getType()->isIntOrIntVectorTy() &&
147 "LHS and RHS should be integers");
148 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
149 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
150 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
151 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
152 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
153 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
154}
155
Hal Finkel60db0582014-09-07 18:57:58 +0000156static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000157 const DataLayout &DL, unsigned Depth,
158 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000159
160void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000161 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000162 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000163 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000164 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000165 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000166}
167
168static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000169 const Query &Q, const DataLayout &DL);
Hal Finkel60db0582014-09-07 18:57:58 +0000170
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000172 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000173 const Instruction *CxtI,
174 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
176 Query(AC, safeCxtI(V, CxtI), DT), DL);
177}
178
179static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
180 const Query &Q);
181
182bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
183 AssumptionCache *AC, const Instruction *CxtI,
184 const DominatorTree *DT) {
185 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
186}
187
Jingyue Wu10fcea52015-08-20 18:27:04 +0000188bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
189 AssumptionCache *AC, const Instruction *CxtI,
190 const DominatorTree *DT) {
191 bool NonNegative, Negative;
192 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
193 return NonNegative;
194}
195
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000196static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
197 unsigned Depth, const Query &Q);
198
199bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
200 unsigned Depth, AssumptionCache *AC,
201 const Instruction *CxtI, const DominatorTree *DT) {
202 return ::MaskedValueIsZero(V, Mask, DL, Depth,
203 Query(AC, safeCxtI(V, CxtI), DT));
204}
205
206static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
207 unsigned Depth, const Query &Q);
208
209unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
210 unsigned Depth, AssumptionCache *AC,
211 const Instruction *CxtI,
212 const DominatorTree *DT) {
213 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000214}
215
Jay Foada0653a32014-05-14 21:14:37 +0000216static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
217 APInt &KnownZero, APInt &KnownOne,
218 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000219 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000220 const Query &Q) {
221 if (!Add) {
222 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
223 // We know that the top bits of C-X are clear if X contains less bits
224 // than C (i.e. no wrap-around can happen). For example, 20-X is
225 // positive if we can prove that X is >= 0 and < 16.
226 if (!CLHS->getValue().isNegative()) {
227 unsigned BitWidth = KnownZero.getBitWidth();
228 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
229 // NLZ can't be BitWidth with no sign bit
230 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000232
233 // If all of the MaskV bits are known to be zero, then we know the
234 // output top bits are zero, because we now know that the output is
235 // from [0-C].
236 if ((KnownZero2 & MaskV) == MaskV) {
237 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
238 // Top bits known zero.
239 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
240 }
241 }
242 }
243 }
244
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000245 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000246
David Majnemer97ddca32014-08-22 00:40:43 +0000247 // If an initial sequence of bits in the result is not needed, the
248 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000249 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000250 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
251 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000252
David Majnemer97ddca32014-08-22 00:40:43 +0000253 // Carry in a 1 for a subtract, rather than a 0.
254 APInt CarryIn(BitWidth, 0);
255 if (!Add) {
256 // Sum = LHS + ~RHS + 1
257 std::swap(KnownZero2, KnownOne2);
258 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000259 }
260
David Majnemer97ddca32014-08-22 00:40:43 +0000261 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
262 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
263
264 // Compute known bits of the carry.
265 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
266 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
267
268 // Compute set of known bits (where all three relevant bits are known).
269 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
270 APInt RHSKnown = KnownZero2 | KnownOne2;
271 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
272 APInt Known = LHSKnown & RHSKnown & CarryKnown;
273
274 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
275 "known bits of sum differ");
276
277 // Compute known bits of the result.
278 KnownZero = ~PossibleSumOne & Known;
279 KnownOne = PossibleSumOne & Known;
280
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000281 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000282 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000283 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000284 // Adding two non-negative numbers, or subtracting a negative number from
285 // a non-negative one, can't wrap into negative.
286 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
287 KnownZero |= APInt::getSignBit(BitWidth);
288 // Adding two negative numbers, or subtracting a non-negative number from
289 // a negative one, can't wrap into non-negative.
290 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
291 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000292 }
293 }
294}
295
Jay Foada0653a32014-05-14 21:14:37 +0000296static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
297 APInt &KnownZero, APInt &KnownOne,
298 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000299 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000300 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000301 unsigned BitWidth = KnownZero.getBitWidth();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000302 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
303 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000304
305 bool isKnownNegative = false;
306 bool isKnownNonNegative = false;
307 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000308 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000309 if (Op0 == Op1) {
310 // The product of a number with itself is non-negative.
311 isKnownNonNegative = true;
312 } else {
313 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
314 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
315 bool isKnownNegativeOp1 = KnownOne.isNegative();
316 bool isKnownNegativeOp0 = KnownOne2.isNegative();
317 // The product of two numbers with the same sign is non-negative.
318 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
319 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
320 // The product of a negative number and a non-negative number is either
321 // negative or zero.
322 if (!isKnownNonNegative)
323 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000324 isKnownNonZero(Op0, DL, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000325 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000326 isKnownNonZero(Op1, DL, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000327 }
328 }
329
330 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000331 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000332 // More trickiness is possible, but this is sufficient for the
333 // interesting case of alignment computation.
334 KnownOne.clearAllBits();
335 unsigned TrailZ = KnownZero.countTrailingOnes() +
336 KnownZero2.countTrailingOnes();
337 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
338 KnownZero2.countLeadingOnes(),
339 BitWidth) - BitWidth;
340
341 TrailZ = std::min(TrailZ, BitWidth);
342 LeadZ = std::min(LeadZ, BitWidth);
343 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
344 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000345
346 // Only make use of no-wrap flags if we failed to compute the sign bit
347 // directly. This matters if the multiplication always overflows, in
348 // which case we prefer to follow the result of the direct computation,
349 // though as the program is invoking undefined behaviour we can choose
350 // whatever we like here.
351 if (isKnownNonNegative && !KnownOne.isNegative())
352 KnownZero.setBit(BitWidth - 1);
353 else if (isKnownNegative && !KnownZero.isNegative())
354 KnownOne.setBit(BitWidth - 1);
355}
356
Jingyue Wu37fcb592014-06-19 16:50:16 +0000357void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
358 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000359 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000360 unsigned NumRanges = Ranges.getNumOperands() / 2;
361 assert(NumRanges >= 1);
362
363 // Use the high end of the ranges to find leading zeros.
364 unsigned MinLeadingZeros = BitWidth;
365 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000366 ConstantInt *Lower =
367 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
368 ConstantInt *Upper =
369 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000370 ConstantRange Range(Lower->getValue(), Upper->getValue());
371 if (Range.isWrappedSet())
372 MinLeadingZeros = 0; // -1 has no zeros
373 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
374 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
375 }
376
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000378}
Jay Foad5a29c362014-05-15 12:12:55 +0000379
Hal Finkel60db0582014-09-07 18:57:58 +0000380static bool isEphemeralValueOf(Instruction *I, const Value *E) {
381 SmallVector<const Value *, 16> WorkSet(1, I);
382 SmallPtrSet<const Value *, 32> Visited;
383 SmallPtrSet<const Value *, 16> EphValues;
384
385 while (!WorkSet.empty()) {
386 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000387 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000388 continue;
389
390 // If all uses of this value are ephemeral, then so is this value.
391 bool FoundNEUse = false;
392 for (const User *I : V->users())
393 if (!EphValues.count(I)) {
394 FoundNEUse = true;
395 break;
396 }
397
398 if (!FoundNEUse) {
399 if (V == E)
400 return true;
401
402 EphValues.insert(V);
403 if (const User *U = dyn_cast<User>(V))
404 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
405 J != JE; ++J) {
406 if (isSafeToSpeculativelyExecute(*J))
407 WorkSet.push_back(*J);
408 }
409 }
410 }
411
412 return false;
413}
414
415// Is this an intrinsic that cannot be speculated but also cannot trap?
416static bool isAssumeLikeIntrinsic(const Instruction *I) {
417 if (const CallInst *CI = dyn_cast<CallInst>(I))
418 if (Function *F = CI->getCalledFunction())
419 switch (F->getIntrinsicID()) {
420 default: break;
421 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
422 case Intrinsic::assume:
423 case Intrinsic::dbg_declare:
424 case Intrinsic::dbg_value:
425 case Intrinsic::invariant_start:
426 case Intrinsic::invariant_end:
427 case Intrinsic::lifetime_start:
428 case Intrinsic::lifetime_end:
429 case Intrinsic::objectsize:
430 case Intrinsic::ptr_annotation:
431 case Intrinsic::var_annotation:
432 return true;
433 }
434
435 return false;
436}
437
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000438static bool isValidAssumeForContext(Value *V, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000439 Instruction *Inv = cast<Instruction>(V);
440
441 // There are two restrictions on the use of an assume:
442 // 1. The assume must dominate the context (or the control flow must
443 // reach the assume whenever it reaches the context).
444 // 2. The context must not be in the assume's set of ephemeral values
445 // (otherwise we will use the assume to prove that the condition
446 // feeding the assume is trivially true, thus causing the removal of
447 // the assume).
448
449 if (Q.DT) {
450 if (Q.DT->dominates(Inv, Q.CxtI)) {
451 return true;
452 } else if (Inv->getParent() == Q.CxtI->getParent()) {
453 // The context comes first, but they're both in the same block. Make sure
454 // there is nothing in between that might interrupt the control flow.
455 for (BasicBlock::const_iterator I =
456 std::next(BasicBlock::const_iterator(Q.CxtI)),
457 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000458 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000459 return false;
460
461 return !isEphemeralValueOf(Inv, Q.CxtI);
462 }
463
464 return false;
465 }
466
467 // When we don't have a DT, we do a limited search...
468 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
469 return true;
470 } else if (Inv->getParent() == Q.CxtI->getParent()) {
471 // Search forward from the assume until we reach the context (or the end
472 // of the block); the common case is that the assume will come first.
473 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
474 IE = Inv->getParent()->end(); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000475 if (&*I == Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000476 return true;
477
478 // The context must come first...
479 for (BasicBlock::const_iterator I =
480 std::next(BasicBlock::const_iterator(Q.CxtI)),
481 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000482 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000483 return false;
484
485 return !isEphemeralValueOf(Inv, Q.CxtI);
486 }
487
488 return false;
489}
490
491bool llvm::isValidAssumeForContext(const Instruction *I,
492 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000493 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000494 return ::isValidAssumeForContext(const_cast<Instruction *>(I),
495 Query(nullptr, CxtI, DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000496}
497
498template<typename LHS, typename RHS>
499inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
500 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
501m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
502 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
503}
504
505template<typename LHS, typename RHS>
506inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
507 BinaryOp_match<RHS, LHS, Instruction::And>>
508m_c_And(const LHS &L, const RHS &R) {
509 return m_CombineOr(m_And(L, R), m_And(R, L));
510}
511
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000512template<typename LHS, typename RHS>
513inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
514 BinaryOp_match<RHS, LHS, Instruction::Or>>
515m_c_Or(const LHS &L, const RHS &R) {
516 return m_CombineOr(m_Or(L, R), m_Or(R, L));
517}
518
519template<typename LHS, typename RHS>
520inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
521 BinaryOp_match<RHS, LHS, Instruction::Xor>>
522m_c_Xor(const LHS &L, const RHS &R) {
523 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
524}
525
Philip Reames1c292272015-03-10 22:43:20 +0000526/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
527/// true (at the context instruction.) This is mostly a utility function for
528/// the prototype dominating conditions reasoning below.
529static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
530 APInt &KnownZero,
531 APInt &KnownOne,
532 const DataLayout &DL,
533 unsigned Depth, const Query &Q) {
534 Value *LHS = Cmp->getOperand(0);
535 Value *RHS = Cmp->getOperand(1);
536 // TODO: We could potentially be more aggressive here. This would be worth
537 // evaluating. If we can, explore commoning this code with the assume
538 // handling logic.
539 if (LHS != V && RHS != V)
540 return;
541
542 const unsigned BitWidth = KnownZero.getBitWidth();
543
544 switch (Cmp->getPredicate()) {
545 default:
546 // We know nothing from this condition
547 break;
548 // TODO: implement unsigned bound from below (known one bits)
549 // TODO: common condition check implementations with assumes
550 // TODO: implement other patterns from assume (e.g. V & B == A)
551 case ICmpInst::ICMP_SGT:
552 if (LHS == V) {
553 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
554 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
555 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
556 // We know that the sign bit is zero.
557 KnownZero |= APInt::getSignBit(BitWidth);
558 }
559 }
560 break;
561 case ICmpInst::ICMP_EQ:
Jingyue Wu12b0c282015-06-15 05:46:29 +0000562 {
563 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
564 if (LHS == V)
565 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
566 else if (RHS == V)
567 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
568 else
569 llvm_unreachable("missing use?");
570 KnownZero |= KnownZeroTemp;
571 KnownOne |= KnownOneTemp;
572 }
Philip Reames1c292272015-03-10 22:43:20 +0000573 break;
574 case ICmpInst::ICMP_ULE:
575 if (LHS == V) {
576 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
577 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
578 // The known zero bits carry over
579 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
580 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
581 }
582 break;
583 case ICmpInst::ICMP_ULT:
584 if (LHS == V) {
585 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
587 // Whatever high bits in rhs are zero are known to be zero (if rhs is a
588 // power of 2, then one more).
589 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
590 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
591 SignBits++;
592 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
593 }
594 break;
595 };
596}
597
598/// Compute known bits in 'V' from conditions which are known to be true along
599/// all paths leading to the context instruction. In particular, look for
600/// cases where one branch of an interesting condition dominates the context
601/// instruction. This does not do general dataflow.
602/// NOTE: This code is EXPERIMENTAL and currently off by default.
