blob: 9c59d93b7375f7adcbe25ba99d4fdc28d43e75d7 [file] [log] [blame]
Zhou Shengdac63782007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Zhou Shengdac63782007-02-06 03:00:16 +00006//
7//===----------------------------------------------------------------------===//
8//
Reid Spencera41e93b2007-02-25 19:32:03 +00009// This file implements a class to represent arbitrary precision integer
10// constant values and provide a variety of arithmetic operations on them.
Zhou Shengdac63782007-02-06 03:00:16 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/APInt.h"
Mehdi Amini47b292d2016-04-16 07:51:28 +000015#include "llvm/ADT/ArrayRef.h"
Ted Kremenek5c75d542008-01-19 04:23:33 +000016#include "llvm/ADT/FoldingSet.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000017#include "llvm/ADT/Hashing.h"
Krzysztof Parzyszek90f32492018-08-02 19:13:35 +000018#include "llvm/ADT/Optional.h"
Chris Lattner17f71652008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000020#include "llvm/ADT/StringRef.h"
JF Bastienc4986ce2018-09-08 03:55:25 +000021#include "llvm/ADT/bit.h"
Nico Weber432a3882018-04-30 14:59:11 +000022#include "llvm/Config/llvm-config.h"
Reid Spencera5e0d202007-02-24 03:58:46 +000023#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000024#include "llvm/Support/ErrorHandling.h"
Zhou Shengdac63782007-02-06 03:00:16 +000025#include "llvm/Support/MathExtras.h"
Chris Lattner0c19df42008-08-23 22:23:09 +000026#include "llvm/Support/raw_ostream.h"
Vassil Vassilev2ec8b152016-09-14 08:55:18 +000027#include <climits>
Chris Lattner17f71652008-08-17 07:19:36 +000028#include <cmath>
Zhou Shengdac63782007-02-06 03:00:16 +000029#include <cstdlib>
Chandler Carruthed0881b2012-12-03 16:50:05 +000030#include <cstring>
Zhou Shengdac63782007-02-06 03:00:16 +000031using namespace llvm;
32
Chandler Carruth64648262014-04-22 03:07:47 +000033#define DEBUG_TYPE "apint"
34
Reid Spencera41e93b2007-02-25 19:32:03 +000035/// A utility function for allocating memory, checking for allocation failures,
36/// and ensuring the contents are zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000037inline static uint64_t* getClearedMemory(unsigned numWords) {
Fangrui Songc244a152018-03-23 17:26:12 +000038 uint64_t *result = new uint64_t[numWords];
Reid Spencera856b6e2007-02-18 18:38:44 +000039 memset(result, 0, numWords * sizeof(uint64_t));
40 return result;
Zhou Sheng94b623a2007-02-06 06:04:53 +000041}
42
Eric Christopher820256b2009-08-21 04:06:45 +000043/// A utility function for allocating memory and checking for allocation
Reid Spencera41e93b2007-02-25 19:32:03 +000044/// failure. The content is not zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000045inline static uint64_t* getMemory(unsigned numWords) {
Fangrui Songc244a152018-03-23 17:26:12 +000046 return new uint64_t[numWords];
Reid Spencera856b6e2007-02-18 18:38:44 +000047}
48
Erick Tryzelaardadb15712009-08-21 03:15:28 +000049/// A utility function that converts a character to a digit.
50inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000051 unsigned r;
52
Douglas Gregor663c0682011-09-14 15:54:46 +000053 if (radix == 16 || radix == 36) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000054 r = cdigit - '0';
55 if (r <= 9)
56 return r;
57
58 r = cdigit - 'A';
Douglas Gregorc98ac852011-09-20 18:33:29 +000059 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000060 return r + 10;
61
62 r = cdigit - 'a';
Douglas Gregorc98ac852011-09-20 18:33:29 +000063 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000064 return r + 10;
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +000065
Douglas Gregore4e20f42011-09-20 18:11:52 +000066 radix = 10;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000067 }
68
Erick Tryzelaar60964092009-08-21 06:48:37 +000069 r = cdigit - '0';
70 if (r < radix)
71 return r;
72
73 return -1U;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000074}
75
76
Pawel Bylica68304012016-06-27 08:31:48 +000077void APInt::initSlowCase(uint64_t val, bool isSigned) {
Craig Topperb339c6d2017-05-03 15:46:24 +000078 U.pVal = getClearedMemory(getNumWords());
79 U.pVal[0] = val;
Eric Christopher820256b2009-08-21 04:06:45 +000080 if (isSigned && int64_t(val) < 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +000081 for (unsigned i = 1; i < getNumWords(); ++i)
Simon Pilgrim8f465052018-08-16 11:08:23 +000082 U.pVal[i] = WORDTYPE_MAX;
Craig Topperf78a6f02017-03-01 21:06:18 +000083 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +000084}
85
Chris Lattnerd57b7602008-10-11 22:07:19 +000086void APInt::initSlowCase(const APInt& that) {
Craig Topperb339c6d2017-05-03 15:46:24 +000087 U.pVal = getMemory(getNumWords());
88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
Chris Lattnerd57b7602008-10-11 22:07:19 +000089}
90
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000091void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +000092 assert(BitWidth && "Bitwidth too small");
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000093 assert(bigVal.data() && "Null pointer detected!");
Zhou Shengdac63782007-02-06 03:00:16 +000094 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +000095 U.VAL = bigVal[0];
Zhou Shengdac63782007-02-06 03:00:16 +000096 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000097 // Get memory, cleared to 0
Craig Topperb339c6d2017-05-03 15:46:24 +000098 U.pVal = getClearedMemory(getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000099 // Calculate the number of words to copy
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000101 // Copy the words from bigVal to pVal
Craig Topperb339c6d2017-05-03 15:46:24 +0000102 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000103 }
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000104 // Make sure unused high bits are cleared
105 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000106}
107
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000108APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
Craig Topper0085ffb2017-03-20 01:29:52 +0000109 : BitWidth(numBits) {
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000110 initFromArray(bigVal);
111}
112
113APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Craig Topper0085ffb2017-03-20 01:29:52 +0000114 : BitWidth(numBits) {
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000115 initFromArray(makeArrayRef(bigVal, numWords));
116}
117
Benjamin Kramer92d89982010-07-14 22:38:02 +0000118APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
Craig Topperb339c6d2017-05-03 15:46:24 +0000119 : BitWidth(numbits) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000120 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000121 fromString(numbits, Str, radix);
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000122}
123
Craig Toppera92fd0b2017-05-12 01:46:01 +0000124void APInt::reallocate(unsigned NewBitWidth) {
125 // If the number of words is the same we can just change the width and stop.
126 if (getNumWords() == getNumWords(NewBitWidth)) {
127 BitWidth = NewBitWidth;
128 return;
129 }
130
131 // If we have an allocation, delete it.
132 if (!isSingleWord())
133 delete [] U.pVal;
134
135 // Update BitWidth.
136 BitWidth = NewBitWidth;
137
138 // If we are supposed to have an allocation, create it.
139 if (!isSingleWord())
140 U.pVal = getMemory(getNumWords());
141}
142
Craig Topperc67fe572017-04-19 17:01:58 +0000143void APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer7c16cd22007-02-26 23:38:21 +0000144 // Don't do anything for X = X
145 if (this == &RHS)
Craig Topperc67fe572017-04-19 17:01:58 +0000146 return;
Reid Spencer7c16cd22007-02-26 23:38:21 +0000147
Craig Toppera92fd0b2017-05-12 01:46:01 +0000148 // Adjust the bit width and handle allocations as necessary.
149 reallocate(RHS.getBitWidth());
Reid Spencer7c16cd22007-02-26 23:38:21 +0000150
Craig Toppera92fd0b2017-05-12 01:46:01 +0000151 // Copy the data.
152 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000153 U.VAL = RHS.U.VAL;
Craig Toppera92fd0b2017-05-12 01:46:01 +0000154 else
155 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000156}
157
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000158/// This method 'profiles' an APInt for use with FoldingSet.
