blob: 08f17de9ee0389886938e2d464462331b82076b4 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000046///
47/// Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000063/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000064///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanov5522a702013-09-24 11:20:27 +000069///
70/// Atomic handling.
71///
72/// Ideally, every atomic store of application value should update the
73/// corresponding shadow location in an atomic way. Unfortunately, atomic store
74/// of two disjoint locations can not be done without severe slowdown.
75///
76/// Therefore, we implement an approximation that may err on the safe side.
77/// In this implementation, every atomically accessed location in the program
78/// may only change from (partially) uninitialized to fully initialized, but
79/// not the other way around. We load the shadow _after_ the application load,
80/// and we store the shadow _before_ the app store. Also, we always store clean
81/// shadow (if the application store is atomic). This way, if the store-load
82/// pair constitutes a happens-before arc, shadow store and load are correctly
83/// ordered such that the load will get either the value that was stored, or
84/// some later value (which is always clean).
85///
86/// This does not work very well with Compare-And-Swap (CAS) and
87/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
88/// must store the new shadow before the app operation, and load the shadow
89/// after the app operation. Computers don't work this way. Current
90/// implementation ignores the load aspect of CAS/RMW, always returning a clean
91/// value. It implements the store part as a simple atomic store by storing a
92/// clean shadow.
93
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000094//===----------------------------------------------------------------------===//
95
96#define DEBUG_TYPE "msan"
97
Chandler Carruthed0881b2012-12-03 16:50:05 +000098#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000099#include "llvm/ADT/DepthFirstIterator.h"
100#include "llvm/ADT/SmallString.h"
101#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +0000102#include "llvm/ADT/Triple.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000103#include "llvm/IR/DataLayout.h"
104#include "llvm/IR/Function.h"
105#include "llvm/IR/IRBuilder.h"
106#include "llvm/IR/InlineAsm.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +0000107#include "llvm/IR/InstVisitor.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000108#include "llvm/IR/IntrinsicInst.h"
109#include "llvm/IR/LLVMContext.h"
110#include "llvm/IR/MDBuilder.h"
111#include "llvm/IR/Module.h"
112#include "llvm/IR/Type.h"
Chandler Carrutha4ea2692014-03-04 11:26:31 +0000113#include "llvm/IR/ValueMap.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000114#include "llvm/Support/CommandLine.h"
115#include "llvm/Support/Compiler.h"
116#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000117#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000118#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000119#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000120#include "llvm/Transforms/Utils/ModuleUtils.h"
Peter Collingbourne015370e2013-07-09 22:02:49 +0000121#include "llvm/Transforms/Utils/SpecialCaseList.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000122
123using namespace llvm;
124
125static const uint64_t kShadowMask32 = 1ULL << 31;
126static const uint64_t kShadowMask64 = 1ULL << 46;
127static const uint64_t kOriginOffset32 = 1ULL << 30;
128static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000129static const unsigned kMinOriginAlignment = 4;
130static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000131
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000132/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000133///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000134/// Adds a section to MemorySanitizer report that points to the allocation
135/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000136static cl::opt<bool> ClTrackOrigins("msan-track-origins",
137 cl::desc("Track origins (allocation sites) of poisoned memory"),
138 cl::Hidden, cl::init(false));
139static cl::opt<bool> ClKeepGoing("msan-keep-going",
140 cl::desc("keep going after reporting a UMR"),
141 cl::Hidden, cl::init(false));
142static cl::opt<bool> ClPoisonStack("msan-poison-stack",
143 cl::desc("poison uninitialized stack variables"),
144 cl::Hidden, cl::init(true));
145static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
146 cl::desc("poison uninitialized stack variables with a call"),
147 cl::Hidden, cl::init(false));
148static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
149 cl::desc("poison uninitialized stack variables with the given patter"),
150 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000151static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
152 cl::desc("poison undef temps"),
153 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000154
155static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
156 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
157 cl::Hidden, cl::init(true));
158
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000159static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
160 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000161 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000162
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000163static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
164 cl::desc("store origin for clean (fully initialized) values"),
165 cl::Hidden, cl::init(false));
166
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000167// This flag controls whether we check the shadow of the address
168// operand of load or store. Such bugs are very rare, since load from
169// a garbage address typically results in SEGV, but still happen
170// (e.g. only lower bits of address are garbage, or the access happens
171// early at program startup where malloc-ed memory is more likely to
172// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
173static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
174 cl::desc("report accesses through a pointer which has poisoned shadow"),
175 cl::Hidden, cl::init(true));
176
177static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
178 cl::desc("print out instructions with default strict semantics"),
179 cl::Hidden, cl::init(false));
180
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000181static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000182 cl::desc("File containing the list of functions where MemorySanitizer "
183 "should not report bugs"), cl::Hidden);
184
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000185// Experimental. Wraps all indirect calls in the instrumented code with
186// a call to the given function. This is needed to assist the dynamic
187// helper tool (MSanDR) to regain control on transition between instrumented and
188// non-instrumented code.
189static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
190 cl::desc("Wrap indirect calls with a given function"),
191 cl::Hidden);
192
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000193static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
194 cl::desc("Do not wrap indirect calls with target in the same module"),
195 cl::Hidden, cl::init(true));
196
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000197namespace {
198
199/// \brief An instrumentation pass implementing detection of uninitialized
200/// reads.
201///
202/// MemorySanitizer: instrument the code in module to find
203/// uninitialized reads.
204class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000205 public:
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000206 MemorySanitizer(bool TrackOrigins = false,
207 StringRef BlacklistFile = StringRef())
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000208 : FunctionPass(ID),
209 TrackOrigins(TrackOrigins || ClTrackOrigins),
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000210 DL(0),
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000211 WarningFn(0),
212 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile),
213 WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
Craig Topper3e4c6972014-03-05 09:10:37 +0000214 const char *getPassName() const override { return "MemorySanitizer"; }
215 bool runOnFunction(Function &F) override;
216 bool doInitialization(Module &M) override;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000217 static char ID; // Pass identification, replacement for typeid.
218
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000219 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000220 void initializeCallbacks(Module &M);
221
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000222 /// \brief Track origins (allocation points) of uninitialized values.
223 bool TrackOrigins;
224
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000225 const DataLayout *DL;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000226 LLVMContext *C;
227 Type *IntptrTy;
228 Type *OriginTy;
229 /// \brief Thread-local shadow storage for function parameters.
230 GlobalVariable *ParamTLS;
231 /// \brief Thread-local origin storage for function parameters.
232 GlobalVariable *ParamOriginTLS;
233 /// \brief Thread-local shadow storage for function return value.
234 GlobalVariable *RetvalTLS;
235 /// \brief Thread-local origin storage for function return value.
236 GlobalVariable *RetvalOriginTLS;
237 /// \brief Thread-local shadow storage for in-register va_arg function
238 /// parameters (x86_64-specific).
239 GlobalVariable *VAArgTLS;
240 /// \brief Thread-local shadow storage for va_arg overflow area
241 /// (x86_64-specific).
242 GlobalVariable *VAArgOverflowSizeTLS;
243 /// \brief Thread-local space used to pass origin value to the UMR reporting
244 /// function.
245 GlobalVariable *OriginTLS;
246
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000247 GlobalVariable *MsandrModuleStart;
248 GlobalVariable *MsandrModuleEnd;
249
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000250 /// \brief The run-time callback to print a warning.
251 Value *WarningFn;
252 /// \brief Run-time helper that copies origin info for a memory range.
253 Value *MsanCopyOriginFn;
254 /// \brief Run-time helper that generates a new origin value for a stack
255 /// allocation.
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000256 Value *MsanSetAllocaOrigin4Fn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000257 /// \brief Run-time helper that poisons stack on function entry.
258 Value *MsanPoisonStackFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000259 /// \brief MSan runtime replacements for memmove, memcpy and memset.
260 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000261
262 /// \brief Address mask used in application-to-shadow address calculation.
263 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
264 uint64_t ShadowMask;
265 /// \brief Offset of the origin shadow from the "normal" shadow.
266 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
267 uint64_t OriginOffset;
268 /// \brief Branch weights for error reporting.
269 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000270 /// \brief Branch weights for origin store.
271 MDNode *OriginStoreWeights;
Dmitri Gribenko9bf66a52013-05-09 21:16:18 +0000272 /// \brief Path to blacklist file.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000273 SmallString<64> BlacklistFile;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000274 /// \brief The blacklist.
Ahmed Charles56440fd2014-03-06 05:51:42 +0000275 std::unique_ptr<SpecialCaseList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000276 /// \brief An empty volatile inline asm that prevents callback merge.
277 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000278
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000279 bool WrapIndirectCalls;
280 /// \brief Run-time wrapper for indirect calls.
281 Value *IndirectCallWrapperFn;
282 // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
283 Type *AnyFunctionPtrTy;
284
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000285 friend struct MemorySanitizerVisitor;
286 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000287};
288} // namespace
289
290char MemorySanitizer::ID = 0;
291INITIALIZE_PASS(MemorySanitizer, "msan",
292 "MemorySanitizer: detects uninitialized reads.",
293 false, false)
294
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000295FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
296 StringRef BlacklistFile) {
297 return new MemorySanitizer(TrackOrigins, BlacklistFile);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000298}
299
300/// \brief Create a non-const global initialized with the given string.
301///
302/// Creates a writable global for Str so that we can pass it to the
303/// run-time lib. Runtime uses first 4 bytes of the string to store the
304/// frame ID, so the string needs to be mutable.
305static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
306 StringRef Str) {
307 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
308 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
309 GlobalValue::PrivateLinkage, StrConst, "");
310}
311
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000312
313/// \brief Insert extern declaration of runtime-provided functions and globals.
314void MemorySanitizer::initializeCallbacks(Module &M) {
315 // Only do this once.
316 if (WarningFn)
317 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000318
319 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000320 // Create the callback.
321 // FIXME: this function should have "Cold" calling conv,
322 // which is not yet implemented.
