blob: d3723037ddaf4fd0204db4d345218319800c392e [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000016#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000017#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000020#include "llvm/Analysis/LoopInfo.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000021#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000022#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000023#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000025#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000026#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/GlobalAlias.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/LLVMContext.h"
32#include "llvm/IR/Metadata.h"
33#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000034#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000035#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000036#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000037#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000038#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000039using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000040using namespace llvm::PatternMatch;
41
42const unsigned MaxDepth = 6;
43
Philip Reames1c292272015-03-10 22:43:20 +000044/// Enable an experimental feature to leverage information about dominating
45/// conditions to compute known bits. The individual options below control how
Benjamin Kramerdf005cb2015-08-08 18:27:36 +000046/// hard we search. The defaults are chosen to be fairly aggressive. If you
Philip Reames1c292272015-03-10 22:43:20 +000047/// run into compile time problems when testing, scale them back and report
48/// your findings.
49static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
50 cl::Hidden, cl::init(false));
51
52// This is expensive, so we only do it for the top level query value.
53// (TODO: evaluate cost vs profit, consider higher thresholds)
54static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
55 cl::Hidden, cl::init(1));
56
57/// How many dominating blocks should be scanned looking for dominating
58/// conditions?
59static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
60 cl::Hidden,
Igor Laevskycea9ede2015-09-29 14:57:52 +000061 cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000062
63// Controls the number of uses of the value searched for possible
64// dominating comparisons.
65static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000066 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000067
68// If true, don't consider only compares whose only use is a branch.
69static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
70 cl::Hidden, cl::init(false));
71
Sanjay Patelaee84212014-11-04 16:27:42 +000072/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
73/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000074static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000075 if (unsigned BitWidth = Ty->getScalarSizeInBits())
76 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000077
Mehdi Aminia28d91d2015-03-10 02:37:25 +000078 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000079}
Chris Lattner965c7692008-06-02 01:18:21 +000080
Hal Finkel60db0582014-09-07 18:57:58 +000081// Many of these functions have internal versions that take an assumption
82// exclusion set. This is because of the potential for mutual recursion to
83// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
84// classic case of this is assume(x = y), which will attempt to determine
85// bits in x from bits in y, which will attempt to determine bits in y from
86// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
87// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
88// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
89typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
90
Benjamin Kramercfd8d902014-09-12 08:56:53 +000091namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000092// Simplifying using an assume can only be done in a particular control-flow
93// context (the context instruction provides that context). If an assume and
94// the context instruction are not in the same block then the DT helps in
95// figuring out if we can use it.
96struct Query {
97 ExclInvsSet ExclInvs;
Chandler Carruth66b31302015-01-04 12:03:27 +000098 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000099 const Instruction *CxtI;
100 const DominatorTree *DT;
101
Chandler Carruth66b31302015-01-04 12:03:27 +0000102 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
Hal Finkel60db0582014-09-07 18:57:58 +0000103 const DominatorTree *DT = nullptr)
Chandler Carruth66b31302015-01-04 12:03:27 +0000104 : AC(AC), CxtI(CxtI), DT(DT) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000105
106 Query(const Query &Q, const Value *NewExcl)
Chandler Carruth66b31302015-01-04 12:03:27 +0000107 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000108 ExclInvs.insert(NewExcl);
109 }
110};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000111} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000112
Sanjay Patel547e9752014-11-04 16:09:50 +0000113// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000114// the preferred context instruction (if any).
115static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
116 // If we've been provided with a context instruction, then use that (provided
117 // it has been inserted).
118 if (CxtI && CxtI->getParent())
119 return CxtI;
120
121 // If the value is really an already-inserted instruction, then use that.
122 CxtI = dyn_cast<Instruction>(V);
123 if (CxtI && CxtI->getParent())
124 return CxtI;
125
126 return nullptr;
127}
128
129static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000130 const DataLayout &DL, unsigned Depth,
131 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000132
133void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000134 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000135 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000136 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000137 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000138 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000139}
140
Jingyue Wuca321902015-05-14 23:53:19 +0000141bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
142 AssumptionCache *AC, const Instruction *CxtI,
143 const DominatorTree *DT) {
144 assert(LHS->getType() == RHS->getType() &&
145 "LHS and RHS should have the same type");
146 assert(LHS->getType()->isIntOrIntVectorTy() &&
147 "LHS and RHS should be integers");
148 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
149 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
150 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
151 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
152 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
153 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
154}
155
Hal Finkel60db0582014-09-07 18:57:58 +0000156static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000157 const DataLayout &DL, unsigned Depth,
158 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000159
160void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000161 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000162 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000163 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000164 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000165 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000166}
167
168static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000169 const Query &Q, const DataLayout &DL);
Hal Finkel60db0582014-09-07 18:57:58 +0000170
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000172 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000173 const Instruction *CxtI,
174 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
176 Query(AC, safeCxtI(V, CxtI), DT), DL);
177}
178
179static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
180 const Query &Q);
181
182bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
183 AssumptionCache *AC, const Instruction *CxtI,
184 const DominatorTree *DT) {
185 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
186}
187
Jingyue Wu10fcea52015-08-20 18:27:04 +0000188bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
189 AssumptionCache *AC, const Instruction *CxtI,
190 const DominatorTree *DT) {
191 bool NonNegative, Negative;
192 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
193 return NonNegative;
194}
195
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000196static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
197 unsigned Depth, const Query &Q);
198
199bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
200 unsigned Depth, AssumptionCache *AC,
201 const Instruction *CxtI, const DominatorTree *DT) {
202 return ::MaskedValueIsZero(V, Mask, DL, Depth,
203 Query(AC, safeCxtI(V, CxtI), DT));
204}
205
206static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
207 unsigned Depth, const Query &Q);
208
209unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
210 unsigned Depth, AssumptionCache *AC,
211 const Instruction *CxtI,
212 const DominatorTree *DT) {
213 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000214}
215
Jay Foada0653a32014-05-14 21:14:37 +0000216static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
217 APInt &KnownZero, APInt &KnownOne,
218 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000219 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000220 const Query &Q) {
221 if (!Add) {
222 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
223 // We know that the top bits of C-X are clear if X contains less bits
224 // than C (i.e. no wrap-around can happen). For example, 20-X is
225 // positive if we can prove that X is >= 0 and < 16.
226 if (!CLHS->getValue().isNegative()) {
227 unsigned BitWidth = KnownZero.getBitWidth();
228 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
229 // NLZ can't be BitWidth with no sign bit
230 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000232
233 // If all of the MaskV bits are known to be zero, then we know the
234 // output top bits are zero, because we now know that the output is
235 // from [0-C].
236 if ((KnownZero2 & MaskV) == MaskV) {
237 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
238 // Top bits known zero.
239 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
240 }
241 }
242 }
243 }
244
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000245 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000246
David Majnemer97ddca32014-08-22 00:40:43 +0000247 // If an initial sequence of bits in the result is not needed, the
248 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000249 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000250 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
251 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000252
David Majnemer97ddca32014-08-22 00:40:43 +0000253 // Carry in a 1 for a subtract, rather than a 0.
254 APInt CarryIn(BitWidth, 0);
255 if (!Add) {
256 // Sum = LHS + ~RHS + 1
257 std::swap(KnownZero2, KnownOne2);
258 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000259 }
260
David Majnemer97ddca32014-08-22 00:40:43 +0000261 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
262 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
263
264 // Compute known bits of the carry.
265 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
266 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
267
268 // Compute set of known bits (where all three relevant bits are known).
269 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
270 APInt RHSKnown = KnownZero2 | KnownOne2;
271 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
272 APInt Known = LHSKnown & RHSKnown & CarryKnown;
273
274 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
275 "known bits of sum differ");
276
277 // Compute known bits of the result.
278 KnownZero = ~PossibleSumOne & Known;
279 KnownOne = PossibleSumOne & Known;
280
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000281 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000282 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000283 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000284 // Adding two non-negative numbers, or subtracting a negative number from
285 // a non-negative one, can't wrap into negative.
286 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
287 KnownZero |= APInt::getSignBit(BitWidth);
288 // Adding two negative numbers, or subtracting a non-negative number from
289 // a negative one, can't wrap into non-negative.
290 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
291 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000292 }
293 }
294}
295
Jay Foada0653a32014-05-14 21:14:37 +0000296static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
297 APInt &KnownZero, APInt &KnownOne,
298 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000299 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000300 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000301 unsigned BitWidth = KnownZero.getBitWidth();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000302 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
303 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000304
305 bool isKnownNegative = false;
306 bool isKnownNonNegative = false;
307 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000308 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000309 if (Op0 == Op1) {
310 // The product of a number with itself is non-negative.
311 isKnownNonNegative = true;
312 } else {
313 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
314 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
315 bool isKnownNegativeOp1 = KnownOne.isNegative();
316 bool isKnownNegativeOp0 = KnownOne2.isNegative();
317 // The product of two numbers with the same sign is non-negative.
318 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
319 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
320 // The product of a negative number and a non-negative number is either
321 // negative or zero.
322 if (!isKnownNonNegative)
323 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000324 isKnownNonZero(Op0, DL, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000325 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000326 isKnownNonZero(Op1, DL, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000327 }
328 }
329
330 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000331 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000332 // More trickiness is possible, but this is sufficient for the
333 // interesting case of alignment computation.
334 KnownOne.clearAllBits();
335 unsigned TrailZ = KnownZero.countTrailingOnes() +
336 KnownZero2.countTrailingOnes();
337 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
338 KnownZero2.countLeadingOnes(),
339 BitWidth) - BitWidth;
340
341 TrailZ = std::min(TrailZ, BitWidth);
342 LeadZ = std::min(LeadZ, BitWidth);
343 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
344 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000345
346 // Only make use of no-wrap flags if we failed to compute the sign bit
347 // directly. This matters if the multiplication always overflows, in
348 // which case we prefer to follow the result of the direct computation,
349 // though as the program is invoking undefined behaviour we can choose
350 // whatever we like here.
351 if (isKnownNonNegative && !KnownOne.isNegative())
352 KnownZero.setBit(BitWidth - 1);
353 else if (isKnownNegative && !KnownZero.isNegative())
354 KnownOne.setBit(BitWidth - 1);
355}
356
Jingyue Wu37fcb592014-06-19 16:50:16 +0000357void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
358 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000359 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000360 unsigned NumRanges = Ranges.getNumOperands() / 2;
361 assert(NumRanges >= 1);
362
363 // Use the high end of the ranges to find leading zeros.
364 unsigned MinLeadingZeros = BitWidth;
365 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000366 ConstantInt *Lower =
367 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
368 ConstantInt *Upper =
369 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000370 ConstantRange Range(Lower->getValue(), Upper->getValue());
371 if (Range.isWrappedSet())
372 MinLeadingZeros = 0; // -1 has no zeros
373 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
374 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
375 }
376
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000378}
Jay Foad5a29c362014-05-15 12:12:55 +0000379
Hal Finkel60db0582014-09-07 18:57:58 +0000380static bool isEphemeralValueOf(Instruction *I, const Value *E) {
381 SmallVector<const Value *, 16> WorkSet(1, I);
382 SmallPtrSet<const Value *, 32> Visited;
383 SmallPtrSet<const Value *, 16> EphValues;
384
385 while (!WorkSet.empty()) {
386 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000387 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000388 continue;
389
390 // If all uses of this value are ephemeral, then so is this value.
391 bool FoundNEUse = false;
392 for (const User *I : V->users())
393 if (!EphValues.count(I)) {
394 FoundNEUse = true;
395 break;
396 }
397
398 if (!FoundNEUse) {
399 if (V == E)
400 return true;
401
402 EphValues.insert(V);
403 if (const User *U = dyn_cast<User>(V))
404 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
405 J != JE; ++J) {
406 if (isSafeToSpeculativelyExecute(*J))
407 WorkSet.push_back(*J);
408 }
409 }
410 }
411
412 return false;
413}
414
415// Is this an intrinsic that cannot be speculated but also cannot trap?
416static bool isAssumeLikeIntrinsic(const Instruction *I) {
417 if (const CallInst *CI = dyn_cast<CallInst>(I))
418 if (Function *F = CI->getCalledFunction())
419 switch (F->getIntrinsicID()) {
420 default: break;
421 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
422 case Intrinsic::assume:
423 case Intrinsic::dbg_declare:
424 case Intrinsic::dbg_value:
425 case Intrinsic::invariant_start:
426 case Intrinsic::invariant_end:
427 case Intrinsic::lifetime_start:
428 case Intrinsic::lifetime_end:
429 case Intrinsic::objectsize:
430 case Intrinsic::ptr_annotation:
431 case Intrinsic::var_annotation:
432 return true;
433 }
434
435 return false;
436}
437
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000438static bool isValidAssumeForContext(Value *V, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000439 Instruction *Inv = cast<Instruction>(V);
440
441 // There are two restrictions on the use of an assume:
442 // 1. The assume must dominate the context (or the control flow must
443 // reach the assume whenever it reaches the context).
444 // 2. The context must not be in the assume's set of ephemeral values
445 // (otherwise we will use the assume to prove that the condition
446 // feeding the assume is trivially true, thus causing the removal of
447 // the assume).
448
449 if (Q.DT) {
450 if (Q.DT->dominates(Inv, Q.CxtI)) {
451 return true;
452 } else if (Inv->getParent() == Q.CxtI->getParent()) {
453 // The context comes first, but they're both in the same block. Make sure
454 // there is nothing in between that might interrupt the control flow.
455 for (BasicBlock::const_iterator I =
456 std::next(BasicBlock::const_iterator(Q.CxtI)),
457 IE(Inv); I != IE; ++I)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000458 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000459 return false;
460
461 return !isEphemeralValueOf(Inv, Q.CxtI);
462 }
463
464 return false;
465 }
466
467 // When we don't have a DT, we do a limited search...
468 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
469 return true;
470 } else if (Inv->getParent() == Q.CxtI->getParent()) {
471 // Search forward from the assume until we reach the context (or the end
472 // of the block); the common case is that the assume will come first.
473 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
474 IE = Inv->getParent()->end(); I != IE; ++I)
475 if (I == Q.CxtI)
476 return true;
477
478 // The context must come first...
