blob: 7b966565f057039a38affcb9acf8c090737d6672 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000046///
47/// Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000063/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000064///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanov5522a702013-09-24 11:20:27 +000069///
70/// Atomic handling.
71///
72/// Ideally, every atomic store of application value should update the
73/// corresponding shadow location in an atomic way. Unfortunately, atomic store
74/// of two disjoint locations can not be done without severe slowdown.
75///
76/// Therefore, we implement an approximation that may err on the safe side.
77/// In this implementation, every atomically accessed location in the program
78/// may only change from (partially) uninitialized to fully initialized, but
79/// not the other way around. We load the shadow _after_ the application load,
80/// and we store the shadow _before_ the app store. Also, we always store clean
81/// shadow (if the application store is atomic). This way, if the store-load
82/// pair constitutes a happens-before arc, shadow store and load are correctly
83/// ordered such that the load will get either the value that was stored, or
84/// some later value (which is always clean).
85///
86/// This does not work very well with Compare-And-Swap (CAS) and
87/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
88/// must store the new shadow before the app operation, and load the shadow
89/// after the app operation. Computers don't work this way. Current
90/// implementation ignores the load aspect of CAS/RMW, always returning a clean
91/// value. It implements the store part as a simple atomic store by storing a
92/// clean shadow.
93
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000094//===----------------------------------------------------------------------===//
95
96#define DEBUG_TYPE "msan"
97
Chandler Carruthed0881b2012-12-03 16:50:05 +000098#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000099#include "llvm/ADT/DepthFirstIterator.h"
100#include "llvm/ADT/SmallString.h"
101#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +0000102#include "llvm/ADT/Triple.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000103#include "llvm/IR/DataLayout.h"
104#include "llvm/IR/Function.h"
105#include "llvm/IR/IRBuilder.h"
106#include "llvm/IR/InlineAsm.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +0000107#include "llvm/IR/InstVisitor.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000108#include "llvm/IR/IntrinsicInst.h"
109#include "llvm/IR/LLVMContext.h"
110#include "llvm/IR/MDBuilder.h"
111#include "llvm/IR/Module.h"
112#include "llvm/IR/Type.h"
Chandler Carrutha4ea2692014-03-04 11:26:31 +0000113#include "llvm/IR/ValueMap.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000114#include "llvm/Support/CommandLine.h"
115#include "llvm/Support/Compiler.h"
116#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000117#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000118#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000119#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000120#include "llvm/Transforms/Utils/ModuleUtils.h"
Peter Collingbourne015370e2013-07-09 22:02:49 +0000121#include "llvm/Transforms/Utils/SpecialCaseList.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000122
123using namespace llvm;
124
125static const uint64_t kShadowMask32 = 1ULL << 31;
126static const uint64_t kShadowMask64 = 1ULL << 46;
127static const uint64_t kOriginOffset32 = 1ULL << 30;
128static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000129static const unsigned kMinOriginAlignment = 4;
130static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000131
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000132/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000133///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000134/// Adds a section to MemorySanitizer report that points to the allocation
135/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000136static cl::opt<bool> ClTrackOrigins("msan-track-origins",
137 cl::desc("Track origins (allocation sites) of poisoned memory"),
138 cl::Hidden, cl::init(false));
139static cl::opt<bool> ClKeepGoing("msan-keep-going",
140 cl::desc("keep going after reporting a UMR"),
141 cl::Hidden, cl::init(false));
142static cl::opt<bool> ClPoisonStack("msan-poison-stack",
143 cl::desc("poison uninitialized stack variables"),
144 cl::Hidden, cl::init(true));
145static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
146 cl::desc("poison uninitialized stack variables with a call"),
147 cl::Hidden, cl::init(false));
148static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
149 cl::desc("poison uninitialized stack variables with the given patter"),
150 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000151static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
152 cl::desc("poison undef temps"),
153 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000154
155static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
156 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
157 cl::Hidden, cl::init(true));
158
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000159static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
160 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000161 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000162
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000163static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
164 cl::desc("store origin for clean (fully initialized) values"),
165 cl::Hidden, cl::init(false));
166
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000167// This flag controls whether we check the shadow of the address
168// operand of load or store. Such bugs are very rare, since load from
169// a garbage address typically results in SEGV, but still happen
170// (e.g. only lower bits of address are garbage, or the access happens
171// early at program startup where malloc-ed memory is more likely to
172// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
173static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
174 cl::desc("report accesses through a pointer which has poisoned shadow"),
175 cl::Hidden, cl::init(true));
176
177static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
178 cl::desc("print out instructions with default strict semantics"),
179 cl::Hidden, cl::init(false));
180
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000181static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000182 cl::desc("File containing the list of functions where MemorySanitizer "
183 "should not report bugs"), cl::Hidden);
184
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000185// Experimental. Wraps all indirect calls in the instrumented code with
186// a call to the given function. This is needed to assist the dynamic
187// helper tool (MSanDR) to regain control on transition between instrumented and
188// non-instrumented code.
189static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
190 cl::desc("Wrap indirect calls with a given function"),
191 cl::Hidden);
192
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000193static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
194 cl::desc("Do not wrap indirect calls with target in the same module"),
195 cl::Hidden, cl::init(true));
196
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000197namespace {
198
199/// \brief An instrumentation pass implementing detection of uninitialized
200/// reads.
201///
202/// MemorySanitizer: instrument the code in module to find
203/// uninitialized reads.
204class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000205 public:
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000206 MemorySanitizer(bool TrackOrigins = false,
207 StringRef BlacklistFile = StringRef())
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000208 : FunctionPass(ID),
209 TrackOrigins(TrackOrigins || ClTrackOrigins),
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000210 DL(0),
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000211 WarningFn(0),
212 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile),
213 WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
Craig Topper3e4c6972014-03-05 09:10:37 +0000214 const char *getPassName() const override { return "MemorySanitizer"; }
215 bool runOnFunction(Function &F) override;
216 bool doInitialization(Module &M) override;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000217 static char ID; // Pass identification, replacement for typeid.
218
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000219 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000220 void initializeCallbacks(Module &M);
221
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000222 /// \brief Track origins (allocation points) of uninitialized values.
223 bool TrackOrigins;
224
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000225 const DataLayout *DL;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000226 LLVMContext *C;
227 Type *IntptrTy;
228 Type *OriginTy;
229 /// \brief Thread-local shadow storage for function parameters.
230 GlobalVariable *ParamTLS;
231 /// \brief Thread-local origin storage for function parameters.
232 GlobalVariable *ParamOriginTLS;
233 /// \brief Thread-local shadow storage for function return value.
234 GlobalVariable *RetvalTLS;
235 /// \brief Thread-local origin storage for function return value.
236 GlobalVariable *RetvalOriginTLS;
237 /// \brief Thread-local shadow storage for in-register va_arg function
238 /// parameters (x86_64-specific).
239 GlobalVariable *VAArgTLS;
240 /// \brief Thread-local shadow storage for va_arg overflow area
241 /// (x86_64-specific).
242 GlobalVariable *VAArgOverflowSizeTLS;
243 /// \brief Thread-local space used to pass origin value to the UMR reporting
244 /// function.
245 GlobalVariable *OriginTLS;
246
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000247 GlobalVariable *MsandrModuleStart;
248 GlobalVariable *MsandrModuleEnd;
249
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000250 /// \brief The run-time callback to print a warning.
251 Value *WarningFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000252 /// \brief Run-time helper that generates a new origin value for a stack
253 /// allocation.
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000254 Value *MsanSetAllocaOrigin4Fn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000255 /// \brief Run-time helper that poisons stack on function entry.
256 Value *MsanPoisonStackFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000257 /// \brief MSan runtime replacements for memmove, memcpy and memset.
258 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000259
260 /// \brief Address mask used in application-to-shadow address calculation.
261 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
262 uint64_t ShadowMask;
263 /// \brief Offset of the origin shadow from the "normal" shadow.
264 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
265 uint64_t OriginOffset;
266 /// \brief Branch weights for error reporting.
267 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000268 /// \brief Branch weights for origin store.
269 MDNode *OriginStoreWeights;
Dmitri Gribenko9bf66a52013-05-09 21:16:18 +0000270 /// \brief Path to blacklist file.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000271 SmallString<64> BlacklistFile;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000272 /// \brief The blacklist.
Ahmed Charles56440fd2014-03-06 05:51:42 +0000273 std::unique_ptr<SpecialCaseList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000274 /// \brief An empty volatile inline asm that prevents callback merge.
275 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000276
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000277 bool WrapIndirectCalls;
278 /// \brief Run-time wrapper for indirect calls.
279 Value *IndirectCallWrapperFn;
280 // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
281 Type *AnyFunctionPtrTy;
282
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000283 friend struct MemorySanitizerVisitor;
284 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000285};
286} // namespace
287
288char MemorySanitizer::ID = 0;
289INITIALIZE_PASS(MemorySanitizer, "msan",
290 "MemorySanitizer: detects uninitialized reads.",
291 false, false)
292
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000293FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
294 StringRef BlacklistFile) {
295 return new MemorySanitizer(TrackOrigins, BlacklistFile);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000296}
297
298/// \brief Create a non-const global initialized with the given string.
299///
300/// Creates a writable global for Str so that we can pass it to the
301/// run-time lib. Runtime uses first 4 bytes of the string to store the
302/// frame ID, so the string needs to be mutable.
303static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
304 StringRef Str) {
305 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
306 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
307 GlobalValue::PrivateLinkage, StrConst, "");
308}
309
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000310
311/// \brief Insert extern declaration of runtime-provided functions and globals.
312void MemorySanitizer::initializeCallbacks(Module &M) {
313 // Only do this once.
314 if (WarningFn)
315 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000316
317 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000318 // Create the callback.
319 // FIXME: this function should have "Cold" calling conv,
320 // which is not yet implemented.