603static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
604 APInt &KnownOne,
605 const DataLayout &DL,
606 unsigned Depth,
607 const Query &Q) {
608 // Need both the dominator tree and the query location to do anything useful
609 if (!Q.DT || !Q.CxtI)
610 return;
611 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
Philip Reames963febd2015-09-21 22:04:10 +0000612 // The context instruction might be in a statically unreachable block. If
613 // so, asking dominator queries may yield suprising results. (e.g. the block
614 // may not have a dom tree node)
615 if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
616 return;
Philip Reames1c292272015-03-10 22:43:20 +0000617
618 // Avoid useless work
619 if (auto VI = dyn_cast<Instruction>(V))
620 if (VI->getParent() == Cxt->getParent())
621 return;
622
623 // Note: We currently implement two options. It's not clear which of these
624 // will survive long term, we need data for that.
625 // Option 1 - Try walking the dominator tree looking for conditions which
626 // might apply. This works well for local conditions (loop guards, etc..),
627 // but not as well for things far from the context instruction (presuming a
628 // low max blocks explored). If we can set an high enough limit, this would
629 // be all we need.
630 // Option 2 - We restrict out search to those conditions which are uses of
631 // the value we're interested in. This is independent of dom structure,
632 // but is slightly less powerful without looking through lots of use chains.
633 // It does handle conditions far from the context instruction (e.g. early
634 // function exits on entry) really well though.
635
636 // Option 1 - Search the dom tree
637 unsigned NumBlocksExplored = 0;
638 BasicBlock *Current = Cxt->getParent();
639 while (true) {
640 // Stop searching if we've gone too far up the chain
641 if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
642 break;
643 NumBlocksExplored++;
644
645 if (!Q.DT->getNode(Current)->getIDom())
646 break;
647 Current = Q.DT->getNode(Current)->getIDom()->getBlock();
648 if (!Current)
649 // found function entry
650 break;
651
652 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
653 if (!BI || BI->isUnconditional())
654 continue;
655 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
656 if (!Cmp)
657 continue;
658
659 // We're looking for conditions that are guaranteed to hold at the context
660 // instruction. Finding a condition where one path dominates the context
661 // isn't enough because both the true and false cases could merge before
662 // the context instruction we're actually interested in. Instead, we need
Philip Reames963febd2015-09-21 22:04:10 +0000663 // to ensure that the taken *edge* dominates the context instruction. We
664 // know that the edge must be reachable since we started from a reachable
665 // block.
Philip Reames1c292272015-03-10 22:43:20 +0000666 BasicBlock *BB0 = BI->getSuccessor(0);
667 BasicBlockEdge Edge(BI->getParent(), BB0);
668 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
669 continue;
670
671 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
672 Q);
673 }
674
675 // Option 2 - Search the other uses of V
676 unsigned NumUsesExplored = 0;
677 for (auto U : V->users()) {
678 // Avoid massive lists
679 if (NumUsesExplored >= DomConditionsMaxUses)
680 break;
681 NumUsesExplored++;
682 // Consider only compare instructions uniquely controlling a branch
683 ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
684 if (!Cmp)
685 continue;
686
687 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
688 continue;
689
690 for (auto *CmpU : Cmp->users()) {
691 BranchInst *BI = dyn_cast<BranchInst>(CmpU);
692 if (!BI || BI->isUnconditional())
693 continue;
694 // We're looking for conditions that are guaranteed to hold at the
695 // context instruction. Finding a condition where one path dominates
696 // the context isn't enough because both the true and false cases could
697 // merge before the context instruction we're actually interested in.
698 // Instead, we need to ensure that the taken *edge* dominates the context
699 // instruction.
700 BasicBlock *BB0 = BI->getSuccessor(0);
701 BasicBlockEdge Edge(BI->getParent(), BB0);
702 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
703 continue;
704
705 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
706 Q);
707 }
708 }
709}
710
Hal Finkel60db0582014-09-07 18:57:58 +0000711static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000712 APInt &KnownOne, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +0000713 unsigned Depth, const Query &Q) {
714 // Use of assumptions is context-sensitive. If we don't have a context, we
715 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000716 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000717 return;
718
719 unsigned BitWidth = KnownZero.getBitWidth();
720
Chandler Carruth66b31302015-01-04 12:03:27 +0000721 for (auto &AssumeVH : Q.AC->assumptions()) {
722 if (!AssumeVH)
723 continue;
724 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000725 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000726 "Got assumption for the wrong function!");
Hal Finkel60db0582014-09-07 18:57:58 +0000727 if (Q.ExclInvs.count(I))
728 continue;
729
Philip Reames00d3b272014-11-24 23:44:28 +0000730 // Warning: This loop can end up being somewhat performance sensetive.
731 // We're running this loop for once for each value queried resulting in a
732 // runtime of ~O(#assumes * #values).
733
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000734 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000735 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000736
Philip Reames00d3b272014-11-24 23:44:28 +0000737 Value *Arg = I->getArgOperand(0);
738
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000739 if (Arg == V && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000740 assert(BitWidth == 1 && "assume operand is not i1?");
741 KnownZero.clearAllBits();
742 KnownOne.setAllBits();
743 return;
744 }
745
David Majnemer9b609752014-12-12 23:59:29 +0000746 // The remaining tests are all recursive, so bail out if we hit the limit.
747 if (Depth == MaxDepth)
748 continue;
749
Hal Finkel60db0582014-09-07 18:57:58 +0000750 Value *A, *B;
751 auto m_V = m_CombineOr(m_Specific(V),
752 m_CombineOr(m_PtrToInt(m_Specific(V)),
753 m_BitCast(m_Specific(V))));
754
755 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000756 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000757 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000758 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000759 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000760 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
761 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
762 KnownZero |= RHSKnownZero;
763 KnownOne |= RHSKnownOne;
764 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000765 } else if (match(Arg,
766 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
767 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
770 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
771 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
772
773 // For those bits in the mask that are known to be one, we can propagate
774 // known bits from the RHS to V.
775 KnownZero |= RHSKnownZero & MaskKnownOne;
776 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000777 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000778 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
779 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000780 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000781 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
782 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
783 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
784 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
785
786 // For those bits in the mask that are known to be one, we can propagate
787 // inverted known bits from the RHS to V.
788 KnownZero |= RHSKnownOne & MaskKnownOne;
789 KnownOne |= RHSKnownZero & MaskKnownOne;
790 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000791 } else if (match(Arg,
792 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
793 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000794 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
795 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
796 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
797 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
798
799 // For those bits in B that are known to be zero, we can propagate known
800 // bits from the RHS to V.
801 KnownZero |= RHSKnownZero & BKnownZero;
802 KnownOne |= RHSKnownOne & BKnownZero;
803 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000804 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
805 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000806 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000807 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
808 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
809 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
810 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
811
812 // For those bits in B that are known to be zero, we can propagate
813 // inverted known bits from the RHS to V.
814 KnownZero |= RHSKnownOne & BKnownZero;
815 KnownOne |= RHSKnownZero & BKnownZero;
816 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000817 } else if (match(Arg,
818 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
819 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000820 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
821 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
822 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
823 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
824
825 // For those bits in B that are known to be zero, we can propagate known
826 // bits from the RHS to V. For those bits in B that are known to be one,
827 // we can propagate inverted known bits from the RHS to V.
828 KnownZero |= RHSKnownZero & BKnownZero;
829 KnownOne |= RHSKnownOne & BKnownZero;
830 KnownZero |= RHSKnownOne & BKnownOne;
831 KnownOne |= RHSKnownZero & BKnownOne;
832 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000833 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
834 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000835 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000836 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
837 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
838 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
839 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
840
841 // For those bits in B that are known to be zero, we can propagate
842 // inverted known bits from the RHS to V. For those bits in B that are
843 // known to be one, we can propagate known bits from the RHS to V.
844 KnownZero |= RHSKnownOne & BKnownZero;
845 KnownOne |= RHSKnownZero & BKnownZero;
846 KnownZero |= RHSKnownZero & BKnownOne;
847 KnownOne |= RHSKnownOne & BKnownOne;
848 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000849 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
850 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000851 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000852 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
853 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
854 // For those bits in RHS that are known, we can propagate them to known
855 // bits in V shifted to the right by C.
856 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
857 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
858 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000859 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
860 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000861 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000862 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
863 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
864 // For those bits in RHS that are known, we can propagate them inverted
865 // to known bits in V shifted to the right by C.
866 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
867 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
868 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000869 } else if (match(Arg,
870 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000871 m_AShr(m_V, m_ConstantInt(C))),
872 m_Value(A))) &&
873 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000874 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
875 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
876 // For those bits in RHS that are known, we can propagate them to known
877 // bits in V shifted to the right by C.
878 KnownZero |= RHSKnownZero << C->getZExtValue();
879 KnownOne |= RHSKnownOne << C->getZExtValue();
880 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000881 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000882 m_LShr(m_V, m_ConstantInt(C)),
883 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000884 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000885 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000886 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
887 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
888 // For those bits in RHS that are known, we can propagate them inverted
889 // to known bits in V shifted to the right by C.
890 KnownZero |= RHSKnownOne << C->getZExtValue();
891 KnownOne |= RHSKnownZero << C->getZExtValue();
892 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000893 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000894 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000895 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
896 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
897
898 if (RHSKnownZero.isNegative()) {
899 // We know that the sign bit is zero.
900 KnownZero |= APInt::getSignBit(BitWidth);
901 }
902 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000903 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000904 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000905 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
906 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
907
908 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
909 // We know that the sign bit is zero.
910 KnownZero |= APInt::getSignBit(BitWidth);
911 }
912 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000913 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000914 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000915 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
916 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
917
918 if (RHSKnownOne.isNegative()) {
919 // We know that the sign bit is one.
920 KnownOne |= APInt::getSignBit(BitWidth);
921 }
922 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000923 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000924 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000925 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
926 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
927
928 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
929 // We know that the sign bit is one.
930 KnownOne |= APInt::getSignBit(BitWidth);
931 }
932 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000933 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000934 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
937
938 // Whatever high bits in c are zero are known to be zero.
939 KnownZero |=
940 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
941 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000942 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000943 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000944 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
945 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
946
947 // Whatever high bits in c are zero are known to be zero (if c is a power
948 // of 2, then one more).
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000949 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000950 KnownZero |=
951 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
952 else
953 KnownZero |=
954 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000955 }
956 }
957}
958
Jingyue Wu12b0c282015-06-15 05:46:29 +0000959static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
960 APInt &KnownOne, const DataLayout &DL,
961 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000962 unsigned BitWidth = KnownZero.getBitWidth();
963
Chris Lattner965c7692008-06-02 01:18:21 +0000964 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000965 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000966 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000967 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000968 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000969 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000970 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000971 case Instruction::And: {
972 // If either the LHS or the RHS are Zero, the result is zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000973 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
974 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000975
Chris Lattner965c7692008-06-02 01:18:21 +0000976 // Output known-1 bits are only known if set in both the LHS & RHS.
977 KnownOne &= KnownOne2;
978 // Output known-0 are known to be clear if zero in either the LHS | RHS.
979 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000980 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000981 }
982 case Instruction::Or: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000983 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
984 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000985
Chris Lattner965c7692008-06-02 01:18:21 +0000986 // Output known-0 bits are only known if clear in both the LHS & RHS.
987 KnownZero &= KnownZero2;
988 // Output known-1 are known to be set if set in either the LHS | RHS.
989 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000990 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000991 }
992 case Instruction::Xor: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000993 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
994 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000995
Chris Lattner965c7692008-06-02 01:18:21 +0000996 // Output known-0 bits are known if clear or set in both the LHS & RHS.
997 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
998 // Output known-1 are known to be set if set in only one of the LHS, RHS.
999 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1000 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +00001001 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001002 }
1003 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001004 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001005 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
1006 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001007 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001008 }
1009 case Instruction::UDiv: {
1010 // For the purposes of computing leading zeros we can conservatively
1011 // treat a udiv as a logical right shift by the power of 2 known to
1012 // be less than the denominator.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001013 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001014 unsigned LeadZ = KnownZero2.countLeadingOnes();
1015
Jay Foad25a5e4c2010-12-01 08:53:58 +00001016 KnownOne2.clearAllBits();
1017 KnownZero2.clearAllBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001018 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001019 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1020 if (RHSUnknownLeadingOnes != BitWidth)
1021 LeadZ = std::min(BitWidth,
1022 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1023
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001024 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001025 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001026 }
1027 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001028 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
1029 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001030
1031 // Only known if known in both the LHS and RHS.
1032 KnownOne &= KnownOne2;
1033 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +00001034 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001035 case Instruction::FPTrunc:
1036 case Instruction::FPExt:
1037 case Instruction::FPToUI:
1038 case Instruction::FPToSI:
1039 case Instruction::SIToFP:
1040 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001041 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001042 case Instruction::PtrToInt:
1043 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001044 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001045 // FALL THROUGH and handle them the same as zext/trunc.
1046 case Instruction::ZExt:
1047 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001048 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001049
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001050 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001051 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1052 // which fall through here.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001053 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001054
1055 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001056 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1057 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001058 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001059 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1060 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001061 // Any top bits are known to be zero.
1062 if (BitWidth > SrcBitWidth)
1063 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001064 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001065 }
1066 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001067 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +00001068 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1069 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001070 // TODO: For now, not handling conversions like:
1071 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001072 !I->getType()->isVectorTy()) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001073 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001074 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001075 }
1076 break;
1077 }
1078 case Instruction::SExt: {
1079 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001080 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001081
Jay Foad583abbc2010-12-07 08:25:19 +00001082 KnownZero = KnownZero.trunc(SrcBitWidth);
1083 KnownOne = KnownOne.trunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001084 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001085 KnownZero = KnownZero.zext(BitWidth);
1086 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001087
1088 // If the sign bit of the input is known set or clear, then we know the
1089 // top bits of the result.