479 for (BasicBlock::const_iterator I =
480 std::next(BasicBlock::const_iterator(Q.CxtI)),
481 IE(Inv); I != IE; ++I)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000482 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000483 return false;
484
485 return !isEphemeralValueOf(Inv, Q.CxtI);
486 }
487
488 return false;
489}
490
491bool llvm::isValidAssumeForContext(const Instruction *I,
492 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000493 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000494 return ::isValidAssumeForContext(const_cast<Instruction *>(I),
495 Query(nullptr, CxtI, DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000496}
497
498template<typename LHS, typename RHS>
499inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
500 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
501m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
502 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
503}
504
505template<typename LHS, typename RHS>
506inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
507 BinaryOp_match<RHS, LHS, Instruction::And>>
508m_c_And(const LHS &L, const RHS &R) {
509 return m_CombineOr(m_And(L, R), m_And(R, L));
510}
511
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000512template<typename LHS, typename RHS>
513inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
514 BinaryOp_match<RHS, LHS, Instruction::Or>>
515m_c_Or(const LHS &L, const RHS &R) {
516 return m_CombineOr(m_Or(L, R), m_Or(R, L));
517}
518
519template<typename LHS, typename RHS>
520inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
521 BinaryOp_match<RHS, LHS, Instruction::Xor>>
522m_c_Xor(const LHS &L, const RHS &R) {
523 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
524}
525
Philip Reames1c292272015-03-10 22:43:20 +0000526/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
527/// true (at the context instruction.) This is mostly a utility function for
528/// the prototype dominating conditions reasoning below.
529static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
530 APInt &KnownZero,
531 APInt &KnownOne,
532 const DataLayout &DL,
533 unsigned Depth, const Query &Q) {
534 Value *LHS = Cmp->getOperand(0);
535 Value *RHS = Cmp->getOperand(1);
536 // TODO: We could potentially be more aggressive here. This would be worth
537 // evaluating. If we can, explore commoning this code with the assume
538 // handling logic.
539 if (LHS != V && RHS != V)
540 return;
541
542 const unsigned BitWidth = KnownZero.getBitWidth();
543
544 switch (Cmp->getPredicate()) {
545 default:
546 // We know nothing from this condition
547 break;
548 // TODO: implement unsigned bound from below (known one bits)
549 // TODO: common condition check implementations with assumes
550 // TODO: implement other patterns from assume (e.g. V & B == A)
551 case ICmpInst::ICMP_SGT:
552 if (LHS == V) {
553 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
554 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
555 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
556 // We know that the sign bit is zero.
557 KnownZero |= APInt::getSignBit(BitWidth);
558 }
559 }
560 break;
561 case ICmpInst::ICMP_EQ:
Jingyue Wu12b0c282015-06-15 05:46:29 +0000562 {
563 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
564 if (LHS == V)
565 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
566 else if (RHS == V)
567 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
568 else
569 llvm_unreachable("missing use?");
570 KnownZero |= KnownZeroTemp;
571 KnownOne |= KnownOneTemp;
572 }
Philip Reames1c292272015-03-10 22:43:20 +0000573 break;
574 case ICmpInst::ICMP_ULE:
575 if (LHS == V) {
576 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
577 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
578 // The known zero bits carry over
579 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
580 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
581 }
582 break;
583 case ICmpInst::ICMP_ULT:
584 if (LHS == V) {
585 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
587 // Whatever high bits in rhs are zero are known to be zero (if rhs is a
588 // power of 2, then one more).
589 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
590 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
591 SignBits++;
592 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
593 }
594 break;
595 };
596}
597
598/// Compute known bits in 'V' from conditions which are known to be true along
599/// all paths leading to the context instruction. In particular, look for
600/// cases where one branch of an interesting condition dominates the context
601/// instruction. This does not do general dataflow.
602/// NOTE: This code is EXPERIMENTAL and currently off by default.
603static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
604 APInt &KnownOne,
605 const DataLayout &DL,
606 unsigned Depth,
607 const Query &Q) {
608 // Need both the dominator tree and the query location to do anything useful
609 if (!Q.DT || !Q.CxtI)
610 return;
611 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
Philip Reames963febd2015-09-21 22:04:10 +0000612 // The context instruction might be in a statically unreachable block. If
613 // so, asking dominator queries may yield suprising results. (e.g. the block
614 // may not have a dom tree node)
615 if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
616 return;
Philip Reames1c292272015-03-10 22:43:20 +0000617
618 // Avoid useless work
619 if (auto VI = dyn_cast<Instruction>(V))
620 if (VI->getParent() == Cxt->getParent())
621 return;
622
623 // Note: We currently implement two options. It's not clear which of these
624 // will survive long term, we need data for that.
625 // Option 1 - Try walking the dominator tree looking for conditions which
626 // might apply. This works well for local conditions (loop guards, etc..),
627 // but not as well for things far from the context instruction (presuming a
628 // low max blocks explored). If we can set an high enough limit, this would
629 // be all we need.
630 // Option 2 - We restrict out search to those conditions which are uses of
631 // the value we're interested in. This is independent of dom structure,
632 // but is slightly less powerful without looking through lots of use chains.
633 // It does handle conditions far from the context instruction (e.g. early
634 // function exits on entry) really well though.
635
636 // Option 1 - Search the dom tree
637 unsigned NumBlocksExplored = 0;
638 BasicBlock *Current = Cxt->getParent();
639 while (true) {
640 // Stop searching if we've gone too far up the chain
641 if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
642 break;
643 NumBlocksExplored++;
644
645 if (!Q.DT->getNode(Current)->getIDom())
646 break;
647 Current = Q.DT->getNode(Current)->getIDom()->getBlock();
648 if (!Current)
649 // found function entry
650 break;
651
652 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
653 if (!BI || BI->isUnconditional())
654 continue;
655 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
656 if (!Cmp)
657 continue;
658
659 // We're looking for conditions that are guaranteed to hold at the context
660 // instruction. Finding a condition where one path dominates the context
661 // isn't enough because both the true and false cases could merge before
662 // the context instruction we're actually interested in. Instead, we need
Philip Reames963febd2015-09-21 22:04:10 +0000663 // to ensure that the taken *edge* dominates the context instruction. We
664 // know that the edge must be reachable since we started from a reachable
665 // block.
Philip Reames1c292272015-03-10 22:43:20 +0000666 BasicBlock *BB0 = BI->getSuccessor(0);
667 BasicBlockEdge Edge(BI->getParent(), BB0);
668 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
669 continue;
670
671 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
672 Q);
673 }
674
675 // Option 2 - Search the other uses of V
676 unsigned NumUsesExplored = 0;
677 for (auto U : V->users()) {
678 // Avoid massive lists
679 if (NumUsesExplored >= DomConditionsMaxUses)
680 break;
681 NumUsesExplored++;
682 // Consider only compare instructions uniquely controlling a branch
683 ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
684 if (!Cmp)
685 continue;
686
687 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
688 continue;
689
690 for (auto *CmpU : Cmp->users()) {
691 BranchInst *BI = dyn_cast<BranchInst>(CmpU);
692 if (!BI || BI->isUnconditional())
693 continue;
694 // We're looking for conditions that are guaranteed to hold at the
695 // context instruction. Finding a condition where one path dominates
696 // the context isn't enough because both the true and false cases could
697 // merge before the context instruction we're actually interested in.
698 // Instead, we need to ensure that the taken *edge* dominates the context
699 // instruction.
700 BasicBlock *BB0 = BI->getSuccessor(0);
701 BasicBlockEdge Edge(BI->getParent(), BB0);
702 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
703 continue;
704
705 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
706 Q);
707 }
708 }
709}
710
Hal Finkel60db0582014-09-07 18:57:58 +0000711static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000712 APInt &KnownOne, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +0000713 unsigned Depth, const Query &Q) {
714 // Use of assumptions is context-sensitive. If we don't have a context, we
715 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000716 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000717 return;
718
719 unsigned BitWidth = KnownZero.getBitWidth();
720
Chandler Carruth66b31302015-01-04 12:03:27 +0000721 for (auto &AssumeVH : Q.AC->assumptions()) {
722 if (!AssumeVH)
723 continue;
724 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000725 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000726 "Got assumption for the wrong function!");
Hal Finkel60db0582014-09-07 18:57:58 +0000727 if (Q.ExclInvs.count(I))
728 continue;
729
Philip Reames00d3b272014-11-24 23:44:28 +0000730 // Warning: This loop can end up being somewhat performance sensetive.
731 // We're running this loop for once for each value queried resulting in a
732 // runtime of ~O(#assumes * #values).
733
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000734 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000735 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000736
Philip Reames00d3b272014-11-24 23:44:28 +0000737 Value *Arg = I->getArgOperand(0);
738
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000739 if (Arg == V && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000740 assert(BitWidth == 1 && "assume operand is not i1?");
741 KnownZero.clearAllBits();
742 KnownOne.setAllBits();
743 return;
744 }
745
David Majnemer9b609752014-12-12 23:59:29 +0000746 // The remaining tests are all recursive, so bail out if we hit the limit.
747 if (Depth == MaxDepth)
748 continue;
749
Hal Finkel60db0582014-09-07 18:57:58 +0000750 Value *A, *B;
751 auto m_V = m_CombineOr(m_Specific(V),
752 m_CombineOr(m_PtrToInt(m_Specific(V)),
753 m_BitCast(m_Specific(V))));
754
755 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000756 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000757 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000758 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000759 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000760 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
761 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
762 KnownZero |= RHSKnownZero;
763 KnownOne |= RHSKnownOne;
764 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000765 } else if (match(Arg,
766 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
767 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
770 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
771 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
772
773 // For those bits in the mask that are known to be one, we can propagate
774 // known bits from the RHS to V.
775 KnownZero |= RHSKnownZero & MaskKnownOne;
776 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000777 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000778 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
779 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000780 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000781 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
782 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
783 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
784 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
785
786 // For those bits in the mask that are known to be one, we can propagate
787 // inverted known bits from the RHS to V.
788 KnownZero |= RHSKnownOne & MaskKnownOne;
789 KnownOne |= RHSKnownZero & MaskKnownOne;
790 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000791 } else if (match(Arg,
792 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
793 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000794 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
795 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
796 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
797 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
798
799 // For those bits in B that are known to be zero, we can propagate known
800 // bits from the RHS to V.
801 KnownZero |= RHSKnownZero & BKnownZero;
802 KnownOne |= RHSKnownOne & BKnownZero;
803 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000804 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
805 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000806 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000807 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
808 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
809 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
810 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
811
812 // For those bits in B that are known to be zero, we can propagate
813 // inverted known bits from the RHS to V.
814 KnownZero |= RHSKnownOne & BKnownZero;
815 KnownOne |= RHSKnownZero & BKnownZero;
816 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000817 } else if (match(Arg,
818 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
819 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000820 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
821 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
822 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
823 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
824
825 // For those bits in B that are known to be zero, we can propagate known
826 // bits from the RHS to V. For those bits in B that are known to be one,
827 // we can propagate inverted known bits from the RHS to V.
828 KnownZero |= RHSKnownZero & BKnownZero;
829 KnownOne |= RHSKnownOne & BKnownZero;
830 KnownZero |= RHSKnownOne & BKnownOne;
831 KnownOne |= RHSKnownZero & BKnownOne;
832 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000833 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
834 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000835 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000836 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
837 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
838 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
839 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
840
841 // For those bits in B that are known to be zero, we can propagate
842 // inverted known bits from the RHS to V. For those bits in B that are
843 // known to be one, we can propagate known bits from the RHS to V.
844 KnownZero |= RHSKnownOne & BKnownZero;
845 KnownOne |= RHSKnownZero & BKnownZero;
846 KnownZero |= RHSKnownZero & BKnownOne;
847 KnownOne |= RHSKnownOne & BKnownOne;
848 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000849 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
850 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000851 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000852 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
853 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
854 // For those bits in RHS that are known, we can propagate them to known
855 // bits in V shifted to the right by C.
856 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
857 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
858 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000859 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
860 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000861 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000862 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
863 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
864 // For those bits in RHS that are known, we can propagate them inverted
865 // to known bits in V shifted to the right by C.
866 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
867 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
868 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000869 } else if (match(Arg,
870 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000871 m_AShr(m_V, m_ConstantInt(C))),
872 m_Value(A))) &&
873 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000874 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
875 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
876 // For those bits in RHS that are known, we can propagate them to known
877 // bits in V shifted to the right by C.
878 KnownZero |= RHSKnownZero << C->getZExtValue();
879 KnownOne |= RHSKnownOne << C->getZExtValue();
880 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000881 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000882 m_LShr(m_V, m_ConstantInt(C)),
883 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000884 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000885 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000886 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
887 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
888 // For those bits in RHS that are known, we can propagate them inverted
889 // to known bits in V shifted to the right by C.
890 KnownZero |= RHSKnownOne << C->getZExtValue();
891 KnownOne |= RHSKnownZero << C->getZExtValue();
892 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000893 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000894 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000895 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
896 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
897
898 if (RHSKnownZero.isNegative()) {
899 // We know that the sign bit is zero.
900 KnownZero |= APInt::getSignBit(BitWidth);
901 }
902 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000903 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000904 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000905 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
906 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
907
908 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
909 // We know that the sign bit is zero.
910 KnownZero |= APInt::getSignBit(BitWidth);
911 }
912 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000913 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000914 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000915 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
916 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
917
918 if (RHSKnownOne.isNegative()) {
919 // We know that the sign bit is one.
920 KnownOne |= APInt::getSignBit(BitWidth);
921 }
922 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000923 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000924 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000925 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
926 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
927
928 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
929 // We know that the sign bit is one.
930 KnownOne |= APInt::getSignBit(BitWidth);
931 }
932 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000933 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000934 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
937
938 // Whatever high bits in c are zero are known to be zero.
939 KnownZero |=
940 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
941 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000942 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000943 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000944 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
945 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
946
947 // Whatever high bits in c are zero are known to be zero (if c is a power
948 // of 2, then one more).
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000949 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000950 KnownZero |=
951 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
952 else
953 KnownZero |=
954 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000955 }
956 }
957}
958
Jingyue Wu12b0c282015-06-15 05:46:29 +0000959static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
960 APInt &KnownOne, const DataLayout &DL,
961 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000962 unsigned BitWidth = KnownZero.getBitWidth();
963
Chris Lattner965c7692008-06-02 01:18:21 +0000964 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000965 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000966 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000967 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000968 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000969 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000970 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000971 case Instruction::And: {
972 // If either the LHS or the RHS are Zero, the result is zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000973 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
974 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000975
Chris Lattner965c7692008-06-02 01:18:21 +0000976 // Output known-1 bits are only known if set in both the LHS & RHS.