321 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
322 : "__msan_warning_noreturn";
323 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
324
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000325 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
326 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
327 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000328 MsanPoisonStackFn = M.getOrInsertFunction(
329 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
330 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000331 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
332 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000333 MemcpyFn = M.getOrInsertFunction(
334 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
335 IntptrTy, NULL);
336 MemsetFn = M.getOrInsertFunction(
337 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000338 IntptrTy, NULL);
339
340 // Create globals.
341 RetvalTLS = new GlobalVariable(
342 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
343 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000344 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000345 RetvalOriginTLS = new GlobalVariable(
346 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000347 "__msan_retval_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000348
349 ParamTLS = new GlobalVariable(
350 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
351 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000352 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000353 ParamOriginTLS = new GlobalVariable(
354 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000355 0, "__msan_param_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000356
357 VAArgTLS = new GlobalVariable(
358 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
359 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000360 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000361 VAArgOverflowSizeTLS = new GlobalVariable(
362 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
363 "__msan_va_arg_overflow_size_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000364 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000365 OriginTLS = new GlobalVariable(
366 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000367 "__msan_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000368
369 // We insert an empty inline asm after __msan_report* to avoid callback merge.
370 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
371 StringRef(""), StringRef(""),
372 /*hasSideEffects=*/true);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000373
374 if (WrapIndirectCalls) {
375 AnyFunctionPtrTy =
376 PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
377 IndirectCallWrapperFn = M.getOrInsertFunction(
378 ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
379 }
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000380
381 if (ClWrapIndirectCallsFast) {
382 MsandrModuleStart = new GlobalVariable(
383 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
384 0, "__executable_start");
385 MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
386 MsandrModuleEnd = new GlobalVariable(
387 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
388 0, "_end");
389 MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
390 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000391}
392
393/// \brief Module-level initialization.
394///
395/// inserts a call to __msan_init to the module's constructor list.
396bool MemorySanitizer::doInitialization(Module &M) {
Rafael Espindola93512512014-02-25 17:30:31 +0000397 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
398 if (!DLP)
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000399 return false;
Rafael Espindola93512512014-02-25 17:30:31 +0000400 DL = &DLP->getDataLayout();
401
Alexey Samsonove4b5fb82013-08-12 11:46:09 +0000402 BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000403 C = &(M.getContext());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000404 unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000405 switch (PtrSize) {
406 case 64:
407 ShadowMask = kShadowMask64;
408 OriginOffset = kOriginOffset64;
409 break;
410 case 32:
411 ShadowMask = kShadowMask32;
412 OriginOffset = kOriginOffset32;
413 break;
414 default:
415 report_fatal_error("unsupported pointer size");
416 break;
417 }
418
419 IRBuilder<> IRB(*C);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000420 IntptrTy = IRB.getIntPtrTy(DL);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000421 OriginTy = IRB.getInt32Ty();
422
423 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000424 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000425
426 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
427 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
428 "__msan_init", IRB.getVoidTy(), NULL)), 0);
429
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000430 if (TrackOrigins)
431 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
432 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000433
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000434 if (ClKeepGoing)
435 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
436 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000437
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000438 return true;
439}
440
441namespace {
442
443/// \brief A helper class that handles instrumentation of VarArg
444/// functions on a particular platform.
445///
446/// Implementations are expected to insert the instrumentation
447/// necessary to propagate argument shadow through VarArg function
448/// calls. Visit* methods are called during an InstVisitor pass over
449/// the function, and should avoid creating new basic blocks. A new
450/// instance of this class is created for each instrumented function.
451struct VarArgHelper {
452 /// \brief Visit a CallSite.
453 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
454
455 /// \brief Visit a va_start call.
456 virtual void visitVAStartInst(VAStartInst &I) = 0;
457
458 /// \brief Visit a va_copy call.
459 virtual void visitVACopyInst(VACopyInst &I) = 0;
460
461 /// \brief Finalize function instrumentation.
462 ///
463 /// This method is called after visiting all interesting (see above)
464 /// instructions in a function.
465 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000466
467 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000468};
469
470struct MemorySanitizerVisitor;
471
472VarArgHelper*
473CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
474 MemorySanitizerVisitor &Visitor);
475
476/// This class does all the work for a given function. Store and Load
477/// instructions store and load corresponding shadow and origin
478/// values. Most instructions propagate shadow from arguments to their
479/// return values. Certain instructions (most importantly, BranchInst)
480/// test their argument shadow and print reports (with a runtime call) if it's
481/// non-zero.
482struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
483 Function &F;
484 MemorySanitizer &MS;
485 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
486 ValueMap<Value*, Value*> ShadowMap, OriginMap;
Ahmed Charles56440fd2014-03-06 05:51:42 +0000487 std::unique_ptr<VarArgHelper> VAHelper;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000488
489 // The following flags disable parts of MSan instrumentation based on
490 // blacklist contents and command-line options.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000491 bool InsertChecks;
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000492 bool LoadShadow;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000493 bool PoisonStack;
494 bool PoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000495 bool CheckReturnValue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000496
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000497 struct ShadowOriginAndInsertPoint {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000498 Value *Shadow;
499 Value *Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000500 Instruction *OrigIns;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000501 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000502 : Shadow(S), Origin(O), OrigIns(I) { }
503 ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
504 };
505 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000506 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000507 SmallVector<CallSite, 16> IndirectCallList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000508
509 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000510 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000511 bool SanitizeFunction = !MS.BL->isIn(F) && F.getAttributes().hasAttribute(
512 AttributeSet::FunctionIndex,
513 Attribute::SanitizeMemory);
514 InsertChecks = SanitizeFunction;
515 LoadShadow = SanitizeFunction;
516 PoisonStack = SanitizeFunction && ClPoisonStack;
517 PoisonUndef = SanitizeFunction && ClPoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000518 // FIXME: Consider using SpecialCaseList to specify a list of functions that
519 // must always return fully initialized values. For now, we hardcode "main".
520 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000521
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000522 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000523 dbgs() << "MemorySanitizer is not inserting checks into '"
524 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000525 }
526
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000527 void materializeStores() {
528 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
529 StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
530
531 IRBuilder<> IRB(&I);
532 Value *Val = I.getValueOperand();
533 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000534 Value *Shadow = I.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000535 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
536
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000537 StoreInst *NewSI =
538 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000539 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000540 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000541
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000542 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000543 insertShadowCheck(Addr, &I);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000544
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000545 if (I.isAtomic())
546 I.setOrdering(addReleaseOrdering(I.getOrdering()));
547
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000548 if (MS.TrackOrigins) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000549 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000550 if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000551 IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
552 Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000553 } else {
554 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
555
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000556 // TODO(eugenis): handle non-zero constant shadow by inserting an
557 // unconditional check (can not simply fail compilation as this could
558 // be in the dead code).
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000559 if (isa<Constant>(ConvertedShadow))
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000560 continue;
561
562 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
563 getCleanShadow(ConvertedShadow), "_mscmp");
564 Instruction *CheckTerm =
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000565 SplitBlockAndInsertIfThen(Cmp, &I, false, MS.OriginStoreWeights);
Evgeniy Stepanov49175b22012-12-14 13:43:11 +0000566 IRBuilder<> IRBNew(CheckTerm);
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000567 IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
568 Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000569 }
570 }
571 }
572 }
573
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000574 void materializeChecks() {
575 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000576 Value *Shadow = InstrumentationList[i].Shadow;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000577 Instruction *OrigIns = InstrumentationList[i].OrigIns;
578 IRBuilder<> IRB(OrigIns);
579 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
580 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
581 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000582 // See the comment in materializeStores().
583 if (isa<Constant>(ConvertedShadow))
584 continue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000585 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
586 getCleanShadow(ConvertedShadow), "_mscmp");
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000587 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
588 Cmp, OrigIns,
589 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000590
591 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000592 if (MS.TrackOrigins) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000593 Value *Origin = InstrumentationList[i].Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000594 IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
595 MS.OriginTLS);
596 }
597 CallInst *Call = IRB.CreateCall(MS.WarningFn);
598 Call->setDebugLoc(OrigIns->getDebugLoc());
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000599 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000600 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
601 }
602 DEBUG(dbgs() << "DONE:\n" << F);
603 }
604
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000605 void materializeIndirectCalls() {
606 for (size_t i = 0, n = IndirectCallList.size(); i < n; i++) {
607 CallSite CS = IndirectCallList[i];
608 Instruction *I = CS.getInstruction();
609 BasicBlock *B = I->getParent();
610 IRBuilder<> IRB(I);
611 Value *Fn0 = CS.getCalledValue();
612 Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
613
614 if (ClWrapIndirectCallsFast) {
615 // Check that call target is inside this module limits.
616 Value *Start =
617 IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
618 Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
619
620 Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
621 IRB.CreateICmpUGE(Fn, End));
622
623 PHINode *NewFnPhi =
624 IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
625
626 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000627 NotInThisModule, NewFnPhi,
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000628 /* Unreachable */ false, MS.ColdCallWeights);
629
630 IRB.SetInsertPoint(CheckTerm);
631 // Slow path: call wrapper function to possibly transform the call
632 // target.
633 Value *NewFn = IRB.CreateBitCast(
634 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
635
636 NewFnPhi->addIncoming(Fn0, B);
637 NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
638 CS.setCalledFunction(NewFnPhi);
639 } else {
640 Value *NewFn = IRB.CreateBitCast(
641 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
642 CS.setCalledFunction(NewFn);
643 }
644 }
645 }
646
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000647 /// \brief Add MemorySanitizer instrumentation to a function.
648 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000649 MS.initializeCallbacks(*F.getParent());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000650 if (!MS.DL) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000651
652 // In the presence of unreachable blocks, we may see Phi nodes with
653 // incoming nodes from such blocks. Since InstVisitor skips unreachable
654 // blocks, such nodes will not have any shadow value associated with them.
655 // It's easier to remove unreachable blocks than deal with missing shadow.
656 removeUnreachableBlocks(F);
657
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000658 // Iterate all BBs in depth-first order and create shadow instructions
659 // for all instructions (where applicable).
660 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
661 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
662 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
663 BasicBlock *BB = *DI;
664 visit(*BB);
665 }
666
667 // Finalize PHI nodes.