Ted Kremenek5c75d542008-01-19 04:23:33 +0000159void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek901540f2008-02-19 20:50:41 +0000160 ID.AddInteger(BitWidth);
Eric Christopher820256b2009-08-21 04:06:45 +0000161
Ted Kremenek5c75d542008-01-19 04:23:33 +0000162 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000163 ID.AddInteger(U.VAL);
Ted Kremenek5c75d542008-01-19 04:23:33 +0000164 return;
165 }
166
Chris Lattner77527f52009-01-21 18:09:24 +0000167 unsigned NumWords = getNumWords();
Ted Kremenek5c75d542008-01-19 04:23:33 +0000168 for (unsigned i = 0; i < NumWords; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000169 ID.AddInteger(U.pVal[i]);
Ted Kremenek5c75d542008-01-19 04:23:33 +0000170}
171
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000172/// Prefix increment operator. Increments the APInt by one.
Zhou Shengdac63782007-02-06 03:00:16 +0000173APInt& APInt::operator++() {
Eric Christopher820256b2009-08-21 04:06:45 +0000174 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000175 ++U.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000176 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000177 tcIncrement(U.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000178 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000179}
180
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000181/// Prefix decrement operator. Decrements the APInt by one.
Zhou Shengdac63782007-02-06 03:00:16 +0000182APInt& APInt::operator--() {
Eric Christopher820256b2009-08-21 04:06:45 +0000183 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000184 --U.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000185 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000186 tcDecrement(U.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000187 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000188}
189
Reid Spencera41e93b2007-02-25 19:32:03 +0000190/// Adds the RHS APint to this APInt.
191/// @returns this, after addition of RHS.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000192/// Addition assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000193APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000194 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000195 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000196 U.VAL += RHS.U.VAL;
Craig Topper15e484a2017-04-02 06:59:43 +0000197 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000198 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000199 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000200}
201
Pete Cooperfea21392016-07-22 20:55:46 +0000202APInt& APInt::operator+=(uint64_t RHS) {
203 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000204 U.VAL += RHS;
Pete Cooperfea21392016-07-22 20:55:46 +0000205 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000206 tcAddPart(U.pVal, RHS, getNumWords());
Pete Cooperfea21392016-07-22 20:55:46 +0000207 return clearUnusedBits();
208}
209
Reid Spencera41e93b2007-02-25 19:32:03 +0000210/// Subtracts the RHS APInt from this APInt
211/// @returns this, after subtraction
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000212/// Subtraction assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000213APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000215 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000216 U.VAL -= RHS.U.VAL;
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000217 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000218 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000219 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000220}
221
Pete Cooperfea21392016-07-22 20:55:46 +0000222APInt& APInt::operator-=(uint64_t RHS) {
223 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000224 U.VAL -= RHS;
Pete Cooperfea21392016-07-22 20:55:46 +0000225 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000226 tcSubtractPart(U.pVal, RHS, getNumWords());
Pete Cooperfea21392016-07-22 20:55:46 +0000227 return clearUnusedBits();
228}
229
Craig Topper93c68e12017-05-04 17:00:41 +0000230APInt APInt::operator*(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000231 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper93c68e12017-05-04 17:00:41 +0000232 if (isSingleWord())
233 return APInt(BitWidth, U.VAL * RHS.U.VAL);
Reid Spencer58a6a432007-02-21 08:21:52 +0000234
Craig Topper93c68e12017-05-04 17:00:41 +0000235 APInt Result(getMemory(getNumWords()), getBitWidth());
Reid Spencer58a6a432007-02-21 08:21:52 +0000236
Craig Topper93c68e12017-05-04 17:00:41 +0000237 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
Reid Spencer58a6a432007-02-21 08:21:52 +0000238
Craig Topper93c68e12017-05-04 17:00:41 +0000239 Result.clearUnusedBits();
240 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000241}
242
Craig Topperc67fe572017-04-19 17:01:58 +0000243void APInt::AndAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000244 tcAnd(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000245}
246
Craig Topperc67fe572017-04-19 17:01:58 +0000247void APInt::OrAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000248 tcOr(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000249}