977 KnownOne &= KnownOne2;
978 // Output known-0 are known to be clear if zero in either the LHS | RHS.
979 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000980 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000981 }
982 case Instruction::Or: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000983 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
984 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000985
Chris Lattner965c7692008-06-02 01:18:21 +0000986 // Output known-0 bits are only known if clear in both the LHS & RHS.
987 KnownZero &= KnownZero2;
988 // Output known-1 are known to be set if set in either the LHS | RHS.
989 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000990 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000991 }
992 case Instruction::Xor: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000993 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
994 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000995
Chris Lattner965c7692008-06-02 01:18:21 +0000996 // Output known-0 bits are known if clear or set in both the LHS & RHS.
997 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
998 // Output known-1 are known to be set if set in only one of the LHS, RHS.
999 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1000 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +00001001 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001002 }
1003 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001004 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001005 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
1006 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001007 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001008 }
1009 case Instruction::UDiv: {
1010 // For the purposes of computing leading zeros we can conservatively
1011 // treat a udiv as a logical right shift by the power of 2 known to
1012 // be less than the denominator.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001013 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001014 unsigned LeadZ = KnownZero2.countLeadingOnes();
1015
Jay Foad25a5e4c2010-12-01 08:53:58 +00001016 KnownOne2.clearAllBits();
1017 KnownZero2.clearAllBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001018 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001019 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1020 if (RHSUnknownLeadingOnes != BitWidth)
1021 LeadZ = std::min(BitWidth,
1022 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1023
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001024 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001025 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001026 }
1027 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001028 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
1029 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001030
1031 // Only known if known in both the LHS and RHS.
1032 KnownOne &= KnownOne2;
1033 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +00001034 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001035 case Instruction::FPTrunc:
1036 case Instruction::FPExt:
1037 case Instruction::FPToUI:
1038 case Instruction::FPToSI:
1039 case Instruction::SIToFP:
1040 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001041 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001042 case Instruction::PtrToInt:
1043 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001044 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001045 // FALL THROUGH and handle them the same as zext/trunc.
1046 case Instruction::ZExt:
1047 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001048 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001049
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001050 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001051 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1052 // which fall through here.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001053 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001054
1055 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001056 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1057 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001058 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001059 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1060 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001061 // Any top bits are known to be zero.
1062 if (BitWidth > SrcBitWidth)
1063 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001064 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001065 }
1066 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001067 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00001068 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001069 // TODO: For now, not handling conversions like:
1070 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001071 !I->getType()->isVectorTy()) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001072 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001073 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001074 }
1075 break;
1076 }
1077 case Instruction::SExt: {
1078 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001079 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001080
Jay Foad583abbc2010-12-07 08:25:19 +00001081 KnownZero = KnownZero.trunc(SrcBitWidth);
1082 KnownOne = KnownOne.trunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001083 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001084 KnownZero = KnownZero.zext(BitWidth);
1085 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001086
1087 // If the sign bit of the input is known set or clear, then we know the
1088 // top bits of the result.
1089 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1090 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1091 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1092 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001093 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001094 }
1095 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001096 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001097 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1098 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001099 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001100 KnownZero <<= ShiftAmt;
1101 KnownOne <<= ShiftAmt;
1102 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Chris Lattner965c7692008-06-02 01:18:21 +00001103 }
1104 break;
1105 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001106 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001107 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1108 // Compute the new bits that are at the top now.
1109 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001110
Chris Lattner965c7692008-06-02 01:18:21 +00001111 // Unsigned shift right.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001112 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001113 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1114 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1115 // high bits known zero.
1116 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Chris Lattner965c7692008-06-02 01:18:21 +00001117 }
1118 break;
1119 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001120 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001121 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1122 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001123 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001124
Chris Lattner965c7692008-06-02 01:18:21 +00001125 // Signed shift right.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001126 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001127 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1128 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001129
Chris Lattner965c7692008-06-02 01:18:21 +00001130 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1131 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1132 KnownZero |= HighBits;
1133 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1134 KnownOne |= HighBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001135 }
1136 break;
1137 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001138 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001139 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001140 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1141 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001142 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001143 }
Chris Lattner965c7692008-06-02 01:18:21 +00001144 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001145 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001146 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001147 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1148 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001149 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001150 }
1151 case Instruction::SRem:
1152 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001153 APInt RA = Rem->getValue().abs();
1154 if (RA.isPowerOf2()) {
1155 APInt LowBits = RA - 1;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001156 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
1157 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001158
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001159 // The low bits of the first operand are unchanged by the srem.
1160 KnownZero = KnownZero2 & LowBits;
1161 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001162
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001163 // If the first operand is non-negative or has all low bits zero, then
1164 // the upper bits are all zero.
1165 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1166 KnownZero |= ~LowBits;
1167
1168 // If the first operand is negative and not all low bits are zero, then
1169 // the upper bits are all one.
1170 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1171 KnownOne |= ~LowBits;
1172
Craig Topper1bef2c82012-12-22 19:15:35 +00001173 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001174 }
1175 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001176
1177 // The sign bit is the LHS's sign bit, except when the result of the
1178 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001179 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001180 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001181 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
1182 Depth + 1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001183 // If it's known zero, our sign bit is also zero.
1184 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001185 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001186 }
1187
Chris Lattner965c7692008-06-02 01:18:21 +00001188 break;
1189 case Instruction::URem: {
1190 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1191 APInt RA = Rem->getValue();
1192 if (RA.isPowerOf2()) {
1193 APInt LowBits = (RA - 1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001194 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
1195 Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001196 KnownZero |= ~LowBits;
1197 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001198 break;
1199 }
1200 }
1201
1202 // Since the result is less than or equal to either operand, any leading
1203 // zero bits in either operand must also exist in the result.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001204 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
1205 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001206
Chris Lattner4612ae12009-01-20 18:22:57 +00001207 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001208 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001209 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001210 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001211 break;
1212 }
1213
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001214 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001215 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001216 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001217 if (Align == 0)
1218 Align = DL.getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001219
Chris Lattner965c7692008-06-02 01:18:21 +00001220 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001221 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001222 break;
1223 }
1224 case Instruction::GetElementPtr: {
1225 // Analyze all of the subscripts of this getelementptr instruction
1226 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001227 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001228 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
1229 Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001230 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1231
1232 gep_type_iterator GTI = gep_type_begin(I);
1233 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1234 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001235 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001236 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001237
1238 // Handle case when index is vector zeroinitializer
1239 Constant *CIndex = cast<Constant>(Index);
1240 if (CIndex->isZeroValue())
1241 continue;
1242
1243 if (CIndex->getType()->isVectorTy())
1244 Index = CIndex->getSplatValue();
1245
Chris Lattner965c7692008-06-02 01:18:21 +00001246 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001247 const StructLayout *SL = DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001248 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001249 TrailZ = std::min<unsigned>(TrailZ,
1250 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001251 } else {
1252 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001253 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001254 if (!IndexedTy->isSized()) {
1255 TrailZ = 0;
1256 break;
1257 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001258 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001259 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001260 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001261 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
1262 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001263 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001264 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001265 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001266 }
1267 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001268
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001269 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001270 break;
1271 }
1272 case Instruction::PHI: {
1273 PHINode *P = cast<PHINode>(I);
1274 // Handle the case of a simple two-predecessor recurrence PHI.
1275 // There's a lot more that could theoretically be done here, but
1276 // this is sufficient to catch some interesting cases.
1277 if (P->getNumIncomingValues() == 2) {
1278 for (unsigned i = 0; i != 2; ++i) {
1279 Value *L = P->getIncomingValue(i);
1280 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001281 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001282 if (!LU)
1283 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001284 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001285 // Check for operations that have the property that if
1286 // both their operands have low zero bits, the result
1287 // will have low zero bits.
1288 if (Opcode == Instruction::Add ||
1289 Opcode == Instruction::Sub ||
1290 Opcode == Instruction::And ||
1291 Opcode == Instruction::Or ||
1292 Opcode == Instruction::Mul) {
1293 Value *LL = LU->getOperand(0);
1294 Value *LR = LU->getOperand(1);
1295 // Find a recurrence.
1296 if (LL == I)
1297 L = LR;
1298 else if (LR == I)
1299 L = LL;
1300 else
1301 break;
1302 // Ok, we have a PHI of the form L op= R. Check for low
1303 // zero bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001304 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001305
1306 // We need to take the minimum number of known bits
1307 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001308 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001309
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001310 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001311 std::min(KnownZero2.countTrailingOnes(),
1312 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001313 break;
1314 }
1315 }
1316 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001317
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001318 // Unreachable blocks may have zero-operand PHI nodes.
1319 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001320 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001321
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001322 // Otherwise take the unions of the known bit sets of the operands,
1323 // taking conservative care to avoid excessive recursion.
1324 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001325 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001326 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001327 break;
1328
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001329 KnownZero = APInt::getAllOnesValue(BitWidth);
1330 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001331 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001332 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001333 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001334
1335 KnownZero2 = APInt(BitWidth, 0);
1336 KnownOne2 = APInt(BitWidth, 0);
1337 // Recurse, but cap the recursion to one level, because we don't
1338 // want to waste time spinning around in loops.
Pete Cooper833f34d2015-05-12 20:05:31 +00001339 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001340 MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001341 KnownZero &= KnownZero2;
1342 KnownOne &= KnownOne2;
1343 // If all bits have been ruled out, there's no need to check
1344 // more operands.
1345 if (!KnownZero && !KnownOne)
1346 break;
1347 }
1348 }
Chris Lattner965c7692008-06-02 01:18:21 +00001349 break;
1350 }
1351 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001352 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001353 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001354 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1355 // If a range metadata is attached to this IntrinsicInst, intersect the
1356 // explicit range specified by the metadata and the implicit range of
1357 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001358 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1359 switch (II->getIntrinsicID()) {
1360 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001361 case Intrinsic::bswap:
1362 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
1363 Depth + 1, Q);
1364 KnownZero |= KnownZero2.byteSwap();
1365 KnownOne |= KnownOne2.byteSwap();
1366 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001367 case Intrinsic::ctlz:
1368 case Intrinsic::cttz: {
1369 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001370 // If this call is undefined for 0, the result will be less than 2^n.
1371 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1372 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001373 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001374 break;
1375 }
1376 case Intrinsic::ctpop: {
1377 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001378 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001379 break;
1380 }
Chad Rosierb3628842011-05-26 23:13:19 +00001381 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001382 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001383 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001384 }
1385 }
1386 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001387 case Instruction::ExtractValue:
1388 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1389 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1390 if (EVI->getNumIndices() != 1) break;
1391 if (EVI->getIndices()[0] == 0) {
1392 switch (II->getIntrinsicID()) {
1393 default: break;
1394 case Intrinsic::uadd_with_overflow:
1395 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001396 computeKnownBitsAddSub(true, II->getArgOperand(0),
1397 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001398 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001399 break;
1400 case Intrinsic::usub_with_overflow:
1401 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001402 computeKnownBitsAddSub(false, II->getArgOperand(0),
1403 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001404 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001405 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001406 case Intrinsic::umul_with_overflow:
1407 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001408 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1409 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1410 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001411 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001412 }
1413 }
1414 }
Chris Lattner965c7692008-06-02 01:18:21 +00001415 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001416}
1417
Artur Pilipenko029d8532015-09-30 11:55:45 +00001418static unsigned getAlignment(Value *V, const DataLayout &DL) {
1419 unsigned Align = 0;
1420 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1421 Align = GO->getAlignment();
1422 if (Align == 0) {
1423 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
1424 Type *ObjectType = GVar->getType()->getElementType();
1425 if (ObjectType->isSized()) {
1426 // If the object is defined in the current Module, we'll be giving
1427 // it the preferred alignment. Otherwise, we have to assume that it
1428 // may only have the minimum ABI alignment.
1429 if (GVar->isStrongDefinitionForLinker())
1430 Align = DL.getPreferredAlignment(GVar);
1431 else
1432 Align = DL.getABITypeAlignment(ObjectType);
1433 }
1434 }
1435 }
1436 } else if (Argument *A = dyn_cast<Argument>(V)) {
1437 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1438
1439 if (!Align && A->hasStructRetAttr()) {
1440 // An sret parameter has at least the ABI alignment of the return type.
1441 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1442 if (EltTy->isSized())
1443 Align = DL.getABITypeAlignment(EltTy);
1444 }
1445 }
1446 return Align;
1447}
1448
Jingyue Wu12b0c282015-06-15 05:46:29 +00001449/// Determine which bits of V are known to be either zero or one and return
1450/// them in the KnownZero/KnownOne bit sets.
1451///
1452/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1453/// we cannot optimize based on the assumption that it is zero without changing
1454/// it to be an explicit zero. If we don't change it to zero, other code could
1455/// optimized based on the contradictory assumption that it is non-zero.
1456/// Because instcombine aggressively folds operations with undef args anyway,
1457/// this won't lose us code quality.
1458///
1459/// This function is defined on values with integer type, values with pointer
1460/// type, and vectors of integers. In the case
1461/// where V is a vector, known zero, and known one values are the
1462/// same width as the vector element, and the bit is set only if it is true
1463/// for all of the elements in the vector.
1464void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1465 const DataLayout &DL, unsigned Depth, const Query &Q) {
1466 assert(V && "No Value?");
1467 assert(Depth <= MaxDepth && "Limit Search Depth");
1468 unsigned BitWidth = KnownZero.getBitWidth();
1469
1470 assert((V->getType()->isIntOrIntVectorTy() ||
1471 V->getType()->getScalarType()->isPointerTy()) &&
1472 "Not integer or pointer type!");
1473 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1474 (!V->getType()->isIntOrIntVectorTy() ||
1475 V->getType()->getScalarSizeInBits() == BitWidth) &&
1476 KnownZero.getBitWidth() == BitWidth &&
1477 KnownOne.getBitWidth() == BitWidth &&
1478 "V, KnownOne and KnownZero should have same BitWidth");
1479
1480 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1481 // We know all of the bits for a constant!
1482 KnownOne = CI->getValue();
1483 KnownZero = ~KnownOne;
1484 return;
1485 }
1486 // Null and aggregate-zero are all-zeros.