323 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
324 : "__msan_warning_noreturn";
325 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
326
327 MsanCopyOriginFn = M.getOrInsertFunction(
328 "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
329 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000330 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
331 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
332 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000333 MsanPoisonStackFn = M.getOrInsertFunction(
334 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
335 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000336 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
337 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000338 MemcpyFn = M.getOrInsertFunction(
339 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
340 IntptrTy, NULL);
341 MemsetFn = M.getOrInsertFunction(
342 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000343 IntptrTy, NULL);
344
345 // Create globals.
346 RetvalTLS = new GlobalVariable(
347 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
348 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000349 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000350 RetvalOriginTLS = new GlobalVariable(
351 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000352 "__msan_retval_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000353
354 ParamTLS = new GlobalVariable(
355 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
356 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000357 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000358 ParamOriginTLS = new GlobalVariable(
359 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000360 0, "__msan_param_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000361
362 VAArgTLS = new GlobalVariable(
363 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
364 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000365 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000366 VAArgOverflowSizeTLS = new GlobalVariable(
367 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
368 "__msan_va_arg_overflow_size_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000369 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000370 OriginTLS = new GlobalVariable(
371 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000372 "__msan_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000373
374 // We insert an empty inline asm after __msan_report* to avoid callback merge.
375 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
376 StringRef(""), StringRef(""),
377 /*hasSideEffects=*/true);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000378
379 if (WrapIndirectCalls) {
380 AnyFunctionPtrTy =
381 PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
382 IndirectCallWrapperFn = M.getOrInsertFunction(
383 ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
384 }
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000385
386 if (ClWrapIndirectCallsFast) {
387 MsandrModuleStart = new GlobalVariable(
388 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
389 0, "__executable_start");
390 MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
391 MsandrModuleEnd = new GlobalVariable(
392 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
393 0, "_end");
394 MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
395 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000396}
397
398/// \brief Module-level initialization.
399///
400/// inserts a call to __msan_init to the module's constructor list.
401bool MemorySanitizer::doInitialization(Module &M) {
Rafael Espindola93512512014-02-25 17:30:31 +0000402 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
403 if (!DLP)
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000404 return false;
Rafael Espindola93512512014-02-25 17:30:31 +0000405 DL = &DLP->getDataLayout();
406
Alexey Samsonove4b5fb82013-08-12 11:46:09 +0000407 BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000408 C = &(M.getContext());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000409 unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000410 switch (PtrSize) {
411 case 64:
412 ShadowMask = kShadowMask64;
413 OriginOffset = kOriginOffset64;
414 break;
415 case 32:
416 ShadowMask = kShadowMask32;
417 OriginOffset = kOriginOffset32;
418 break;
419 default:
420 report_fatal_error("unsupported pointer size");
421 break;
422 }
423
424 IRBuilder<> IRB(*C);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000425 IntptrTy = IRB.getIntPtrTy(DL);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000426 OriginTy = IRB.getInt32Ty();
427
428 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000429 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000430
431 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
432 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
433 "__msan_init", IRB.getVoidTy(), NULL)), 0);
434
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000435 if (TrackOrigins)
436 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
437 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000438
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000439 if (ClKeepGoing)
440 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
441 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000442
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000443 return true;
444}
445
446namespace {
447
448/// \brief A helper class that handles instrumentation of VarArg
449/// functions on a particular platform.
450///
451/// Implementations are expected to insert the instrumentation
452/// necessary to propagate argument shadow through VarArg function
453/// calls. Visit* methods are called during an InstVisitor pass over
454/// the function, and should avoid creating new basic blocks. A new
455/// instance of this class is created for each instrumented function.
456struct VarArgHelper {
457 /// \brief Visit a CallSite.
458 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
459
460 /// \brief Visit a va_start call.
461 virtual void visitVAStartInst(VAStartInst &I) = 0;
462
463 /// \brief Visit a va_copy call.
464 virtual void visitVACopyInst(VACopyInst &I) = 0;
465
466 /// \brief Finalize function instrumentation.
467 ///
468 /// This method is called after visiting all interesting (see above)
469 /// instructions in a function.
470 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000471
472 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000473};
474
475struct MemorySanitizerVisitor;
476
477VarArgHelper*
478CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
479 MemorySanitizerVisitor &Visitor);
480
481/// This class does all the work for a given function. Store and Load
482/// instructions store and load corresponding shadow and origin
483/// values. Most instructions propagate shadow from arguments to their
484/// return values. Certain instructions (most importantly, BranchInst)
485/// test their argument shadow and print reports (with a runtime call) if it's
486/// non-zero.
487struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
488 Function &F;
489 MemorySanitizer &MS;
490 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
491 ValueMap<Value*, Value*> ShadowMap, OriginMap;
Ahmed Charles56440fd2014-03-06 05:51:42 +0000492 std::unique_ptr<VarArgHelper> VAHelper;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000493
494 // The following flags disable parts of MSan instrumentation based on
495 // blacklist contents and command-line options.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000496 bool InsertChecks;
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000497 bool LoadShadow;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000498 bool PoisonStack;
499 bool PoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000500 bool CheckReturnValue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000501
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000502 struct ShadowOriginAndInsertPoint {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000503 Value *Shadow;
504 Value *Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000505 Instruction *OrigIns;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000506 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000507 : Shadow(S), Origin(O), OrigIns(I) { }
508 ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
509 };
510 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000511 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000512 SmallVector<CallSite, 16> IndirectCallList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000513
514 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000515 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000516 bool SanitizeFunction = !MS.BL->isIn(F) && F.getAttributes().hasAttribute(
517 AttributeSet::FunctionIndex,
518 Attribute::SanitizeMemory);
519 InsertChecks = SanitizeFunction;
520 LoadShadow = SanitizeFunction;
521 PoisonStack = SanitizeFunction && ClPoisonStack;
522 PoisonUndef = SanitizeFunction && ClPoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000523 // FIXME: Consider using SpecialCaseList to specify a list of functions that
524 // must always return fully initialized values. For now, we hardcode "main".
525 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000526
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000527 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000528 dbgs() << "MemorySanitizer is not inserting checks into '"
529 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000530 }
531
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000532 void materializeStores() {
533 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
534 StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
535
536 IRBuilder<> IRB(&I);
537 Value *Val = I.getValueOperand();
538 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000539 Value *Shadow = I.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000540 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
541
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000542 StoreInst *NewSI =
543 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000544 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000545 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000546
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000547 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000548 insertShadowCheck(Addr, &I);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000549
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000550 if (I.isAtomic())
551 I.setOrdering(addReleaseOrdering(I.getOrdering()));
552
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000553 if (MS.TrackOrigins) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000554 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000555 if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000556 IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
557 Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000558 } else {
559 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
560
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000561 // TODO(eugenis): handle non-zero constant shadow by inserting an
562 // unconditional check (can not simply fail compilation as this could
563 // be in the dead code).
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000564 if (isa<Constant>(ConvertedShadow))
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000565 continue;
566
567 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
568 getCleanShadow(ConvertedShadow), "_mscmp");
569 Instruction *CheckTerm =
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000570 SplitBlockAndInsertIfThen(Cmp, &I, false, MS.OriginStoreWeights);
Evgeniy Stepanov49175b22012-12-14 13:43:11 +0000571 IRBuilder<> IRBNew(CheckTerm);
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000572 IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
573 Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000574 }
575 }
576 }
577 }
578
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000579 void materializeChecks() {
580 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000581 Value *Shadow = InstrumentationList[i].Shadow;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000582 Instruction *OrigIns = InstrumentationList[i].OrigIns;
583 IRBuilder<> IRB(OrigIns);
584 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
585 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
586 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000587 // See the comment in materializeStores().
588 if (isa<Constant>(ConvertedShadow))
589 continue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000590 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
591 getCleanShadow(ConvertedShadow), "_mscmp");
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000592 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
593 Cmp, OrigIns,
594 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000595
596 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000597 if (MS.TrackOrigins) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000598 Value *Origin = InstrumentationList[i].Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000599 IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
600 MS.OriginTLS);
601 }
602 CallInst *Call = IRB.CreateCall(MS.WarningFn);
603 Call->setDebugLoc(OrigIns->getDebugLoc());
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000604 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000605 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
606 }
607 DEBUG(dbgs() << "DONE:\n" << F);
608 }
609
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000610 void materializeIndirectCalls() {
611 for (size_t i = 0, n = IndirectCallList.size(); i < n; i++) {
612 CallSite CS = IndirectCallList[i];
613 Instruction *I = CS.getInstruction();
614 BasicBlock *B = I->getParent();
615 IRBuilder<> IRB(I);
616 Value *Fn0 = CS.getCalledValue();
617 Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
618
619 if (ClWrapIndirectCallsFast) {
620 // Check that call target is inside this module limits.
621 Value *Start =
622 IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
623 Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
624
625 Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
626 IRB.CreateICmpUGE(Fn, End));
627
628 PHINode *NewFnPhi =
629 IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
630
631 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000632 NotInThisModule, NewFnPhi,
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000633 /* Unreachable */ false, MS.ColdCallWeights);
634
635 IRB.SetInsertPoint(CheckTerm);
636 // Slow path: call wrapper function to possibly transform the call
637 // target.
638 Value *NewFn = IRB.CreateBitCast(
639 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
640
641 NewFnPhi->addIncoming(Fn0, B);
642 NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
643 CS.setCalledFunction(NewFnPhi);
644 } else {
645 Value *NewFn = IRB.CreateBitCast(
646 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
647 CS.setCalledFunction(NewFn);
648 }
649 }
650 }
651
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000652 /// \brief Add MemorySanitizer instrumentation to a function.
653 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000654 MS.initializeCallbacks(*F.getParent());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000655 if (!MS.DL) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000656
657 // In the presence of unreachable blocks, we may see Phi nodes with
658 // incoming nodes from such blocks. Since InstVisitor skips unreachable
659 // blocks, such nodes will not have any shadow value associated with them.
660 // It's easier to remove unreachable blocks than deal with missing shadow.
661 removeUnreachableBlocks(F);
662
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000663 // Iterate all BBs in depth-first order and create shadow instructions
664 // for all instructions (where applicable).