668 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
669 PHINode *PN = ShadowPHINodes[i];
670 PHINode *PNS = cast<PHINode>(getShadow(PN));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000671 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000672 size_t NumValues = PN->getNumIncomingValues();
673 for (size_t v = 0; v < NumValues; v++) {
674 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
675 if (PNO)
676 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
677 }
678 }
679
680 VAHelper->finalizeInstrumentation();
681
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000682 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000683 // This may add new checks to be inserted later.
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000684 materializeStores();
685
686 // Insert shadow value checks.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000687 materializeChecks();
688
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000689 // Wrap indirect calls.
690 materializeIndirectCalls();
691
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000692 return true;
693 }
694
695 /// \brief Compute the shadow type that corresponds to a given Value.
696 Type *getShadowTy(Value *V) {
697 return getShadowTy(V->getType());
698 }
699
700 /// \brief Compute the shadow type that corresponds to a given Type.
701 Type *getShadowTy(Type *OrigTy) {
702 if (!OrigTy->isSized()) {
703 return 0;
704 }
705 // For integer type, shadow is the same as the original type.
706 // This may return weird-sized types like i1.
707 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
708 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000709 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000710 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000711 return VectorType::get(IntegerType::get(*MS.C, EltSize),
712 VT->getNumElements());
713 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000714 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
715 SmallVector<Type*, 4> Elements;
716 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
717 Elements.push_back(getShadowTy(ST->getElementType(i)));
718 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
719 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
720 return Res;
721 }
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000722 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000723 return IntegerType::get(*MS.C, TypeSize);
724 }
725
726 /// \brief Flatten a vector type.
727 Type *getShadowTyNoVec(Type *ty) {
728 if (VectorType *vt = dyn_cast<VectorType>(ty))
729 return IntegerType::get(*MS.C, vt->getBitWidth());
730 return ty;
731 }
732
733 /// \brief Convert a shadow value to it's flattened variant.
734 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
735 Type *Ty = V->getType();
736 Type *NoVecTy = getShadowTyNoVec(Ty);
737 if (Ty == NoVecTy) return V;
738 return IRB.CreateBitCast(V, NoVecTy);
739 }
740
741 /// \brief Compute the shadow address that corresponds to a given application
742 /// address.
743 ///
744 /// Shadow = Addr & ~ShadowMask.
745 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
746 IRBuilder<> &IRB) {
747 Value *ShadowLong =
748 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
749 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
750 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
751 }
752
753 /// \brief Compute the origin address that corresponds to a given application
754 /// address.
755 ///
756 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000757 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
758 Value *ShadowLong =
759 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000760 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000761 Value *Add =
762 IRB.CreateAdd(ShadowLong,
763 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000764 Value *SecondAnd =
765 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
766 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000767 }
768
769 /// \brief Compute the shadow address for a given function argument.
770 ///
771 /// Shadow = ParamTLS+ArgOffset.
772 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
773 int ArgOffset) {
774 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
775 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
776 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
777 "_msarg");
778 }
779
780 /// \brief Compute the origin address for a given function argument.
781 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
782 int ArgOffset) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000783 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000784 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
785 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
786 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
787 "_msarg_o");
788 }
789
790 /// \brief Compute the shadow address for a retval.
791 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
792 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
793 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
794 "_msret");
795 }
796
797 /// \brief Compute the origin address for a retval.
798 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
799 // We keep a single origin for the entire retval. Might be too optimistic.
800 return MS.RetvalOriginTLS;
801 }
802
803 /// \brief Set SV to be the shadow value for V.
804 void setShadow(Value *V, Value *SV) {
805 assert(!ShadowMap.count(V) && "Values may only have one shadow");
806 ShadowMap[V] = SV;
807 }
808
809 /// \brief Set Origin to be the origin value for V.
810 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000811 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000812 assert(!OriginMap.count(V) && "Values may only have one origin");
813 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
814 OriginMap[V] = Origin;
815 }
816
817 /// \brief Create a clean shadow value for a given value.
818 ///
819 /// Clean shadow (all zeroes) means all bits of the value are defined
820 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000821 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000822 Type *ShadowTy = getShadowTy(V);
823 if (!ShadowTy)
824 return 0;
825 return Constant::getNullValue(ShadowTy);
826 }
827
828 /// \brief Create a dirty shadow of a given shadow type.
829 Constant *getPoisonedShadow(Type *ShadowTy) {
830 assert(ShadowTy);
831 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
832 return Constant::getAllOnesValue(ShadowTy);
833 StructType *ST = cast<StructType>(ShadowTy);
834 SmallVector<Constant *, 4> Vals;
835 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
836 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
837 return ConstantStruct::get(ST, Vals);
838 }
839
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000840 /// \brief Create a dirty shadow for a given value.
841 Constant *getPoisonedShadow(Value *V) {
842 Type *ShadowTy = getShadowTy(V);
843 if (!ShadowTy)
844 return 0;
845 return getPoisonedShadow(ShadowTy);
846 }
847
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000848 /// \brief Create a clean (zero) origin.
849 Value *getCleanOrigin() {
850 return Constant::getNullValue(MS.OriginTy);
851 }
852
853 /// \brief Get the shadow value for a given Value.
854 ///
855 /// This function either returns the value set earlier with setShadow,
856 /// or extracts if from ParamTLS (for function arguments).
857 Value *getShadow(Value *V) {
858 if (Instruction *I = dyn_cast<Instruction>(V)) {
859 // For instructions the shadow is already stored in the map.
860 Value *Shadow = ShadowMap[V];
861 if (!Shadow) {
862 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000863 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000864 assert(Shadow && "No shadow for a value");
865 }
866 return Shadow;
867 }
868 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000869 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000870 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000871 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000872 return AllOnes;
873 }
874 if (Argument *A = dyn_cast<Argument>(V)) {
875 // For arguments we compute the shadow on demand and store it in the map.
876 Value **ShadowPtr = &ShadowMap[V];
877 if (*ShadowPtr)
878 return *ShadowPtr;
879 Function *F = A->getParent();
880 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
881 unsigned ArgOffset = 0;
882 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
883 AI != AE; ++AI) {
884 if (!AI->getType()->isSized()) {
885 DEBUG(dbgs() << "Arg is not sized\n");
886 continue;
887 }
888 unsigned Size = AI->hasByValAttr()
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000889 ? MS.DL->getTypeAllocSize(AI->getType()->getPointerElementType())
890 : MS.DL->getTypeAllocSize(AI->getType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000891 if (A == AI) {
892 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
893 if (AI->hasByValAttr()) {
894 // ByVal pointer itself has clean shadow. We copy the actual
895 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000896 // Figure out maximal valid memcpy alignment.
897 unsigned ArgAlign = AI->getParamAlignment();
898 if (ArgAlign == 0) {
899 Type *EltType = A->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000900 ArgAlign = MS.DL->getABITypeAlignment(EltType);
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000901 }
902 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000903 Value *Cpy = EntryIRB.CreateMemCpy(
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000904 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
905 CopyAlign);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000906 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000907 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000908 *ShadowPtr = getCleanShadow(V);
909 } else {
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000910 *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000911 }
912 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
913 **ShadowPtr << "\n");
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000914 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000915 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
916 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
917 }
918 }
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000919 ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000920 }
921 assert(*ShadowPtr && "Could not find shadow for an argument");
922 return *ShadowPtr;
923 }
924 // For everything else the shadow is zero.
925 return getCleanShadow(V);
926 }
927
928 /// \brief Get the shadow for i-th argument of the instruction I.
929 Value *getShadow(Instruction *I, int i) {
930 return getShadow(I->getOperand(i));
931 }
932
933 /// \brief Get the origin for a value.
934 Value *getOrigin(Value *V) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000935 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000936 if (isa<Instruction>(V) || isa<Argument>(V)) {
937 Value *Origin = OriginMap[V];
938 if (!Origin) {
939 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
940 Origin = getCleanOrigin();
941 }
942 return Origin;
943 }
944 return getCleanOrigin();
945 }
946
947 /// \brief Get the origin for i-th argument of the instruction I.
948 Value *getOrigin(Instruction *I, int i) {
949 return getOrigin(I->getOperand(i));
950 }
951
952 /// \brief Remember the place where a shadow check should be inserted.
953 ///
954 /// This location will be later instrumented with a check that will print a
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000955 /// UMR warning in runtime if the shadow value is not 0.
956 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
957 assert(Shadow);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000958 if (!InsertChecks) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000959#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000960 Type *ShadowTy = Shadow->getType();
961 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
962 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000963#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000964 InstrumentationList.push_back(
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000965 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
966 }
967
968 /// \brief Remember the place where a shadow check should be inserted.
969 ///
970 /// This location will be later instrumented with a check that will print a
971 /// UMR warning in runtime if the value is not fully defined.
972 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
973 assert(Val);
974 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
975 if (!Shadow) return;
976 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
977 insertShadowCheck(Shadow, Origin, OrigIns);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000978 }
979
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000980 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
981 switch (a) {
982 case NotAtomic:
983 return NotAtomic;
984 case Unordered:
985 case Monotonic:
986 case Release:
987 return Release;
988 case Acquire:
989 case AcquireRelease:
990 return AcquireRelease;
991 case SequentiallyConsistent:
992 return SequentiallyConsistent;
993 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +0000994 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000995 }
996
997 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
998 switch (a) {
999 case NotAtomic:
1000 return NotAtomic;
1001 case Unordered:
1002 case Monotonic:
1003 case Acquire:
1004 return Acquire;
1005 case Release:
1006 case AcquireRelease:
1007 return AcquireRelease;
1008 case SequentiallyConsistent:
1009 return SequentiallyConsistent;
1010 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001011 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001012 }
1013
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001014 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001015
1016 /// \brief Instrument LoadInst
1017 ///
1018 /// Loads the corresponding shadow and (optionally) origin.
1019 /// Optionally, checks that the load address is fully defined.