1487 if (isa<ConstantPointerNull>(V) ||
1488 isa<ConstantAggregateZero>(V)) {
1489 KnownOne.clearAllBits();
1490 KnownZero = APInt::getAllOnesValue(BitWidth);
1491 return;
1492 }
1493 // Handle a constant vector by taking the intersection of the known bits of
1494 // each element. There is no real need to handle ConstantVector here, because
1495 // we don't handle undef in any particularly useful way.
1496 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1497 // We know that CDS must be a vector of integers. Take the intersection of
1498 // each element.
1499 KnownZero.setAllBits(); KnownOne.setAllBits();
1500 APInt Elt(KnownZero.getBitWidth(), 0);
1501 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1502 Elt = CDS->getElementAsInteger(i);
1503 KnownZero &= ~Elt;
1504 KnownOne &= Elt;
1505 }
1506 return;
1507 }
1508
Jingyue Wu12b0c282015-06-15 05:46:29 +00001509 // Start out not knowing anything.
1510 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1511
1512 // Limit search depth.
1513 // All recursive calls that increase depth must come after this.
1514 if (Depth == MaxDepth)
1515 return;
1516
1517 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1518 // the bits of its aliasee.
1519 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1520 if (!GA->mayBeOverridden())
1521 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
1522 return;
1523 }
1524
1525 if (Operator *I = dyn_cast<Operator>(V))
1526 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001527
Artur Pilipenko029d8532015-09-30 11:55:45 +00001528 // Aligned pointers have trailing zeros - refine KnownZero set
1529 if (V->getType()->isPointerTy()) {
1530 unsigned Align = getAlignment(V, DL);
1531 if (Align)
1532 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1533 }
1534
Jingyue Wu12b0c282015-06-15 05:46:29 +00001535 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1536 // strictly refines KnownZero and KnownOne. Therefore, we run them after
1537 // computeKnownBitsFromOperator.
1538
1539 // Check whether a nearby assume intrinsic can determine some known bits.
1540 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
1541
1542 // Check whether there's a dominating condition which implies something about
1543 // this value at the given context.
1544 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1545 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
1546 Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001547
1548 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001549}
1550
Sanjay Patelaee84212014-11-04 16:27:42 +00001551/// Determine whether the sign bit is known to be zero or one.
1552/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001553void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001554 const DataLayout &DL, unsigned Depth, const Query &Q) {
1555 unsigned BitWidth = getBitWidth(V->getType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001556 if (!BitWidth) {
1557 KnownZero = false;
1558 KnownOne = false;
1559 return;
1560 }
1561 APInt ZeroBits(BitWidth, 0);
1562 APInt OneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001563 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001564 KnownOne = OneBits[BitWidth - 1];
1565 KnownZero = ZeroBits[BitWidth - 1];
1566}
1567
Sanjay Patelaee84212014-11-04 16:27:42 +00001568/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001569/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001570/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001571/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001572bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001573 const Query &Q, const DataLayout &DL) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001574 if (Constant *C = dyn_cast<Constant>(V)) {
1575 if (C->isNullValue())
1576 return OrZero;
1577 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1578 return CI->getValue().isPowerOf2();
1579 // TODO: Handle vector constants.
1580 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001581
1582 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1583 // it is shifted off the end then the result is undefined.
1584 if (match(V, m_Shl(m_One(), m_Value())))
1585 return true;
1586
1587 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1588 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001589 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001590 return true;
1591
1592 // The remaining tests are all recursive, so bail out if we hit the limit.
1593 if (Depth++ == MaxDepth)
1594 return false;
1595
Craig Topper9f008862014-04-15 04:59:12 +00001596 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001597 // A shift of a power of two is a power of two or zero.
1598 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1599 match(V, m_Shr(m_Value(X), m_Value()))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001600 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
Duncan Sands985ba632011-10-28 18:30:05 +00001601
Duncan Sandsd3951082011-01-25 09:38:29 +00001602 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001603 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001604
1605 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001606 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
1607 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
Duncan Sandsba286d72011-10-26 20:55:21 +00001608
Duncan Sandsba286d72011-10-26 20:55:21 +00001609 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1610 // A power of two and'd with anything is a power of two or zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001611 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
1612 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
Duncan Sandsba286d72011-10-26 20:55:21 +00001613 return true;
1614 // X & (-X) is always a power of two or zero.
1615 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1616 return true;
1617 return false;
1618 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001619
David Majnemerb7d54092013-07-30 21:01:36 +00001620 // Adding a power-of-two or zero to the same power-of-two or zero yields
1621 // either the original power-of-two, a larger power-of-two or zero.
1622 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1623 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1624 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1625 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1626 match(X, m_And(m_Value(), m_Specific(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001627 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001628 return true;
1629 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1630 match(Y, m_And(m_Value(), m_Specific(X))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001631 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001632 return true;
1633
1634 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1635 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001636 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001637
1638 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001639 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001640 // If i8 V is a power of two or zero:
1641 // ZeroBits: 1 1 1 0 1 1 1 1
1642 // ~ZeroBits: 0 0 0 1 0 0 0 0
1643 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1644 // If OrZero isn't set, we cannot give back a zero result.
1645 // Make sure either the LHS or RHS has a bit set.
1646 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1647 return true;
1648 }
1649 }
David Majnemerbeab5672013-05-18 19:30:37 +00001650
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001651 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001652 // is a power of two only if the first operand is a power of two and not
1653 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001654 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1655 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001656 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001657 Depth, Q, DL);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001658 }
1659
Duncan Sandsd3951082011-01-25 09:38:29 +00001660 return false;
1661}
1662
Chandler Carruth80d3e562012-12-07 02:08:58 +00001663/// \brief Test whether a GEP's result is known to be non-null.
1664///
1665/// Uses properties inherent in a GEP to try to determine whether it is known
1666/// to be non-null.
1667///
1668/// Currently this routine does not support vector GEPs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001669static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001670 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001671 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1672 return false;
1673
1674 // FIXME: Support vector-GEPs.
1675 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1676
1677 // If the base pointer is non-null, we cannot walk to a null address with an
1678 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001679 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001680 return true;
1681
Chandler Carruth80d3e562012-12-07 02:08:58 +00001682 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1683 // If so, then the GEP cannot produce a null pointer, as doing so would
1684 // inherently violate the inbounds contract within address space zero.
1685 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1686 GTI != GTE; ++GTI) {
1687 // Struct types are easy -- they must always be indexed by a constant.
1688 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1689 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1690 unsigned ElementIdx = OpC->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001691 const StructLayout *SL = DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001692 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1693 if (ElementOffset > 0)
1694 return true;
1695 continue;
1696 }
1697
1698 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001699 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001700 continue;
1701
1702 // Fast path the constant operand case both for efficiency and so we don't
1703 // increment Depth when just zipping down an all-constant GEP.
1704 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1705 if (!OpC->isZero())
1706 return true;
1707 continue;
1708 }
1709
1710 // We post-increment Depth here because while isKnownNonZero increments it
1711 // as well, when we pop back up that increment won't persist. We don't want
1712 // to recurse 10k times just because we have 10k GEP operands. We don't
1713 // bail completely out because we want to handle constant GEPs regardless
1714 // of depth.
1715 if (Depth++ >= MaxDepth)
1716 continue;
1717
Hal Finkel60db0582014-09-07 18:57:58 +00001718 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001719 return true;
1720 }
1721
1722 return false;
1723}
1724
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001725/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1726/// ensure that the value it's attached to is never Value? 'RangeType' is
1727/// is the type of the value described by the range.
1728static bool rangeMetadataExcludesValue(MDNode* Ranges,
1729 const APInt& Value) {
1730 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1731 assert(NumRanges >= 1);
1732 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001733 ConstantInt *Lower =
1734 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1735 ConstantInt *Upper =
1736 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001737 ConstantRange Range(Lower->getValue(), Upper->getValue());
1738 if (Range.contains(Value))
1739 return false;
1740 }
1741 return true;
1742}
1743
Sanjay Patelaee84212014-11-04 16:27:42 +00001744/// Return true if the given value is known to be non-zero when defined.
1745/// For vectors return true if every element is known to be non-zero when
1746/// defined. Supports values with integer or pointer type and vectors of
1747/// integers.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001748bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +00001749 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001750 if (Constant *C = dyn_cast<Constant>(V)) {
1751 if (C->isNullValue())
1752 return false;
1753 if (isa<ConstantInt>(C))
1754 // Must be non-zero due to null test above.
1755 return true;
1756 // TODO: Handle vectors
1757 return false;
1758 }
1759
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001760 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001761 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001762 // If the possible ranges don't contain zero, then the value is
1763 // definitely non-zero.
1764 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1765 const APInt ZeroValue(Ty->getBitWidth(), 0);
1766 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1767 return true;
1768 }
1769 }
1770 }
1771
Duncan Sandsd3951082011-01-25 09:38:29 +00001772 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001773 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001774 return false;
1775
Chandler Carruth80d3e562012-12-07 02:08:58 +00001776 // Check for pointer simplifications.
1777 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001778 if (isKnownNonNull(V))
1779 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001780 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001781 if (isGEPKnownNonNull(GEP, DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001782 return true;
1783 }
1784
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001785 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001786
1787 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001788 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001789 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001790 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001791
1792 // ext X != 0 if X != 0.
1793 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001794 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001795
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001796 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001797 // if the lowest bit is shifted off the end.
1798 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001799 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001800 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001801 if (BO->hasNoUnsignedWrap())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001802 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001803
Duncan Sandsd3951082011-01-25 09:38:29 +00001804 APInt KnownZero(BitWidth, 0);
1805 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001806 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001807 if (KnownOne[0])
1808 return true;
1809 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001810 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001811 // defined if the sign bit is shifted off the end.
1812 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001813 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001814 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001815 if (BO->isExact())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001816 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001817
Duncan Sandsd3951082011-01-25 09:38:29 +00001818 bool XKnownNonNegative, XKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001819 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001820 if (XKnownNegative)
1821 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001822
1823 // If the shifter operand is a constant, and all of the bits shifted
1824 // out are known to be zero, and X is known non-zero then at least one
1825 // non-zero bit must remain.
1826 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1827 APInt KnownZero(BitWidth, 0);
1828 APInt KnownOne(BitWidth, 0);
1829 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
1830
1831 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1832 // Is there a known one in the portion not shifted out?
1833 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1834 return true;
1835 // Are all the bits to be shifted out known zero?
1836 if (KnownZero.countTrailingOnes() >= ShiftVal)
1837 return isKnownNonZero(X, DL, Depth, Q);
1838 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001839 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001840 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001841 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001842 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001843 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001844 // X + Y.
1845 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1846 bool XKnownNonNegative, XKnownNegative;
1847 bool YKnownNonNegative, YKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001848 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
1849 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001850
1851 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001852 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001853 if (XKnownNonNegative && YKnownNonNegative)
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001854 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001855 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001856
1857 // If X and Y are both negative (as signed values) then their sum is not
1858 // zero unless both X and Y equal INT_MIN.
1859 if (BitWidth && XKnownNegative && YKnownNegative) {
1860 APInt KnownZero(BitWidth, 0);
1861 APInt KnownOne(BitWidth, 0);
1862 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1863 // The sign bit of X is set. If some other bit is set then X is not equal
1864 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001865 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001866 if ((KnownOne & Mask) != 0)
1867 return true;
1868 // The sign bit of Y is set. If some other bit is set then Y is not equal
1869 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001870 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001871 if ((KnownOne & Mask) != 0)
1872 return true;
1873 }
1874
1875 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001876 if (XKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001877 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00001878 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001879 if (YKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001880 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00001881 return true;
1882 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001883 // X * Y.
1884 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1885 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1886 // If X and Y are non-zero then so is X * Y as long as the multiplication
1887 // does not overflow.
1888 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001889 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001890 return true;
1891 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001892 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1893 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001894 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
1895 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001896 return true;
1897 }
James Molloy897048b2015-09-29 14:08:45 +00001898 // PHI
1899 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1900 // Try and detect a recurrence that monotonically increases from a
1901 // starting value, as these are common as induction variables.
1902 if (PN->getNumIncomingValues() == 2) {
1903 Value *Start = PN->getIncomingValue(0);
1904 Value *Induction = PN->getIncomingValue(1);
1905 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1906 std::swap(Start, Induction);
1907 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1908 if (!C->isZero() && !C->isNegative()) {
1909 ConstantInt *X;
1910 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1911 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1912 !X->isNegative())
1913 return true;
1914 }
1915 }
1916 }
1917 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001918
1919 if (!BitWidth) return false;
1920 APInt KnownZero(BitWidth, 0);
1921 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001922 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001923 return KnownOne != 0;
1924}
1925
Sanjay Patelaee84212014-11-04 16:27:42 +00001926/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1927/// simplify operations downstream. Mask is known to be zero for bits that V
1928/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001929///
1930/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001931/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001932/// where V is a vector, the mask, known zero, and known one values are the
1933/// same width as the vector element, and the bit is set only if it is true
1934/// for all of the elements in the vector.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001935bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
1936 unsigned Depth, const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001937 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001938 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001939 return (KnownZero & Mask) == Mask;
1940}
1941
1942
1943
Sanjay Patelaee84212014-11-04 16:27:42 +00001944/// Return the number of times the sign bit of the register is replicated into
1945/// the other bits. We know that at least 1 bit is always equal to the sign bit
1946/// (itself), but other cases can give us information. For example, immediately
1947/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1948/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001949///
1950/// 'Op' must have a scalar integer type.
1951///
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001952unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
1953 const Query &Q) {
1954 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00001955 unsigned Tmp, Tmp2;
1956 unsigned FirstAnswer = 1;
1957
Jay Foada0653a32014-05-14 21:14:37 +00001958 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001959 // below.
1960
Chris Lattner965c7692008-06-02 01:18:21 +00001961 if (Depth == 6)
1962 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001963
Dan Gohman80ca01c2009-07-17 20:47:02 +00001964 Operator *U = dyn_cast<Operator>(V);
1965 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001966 default: break;
1967 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001968 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001969 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001970
Nadav Rotemc99a3872015-03-06 00:23:58 +00001971 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00001972 const APInt *Denominator;
1973 // sdiv X, C -> adds log(C) sign bits.
1974 if (match(U->getOperand(1), m_APInt(Denominator))) {
1975
1976 // Ignore non-positive denominator.
1977 if (!Denominator->isStrictlyPositive())
1978 break;
1979
1980 // Calculate the incoming numerator bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001981 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00001982
1983 // Add floor(log(C)) bits to the numerator bits.