665 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
666 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
667 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
668 BasicBlock *BB = *DI;
669 visit(*BB);
670 }
671
672 // Finalize PHI nodes.
673 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
674 PHINode *PN = ShadowPHINodes[i];
675 PHINode *PNS = cast<PHINode>(getShadow(PN));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000676 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000677 size_t NumValues = PN->getNumIncomingValues();
678 for (size_t v = 0; v < NumValues; v++) {
679 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
680 if (PNO)
681 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
682 }
683 }
684
685 VAHelper->finalizeInstrumentation();
686
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000687 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000688 // This may add new checks to be inserted later.
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000689 materializeStores();
690
691 // Insert shadow value checks.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000692 materializeChecks();
693
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000694 // Wrap indirect calls.
695 materializeIndirectCalls();
696
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000697 return true;
698 }
699
700 /// \brief Compute the shadow type that corresponds to a given Value.
701 Type *getShadowTy(Value *V) {
702 return getShadowTy(V->getType());
703 }
704
705 /// \brief Compute the shadow type that corresponds to a given Type.
706 Type *getShadowTy(Type *OrigTy) {
707 if (!OrigTy->isSized()) {
708 return 0;
709 }
710 // For integer type, shadow is the same as the original type.
711 // This may return weird-sized types like i1.
712 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
713 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000714 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000715 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000716 return VectorType::get(IntegerType::get(*MS.C, EltSize),
717 VT->getNumElements());
718 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000719 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
720 SmallVector<Type*, 4> Elements;
721 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
722 Elements.push_back(getShadowTy(ST->getElementType(i)));
723 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
724 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
725 return Res;
726 }
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000727 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000728 return IntegerType::get(*MS.C, TypeSize);
729 }
730
731 /// \brief Flatten a vector type.
732 Type *getShadowTyNoVec(Type *ty) {
733 if (VectorType *vt = dyn_cast<VectorType>(ty))
734 return IntegerType::get(*MS.C, vt->getBitWidth());
735 return ty;
736 }
737
738 /// \brief Convert a shadow value to it's flattened variant.
739 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
740 Type *Ty = V->getType();
741 Type *NoVecTy = getShadowTyNoVec(Ty);
742 if (Ty == NoVecTy) return V;
743 return IRB.CreateBitCast(V, NoVecTy);
744 }
745
746 /// \brief Compute the shadow address that corresponds to a given application
747 /// address.
748 ///
749 /// Shadow = Addr & ~ShadowMask.
750 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
751 IRBuilder<> &IRB) {
752 Value *ShadowLong =
753 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
754 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
755 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
756 }
757
758 /// \brief Compute the origin address that corresponds to a given application
759 /// address.
760 ///
761 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000762 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
763 Value *ShadowLong =
764 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000765 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000766 Value *Add =
767 IRB.CreateAdd(ShadowLong,
768 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000769 Value *SecondAnd =
770 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
771 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000772 }
773
774 /// \brief Compute the shadow address for a given function argument.
775 ///
776 /// Shadow = ParamTLS+ArgOffset.
777 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
778 int ArgOffset) {
779 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
780 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
781 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
782 "_msarg");
783 }
784
785 /// \brief Compute the origin address for a given function argument.
786 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
787 int ArgOffset) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000788 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000789 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
790 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
791 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
792 "_msarg_o");
793 }
794
795 /// \brief Compute the shadow address for a retval.
796 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
797 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
798 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
799 "_msret");
800 }
801
802 /// \brief Compute the origin address for a retval.
803 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
804 // We keep a single origin for the entire retval. Might be too optimistic.
805 return MS.RetvalOriginTLS;
806 }
807
808 /// \brief Set SV to be the shadow value for V.
809 void setShadow(Value *V, Value *SV) {
810 assert(!ShadowMap.count(V) && "Values may only have one shadow");
811 ShadowMap[V] = SV;
812 }
813
814 /// \brief Set Origin to be the origin value for V.
815 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000816 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000817 assert(!OriginMap.count(V) && "Values may only have one origin");
818 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
819 OriginMap[V] = Origin;
820 }
821
822 /// \brief Create a clean shadow value for a given value.
823 ///
824 /// Clean shadow (all zeroes) means all bits of the value are defined
825 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000826 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000827 Type *ShadowTy = getShadowTy(V);
828 if (!ShadowTy)
829 return 0;
830 return Constant::getNullValue(ShadowTy);
831 }
832
833 /// \brief Create a dirty shadow of a given shadow type.
834 Constant *getPoisonedShadow(Type *ShadowTy) {
835 assert(ShadowTy);
836 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
837 return Constant::getAllOnesValue(ShadowTy);
838 StructType *ST = cast<StructType>(ShadowTy);
839 SmallVector<Constant *, 4> Vals;
840 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
841 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
842 return ConstantStruct::get(ST, Vals);
843 }
844
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000845 /// \brief Create a dirty shadow for a given value.
846 Constant *getPoisonedShadow(Value *V) {
847 Type *ShadowTy = getShadowTy(V);
848 if (!ShadowTy)
849 return 0;
850 return getPoisonedShadow(ShadowTy);
851 }
852
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000853 /// \brief Create a clean (zero) origin.
854 Value *getCleanOrigin() {
855 return Constant::getNullValue(MS.OriginTy);
856 }
857
858 /// \brief Get the shadow value for a given Value.
859 ///
860 /// This function either returns the value set earlier with setShadow,
861 /// or extracts if from ParamTLS (for function arguments).
862 Value *getShadow(Value *V) {
863 if (Instruction *I = dyn_cast<Instruction>(V)) {
864 // For instructions the shadow is already stored in the map.
865 Value *Shadow = ShadowMap[V];
866 if (!Shadow) {
867 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000868 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000869 assert(Shadow && "No shadow for a value");
870 }
871 return Shadow;
872 }
873 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000874 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000875 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000876 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000877 return AllOnes;
878 }
879 if (Argument *A = dyn_cast<Argument>(V)) {
880 // For arguments we compute the shadow on demand and store it in the map.
881 Value **ShadowPtr = &ShadowMap[V];
882 if (*ShadowPtr)
883 return *ShadowPtr;
884 Function *F = A->getParent();
885 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
886 unsigned ArgOffset = 0;
887 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
888 AI != AE; ++AI) {
889 if (!AI->getType()->isSized()) {
890 DEBUG(dbgs() << "Arg is not sized\n");
891 continue;
892 }
893 unsigned Size = AI->hasByValAttr()
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000894 ? MS.DL->getTypeAllocSize(AI->getType()->getPointerElementType())
895 : MS.DL->getTypeAllocSize(AI->getType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000896 if (A == AI) {
897 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
898 if (AI->hasByValAttr()) {
899 // ByVal pointer itself has clean shadow. We copy the actual
900 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000901 // Figure out maximal valid memcpy alignment.
902 unsigned ArgAlign = AI->getParamAlignment();
903 if (ArgAlign == 0) {
904 Type *EltType = A->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000905 ArgAlign = MS.DL->getABITypeAlignment(EltType);
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000906 }
907 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000908 Value *Cpy = EntryIRB.CreateMemCpy(
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000909 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
910 CopyAlign);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000911 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000912 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000913 *ShadowPtr = getCleanShadow(V);
914 } else {
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000915 *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000916 }
917 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
918 **ShadowPtr << "\n");
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000919 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000920 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
921 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
922 }
923 }
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000924 ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000925 }
926 assert(*ShadowPtr && "Could not find shadow for an argument");
927 return *ShadowPtr;
928 }
929 // For everything else the shadow is zero.
930 return getCleanShadow(V);
931 }
932
933 /// \brief Get the shadow for i-th argument of the instruction I.
934 Value *getShadow(Instruction *I, int i) {
935 return getShadow(I->getOperand(i));
936 }
937
938 /// \brief Get the origin for a value.
939 Value *getOrigin(Value *V) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000940 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000941 if (isa<Instruction>(V) || isa<Argument>(V)) {
942 Value *Origin = OriginMap[V];
943 if (!Origin) {
944 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
945 Origin = getCleanOrigin();
946 }
947 return Origin;
948 }
949 return getCleanOrigin();
950 }
951
952 /// \brief Get the origin for i-th argument of the instruction I.
953 Value *getOrigin(Instruction *I, int i) {
954 return getOrigin(I->getOperand(i));
955 }
956
957 /// \brief Remember the place where a shadow check should be inserted.
958 ///
959 /// This location will be later instrumented with a check that will print a
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000960 /// UMR warning in runtime if the shadow value is not 0.
961 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
962 assert(Shadow);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000963 if (!InsertChecks) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000964#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000965 Type *ShadowTy = Shadow->getType();
966 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
967 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000968#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000969 InstrumentationList.push_back(
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000970 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
971 }
972
973 /// \brief Remember the place where a shadow check should be inserted.
974 ///
975 /// This location will be later instrumented with a check that will print a
976 /// UMR warning in runtime if the value is not fully defined.
977 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
978 assert(Val);
979 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
980 if (!Shadow) return;
981 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
982 insertShadowCheck(Shadow, Origin, OrigIns);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000983 }
984
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000985 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
986 switch (a) {
987 case NotAtomic:
988 return NotAtomic;
989 case Unordered:
990 case Monotonic:
991 case Release:
992 return Release;
993 case Acquire:
994 case AcquireRelease:
995 return AcquireRelease;
996 case SequentiallyConsistent:
997 return SequentiallyConsistent;
998 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +0000999 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001000 }
1001
1002 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1003 switch (a) {
1004 case NotAtomic:
1005 return NotAtomic;
1006 case Unordered:
1007 case Monotonic:
1008 case Acquire:
1009 return Acquire;
1010 case Release:
1011 case AcquireRelease:
1012 return AcquireRelease;
1013 case SequentiallyConsistent:
1014 return SequentiallyConsistent;
1015 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001016 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001017 }
1018
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001019 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001020
1021 /// \brief Instrument LoadInst
1022 ///
1023 /// Loads the corresponding shadow and (optionally) origin.