250
Craig Topperc67fe572017-04-19 17:01:58 +0000251void APInt::XorAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000252 tcXor(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000253}
254
Craig Topper93c68e12017-05-04 17:00:41 +0000255APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000256 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper93c68e12017-05-04 17:00:41 +0000257 *this = *this * RHS;
258 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000259}
260
Craig Toppera51941f2017-05-08 04:55:09 +0000261APInt& APInt::operator*=(uint64_t RHS) {
262 if (isSingleWord()) {
263 U.VAL *= RHS;
264 } else {
265 unsigned NumWords = getNumWords();
266 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
267 }
268 return clearUnusedBits();
269}
270
Chris Lattner1ac3e252008-08-20 17:02:31 +0000271bool APInt::EqualSlowCase(const APInt& RHS) const {
Craig Topperb339c6d2017-05-03 15:46:24 +0000272 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
Zhou Shengdac63782007-02-06 03:00:16 +0000273}
274
Craig Topper1dc8fc82017-04-21 16:13:15 +0000275int APInt::compare(const APInt& RHS) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000276 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
277 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000278 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
Reid Spencera41e93b2007-02-25 19:32:03 +0000279
Craig Topperb339c6d2017-05-03 15:46:24 +0000280 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000281}
282
Craig Topper1dc8fc82017-04-21 16:13:15 +0000283int APInt::compareSigned(const APInt& RHS) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000284 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000285 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000286 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
287 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
Craig Topper1dc8fc82017-04-21 16:13:15 +0000288 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
Reid Spencer1d072122007-02-16 22:36:51 +0000289 }
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000290
Reid Spencer54abdcf2007-02-27 18:23:40 +0000291 bool lhsNeg = isNegative();
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000292 bool rhsNeg = RHS.isNegative();
Reid Spencera41e93b2007-02-25 19:32:03 +0000293
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000294 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
295 if (lhsNeg != rhsNeg)
Craig Topper1dc8fc82017-04-21 16:13:15 +0000296 return lhsNeg ? -1 : 1;
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000297
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000298 // Otherwise we can just use an unsigned comparison, because even negative
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000299 // numbers compare correctly this way if both have the same signed-ness.
Craig Topperb339c6d2017-05-03 15:46:24 +0000300 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000301}
302
Craig Topperbafdd032017-03-07 01:56:01 +0000303void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
304 unsigned loWord = whichWord(loBit);
305 unsigned hiWord = whichWord(hiBit);
Simon Pilgrimaed35222017-02-24 10:15:29 +0000306
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000307 // Create an initial mask for the low word with zeros below loBit.
Simon Pilgrim8f465052018-08-16 11:08:23 +0000308 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
Simon Pilgrimaed35222017-02-24 10:15:29 +0000309
Craig Topperbafdd032017-03-07 01:56:01 +0000310 // If hiBit is not aligned, we need a high mask.
311 unsigned hiShiftAmt = whichBit(hiBit);
312 if (hiShiftAmt != 0) {
313 // Create a high mask with zeros above hiBit.
Simon Pilgrim8f465052018-08-16 11:08:23 +0000314 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
Craig Topperbafdd032017-03-07 01:56:01 +0000315 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
316 // set the bits in hiWord.
317 if (hiWord == loWord)
318 loMask &= hiMask;
319 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000320 U.pVal[hiWord] |= hiMask;
Simon Pilgrimaed35222017-02-24 10:15:29 +0000321 }
Craig Topperbafdd032017-03-07 01:56:01 +0000322 // Apply the mask to the low word.
Craig Topperb339c6d2017-05-03 15:46:24 +0000323 U.pVal[loWord] |= loMask;
Craig Topperbafdd032017-03-07 01:56:01 +0000324
325 // Fill any words between loWord and hiWord with all ones.
326 for (unsigned word = loWord + 1; word < hiWord; ++word)
Simon Pilgrim8f465052018-08-16 11:08:23 +0000327 U.pVal[word] = WORDTYPE_MAX;
Simon Pilgrimaed35222017-02-24 10:15:29 +0000328}
329
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000330/// Toggle every bit to its opposite value.
Craig Topperafc9e352017-03-27 17:10:21 +0000331void APInt::flipAllBitsSlowCase() {
Craig Topperb339c6d2017-05-03 15:46:24 +0000332 tcComplement(U.pVal, getNumWords());
Craig Topperafc9e352017-03-27 17:10:21 +0000333 clearUnusedBits();
334}
Zhou Shengdac63782007-02-06 03:00:16 +0000335
Eric Christopher820256b2009-08-21 04:06:45 +0000336/// Toggle a given bit to its opposite value whose position is given
Zhou Shengdac63782007-02-06 03:00:16 +0000337/// as "bitPosition".