1090 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1091 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1092 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1093 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001094 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001095 }
1096 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001097 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001098 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1099 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001100 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001101 KnownZero <<= ShiftAmt;
1102 KnownOne <<= ShiftAmt;
1103 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Chris Lattner965c7692008-06-02 01:18:21 +00001104 }
1105 break;
1106 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001107 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001108 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1109 // Compute the new bits that are at the top now.
1110 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001111
Chris Lattner965c7692008-06-02 01:18:21 +00001112 // Unsigned shift right.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001113 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001114 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1115 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1116 // high bits known zero.
1117 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Chris Lattner965c7692008-06-02 01:18:21 +00001118 }
1119 break;
1120 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001121 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001122 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1123 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001124 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001125
Chris Lattner965c7692008-06-02 01:18:21 +00001126 // Signed shift right.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001127 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001128 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1129 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001130
Chris Lattner965c7692008-06-02 01:18:21 +00001131 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1132 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1133 KnownZero |= HighBits;
1134 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1135 KnownOne |= HighBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001136 }
1137 break;
1138 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001139 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001140 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001141 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1142 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001143 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001144 }
Chris Lattner965c7692008-06-02 01:18:21 +00001145 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001146 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001147 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001148 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1149 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001150 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001151 }
1152 case Instruction::SRem:
1153 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001154 APInt RA = Rem->getValue().abs();
1155 if (RA.isPowerOf2()) {
1156 APInt LowBits = RA - 1;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001157 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
1158 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001159
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001160 // The low bits of the first operand are unchanged by the srem.
1161 KnownZero = KnownZero2 & LowBits;
1162 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001163
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001164 // If the first operand is non-negative or has all low bits zero, then
1165 // the upper bits are all zero.
1166 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1167 KnownZero |= ~LowBits;
1168
1169 // If the first operand is negative and not all low bits are zero, then
1170 // the upper bits are all one.
1171 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1172 KnownOne |= ~LowBits;
1173
Craig Topper1bef2c82012-12-22 19:15:35 +00001174 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001175 }
1176 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001177
1178 // The sign bit is the LHS's sign bit, except when the result of the
1179 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001180 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001181 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001182 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
1183 Depth + 1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001184 // If it's known zero, our sign bit is also zero.
1185 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001186 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001187 }
1188
Chris Lattner965c7692008-06-02 01:18:21 +00001189 break;
1190 case Instruction::URem: {
1191 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1192 APInt RA = Rem->getValue();
1193 if (RA.isPowerOf2()) {
1194 APInt LowBits = (RA - 1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001195 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
1196 Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001197 KnownZero |= ~LowBits;
1198 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001199 break;
1200 }
1201 }
1202
1203 // Since the result is less than or equal to either operand, any leading
1204 // zero bits in either operand must also exist in the result.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001205 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
1206 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001207
Chris Lattner4612ae12009-01-20 18:22:57 +00001208 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001209 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001210 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001211 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001212 break;
1213 }
1214
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001215 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001216 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001217 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001218 if (Align == 0)
1219 Align = DL.getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001220
Chris Lattner965c7692008-06-02 01:18:21 +00001221 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001222 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001223 break;
1224 }
1225 case Instruction::GetElementPtr: {
1226 // Analyze all of the subscripts of this getelementptr instruction
1227 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001228 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001229 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
1230 Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001231 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1232
1233 gep_type_iterator GTI = gep_type_begin(I);
1234 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1235 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001236 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001237 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001238
1239 // Handle case when index is vector zeroinitializer
1240 Constant *CIndex = cast<Constant>(Index);
1241 if (CIndex->isZeroValue())
1242 continue;
1243
1244 if (CIndex->getType()->isVectorTy())
1245 Index = CIndex->getSplatValue();
1246
Chris Lattner965c7692008-06-02 01:18:21 +00001247 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001248 const StructLayout *SL = DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001249 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001250 TrailZ = std::min<unsigned>(TrailZ,
1251 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001252 } else {
1253 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001254 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001255 if (!IndexedTy->isSized()) {
1256 TrailZ = 0;
1257 break;
1258 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001259 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001260 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001261 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001262 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
1263 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001264 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001265 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001266 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001267 }
1268 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001269
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001270 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001271 break;
1272 }
1273 case Instruction::PHI: {
1274 PHINode *P = cast<PHINode>(I);
1275 // Handle the case of a simple two-predecessor recurrence PHI.
1276 // There's a lot more that could theoretically be done here, but
1277 // this is sufficient to catch some interesting cases.
1278 if (P->getNumIncomingValues() == 2) {
1279 for (unsigned i = 0; i != 2; ++i) {
1280 Value *L = P->getIncomingValue(i);
1281 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001282 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001283 if (!LU)
1284 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001285 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001286 // Check for operations that have the property that if
1287 // both their operands have low zero bits, the result
1288 // will have low zero bits.
1289 if (Opcode == Instruction::Add ||
1290 Opcode == Instruction::Sub ||
1291 Opcode == Instruction::And ||
1292 Opcode == Instruction::Or ||
1293 Opcode == Instruction::Mul) {
1294 Value *LL = LU->getOperand(0);
1295 Value *LR = LU->getOperand(1);
1296 // Find a recurrence.
1297 if (LL == I)
1298 L = LR;
1299 else if (LR == I)
1300 L = LL;
1301 else
1302 break;
1303 // Ok, we have a PHI of the form L op= R. Check for low
1304 // zero bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001305 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001306
1307 // We need to take the minimum number of known bits
1308 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001309 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001310
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001311 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001312 std::min(KnownZero2.countTrailingOnes(),
1313 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001314 break;
1315 }
1316 }
1317 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001318
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001319 // Unreachable blocks may have zero-operand PHI nodes.
1320 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001321 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001322
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001323 // Otherwise take the unions of the known bit sets of the operands,
1324 // taking conservative care to avoid excessive recursion.
1325 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001326 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001327 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001328 break;
1329
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001330 KnownZero = APInt::getAllOnesValue(BitWidth);
1331 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001332 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001333 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001334 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001335
1336 KnownZero2 = APInt(BitWidth, 0);
1337 KnownOne2 = APInt(BitWidth, 0);
1338 // Recurse, but cap the recursion to one level, because we don't
1339 // want to waste time spinning around in loops.
Pete Cooper833f34d2015-05-12 20:05:31 +00001340 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001341 MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001342 KnownZero &= KnownZero2;
1343 KnownOne &= KnownOne2;
1344 // If all bits have been ruled out, there's no need to check
1345 // more operands.
1346 if (!KnownZero && !KnownOne)
1347 break;
1348 }
1349 }
Chris Lattner965c7692008-06-02 01:18:21 +00001350 break;
1351 }
1352 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001353 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001354 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001355 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1356 // If a range metadata is attached to this IntrinsicInst, intersect the
1357 // explicit range specified by the metadata and the implicit range of
1358 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001359 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1360 switch (II->getIntrinsicID()) {
1361 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001362 case Intrinsic::bswap:
1363 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
1364 Depth + 1, Q);
1365 KnownZero |= KnownZero2.byteSwap();
1366 KnownOne |= KnownOne2.byteSwap();
1367 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001368 case Intrinsic::ctlz:
1369 case Intrinsic::cttz: {
1370 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001371 // If this call is undefined for 0, the result will be less than 2^n.
1372 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1373 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001374 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001375 break;
1376 }
1377 case Intrinsic::ctpop: {
1378 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001379 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001380 break;
1381 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001382 case Intrinsic::fabs: {
1383 Type *Ty = II->getType();
1384 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1385 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1386 break;
1387 }
Chad Rosierb3628842011-05-26 23:13:19 +00001388 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001389 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001390 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001391 }
1392 }
1393 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001394 case Instruction::ExtractValue:
1395 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1396 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1397 if (EVI->getNumIndices() != 1) break;
1398 if (EVI->getIndices()[0] == 0) {
1399 switch (II->getIntrinsicID()) {
1400 default: break;
1401 case Intrinsic::uadd_with_overflow:
1402 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001403 computeKnownBitsAddSub(true, II->getArgOperand(0),
1404 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001405 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001406 break;
1407 case Intrinsic::usub_with_overflow:
1408 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001409 computeKnownBitsAddSub(false, II->getArgOperand(0),
1410 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001411 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001412 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001413 case Intrinsic::umul_with_overflow:
1414 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001415 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1416 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1417 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001418 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001419 }
1420 }
1421 }
Chris Lattner965c7692008-06-02 01:18:21 +00001422 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001423}
1424
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001425static unsigned getAlignment(const Value *V, const DataLayout &DL) {
Artur Pilipenko029d8532015-09-30 11:55:45 +00001426 unsigned Align = 0;
1427 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1428 Align = GO->getAlignment();
1429 if (Align == 0) {
1430 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
1431 Type *ObjectType = GVar->getType()->getElementType();
1432 if (ObjectType->isSized()) {
1433 // If the object is defined in the current Module, we'll be giving
1434 // it the preferred alignment. Otherwise, we have to assume that it
1435 // may only have the minimum ABI alignment.
1436 if (GVar->isStrongDefinitionForLinker())
1437 Align = DL.getPreferredAlignment(GVar);
1438 else
1439 Align = DL.getABITypeAlignment(ObjectType);
1440 }
1441 }
1442 }
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001443 } else if (const Argument *A = dyn_cast<Argument>(V)) {
Artur Pilipenko029d8532015-09-30 11:55:45 +00001444 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1445
1446 if (!Align && A->hasStructRetAttr()) {
1447 // An sret parameter has at least the ABI alignment of the return type.
1448 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1449 if (EltTy->isSized())
1450 Align = DL.getABITypeAlignment(EltTy);
1451 }
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001452 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
1453 Align = AI->getAlignment();
1454 else if (auto CS = ImmutableCallSite(V))
1455 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
1456 else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1457 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
1458 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
1459 Align = CI->getLimitedValue();
1460 }
1461
Artur Pilipenko029d8532015-09-30 11:55:45 +00001462 return Align;
1463}
1464
Jingyue Wu12b0c282015-06-15 05:46:29 +00001465/// Determine which bits of V are known to be either zero or one and return
1466/// them in the KnownZero/KnownOne bit sets.
1467///
1468/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1469/// we cannot optimize based on the assumption that it is zero without changing
1470/// it to be an explicit zero. If we don't change it to zero, other code could
1471/// optimized based on the contradictory assumption that it is non-zero.
1472/// Because instcombine aggressively folds operations with undef args anyway,
1473/// this won't lose us code quality.
1474///
1475/// This function is defined on values with integer type, values with pointer
1476/// type, and vectors of integers. In the case
1477/// where V is a vector, known zero, and known one values are the
1478/// same width as the vector element, and the bit is set only if it is true
1479/// for all of the elements in the vector.
1480void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1481 const DataLayout &DL, unsigned Depth, const Query &Q) {
1482 assert(V && "No Value?");
1483 assert(Depth <= MaxDepth && "Limit Search Depth");
1484 unsigned BitWidth = KnownZero.getBitWidth();
1485
1486 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001487 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001488 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001489 "Not integer, floating point, or pointer type!");
Jingyue Wu12b0c282015-06-15 05:46:29 +00001490 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1491 (!V->getType()->isIntOrIntVectorTy() ||
1492 V->getType()->getScalarSizeInBits() == BitWidth) &&
1493 KnownZero.getBitWidth() == BitWidth &&
1494 KnownOne.getBitWidth() == BitWidth &&
1495 "V, KnownOne and KnownZero should have same BitWidth");
1496
1497 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1498 // We know all of the bits for a constant!
1499 KnownOne = CI->getValue();
1500 KnownZero = ~KnownOne;
1501 return;
1502 }
1503 // Null and aggregate-zero are all-zeros.
1504 if (isa<ConstantPointerNull>(V) ||
1505 isa<ConstantAggregateZero>(V)) {
1506 KnownOne.clearAllBits();
1507 KnownZero = APInt::getAllOnesValue(BitWidth);
1508 return;
1509 }
1510 // Handle a constant vector by taking the intersection of the known bits of
1511 // each element. There is no real need to handle ConstantVector here, because
1512 // we don't handle undef in any particularly useful way.
1513 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1514 // We know that CDS must be a vector of integers. Take the intersection of
1515 // each element.
1516 KnownZero.setAllBits(); KnownOne.setAllBits();
1517 APInt Elt(KnownZero.getBitWidth(), 0);
1518 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1519 Elt = CDS->getElementAsInteger(i);
1520 KnownZero &= ~Elt;
1521 KnownOne &= Elt;
1522 }
1523 return;
1524 }
1525
Jingyue Wu12b0c282015-06-15 05:46:29 +00001526 // Start out not knowing anything.
1527 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1528
1529 // Limit search depth.
1530 // All recursive calls that increase depth must come after this.
1531 if (Depth == MaxDepth)
1532 return;
1533
1534 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1535 // the bits of its aliasee.
1536 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1537 if (!GA->mayBeOverridden())
1538 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
1539 return;
1540 }
1541
1542 if (Operator *I = dyn_cast<Operator>(V))
1543 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001544
Artur Pilipenko029d8532015-09-30 11:55:45 +00001545 // Aligned pointers have trailing zeros - refine KnownZero set
1546 if (V->getType()->isPointerTy()) {
1547 unsigned Align = getAlignment(V, DL);
1548 if (Align)
1549 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1550 }
1551
Jingyue Wu12b0c282015-06-15 05:46:29 +00001552 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1553 // strictly refines KnownZero and KnownOne. Therefore, we run them after
1554 // computeKnownBitsFromOperator.
1555
1556 // Check whether a nearby assume intrinsic can determine some known bits.
1557 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
1558
1559 // Check whether there's a dominating condition which implies something about
1560 // this value at the given context.
1561 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1562 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
1563 Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001564
1565 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001566}
1567
Sanjay Patelaee84212014-11-04 16:27:42 +00001568/// Determine whether the sign bit is known to be zero or one.