1984 return std::min(TyBits, NumBits + Denominator->logBase2());
1985 }
1986 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00001987 }
1988
1989 case Instruction::SRem: {
1990 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00001991 // srem X, C -> we know that the result is within [-C+1,C) when C is a
1992 // positive constant. This let us put a lower bound on the number of sign
1993 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001994 if (match(U->getOperand(1), m_APInt(Denominator))) {
1995
1996 // Ignore non-positive denominator.
1997 if (!Denominator->isStrictlyPositive())
1998 break;
1999
2000 // Calculate the incoming numerator bits. SRem by a positive constant
2001 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002002 unsigned NumrBits =
2003 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002004
2005 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002006 // denominator. Given that the denominator is positive, there are two
2007 // cases:
2008 //
2009 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2010 // (1 << ceilLogBase2(C)).
2011 //
2012 // 2. the numerator is negative. Then the result range is (-C,0] and
2013 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2014 //
2015 // Thus a lower bound on the number of sign bits is `TyBits -
2016 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002017
Sanjoy Dase561fee2015-03-25 22:33:53 +00002018 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002019 return std::max(NumrBits, ResBits);
2020 }
2021 break;
2022 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002023
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002024 case Instruction::AShr: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002025 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002026 // ashr X, C -> adds C sign bits. Vectors too.
2027 const APInt *ShAmt;
2028 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2029 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002030 if (Tmp > TyBits) Tmp = TyBits;
2031 }
2032 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002033 }
2034 case Instruction::Shl: {
2035 const APInt *ShAmt;
2036 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002037 // shl destroys sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002038 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002039 Tmp2 = ShAmt->getZExtValue();
2040 if (Tmp2 >= TyBits || // Bad shift.
2041 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2042 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002043 }
2044 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002045 }
Chris Lattner965c7692008-06-02 01:18:21 +00002046 case Instruction::And:
2047 case Instruction::Or:
2048 case Instruction::Xor: // NOT is handled here.
2049 // Logical binary ops preserve the number of sign bits at the worst.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002050 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002051 if (Tmp != 1) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002052 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002053 FirstAnswer = std::min(Tmp, Tmp2);
2054 // We computed what we know about the sign bits as our first
2055 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002056 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002057 }
2058 break;
2059
2060 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002061 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002062 if (Tmp == 1) return 1; // Early out.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002063 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002064 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002065
Chris Lattner965c7692008-06-02 01:18:21 +00002066 case Instruction::Add:
2067 // Add can have at most one carry bit. Thus we know that the output
2068 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002069 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002070 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002071
Chris Lattner965c7692008-06-02 01:18:21 +00002072 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002073 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002074 if (CRHS->isAllOnesValue()) {
2075 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002076 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
2077 Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002078
Chris Lattner965c7692008-06-02 01:18:21 +00002079 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2080 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002081 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002082 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002083
Chris Lattner965c7692008-06-02 01:18:21 +00002084 // If we are subtracting one from a positive number, there is no carry
2085 // out of the result.
2086 if (KnownZero.isNegative())
2087 return Tmp;
2088 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002089
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002090 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002091 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002092 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002093
Chris Lattner965c7692008-06-02 01:18:21 +00002094 case Instruction::Sub:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002095 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002096 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002097
Chris Lattner965c7692008-06-02 01:18:21 +00002098 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002099 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002100 if (CLHS->isNullValue()) {
2101 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002102 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
2103 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002104 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2105 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002106 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002107 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002108
Chris Lattner965c7692008-06-02 01:18:21 +00002109 // If the input is known to be positive (the sign bit is known clear),
2110 // the output of the NEG has the same number of sign bits as the input.
2111 if (KnownZero.isNegative())
2112 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002113
Chris Lattner965c7692008-06-02 01:18:21 +00002114 // Otherwise, we treat this like a SUB.
2115 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002116
Chris Lattner965c7692008-06-02 01:18:21 +00002117 // Sub can have at most one carry bit. Thus we know that the output
2118 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002119 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002120 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002121 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002122
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002123 case Instruction::PHI: {
2124 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002125 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002126 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002127 if (NumIncomingValues > 4) break;
2128 // Unreachable blocks may have zero-operand PHI nodes.
2129 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002130
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002131 // Take the minimum of all incoming values. This can't infinitely loop
2132 // because of our depth threshold.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002133 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002134 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002135 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002136 Tmp = std::min(
2137 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002138 }
2139 return Tmp;
2140 }
2141
Chris Lattner965c7692008-06-02 01:18:21 +00002142 case Instruction::Trunc:
2143 // FIXME: it's tricky to do anything useful for this, but it is an important
2144 // case for targets like X86.
2145 break;
2146 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002147
Chris Lattner965c7692008-06-02 01:18:21 +00002148 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2149 // use this information.
2150 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002151 APInt Mask;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002152 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002153
Chris Lattner965c7692008-06-02 01:18:21 +00002154 if (KnownZero.isNegative()) { // sign bit is 0
2155 Mask = KnownZero;
2156 } else if (KnownOne.isNegative()) { // sign bit is 1;
2157 Mask = KnownOne;
2158 } else {
2159 // Nothing known.
2160 return FirstAnswer;
2161 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002162
Chris Lattner965c7692008-06-02 01:18:21 +00002163 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2164 // the number of identical bits in the top of the input value.
2165 Mask = ~Mask;
2166 Mask <<= Mask.getBitWidth()-TyBits;
2167 // Return # leading zeros. We use 'min' here in case Val was zero before
2168 // shifting. We don't want to return '64' as for an i32 "0".
2169 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2170}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002171
Sanjay Patelaee84212014-11-04 16:27:42 +00002172/// This function computes the integer multiple of Base that equals V.
2173/// If successful, it returns true and returns the multiple in
2174/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002175/// through SExt instructions only if LookThroughSExt is true.
2176bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002177 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002178 const unsigned MaxDepth = 6;
2179
Dan Gohman6a976bb2009-11-18 00:58:27 +00002180 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002181 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002182 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002183
Chris Lattner229907c2011-07-18 04:54:35 +00002184 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002185
Dan Gohman6a976bb2009-11-18 00:58:27 +00002186 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002187
2188 if (Base == 0)
2189 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002190
Victor Hernandez47444882009-11-10 08:28:35 +00002191 if (Base == 1) {
2192 Multiple = V;
2193 return true;
2194 }
2195
2196 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2197 Constant *BaseVal = ConstantInt::get(T, Base);
2198 if (CO && CO == BaseVal) {
2199 // Multiple is 1.
2200 Multiple = ConstantInt::get(T, 1);
2201 return true;
2202 }
2203
2204 if (CI && CI->getZExtValue() % Base == 0) {
2205 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002206 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002207 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002208
Victor Hernandez47444882009-11-10 08:28:35 +00002209 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002210
Victor Hernandez47444882009-11-10 08:28:35 +00002211 Operator *I = dyn_cast<Operator>(V);
2212 if (!I) return false;
2213
2214 switch (I->getOpcode()) {
2215 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002216 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002217 if (!LookThroughSExt) return false;
2218 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002219 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002220 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2221 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002222 case Instruction::Shl:
2223 case Instruction::Mul: {
2224 Value *Op0 = I->getOperand(0);
2225 Value *Op1 = I->getOperand(1);
2226
2227 if (I->getOpcode() == Instruction::Shl) {
2228 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2229 if (!Op1CI) return false;
2230 // Turn Op0 << Op1 into Op0 * 2^Op1
2231 APInt Op1Int = Op1CI->getValue();
2232 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002233 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002234 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002235 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002236 }
2237
Craig Topper9f008862014-04-15 04:59:12 +00002238 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002239 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2240 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2241 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002242 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002243 MulC->getType()->getPrimitiveSizeInBits())
2244 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002245 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002246 MulC->getType()->getPrimitiveSizeInBits())
2247 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002248
Chris Lattner72d283c2010-09-05 17:20:46 +00002249 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2250 Multiple = ConstantExpr::getMul(MulC, Op1C);
2251 return true;
2252 }
Victor Hernandez47444882009-11-10 08:28:35 +00002253
2254 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2255 if (Mul0CI->getValue() == 1) {
2256 // V == Base * Op1, so return Op1
2257 Multiple = Op1;
2258 return true;
2259 }
2260 }
2261
Craig Topper9f008862014-04-15 04:59:12 +00002262 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002263 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2264 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2265 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002266 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002267 MulC->getType()->getPrimitiveSizeInBits())
2268 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002269 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002270 MulC->getType()->getPrimitiveSizeInBits())
2271 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002272
Chris Lattner72d283c2010-09-05 17:20:46 +00002273 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2274 Multiple = ConstantExpr::getMul(MulC, Op0C);
2275 return true;
2276 }
Victor Hernandez47444882009-11-10 08:28:35 +00002277
2278 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2279 if (Mul1CI->getValue() == 1) {
2280 // V == Base * Op0, so return Op0
2281 Multiple = Op0;
2282 return true;
2283 }
2284 }
Victor Hernandez47444882009-11-10 08:28:35 +00002285 }
2286 }
2287
2288 // We could not determine if V is a multiple of Base.
2289 return false;
2290}
2291
Sanjay Patelaee84212014-11-04 16:27:42 +00002292/// Return true if we can prove that the specified FP value is never equal to
2293/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002294///
2295/// NOTE: this function will need to be revisited when we support non-default
2296/// rounding modes!
2297///
2298bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2299 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2300 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002301
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002302 // FIXME: Magic number! At the least, this should be given a name because it's
2303 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2304 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002305 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002306 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002307
Dan Gohman80ca01c2009-07-17 20:47:02 +00002308 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002309 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002310
2311 // Check if the nsz fast-math flag is set
2312 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2313 if (FPO->hasNoSignedZeros())
2314 return true;
2315
Chris Lattnera12a6de2008-06-02 01:29:46 +00002316 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002317 if (I->getOpcode() == Instruction::FAdd)
2318 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2319 if (CFP->isNullValue())
2320 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002321
Chris Lattnera12a6de2008-06-02 01:29:46 +00002322 // sitofp and uitofp turn into +0.0 for zero.
2323 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2324 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002325
Chris Lattnera12a6de2008-06-02 01:29:46 +00002326 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2327 // sqrt(-0.0) = -0.0, no other negative results are possible.
2328 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002329 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002330
Chris Lattnera12a6de2008-06-02 01:29:46 +00002331 if (const CallInst *CI = dyn_cast<CallInst>(I))
2332 if (const Function *F = CI->getCalledFunction()) {
2333 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002334 // abs(x) != -0.0
2335 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002336 // fabs[lf](x) != -0.0
2337 if (F->getName() == "fabs") return true;
2338 if (F->getName() == "fabsf") return true;
2339 if (F->getName() == "fabsl") return true;
2340 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2341 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002342 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002343 }
2344 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002345
Chris Lattnera12a6de2008-06-02 01:29:46 +00002346 return false;
2347}
2348
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002349bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2350 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2351 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2352
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002353 // FIXME: Magic number! At the least, this should be given a name because it's
2354 // used similarly in CannotBeNegativeZero(). A better fix may be to
2355 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002356 if (Depth == 6)
2357 return false; // Limit search depth.
2358
2359 const Operator *I = dyn_cast<Operator>(V);
2360 if (!I) return false;
2361
2362 switch (I->getOpcode()) {
2363 default: break;
2364 case Instruction::FMul:
2365 // x*x is always non-negative or a NaN.
2366 if (I->getOperand(0) == I->getOperand(1))
2367 return true;
2368 // Fall through
2369 case Instruction::FAdd:
2370 case Instruction::FDiv:
2371 case Instruction::FRem:
2372 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2373 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2374 case Instruction::FPExt:
2375 case Instruction::FPTrunc:
2376 // Widening/narrowing never change sign.
2377 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2378 case Instruction::Call:
2379 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2380 switch (II->getIntrinsicID()) {
2381 default: break;
2382 case Intrinsic::exp:
2383 case Intrinsic::exp2:
2384 case Intrinsic::fabs:
2385 case Intrinsic::sqrt:
2386 return true;
2387 case Intrinsic::powi:
2388 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2389 // powi(x,n) is non-negative if n is even.
2390 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2391 return true;
2392 }
2393 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2394 case Intrinsic::fma:
2395 case Intrinsic::fmuladd:
2396 // x*x+y is non-negative if y is non-negative.
2397 return I->getOperand(0) == I->getOperand(1) &&
2398 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2399 }
2400 break;
2401 }
2402 return false;
2403}
2404
Sanjay Patelaee84212014-11-04 16:27:42 +00002405/// If the specified value can be set by repeating the same byte in memory,
2406/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002407/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2408/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2409/// byte store (e.g. i16 0x1234), return null.
2410Value *llvm::isBytewiseValue(Value *V) {
2411 // All byte-wide stores are splatable, even of arbitrary variables.
2412 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002413
2414 // Handle 'null' ConstantArrayZero etc.
2415 if (Constant *C = dyn_cast<Constant>(V))
2416 if (C->isNullValue())
2417 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002418
Chris Lattner9cb10352010-12-26 20:15:01 +00002419 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002420 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002421 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2422 if (CFP->getType()->isFloatTy())
2423 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2424 if (CFP->getType()->isDoubleTy())
2425 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2426 // Don't handle long double formats, which have strange constraints.
2427 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002428
Benjamin Kramer17d90152015-02-07 19:29:02 +00002429 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002430 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002431 if (CI->getBitWidth() % 8 == 0) {
2432 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002433
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002434 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002435 return nullptr;
2436 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002437 }
2438 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002439
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002440 // A ConstantDataArray/Vector is splatable if all its members are equal and
2441 // also splatable.