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000338/// Toggles a given bit to its opposite value.
Jay Foad25a5e4c2010-12-01 08:53:58 +0000339void APInt::flipBit(unsigned bitPosition) {
Reid Spencer1d072122007-02-16 22:36:51 +0000340 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Jay Foad25a5e4c2010-12-01 08:53:58 +0000341 if ((*this)[bitPosition]) clearBit(bitPosition);
342 else setBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000343}
344
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000345void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
346 unsigned subBitWidth = subBits.getBitWidth();
347 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
348 "Illegal bit insertion");
349
350 // Insertion is a direct copy.
351 if (subBitWidth == BitWidth) {
352 *this = subBits;
353 return;
354 }
355
356 // Single word result can be done as a direct bitmask.
357 if (isSingleWord()) {
Simon Pilgrim8f465052018-08-16 11:08:23 +0000358 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
Craig Topperb339c6d2017-05-03 15:46:24 +0000359 U.VAL &= ~(mask << bitPosition);
360 U.VAL |= (subBits.U.VAL << bitPosition);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000361 return;
362 }
363
364 unsigned loBit = whichBit(bitPosition);
365 unsigned loWord = whichWord(bitPosition);
366 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
367
368 // Insertion within a single word can be done as a direct bitmask.
369 if (loWord == hi1Word) {
Simon Pilgrim8f465052018-08-16 11:08:23 +0000370 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
Craig Topperb339c6d2017-05-03 15:46:24 +0000371 U.pVal[loWord] &= ~(mask << loBit);
372 U.pVal[loWord] |= (subBits.U.VAL << loBit);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000373 return;
374 }
375
376 // Insert on word boundaries.
377 if (loBit == 0) {
378 // Direct copy whole words.
379 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
Craig Topperb339c6d2017-05-03 15:46:24 +0000380 memcpy(U.pVal + loWord, subBits.getRawData(),
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000381 numWholeSubWords * APINT_WORD_SIZE);
382
383 // Mask+insert remaining bits.
384 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
385 if (remainingBits != 0) {
Simon Pilgrim8f465052018-08-16 11:08:23 +0000386 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
Craig Topperb339c6d2017-05-03 15:46:24 +0000387 U.pVal[hi1Word] &= ~mask;
388 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000389 }
390 return;
391 }
392
393 // General case - set/clear individual bits in dst based on src.
394 // TODO - there is scope for optimization here, but at the moment this code
395 // path is barely used so prefer readability over performance.
396 for (unsigned i = 0; i != subBitWidth; ++i) {
397 if (subBits[i])
398 setBit(bitPosition + i);
399 else
400 clearBit(bitPosition + i);
401 }
402}
403
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000404APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
405 assert(numBits > 0 && "Can't extract zero bits");
406 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
407 "Illegal bit extraction");
408
409 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000410 return APInt(numBits, U.VAL >> bitPosition);
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000411
412 unsigned loBit = whichBit(bitPosition);
413 unsigned loWord = whichWord(bitPosition);
414 unsigned hiWord = whichWord(bitPosition + numBits - 1);
415
416 // Single word result extracting bits from a single word source.
417 if (loWord == hiWord)
Craig Topperb339c6d2017-05-03 15:46:24 +0000418 return APInt(numBits, U.pVal[loWord] >> loBit);
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000419
420 // Extracting bits that start on a source word boundary can be done
421 // as a fast memory copy.
422 if (loBit == 0)
Craig Topperb339c6d2017-05-03 15:46:24 +0000423 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000424
425 // General case - shift + copy source words directly into place.