1569/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001570void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001571 const DataLayout &DL, unsigned Depth, const Query &Q) {
1572 unsigned BitWidth = getBitWidth(V->getType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001573 if (!BitWidth) {
1574 KnownZero = false;
1575 KnownOne = false;
1576 return;
1577 }
1578 APInt ZeroBits(BitWidth, 0);
1579 APInt OneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001580 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001581 KnownOne = OneBits[BitWidth - 1];
1582 KnownZero = ZeroBits[BitWidth - 1];
1583}
1584
Sanjay Patelaee84212014-11-04 16:27:42 +00001585/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001586/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001587/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001588/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001589bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001590 const Query &Q, const DataLayout &DL) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001591 if (Constant *C = dyn_cast<Constant>(V)) {
1592 if (C->isNullValue())
1593 return OrZero;
1594 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1595 return CI->getValue().isPowerOf2();
1596 // TODO: Handle vector constants.
1597 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001598
1599 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1600 // it is shifted off the end then the result is undefined.
1601 if (match(V, m_Shl(m_One(), m_Value())))
1602 return true;
1603
1604 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1605 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001606 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001607 return true;
1608
1609 // The remaining tests are all recursive, so bail out if we hit the limit.
1610 if (Depth++ == MaxDepth)
1611 return false;
1612
Craig Topper9f008862014-04-15 04:59:12 +00001613 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001614 // A shift of a power of two is a power of two or zero.
1615 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1616 match(V, m_Shr(m_Value(X), m_Value()))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001617 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
Duncan Sands985ba632011-10-28 18:30:05 +00001618
Duncan Sandsd3951082011-01-25 09:38:29 +00001619 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001620 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001621
1622 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001623 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
1624 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
Duncan Sandsba286d72011-10-26 20:55:21 +00001625
Duncan Sandsba286d72011-10-26 20:55:21 +00001626 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1627 // A power of two and'd with anything is a power of two or zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001628 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
1629 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
Duncan Sandsba286d72011-10-26 20:55:21 +00001630 return true;
1631 // X & (-X) is always a power of two or zero.
1632 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1633 return true;
1634 return false;
1635 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001636
David Majnemerb7d54092013-07-30 21:01:36 +00001637 // Adding a power-of-two or zero to the same power-of-two or zero yields
1638 // either the original power-of-two, a larger power-of-two or zero.
1639 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1640 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1641 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1642 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1643 match(X, m_And(m_Value(), m_Specific(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001644 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001645 return true;
1646 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1647 match(Y, m_And(m_Value(), m_Specific(X))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001648 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001649 return true;
1650
1651 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1652 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001653 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001654
1655 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001656 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001657 // If i8 V is a power of two or zero:
1658 // ZeroBits: 1 1 1 0 1 1 1 1
1659 // ~ZeroBits: 0 0 0 1 0 0 0 0
1660 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1661 // If OrZero isn't set, we cannot give back a zero result.
1662 // Make sure either the LHS or RHS has a bit set.
1663 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1664 return true;
1665 }
1666 }
David Majnemerbeab5672013-05-18 19:30:37 +00001667
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001668 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001669 // is a power of two only if the first operand is a power of two and not
1670 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001671 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1672 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001673 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001674 Depth, Q, DL);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001675 }
1676
Duncan Sandsd3951082011-01-25 09:38:29 +00001677 return false;
1678}
1679
Chandler Carruth80d3e562012-12-07 02:08:58 +00001680/// \brief Test whether a GEP's result is known to be non-null.
1681///
1682/// Uses properties inherent in a GEP to try to determine whether it is known
1683/// to be non-null.
1684///
1685/// Currently this routine does not support vector GEPs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001686static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001687 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001688 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1689 return false;
1690
1691 // FIXME: Support vector-GEPs.
1692 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1693
1694 // If the base pointer is non-null, we cannot walk to a null address with an
1695 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001696 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001697 return true;
1698
Chandler Carruth80d3e562012-12-07 02:08:58 +00001699 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1700 // If so, then the GEP cannot produce a null pointer, as doing so would
1701 // inherently violate the inbounds contract within address space zero.
1702 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1703 GTI != GTE; ++GTI) {
1704 // Struct types are easy -- they must always be indexed by a constant.
1705 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1706 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1707 unsigned ElementIdx = OpC->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001708 const StructLayout *SL = DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001709 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1710 if (ElementOffset > 0)
1711 return true;
1712 continue;
1713 }
1714
1715 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001716 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001717 continue;
1718
1719 // Fast path the constant operand case both for efficiency and so we don't
1720 // increment Depth when just zipping down an all-constant GEP.
1721 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1722 if (!OpC->isZero())
1723 return true;
1724 continue;
1725 }
1726
1727 // We post-increment Depth here because while isKnownNonZero increments it
1728 // as well, when we pop back up that increment won't persist. We don't want
1729 // to recurse 10k times just because we have 10k GEP operands. We don't
1730 // bail completely out because we want to handle constant GEPs regardless
1731 // of depth.
1732 if (Depth++ >= MaxDepth)
1733 continue;
1734
Hal Finkel60db0582014-09-07 18:57:58 +00001735 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001736 return true;
1737 }
1738
1739 return false;
1740}
1741
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001742/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1743/// ensure that the value it's attached to is never Value? 'RangeType' is
1744/// is the type of the value described by the range.
1745static bool rangeMetadataExcludesValue(MDNode* Ranges,
1746 const APInt& Value) {
1747 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1748 assert(NumRanges >= 1);
1749 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001750 ConstantInt *Lower =
1751 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1752 ConstantInt *Upper =
1753 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001754 ConstantRange Range(Lower->getValue(), Upper->getValue());
1755 if (Range.contains(Value))
1756 return false;
1757 }
1758 return true;
1759}
1760
Sanjay Patelaee84212014-11-04 16:27:42 +00001761/// Return true if the given value is known to be non-zero when defined.
1762/// For vectors return true if every element is known to be non-zero when
1763/// defined. Supports values with integer or pointer type and vectors of
1764/// integers.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001765bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +00001766 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001767 if (Constant *C = dyn_cast<Constant>(V)) {
1768 if (C->isNullValue())
1769 return false;
1770 if (isa<ConstantInt>(C))
1771 // Must be non-zero due to null test above.
1772 return true;
1773 // TODO: Handle vectors
1774 return false;
1775 }
1776
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001777 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001778 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001779 // If the possible ranges don't contain zero, then the value is
1780 // definitely non-zero.
1781 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1782 const APInt ZeroValue(Ty->getBitWidth(), 0);
1783 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1784 return true;
1785 }
1786 }
1787 }
1788
Duncan Sandsd3951082011-01-25 09:38:29 +00001789 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001790 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001791 return false;
1792
Chandler Carruth80d3e562012-12-07 02:08:58 +00001793 // Check for pointer simplifications.
1794 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001795 if (isKnownNonNull(V))
1796 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001797 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001798 if (isGEPKnownNonNull(GEP, DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001799 return true;
1800 }
1801
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001802 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001803
1804 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001805 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001806 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001807 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001808
1809 // ext X != 0 if X != 0.
1810 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001811 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001812
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001813 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001814 // if the lowest bit is shifted off the end.
1815 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001816 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001817 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001818 if (BO->hasNoUnsignedWrap())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001819 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001820
Duncan Sandsd3951082011-01-25 09:38:29 +00001821 APInt KnownZero(BitWidth, 0);
1822 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001823 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001824 if (KnownOne[0])
1825 return true;
1826 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001827 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001828 // defined if the sign bit is shifted off the end.
1829 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001830 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001831 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001832 if (BO->isExact())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001833 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001834
Duncan Sandsd3951082011-01-25 09:38:29 +00001835 bool XKnownNonNegative, XKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001836 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001837 if (XKnownNegative)
1838 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001839
1840 // If the shifter operand is a constant, and all of the bits shifted
1841 // out are known to be zero, and X is known non-zero then at least one
1842 // non-zero bit must remain.
1843 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1844 APInt KnownZero(BitWidth, 0);
1845 APInt KnownOne(BitWidth, 0);
1846 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
1847
1848 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1849 // Is there a known one in the portion not shifted out?
1850 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1851 return true;
1852 // Are all the bits to be shifted out known zero?
1853 if (KnownZero.countTrailingOnes() >= ShiftVal)
1854 return isKnownNonZero(X, DL, Depth, Q);
1855 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001856 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001857 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001858 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001859 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001860 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001861 // X + Y.
1862 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1863 bool XKnownNonNegative, XKnownNegative;
1864 bool YKnownNonNegative, YKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001865 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
1866 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001867
1868 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001869 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001870 if (XKnownNonNegative && YKnownNonNegative)
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001871 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001872 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001873
1874 // If X and Y are both negative (as signed values) then their sum is not
1875 // zero unless both X and Y equal INT_MIN.
1876 if (BitWidth && XKnownNegative && YKnownNegative) {
1877 APInt KnownZero(BitWidth, 0);
1878 APInt KnownOne(BitWidth, 0);
1879 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1880 // The sign bit of X is set. If some other bit is set then X is not equal
1881 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001882 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001883 if ((KnownOne & Mask) != 0)
1884 return true;
1885 // The sign bit of Y is set. If some other bit is set then Y is not equal
1886 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001887 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001888 if ((KnownOne & Mask) != 0)
1889 return true;
1890 }
1891
1892 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001893 if (XKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001894 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00001895 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001896 if (YKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001897 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00001898 return true;
1899 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001900 // X * Y.
1901 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1902 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1903 // If X and Y are non-zero then so is X * Y as long as the multiplication
1904 // does not overflow.
1905 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001906 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001907 return true;
1908 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001909 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1910 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001911 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
1912 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001913 return true;
1914 }
James Molloy897048b2015-09-29 14:08:45 +00001915 // PHI
1916 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1917 // Try and detect a recurrence that monotonically increases from a
1918 // starting value, as these are common as induction variables.
1919 if (PN->getNumIncomingValues() == 2) {
1920 Value *Start = PN->getIncomingValue(0);
1921 Value *Induction = PN->getIncomingValue(1);
1922 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1923 std::swap(Start, Induction);
1924 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1925 if (!C->isZero() && !C->isNegative()) {
1926 ConstantInt *X;
1927 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1928 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1929 !X->isNegative())
1930 return true;
1931 }
1932 }
1933 }
1934 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001935
1936 if (!BitWidth) return false;
1937 APInt KnownZero(BitWidth, 0);
1938 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001939 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001940 return KnownOne != 0;
1941}
1942
Sanjay Patelaee84212014-11-04 16:27:42 +00001943/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1944/// simplify operations downstream. Mask is known to be zero for bits that V
1945/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001946///
1947/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001948/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001949/// where V is a vector, the mask, known zero, and known one values are the
1950/// same width as the vector element, and the bit is set only if it is true
1951/// for all of the elements in the vector.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001952bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
1953 unsigned Depth, const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001954 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001955 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001956 return (KnownZero & Mask) == Mask;
1957}
1958
1959
1960
Sanjay Patelaee84212014-11-04 16:27:42 +00001961/// Return the number of times the sign bit of the register is replicated into
1962/// the other bits. We know that at least 1 bit is always equal to the sign bit
1963/// (itself), but other cases can give us information. For example, immediately
1964/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1965/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001966///
1967/// 'Op' must have a scalar integer type.
1968///
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001969unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
1970 const Query &Q) {
1971 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00001972 unsigned Tmp, Tmp2;
1973 unsigned FirstAnswer = 1;
1974
Jay Foada0653a32014-05-14 21:14:37 +00001975 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001976 // below.
1977
Chris Lattner965c7692008-06-02 01:18:21 +00001978 if (Depth == 6)
1979 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001980
Dan Gohman80ca01c2009-07-17 20:47:02 +00001981 Operator *U = dyn_cast<Operator>(V);
1982 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001983 default: break;
1984 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001985 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001986 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001987
Nadav Rotemc99a3872015-03-06 00:23:58 +00001988 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00001989 const APInt *Denominator;
1990 // sdiv X, C -> adds log(C) sign bits.
1991 if (match(U->getOperand(1), m_APInt(Denominator))) {
1992
1993 // Ignore non-positive denominator.
1994 if (!Denominator->isStrictlyPositive())
1995 break;
1996
1997 // Calculate the incoming numerator bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001998 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00001999
2000 // Add floor(log(C)) bits to the numerator bits.
2001 return std::min(TyBits, NumBits + Denominator->logBase2());
2002 }
2003 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002004 }
2005
2006 case Instruction::SRem: {
2007 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002008 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2009 // positive constant. This let us put a lower bound on the number of sign
2010 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002011 if (match(U->getOperand(1), m_APInt(Denominator))) {
2012
2013 // Ignore non-positive denominator.
2014 if (!Denominator->isStrictlyPositive())
2015 break;
2016
2017 // Calculate the incoming numerator bits. SRem by a positive constant
2018 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002019 unsigned NumrBits =
2020 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002021
2022 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002023 // denominator. Given that the denominator is positive, there are two
2024 // cases:
2025 //
2026 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2027 // (1 << ceilLogBase2(C)).
2028 //
2029 // 2. the numerator is negative. Then the result range is (-C,0] and
2030 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2031 //
2032 // Thus a lower bound on the number of sign bits is `TyBits -
2033 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002034
Sanjoy Dase561fee2015-03-25 22:33:53 +00002035 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002036 return std::max(NumrBits, ResBits);
2037 }
2038 break;
2039 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002040
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002041 case Instruction::AShr: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002042 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002043 // ashr X, C -> adds C sign bits. Vectors too.
2044 const APInt *ShAmt;
2045 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2046 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002047 if (Tmp > TyBits) Tmp = TyBits;
2048 }
2049 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002050 }
2051 case Instruction::Shl: {
2052 const APInt *ShAmt;
2053 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002054 // shl destroys sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002055 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002056 Tmp2 = ShAmt->getZExtValue();
2057 if (Tmp2 >= TyBits || // Bad shift.