2442 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2443 Value *Elt = CA->getElementAsConstant(0);
2444 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002445 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002446 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002447
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002448 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2449 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002450 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002451
Chris Lattner9cb10352010-12-26 20:15:01 +00002452 return Val;
2453 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002454
Chris Lattner9cb10352010-12-26 20:15:01 +00002455 // Conceptually, we could handle things like:
2456 // %a = zext i8 %X to i16
2457 // %b = shl i16 %a, 8
2458 // %c = or i16 %a, %b
2459 // but until there is an example that actually needs this, it doesn't seem
2460 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002461 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002462}
2463
2464
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002465// This is the recursive version of BuildSubAggregate. It takes a few different
2466// arguments. Idxs is the index within the nested struct From that we are
2467// looking at now (which is of type IndexedType). IdxSkip is the number of
2468// indices from Idxs that should be left out when inserting into the resulting
2469// struct. To is the result struct built so far, new insertvalue instructions
2470// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002471static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002472 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002473 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002474 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002475 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002476 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002477 // Save the original To argument so we can modify it
2478 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002479 // General case, the type indexed by Idxs is a struct
2480 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2481 // Process each struct element recursively
2482 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002483 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002484 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002485 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002486 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002487 if (!To) {
2488 // Couldn't find any inserted value for this index? Cleanup
2489 while (PrevTo != OrigTo) {
2490 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2491 PrevTo = Del->getAggregateOperand();
2492 Del->eraseFromParent();
2493 }
2494 // Stop processing elements
2495 break;
2496 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002497 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002498 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002499 if (To)
2500 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002501 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002502 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2503 // the struct's elements had a value that was inserted directly. In the latter
2504 // case, perhaps we can't determine each of the subelements individually, but
2505 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002506
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002507 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002508 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002509
2510 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002511 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002512
2513 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002514 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002515 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002516}
2517
2518// This helper takes a nested struct and extracts a part of it (which is again a
2519// struct) into a new value. For example, given the struct:
2520// { a, { b, { c, d }, e } }
2521// and the indices "1, 1" this returns
2522// { c, d }.
2523//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002524// It does this by inserting an insertvalue for each element in the resulting
2525// struct, as opposed to just inserting a single struct. This will only work if
2526// each of the elements of the substruct are known (ie, inserted into From by an
2527// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002528//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002529// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002530static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002531 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002532 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002533 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002534 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002535 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002536 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002537 unsigned IdxSkip = Idxs.size();
2538
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002539 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002540}
2541
Sanjay Patelaee84212014-11-04 16:27:42 +00002542/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002543/// the scalar value indexed is already around as a register, for example if it
2544/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002545///
2546/// If InsertBefore is not null, this function will duplicate (modified)
2547/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002548Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2549 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002550 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002551 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002552 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002553 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002554 // We have indices, so V should have an indexable type.
2555 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2556 "Not looking at a struct or array?");
2557 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2558 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002559
Chris Lattner67058832012-01-25 06:48:06 +00002560 if (Constant *C = dyn_cast<Constant>(V)) {
2561 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002562 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002563 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2564 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002565
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002566 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002567 // Loop the indices for the insertvalue instruction in parallel with the
2568 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002569 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002570 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2571 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002572 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002573 // We can't handle this without inserting insertvalues
2574 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002575 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002576
2577 // The requested index identifies a part of a nested aggregate. Handle
2578 // this specially. For example,
2579 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2580 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2581 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2582 // This can be changed into
2583 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2584 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2585 // which allows the unused 0,0 element from the nested struct to be
2586 // removed.
2587 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2588 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002589 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002590
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002591 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002592 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002593 // looking for, then.
2594 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002595 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002596 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002597 }
2598 // If we end up here, the indices of the insertvalue match with those
2599 // requested (though possibly only partially). Now we recursively look at
2600 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002601 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002602 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002603 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002604 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002605
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002606 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002607 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002608 // something else, we can extract from that something else directly instead.
2609 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002610
2611 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002612 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002613 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002614 SmallVector<unsigned, 5> Idxs;
2615 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002616 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002617 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002618
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002619 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002620 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002621
Craig Topper1bef2c82012-12-22 19:15:35 +00002622 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002623 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002624
Jay Foad57aa6362011-07-13 10:26:04 +00002625 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002626 }
2627 // Otherwise, we don't know (such as, extracting from a function return value
2628 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002629 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002630}
Evan Chengda3db112008-06-30 07:31:25 +00002631
Sanjay Patelaee84212014-11-04 16:27:42 +00002632/// Analyze the specified pointer to see if it can be expressed as a base
2633/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002634Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002635 const DataLayout &DL) {
2636 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002637 APInt ByteOffset(BitWidth, 0);
2638 while (1) {
2639 if (Ptr->getType()->isVectorTy())
2640 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002641
Nuno Lopes368c4d02012-12-31 20:48:35 +00002642 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002643 APInt GEPOffset(BitWidth, 0);
2644 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2645 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002646
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002647 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002648
Nuno Lopes368c4d02012-12-31 20:48:35 +00002649 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002650 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2651 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002652 Ptr = cast<Operator>(Ptr)->getOperand(0);
2653 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2654 if (GA->mayBeOverridden())
2655 break;
2656 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002657 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002658 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002659 }
2660 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002661 Offset = ByteOffset.getSExtValue();
2662 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002663}
2664
2665
Sanjay Patelaee84212014-11-04 16:27:42 +00002666/// This function computes the length of a null-terminated C string pointed to
2667/// by V. If successful, it returns true and returns the string in Str.
2668/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002669bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2670 uint64_t Offset, bool TrimAtNul) {
2671 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002672
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002673 // Look through bitcast instructions and geps.
2674 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002675
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002676 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002677 // offset.
2678 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002679 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002680 if (GEP->getNumOperands() != 3)
2681 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002682
Evan Chengda3db112008-06-30 07:31:25 +00002683 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002684 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2685 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002686 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002687 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002688
Evan Chengda3db112008-06-30 07:31:25 +00002689 // Check to make sure that the first operand of the GEP is an integer and
2690 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002691 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002692 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002693 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002694
Evan Chengda3db112008-06-30 07:31:25 +00002695 // If the second index isn't a ConstantInt, then this is a variable index
2696 // into the array. If this occurs, we can't say anything meaningful about
2697 // the string.
2698 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002699 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002700 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002701 else
2702 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002703 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2704 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002705 }
Nick Lewycky46209882011-10-20 00:34:35 +00002706
Evan Chengda3db112008-06-30 07:31:25 +00002707 // The GEP instruction, constant or instruction, must reference a global
2708 // variable that is a constant and is initialized. The referenced constant
2709 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002710 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002711 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002712 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002713
Nick Lewycky46209882011-10-20 00:34:35 +00002714 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002715 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002716 // This is a degenerate case. The initializer is constant zero so the
2717 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002718 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002719 return true;
2720 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002721
Evan Chengda3db112008-06-30 07:31:25 +00002722 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002723 const ConstantDataArray *Array =
2724 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002725 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002726 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002727
Evan Chengda3db112008-06-30 07:31:25 +00002728 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002729 uint64_t NumElts = Array->getType()->getArrayNumElements();
2730
2731 // Start out with the entire array in the StringRef.
2732 Str = Array->getAsString();
2733
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002734 if (Offset > NumElts)
2735 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002736
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002737 // Skip over 'offset' bytes.
2738 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002739
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002740 if (TrimAtNul) {
2741 // Trim off the \0 and anything after it. If the array is not nul
2742 // terminated, we just return the whole end of string. The client may know
2743 // some other way that the string is length-bound.
2744 Str = Str.substr(0, Str.find('\0'));
2745 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002746 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002747}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002748
2749// These next two are very similar to the above, but also look through PHI
2750// nodes.
2751// TODO: See if we can integrate these two together.
2752
Sanjay Patelaee84212014-11-04 16:27:42 +00002753/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002754/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002755static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002756 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002757 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002758
2759 // If this is a PHI node, there are two cases: either we have already seen it
2760 // or we haven't.
2761 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002762 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002763 return ~0ULL; // already in the set.
2764
2765 // If it was new, see if all the input strings are the same length.
2766 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002767 for (Value *IncValue : PN->incoming_values()) {
2768 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002769 if (Len == 0) return 0; // Unknown length -> unknown.
2770
2771 if (Len == ~0ULL) continue;
2772
2773 if (Len != LenSoFar && LenSoFar != ~0ULL)
2774 return 0; // Disagree -> unknown.
2775 LenSoFar = Len;
2776 }
2777
2778 // Success, all agree.
2779 return LenSoFar;
2780 }
2781
2782 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2783 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2784 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2785 if (Len1 == 0) return 0;
2786 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2787 if (Len2 == 0) return 0;
2788 if (Len1 == ~0ULL) return Len2;
2789 if (Len2 == ~0ULL) return Len1;
2790 if (Len1 != Len2) return 0;
2791 return Len1;
2792 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002793
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002794 // Otherwise, see if we can read the string.
2795 StringRef StrData;
2796 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002797 return 0;
2798
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002799 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002800}
2801
Sanjay Patelaee84212014-11-04 16:27:42 +00002802/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002803/// the specified pointer, return 'len+1'. If we can't, return 0.
2804uint64_t llvm::GetStringLength(Value *V) {
2805 if (!V->getType()->isPointerTy()) return 0;
2806
2807 SmallPtrSet<PHINode*, 32> PHIs;
2808 uint64_t Len = GetStringLengthH(V, PHIs);
2809 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2810 // an empty string as a length.
2811 return Len == ~0ULL ? 1 : Len;
2812}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002813
Adam Nemete2b885c2015-04-23 20:09:20 +00002814/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2815/// previous iteration of the loop was referring to the same object as \p PN.
2816static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2817 // Find the loop-defined value.
2818 Loop *L = LI->getLoopFor(PN->getParent());
2819 if (PN->getNumIncomingValues() != 2)
2820 return true;
2821
2822 // Find the value from previous iteration.
2823 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2824 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2825 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2826 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2827 return true;
2828
2829 // If a new pointer is loaded in the loop, the pointer references a different
2830 // object in every iteration. E.g.:
2831 // for (i)
2832 // int *p = a[i];
2833 // ...
2834 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2835 if (!L->isLoopInvariant(Load->getPointerOperand()))
2836 return false;
2837 return true;
2838}
2839
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002840Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2841 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002842 if (!V->getType()->isPointerTy())
2843 return V;
2844 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2845 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2846 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002847 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2848 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002849 V = cast<Operator>(V)->getOperand(0);
2850 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2851 if (GA->mayBeOverridden())
2852 return V;
2853 V = GA->getAliasee();
2854 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002855 // See if InstructionSimplify knows any relevant tricks.
2856 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002857 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002858 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002859 V = Simplified;
2860 continue;
2861 }
2862
Dan Gohmana4fcd242010-12-15 20:02:24 +00002863 return V;
2864 }
2865 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2866 }
2867 return V;
2868}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002869
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002870void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00002871 const DataLayout &DL, LoopInfo *LI,
2872 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002873 SmallPtrSet<Value *, 4> Visited;
2874 SmallVector<Value *, 4> Worklist;
2875 Worklist.push_back(V);
2876 do {
2877 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002878 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002879
David Blaikie70573dc2014-11-19 07:49:26 +00002880 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002881 continue;
2882
2883 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2884 Worklist.push_back(SI->getTrueValue());
2885 Worklist.push_back(SI->getFalseValue());
2886 continue;
2887 }
2888
2889 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00002890 // If this PHI changes the underlying object in every iteration of the
2891 // loop, don't look through it. Consider:
2892 // int **A;
2893 // for (i) {
2894 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
2895 // Curr = A[i];
2896 // *Prev, *Curr;
2897 //
2898 // Prev is tracking Curr one iteration behind so they refer to different
2899 // underlying objects.
2900 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
2901 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00002902 for (Value *IncValue : PN->incoming_values())
2903 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002904 continue;
2905 }
2906
2907 Objects.push_back(P);
2908 } while (!Worklist.empty());
2909}
2910
Sanjay Patelaee84212014-11-04 16:27:42 +00002911/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002912bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002913 for (const User *U : V->users()) {
2914 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002915 if (!II) return false;
2916
2917 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2918 II->getIntrinsicID() != Intrinsic::lifetime_end)
2919 return false;
2920 }
2921 return true;
2922}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002923
Philip Reames5461d452015-04-23 17:36:48 +00002924static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002925 Type *Ty, const DataLayout &DL,
2926 const Instruction *CtxI,
2927 const DominatorTree *DT,
2928 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00002929 assert(Offset.isNonNegative() && "offset can't be negative");
2930 assert(Ty->isSized() && "must be sized");
2931
2932 APInt DerefBytes(Offset.getBitWidth(), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002933 bool CheckForNonNull = false;
Philip Reames5461d452015-04-23 17:36:48 +00002934 if (const Argument *A = dyn_cast<Argument>(BV)) {
2935 DerefBytes = A->getDereferenceableBytes();
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002936 if (!DerefBytes.getBoolValue()) {
2937 DerefBytes = A->getDereferenceableOrNullBytes();
2938 CheckForNonNull = true;
2939 }
Philip Reames5461d452015-04-23 17:36:48 +00002940 } else if (auto CS = ImmutableCallSite(BV)) {
2941 DerefBytes = CS.getDereferenceableBytes(0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002942 if (!DerefBytes.getBoolValue()) {
2943 DerefBytes = CS.getDereferenceableOrNullBytes(0);
2944 CheckForNonNull = true;
2945 }
Sanjoy Dasf9995472015-05-19 20:10:19 +00002946 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
2947 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
2948 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
2949 DerefBytes = CI->getLimitedValue();
2950 }
2951 if (!DerefBytes.getBoolValue()) {
2952 if (MDNode *MD =
2953 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
2954 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
2955 DerefBytes = CI->getLimitedValue();
2956 }
2957 CheckForNonNull = true;
2958 }
Philip Reames5461d452015-04-23 17:36:48 +00002959 }
2960
2961 if (DerefBytes.getBoolValue())
2962 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002963 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
2964 return true;
2965
Philip Reames5461d452015-04-23 17:36:48 +00002966 return false;
2967}
2968
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002969static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
2970 const Instruction *CtxI,
2971 const DominatorTree *DT,
2972 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00002973 Type *VTy = V->getType();
2974 Type *Ty = VTy->getPointerElementType();
2975 if (!Ty->isSized())
2976 return false;
2977
2978 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002979 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00002980}
2981
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00002982static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
2983 const DataLayout &DL) {
2984 APInt BaseAlign(Offset.getBitWidth(), 0);
2985 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base))
2986 BaseAlign = AI->getAlignment();
2987 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base))
2988 BaseAlign = GV->getAlignment();
2989 else if (const Argument *A = dyn_cast<Argument>(Base))
2990 BaseAlign = A->getParamAlignment();
Artur Pilipenko84bc62f2015-09-18 12:33:31 +00002991 else if (auto CS = ImmutableCallSite(Base))
2992 BaseAlign = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
Artur Pilipenkob4d00902015-09-28 17:41:08 +00002993 else if (const LoadInst *LI = dyn_cast<LoadInst>(Base))
2994 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
2995 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
2996 BaseAlign = CI->getLimitedValue();
2997 }
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00002998
2999 if (!BaseAlign) {
3000 Type *Ty = Base->getType()->getPointerElementType();
3001 BaseAlign = DL.getABITypeAlignment(Ty);
3002 }
3003
3004 APInt Alignment(Offset.getBitWidth(), Align);
3005
3006 assert(Alignment.isPowerOf2() && "must be a power of 2!");
3007 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3008}
3009
3010static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
3011 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0);
3012 return isAligned(Base, Offset, Align, DL);
3013}
3014
Philip Reames5461d452015-04-23 17:36:48 +00003015/// Test if V is always a pointer to allocated and suitably aligned memory for
3016/// a simple load or store.