426 APInt Result(numBits, 0);
427 unsigned NumSrcWords = getNumWords();
428 unsigned NumDstWords = Result.getNumWords();
429
Tim Shen89337752018-02-16 01:44:36 +0000430 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000431 for (unsigned word = 0; word < NumDstWords; ++word) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000432 uint64_t w0 = U.pVal[loWord + word];
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000433 uint64_t w1 =
Craig Topperb339c6d2017-05-03 15:46:24 +0000434 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
Tim Shen89337752018-02-16 01:44:36 +0000435 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000436 }
437
438 return Result.clearUnusedBits();
439}
440
Benjamin Kramer92d89982010-07-14 22:38:02 +0000441unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000442 assert(!str.empty() && "Invalid string length");
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000443 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +0000444 radix == 36) &&
445 "Radix should be 2, 8, 10, 16, or 36!");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000446
447 size_t slen = str.size();
Reid Spencer9329e7b2007-04-13 19:19:07 +0000448
Eric Christopher43a1dec2009-08-21 04:10:31 +0000449 // Each computation below needs to know if it's negative.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000450 StringRef::iterator p = str.begin();
Eric Christopher43a1dec2009-08-21 04:10:31 +0000451 unsigned isNegative = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000452 if (*p == '-' || *p == '+') {
453 p++;
Reid Spencer9329e7b2007-04-13 19:19:07 +0000454 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +0000455 assert(slen && "String is only a sign, needs a value.");
Reid Spencer9329e7b2007-04-13 19:19:07 +0000456 }
Eric Christopher43a1dec2009-08-21 04:10:31 +0000457
Reid Spencer9329e7b2007-04-13 19:19:07 +0000458 // For radixes of power-of-two values, the bits required is accurately and
459 // easily computed
460 if (radix == 2)
461 return slen + isNegative;
462 if (radix == 8)
463 return slen * 3 + isNegative;
464 if (radix == 16)
465 return slen * 4 + isNegative;
466
Douglas Gregor663c0682011-09-14 15:54:46 +0000467 // FIXME: base 36
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000468
Reid Spencer9329e7b2007-04-13 19:19:07 +0000469 // This is grossly inefficient but accurate. We could probably do something
470 // with a computation of roughly slen*64/20 and then adjust by the value of
471 // the first few digits. But, I'm not sure how accurate that could be.
472
473 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000474 // be too large. This avoids the assertion in the constructor. This
475 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
476 // bits in that case.
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000477 unsigned sufficient
Douglas Gregor663c0682011-09-14 15:54:46 +0000478 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
479 : (slen == 1 ? 7 : slen * 16/3);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000480
481 // Convert to the actual binary value.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000482 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000483
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000484 // Compute how many bits are required. If the log is infinite, assume we need
485 // just bit.
486 unsigned log = tmp.logBase2();
487 if (log == (unsigned)-1) {
488 return isNegative + 1;
489 } else {
490 return isNegative + log + 1;
491 }
Reid Spencer9329e7b2007-04-13 19:19:07 +0000492}
493
Chandler Carruth71bd7d12012-03-04 12:02:57 +0000494hash_code llvm::hash_value(const APInt &Arg) {
495 if (Arg.isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000496 return hash_combine(Arg.U.VAL);
Reid Spencerb2bc9852007-02-26 21:02:27 +0000497
Craig Topperb339c6d2017-05-03 15:46:24 +0000498 return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords());
Reid Spencerb2bc9852007-02-26 21:02:27 +0000499}
500
Benjamin Kramerb4b51502015-03-25 16:49:59 +0000501bool APInt::isSplat(unsigned SplatSizeInBits) const {
502 assert(getBitWidth() % SplatSizeInBits == 0 &&
503 "SplatSizeInBits must divide width!");
504 // We can check that all parts of an integer are equal by making use of a
505 // little trick: rotate and check if it's still the same value.
506 return *this == rotl(SplatSizeInBits);
507}
508
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000509/// This function returns the high "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000510APInt APInt::getHiBits(unsigned numBits) const {
Craig Toppere7e35602017-03-31 18:48:14 +0000511 return this->lshr(BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000512}
513
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000514/// This function returns the low "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000515APInt APInt::getLoBits(unsigned numBits) const {
Craig Toppere7e35602017-03-31 18:48:14 +0000516 APInt Result(getLowBitsSet(BitWidth, numBits));
517 Result &= *this;
518 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000519}
520
Craig Topper9881bd92017-05-02 06:32:27 +0000521/// Return a value containing V broadcasted over NewLen bits.
522APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
523 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
524
525 APInt Val = V.zextOrSelf(NewLen);
526 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
527 Val |= Val << I;
528
529 return Val;
530}
531
Chris Lattner77527f52009-01-21 18:09:24 +0000532unsigned APInt::countLeadingZerosSlowCase() const {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000533 unsigned Count = 0;
534 for (int i = getNumWords()-1; i >= 0; --i) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000535 uint64_t V = U.pVal[i];
Matthias Brauna6be4e82016-02-15 20:06:22 +0000536 if (V == 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +0000537 Count += APINT_BITS_PER_WORD;
538 else {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000539 Count += llvm::countLeadingZeros(V);
Chris Lattner1ac3e252008-08-20 17:02:31 +0000540 break;
Reid Spencer74cf82e2007-02-21 00:29:48 +0000541 }
Zhou Shengdac63782007-02-06 03:00:16 +0000542 }
Matthias Brauna6be4e82016-02-15 20:06:22 +0000543 // Adjust for unused bits in the most significant word (they are zero).
544 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
545 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
John McCalldf951bd2010-02-03 03:42:44 +0000546 return Count;
Zhou Shengdac63782007-02-06 03:00:16 +0000547}
548
Craig Topper40516522017-06-23 20:28:45 +0000549unsigned APInt::countLeadingOnesSlowCase() const {
Chris Lattner77527f52009-01-21 18:09:24 +0000550 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwinec39eb82009-01-27 18:06:03 +0000551 unsigned shift;
552 if (!highWordBits) {
553 highWordBits = APINT_BITS_PER_WORD;
554 shift = 0;
555 } else {
556 shift = APINT_BITS_PER_WORD - highWordBits;
557 }
Reid Spencer31acef52007-02-27 21:59:26 +0000558 int i = getNumWords() - 1;
Craig Topperb339c6d2017-05-03 15:46:24 +0000559 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
Reid Spencer31acef52007-02-27 21:59:26 +0000560 if (Count == highWordBits) {
561 for (i--; i >= 0; --i) {
Simon Pilgrim8f465052018-08-16 11:08:23 +0000562 if (U.pVal[i] == WORDTYPE_MAX)
Reid Spencer31acef52007-02-27 21:59:26 +0000563 Count += APINT_BITS_PER_WORD;
564 else {
Craig Topperb339c6d2017-05-03 15:46:24 +0000565 Count += llvm::countLeadingOnes(U.pVal[i]);
Reid Spencer31acef52007-02-27 21:59:26 +0000566 break;
567 }
568 }
569 }
570 return Count;
571}
572
Craig Topper40516522017-06-23 20:28:45 +0000573unsigned APInt::countTrailingZerosSlowCase() const {
Chris Lattner77527f52009-01-21 18:09:24 +0000574 unsigned Count = 0;
575 unsigned i = 0;
Craig Topperb339c6d2017-05-03 15:46:24 +0000576 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000577 Count += APINT_BITS_PER_WORD;
578 if (i < getNumWords())
Craig Topperb339c6d2017-05-03 15:46:24 +0000579 Count += llvm::countTrailingZeros(U.pVal[i]);
Chris Lattnerc2c4c742007-11-23 22:36:25 +0000580 return std::min(Count, BitWidth);
Zhou Shengdac63782007-02-06 03:00:16 +0000581}
582
Chris Lattner77527f52009-01-21 18:09:24 +0000583unsigned APInt::countTrailingOnesSlowCase() const {
584 unsigned Count = 0;
585 unsigned i = 0;
Simon Pilgrim8f465052018-08-16 11:08:23 +0000586 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000587 Count += APINT_BITS_PER_WORD;
588 if (i < getNumWords())
Craig Topperb339c6d2017-05-03 15:46:24 +0000589 Count += llvm::countTrailingOnes(U.pVal[i]);
Craig Topper3a29e3b82017-04-22 19:59:11 +0000590 assert(Count <= BitWidth);
591 return Count;
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000592}
593
Chris Lattner77527f52009-01-21 18:09:24 +0000594unsigned APInt::countPopulationSlowCase() const {
595 unsigned Count = 0;
596 for (unsigned i = 0; i < getNumWords(); ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000597 Count += llvm::countPopulation(U.pVal[i]);
Zhou Shengdac63782007-02-06 03:00:16 +0000598 return Count;
599}
600
Craig Topperbaa392e2017-04-20 02:11:27 +0000601bool APInt::intersectsSlowCase(const APInt &RHS) const {