2058 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2059 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002060 }
2061 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002062 }
Chris Lattner965c7692008-06-02 01:18:21 +00002063 case Instruction::And:
2064 case Instruction::Or:
2065 case Instruction::Xor: // NOT is handled here.
2066 // Logical binary ops preserve the number of sign bits at the worst.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002067 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002068 if (Tmp != 1) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002069 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002070 FirstAnswer = std::min(Tmp, Tmp2);
2071 // We computed what we know about the sign bits as our first
2072 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002073 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002074 }
2075 break;
2076
2077 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002078 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002079 if (Tmp == 1) return 1; // Early out.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002080 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002081 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002082
Chris Lattner965c7692008-06-02 01:18:21 +00002083 case Instruction::Add:
2084 // Add can have at most one carry bit. Thus we know that the output
2085 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002086 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002087 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002088
Chris Lattner965c7692008-06-02 01:18:21 +00002089 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002090 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002091 if (CRHS->isAllOnesValue()) {
2092 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002093 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
2094 Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002095
Chris Lattner965c7692008-06-02 01:18:21 +00002096 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2097 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002098 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002099 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002100
Chris Lattner965c7692008-06-02 01:18:21 +00002101 // If we are subtracting one from a positive number, there is no carry
2102 // out of the result.
2103 if (KnownZero.isNegative())
2104 return Tmp;
2105 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002106
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002107 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002108 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002109 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002110
Chris Lattner965c7692008-06-02 01:18:21 +00002111 case Instruction::Sub:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002112 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002113 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002114
Chris Lattner965c7692008-06-02 01:18:21 +00002115 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002116 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002117 if (CLHS->isNullValue()) {
2118 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002119 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
2120 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002121 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2122 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002123 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002124 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002125
Chris Lattner965c7692008-06-02 01:18:21 +00002126 // If the input is known to be positive (the sign bit is known clear),
2127 // the output of the NEG has the same number of sign bits as the input.
2128 if (KnownZero.isNegative())
2129 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002130
Chris Lattner965c7692008-06-02 01:18:21 +00002131 // Otherwise, we treat this like a SUB.
2132 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002133
Chris Lattner965c7692008-06-02 01:18:21 +00002134 // Sub can have at most one carry bit. Thus we know that the output
2135 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002136 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002137 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002138 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002139
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002140 case Instruction::PHI: {
2141 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002142 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002143 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002144 if (NumIncomingValues > 4) break;
2145 // Unreachable blocks may have zero-operand PHI nodes.
2146 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002147
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002148 // Take the minimum of all incoming values. This can't infinitely loop
2149 // because of our depth threshold.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002150 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002151 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002152 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002153 Tmp = std::min(
2154 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002155 }
2156 return Tmp;
2157 }
2158
Chris Lattner965c7692008-06-02 01:18:21 +00002159 case Instruction::Trunc:
2160 // FIXME: it's tricky to do anything useful for this, but it is an important
2161 // case for targets like X86.
2162 break;
2163 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002164
Chris Lattner965c7692008-06-02 01:18:21 +00002165 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2166 // use this information.
2167 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002168 APInt Mask;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002169 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002170
Chris Lattner965c7692008-06-02 01:18:21 +00002171 if (KnownZero.isNegative()) { // sign bit is 0
2172 Mask = KnownZero;
2173 } else if (KnownOne.isNegative()) { // sign bit is 1;
2174 Mask = KnownOne;
2175 } else {
2176 // Nothing known.
2177 return FirstAnswer;
2178 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002179
Chris Lattner965c7692008-06-02 01:18:21 +00002180 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2181 // the number of identical bits in the top of the input value.
2182 Mask = ~Mask;
2183 Mask <<= Mask.getBitWidth()-TyBits;
2184 // Return # leading zeros. We use 'min' here in case Val was zero before
2185 // shifting. We don't want to return '64' as for an i32 "0".
2186 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2187}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002188
Sanjay Patelaee84212014-11-04 16:27:42 +00002189/// This function computes the integer multiple of Base that equals V.
2190/// If successful, it returns true and returns the multiple in
2191/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002192/// through SExt instructions only if LookThroughSExt is true.
2193bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002194 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002195 const unsigned MaxDepth = 6;
2196
Dan Gohman6a976bb2009-11-18 00:58:27 +00002197 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002198 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002199 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002200
Chris Lattner229907c2011-07-18 04:54:35 +00002201 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002202
Dan Gohman6a976bb2009-11-18 00:58:27 +00002203 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002204
2205 if (Base == 0)
2206 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002207
Victor Hernandez47444882009-11-10 08:28:35 +00002208 if (Base == 1) {
2209 Multiple = V;
2210 return true;
2211 }
2212
2213 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2214 Constant *BaseVal = ConstantInt::get(T, Base);
2215 if (CO && CO == BaseVal) {
2216 // Multiple is 1.
2217 Multiple = ConstantInt::get(T, 1);
2218 return true;
2219 }
2220
2221 if (CI && CI->getZExtValue() % Base == 0) {
2222 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002223 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002224 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002225
Victor Hernandez47444882009-11-10 08:28:35 +00002226 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002227
Victor Hernandez47444882009-11-10 08:28:35 +00002228 Operator *I = dyn_cast<Operator>(V);
2229 if (!I) return false;
2230
2231 switch (I->getOpcode()) {
2232 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002233 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002234 if (!LookThroughSExt) return false;
2235 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002236 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002237 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2238 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002239 case Instruction::Shl:
2240 case Instruction::Mul: {
2241 Value *Op0 = I->getOperand(0);
2242 Value *Op1 = I->getOperand(1);
2243
2244 if (I->getOpcode() == Instruction::Shl) {
2245 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2246 if (!Op1CI) return false;
2247 // Turn Op0 << Op1 into Op0 * 2^Op1
2248 APInt Op1Int = Op1CI->getValue();
2249 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002250 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002251 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002252 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002253 }
2254
Craig Topper9f008862014-04-15 04:59:12 +00002255 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002256 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2257 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2258 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002259 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002260 MulC->getType()->getPrimitiveSizeInBits())
2261 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002262 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002263 MulC->getType()->getPrimitiveSizeInBits())
2264 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002265
Chris Lattner72d283c2010-09-05 17:20:46 +00002266 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2267 Multiple = ConstantExpr::getMul(MulC, Op1C);
2268 return true;
2269 }
Victor Hernandez47444882009-11-10 08:28:35 +00002270
2271 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2272 if (Mul0CI->getValue() == 1) {
2273 // V == Base * Op1, so return Op1
2274 Multiple = Op1;
2275 return true;
2276 }
2277 }
2278
Craig Topper9f008862014-04-15 04:59:12 +00002279 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002280 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2281 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2282 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002283 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002284 MulC->getType()->getPrimitiveSizeInBits())
2285 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002286 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002287 MulC->getType()->getPrimitiveSizeInBits())
2288 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002289
Chris Lattner72d283c2010-09-05 17:20:46 +00002290 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2291 Multiple = ConstantExpr::getMul(MulC, Op0C);
2292 return true;
2293 }
Victor Hernandez47444882009-11-10 08:28:35 +00002294
2295 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2296 if (Mul1CI->getValue() == 1) {
2297 // V == Base * Op0, so return Op0
2298 Multiple = Op0;
2299 return true;
2300 }
2301 }
Victor Hernandez47444882009-11-10 08:28:35 +00002302 }
2303 }
2304
2305 // We could not determine if V is a multiple of Base.
2306 return false;
2307}
2308
Sanjay Patelaee84212014-11-04 16:27:42 +00002309/// Return true if we can prove that the specified FP value is never equal to
2310/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002311///
2312/// NOTE: this function will need to be revisited when we support non-default
2313/// rounding modes!
2314///
2315bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2316 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2317 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002318
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002319 // FIXME: Magic number! At the least, this should be given a name because it's
2320 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2321 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002322 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002323 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002324
Dan Gohman80ca01c2009-07-17 20:47:02 +00002325 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002326 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002327
2328 // Check if the nsz fast-math flag is set
2329 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2330 if (FPO->hasNoSignedZeros())
2331 return true;
2332
Chris Lattnera12a6de2008-06-02 01:29:46 +00002333 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002334 if (I->getOpcode() == Instruction::FAdd)
2335 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2336 if (CFP->isNullValue())
2337 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002338
Chris Lattnera12a6de2008-06-02 01:29:46 +00002339 // sitofp and uitofp turn into +0.0 for zero.
2340 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2341 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002342
Chris Lattnera12a6de2008-06-02 01:29:46 +00002343 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2344 // sqrt(-0.0) = -0.0, no other negative results are possible.
2345 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002346 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002347
Chris Lattnera12a6de2008-06-02 01:29:46 +00002348 if (const CallInst *CI = dyn_cast<CallInst>(I))
2349 if (const Function *F = CI->getCalledFunction()) {
2350 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002351 // abs(x) != -0.0
2352 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002353 // fabs[lf](x) != -0.0
2354 if (F->getName() == "fabs") return true;
2355 if (F->getName() == "fabsf") return true;
2356 if (F->getName() == "fabsl") return true;
2357 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2358 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002359 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002360 }
2361 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002362
Chris Lattnera12a6de2008-06-02 01:29:46 +00002363 return false;
2364}
2365
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002366bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2367 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2368 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2369
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002370 // FIXME: Magic number! At the least, this should be given a name because it's
2371 // used similarly in CannotBeNegativeZero(). A better fix may be to
2372 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002373 if (Depth == 6)
2374 return false; // Limit search depth.
2375
2376 const Operator *I = dyn_cast<Operator>(V);
2377 if (!I) return false;
2378
2379 switch (I->getOpcode()) {
2380 default: break;
2381 case Instruction::FMul:
2382 // x*x is always non-negative or a NaN.
2383 if (I->getOperand(0) == I->getOperand(1))
2384 return true;
2385 // Fall through
2386 case Instruction::FAdd:
2387 case Instruction::FDiv:
2388 case Instruction::FRem:
2389 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2390 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2391 case Instruction::FPExt:
2392 case Instruction::FPTrunc:
2393 // Widening/narrowing never change sign.
2394 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2395 case Instruction::Call:
2396 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2397 switch (II->getIntrinsicID()) {
2398 default: break;
2399 case Intrinsic::exp:
2400 case Intrinsic::exp2:
2401 case Intrinsic::fabs:
2402 case Intrinsic::sqrt:
2403 return true;
2404 case Intrinsic::powi:
2405 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2406 // powi(x,n) is non-negative if n is even.
2407 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2408 return true;
2409 }
2410 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2411 case Intrinsic::fma:
2412 case Intrinsic::fmuladd:
2413 // x*x+y is non-negative if y is non-negative.
2414 return I->getOperand(0) == I->getOperand(1) &&
2415 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2416 }
2417 break;
2418 }
2419 return false;
2420}
2421
Sanjay Patelaee84212014-11-04 16:27:42 +00002422/// If the specified value can be set by repeating the same byte in memory,
2423/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002424/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2425/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2426/// byte store (e.g. i16 0x1234), return null.
2427Value *llvm::isBytewiseValue(Value *V) {
2428 // All byte-wide stores are splatable, even of arbitrary variables.
2429 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002430
2431 // Handle 'null' ConstantArrayZero etc.
2432 if (Constant *C = dyn_cast<Constant>(V))
2433 if (C->isNullValue())
2434 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002435
Chris Lattner9cb10352010-12-26 20:15:01 +00002436 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002437 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002438 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2439 if (CFP->getType()->isFloatTy())
2440 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2441 if (CFP->getType()->isDoubleTy())
2442 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2443 // Don't handle long double formats, which have strange constraints.
2444 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002445
Benjamin Kramer17d90152015-02-07 19:29:02 +00002446 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002447 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002448 if (CI->getBitWidth() % 8 == 0) {
2449 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002450
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002451 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002452 return nullptr;
2453 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002454 }
2455 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002456
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002457 // A ConstantDataArray/Vector is splatable if all its members are equal and
2458 // also splatable.
2459 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2460 Value *Elt = CA->getElementAsConstant(0);
2461 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002462 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002463 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002464
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002465 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2466 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002467 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002468
Chris Lattner9cb10352010-12-26 20:15:01 +00002469 return Val;
2470 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002471
Chris Lattner9cb10352010-12-26 20:15:01 +00002472 // Conceptually, we could handle things like:
2473 // %a = zext i8 %X to i16
2474 // %b = shl i16 %a, 8
2475 // %c = or i16 %a, %b
2476 // but until there is an example that actually needs this, it doesn't seem
2477 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002478 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002479}
2480
2481
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002482// This is the recursive version of BuildSubAggregate. It takes a few different
2483// arguments. Idxs is the index within the nested struct From that we are
2484// looking at now (which is of type IndexedType). IdxSkip is the number of
2485// indices from Idxs that should be left out when inserting into the resulting
2486// struct. To is the result struct built so far, new insertvalue instructions
2487// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002488static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002489 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002490 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002491 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002492 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002493 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002494 // Save the original To argument so we can modify it
2495 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002496 // General case, the type indexed by Idxs is a struct
2497 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2498 // Process each struct element recursively
2499 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002500 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002501 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002502 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002503 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002504 if (!To) {
2505 // Couldn't find any inserted value for this index? Cleanup
2506 while (PrevTo != OrigTo) {
2507 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2508 PrevTo = Del->getAggregateOperand();
2509 Del->eraseFromParent();
2510 }
2511 // Stop processing elements
2512 break;
2513 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002514 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002515 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002516 if (To)
2517 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002518 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002519 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2520 // the struct's elements had a value that was inserted directly. In the latter
2521 // case, perhaps we can't determine each of the subelements individually, but
2522 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002523
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002524 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002525 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002526
2527 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002528 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002529
2530 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002531 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002532 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002533}
2534
2535// This helper takes a nested struct and extracts a part of it (which is again a
2536// struct) into a new value. For example, given the struct:
2537// { a, { b, { c, d }, e } }
2538// and the indices "1, 1" this returns
2539// { c, d }.