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003017static bool isDereferenceableAndAlignedPointer(
3018 const Value *V, unsigned Align, const DataLayout &DL,
3019 const Instruction *CtxI, const DominatorTree *DT,
3020 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
Philip Reames5461d452015-04-23 17:36:48 +00003021 // Note that it is not safe to speculate into a malloc'd region because
3022 // malloc may return null.
3023
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003024 // These are obviously ok if aligned.
3025 if (isa<AllocaInst>(V))
3026 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003027
3028 // It's not always safe to follow a bitcast, for example:
3029 // bitcast i8* (alloca i8) to i32*
3030 // would result in a 4-byte load from a 1-byte alloca. However,
3031 // if we're casting from a pointer from a type of larger size
3032 // to a type of smaller size (or the same size), and the alignment
3033 // is at least as large as for the resulting pointer type, then
3034 // we can look through the bitcast.
3035 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3036 Type *STy = BC->getSrcTy()->getPointerElementType(),
3037 *DTy = BC->getDestTy()->getPointerElementType();
3038 if (STy->isSized() && DTy->isSized() &&
3039 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3040 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003041 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3042 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003043 }
3044
3045 // Global variables which can't collapse to null are ok.
3046 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003047 if (!GV->hasExternalWeakLinkage())
3048 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003049
3050 // byval arguments are okay.
3051 if (const Argument *A = dyn_cast<Argument>(V))
3052 if (A->hasByValAttr())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003053 return isAligned(V, Align, DL);
3054
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003055 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003056 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003057
3058 // For GEPs, determine if the indexing lands within the allocated object.
3059 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003060 Type *VTy = GEP->getType();
3061 Type *Ty = VTy->getPointerElementType();
3062 const Value *Base = GEP->getPointerOperand();
3063
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003064 // Conservatively require that the base pointer be fully dereferenceable
3065 // and aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003066 if (!Visited.insert(Base).second)
Philip Reames5461d452015-04-23 17:36:48 +00003067 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003068 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3069 Visited))
Philip Reames5461d452015-04-23 17:36:48 +00003070 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003071
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003072 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
3073 if (!GEP->accumulateConstantOffset(DL, Offset))
3074 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003075
3076 // Check if the load is within the bounds of the underlying object
3077 // and offset is aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003078 uint64_t LoadSize = DL.getTypeStoreSize(Ty);
3079 Type *BaseType = Base->getType()->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003080 assert(isPowerOf2_32(Align) && "must be a power of 2!");
3081 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3082 !(Offset & APInt(Offset.getBitWidth(), Align-1));
Philip Reames5461d452015-04-23 17:36:48 +00003083 }
3084
3085 // For gc.relocate, look through relocations
3086 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
3087 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
3088 GCRelocateOperands RelocateInst(I);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003089 return isDereferenceableAndAlignedPointer(
3090 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003091 }
3092
3093 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003094 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3095 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003096
3097 // If we don't know, assume the worst.
3098 return false;
3099}
3100
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003101bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3102 const DataLayout &DL,
3103 const Instruction *CtxI,
3104 const DominatorTree *DT,
3105 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003106 // When dereferenceability information is provided by a dereferenceable
3107 // attribute, we know exactly how many bytes are dereferenceable. If we can
3108 // determine the exact offset to the attributed variable, we can use that
3109 // information here.
3110 Type *VTy = V->getType();
3111 Type *Ty = VTy->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003112
3113 // Require ABI alignment for loads without alignment specification
3114 if (Align == 0)
3115 Align = DL.getABITypeAlignment(Ty);
3116
Philip Reames5461d452015-04-23 17:36:48 +00003117 if (Ty->isSized()) {
3118 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3119 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003120
Philip Reames5461d452015-04-23 17:36:48 +00003121 if (Offset.isNonNegative())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003122 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3123 isAligned(BV, Offset, Align, DL))
Philip Reames5461d452015-04-23 17:36:48 +00003124 return true;
3125 }
3126
3127 SmallPtrSet<const Value *, 32> Visited;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003128 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3129 Visited);
3130}
3131
3132bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3133 const Instruction *CtxI,
3134 const DominatorTree *DT,
3135 const TargetLibraryInfo *TLI) {
3136 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003137}
3138
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003139bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3140 const Instruction *CtxI,
3141 const DominatorTree *DT,
3142 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003143 const Operator *Inst = dyn_cast<Operator>(V);
3144 if (!Inst)
3145 return false;
3146
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003147 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3148 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3149 if (C->canTrap())
3150 return false;
3151
3152 switch (Inst->getOpcode()) {
3153 default:
3154 return true;
3155 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003156 case Instruction::URem: {
3157 // x / y is undefined if y == 0.
3158 const APInt *V;
3159 if (match(Inst->getOperand(1), m_APInt(V)))
3160 return *V != 0;
3161 return false;
3162 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003163 case Instruction::SDiv:
3164 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003165 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003166 const APInt *Numerator, *Denominator;
3167 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3168 return false;
3169 // We cannot hoist this division if the denominator is 0.
3170 if (*Denominator == 0)
3171 return false;
3172 // It's safe to hoist if the denominator is not 0 or -1.
3173 if (*Denominator != -1)
3174 return true;
3175 // At this point we know that the denominator is -1. It is safe to hoist as
3176 // long we know that the numerator is not INT_MIN.
3177 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3178 return !Numerator->isMinSignedValue();
3179 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003180 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003181 }
3182 case Instruction::Load: {
3183 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003184 if (!LI->isUnordered() ||
3185 // Speculative load may create a race that did not exist in the source.
3186 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003187 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003188 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003189 return isDereferenceableAndAlignedPointer(
3190 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003191 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003192 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003193 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3194 switch (II->getIntrinsicID()) {
3195 // These synthetic intrinsics have no side-effects and just mark
3196 // information about their operands.
3197 // FIXME: There are other no-op synthetic instructions that potentially
3198 // should be considered at least *safe* to speculate...
3199 case Intrinsic::dbg_declare:
3200 case Intrinsic::dbg_value:
3201 return true;
3202
3203 case Intrinsic::bswap:
3204 case Intrinsic::ctlz:
3205 case Intrinsic::ctpop:
3206 case Intrinsic::cttz:
3207 case Intrinsic::objectsize:
3208 case Intrinsic::sadd_with_overflow:
3209 case Intrinsic::smul_with_overflow:
3210 case Intrinsic::ssub_with_overflow:
3211 case Intrinsic::uadd_with_overflow:
3212 case Intrinsic::umul_with_overflow:
3213 case Intrinsic::usub_with_overflow:
3214 return true;
3215 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3216 // errno like libm sqrt would.
3217 case Intrinsic::sqrt:
3218 case Intrinsic::fma:
3219 case Intrinsic::fmuladd:
3220 case Intrinsic::fabs:
3221 case Intrinsic::minnum:
3222 case Intrinsic::maxnum:
3223 return true;
3224 // TODO: some fp intrinsics are marked as having the same error handling
3225 // as libm. They're safe to speculate when they won't error.
3226 // TODO: are convert_{from,to}_fp16 safe?
3227 // TODO: can we list target-specific intrinsics here?
3228 default: break;
3229 }
3230 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003231 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003232 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003233 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003234 case Instruction::VAArg:
3235 case Instruction::Alloca:
3236 case Instruction::Invoke:
3237 case Instruction::PHI:
3238 case Instruction::Store:
3239 case Instruction::Ret:
3240 case Instruction::Br:
3241 case Instruction::IndirectBr:
3242 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003243 case Instruction::Unreachable:
3244 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003245 case Instruction::AtomicRMW:
3246 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003247 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003248 case Instruction::Resume:
David Majnemer654e1302015-07-31 17:58:14 +00003249 case Instruction::CatchPad:
3250 case Instruction::CatchEndPad:
3251 case Instruction::CatchRet:
3252 case Instruction::CleanupPad:
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00003253 case Instruction::CleanupEndPad:
David Majnemer654e1302015-07-31 17:58:14 +00003254 case Instruction::CleanupRet:
3255 case Instruction::TerminatePad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003256 return false; // Misc instructions which have effects
3257 }
3258}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003259
Quentin Colombet6443cce2015-08-06 18:44:34 +00003260bool llvm::mayBeMemoryDependent(const Instruction &I) {
3261 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3262}
3263
Sanjay Patelaee84212014-11-04 16:27:42 +00003264/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003265bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003266 assert(V->getType()->isPointerTy() && "V must be pointer type");
3267
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003268 // Alloca never returns null, malloc might.
3269 if (isa<AllocaInst>(V)) return true;
3270
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003271 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003272 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003273 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003274
Pete Cooper6b716212015-08-27 03:16:29 +00003275 // A global variable in address space 0 is non null unless extern weak.
3276 // Other address spaces may have null as a valid address for a global,
3277 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003278 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003279 return !GV->hasExternalWeakLinkage() &&
3280 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003281
Philip Reamescdb72f32014-10-20 22:40:55 +00003282 // A Load tagged w/nonnull metadata is never null.
3283 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003284 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003285
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003286 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003287 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003288 return true;
3289
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003290 // operator new never returns null.
3291 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
3292 return true;
3293
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003294 return false;
3295}
David Majnemer491331a2015-01-02 07:29:43 +00003296
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003297static bool isKnownNonNullFromDominatingCondition(const Value *V,
3298 const Instruction *CtxI,
3299 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003300 assert(V->getType()->isPointerTy() && "V must be pointer type");
3301
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003302 unsigned NumUsesExplored = 0;
3303 for (auto U : V->users()) {
3304 // Avoid massive lists
3305 if (NumUsesExplored >= DomConditionsMaxUses)
3306 break;
3307 NumUsesExplored++;
3308 // Consider only compare instructions uniquely controlling a branch
3309 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3310 if (!Cmp)
3311 continue;
3312
3313 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3314 continue;
3315
3316 for (auto *CmpU : Cmp->users()) {
3317 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3318 if (!BI)
3319 continue;
3320
3321 assert(BI->isConditional() && "uses a comparison!");
3322
3323 BasicBlock *NonNullSuccessor = nullptr;
3324 CmpInst::Predicate Pred;
3325
3326 if (match(const_cast<ICmpInst*>(Cmp),
3327 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3328 if (Pred == ICmpInst::ICMP_EQ)
3329 NonNullSuccessor = BI->getSuccessor(1);
3330 else if (Pred == ICmpInst::ICMP_NE)
3331 NonNullSuccessor = BI->getSuccessor(0);
3332 }
3333
3334 if (NonNullSuccessor) {
3335 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3336 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3337 return true;
3338 }
3339 }
3340 }
3341
3342 return false;
3343}
3344
3345bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3346 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3347 if (isKnownNonNull(V, TLI))
3348 return true;
3349
3350 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3351}
3352
David Majnemer491331a2015-01-02 07:29:43 +00003353OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003354 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003355 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003356 const Instruction *CxtI,
3357 const DominatorTree *DT) {
3358 // Multiplying n * m significant bits yields a result of n + m significant
3359 // bits. If the total number of significant bits does not exceed the
3360 // result bit width (minus 1), there is no overflow.
3361 // This means if we have enough leading zero bits in the operands
3362 // we can guarantee that the result does not overflow.
3363 // Ref: "Hacker's Delight" by Henry Warren
3364 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3365 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003366 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003367 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003368 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003369 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3370 DT);
3371 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3372 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003373 // Note that underestimating the number of zero bits gives a more
3374 // conservative answer.
3375 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3376 RHSKnownZero.countLeadingOnes();
3377 // First handle the easy case: if we have enough zero bits there's
3378 // definitely no overflow.
3379 if (ZeroBits >= BitWidth)
3380 return OverflowResult::NeverOverflows;
3381
3382 // Get the largest possible values for each operand.
3383 APInt LHSMax = ~LHSKnownZero;
3384 APInt RHSMax = ~RHSKnownZero;
3385
3386 // We know the multiply operation doesn't overflow if the maximum values for
3387 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003388 bool MaxOverflow;
3389 LHSMax.umul_ov(RHSMax, MaxOverflow);
3390 if (!MaxOverflow)
3391 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003392
David Majnemerc8a576b2015-01-02 07:29:47 +00003393 // We know it always overflows if multiplying the smallest possible values for
3394 // the operands also results in overflow.
3395 bool MinOverflow;
3396 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3397 if (MinOverflow)
3398 return OverflowResult::AlwaysOverflows;
3399
3400 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003401}
David Majnemer5310c1e2015-01-07 00:39:50 +00003402
3403OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003404 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003405 AssumptionCache *AC,
3406 const Instruction *CxtI,
3407 const DominatorTree *DT) {
3408 bool LHSKnownNonNegative, LHSKnownNegative;
3409 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3410 AC, CxtI, DT);
3411 if (LHSKnownNonNegative || LHSKnownNegative) {
3412 bool RHSKnownNonNegative, RHSKnownNegative;
3413 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3414 AC, CxtI, DT);
3415
3416 if (LHSKnownNegative && RHSKnownNegative) {
3417 // The sign bit is set in both cases: this MUST overflow.
3418 // Create a simple add instruction, and insert it into the struct.
3419 return OverflowResult::AlwaysOverflows;
3420 }
3421
3422 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3423 // The sign bit is clear in both cases: this CANNOT overflow.
3424 // Create a simple add instruction, and insert it into the struct.
3425 return OverflowResult::NeverOverflows;
3426 }
3427 }
3428
3429 return OverflowResult::MayOverflow;
3430}
James Molloy71b91c22015-05-11 14:42:20 +00003431
Jingyue Wu10fcea52015-08-20 18:27:04 +00003432static OverflowResult computeOverflowForSignedAdd(
3433 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3434 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3435 if (Add && Add->hasNoSignedWrap()) {
3436 return OverflowResult::NeverOverflows;
3437 }
3438
3439 bool LHSKnownNonNegative, LHSKnownNegative;
3440 bool RHSKnownNonNegative, RHSKnownNegative;
3441 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3442 AC, CxtI, DT);
3443 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3444 AC, CxtI, DT);
3445
3446 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3447 (LHSKnownNegative && RHSKnownNonNegative)) {
3448 // The sign bits are opposite: this CANNOT overflow.