1024 /// Optionally, checks that the load address is fully defined.
1025 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001026 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001027 IRBuilder<> IRB(I.getNextNode());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001028 Type *ShadowTy = getShadowTy(&I);
1029 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001030 if (LoadShadow) {
1031 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1032 setShadow(&I,
1033 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1034 } else {
1035 setShadow(&I, getCleanShadow(&I));
1036 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001037
1038 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001039 insertShadowCheck(I.getPointerOperand(), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001040
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001041 if (I.isAtomic())
1042 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1043
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001044 if (MS.TrackOrigins) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001045 if (LoadShadow) {
1046 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
1047 setOrigin(&I,
1048 IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
1049 } else {
1050 setOrigin(&I, getCleanOrigin());
1051 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001052 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001053 }
1054
1055 /// \brief Instrument StoreInst
1056 ///
1057 /// Stores the corresponding shadow and (optionally) origin.
1058 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001059 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +00001060 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001061 }
1062
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001063 void handleCASOrRMW(Instruction &I) {
1064 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1065
1066 IRBuilder<> IRB(&I);
1067 Value *Addr = I.getOperand(0);
1068 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1069
1070 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001071 insertShadowCheck(Addr, &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001072
1073 // Only test the conditional argument of cmpxchg instruction.
1074 // The other argument can potentially be uninitialized, but we can not
1075 // detect this situation reliably without possible false positives.
1076 if (isa<AtomicCmpXchgInst>(I))
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001077 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001078
1079 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1080
1081 setShadow(&I, getCleanShadow(&I));
1082 }
1083
1084 void visitAtomicRMWInst(AtomicRMWInst &I) {
1085 handleCASOrRMW(I);
1086 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1087 }
1088
1089 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1090 handleCASOrRMW(I);
Tim Northovere94a5182014-03-11 10:48:52 +00001091 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001092 }
1093
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001094 // Vector manipulation.
1095 void visitExtractElementInst(ExtractElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001096 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001097 IRBuilder<> IRB(&I);
1098 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1099 "_msprop"));
1100 setOrigin(&I, getOrigin(&I, 0));
1101 }
1102
1103 void visitInsertElementInst(InsertElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001104 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001105 IRBuilder<> IRB(&I);
1106 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1107 I.getOperand(2), "_msprop"));
1108 setOriginForNaryOp(I);
1109 }
1110
1111 void visitShuffleVectorInst(ShuffleVectorInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001112 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001113 IRBuilder<> IRB(&I);
1114 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1115 I.getOperand(2), "_msprop"));
1116 setOriginForNaryOp(I);
1117 }
1118
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001119 // Casts.
1120 void visitSExtInst(SExtInst &I) {
1121 IRBuilder<> IRB(&I);
1122 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1123 setOrigin(&I, getOrigin(&I, 0));
1124 }
1125
1126 void visitZExtInst(ZExtInst &I) {
1127 IRBuilder<> IRB(&I);
1128 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1129 setOrigin(&I, getOrigin(&I, 0));
1130 }
1131
1132 void visitTruncInst(TruncInst &I) {
1133 IRBuilder<> IRB(&I);
1134 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1135 setOrigin(&I, getOrigin(&I, 0));
1136 }
1137
1138 void visitBitCastInst(BitCastInst &I) {
1139 IRBuilder<> IRB(&I);
1140 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1141 setOrigin(&I, getOrigin(&I, 0));
1142 }
1143
1144 void visitPtrToIntInst(PtrToIntInst &I) {
1145 IRBuilder<> IRB(&I);
1146 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1147 "_msprop_ptrtoint"));
1148 setOrigin(&I, getOrigin(&I, 0));
1149 }
1150
1151 void visitIntToPtrInst(IntToPtrInst &I) {
1152 IRBuilder<> IRB(&I);
1153 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1154 "_msprop_inttoptr"));
1155 setOrigin(&I, getOrigin(&I, 0));
1156 }
1157
1158 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1159 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1160 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1161 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1162 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1163 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1164
1165 /// \brief Propagate shadow for bitwise AND.
1166 ///
1167 /// This code is exact, i.e. if, for example, a bit in the left argument
1168 /// is defined and 0, then neither the value not definedness of the
1169 /// corresponding bit in B don't affect the resulting shadow.
1170 void visitAnd(BinaryOperator &I) {
1171 IRBuilder<> IRB(&I);
1172 // "And" of 0 and a poisoned value results in unpoisoned value.
1173 // 1&1 => 1; 0&1 => 0; p&1 => p;
1174 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1175 // 1&p => p; 0&p => 0; p&p => p;
1176 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1177 Value *S1 = getShadow(&I, 0);
1178 Value *S2 = getShadow(&I, 1);
1179 Value *V1 = I.getOperand(0);
1180 Value *V2 = I.getOperand(1);
1181 if (V1->getType() != S1->getType()) {
1182 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1183 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1184 }
1185 Value *S1S2 = IRB.CreateAnd(S1, S2);
1186 Value *V1S2 = IRB.CreateAnd(V1, S2);
1187 Value *S1V2 = IRB.CreateAnd(S1, V2);
1188 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1189 setOriginForNaryOp(I);
1190 }
1191
1192 void visitOr(BinaryOperator &I) {
1193 IRBuilder<> IRB(&I);
1194 // "Or" of 1 and a poisoned value results in unpoisoned value.
1195 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1196 // 1|0 => 1; 0|0 => 0; p|0 => p;
1197 // 1|p => 1; 0|p => p; p|p => p;
1198 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1199 Value *S1 = getShadow(&I, 0);
1200 Value *S2 = getShadow(&I, 1);
1201 Value *V1 = IRB.CreateNot(I.getOperand(0));
1202 Value *V2 = IRB.CreateNot(I.getOperand(1));
1203 if (V1->getType() != S1->getType()) {
1204 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1205 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1206 }
1207 Value *S1S2 = IRB.CreateAnd(S1, S2);
1208 Value *V1S2 = IRB.CreateAnd(V1, S2);
1209 Value *S1V2 = IRB.CreateAnd(S1, V2);
1210 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1211 setOriginForNaryOp(I);
1212 }
1213
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001214 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001215 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001216 /// This class implements the general case of shadow propagation, used in all
1217 /// cases where we don't know and/or don't care about what the operation
1218 /// actually does. It converts all input shadow values to a common type
1219 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001220 ///
1221 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1222 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001223 ///
1224 /// This class also implements the general case of origin propagation. For a
1225 /// Nary operation, result origin is set to the origin of an argument that is
1226 /// not entirely initialized. If there is more than one such arguments, the
1227 /// rightmost of them is picked. It does not matter which one is picked if all
1228 /// arguments are initialized.
1229 template <bool CombineShadow>
1230 class Combiner {
1231 Value *Shadow;
1232 Value *Origin;
1233 IRBuilder<> &IRB;
1234 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001235
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001236 public:
1237 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1238 Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
1239
1240 /// \brief Add a pair of shadow and origin values to the mix.
1241 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1242 if (CombineShadow) {
1243 assert(OpShadow);
1244 if (!Shadow)
1245 Shadow = OpShadow;
1246 else {
1247 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1248 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1249 }
1250 }
1251
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001252 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001253 assert(OpOrigin);
1254 if (!Origin) {
1255 Origin = OpOrigin;
1256 } else {
1257 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1258 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1259 MSV->getCleanShadow(FlatShadow));
1260 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1261 }
1262 }
1263 return *this;
1264 }
1265
1266 /// \brief Add an application value to the mix.
1267 Combiner &Add(Value *V) {
1268 Value *OpShadow = MSV->getShadow(V);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001269 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001270 return Add(OpShadow, OpOrigin);
1271 }
1272
1273 /// \brief Set the current combined values as the given instruction's shadow
1274 /// and origin.
1275 void Done(Instruction *I) {
1276 if (CombineShadow) {
1277 assert(Shadow);
1278 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1279 MSV->setShadow(I, Shadow);
1280 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001281 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001282 assert(Origin);
1283 MSV->setOrigin(I, Origin);
1284 }
1285 }
1286 };
1287
1288 typedef Combiner<true> ShadowAndOriginCombiner;
1289 typedef Combiner<false> OriginCombiner;
1290
1291 /// \brief Propagate origin for arbitrary operation.
1292 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001293 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001294 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001295 OriginCombiner OC(this, IRB);
1296 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1297 OC.Add(OI->get());
1298 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001299 }
1300
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001301 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001302 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1303 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001304 return Ty->isVectorTy() ?
1305 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1306 Ty->getPrimitiveSizeInBits();
1307 }
1308
1309 /// \brief Cast between two shadow types, extending or truncating as
1310 /// necessary.
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001311 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1312 bool Signed = false) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001313 Type *srcTy = V->getType();
1314 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001315 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001316 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1317 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001318 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001319 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1320 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1321 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1322 Value *V2 =
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001323 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001324 return IRB.CreateBitCast(V2, dstTy);
1325 // TODO: handle struct types.
1326 }
1327
1328 /// \brief Propagate shadow for arbitrary operation.
1329 void handleShadowOr(Instruction &I) {
1330 IRBuilder<> IRB(&I);
1331 ShadowAndOriginCombiner SC(this, IRB);
1332 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1333 SC.Add(OI->get());
1334 SC.Done(&I);
1335 }
1336
1337 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1338 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1339 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1340 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1341 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1342 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1343 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001344
1345 void handleDiv(Instruction &I) {
1346 IRBuilder<> IRB(&I);
1347 // Strict on the second argument.
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001348 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001349 setShadow(&I, getShadow(&I, 0));
1350 setOrigin(&I, getOrigin(&I, 0));
1351 }
1352
1353 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1354 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1355 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1356 void visitURem(BinaryOperator &I) { handleDiv(I); }
1357 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1358 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1359
1360 /// \brief Instrument == and != comparisons.
1361 ///
1362 /// Sometimes the comparison result is known even if some of the bits of the
1363 /// arguments are not.