1020 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001021 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001022 IRBuilder<> IRB(I.getNextNode());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001023 Type *ShadowTy = getShadowTy(&I);
1024 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001025 if (LoadShadow) {
1026 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1027 setShadow(&I,
1028 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1029 } else {
1030 setShadow(&I, getCleanShadow(&I));
1031 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001032
1033 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001034 insertShadowCheck(I.getPointerOperand(), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001035
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001036 if (I.isAtomic())
1037 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1038
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001039 if (MS.TrackOrigins) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001040 if (LoadShadow) {
1041 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
1042 setOrigin(&I,
1043 IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
1044 } else {
1045 setOrigin(&I, getCleanOrigin());
1046 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001047 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001048 }
1049
1050 /// \brief Instrument StoreInst
1051 ///
1052 /// Stores the corresponding shadow and (optionally) origin.
1053 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001054 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +00001055 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001056 }
1057
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001058 void handleCASOrRMW(Instruction &I) {
1059 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1060
1061 IRBuilder<> IRB(&I);
1062 Value *Addr = I.getOperand(0);
1063 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1064
1065 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001066 insertShadowCheck(Addr, &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001067
1068 // Only test the conditional argument of cmpxchg instruction.
1069 // The other argument can potentially be uninitialized, but we can not
1070 // detect this situation reliably without possible false positives.
1071 if (isa<AtomicCmpXchgInst>(I))
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001072 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001073
1074 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1075
1076 setShadow(&I, getCleanShadow(&I));
1077 }
1078
1079 void visitAtomicRMWInst(AtomicRMWInst &I) {
1080 handleCASOrRMW(I);
1081 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1082 }
1083
1084 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1085 handleCASOrRMW(I);
Tim Northovere94a5182014-03-11 10:48:52 +00001086 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001087 }
1088
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001089 // Vector manipulation.
1090 void visitExtractElementInst(ExtractElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001091 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001092 IRBuilder<> IRB(&I);
1093 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1094 "_msprop"));
1095 setOrigin(&I, getOrigin(&I, 0));
1096 }
1097
1098 void visitInsertElementInst(InsertElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001099 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001100 IRBuilder<> IRB(&I);
1101 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1102 I.getOperand(2), "_msprop"));
1103 setOriginForNaryOp(I);
1104 }
1105
1106 void visitShuffleVectorInst(ShuffleVectorInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001107 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001108 IRBuilder<> IRB(&I);
1109 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1110 I.getOperand(2), "_msprop"));
1111 setOriginForNaryOp(I);
1112 }
1113
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001114 // Casts.
1115 void visitSExtInst(SExtInst &I) {
1116 IRBuilder<> IRB(&I);
1117 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1118 setOrigin(&I, getOrigin(&I, 0));
1119 }
1120
1121 void visitZExtInst(ZExtInst &I) {
1122 IRBuilder<> IRB(&I);
1123 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1124 setOrigin(&I, getOrigin(&I, 0));
1125 }
1126
1127 void visitTruncInst(TruncInst &I) {
1128 IRBuilder<> IRB(&I);
1129 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1130 setOrigin(&I, getOrigin(&I, 0));
1131 }
1132
1133 void visitBitCastInst(BitCastInst &I) {
1134 IRBuilder<> IRB(&I);
1135 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1136 setOrigin(&I, getOrigin(&I, 0));
1137 }
1138
1139 void visitPtrToIntInst(PtrToIntInst &I) {
1140 IRBuilder<> IRB(&I);
1141 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1142 "_msprop_ptrtoint"));
1143 setOrigin(&I, getOrigin(&I, 0));
1144 }
1145
1146 void visitIntToPtrInst(IntToPtrInst &I) {
1147 IRBuilder<> IRB(&I);
1148 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1149 "_msprop_inttoptr"));
1150 setOrigin(&I, getOrigin(&I, 0));
1151 }
1152
1153 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1154 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1155 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1156 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1157 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1158 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1159
1160 /// \brief Propagate shadow for bitwise AND.
1161 ///
1162 /// This code is exact, i.e. if, for example, a bit in the left argument
1163 /// is defined and 0, then neither the value not definedness of the
1164 /// corresponding bit in B don't affect the resulting shadow.
1165 void visitAnd(BinaryOperator &I) {
1166 IRBuilder<> IRB(&I);
1167 // "And" of 0 and a poisoned value results in unpoisoned value.
1168 // 1&1 => 1; 0&1 => 0; p&1 => p;
1169 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1170 // 1&p => p; 0&p => 0; p&p => p;
1171 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1172 Value *S1 = getShadow(&I, 0);
1173 Value *S2 = getShadow(&I, 1);
1174 Value *V1 = I.getOperand(0);
1175 Value *V2 = I.getOperand(1);
1176 if (V1->getType() != S1->getType()) {
1177 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1178 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1179 }
1180 Value *S1S2 = IRB.CreateAnd(S1, S2);
1181 Value *V1S2 = IRB.CreateAnd(V1, S2);
1182 Value *S1V2 = IRB.CreateAnd(S1, V2);
1183 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1184 setOriginForNaryOp(I);
1185 }
1186
1187 void visitOr(BinaryOperator &I) {
1188 IRBuilder<> IRB(&I);
1189 // "Or" of 1 and a poisoned value results in unpoisoned value.
1190 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1191 // 1|0 => 1; 0|0 => 0; p|0 => p;
1192 // 1|p => 1; 0|p => p; p|p => p;
1193 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1194 Value *S1 = getShadow(&I, 0);
1195 Value *S2 = getShadow(&I, 1);
1196 Value *V1 = IRB.CreateNot(I.getOperand(0));
1197 Value *V2 = IRB.CreateNot(I.getOperand(1));
1198 if (V1->getType() != S1->getType()) {
1199 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1200 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1201 }
1202 Value *S1S2 = IRB.CreateAnd(S1, S2);
1203 Value *V1S2 = IRB.CreateAnd(V1, S2);
1204 Value *S1V2 = IRB.CreateAnd(S1, V2);
1205 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1206 setOriginForNaryOp(I);
1207 }
1208
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001209 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001210 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001211 /// This class implements the general case of shadow propagation, used in all
1212 /// cases where we don't know and/or don't care about what the operation
1213 /// actually does. It converts all input shadow values to a common type
1214 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001215 ///
1216 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1217 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001218 ///
1219 /// This class also implements the general case of origin propagation. For a
1220 /// Nary operation, result origin is set to the origin of an argument that is
1221 /// not entirely initialized. If there is more than one such arguments, the
1222 /// rightmost of them is picked. It does not matter which one is picked if all
1223 /// arguments are initialized.
1224 template <bool CombineShadow>
1225 class Combiner {
1226 Value *Shadow;
1227 Value *Origin;
1228 IRBuilder<> &IRB;
1229 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001230
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001231 public:
1232 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1233 Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
1234
1235 /// \brief Add a pair of shadow and origin values to the mix.
1236 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1237 if (CombineShadow) {
1238 assert(OpShadow);
1239 if (!Shadow)
1240 Shadow = OpShadow;
1241 else {
1242 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1243 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1244 }
1245 }
1246
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001247 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001248 assert(OpOrigin);
1249 if (!Origin) {
1250 Origin = OpOrigin;
1251 } else {
1252 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1253 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1254 MSV->getCleanShadow(FlatShadow));
1255 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1256 }
1257 }
1258 return *this;
1259 }
1260
1261 /// \brief Add an application value to the mix.
1262 Combiner &Add(Value *V) {
1263 Value *OpShadow = MSV->getShadow(V);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001264 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001265 return Add(OpShadow, OpOrigin);
1266 }
1267
1268 /// \brief Set the current combined values as the given instruction's shadow
1269 /// and origin.
1270 void Done(Instruction *I) {
1271 if (CombineShadow) {
1272 assert(Shadow);
1273 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1274 MSV->setShadow(I, Shadow);
1275 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001276 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001277 assert(Origin);
1278 MSV->setOrigin(I, Origin);
1279 }
1280 }
1281 };
1282
1283 typedef Combiner<true> ShadowAndOriginCombiner;
1284 typedef Combiner<false> OriginCombiner;
1285
1286 /// \brief Propagate origin for arbitrary operation.
1287 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001288 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001289 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001290 OriginCombiner OC(this, IRB);
1291 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1292 OC.Add(OI->get());
1293 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001294 }
1295
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001296 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001297 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1298 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001299 return Ty->isVectorTy() ?
1300 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1301 Ty->getPrimitiveSizeInBits();
1302 }
1303
1304 /// \brief Cast between two shadow types, extending or truncating as
1305 /// necessary.
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001306 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1307 bool Signed = false) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001308 Type *srcTy = V->getType();
1309 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001310 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001311 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1312 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001313 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001314 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1315 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1316 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1317 Value *V2 =
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001318 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001319 return IRB.CreateBitCast(V2, dstTy);
1320 // TODO: handle struct types.
1321 }
1322
1323 /// \brief Propagate shadow for arbitrary operation.
1324 void handleShadowOr(Instruction &I) {
1325 IRBuilder<> IRB(&I);
1326 ShadowAndOriginCombiner SC(this, IRB);
1327 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1328 SC.Add(OI->get());
1329 SC.Done(&I);
1330 }
1331
1332 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1333 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1334 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1335 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1336 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1337 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1338 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001339
1340 void handleDiv(Instruction &I) {
1341 IRBuilder<> IRB(&I);
1342 // Strict on the second argument.
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001343 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001344 setShadow(&I, getShadow(&I, 0));
1345 setOrigin(&I, getOrigin(&I, 0));
1346 }
1347
1348 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1349 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1350 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1351 void visitURem(BinaryOperator &I) { handleDiv(I); }
1352 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1353 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1354
1355 /// \brief Instrument == and != comparisons.
1356 ///
1357 /// Sometimes the comparison result is known even if some of the bits of the
1358 /// arguments are not.