3449 return OverflowResult::NeverOverflows;
3450 }
3451
3452 // The remaining code needs Add to be available. Early returns if not so.
3453 if (!Add)
3454 return OverflowResult::MayOverflow;
3455
3456 // If the sign of Add is the same as at least one of the operands, this add
3457 // CANNOT overflow. This is particularly useful when the sum is
3458 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3459 // operands.
3460 bool LHSOrRHSKnownNonNegative =
3461 (LHSKnownNonNegative || RHSKnownNonNegative);
3462 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3463 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3464 bool AddKnownNonNegative, AddKnownNegative;
3465 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3466 /*Depth=*/0, AC, CxtI, DT);
3467 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3468 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3469 return OverflowResult::NeverOverflows;
3470 }
3471 }
3472
3473 return OverflowResult::MayOverflow;
3474}
3475
3476OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3477 const DataLayout &DL,
3478 AssumptionCache *AC,
3479 const Instruction *CxtI,
3480 const DominatorTree *DT) {
3481 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3482 Add, DL, AC, CxtI, DT);
3483}
3484
3485OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3486 const DataLayout &DL,
3487 AssumptionCache *AC,
3488 const Instruction *CxtI,
3489 const DominatorTree *DT) {
3490 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3491}
3492
Jingyue Wu42f1d672015-07-28 18:22:40 +00003493bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3494 // FIXME: This conservative implementation can be relaxed. E.g. most
3495 // atomic operations are guaranteed to terminate on most platforms
3496 // and most functions terminate.
3497
3498 return !I->isAtomic() && // atomics may never succeed on some platforms
3499 !isa<CallInst>(I) && // could throw and might not terminate
3500 !isa<InvokeInst>(I) && // might not terminate and could throw to
3501 // non-successor (see bug 24185 for details).
3502 !isa<ResumeInst>(I) && // has no successors
3503 !isa<ReturnInst>(I); // has no successors
3504}
3505
3506bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3507 const Loop *L) {
3508 // The loop header is guaranteed to be executed for every iteration.
3509 //
3510 // FIXME: Relax this constraint to cover all basic blocks that are
3511 // guaranteed to be executed at every iteration.
3512 if (I->getParent() != L->getHeader()) return false;
3513
3514 for (const Instruction &LI : *L->getHeader()) {
3515 if (&LI == I) return true;
3516 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3517 }
3518 llvm_unreachable("Instruction not contained in its own parent basic block.");
3519}
3520
3521bool llvm::propagatesFullPoison(const Instruction *I) {
3522 switch (I->getOpcode()) {
3523 case Instruction::Add:
3524 case Instruction::Sub:
3525 case Instruction::Xor:
3526 case Instruction::Trunc:
3527 case Instruction::BitCast:
3528 case Instruction::AddrSpaceCast:
3529 // These operations all propagate poison unconditionally. Note that poison
3530 // is not any particular value, so xor or subtraction of poison with
3531 // itself still yields poison, not zero.
3532 return true;
3533
3534 case Instruction::AShr:
3535 case Instruction::SExt:
3536 // For these operations, one bit of the input is replicated across
3537 // multiple output bits. A replicated poison bit is still poison.
3538 return true;
3539
3540 case Instruction::Shl: {
3541 // Left shift *by* a poison value is poison. The number of
3542 // positions to shift is unsigned, so no negative values are
3543 // possible there. Left shift by zero places preserves poison. So
3544 // it only remains to consider left shift of poison by a positive
3545 // number of places.
3546 //
3547 // A left shift by a positive number of places leaves the lowest order bit
3548 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3549 // make the poison operand violate that flag, yielding a fresh full-poison
3550 // value.
3551 auto *OBO = cast<OverflowingBinaryOperator>(I);
3552 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3553 }
3554
3555 case Instruction::Mul: {
3556 // A multiplication by zero yields a non-poison zero result, so we need to
3557 // rule out zero as an operand. Conservatively, multiplication by a
3558 // non-zero constant is not multiplication by zero.
3559 //
3560 // Multiplication by a non-zero constant can leave some bits
3561 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3562 // order bit unpoisoned. So we need to consider that.
3563 //
3564 // Multiplication by 1 preserves poison. If the multiplication has a
3565 // no-wrap flag, then we can make the poison operand violate that flag
3566 // when multiplied by any integer other than 0 and 1.
3567 auto *OBO = cast<OverflowingBinaryOperator>(I);
3568 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3569 for (Value *V : OBO->operands()) {
3570 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3571 // A ConstantInt cannot yield poison, so we can assume that it is
3572 // the other operand that is poison.
3573 return !CI->isZero();
3574 }
3575 }
3576 }
3577 return false;
3578 }
3579
3580 case Instruction::GetElementPtr:
3581 // A GEP implicitly represents a sequence of additions, subtractions,
3582 // truncations, sign extensions and multiplications. The multiplications
3583 // are by the non-zero sizes of some set of types, so we do not have to be
3584 // concerned with multiplication by zero. If the GEP is in-bounds, then
3585 // these operations are implicitly no-signed-wrap so poison is propagated
3586 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3587 return cast<GEPOperator>(I)->isInBounds();
3588
3589 default:
3590 return false;
3591 }
3592}
3593
3594const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3595 switch (I->getOpcode()) {
3596 case Instruction::Store:
3597 return cast<StoreInst>(I)->getPointerOperand();
3598
3599 case Instruction::Load:
3600 return cast<LoadInst>(I)->getPointerOperand();
3601
3602 case Instruction::AtomicCmpXchg:
3603 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3604
3605 case Instruction::AtomicRMW:
3606 return cast<AtomicRMWInst>(I)->getPointerOperand();
3607
3608 case Instruction::UDiv:
3609 case Instruction::SDiv:
3610 case Instruction::URem:
3611 case Instruction::SRem:
3612 return I->getOperand(1);
3613
3614 default:
3615 return nullptr;
3616 }
3617}
3618
3619bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3620 // We currently only look for uses of poison values within the same basic
3621 // block, as that makes it easier to guarantee that the uses will be
3622 // executed given that PoisonI is executed.
3623 //
3624 // FIXME: Expand this to consider uses beyond the same basic block. To do
3625 // this, look out for the distinction between post-dominance and strong
3626 // post-dominance.
3627 const BasicBlock *BB = PoisonI->getParent();
3628
3629 // Set of instructions that we have proved will yield poison if PoisonI
3630 // does.
3631 SmallSet<const Value *, 16> YieldsPoison;
3632 YieldsPoison.insert(PoisonI);
3633
3634 for (const Instruction *I = PoisonI, *E = BB->end(); I != E;
3635 I = I->getNextNode()) {
3636 if (I != PoisonI) {
3637 const Value *NotPoison = getGuaranteedNonFullPoisonOp(I);
3638 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
3639 if (!isGuaranteedToTransferExecutionToSuccessor(I)) return false;
3640 }
3641
3642 // Mark poison that propagates from I through uses of I.
3643 if (YieldsPoison.count(I)) {
3644 for (const User *User : I->users()) {
3645 const Instruction *UserI = cast<Instruction>(User);
3646 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3647 YieldsPoison.insert(User);
3648 }
3649 }
3650 }
3651 return false;
3652}
3653
James Molloy134bec22015-08-11 09:12:57 +00003654static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3655 if (FMF.noNaNs())
3656 return true;
3657
3658 if (auto *C = dyn_cast<ConstantFP>(V))
3659 return !C->isNaN();
3660 return false;
3661}
3662
3663static bool isKnownNonZero(Value *V) {
3664 if (auto *C = dyn_cast<ConstantFP>(V))
3665 return !C->isZero();
3666 return false;
3667}
3668
3669static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3670 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003671 Value *CmpLHS, Value *CmpRHS,
3672 Value *TrueVal, Value *FalseVal,
3673 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003674 LHS = CmpLHS;
3675 RHS = CmpRHS;
3676
James Molloy134bec22015-08-11 09:12:57 +00003677 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3678 // return inconsistent results between implementations.
3679 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3680 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3681 // Therefore we behave conservatively and only proceed if at least one of the
3682 // operands is known to not be zero, or if we don't care about signed zeroes.
3683 switch (Pred) {
3684 default: break;
3685 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3686 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3687 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3688 !isKnownNonZero(CmpRHS))
3689 return {SPF_UNKNOWN, SPNB_NA, false};
3690 }
3691
3692 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3693 bool Ordered = false;
3694
3695 // When given one NaN and one non-NaN input:
3696 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3697 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3698 // ordered comparison fails), which could be NaN or non-NaN.
3699 // so here we discover exactly what NaN behavior is required/accepted.
3700 if (CmpInst::isFPPredicate(Pred)) {
3701 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3702 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3703
3704 if (LHSSafe && RHSSafe) {
3705 // Both operands are known non-NaN.
3706 NaNBehavior = SPNB_RETURNS_ANY;
3707 } else if (CmpInst::isOrdered(Pred)) {
3708 // An ordered comparison will return false when given a NaN, so it
3709 // returns the RHS.
3710 Ordered = true;
3711 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003712 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003713 NaNBehavior = SPNB_RETURNS_NAN;
3714 else if (RHSSafe)
3715 NaNBehavior = SPNB_RETURNS_OTHER;
3716 else
3717 // Completely unsafe.
3718 return {SPF_UNKNOWN, SPNB_NA, false};
3719 } else {
3720 Ordered = false;
3721 // An unordered comparison will return true when given a NaN, so it
3722 // returns the LHS.
3723 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003724 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003725 NaNBehavior = SPNB_RETURNS_OTHER;
3726 else if (RHSSafe)
3727 NaNBehavior = SPNB_RETURNS_NAN;
3728 else
3729 // Completely unsafe.
3730 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003731 }
3732 }
3733
James Molloy71b91c22015-05-11 14:42:20 +00003734 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003735 std::swap(CmpLHS, CmpRHS);
3736 Pred = CmpInst::getSwappedPredicate(Pred);
3737 if (NaNBehavior == SPNB_RETURNS_NAN)
3738 NaNBehavior = SPNB_RETURNS_OTHER;
3739 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3740 NaNBehavior = SPNB_RETURNS_NAN;
3741 Ordered = !Ordered;
3742 }
3743
3744 // ([if]cmp X, Y) ? X : Y
3745 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003746 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003747 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003748 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003749 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003750 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003751 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003752 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003753 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003754 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003755 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3756 case FCmpInst::FCMP_UGT:
3757 case FCmpInst::FCMP_UGE:
3758 case FCmpInst::FCMP_OGT:
3759 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3760 case FCmpInst::FCMP_ULT:
3761 case FCmpInst::FCMP_ULE:
3762 case FCmpInst::FCMP_OLT:
3763 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003764 }
3765 }
3766
3767 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3768 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3769 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3770
3771 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3772 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3773 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003774 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003775 }
3776
3777 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3778 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3779 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003780 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003781 }
3782 }
3783
3784 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3785 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3786 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3787 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3788 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3789 LHS = TrueVal;
3790 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003791 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003792 }
3793 }
3794 }
3795
3796 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3797
James Molloy134bec22015-08-11 09:12:57 +00003798 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003799}
James Molloy270ef8c2015-05-15 16:04:50 +00003800
James Molloy569cea62015-09-02 17:25:25 +00003801static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3802 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003803 CastInst *CI = dyn_cast<CastInst>(V1);
3804 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003805 CastInst *CI2 = dyn_cast<CastInst>(V2);
3806 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003807 return nullptr;
3808 *CastOp = CI->getOpcode();
3809
James Molloy569cea62015-09-02 17:25:25 +00003810 if (CI2) {
3811 // If V1 and V2 are both the same cast from the same type, we can look
3812 // through V1.
3813 if (CI2->getOpcode() == CI->getOpcode() &&
3814 CI2->getSrcTy() == CI->getSrcTy())
3815 return CI2->getOperand(0);
3816 return nullptr;
3817 } else if (!C) {
3818 return nullptr;
3819 }
3820
James Molloy2b21a7c2015-05-20 18:41:25 +00003821 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
3822 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
3823 // This is only valid if the truncated value can be sign-extended
3824 // back to the original value.
3825 if (ConstantExpr::getSExt(T, C->getType()) == C)
3826 return T;
3827 return nullptr;
3828 }
3829 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00003830 return ConstantExpr::getTrunc(C, CI->getSrcTy());
3831
3832 if (isa<TruncInst>(CI))
3833 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3834
James Molloy134bec22015-08-11 09:12:57 +00003835 if (isa<FPToUIInst>(CI))
3836 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3837
3838 if (isa<FPToSIInst>(CI))
3839 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3840
3841 if (isa<UIToFPInst>(CI))
3842 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3843
3844 if (isa<SIToFPInst>(CI))
3845 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3846
3847 if (isa<FPTruncInst>(CI))
3848 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3849
3850 if (isa<FPExtInst>(CI))
3851 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3852
James Molloy270ef8c2015-05-15 16:04:50 +00003853 return nullptr;
3854}
3855
James Molloy134bec22015-08-11 09:12:57 +00003856SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00003857 Value *&LHS, Value *&RHS,
3858 Instruction::CastOps *CastOp) {
3859 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003860 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003861
James Molloy134bec22015-08-11 09:12:57 +00003862 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3863 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003864
James Molloy134bec22015-08-11 09:12:57 +00003865 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003866 Value *CmpLHS = CmpI->getOperand(0);
3867 Value *CmpRHS = CmpI->getOperand(1);
3868 Value *TrueVal = SI->getTrueValue();
3869 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003870 FastMathFlags FMF;
3871 if (isa<FPMathOperator>(CmpI))
3872 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003873
3874 // Bail out early.
3875 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003876 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003877
3878 // Deal with type mismatches.
3879 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003880 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003881 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003882 cast<CastInst>(TrueVal)->getOperand(0), C,
3883 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003884 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003885 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003886 C, cast<CastInst>(FalseVal)->getOperand(0),
3887 LHS, RHS);
3888 }
James Molloy134bec22015-08-11 09:12:57 +00003889 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003890 LHS, RHS);
3891}