2540//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002541// It does this by inserting an insertvalue for each element in the resulting
2542// struct, as opposed to just inserting a single struct. This will only work if
2543// each of the elements of the substruct are known (ie, inserted into From by an
2544// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002545//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002546// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002547static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002548 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002549 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002550 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002551 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002552 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002553 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002554 unsigned IdxSkip = Idxs.size();
2555
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002556 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002557}
2558
Sanjay Patelaee84212014-11-04 16:27:42 +00002559/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002560/// the scalar value indexed is already around as a register, for example if it
2561/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002562///
2563/// If InsertBefore is not null, this function will duplicate (modified)
2564/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002565Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2566 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002567 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002568 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002569 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002570 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002571 // We have indices, so V should have an indexable type.
2572 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2573 "Not looking at a struct or array?");
2574 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2575 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002576
Chris Lattner67058832012-01-25 06:48:06 +00002577 if (Constant *C = dyn_cast<Constant>(V)) {
2578 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002579 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002580 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2581 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002582
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002583 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002584 // Loop the indices for the insertvalue instruction in parallel with the
2585 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002586 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002587 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2588 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002589 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002590 // We can't handle this without inserting insertvalues
2591 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002592 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002593
2594 // The requested index identifies a part of a nested aggregate. Handle
2595 // this specially. For example,
2596 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2597 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2598 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2599 // This can be changed into
2600 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2601 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2602 // which allows the unused 0,0 element from the nested struct to be
2603 // removed.
2604 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2605 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002606 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002607
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002608 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002609 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002610 // looking for, then.
2611 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002612 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002613 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002614 }
2615 // If we end up here, the indices of the insertvalue match with those
2616 // requested (though possibly only partially). Now we recursively look at
2617 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002618 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002619 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002620 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002621 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002622
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002623 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002624 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002625 // something else, we can extract from that something else directly instead.
2626 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002627
2628 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002629 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002630 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002631 SmallVector<unsigned, 5> Idxs;
2632 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002633 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002634 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002635
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002636 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002637 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002638
Craig Topper1bef2c82012-12-22 19:15:35 +00002639 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002640 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002641
Jay Foad57aa6362011-07-13 10:26:04 +00002642 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002643 }
2644 // Otherwise, we don't know (such as, extracting from a function return value
2645 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002646 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002647}
Evan Chengda3db112008-06-30 07:31:25 +00002648
Sanjay Patelaee84212014-11-04 16:27:42 +00002649/// Analyze the specified pointer to see if it can be expressed as a base
2650/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002651Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002652 const DataLayout &DL) {
2653 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002654 APInt ByteOffset(BitWidth, 0);
2655 while (1) {
2656 if (Ptr->getType()->isVectorTy())
2657 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002658
Nuno Lopes368c4d02012-12-31 20:48:35 +00002659 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002660 APInt GEPOffset(BitWidth, 0);
2661 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2662 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002663
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002664 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002665
Nuno Lopes368c4d02012-12-31 20:48:35 +00002666 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002667 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2668 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002669 Ptr = cast<Operator>(Ptr)->getOperand(0);
2670 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2671 if (GA->mayBeOverridden())
2672 break;
2673 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002674 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002675 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002676 }
2677 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002678 Offset = ByteOffset.getSExtValue();
2679 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002680}
2681
2682
Sanjay Patelaee84212014-11-04 16:27:42 +00002683/// This function computes the length of a null-terminated C string pointed to
2684/// by V. If successful, it returns true and returns the string in Str.
2685/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002686bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2687 uint64_t Offset, bool TrimAtNul) {
2688 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002689
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002690 // Look through bitcast instructions and geps.
2691 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002692
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002693 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002694 // offset.
2695 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002696 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002697 if (GEP->getNumOperands() != 3)
2698 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002699
Evan Chengda3db112008-06-30 07:31:25 +00002700 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002701 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2702 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002703 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002704 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002705
Evan Chengda3db112008-06-30 07:31:25 +00002706 // Check to make sure that the first operand of the GEP is an integer and
2707 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002708 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002709 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002710 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002711
Evan Chengda3db112008-06-30 07:31:25 +00002712 // If the second index isn't a ConstantInt, then this is a variable index
2713 // into the array. If this occurs, we can't say anything meaningful about
2714 // the string.
2715 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002716 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002717 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002718 else
2719 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002720 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2721 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002722 }
Nick Lewycky46209882011-10-20 00:34:35 +00002723
Evan Chengda3db112008-06-30 07:31:25 +00002724 // The GEP instruction, constant or instruction, must reference a global
2725 // variable that is a constant and is initialized. The referenced constant
2726 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002727 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002728 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002729 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002730
Nick Lewycky46209882011-10-20 00:34:35 +00002731 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002732 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002733 // This is a degenerate case. The initializer is constant zero so the
2734 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002735 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002736 return true;
2737 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002738
Evan Chengda3db112008-06-30 07:31:25 +00002739 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002740 const ConstantDataArray *Array =
2741 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002742 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002743 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002744
Evan Chengda3db112008-06-30 07:31:25 +00002745 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002746 uint64_t NumElts = Array->getType()->getArrayNumElements();
2747
2748 // Start out with the entire array in the StringRef.
2749 Str = Array->getAsString();
2750
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002751 if (Offset > NumElts)
2752 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002753
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002754 // Skip over 'offset' bytes.
2755 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002756
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002757 if (TrimAtNul) {
2758 // Trim off the \0 and anything after it. If the array is not nul
2759 // terminated, we just return the whole end of string. The client may know
2760 // some other way that the string is length-bound.
2761 Str = Str.substr(0, Str.find('\0'));
2762 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002763 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002764}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002765
2766// These next two are very similar to the above, but also look through PHI
2767// nodes.
2768// TODO: See if we can integrate these two together.
2769
Sanjay Patelaee84212014-11-04 16:27:42 +00002770/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002771/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002772static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002773 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002774 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002775
2776 // If this is a PHI node, there are two cases: either we have already seen it
2777 // or we haven't.
2778 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002779 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002780 return ~0ULL; // already in the set.
2781
2782 // If it was new, see if all the input strings are the same length.
2783 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002784 for (Value *IncValue : PN->incoming_values()) {
2785 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002786 if (Len == 0) return 0; // Unknown length -> unknown.
2787
2788 if (Len == ~0ULL) continue;
2789
2790 if (Len != LenSoFar && LenSoFar != ~0ULL)
2791 return 0; // Disagree -> unknown.
2792 LenSoFar = Len;
2793 }
2794
2795 // Success, all agree.
2796 return LenSoFar;
2797 }
2798
2799 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2800 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2801 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2802 if (Len1 == 0) return 0;
2803 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2804 if (Len2 == 0) return 0;
2805 if (Len1 == ~0ULL) return Len2;
2806 if (Len2 == ~0ULL) return Len1;
2807 if (Len1 != Len2) return 0;
2808 return Len1;
2809 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002810
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002811 // Otherwise, see if we can read the string.
2812 StringRef StrData;
2813 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002814 return 0;
2815
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002816 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002817}
2818
Sanjay Patelaee84212014-11-04 16:27:42 +00002819/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002820/// the specified pointer, return 'len+1'. If we can't, return 0.
2821uint64_t llvm::GetStringLength(Value *V) {
2822 if (!V->getType()->isPointerTy()) return 0;
2823
2824 SmallPtrSet<PHINode*, 32> PHIs;
2825 uint64_t Len = GetStringLengthH(V, PHIs);
2826 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2827 // an empty string as a length.
2828 return Len == ~0ULL ? 1 : Len;
2829}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002830
Adam Nemete2b885c2015-04-23 20:09:20 +00002831/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2832/// previous iteration of the loop was referring to the same object as \p PN.
2833static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2834 // Find the loop-defined value.
2835 Loop *L = LI->getLoopFor(PN->getParent());
2836 if (PN->getNumIncomingValues() != 2)
2837 return true;
2838
2839 // Find the value from previous iteration.
2840 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2841 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2842 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2843 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2844 return true;
2845
2846 // If a new pointer is loaded in the loop, the pointer references a different
2847 // object in every iteration. E.g.:
2848 // for (i)
2849 // int *p = a[i];
2850 // ...
2851 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2852 if (!L->isLoopInvariant(Load->getPointerOperand()))
2853 return false;
2854 return true;
2855}
2856
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002857Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2858 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002859 if (!V->getType()->isPointerTy())
2860 return V;
2861 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2862 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2863 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002864 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2865 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002866 V = cast<Operator>(V)->getOperand(0);
2867 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2868 if (GA->mayBeOverridden())
2869 return V;
2870 V = GA->getAliasee();
2871 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002872 // See if InstructionSimplify knows any relevant tricks.
2873 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002874 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002875 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002876 V = Simplified;
2877 continue;
2878 }
2879
Dan Gohmana4fcd242010-12-15 20:02:24 +00002880 return V;
2881 }
2882 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2883 }
2884 return V;
2885}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002886
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002887void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00002888 const DataLayout &DL, LoopInfo *LI,
2889 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002890 SmallPtrSet<Value *, 4> Visited;
2891 SmallVector<Value *, 4> Worklist;
2892 Worklist.push_back(V);
2893 do {
2894 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002895 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002896
David Blaikie70573dc2014-11-19 07:49:26 +00002897 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002898 continue;
2899
2900 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2901 Worklist.push_back(SI->getTrueValue());
2902 Worklist.push_back(SI->getFalseValue());
2903 continue;
2904 }
2905
2906 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00002907 // If this PHI changes the underlying object in every iteration of the
2908 // loop, don't look through it. Consider:
2909 // int **A;
2910 // for (i) {
2911 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
2912 // Curr = A[i];
2913 // *Prev, *Curr;
2914 //
2915 // Prev is tracking Curr one iteration behind so they refer to different
2916 // underlying objects.
2917 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
2918 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00002919 for (Value *IncValue : PN->incoming_values())
2920 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002921 continue;
2922 }
2923
2924 Objects.push_back(P);
2925 } while (!Worklist.empty());
2926}
2927
Sanjay Patelaee84212014-11-04 16:27:42 +00002928/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002929bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002930 for (const User *U : V->users()) {
2931 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002932 if (!II) return false;
2933
2934 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2935 II->getIntrinsicID() != Intrinsic::lifetime_end)
2936 return false;
2937 }
2938 return true;
2939}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002940
Philip Reames5461d452015-04-23 17:36:48 +00002941static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002942 Type *Ty, const DataLayout &DL,
2943 const Instruction *CtxI,
2944 const DominatorTree *DT,
2945 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00002946 assert(Offset.isNonNegative() && "offset can't be negative");
2947 assert(Ty->isSized() && "must be sized");
2948
2949 APInt DerefBytes(Offset.getBitWidth(), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002950 bool CheckForNonNull = false;
Philip Reames5461d452015-04-23 17:36:48 +00002951 if (const Argument *A = dyn_cast<Argument>(BV)) {
2952 DerefBytes = A->getDereferenceableBytes();
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002953 if (!DerefBytes.getBoolValue()) {
2954 DerefBytes = A->getDereferenceableOrNullBytes();
2955 CheckForNonNull = true;
2956 }
Philip Reames5461d452015-04-23 17:36:48 +00002957 } else if (auto CS = ImmutableCallSite(BV)) {
2958 DerefBytes = CS.getDereferenceableBytes(0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002959 if (!DerefBytes.getBoolValue()) {
2960 DerefBytes = CS.getDereferenceableOrNullBytes(0);
2961 CheckForNonNull = true;
2962 }
Sanjoy Dasf9995472015-05-19 20:10:19 +00002963 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
2964 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
2965 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
2966 DerefBytes = CI->getLimitedValue();
2967 }
2968 if (!DerefBytes.getBoolValue()) {
2969 if (MDNode *MD =
2970 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
2971 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
2972 DerefBytes = CI->getLimitedValue();
2973 }
2974 CheckForNonNull = true;
2975 }
Philip Reames5461d452015-04-23 17:36:48 +00002976 }
2977
2978 if (DerefBytes.getBoolValue())
2979 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002980 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
2981 return true;
2982
Philip Reames5461d452015-04-23 17:36:48 +00002983 return false;
2984}
2985
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002986static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
2987 const Instruction *CtxI,
2988 const DominatorTree *DT,
2989 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00002990 Type *VTy = V->getType();
2991 Type *Ty = VTy->getPointerElementType();
2992 if (!Ty->isSized())
2993 return false;
2994
2995 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002996 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00002997}
2998
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00002999static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
3000 const DataLayout &DL) {
Artur Pilipenkoffd13282015-10-09 15:58:26 +00003001 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003002
3003 if (!BaseAlign) {
3004 Type *Ty = Base->getType()->getPointerElementType();
3005 BaseAlign = DL.getABITypeAlignment(Ty);
3006 }
3007
3008 APInt Alignment(Offset.getBitWidth(), Align);
3009
3010 assert(Alignment.isPowerOf2() && "must be a power of 2!");
3011 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3012}
3013
3014static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
3015 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0);
3016 return isAligned(Base, Offset, Align, DL);
3017}
3018
Philip Reames5461d452015-04-23 17:36:48 +00003019/// Test if V is always a pointer to allocated and suitably aligned memory for
3020/// a simple load or store.
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003021static bool isDereferenceableAndAlignedPointer(
3022 const Value *V, unsigned Align, const DataLayout &DL,
3023 const Instruction *CtxI, const DominatorTree *DT,
3024 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
Philip Reames5461d452015-04-23 17:36:48 +00003025 // Note that it is not safe to speculate into a malloc'd region because
3026 // malloc may return null.
3027
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003028 // These are obviously ok if aligned.