1359 void handleEqualityComparison(ICmpInst &I) {
1360 IRBuilder<> IRB(&I);
1361 Value *A = I.getOperand(0);
1362 Value *B = I.getOperand(1);
1363 Value *Sa = getShadow(A);
1364 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001365
1366 // Get rid of pointers and vectors of pointers.
1367 // For ints (and vectors of ints), types of A and Sa match,
1368 // and this is a no-op.
1369 A = IRB.CreatePointerCast(A, Sa->getType());
1370 B = IRB.CreatePointerCast(B, Sb->getType());
1371
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001372 // A == B <==> (C = A^B) == 0
1373 // A != B <==> (C = A^B) != 0
1374 // Sc = Sa | Sb
1375 Value *C = IRB.CreateXor(A, B);
1376 Value *Sc = IRB.CreateOr(Sa, Sb);
1377 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1378 // Result is defined if one of the following is true
1379 // * there is a defined 1 bit in C
1380 // * C is fully defined
1381 // Si = !(C & ~Sc) && Sc
1382 Value *Zero = Constant::getNullValue(Sc->getType());
1383 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1384 Value *Si =
1385 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1386 IRB.CreateICmpEQ(
1387 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1388 Si->setName("_msprop_icmp");
1389 setShadow(&I, Si);
1390 setOriginForNaryOp(I);
1391 }
1392
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001393 /// \brief Build the lowest possible value of V, taking into account V's
1394 /// uninitialized bits.
1395 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1396 bool isSigned) {
1397 if (isSigned) {
1398 // Split shadow into sign bit and other bits.
1399 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1400 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1401 // Maximise the undefined shadow bit, minimize other undefined bits.
1402 return
1403 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1404 } else {
1405 // Minimize undefined bits.
1406 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1407 }
1408 }
1409
1410 /// \brief Build the highest possible value of V, taking into account V's
1411 /// uninitialized bits.
1412 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1413 bool isSigned) {
1414 if (isSigned) {
1415 // Split shadow into sign bit and other bits.
1416 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1417 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1418 // Minimise the undefined shadow bit, maximise other undefined bits.
1419 return
1420 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1421 } else {
1422 // Maximize undefined bits.
1423 return IRB.CreateOr(A, Sa);
1424 }
1425 }
1426
1427 /// \brief Instrument relational comparisons.
1428 ///
1429 /// This function does exact shadow propagation for all relational
1430 /// comparisons of integers, pointers and vectors of those.
1431 /// FIXME: output seems suboptimal when one of the operands is a constant
1432 void handleRelationalComparisonExact(ICmpInst &I) {
1433 IRBuilder<> IRB(&I);
1434 Value *A = I.getOperand(0);
1435 Value *B = I.getOperand(1);
1436 Value *Sa = getShadow(A);
1437 Value *Sb = getShadow(B);
1438
1439 // Get rid of pointers and vectors of pointers.
1440 // For ints (and vectors of ints), types of A and Sa match,
1441 // and this is a no-op.
1442 A = IRB.CreatePointerCast(A, Sa->getType());
1443 B = IRB.CreatePointerCast(B, Sb->getType());
1444
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001445 // Let [a0, a1] be the interval of possible values of A, taking into account
1446 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1447 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001448 bool IsSigned = I.isSigned();
1449 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1450 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1451 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1452 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1453 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1454 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1455 Value *Si = IRB.CreateXor(S1, S2);
1456 setShadow(&I, Si);
1457 setOriginForNaryOp(I);
1458 }
1459
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001460 /// \brief Instrument signed relational comparisons.
1461 ///
1462 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1463 /// propagating the highest bit of the shadow. Everything else is delegated
1464 /// to handleShadowOr().
1465 void handleSignedRelationalComparison(ICmpInst &I) {
1466 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1467 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1468 Value* op = NULL;
1469 CmpInst::Predicate pre = I.getPredicate();
1470 if (constOp0 && constOp0->isNullValue() &&
1471 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1472 op = I.getOperand(1);
1473 } else if (constOp1 && constOp1->isNullValue() &&
1474 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1475 op = I.getOperand(0);
1476 }
1477 if (op) {
1478 IRBuilder<> IRB(&I);
1479 Value* Shadow =
1480 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1481 setShadow(&I, Shadow);
1482 setOrigin(&I, getOrigin(op));
1483 } else {
1484 handleShadowOr(I);
1485 }
1486 }
1487
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001488 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001489 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001490 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001491 return;
1492 }
1493 if (I.isEquality()) {
1494 handleEqualityComparison(I);
1495 return;
1496 }
1497
1498 assert(I.isRelational());
1499 if (ClHandleICmpExact) {
1500 handleRelationalComparisonExact(I);
1501 return;
1502 }
1503 if (I.isSigned()) {
1504 handleSignedRelationalComparison(I);
1505 return;
1506 }
1507
1508 assert(I.isUnsigned());
1509 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1510 handleRelationalComparisonExact(I);
1511 return;
1512 }
1513
1514 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001515 }
1516
1517 void visitFCmpInst(FCmpInst &I) {
1518 handleShadowOr(I);
1519 }
1520
1521 void handleShift(BinaryOperator &I) {
1522 IRBuilder<> IRB(&I);
1523 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1524 // Otherwise perform the same shift on S1.
1525 Value *S1 = getShadow(&I, 0);
1526 Value *S2 = getShadow(&I, 1);
1527 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1528 S2->getType());
1529 Value *V2 = I.getOperand(1);
1530 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1531 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1532 setOriginForNaryOp(I);
1533 }
1534
1535 void visitShl(BinaryOperator &I) { handleShift(I); }
1536 void visitAShr(BinaryOperator &I) { handleShift(I); }
1537 void visitLShr(BinaryOperator &I) { handleShift(I); }
1538
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001539 /// \brief Instrument llvm.memmove
1540 ///
1541 /// At this point we don't know if llvm.memmove will be inlined or not.
1542 /// If we don't instrument it and it gets inlined,
1543 /// our interceptor will not kick in and we will lose the memmove.
1544 /// If we instrument the call here, but it does not get inlined,
1545 /// we will memove the shadow twice: which is bad in case
1546 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1547 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001548 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001549 void visitMemMoveInst(MemMoveInst &I) {
1550 IRBuilder<> IRB(&I);
1551 IRB.CreateCall3(
1552 MS.MemmoveFn,
1553 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1554 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1555 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1556 I.eraseFromParent();
1557 }
1558
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001559 // Similar to memmove: avoid copying shadow twice.
1560 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1561 // FIXME: consider doing manual inline for small constant sizes and proper
1562 // alignment.
1563 void visitMemCpyInst(MemCpyInst &I) {
1564 IRBuilder<> IRB(&I);
1565 IRB.CreateCall3(
1566 MS.MemcpyFn,
1567 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1568 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1569 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1570 I.eraseFromParent();
1571 }
1572
1573 // Same as memcpy.
1574 void visitMemSetInst(MemSetInst &I) {
1575 IRBuilder<> IRB(&I);
1576 IRB.CreateCall3(
1577 MS.MemsetFn,
1578 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1579 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1580 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1581 I.eraseFromParent();
1582 }
1583
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001584 void visitVAStartInst(VAStartInst &I) {
1585 VAHelper->visitVAStartInst(I);
1586 }
1587
1588 void visitVACopyInst(VACopyInst &I) {
1589 VAHelper->visitVACopyInst(I);
1590 }
1591
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001592 enum IntrinsicKind {
1593 IK_DoesNotAccessMemory,
1594 IK_OnlyReadsMemory,
1595 IK_WritesMemory
1596 };
1597
1598 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1599 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1600 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1601 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1602 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1603 const int UnknownModRefBehavior = IK_WritesMemory;
1604#define GET_INTRINSIC_MODREF_BEHAVIOR
1605#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001606#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001607#undef ModRefBehavior
1608#undef GET_INTRINSIC_MODREF_BEHAVIOR
1609 }
1610
1611 /// \brief Handle vector store-like intrinsics.
1612 ///
1613 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1614 /// has 1 pointer argument and 1 vector argument, returns void.
1615 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1616 IRBuilder<> IRB(&I);
1617 Value* Addr = I.getArgOperand(0);
1618 Value *Shadow = getShadow(&I, 1);
1619 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1620
1621 // We don't know the pointer alignment (could be unaligned SSE store!).
1622 // Have to assume to worst case.
1623 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1624
1625 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001626 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001627
1628 // FIXME: use ClStoreCleanOrigin
1629 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001630 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001631 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1632 return true;
1633 }
1634
1635 /// \brief Handle vector load-like intrinsics.
1636 ///
1637 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1638 /// has 1 pointer argument, returns a vector.
1639 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1640 IRBuilder<> IRB(&I);
1641 Value *Addr = I.getArgOperand(0);
1642
1643 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001644 if (LoadShadow) {
1645 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1646 // We don't know the pointer alignment (could be unaligned SSE load!).
1647 // Have to assume to worst case.
1648 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1649 } else {
1650 setShadow(&I, getCleanShadow(&I));
1651 }
1652
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001653 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001654 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001655
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001656 if (MS.TrackOrigins) {
1657 if (LoadShadow)
1658 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1659 else
1660 setOrigin(&I, getCleanOrigin());
1661 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001662 return true;
1663 }
1664
1665 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1666 ///
1667 /// Instrument intrinsics with any number of arguments of the same type,
1668 /// equal to the return type. The type should be simple (no aggregates or
1669 /// pointers; vectors are fine).
1670 /// Caller guarantees that this intrinsic does not access memory.
1671 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1672 Type *RetTy = I.getType();
1673 if (!(RetTy->isIntOrIntVectorTy() ||
1674 RetTy->isFPOrFPVectorTy() ||
1675 RetTy->isX86_MMXTy()))
1676 return false;
1677
1678 unsigned NumArgOperands = I.getNumArgOperands();
1679
1680 for (unsigned i = 0; i < NumArgOperands; ++i) {
1681 Type *Ty = I.getArgOperand(i)->getType();
1682 if (Ty != RetTy)
1683 return false;
1684 }
1685
1686 IRBuilder<> IRB(&I);
1687 ShadowAndOriginCombiner SC(this, IRB);
1688 for (unsigned i = 0; i < NumArgOperands; ++i)
1689 SC.Add(I.getArgOperand(i));
1690 SC.Done(&I);
1691
1692 return true;
1693 }
1694
1695 /// \brief Heuristically instrument unknown intrinsics.