1364 void handleEqualityComparison(ICmpInst &I) {
1365 IRBuilder<> IRB(&I);
1366 Value *A = I.getOperand(0);
1367 Value *B = I.getOperand(1);
1368 Value *Sa = getShadow(A);
1369 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001370
1371 // Get rid of pointers and vectors of pointers.
1372 // For ints (and vectors of ints), types of A and Sa match,
1373 // and this is a no-op.
1374 A = IRB.CreatePointerCast(A, Sa->getType());
1375 B = IRB.CreatePointerCast(B, Sb->getType());
1376
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001377 // A == B <==> (C = A^B) == 0
1378 // A != B <==> (C = A^B) != 0
1379 // Sc = Sa | Sb
1380 Value *C = IRB.CreateXor(A, B);
1381 Value *Sc = IRB.CreateOr(Sa, Sb);
1382 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1383 // Result is defined if one of the following is true
1384 // * there is a defined 1 bit in C
1385 // * C is fully defined
1386 // Si = !(C & ~Sc) && Sc
1387 Value *Zero = Constant::getNullValue(Sc->getType());
1388 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1389 Value *Si =
1390 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1391 IRB.CreateICmpEQ(
1392 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1393 Si->setName("_msprop_icmp");
1394 setShadow(&I, Si);
1395 setOriginForNaryOp(I);
1396 }
1397
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001398 /// \brief Build the lowest possible value of V, taking into account V's
1399 /// uninitialized bits.
1400 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1401 bool isSigned) {
1402 if (isSigned) {
1403 // Split shadow into sign bit and other bits.
1404 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1405 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1406 // Maximise the undefined shadow bit, minimize other undefined bits.
1407 return
1408 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1409 } else {
1410 // Minimize undefined bits.
1411 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1412 }
1413 }
1414
1415 /// \brief Build the highest possible value of V, taking into account V's
1416 /// uninitialized bits.
1417 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1418 bool isSigned) {
1419 if (isSigned) {
1420 // Split shadow into sign bit and other bits.
1421 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1422 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1423 // Minimise the undefined shadow bit, maximise other undefined bits.
1424 return
1425 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1426 } else {
1427 // Maximize undefined bits.
1428 return IRB.CreateOr(A, Sa);
1429 }
1430 }
1431
1432 /// \brief Instrument relational comparisons.
1433 ///
1434 /// This function does exact shadow propagation for all relational
1435 /// comparisons of integers, pointers and vectors of those.
1436 /// FIXME: output seems suboptimal when one of the operands is a constant
1437 void handleRelationalComparisonExact(ICmpInst &I) {
1438 IRBuilder<> IRB(&I);
1439 Value *A = I.getOperand(0);
1440 Value *B = I.getOperand(1);
1441 Value *Sa = getShadow(A);
1442 Value *Sb = getShadow(B);
1443
1444 // Get rid of pointers and vectors of pointers.
1445 // For ints (and vectors of ints), types of A and Sa match,
1446 // and this is a no-op.
1447 A = IRB.CreatePointerCast(A, Sa->getType());
1448 B = IRB.CreatePointerCast(B, Sb->getType());
1449
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001450 // Let [a0, a1] be the interval of possible values of A, taking into account
1451 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1452 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001453 bool IsSigned = I.isSigned();
1454 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1455 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1456 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1457 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1458 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1459 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1460 Value *Si = IRB.CreateXor(S1, S2);
1461 setShadow(&I, Si);
1462 setOriginForNaryOp(I);
1463 }
1464
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001465 /// \brief Instrument signed relational comparisons.
1466 ///
1467 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1468 /// propagating the highest bit of the shadow. Everything else is delegated
1469 /// to handleShadowOr().
1470 void handleSignedRelationalComparison(ICmpInst &I) {
1471 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1472 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1473 Value* op = NULL;
1474 CmpInst::Predicate pre = I.getPredicate();
1475 if (constOp0 && constOp0->isNullValue() &&
1476 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1477 op = I.getOperand(1);
1478 } else if (constOp1 && constOp1->isNullValue() &&
1479 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1480 op = I.getOperand(0);
1481 }
1482 if (op) {
1483 IRBuilder<> IRB(&I);
1484 Value* Shadow =
1485 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1486 setShadow(&I, Shadow);
1487 setOrigin(&I, getOrigin(op));
1488 } else {
1489 handleShadowOr(I);
1490 }
1491 }
1492
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001493 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001494 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001495 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001496 return;
1497 }
1498 if (I.isEquality()) {
1499 handleEqualityComparison(I);
1500 return;
1501 }
1502
1503 assert(I.isRelational());
1504 if (ClHandleICmpExact) {
1505 handleRelationalComparisonExact(I);
1506 return;
1507 }
1508 if (I.isSigned()) {
1509 handleSignedRelationalComparison(I);
1510 return;
1511 }
1512
1513 assert(I.isUnsigned());
1514 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1515 handleRelationalComparisonExact(I);
1516 return;
1517 }
1518
1519 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001520 }
1521
1522 void visitFCmpInst(FCmpInst &I) {
1523 handleShadowOr(I);
1524 }
1525
1526 void handleShift(BinaryOperator &I) {
1527 IRBuilder<> IRB(&I);
1528 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1529 // Otherwise perform the same shift on S1.
1530 Value *S1 = getShadow(&I, 0);
1531 Value *S2 = getShadow(&I, 1);
1532 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1533 S2->getType());
1534 Value *V2 = I.getOperand(1);
1535 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1536 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1537 setOriginForNaryOp(I);
1538 }
1539
1540 void visitShl(BinaryOperator &I) { handleShift(I); }
1541 void visitAShr(BinaryOperator &I) { handleShift(I); }
1542 void visitLShr(BinaryOperator &I) { handleShift(I); }
1543
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001544 /// \brief Instrument llvm.memmove
1545 ///
1546 /// At this point we don't know if llvm.memmove will be inlined or not.
1547 /// If we don't instrument it and it gets inlined,
1548 /// our interceptor will not kick in and we will lose the memmove.
1549 /// If we instrument the call here, but it does not get inlined,
1550 /// we will memove the shadow twice: which is bad in case
1551 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1552 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001553 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001554 void visitMemMoveInst(MemMoveInst &I) {
1555 IRBuilder<> IRB(&I);
1556 IRB.CreateCall3(
1557 MS.MemmoveFn,
1558 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1559 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1560 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1561 I.eraseFromParent();
1562 }
1563
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001564 // Similar to memmove: avoid copying shadow twice.
1565 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1566 // FIXME: consider doing manual inline for small constant sizes and proper
1567 // alignment.
1568 void visitMemCpyInst(MemCpyInst &I) {
1569 IRBuilder<> IRB(&I);
1570 IRB.CreateCall3(
1571 MS.MemcpyFn,
1572 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1573 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1574 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1575 I.eraseFromParent();
1576 }
1577
1578 // Same as memcpy.
1579 void visitMemSetInst(MemSetInst &I) {
1580 IRBuilder<> IRB(&I);
1581 IRB.CreateCall3(
1582 MS.MemsetFn,
1583 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1584 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1585 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1586 I.eraseFromParent();
1587 }
1588
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001589 void visitVAStartInst(VAStartInst &I) {
1590 VAHelper->visitVAStartInst(I);
1591 }
1592
1593 void visitVACopyInst(VACopyInst &I) {
1594 VAHelper->visitVACopyInst(I);
1595 }
1596
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001597 enum IntrinsicKind {
1598 IK_DoesNotAccessMemory,
1599 IK_OnlyReadsMemory,
1600 IK_WritesMemory
1601 };
1602
1603 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1604 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1605 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1606 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1607 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1608 const int UnknownModRefBehavior = IK_WritesMemory;
1609#define GET_INTRINSIC_MODREF_BEHAVIOR
1610#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001611#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001612#undef ModRefBehavior
1613#undef GET_INTRINSIC_MODREF_BEHAVIOR
1614 }
1615
1616 /// \brief Handle vector store-like intrinsics.
1617 ///
1618 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1619 /// has 1 pointer argument and 1 vector argument, returns void.
1620 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1621 IRBuilder<> IRB(&I);
1622 Value* Addr = I.getArgOperand(0);
1623 Value *Shadow = getShadow(&I, 1);
1624 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1625
1626 // We don't know the pointer alignment (could be unaligned SSE store!).
1627 // Have to assume to worst case.
1628 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1629
1630 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001631 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001632
1633 // FIXME: use ClStoreCleanOrigin
1634 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001635 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001636 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1637 return true;
1638 }
1639
1640 /// \brief Handle vector load-like intrinsics.
1641 ///
1642 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1643 /// has 1 pointer argument, returns a vector.
1644 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1645 IRBuilder<> IRB(&I);
1646 Value *Addr = I.getArgOperand(0);
1647
1648 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001649 if (LoadShadow) {
1650 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1651 // We don't know the pointer alignment (could be unaligned SSE load!).
1652 // Have to assume to worst case.
1653 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1654 } else {
1655 setShadow(&I, getCleanShadow(&I));
1656 }
1657
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001658 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001659 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001660
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001661 if (MS.TrackOrigins) {
1662 if (LoadShadow)
1663 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1664 else
1665 setOrigin(&I, getCleanOrigin());
1666 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001667 return true;
1668 }
1669
1670 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1671 ///
1672 /// Instrument intrinsics with any number of arguments of the same type,
1673 /// equal to the return type. The type should be simple (no aggregates or
1674 /// pointers; vectors are fine).
1675 /// Caller guarantees that this intrinsic does not access memory.
1676 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1677 Type *RetTy = I.getType();
1678 if (!(RetTy->isIntOrIntVectorTy() ||
1679 RetTy->isFPOrFPVectorTy() ||
1680 RetTy->isX86_MMXTy()))
1681 return false;
1682
1683 unsigned NumArgOperands = I.getNumArgOperands();
1684
1685 for (unsigned i = 0; i < NumArgOperands; ++i) {
1686 Type *Ty = I.getArgOperand(i)->getType();
1687 if (Ty != RetTy)
1688 return false;
1689 }
1690
1691 IRBuilder<> IRB(&I);
1692 ShadowAndOriginCombiner SC(this, IRB);
1693 for (unsigned i = 0; i < NumArgOperands; ++i)
1694 SC.Add(I.getArgOperand(i));
1695 SC.Done(&I);
1696
1697 return true;
1698 }
1699
1700 /// \brief Heuristically instrument unknown intrinsics.