3029 if (isa<AllocaInst>(V))
3030 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003031
3032 // It's not always safe to follow a bitcast, for example:
3033 // bitcast i8* (alloca i8) to i32*
3034 // would result in a 4-byte load from a 1-byte alloca. However,
3035 // if we're casting from a pointer from a type of larger size
3036 // to a type of smaller size (or the same size), and the alignment
3037 // is at least as large as for the resulting pointer type, then
3038 // we can look through the bitcast.
3039 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3040 Type *STy = BC->getSrcTy()->getPointerElementType(),
3041 *DTy = BC->getDestTy()->getPointerElementType();
3042 if (STy->isSized() && DTy->isSized() &&
3043 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3044 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003045 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3046 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003047 }
3048
3049 // Global variables which can't collapse to null are ok.
3050 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003051 if (!GV->hasExternalWeakLinkage())
3052 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003053
3054 // byval arguments are okay.
3055 if (const Argument *A = dyn_cast<Argument>(V))
3056 if (A->hasByValAttr())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003057 return isAligned(V, Align, DL);
3058
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003059 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003060 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003061
3062 // For GEPs, determine if the indexing lands within the allocated object.
3063 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003064 Type *VTy = GEP->getType();
3065 Type *Ty = VTy->getPointerElementType();
3066 const Value *Base = GEP->getPointerOperand();
3067
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003068 // Conservatively require that the base pointer be fully dereferenceable
3069 // and aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003070 if (!Visited.insert(Base).second)
Philip Reames5461d452015-04-23 17:36:48 +00003071 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003072 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3073 Visited))
Philip Reames5461d452015-04-23 17:36:48 +00003074 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003075
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003076 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
3077 if (!GEP->accumulateConstantOffset(DL, Offset))
3078 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003079
3080 // Check if the load is within the bounds of the underlying object
3081 // and offset is aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003082 uint64_t LoadSize = DL.getTypeStoreSize(Ty);
3083 Type *BaseType = Base->getType()->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003084 assert(isPowerOf2_32(Align) && "must be a power of 2!");
3085 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3086 !(Offset & APInt(Offset.getBitWidth(), Align-1));
Philip Reames5461d452015-04-23 17:36:48 +00003087 }
3088
3089 // For gc.relocate, look through relocations
3090 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
3091 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
3092 GCRelocateOperands RelocateInst(I);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003093 return isDereferenceableAndAlignedPointer(
3094 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003095 }
3096
3097 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003098 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3099 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003100
3101 // If we don't know, assume the worst.
3102 return false;
3103}
3104
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003105bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3106 const DataLayout &DL,
3107 const Instruction *CtxI,
3108 const DominatorTree *DT,
3109 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003110 // When dereferenceability information is provided by a dereferenceable
3111 // attribute, we know exactly how many bytes are dereferenceable. If we can
3112 // determine the exact offset to the attributed variable, we can use that
3113 // information here.
3114 Type *VTy = V->getType();
3115 Type *Ty = VTy->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003116
3117 // Require ABI alignment for loads without alignment specification
3118 if (Align == 0)
3119 Align = DL.getABITypeAlignment(Ty);
3120
Philip Reames5461d452015-04-23 17:36:48 +00003121 if (Ty->isSized()) {
3122 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3123 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003124
Philip Reames5461d452015-04-23 17:36:48 +00003125 if (Offset.isNonNegative())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003126 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3127 isAligned(BV, Offset, Align, DL))
Philip Reames5461d452015-04-23 17:36:48 +00003128 return true;
3129 }
3130
3131 SmallPtrSet<const Value *, 32> Visited;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003132 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3133 Visited);
3134}
3135
3136bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3137 const Instruction *CtxI,
3138 const DominatorTree *DT,
3139 const TargetLibraryInfo *TLI) {
3140 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003141}
3142
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003143bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3144 const Instruction *CtxI,
3145 const DominatorTree *DT,
3146 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003147 const Operator *Inst = dyn_cast<Operator>(V);
3148 if (!Inst)
3149 return false;
3150
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003151 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3152 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3153 if (C->canTrap())
3154 return false;
3155
3156 switch (Inst->getOpcode()) {
3157 default:
3158 return true;
3159 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003160 case Instruction::URem: {
3161 // x / y is undefined if y == 0.
3162 const APInt *V;
3163 if (match(Inst->getOperand(1), m_APInt(V)))
3164 return *V != 0;
3165 return false;
3166 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003167 case Instruction::SDiv:
3168 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003169 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003170 const APInt *Numerator, *Denominator;
3171 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3172 return false;
3173 // We cannot hoist this division if the denominator is 0.
3174 if (*Denominator == 0)
3175 return false;
3176 // It's safe to hoist if the denominator is not 0 or -1.
3177 if (*Denominator != -1)
3178 return true;
3179 // At this point we know that the denominator is -1. It is safe to hoist as
3180 // long we know that the numerator is not INT_MIN.
3181 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3182 return !Numerator->isMinSignedValue();
3183 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003184 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003185 }
3186 case Instruction::Load: {
3187 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003188 if (!LI->isUnordered() ||
3189 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003190 LI->getParent()->getParent()->hasFnAttribute(
3191 Attribute::SanitizeThread) ||
3192 // Speculative load may load data from dirty regions.
3193 LI->getParent()->getParent()->hasFnAttribute(
3194 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003195 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003196 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003197 return isDereferenceableAndAlignedPointer(
3198 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003199 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003200 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003201 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3202 switch (II->getIntrinsicID()) {
3203 // These synthetic intrinsics have no side-effects and just mark
3204 // information about their operands.
3205 // FIXME: There are other no-op synthetic instructions that potentially
3206 // should be considered at least *safe* to speculate...
3207 case Intrinsic::dbg_declare:
3208 case Intrinsic::dbg_value:
3209 return true;
3210
3211 case Intrinsic::bswap:
3212 case Intrinsic::ctlz:
3213 case Intrinsic::ctpop:
3214 case Intrinsic::cttz:
3215 case Intrinsic::objectsize:
3216 case Intrinsic::sadd_with_overflow:
3217 case Intrinsic::smul_with_overflow:
3218 case Intrinsic::ssub_with_overflow:
3219 case Intrinsic::uadd_with_overflow:
3220 case Intrinsic::umul_with_overflow:
3221 case Intrinsic::usub_with_overflow:
3222 return true;
3223 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3224 // errno like libm sqrt would.
3225 case Intrinsic::sqrt:
3226 case Intrinsic::fma:
3227 case Intrinsic::fmuladd:
3228 case Intrinsic::fabs:
3229 case Intrinsic::minnum:
3230 case Intrinsic::maxnum:
3231 return true;
3232 // TODO: some fp intrinsics are marked as having the same error handling
3233 // as libm. They're safe to speculate when they won't error.
3234 // TODO: are convert_{from,to}_fp16 safe?
3235 // TODO: can we list target-specific intrinsics here?
3236 default: break;
3237 }
3238 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003239 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003240 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003241 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003242 case Instruction::VAArg:
3243 case Instruction::Alloca:
3244 case Instruction::Invoke:
3245 case Instruction::PHI:
3246 case Instruction::Store:
3247 case Instruction::Ret:
3248 case Instruction::Br:
3249 case Instruction::IndirectBr:
3250 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003251 case Instruction::Unreachable:
3252 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003253 case Instruction::AtomicRMW:
3254 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003255 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003256 case Instruction::Resume:
David Majnemer654e1302015-07-31 17:58:14 +00003257 case Instruction::CatchPad:
3258 case Instruction::CatchEndPad:
3259 case Instruction::CatchRet:
3260 case Instruction::CleanupPad:
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00003261 case Instruction::CleanupEndPad:
David Majnemer654e1302015-07-31 17:58:14 +00003262 case Instruction::CleanupRet:
3263 case Instruction::TerminatePad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003264 return false; // Misc instructions which have effects
3265 }
3266}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003267
Quentin Colombet6443cce2015-08-06 18:44:34 +00003268bool llvm::mayBeMemoryDependent(const Instruction &I) {
3269 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3270}
3271
Sanjay Patelaee84212014-11-04 16:27:42 +00003272/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003273bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003274 assert(V->getType()->isPointerTy() && "V must be pointer type");
3275
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003276 // Alloca never returns null, malloc might.
3277 if (isa<AllocaInst>(V)) return true;
3278
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003279 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003280 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003281 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003282
Pete Cooper6b716212015-08-27 03:16:29 +00003283 // A global variable in address space 0 is non null unless extern weak.
3284 // Other address spaces may have null as a valid address for a global,
3285 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003286 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003287 return !GV->hasExternalWeakLinkage() &&
3288 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003289
Philip Reamescdb72f32014-10-20 22:40:55 +00003290 // A Load tagged w/nonnull metadata is never null.
3291 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003292 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003293
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003294 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003295 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003296 return true;
3297
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003298 // operator new never returns null.
3299 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
3300 return true;
3301
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003302 return false;
3303}
David Majnemer491331a2015-01-02 07:29:43 +00003304
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003305static bool isKnownNonNullFromDominatingCondition(const Value *V,
3306 const Instruction *CtxI,
3307 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003308 assert(V->getType()->isPointerTy() && "V must be pointer type");
3309
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003310 unsigned NumUsesExplored = 0;
3311 for (auto U : V->users()) {
3312 // Avoid massive lists
3313 if (NumUsesExplored >= DomConditionsMaxUses)
3314 break;
3315 NumUsesExplored++;
3316 // Consider only compare instructions uniquely controlling a branch
3317 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3318 if (!Cmp)
3319 continue;
3320
3321 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3322 continue;
3323
3324 for (auto *CmpU : Cmp->users()) {
3325 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3326 if (!BI)
3327 continue;
3328
3329 assert(BI->isConditional() && "uses a comparison!");
3330
3331 BasicBlock *NonNullSuccessor = nullptr;
3332 CmpInst::Predicate Pred;
3333
3334 if (match(const_cast<ICmpInst*>(Cmp),
3335 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3336 if (Pred == ICmpInst::ICMP_EQ)
3337 NonNullSuccessor = BI->getSuccessor(1);
3338 else if (Pred == ICmpInst::ICMP_NE)
3339 NonNullSuccessor = BI->getSuccessor(0);
3340 }
3341
3342 if (NonNullSuccessor) {
3343 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3344 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3345 return true;
3346 }
3347 }
3348 }
3349
3350 return false;
3351}
3352
3353bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3354 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3355 if (isKnownNonNull(V, TLI))
3356 return true;
3357
3358 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3359}
3360
David Majnemer491331a2015-01-02 07:29:43 +00003361OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003362 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003363 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003364 const Instruction *CxtI,
3365 const DominatorTree *DT) {
3366 // Multiplying n * m significant bits yields a result of n + m significant
3367 // bits. If the total number of significant bits does not exceed the
3368 // result bit width (minus 1), there is no overflow.
3369 // This means if we have enough leading zero bits in the operands
3370 // we can guarantee that the result does not overflow.
3371 // Ref: "Hacker's Delight" by Henry Warren
3372 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3373 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003374 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003375 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003376 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003377 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3378 DT);
3379 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3380 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003381 // Note that underestimating the number of zero bits gives a more
3382 // conservative answer.
3383 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3384 RHSKnownZero.countLeadingOnes();
3385 // First handle the easy case: if we have enough zero bits there's
3386 // definitely no overflow.
3387 if (ZeroBits >= BitWidth)
3388 return OverflowResult::NeverOverflows;
3389
3390 // Get the largest possible values for each operand.
3391 APInt LHSMax = ~LHSKnownZero;
3392 APInt RHSMax = ~RHSKnownZero;
3393
3394 // We know the multiply operation doesn't overflow if the maximum values for
3395 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003396 bool MaxOverflow;
3397 LHSMax.umul_ov(RHSMax, MaxOverflow);
3398 if (!MaxOverflow)
3399 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003400
David Majnemerc8a576b2015-01-02 07:29:47 +00003401 // We know it always overflows if multiplying the smallest possible values for
3402 // the operands also results in overflow.
3403 bool MinOverflow;
3404 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3405 if (MinOverflow)
3406 return OverflowResult::AlwaysOverflows;
3407
3408 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003409}
David Majnemer5310c1e2015-01-07 00:39:50 +00003410
3411OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003412 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003413 AssumptionCache *AC,
3414 const Instruction *CxtI,
3415 const DominatorTree *DT) {
3416 bool LHSKnownNonNegative, LHSKnownNegative;
3417 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3418 AC, CxtI, DT);
3419 if (LHSKnownNonNegative || LHSKnownNegative) {
3420 bool RHSKnownNonNegative, RHSKnownNegative;
3421 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3422 AC, CxtI, DT);
3423
3424 if (LHSKnownNegative && RHSKnownNegative) {
3425 // The sign bit is set in both cases: this MUST overflow.
3426 // Create a simple add instruction, and insert it into the struct.
3427 return OverflowResult::AlwaysOverflows;
3428 }
3429
3430 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3431 // The sign bit is clear in both cases: this CANNOT overflow.
3432 // Create a simple add instruction, and insert it into the struct.
3433 return OverflowResult::NeverOverflows;
3434 }
3435 }
3436
3437 return OverflowResult::MayOverflow;
3438}
James Molloy71b91c22015-05-11 14:42:20 +00003439
Jingyue Wu10fcea52015-08-20 18:27:04 +00003440static OverflowResult computeOverflowForSignedAdd(
3441 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3442 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3443 if (Add && Add->hasNoSignedWrap()) {
3444 return OverflowResult::NeverOverflows;
3445 }
3446
3447 bool LHSKnownNonNegative, LHSKnownNegative;
3448 bool RHSKnownNonNegative, RHSKnownNegative;
3449 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3450 AC, CxtI, DT);
3451 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3452 AC, CxtI, DT);
3453
3454 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3455 (LHSKnownNegative && RHSKnownNonNegative)) {
3456 // The sign bits are opposite: this CANNOT overflow.