1696 ///
1697 /// The main purpose of this code is to do something reasonable with all
1698 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1699 /// We recognize several classes of intrinsics by their argument types and
1700 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1701 /// sure that we know what the intrinsic does.
1702 ///
1703 /// We special-case intrinsics where this approach fails. See llvm.bswap
1704 /// handling as an example of that.
1705 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1706 unsigned NumArgOperands = I.getNumArgOperands();
1707 if (NumArgOperands == 0)
1708 return false;
1709
1710 Intrinsic::ID iid = I.getIntrinsicID();
1711 IntrinsicKind IK = getIntrinsicKind(iid);
1712 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1713 bool WritesMemory = IK == IK_WritesMemory;
1714 assert(!(OnlyReadsMemory && WritesMemory));
1715
1716 if (NumArgOperands == 2 &&
1717 I.getArgOperand(0)->getType()->isPointerTy() &&
1718 I.getArgOperand(1)->getType()->isVectorTy() &&
1719 I.getType()->isVoidTy() &&
1720 WritesMemory) {
1721 // This looks like a vector store.
1722 return handleVectorStoreIntrinsic(I);
1723 }
1724
1725 if (NumArgOperands == 1 &&
1726 I.getArgOperand(0)->getType()->isPointerTy() &&
1727 I.getType()->isVectorTy() &&
1728 OnlyReadsMemory) {
1729 // This looks like a vector load.
1730 return handleVectorLoadIntrinsic(I);
1731 }
1732
1733 if (!OnlyReadsMemory && !WritesMemory)
1734 if (maybeHandleSimpleNomemIntrinsic(I))
1735 return true;
1736
1737 // FIXME: detect and handle SSE maskstore/maskload
1738 return false;
1739 }
1740
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001741 void handleBswap(IntrinsicInst &I) {
1742 IRBuilder<> IRB(&I);
1743 Value *Op = I.getArgOperand(0);
1744 Type *OpType = Op->getType();
1745 Function *BswapFunc = Intrinsic::getDeclaration(
1746 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1747 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1748 setOrigin(&I, getOrigin(Op));
1749 }
1750
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001751 // \brief Instrument vector convert instrinsic.
1752 //
1753 // This function instruments intrinsics like cvtsi2ss:
1754 // %Out = int_xxx_cvtyyy(%ConvertOp)
1755 // or
1756 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1757 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1758 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1759 // elements from \p CopyOp.
1760 // In most cases conversion involves floating-point value which may trigger a
1761 // hardware exception when not fully initialized. For this reason we require
1762 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1763 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1764 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1765 // return a fully initialized value.
1766 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1767 IRBuilder<> IRB(&I);
1768 Value *CopyOp, *ConvertOp;
1769
1770 switch (I.getNumArgOperands()) {
1771 case 2:
1772 CopyOp = I.getArgOperand(0);
1773 ConvertOp = I.getArgOperand(1);
1774 break;
1775 case 1:
1776 ConvertOp = I.getArgOperand(0);
1777 CopyOp = NULL;
1778 break;
1779 default:
1780 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1781 }
1782
1783 // The first *NumUsedElements* elements of ConvertOp are converted to the
1784 // same number of output elements. The rest of the output is copied from
1785 // CopyOp, or (if not available) filled with zeroes.
1786 // Combine shadow for elements of ConvertOp that are used in this operation,
1787 // and insert a check.
1788 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1789 // int->any conversion.
1790 Value *ConvertShadow = getShadow(ConvertOp);
1791 Value *AggShadow = 0;
1792 if (ConvertOp->getType()->isVectorTy()) {
1793 AggShadow = IRB.CreateExtractElement(
1794 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1795 for (int i = 1; i < NumUsedElements; ++i) {
1796 Value *MoreShadow = IRB.CreateExtractElement(
1797 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1798 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1799 }
1800 } else {
1801 AggShadow = ConvertShadow;
1802 }
1803 assert(AggShadow->getType()->isIntegerTy());
1804 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1805
1806 // Build result shadow by zero-filling parts of CopyOp shadow that come from
1807 // ConvertOp.
1808 if (CopyOp) {
1809 assert(CopyOp->getType() == I.getType());
1810 assert(CopyOp->getType()->isVectorTy());
1811 Value *ResultShadow = getShadow(CopyOp);
1812 Type *EltTy = ResultShadow->getType()->getVectorElementType();
1813 for (int i = 0; i < NumUsedElements; ++i) {
1814 ResultShadow = IRB.CreateInsertElement(
1815 ResultShadow, ConstantInt::getNullValue(EltTy),
1816 ConstantInt::get(IRB.getInt32Ty(), i));
1817 }
1818 setShadow(&I, ResultShadow);
1819 setOrigin(&I, getOrigin(CopyOp));
1820 } else {
1821 setShadow(&I, getCleanShadow(&I));
1822 }
1823 }
1824
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001825 // Given a scalar or vector, extract lower 64 bits (or less), and return all
1826 // zeroes if it is zero, and all ones otherwise.
1827 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
1828 if (S->getType()->isVectorTy())
1829 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
1830 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
1831 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1832 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
1833 }
1834
1835 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
1836 Type *T = S->getType();
1837 assert(T->isVectorTy());
1838 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1839 return IRB.CreateSExt(S2, T);
1840 }
1841
1842 // \brief Instrument vector shift instrinsic.
1843 //
1844 // This function instruments intrinsics like int_x86_avx2_psll_w.
1845 // Intrinsic shifts %In by %ShiftSize bits.
1846 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
1847 // size, and the rest is ignored. Behavior is defined even if shift size is
1848 // greater than register (or field) width.
1849 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
1850 assert(I.getNumArgOperands() == 2);
1851 IRBuilder<> IRB(&I);
1852 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1853 // Otherwise perform the same shift on S1.
1854 Value *S1 = getShadow(&I, 0);
1855 Value *S2 = getShadow(&I, 1);
1856 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
1857 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
1858 Value *V1 = I.getOperand(0);
1859 Value *V2 = I.getOperand(1);
1860 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
1861 IRB.CreateBitCast(S1, V1->getType()), V2);
1862 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
1863 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1864 setOriginForNaryOp(I);
1865 }
1866
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001867 void visitIntrinsicInst(IntrinsicInst &I) {
1868 switch (I.getIntrinsicID()) {
1869 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001870 handleBswap(I);
1871 break;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001872 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
1873 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
1874 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
1875 case llvm::Intrinsic::x86_avx512_cvtss2usi:
1876 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
1877 case llvm::Intrinsic::x86_avx512_cvttss2usi:
1878 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
1879 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
1880 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
1881 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
1882 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
1883 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
1884 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
1885 case llvm::Intrinsic::x86_sse2_cvtsd2si:
1886 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
1887 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
1888 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
1889 case llvm::Intrinsic::x86_sse2_cvtss2sd:
1890 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
1891 case llvm::Intrinsic::x86_sse2_cvttsd2si:
1892 case llvm::Intrinsic::x86_sse_cvtsi2ss:
1893 case llvm::Intrinsic::x86_sse_cvtsi642ss:
1894 case llvm::Intrinsic::x86_sse_cvtss2si64:
1895 case llvm::Intrinsic::x86_sse_cvtss2si:
1896 case llvm::Intrinsic::x86_sse_cvttss2si64:
1897 case llvm::Intrinsic::x86_sse_cvttss2si:
1898 handleVectorConvertIntrinsic(I, 1);
1899 break;
1900 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
1901 case llvm::Intrinsic::x86_sse2_cvtps2pd:
1902 case llvm::Intrinsic::x86_sse_cvtps2pi:
1903 case llvm::Intrinsic::x86_sse_cvttps2pi:
1904 handleVectorConvertIntrinsic(I, 2);
1905 break;
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001906 case llvm::Intrinsic::x86_avx512_psll_dq:
1907 case llvm::Intrinsic::x86_avx512_psrl_dq:
1908 case llvm::Intrinsic::x86_avx2_psll_w:
1909 case llvm::Intrinsic::x86_avx2_psll_d:
1910 case llvm::Intrinsic::x86_avx2_psll_q:
1911 case llvm::Intrinsic::x86_avx2_pslli_w:
1912 case llvm::Intrinsic::x86_avx2_pslli_d:
1913 case llvm::Intrinsic::x86_avx2_pslli_q:
1914 case llvm::Intrinsic::x86_avx2_psll_dq:
1915 case llvm::Intrinsic::x86_avx2_psrl_w:
1916 case llvm::Intrinsic::x86_avx2_psrl_d:
1917 case llvm::Intrinsic::x86_avx2_psrl_q:
1918 case llvm::Intrinsic::x86_avx2_psra_w:
1919 case llvm::Intrinsic::x86_avx2_psra_d:
1920 case llvm::Intrinsic::x86_avx2_psrli_w:
1921 case llvm::Intrinsic::x86_avx2_psrli_d:
1922 case llvm::Intrinsic::x86_avx2_psrli_q:
1923 case llvm::Intrinsic::x86_avx2_psrai_w:
1924 case llvm::Intrinsic::x86_avx2_psrai_d:
1925 case llvm::Intrinsic::x86_avx2_psrl_dq:
1926 case llvm::Intrinsic::x86_sse2_psll_w:
1927 case llvm::Intrinsic::x86_sse2_psll_d:
1928 case llvm::Intrinsic::x86_sse2_psll_q:
1929 case llvm::Intrinsic::x86_sse2_pslli_w:
1930 case llvm::Intrinsic::x86_sse2_pslli_d:
1931 case llvm::Intrinsic::x86_sse2_pslli_q:
1932 case llvm::Intrinsic::x86_sse2_psll_dq:
1933 case llvm::Intrinsic::x86_sse2_psrl_w:
1934 case llvm::Intrinsic::x86_sse2_psrl_d:
1935 case llvm::Intrinsic::x86_sse2_psrl_q:
1936 case llvm::Intrinsic::x86_sse2_psra_w:
1937 case llvm::Intrinsic::x86_sse2_psra_d:
1938 case llvm::Intrinsic::x86_sse2_psrli_w:
1939 case llvm::Intrinsic::x86_sse2_psrli_d:
1940 case llvm::Intrinsic::x86_sse2_psrli_q:
1941 case llvm::Intrinsic::x86_sse2_psrai_w:
1942 case llvm::Intrinsic::x86_sse2_psrai_d:
1943 case llvm::Intrinsic::x86_sse2_psrl_dq:
1944 case llvm::Intrinsic::x86_mmx_psll_w:
1945 case llvm::Intrinsic::x86_mmx_psll_d:
1946 case llvm::Intrinsic::x86_mmx_psll_q:
1947 case llvm::Intrinsic::x86_mmx_pslli_w:
1948 case llvm::Intrinsic::x86_mmx_pslli_d:
1949 case llvm::Intrinsic::x86_mmx_pslli_q:
1950 case llvm::Intrinsic::x86_mmx_psrl_w:
1951 case llvm::Intrinsic::x86_mmx_psrl_d:
1952 case llvm::Intrinsic::x86_mmx_psrl_q:
1953 case llvm::Intrinsic::x86_mmx_psra_w:
1954 case llvm::Intrinsic::x86_mmx_psra_d:
1955 case llvm::Intrinsic::x86_mmx_psrli_w:
1956 case llvm::Intrinsic::x86_mmx_psrli_d:
1957 case llvm::Intrinsic::x86_mmx_psrli_q:
1958 case llvm::Intrinsic::x86_mmx_psrai_w:
1959 case llvm::Intrinsic::x86_mmx_psrai_d:
1960 handleVectorShiftIntrinsic(I, /* Variable */ false);
1961 break;
1962 case llvm::Intrinsic::x86_avx2_psllv_d:
1963 case llvm::Intrinsic::x86_avx2_psllv_d_256:
1964 case llvm::Intrinsic::x86_avx2_psllv_q:
1965 case llvm::Intrinsic::x86_avx2_psllv_q_256:
1966 case llvm::Intrinsic::x86_avx2_psrlv_d:
1967 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
1968 case llvm::Intrinsic::x86_avx2_psrlv_q:
1969 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
1970 case llvm::Intrinsic::x86_avx2_psrav_d:
1971 case llvm::Intrinsic::x86_avx2_psrav_d_256:
1972 handleVectorShiftIntrinsic(I, /* Variable */ true);
1973 break;
1974
1975 // Byte shifts are not implemented.