1701 ///
1702 /// The main purpose of this code is to do something reasonable with all
1703 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1704 /// We recognize several classes of intrinsics by their argument types and
1705 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1706 /// sure that we know what the intrinsic does.
1707 ///
1708 /// We special-case intrinsics where this approach fails. See llvm.bswap
1709 /// handling as an example of that.
1710 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1711 unsigned NumArgOperands = I.getNumArgOperands();
1712 if (NumArgOperands == 0)
1713 return false;
1714
1715 Intrinsic::ID iid = I.getIntrinsicID();
1716 IntrinsicKind IK = getIntrinsicKind(iid);
1717 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1718 bool WritesMemory = IK == IK_WritesMemory;
1719 assert(!(OnlyReadsMemory && WritesMemory));
1720
1721 if (NumArgOperands == 2 &&
1722 I.getArgOperand(0)->getType()->isPointerTy() &&
1723 I.getArgOperand(1)->getType()->isVectorTy() &&
1724 I.getType()->isVoidTy() &&
1725 WritesMemory) {
1726 // This looks like a vector store.
1727 return handleVectorStoreIntrinsic(I);
1728 }
1729
1730 if (NumArgOperands == 1 &&
1731 I.getArgOperand(0)->getType()->isPointerTy() &&
1732 I.getType()->isVectorTy() &&
1733 OnlyReadsMemory) {
1734 // This looks like a vector load.
1735 return handleVectorLoadIntrinsic(I);
1736 }
1737
1738 if (!OnlyReadsMemory && !WritesMemory)
1739 if (maybeHandleSimpleNomemIntrinsic(I))
1740 return true;
1741
1742 // FIXME: detect and handle SSE maskstore/maskload
1743 return false;
1744 }
1745
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001746 void handleBswap(IntrinsicInst &I) {
1747 IRBuilder<> IRB(&I);
1748 Value *Op = I.getArgOperand(0);
1749 Type *OpType = Op->getType();
1750 Function *BswapFunc = Intrinsic::getDeclaration(
1751 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1752 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1753 setOrigin(&I, getOrigin(Op));
1754 }
1755
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001756 // \brief Instrument vector convert instrinsic.
1757 //
1758 // This function instruments intrinsics like cvtsi2ss:
1759 // %Out = int_xxx_cvtyyy(%ConvertOp)
1760 // or
1761 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1762 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1763 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1764 // elements from \p CopyOp.
1765 // In most cases conversion involves floating-point value which may trigger a
1766 // hardware exception when not fully initialized. For this reason we require
1767 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1768 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1769 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1770 // return a fully initialized value.
1771 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1772 IRBuilder<> IRB(&I);
1773 Value *CopyOp, *ConvertOp;
1774
1775 switch (I.getNumArgOperands()) {
1776 case 2:
1777 CopyOp = I.getArgOperand(0);
1778 ConvertOp = I.getArgOperand(1);
1779 break;
1780 case 1:
1781 ConvertOp = I.getArgOperand(0);
1782 CopyOp = NULL;
1783 break;
1784 default:
1785 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1786 }
1787
1788 // The first *NumUsedElements* elements of ConvertOp are converted to the
1789 // same number of output elements. The rest of the output is copied from
1790 // CopyOp, or (if not available) filled with zeroes.
1791 // Combine shadow for elements of ConvertOp that are used in this operation,
1792 // and insert a check.
1793 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1794 // int->any conversion.
1795 Value *ConvertShadow = getShadow(ConvertOp);
1796 Value *AggShadow = 0;
1797 if (ConvertOp->getType()->isVectorTy()) {
1798 AggShadow = IRB.CreateExtractElement(
1799 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1800 for (int i = 1; i < NumUsedElements; ++i) {
1801 Value *MoreShadow = IRB.CreateExtractElement(
1802 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1803 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1804 }
1805 } else {
1806 AggShadow = ConvertShadow;
1807 }
1808 assert(AggShadow->getType()->isIntegerTy());
1809 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1810
1811 // Build result shadow by zero-filling parts of CopyOp shadow that come from
1812 // ConvertOp.
1813 if (CopyOp) {
1814 assert(CopyOp->getType() == I.getType());
1815 assert(CopyOp->getType()->isVectorTy());
1816 Value *ResultShadow = getShadow(CopyOp);
1817 Type *EltTy = ResultShadow->getType()->getVectorElementType();
1818 for (int i = 0; i < NumUsedElements; ++i) {
1819 ResultShadow = IRB.CreateInsertElement(
1820 ResultShadow, ConstantInt::getNullValue(EltTy),
1821 ConstantInt::get(IRB.getInt32Ty(), i));
1822 }
1823 setShadow(&I, ResultShadow);
1824 setOrigin(&I, getOrigin(CopyOp));
1825 } else {
1826 setShadow(&I, getCleanShadow(&I));
1827 }
1828 }
1829
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001830 // Given a scalar or vector, extract lower 64 bits (or less), and return all
1831 // zeroes if it is zero, and all ones otherwise.
1832 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
1833 if (S->getType()->isVectorTy())
1834 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
1835 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
1836 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1837 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
1838 }
1839
1840 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
1841 Type *T = S->getType();
1842 assert(T->isVectorTy());
1843 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1844 return IRB.CreateSExt(S2, T);
1845 }
1846
1847 // \brief Instrument vector shift instrinsic.
1848 //
1849 // This function instruments intrinsics like int_x86_avx2_psll_w.
1850 // Intrinsic shifts %In by %ShiftSize bits.
1851 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
1852 // size, and the rest is ignored. Behavior is defined even if shift size is
1853 // greater than register (or field) width.
1854 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
1855 assert(I.getNumArgOperands() == 2);
1856 IRBuilder<> IRB(&I);
1857 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1858 // Otherwise perform the same shift on S1.
1859 Value *S1 = getShadow(&I, 0);
1860 Value *S2 = getShadow(&I, 1);
1861 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
1862 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
1863 Value *V1 = I.getOperand(0);
1864 Value *V2 = I.getOperand(1);
1865 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
1866 IRB.CreateBitCast(S1, V1->getType()), V2);
1867 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
1868 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1869 setOriginForNaryOp(I);
1870 }
1871
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001872 void visitIntrinsicInst(IntrinsicInst &I) {
1873 switch (I.getIntrinsicID()) {
1874 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001875 handleBswap(I);
1876 break;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001877 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
1878 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
1879 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
1880 case llvm::Intrinsic::x86_avx512_cvtss2usi:
1881 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
1882 case llvm::Intrinsic::x86_avx512_cvttss2usi:
1883 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
1884 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
1885 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
1886 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
1887 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
1888 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
1889 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
1890 case llvm::Intrinsic::x86_sse2_cvtsd2si:
1891 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
1892 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
1893 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
1894 case llvm::Intrinsic::x86_sse2_cvtss2sd:
1895 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
1896 case llvm::Intrinsic::x86_sse2_cvttsd2si:
1897 case llvm::Intrinsic::x86_sse_cvtsi2ss:
1898 case llvm::Intrinsic::x86_sse_cvtsi642ss:
1899 case llvm::Intrinsic::x86_sse_cvtss2si64:
1900 case llvm::Intrinsic::x86_sse_cvtss2si:
1901 case llvm::Intrinsic::x86_sse_cvttss2si64:
1902 case llvm::Intrinsic::x86_sse_cvttss2si:
1903 handleVectorConvertIntrinsic(I, 1);
1904 break;
1905 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
1906 case llvm::Intrinsic::x86_sse2_cvtps2pd:
1907 case llvm::Intrinsic::x86_sse_cvtps2pi:
1908 case llvm::Intrinsic::x86_sse_cvttps2pi:
1909 handleVectorConvertIntrinsic(I, 2);
1910 break;
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001911 case llvm::Intrinsic::x86_avx512_psll_dq:
1912 case llvm::Intrinsic::x86_avx512_psrl_dq:
1913 case llvm::Intrinsic::x86_avx2_psll_w:
1914 case llvm::Intrinsic::x86_avx2_psll_d:
1915 case llvm::Intrinsic::x86_avx2_psll_q:
1916 case llvm::Intrinsic::x86_avx2_pslli_w:
1917 case llvm::Intrinsic::x86_avx2_pslli_d:
1918 case llvm::Intrinsic::x86_avx2_pslli_q:
1919 case llvm::Intrinsic::x86_avx2_psll_dq:
1920 case llvm::Intrinsic::x86_avx2_psrl_w:
1921 case llvm::Intrinsic::x86_avx2_psrl_d:
1922 case llvm::Intrinsic::x86_avx2_psrl_q:
1923 case llvm::Intrinsic::x86_avx2_psra_w:
1924 case llvm::Intrinsic::x86_avx2_psra_d:
1925 case llvm::Intrinsic::x86_avx2_psrli_w:
1926 case llvm::Intrinsic::x86_avx2_psrli_d:
1927 case llvm::Intrinsic::x86_avx2_psrli_q:
1928 case llvm::Intrinsic::x86_avx2_psrai_w:
1929 case llvm::Intrinsic::x86_avx2_psrai_d:
1930 case llvm::Intrinsic::x86_avx2_psrl_dq:
1931 case llvm::Intrinsic::x86_sse2_psll_w:
1932 case llvm::Intrinsic::x86_sse2_psll_d:
1933 case llvm::Intrinsic::x86_sse2_psll_q:
1934 case llvm::Intrinsic::x86_sse2_pslli_w:
1935 case llvm::Intrinsic::x86_sse2_pslli_d:
1936 case llvm::Intrinsic::x86_sse2_pslli_q:
1937 case llvm::Intrinsic::x86_sse2_psll_dq:
1938 case llvm::Intrinsic::x86_sse2_psrl_w:
1939 case llvm::Intrinsic::x86_sse2_psrl_d:
1940 case llvm::Intrinsic::x86_sse2_psrl_q:
1941 case llvm::Intrinsic::x86_sse2_psra_w:
1942 case llvm::Intrinsic::x86_sse2_psra_d:
1943 case llvm::Intrinsic::x86_sse2_psrli_w:
1944 case llvm::Intrinsic::x86_sse2_psrli_d:
1945 case llvm::Intrinsic::x86_sse2_psrli_q:
1946 case llvm::Intrinsic::x86_sse2_psrai_w:
1947 case llvm::Intrinsic::x86_sse2_psrai_d:
1948 case llvm::Intrinsic::x86_sse2_psrl_dq:
1949 case llvm::Intrinsic::x86_mmx_psll_w:
1950 case llvm::Intrinsic::x86_mmx_psll_d:
1951 case llvm::Intrinsic::x86_mmx_psll_q:
1952 case llvm::Intrinsic::x86_mmx_pslli_w:
1953 case llvm::Intrinsic::x86_mmx_pslli_d:
1954 case llvm::Intrinsic::x86_mmx_pslli_q:
1955 case llvm::Intrinsic::x86_mmx_psrl_w:
1956 case llvm::Intrinsic::x86_mmx_psrl_d:
1957 case llvm::Intrinsic::x86_mmx_psrl_q:
1958 case llvm::Intrinsic::x86_mmx_psra_w:
1959 case llvm::Intrinsic::x86_mmx_psra_d:
1960 case llvm::Intrinsic::x86_mmx_psrli_w:
1961 case llvm::Intrinsic::x86_mmx_psrli_d:
1962 case llvm::Intrinsic::x86_mmx_psrli_q:
1963 case llvm::Intrinsic::x86_mmx_psrai_w:
1964 case llvm::Intrinsic::x86_mmx_psrai_d:
1965 handleVectorShiftIntrinsic(I, /* Variable */ false);
1966 break;
1967 case llvm::Intrinsic::x86_avx2_psllv_d:
1968 case llvm::Intrinsic::x86_avx2_psllv_d_256:
1969 case llvm::Intrinsic::x86_avx2_psllv_q:
1970 case llvm::Intrinsic::x86_avx2_psllv_q_256:
1971 case llvm::Intrinsic::x86_avx2_psrlv_d:
1972 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
1973 case llvm::Intrinsic::x86_avx2_psrlv_q:
1974 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
1975 case llvm::Intrinsic::x86_avx2_psrav_d:
1976 case llvm::Intrinsic::x86_avx2_psrav_d_256:
1977 handleVectorShiftIntrinsic(I, /* Variable */ true);
1978 break;
1979
1980 // Byte shifts are not implemented.