3457 return OverflowResult::NeverOverflows;
3458 }
3459
3460 // The remaining code needs Add to be available. Early returns if not so.
3461 if (!Add)
3462 return OverflowResult::MayOverflow;
3463
3464 // If the sign of Add is the same as at least one of the operands, this add
3465 // CANNOT overflow. This is particularly useful when the sum is
3466 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3467 // operands.
3468 bool LHSOrRHSKnownNonNegative =
3469 (LHSKnownNonNegative || RHSKnownNonNegative);
3470 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3471 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3472 bool AddKnownNonNegative, AddKnownNegative;
3473 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3474 /*Depth=*/0, AC, CxtI, DT);
3475 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3476 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3477 return OverflowResult::NeverOverflows;
3478 }
3479 }
3480
3481 return OverflowResult::MayOverflow;
3482}
3483
3484OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3485 const DataLayout &DL,
3486 AssumptionCache *AC,
3487 const Instruction *CxtI,
3488 const DominatorTree *DT) {
3489 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3490 Add, DL, AC, CxtI, DT);
3491}
3492
3493OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3494 const DataLayout &DL,
3495 AssumptionCache *AC,
3496 const Instruction *CxtI,
3497 const DominatorTree *DT) {
3498 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3499}
3500
Jingyue Wu42f1d672015-07-28 18:22:40 +00003501bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3502 // FIXME: This conservative implementation can be relaxed. E.g. most
3503 // atomic operations are guaranteed to terminate on most platforms
3504 // and most functions terminate.
3505
3506 return !I->isAtomic() && // atomics may never succeed on some platforms
3507 !isa<CallInst>(I) && // could throw and might not terminate
3508 !isa<InvokeInst>(I) && // might not terminate and could throw to
3509 // non-successor (see bug 24185 for details).
3510 !isa<ResumeInst>(I) && // has no successors
3511 !isa<ReturnInst>(I); // has no successors
3512}
3513
3514bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3515 const Loop *L) {
3516 // The loop header is guaranteed to be executed for every iteration.
3517 //
3518 // FIXME: Relax this constraint to cover all basic blocks that are
3519 // guaranteed to be executed at every iteration.
3520 if (I->getParent() != L->getHeader()) return false;
3521
3522 for (const Instruction &LI : *L->getHeader()) {
3523 if (&LI == I) return true;
3524 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3525 }
3526 llvm_unreachable("Instruction not contained in its own parent basic block.");
3527}
3528
3529bool llvm::propagatesFullPoison(const Instruction *I) {
3530 switch (I->getOpcode()) {
3531 case Instruction::Add:
3532 case Instruction::Sub:
3533 case Instruction::Xor:
3534 case Instruction::Trunc:
3535 case Instruction::BitCast:
3536 case Instruction::AddrSpaceCast:
3537 // These operations all propagate poison unconditionally. Note that poison
3538 // is not any particular value, so xor or subtraction of poison with
3539 // itself still yields poison, not zero.
3540 return true;
3541
3542 case Instruction::AShr:
3543 case Instruction::SExt:
3544 // For these operations, one bit of the input is replicated across
3545 // multiple output bits. A replicated poison bit is still poison.
3546 return true;
3547
3548 case Instruction::Shl: {
3549 // Left shift *by* a poison value is poison. The number of
3550 // positions to shift is unsigned, so no negative values are
3551 // possible there. Left shift by zero places preserves poison. So
3552 // it only remains to consider left shift of poison by a positive
3553 // number of places.
3554 //
3555 // A left shift by a positive number of places leaves the lowest order bit
3556 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3557 // make the poison operand violate that flag, yielding a fresh full-poison
3558 // value.
3559 auto *OBO = cast<OverflowingBinaryOperator>(I);
3560 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3561 }
3562
3563 case Instruction::Mul: {
3564 // A multiplication by zero yields a non-poison zero result, so we need to
3565 // rule out zero as an operand. Conservatively, multiplication by a
3566 // non-zero constant is not multiplication by zero.
3567 //
3568 // Multiplication by a non-zero constant can leave some bits
3569 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3570 // order bit unpoisoned. So we need to consider that.
3571 //
3572 // Multiplication by 1 preserves poison. If the multiplication has a
3573 // no-wrap flag, then we can make the poison operand violate that flag
3574 // when multiplied by any integer other than 0 and 1.
3575 auto *OBO = cast<OverflowingBinaryOperator>(I);
3576 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3577 for (Value *V : OBO->operands()) {
3578 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3579 // A ConstantInt cannot yield poison, so we can assume that it is
3580 // the other operand that is poison.
3581 return !CI->isZero();
3582 }
3583 }
3584 }
3585 return false;
3586 }
3587
3588 case Instruction::GetElementPtr:
3589 // A GEP implicitly represents a sequence of additions, subtractions,
3590 // truncations, sign extensions and multiplications. The multiplications
3591 // are by the non-zero sizes of some set of types, so we do not have to be
3592 // concerned with multiplication by zero. If the GEP is in-bounds, then
3593 // these operations are implicitly no-signed-wrap so poison is propagated
3594 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3595 return cast<GEPOperator>(I)->isInBounds();
3596
3597 default:
3598 return false;
3599 }
3600}
3601
3602const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3603 switch (I->getOpcode()) {
3604 case Instruction::Store:
3605 return cast<StoreInst>(I)->getPointerOperand();
3606
3607 case Instruction::Load:
3608 return cast<LoadInst>(I)->getPointerOperand();
3609
3610 case Instruction::AtomicCmpXchg:
3611 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3612
3613 case Instruction::AtomicRMW:
3614 return cast<AtomicRMWInst>(I)->getPointerOperand();
3615
3616 case Instruction::UDiv:
3617 case Instruction::SDiv:
3618 case Instruction::URem:
3619 case Instruction::SRem:
3620 return I->getOperand(1);
3621
3622 default:
3623 return nullptr;
3624 }
3625}
3626
3627bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3628 // We currently only look for uses of poison values within the same basic
3629 // block, as that makes it easier to guarantee that the uses will be
3630 // executed given that PoisonI is executed.
3631 //
3632 // FIXME: Expand this to consider uses beyond the same basic block. To do
3633 // this, look out for the distinction between post-dominance and strong
3634 // post-dominance.
3635 const BasicBlock *BB = PoisonI->getParent();
3636
3637 // Set of instructions that we have proved will yield poison if PoisonI
3638 // does.
3639 SmallSet<const Value *, 16> YieldsPoison;
3640 YieldsPoison.insert(PoisonI);
3641
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003642 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3643 I != E; ++I) {
3644 if (&*I != PoisonI) {
3645 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003646 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003647 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3648 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003649 }
3650
3651 // Mark poison that propagates from I through uses of I.
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003652 if (YieldsPoison.count(&*I)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003653 for (const User *User : I->users()) {
3654 const Instruction *UserI = cast<Instruction>(User);
3655 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3656 YieldsPoison.insert(User);
3657 }
3658 }
3659 }
3660 return false;
3661}
3662
James Molloy134bec22015-08-11 09:12:57 +00003663static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3664 if (FMF.noNaNs())
3665 return true;
3666
3667 if (auto *C = dyn_cast<ConstantFP>(V))
3668 return !C->isNaN();
3669 return false;
3670}
3671
3672static bool isKnownNonZero(Value *V) {
3673 if (auto *C = dyn_cast<ConstantFP>(V))
3674 return !C->isZero();
3675 return false;
3676}
3677
3678static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3679 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003680 Value *CmpLHS, Value *CmpRHS,
3681 Value *TrueVal, Value *FalseVal,
3682 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003683 LHS = CmpLHS;
3684 RHS = CmpRHS;
3685
James Molloy134bec22015-08-11 09:12:57 +00003686 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3687 // return inconsistent results between implementations.
3688 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3689 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3690 // Therefore we behave conservatively and only proceed if at least one of the
3691 // operands is known to not be zero, or if we don't care about signed zeroes.
3692 switch (Pred) {
3693 default: break;
3694 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3695 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3696 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3697 !isKnownNonZero(CmpRHS))
3698 return {SPF_UNKNOWN, SPNB_NA, false};
3699 }
3700
3701 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3702 bool Ordered = false;
3703
3704 // When given one NaN and one non-NaN input:
3705 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3706 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3707 // ordered comparison fails), which could be NaN or non-NaN.
3708 // so here we discover exactly what NaN behavior is required/accepted.
3709 if (CmpInst::isFPPredicate(Pred)) {
3710 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3711 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3712
3713 if (LHSSafe && RHSSafe) {
3714 // Both operands are known non-NaN.
3715 NaNBehavior = SPNB_RETURNS_ANY;
3716 } else if (CmpInst::isOrdered(Pred)) {
3717 // An ordered comparison will return false when given a NaN, so it
3718 // returns the RHS.
3719 Ordered = true;
3720 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003721 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003722 NaNBehavior = SPNB_RETURNS_NAN;
3723 else if (RHSSafe)
3724 NaNBehavior = SPNB_RETURNS_OTHER;
3725 else
3726 // Completely unsafe.
3727 return {SPF_UNKNOWN, SPNB_NA, false};
3728 } else {
3729 Ordered = false;
3730 // An unordered comparison will return true when given a NaN, so it
3731 // returns the LHS.
3732 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003733 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003734 NaNBehavior = SPNB_RETURNS_OTHER;
3735 else if (RHSSafe)
3736 NaNBehavior = SPNB_RETURNS_NAN;
3737 else
3738 // Completely unsafe.
3739 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003740 }
3741 }
3742
James Molloy71b91c22015-05-11 14:42:20 +00003743 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003744 std::swap(CmpLHS, CmpRHS);
3745 Pred = CmpInst::getSwappedPredicate(Pred);
3746 if (NaNBehavior == SPNB_RETURNS_NAN)
3747 NaNBehavior = SPNB_RETURNS_OTHER;
3748 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3749 NaNBehavior = SPNB_RETURNS_NAN;
3750 Ordered = !Ordered;
3751 }
3752
3753 // ([if]cmp X, Y) ? X : Y
3754 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003755 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003756 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003757 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003758 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003759 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003760 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003761 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003762 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003763 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003764 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3765 case FCmpInst::FCMP_UGT:
3766 case FCmpInst::FCMP_UGE:
3767 case FCmpInst::FCMP_OGT:
3768 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3769 case FCmpInst::FCMP_ULT:
3770 case FCmpInst::FCMP_ULE:
3771 case FCmpInst::FCMP_OLT:
3772 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003773 }
3774 }
3775
3776 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3777 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3778 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3779
3780 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3781 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3782 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003783 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003784 }
3785
3786 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3787 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3788 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003789 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003790 }
3791 }
3792
3793 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3794 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3795 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3796 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3797 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3798 LHS = TrueVal;
3799 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003800 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003801 }
3802 }
3803 }
3804
3805 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3806
James Molloy134bec22015-08-11 09:12:57 +00003807 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003808}
James Molloy270ef8c2015-05-15 16:04:50 +00003809
James Molloy569cea62015-09-02 17:25:25 +00003810static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3811 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003812 CastInst *CI = dyn_cast<CastInst>(V1);
3813 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003814 CastInst *CI2 = dyn_cast<CastInst>(V2);
3815 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003816 return nullptr;
3817 *CastOp = CI->getOpcode();
3818
James Molloy569cea62015-09-02 17:25:25 +00003819 if (CI2) {
3820 // If V1 and V2 are both the same cast from the same type, we can look
3821 // through V1.
3822 if (CI2->getOpcode() == CI->getOpcode() &&
3823 CI2->getSrcTy() == CI->getSrcTy())
3824 return CI2->getOperand(0);
3825 return nullptr;
3826 } else if (!C) {
3827 return nullptr;
3828 }
3829
James Molloy2b21a7c2015-05-20 18:41:25 +00003830 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
3831 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
3832 // This is only valid if the truncated value can be sign-extended
3833 // back to the original value.
3834 if (ConstantExpr::getSExt(T, C->getType()) == C)
3835 return T;
3836 return nullptr;
3837 }
3838 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00003839 return ConstantExpr::getTrunc(C, CI->getSrcTy());
3840
3841 if (isa<TruncInst>(CI))
3842 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3843
James Molloy134bec22015-08-11 09:12:57 +00003844 if (isa<FPToUIInst>(CI))
3845 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3846
3847 if (isa<FPToSIInst>(CI))
3848 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3849
3850 if (isa<UIToFPInst>(CI))
3851 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3852
3853 if (isa<SIToFPInst>(CI))
3854 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3855
3856 if (isa<FPTruncInst>(CI))
3857 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3858
3859 if (isa<FPExtInst>(CI))
3860 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3861
James Molloy270ef8c2015-05-15 16:04:50 +00003862 return nullptr;
3863}
3864
James Molloy134bec22015-08-11 09:12:57 +00003865SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00003866 Value *&LHS, Value *&RHS,
3867 Instruction::CastOps *CastOp) {
3868 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003869 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003870
James Molloy134bec22015-08-11 09:12:57 +00003871 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3872 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003873
James Molloy134bec22015-08-11 09:12:57 +00003874 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003875 Value *CmpLHS = CmpI->getOperand(0);
3876 Value *CmpRHS = CmpI->getOperand(1);
3877 Value *TrueVal = SI->getTrueValue();
3878 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003879 FastMathFlags FMF;
3880 if (isa<FPMathOperator>(CmpI))
3881 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003882
3883 // Bail out early.
3884 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003885 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003886
3887 // Deal with type mismatches.
3888 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003889 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003890 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003891 cast<CastInst>(TrueVal)->getOperand(0), C,
3892 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003893 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003894 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003895 C, cast<CastInst>(FalseVal)->getOperand(0),
3896 LHS, RHS);
3897 }
James Molloy134bec22015-08-11 09:12:57 +00003898 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003899 LHS, RHS);
3900}