1976 // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
1977 // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
1978 // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
1979 // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
1980 // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
1981 // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
1982
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001983 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001984 if (!handleUnknownIntrinsic(I))
1985 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00001986 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001987 }
1988 }
1989
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001990 void visitCallSite(CallSite CS) {
1991 Instruction &I = *CS.getInstruction();
1992 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
1993 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00001994 CallInst *Call = cast<CallInst>(&I);
1995
1996 // For inline asm, do the usual thing: check argument shadow and mark all
1997 // outputs as clean. Note that any side effects of the inline asm that are
1998 // not immediately visible in its constraints are not handled.
1999 if (Call->isInlineAsm()) {
2000 visitInstruction(I);
2001 return;
2002 }
2003
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002004 // Allow only tail calls with the same types, otherwise
2005 // we may have a false positive: shadow for a non-void RetVal
2006 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002007 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
2008 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002009
2010 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002011
2012 // We are going to insert code that relies on the fact that the callee
2013 // will become a non-readonly function after it is instrumented by us. To
2014 // prevent this code from being optimized out, mark that function
2015 // non-readonly in advance.
2016 if (Function *Func = Call->getCalledFunction()) {
2017 // Clear out readonly/readnone attributes.
2018 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002019 B.addAttribute(Attribute::ReadOnly)
2020 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002021 Func->removeAttributes(AttributeSet::FunctionIndex,
2022 AttributeSet::get(Func->getContext(),
2023 AttributeSet::FunctionIndex,
2024 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002025 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002026 }
2027 IRBuilder<> IRB(&I);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002028
2029 if (MS.WrapIndirectCalls && !CS.getCalledFunction())
Evgeniy Stepanov585813e2013-11-14 12:29:04 +00002030 IndirectCallList.push_back(CS);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002031
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002032 unsigned ArgOffset = 0;
2033 DEBUG(dbgs() << " CallSite: " << I << "\n");
2034 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2035 ArgIt != End; ++ArgIt) {
2036 Value *A = *ArgIt;
2037 unsigned i = ArgIt - CS.arg_begin();
2038 if (!A->getType()->isSized()) {
2039 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2040 continue;
2041 }
2042 unsigned Size = 0;
2043 Value *Store = 0;
2044 // Compute the Shadow for arg even if it is ByVal, because
2045 // in that case getShadow() will copy the actual arg shadow to
2046 // __msan_param_tls.
2047 Value *ArgShadow = getShadow(A);
2048 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2049 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2050 " Shadow: " << *ArgShadow << "\n");
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002051 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002052 assert(A->getType()->isPointerTy() &&
2053 "ByVal argument is not a pointer!");
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002054 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002055 unsigned Alignment = CS.getParamAlignment(i + 1);
2056 Store = IRB.CreateMemCpy(ArgShadowBase,
2057 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2058 Size, Alignment);
2059 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002060 Size = MS.DL->getTypeAllocSize(A->getType());
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002061 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2062 kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002063 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002064 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00002065 IRB.CreateStore(getOrigin(A),
2066 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00002067 (void)Store;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002068 assert(Size != 0 && Store != 0);
2069 DEBUG(dbgs() << " Param:" << *Store << "\n");
2070 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
2071 }
2072 DEBUG(dbgs() << " done with call args\n");
2073
2074 FunctionType *FT =
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002075 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002076 if (FT->isVarArg()) {
2077 VAHelper->visitCallSite(CS, IRB);
2078 }
2079
2080 // Now, get the shadow for the RetVal.
2081 if (!I.getType()->isSized()) return;
2082 IRBuilder<> IRBBefore(&I);
Alp Tokercb402912014-01-24 17:20:08 +00002083 // Until we have full dynamic coverage, make sure the retval shadow is 0.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002084 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002085 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002086 Instruction *NextInsn = 0;
2087 if (CS.isCall()) {
2088 NextInsn = I.getNextNode();
2089 } else {
2090 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2091 if (!NormalDest->getSinglePredecessor()) {
2092 // FIXME: this case is tricky, so we are just conservative here.
2093 // Perhaps we need to split the edge between this BB and NormalDest,
2094 // but a naive attempt to use SplitEdge leads to a crash.
2095 setShadow(&I, getCleanShadow(&I));
2096 setOrigin(&I, getCleanOrigin());
2097 return;
2098 }
2099 NextInsn = NormalDest->getFirstInsertionPt();
2100 assert(NextInsn &&
2101 "Could not find insertion point for retval shadow load");
2102 }
2103 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002104 Value *RetvalShadow =
2105 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2106 kShadowTLSAlignment, "_msret");
2107 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002108 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002109 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2110 }
2111
2112 void visitReturnInst(ReturnInst &I) {
2113 IRBuilder<> IRB(&I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002114 Value *RetVal = I.getReturnValue();
2115 if (!RetVal) return;
2116 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2117 if (CheckReturnValue) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002118 insertShadowCheck(RetVal, &I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002119 Value *Shadow = getCleanShadow(RetVal);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002120 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002121 } else {
2122 Value *Shadow = getShadow(RetVal);
2123 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2124 // FIXME: make it conditional if ClStoreCleanOrigin==0
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002125 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002126 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2127 }
2128 }
2129
2130 void visitPHINode(PHINode &I) {
2131 IRBuilder<> IRB(&I);
2132 ShadowPHINodes.push_back(&I);
2133 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2134 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002135 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002136 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2137 "_msphi_o"));
2138 }
2139
2140 void visitAllocaInst(AllocaInst &I) {
2141 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002142 IRBuilder<> IRB(I.getNextNode());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002143 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002144 if (PoisonStack && ClPoisonStackWithCall) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002145 IRB.CreateCall2(MS.MsanPoisonStackFn,
2146 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2147 ConstantInt::get(MS.IntptrTy, Size));
2148 } else {
2149 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002150 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2151 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002152 }
2153
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002154 if (PoisonStack && MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002155 setOrigin(&I, getCleanOrigin());
2156 SmallString<2048> StackDescriptionStorage;
2157 raw_svector_ostream StackDescription(StackDescriptionStorage);
2158 // We create a string with a description of the stack allocation and
2159 // pass it into __msan_set_alloca_origin.
2160 // It will be printed by the run-time if stack-originated UMR is found.
2161 // The first 4 bytes of the string are set to '----' and will be replaced
2162 // by __msan_va_arg_overflow_size_tls at the first call.
2163 StackDescription << "----" << I.getName() << "@" << F.getName();
2164 Value *Descr =
2165 createPrivateNonConstGlobalForString(*F.getParent(),
2166 StackDescription.str());
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002167
2168 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002169 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2170 ConstantInt::get(MS.IntptrTy, Size),
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002171 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2172 IRB.CreatePointerCast(&F, MS.IntptrTy));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002173 }
2174 }
2175
2176 void visitSelectInst(SelectInst& I) {
2177 IRBuilder<> IRB(&I);
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002178 // a = select b, c, d
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002179 Value *S = IRB.CreateSelect(I.getCondition(), getShadow(I.getTrueValue()),
2180 getShadow(I.getFalseValue()));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002181 if (I.getType()->isAggregateType()) {
2182 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2183 // an extra "select". This results in much more compact IR.