1981 // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
1982 // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
1983 // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
1984 // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
1985 // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
1986 // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
1987
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001988 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001989 if (!handleUnknownIntrinsic(I))
1990 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00001991 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001992 }
1993 }
1994
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001995 void visitCallSite(CallSite CS) {
1996 Instruction &I = *CS.getInstruction();
1997 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
1998 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00001999 CallInst *Call = cast<CallInst>(&I);
2000
2001 // For inline asm, do the usual thing: check argument shadow and mark all
2002 // outputs as clean. Note that any side effects of the inline asm that are
2003 // not immediately visible in its constraints are not handled.
2004 if (Call->isInlineAsm()) {
2005 visitInstruction(I);
2006 return;
2007 }
2008
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002009 // Allow only tail calls with the same types, otherwise
2010 // we may have a false positive: shadow for a non-void RetVal
2011 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002012 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
2013 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002014
2015 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002016
2017 // We are going to insert code that relies on the fact that the callee
2018 // will become a non-readonly function after it is instrumented by us. To
2019 // prevent this code from being optimized out, mark that function
2020 // non-readonly in advance.
2021 if (Function *Func = Call->getCalledFunction()) {
2022 // Clear out readonly/readnone attributes.
2023 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002024 B.addAttribute(Attribute::ReadOnly)
2025 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002026 Func->removeAttributes(AttributeSet::FunctionIndex,
2027 AttributeSet::get(Func->getContext(),
2028 AttributeSet::FunctionIndex,
2029 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002030 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002031 }
2032 IRBuilder<> IRB(&I);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002033
2034 if (MS.WrapIndirectCalls && !CS.getCalledFunction())
Evgeniy Stepanov585813e2013-11-14 12:29:04 +00002035 IndirectCallList.push_back(CS);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002036
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002037 unsigned ArgOffset = 0;
2038 DEBUG(dbgs() << " CallSite: " << I << "\n");
2039 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2040 ArgIt != End; ++ArgIt) {
2041 Value *A = *ArgIt;
2042 unsigned i = ArgIt - CS.arg_begin();
2043 if (!A->getType()->isSized()) {
2044 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2045 continue;
2046 }
2047 unsigned Size = 0;
2048 Value *Store = 0;
2049 // Compute the Shadow for arg even if it is ByVal, because
2050 // in that case getShadow() will copy the actual arg shadow to
2051 // __msan_param_tls.
2052 Value *ArgShadow = getShadow(A);
2053 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2054 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2055 " Shadow: " << *ArgShadow << "\n");
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002056 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002057 assert(A->getType()->isPointerTy() &&
2058 "ByVal argument is not a pointer!");
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002059 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002060 unsigned Alignment = CS.getParamAlignment(i + 1);
2061 Store = IRB.CreateMemCpy(ArgShadowBase,
2062 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2063 Size, Alignment);
2064 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002065 Size = MS.DL->getTypeAllocSize(A->getType());
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002066 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2067 kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002068 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002069 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00002070 IRB.CreateStore(getOrigin(A),
2071 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00002072 (void)Store;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002073 assert(Size != 0 && Store != 0);
2074 DEBUG(dbgs() << " Param:" << *Store << "\n");
2075 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
2076 }
2077 DEBUG(dbgs() << " done with call args\n");
2078
2079 FunctionType *FT =
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002080 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002081 if (FT->isVarArg()) {
2082 VAHelper->visitCallSite(CS, IRB);
2083 }
2084
2085 // Now, get the shadow for the RetVal.
2086 if (!I.getType()->isSized()) return;
2087 IRBuilder<> IRBBefore(&I);
Alp Tokercb402912014-01-24 17:20:08 +00002088 // Until we have full dynamic coverage, make sure the retval shadow is 0.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002089 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002090 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002091 Instruction *NextInsn = 0;
2092 if (CS.isCall()) {
2093 NextInsn = I.getNextNode();
2094 } else {
2095 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2096 if (!NormalDest->getSinglePredecessor()) {
2097 // FIXME: this case is tricky, so we are just conservative here.
2098 // Perhaps we need to split the edge between this BB and NormalDest,
2099 // but a naive attempt to use SplitEdge leads to a crash.
2100 setShadow(&I, getCleanShadow(&I));
2101 setOrigin(&I, getCleanOrigin());
2102 return;
2103 }
2104 NextInsn = NormalDest->getFirstInsertionPt();
2105 assert(NextInsn &&
2106 "Could not find insertion point for retval shadow load");
2107 }
2108 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002109 Value *RetvalShadow =
2110 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2111 kShadowTLSAlignment, "_msret");
2112 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002113 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002114 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2115 }
2116
2117 void visitReturnInst(ReturnInst &I) {
2118 IRBuilder<> IRB(&I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002119 Value *RetVal = I.getReturnValue();
2120 if (!RetVal) return;
2121 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2122 if (CheckReturnValue) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002123 insertShadowCheck(RetVal, &I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002124 Value *Shadow = getCleanShadow(RetVal);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002125 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002126 } else {
2127 Value *Shadow = getShadow(RetVal);
2128 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2129 // FIXME: make it conditional if ClStoreCleanOrigin==0
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002130 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002131 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2132 }
2133 }
2134
2135 void visitPHINode(PHINode &I) {
2136 IRBuilder<> IRB(&I);
2137 ShadowPHINodes.push_back(&I);
2138 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2139 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002140 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002141 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2142 "_msphi_o"));
2143 }
2144
2145 void visitAllocaInst(AllocaInst &I) {
2146 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002147 IRBuilder<> IRB(I.getNextNode());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002148 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002149 if (PoisonStack && ClPoisonStackWithCall) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002150 IRB.CreateCall2(MS.MsanPoisonStackFn,
2151 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2152 ConstantInt::get(MS.IntptrTy, Size));
2153 } else {
2154 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002155 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2156 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002157 }
2158
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002159 if (PoisonStack && MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002160 setOrigin(&I, getCleanOrigin());
2161 SmallString<2048> StackDescriptionStorage;
2162 raw_svector_ostream StackDescription(StackDescriptionStorage);
2163 // We create a string with a description of the stack allocation and
2164 // pass it into __msan_set_alloca_origin.
2165 // It will be printed by the run-time if stack-originated UMR is found.
2166 // The first 4 bytes of the string are set to '----' and will be replaced
2167 // by __msan_va_arg_overflow_size_tls at the first call.
2168 StackDescription << "----" << I.getName() << "@" << F.getName();
2169 Value *Descr =
2170 createPrivateNonConstGlobalForString(*F.getParent(),
2171 StackDescription.str());
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002172
2173 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002174 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2175 ConstantInt::get(MS.IntptrTy, Size),
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002176 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2177 IRB.CreatePointerCast(&F, MS.IntptrTy));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002178 }
2179 }
2180
2181 void visitSelectInst(SelectInst& I) {
2182 IRBuilder<> IRB(&I);
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002183 // a = select b, c, d
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002184 Value *S = IRB.CreateSelect(I.getCondition(), getShadow(I.getTrueValue()),
2185 getShadow(I.getFalseValue()));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002186 if (I.getType()->isAggregateType()) {
2187 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2188 // an extra "select". This results in much more compact IR.