2184 // Sa = select Sb, poisoned, (select b, Sc, Sd)
2185 S = IRB.CreateSelect(getShadow(I.getCondition()),
2186 getPoisonedShadow(getShadowTy(I.getType())), S,
2187 "_msprop_select_agg");
2188 } else {
2189 // Sa = (sext Sb) | (select b, Sc, Sd)
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00002190 S = IRB.CreateOr(S, CreateShadowCast(IRB, getShadow(I.getCondition()),
2191 S->getType(), true),
2192 "_msprop_select");
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002193 }
2194 setShadow(&I, S);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002195 if (MS.TrackOrigins) {
2196 // Origins are always i32, so any vector conditions must be flattened.
2197 // FIXME: consider tracking vector origins for app vectors?
2198 Value *Cond = I.getCondition();
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002199 Value *CondShadow = getShadow(Cond);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002200 if (Cond->getType()->isVectorTy()) {
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002201 Type *FlatTy = getShadowTyNoVec(Cond->getType());
2202 Cond = IRB.CreateICmpNE(IRB.CreateBitCast(Cond, FlatTy),
2203 ConstantInt::getNullValue(FlatTy));
2204 CondShadow = IRB.CreateICmpNE(IRB.CreateBitCast(CondShadow, FlatTy),
2205 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002206 }
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002207 // a = select b, c, d
2208 // Oa = Sb ? Ob : (b ? Oc : Od)
2209 setOrigin(&I, IRB.CreateSelect(
2210 CondShadow, getOrigin(I.getCondition()),
2211 IRB.CreateSelect(Cond, getOrigin(I.getTrueValue()),
2212 getOrigin(I.getFalseValue()))));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002213 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002214 }
2215
2216 void visitLandingPadInst(LandingPadInst &I) {
2217 // Do nothing.
2218 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2219 setShadow(&I, getCleanShadow(&I));
2220 setOrigin(&I, getCleanOrigin());
2221 }
2222
2223 void visitGetElementPtrInst(GetElementPtrInst &I) {
2224 handleShadowOr(I);
2225 }
2226
2227 void visitExtractValueInst(ExtractValueInst &I) {
2228 IRBuilder<> IRB(&I);
2229 Value *Agg = I.getAggregateOperand();
2230 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2231 Value *AggShadow = getShadow(Agg);
2232 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2233 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2234 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2235 setShadow(&I, ResShadow);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002236 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002237 }
2238
2239 void visitInsertValueInst(InsertValueInst &I) {
2240 IRBuilder<> IRB(&I);
2241 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2242 Value *AggShadow = getShadow(I.getAggregateOperand());
2243 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2244 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2245 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2246 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2247 DEBUG(dbgs() << " Res: " << *Res << "\n");
2248 setShadow(&I, Res);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002249 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002250 }
2251
2252 void dumpInst(Instruction &I) {
2253 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2254 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2255 } else {
2256 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2257 }
2258 errs() << "QQQ " << I << "\n";
2259 }
2260
2261 void visitResumeInst(ResumeInst &I) {
2262 DEBUG(dbgs() << "Resume: " << I << "\n");
2263 // Nothing to do here.
2264 }
2265
2266 void visitInstruction(Instruction &I) {
2267 // Everything else: stop propagating and check for poisoned shadow.
2268 if (ClDumpStrictInstructions)
2269 dumpInst(I);
2270 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2271 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002272 insertShadowCheck(I.getOperand(i), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002273 setShadow(&I, getCleanShadow(&I));
2274 setOrigin(&I, getCleanOrigin());
2275 }
2276};
2277
2278/// \brief AMD64-specific implementation of VarArgHelper.
2279struct VarArgAMD64Helper : public VarArgHelper {
2280 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2281 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002282 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002283 static const unsigned AMD64FpEndOffset = 176;
2284
2285 Function &F;
2286 MemorySanitizer &MS;
2287 MemorySanitizerVisitor &MSV;
2288 Value *VAArgTLSCopy;
2289 Value *VAArgOverflowSize;
2290
2291 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2292
2293 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2294 MemorySanitizerVisitor &MSV)
2295 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
2296
2297 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2298
2299 ArgKind classifyArgument(Value* arg) {
2300 // A very rough approximation of X86_64 argument classification rules.
2301 Type *T = arg->getType();
2302 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2303 return AK_FloatingPoint;
2304 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2305 return AK_GeneralPurpose;
2306 if (T->isPointerTy())
2307 return AK_GeneralPurpose;
2308 return AK_Memory;
2309 }
2310
2311 // For VarArg functions, store the argument shadow in an ABI-specific format
2312 // that corresponds to va_list layout.
2313 // We do this because Clang lowers va_arg in the frontend, and this pass
2314 // only sees the low level code that deals with va_list internals.
2315 // A much easier alternative (provided that Clang emits va_arg instructions)
2316 // would have been to associate each live instance of va_list with a copy of
2317 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2318 // order.
Craig Topper3e4c6972014-03-05 09:10:37 +00002319 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002320 unsigned GpOffset = 0;
2321 unsigned FpOffset = AMD64GpEndOffset;
2322 unsigned OverflowOffset = AMD64FpEndOffset;
2323 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2324 ArgIt != End; ++ArgIt) {
2325 Value *A = *ArgIt;
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002326 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2327 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2328 if (IsByVal) {
2329 // ByVal arguments always go to the overflow area.
2330 assert(A->getType()->isPointerTy());
2331 Type *RealTy = A->getType()->getPointerElementType();
2332 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2333 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002334 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002335 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2336 ArgSize, kShadowTLSAlignment);
2337 } else {
2338 ArgKind AK = classifyArgument(A);
2339 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2340 AK = AK_Memory;
2341 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2342 AK = AK_Memory;
2343 Value *Base;
2344 switch (AK) {
2345 case AK_GeneralPurpose:
2346 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2347 GpOffset += 8;
2348 break;
2349 case AK_FloatingPoint:
2350 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2351 FpOffset += 16;
2352 break;
2353 case AK_Memory:
2354 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2355 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2356 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
2357 }
2358 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002359 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002360 }
2361 Constant *OverflowSize =
2362 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2363 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2364 }
2365
2366 /// \brief Compute the shadow address for a given va_arg.
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002367 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002368 int ArgOffset) {
2369 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2370 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002371 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002372 "_msarg");
2373 }
2374
Craig Topper3e4c6972014-03-05 09:10:37 +00002375 void visitVAStartInst(VAStartInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002376 IRBuilder<> IRB(&I);
2377 VAStartInstrumentationList.push_back(&I);
2378 Value *VAListTag = I.getArgOperand(0);
2379 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2380
2381 // Unpoison the whole __va_list_tag.
2382 // FIXME: magic ABI constants.
2383 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002384 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002385 }
2386
Craig Topper3e4c6972014-03-05 09:10:37 +00002387 void visitVACopyInst(VACopyInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002388 IRBuilder<> IRB(&I);
2389 Value *VAListTag = I.getArgOperand(0);
2390 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2391
2392 // Unpoison the whole __va_list_tag.
2393 // FIXME: magic ABI constants.
2394 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002395 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002396 }
2397
Craig Topper3e4c6972014-03-05 09:10:37 +00002398 void finalizeInstrumentation() override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002399 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2400 "finalizeInstrumentation called twice");
2401 if (!VAStartInstrumentationList.empty()) {
2402 // If there is a va_start in this function, make a backup copy of
2403 // va_arg_tls somewhere in the function entry block.
2404 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2405 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2406 Value *CopySize =
2407 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2408 VAArgOverflowSize);
2409 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2410 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2411 }
2412
2413 // Instrument va_start.
2414 // Copy va_list shadow from the backup copy of the TLS contents.
2415 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2416 CallInst *OrigInst = VAStartInstrumentationList[i];
2417 IRBuilder<> IRB(OrigInst->getNextNode());
2418 Value *VAListTag = OrigInst->getArgOperand(0);
2419
2420 Value *RegSaveAreaPtrPtr =
2421 IRB.CreateIntToPtr(
2422 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2423 ConstantInt::get(MS.IntptrTy, 16)),
2424 Type::getInt64PtrTy(*MS.C));
2425 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2426 Value *RegSaveAreaShadowPtr =
2427 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2428 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2429 AMD64FpEndOffset, 16);
2430
2431 Value *OverflowArgAreaPtrPtr =
2432 IRB.CreateIntToPtr(
2433 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2434 ConstantInt::get(MS.IntptrTy, 8)),
2435 Type::getInt64PtrTy(*MS.C));
2436 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2437 Value *OverflowArgAreaShadowPtr =
2438 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Evgeniy Stepanovd42863c2013-08-23 12:11:00 +00002439 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002440 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2441 }
2442 }
2443};
2444
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002445/// \brief A no-op implementation of VarArgHelper.
2446struct VarArgNoOpHelper : public VarArgHelper {
2447 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2448 MemorySanitizerVisitor &MSV) {}
2449
Craig Topper3e4c6972014-03-05 09:10:37 +00002450 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002451
Craig Topper3e4c6972014-03-05 09:10:37 +00002452 void visitVAStartInst(VAStartInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002453
Craig Topper3e4c6972014-03-05 09:10:37 +00002454 void visitVACopyInst(VACopyInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002455
Craig Topper3e4c6972014-03-05 09:10:37 +00002456 void finalizeInstrumentation() override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002457};
2458
2459VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002460 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002461 // VarArg handling is only implemented on AMD64. False positives are possible
2462 // on other platforms.
2463 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2464 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2465 return new VarArgAMD64Helper(Func, Msan, Visitor);
2466 else
2467 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002468}
2469
2470} // namespace
2471
2472bool MemorySanitizer::runOnFunction(Function &F) {
2473 MemorySanitizerVisitor Visitor(F, *this);
2474
2475 // Clear out readonly/readnone attributes.
2476 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002477 B.addAttribute(Attribute::ReadOnly)
2478 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002479 F.removeAttributes(AttributeSet::FunctionIndex,
2480 AttributeSet::get(F.getContext(),
2481 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002482
2483 return Visitor.runOnFunction();
2484}