2189 // Sa = select Sb, poisoned, (select b, Sc, Sd)
2190 S = IRB.CreateSelect(getShadow(I.getCondition()),
2191 getPoisonedShadow(getShadowTy(I.getType())), S,
2192 "_msprop_select_agg");
2193 } else {
2194 // Sa = (sext Sb) | (select b, Sc, Sd)
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00002195 S = IRB.CreateOr(S, CreateShadowCast(IRB, getShadow(I.getCondition()),
2196 S->getType(), true),
2197 "_msprop_select");
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002198 }
2199 setShadow(&I, S);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002200 if (MS.TrackOrigins) {
2201 // Origins are always i32, so any vector conditions must be flattened.
2202 // FIXME: consider tracking vector origins for app vectors?
2203 Value *Cond = I.getCondition();
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002204 Value *CondShadow = getShadow(Cond);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002205 if (Cond->getType()->isVectorTy()) {
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002206 Type *FlatTy = getShadowTyNoVec(Cond->getType());
2207 Cond = IRB.CreateICmpNE(IRB.CreateBitCast(Cond, FlatTy),
2208 ConstantInt::getNullValue(FlatTy));
2209 CondShadow = IRB.CreateICmpNE(IRB.CreateBitCast(CondShadow, FlatTy),
2210 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002211 }
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002212 // a = select b, c, d
2213 // Oa = Sb ? Ob : (b ? Oc : Od)
2214 setOrigin(&I, IRB.CreateSelect(
2215 CondShadow, getOrigin(I.getCondition()),
2216 IRB.CreateSelect(Cond, getOrigin(I.getTrueValue()),
2217 getOrigin(I.getFalseValue()))));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002218 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002219 }
2220
2221 void visitLandingPadInst(LandingPadInst &I) {
2222 // Do nothing.
2223 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2224 setShadow(&I, getCleanShadow(&I));
2225 setOrigin(&I, getCleanOrigin());
2226 }
2227
2228 void visitGetElementPtrInst(GetElementPtrInst &I) {
2229 handleShadowOr(I);
2230 }
2231
2232 void visitExtractValueInst(ExtractValueInst &I) {
2233 IRBuilder<> IRB(&I);
2234 Value *Agg = I.getAggregateOperand();
2235 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2236 Value *AggShadow = getShadow(Agg);
2237 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2238 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2239 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2240 setShadow(&I, ResShadow);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002241 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002242 }
2243
2244 void visitInsertValueInst(InsertValueInst &I) {
2245 IRBuilder<> IRB(&I);
2246 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2247 Value *AggShadow = getShadow(I.getAggregateOperand());
2248 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2249 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2250 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2251 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2252 DEBUG(dbgs() << " Res: " << *Res << "\n");
2253 setShadow(&I, Res);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002254 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002255 }
2256
2257 void dumpInst(Instruction &I) {
2258 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2259 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2260 } else {
2261 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2262 }
2263 errs() << "QQQ " << I << "\n";
2264 }
2265
2266 void visitResumeInst(ResumeInst &I) {
2267 DEBUG(dbgs() << "Resume: " << I << "\n");
2268 // Nothing to do here.
2269 }
2270
2271 void visitInstruction(Instruction &I) {
2272 // Everything else: stop propagating and check for poisoned shadow.
2273 if (ClDumpStrictInstructions)
2274 dumpInst(I);
2275 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2276 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002277 insertShadowCheck(I.getOperand(i), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002278 setShadow(&I, getCleanShadow(&I));
2279 setOrigin(&I, getCleanOrigin());
2280 }
2281};
2282
2283/// \brief AMD64-specific implementation of VarArgHelper.
2284struct VarArgAMD64Helper : public VarArgHelper {
2285 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2286 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002287 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002288 static const unsigned AMD64FpEndOffset = 176;
2289
2290 Function &F;
2291 MemorySanitizer &MS;
2292 MemorySanitizerVisitor &MSV;
2293 Value *VAArgTLSCopy;
2294 Value *VAArgOverflowSize;
2295
2296 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2297
2298 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2299 MemorySanitizerVisitor &MSV)
2300 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
2301
2302 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2303
2304 ArgKind classifyArgument(Value* arg) {
2305 // A very rough approximation of X86_64 argument classification rules.
2306 Type *T = arg->getType();
2307 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2308 return AK_FloatingPoint;
2309 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2310 return AK_GeneralPurpose;
2311 if (T->isPointerTy())
2312 return AK_GeneralPurpose;
2313 return AK_Memory;
2314 }
2315
2316 // For VarArg functions, store the argument shadow in an ABI-specific format
2317 // that corresponds to va_list layout.
2318 // We do this because Clang lowers va_arg in the frontend, and this pass
2319 // only sees the low level code that deals with va_list internals.
2320 // A much easier alternative (provided that Clang emits va_arg instructions)
2321 // would have been to associate each live instance of va_list with a copy of
2322 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2323 // order.
Craig Topper3e4c6972014-03-05 09:10:37 +00002324 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002325 unsigned GpOffset = 0;
2326 unsigned FpOffset = AMD64GpEndOffset;
2327 unsigned OverflowOffset = AMD64FpEndOffset;
2328 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2329 ArgIt != End; ++ArgIt) {
2330 Value *A = *ArgIt;
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002331 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2332 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2333 if (IsByVal) {
2334 // ByVal arguments always go to the overflow area.
2335 assert(A->getType()->isPointerTy());
2336 Type *RealTy = A->getType()->getPointerElementType();
2337 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2338 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002339 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002340 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2341 ArgSize, kShadowTLSAlignment);
2342 } else {
2343 ArgKind AK = classifyArgument(A);
2344 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2345 AK = AK_Memory;
2346 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2347 AK = AK_Memory;
2348 Value *Base;
2349 switch (AK) {
2350 case AK_GeneralPurpose:
2351 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2352 GpOffset += 8;
2353 break;
2354 case AK_FloatingPoint:
2355 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2356 FpOffset += 16;
2357 break;
2358 case AK_Memory:
2359 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2360 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2361 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
2362 }
2363 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002364 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002365 }
2366 Constant *OverflowSize =
2367 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2368 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2369 }
2370
2371 /// \brief Compute the shadow address for a given va_arg.
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002372 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002373 int ArgOffset) {
2374 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2375 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002376 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002377 "_msarg");
2378 }
2379
Craig Topper3e4c6972014-03-05 09:10:37 +00002380 void visitVAStartInst(VAStartInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002381 IRBuilder<> IRB(&I);
2382 VAStartInstrumentationList.push_back(&I);
2383 Value *VAListTag = I.getArgOperand(0);
2384 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2385
2386 // Unpoison the whole __va_list_tag.
2387 // FIXME: magic ABI constants.
2388 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002389 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002390 }
2391
Craig Topper3e4c6972014-03-05 09:10:37 +00002392 void visitVACopyInst(VACopyInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002393 IRBuilder<> IRB(&I);
2394 Value *VAListTag = I.getArgOperand(0);
2395 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2396
2397 // Unpoison the whole __va_list_tag.
2398 // FIXME: magic ABI constants.
2399 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002400 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002401 }
2402
Craig Topper3e4c6972014-03-05 09:10:37 +00002403 void finalizeInstrumentation() override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002404 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2405 "finalizeInstrumentation called twice");
2406 if (!VAStartInstrumentationList.empty()) {
2407 // If there is a va_start in this function, make a backup copy of
2408 // va_arg_tls somewhere in the function entry block.
2409 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2410 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2411 Value *CopySize =
2412 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2413 VAArgOverflowSize);
2414 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2415 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2416 }
2417
2418 // Instrument va_start.
2419 // Copy va_list shadow from the backup copy of the TLS contents.
2420 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2421 CallInst *OrigInst = VAStartInstrumentationList[i];
2422 IRBuilder<> IRB(OrigInst->getNextNode());
2423 Value *VAListTag = OrigInst->getArgOperand(0);
2424
2425 Value *RegSaveAreaPtrPtr =
2426 IRB.CreateIntToPtr(
2427 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2428 ConstantInt::get(MS.IntptrTy, 16)),
2429 Type::getInt64PtrTy(*MS.C));
2430 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2431 Value *RegSaveAreaShadowPtr =
2432 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2433 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2434 AMD64FpEndOffset, 16);
2435
2436 Value *OverflowArgAreaPtrPtr =
2437 IRB.CreateIntToPtr(
2438 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2439 ConstantInt::get(MS.IntptrTy, 8)),
2440 Type::getInt64PtrTy(*MS.C));
2441 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2442 Value *OverflowArgAreaShadowPtr =
2443 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Evgeniy Stepanovd42863c2013-08-23 12:11:00 +00002444 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002445 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2446 }
2447 }
2448};
2449
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002450/// \brief A no-op implementation of VarArgHelper.
2451struct VarArgNoOpHelper : public VarArgHelper {
2452 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2453 MemorySanitizerVisitor &MSV) {}
2454
Craig Topper3e4c6972014-03-05 09:10:37 +00002455 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002456
Craig Topper3e4c6972014-03-05 09:10:37 +00002457 void visitVAStartInst(VAStartInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002458
Craig Topper3e4c6972014-03-05 09:10:37 +00002459 void visitVACopyInst(VACopyInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002460
Craig Topper3e4c6972014-03-05 09:10:37 +00002461 void finalizeInstrumentation() override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002462};
2463
2464VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002465 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002466 // VarArg handling is only implemented on AMD64. False positives are possible
2467 // on other platforms.
2468 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2469 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2470 return new VarArgAMD64Helper(Func, Msan, Visitor);
2471 else
2472 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002473}
2474
2475} // namespace
2476
2477bool MemorySanitizer::runOnFunction(Function &F) {
2478 MemorySanitizerVisitor Visitor(F, *this);
2479
2480 // Clear out readonly/readnone attributes.
2481 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002482 B.addAttribute(Attribute::ReadOnly)
2483 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002484 F.removeAttributes(AttributeSet::FunctionIndex,
2485 AttributeSet::get(F.getContext(),
2486 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002487
2488 return Visitor.runOnFunction();
2489}