602 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000603 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
Craig Topperbaa392e2017-04-20 02:11:27 +0000604 return true;
605
606 return false;
607}
608
Craig Toppera8129a12017-04-20 16:17:13 +0000609bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
610 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000611 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
Craig Toppera8129a12017-04-20 16:17:13 +0000612 return false;
613
614 return true;
615}
616
Reid Spencer1d072122007-02-16 22:36:51 +0000617APInt APInt::byteSwap() const {
618 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
619 if (BitWidth == 16)
Craig Topperb339c6d2017-05-03 15:46:24 +0000620 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000621 if (BitWidth == 32)
Craig Topperb339c6d2017-05-03 15:46:24 +0000622 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000623 if (BitWidth == 48) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000624 unsigned Tmp1 = unsigned(U.VAL >> 16);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000625 Tmp1 = ByteSwap_32(Tmp1);
Craig Topperb339c6d2017-05-03 15:46:24 +0000626 uint16_t Tmp2 = uint16_t(U.VAL);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000627 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohene06855e2007-03-20 20:42:36 +0000628 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000629 }
Richard Smith4f9a8082011-11-23 21:33:37 +0000630 if (BitWidth == 64)
Craig Topperb339c6d2017-05-03 15:46:24 +0000631 return APInt(BitWidth, ByteSwap_64(U.VAL));
Richard Smith4f9a8082011-11-23 21:33:37 +0000632
633 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
634 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
Craig Topperb339c6d2017-05-03 15:46:24 +0000635 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
Richard Smith4f9a8082011-11-23 21:33:37 +0000636 if (Result.BitWidth != BitWidth) {
Richard Smith55bd3752017-04-13 20:29:59 +0000637 Result.lshrInPlace(Result.BitWidth - BitWidth);
Richard Smith4f9a8082011-11-23 21:33:37 +0000638 Result.BitWidth = BitWidth;
639 }
640 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000641}
642
Matt Arsenault155dda92016-03-21 15:00:35 +0000643APInt APInt::reverseBits() const {
644 switch (BitWidth) {
645 case 64:
Craig Topperb339c6d2017-05-03 15:46:24 +0000646 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000647 case 32:
Craig Topperb339c6d2017-05-03 15:46:24 +0000648 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000649 case 16:
Craig Topperb339c6d2017-05-03 15:46:24 +0000650 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000651 case 8:
Craig Topperb339c6d2017-05-03 15:46:24 +0000652 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000653 default:
654 break;
655 }
656
657 APInt Val(*this);
Craig Topper9eaef072017-04-18 05:02:21 +0000658 APInt Reversed(BitWidth, 0);
659 unsigned S = BitWidth;
Matt Arsenault155dda92016-03-21 15:00:35 +0000660
Craig Topper9eaef072017-04-18 05:02:21 +0000661 for (; Val != 0; Val.lshrInPlace(1)) {
Matt Arsenault155dda92016-03-21 15:00:35 +0000662 Reversed <<= 1;
Craig Topper9eaef072017-04-18 05:02:21 +0000663 Reversed |= Val[0];
Matt Arsenault155dda92016-03-21 15:00:35 +0000664 --S;
665 }
666
667 Reversed <<= S;
668 return Reversed;
669}
670
Craig Topper278ebd22017-04-01 20:30:57 +0000671APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
Richard Smith55bd3752017-04-13 20:29:59 +0000672 // Fast-path a common case.
673 if (A == B) return A;
674
675 // Corner cases: if either operand is zero, the other is the gcd.
676 if (!A) return B;
677 if (!B) return A;
678
679 // Count common powers of 2 and remove all other powers of 2.
680 unsigned Pow2;
681 {
682 unsigned Pow2_A = A.countTrailingZeros();
683 unsigned Pow2_B = B.countTrailingZeros();
684 if (Pow2_A > Pow2_B) {
685 A.lshrInPlace(Pow2_A - Pow2_B);
686 Pow2 = Pow2_B;
687 } else if (Pow2_B > Pow2_A) {
688 B.lshrInPlace(Pow2_B - Pow2_A);
689 Pow2 = Pow2_A;
690 } else {
691 Pow2 = Pow2_A;
692 }
Zhou Shengdac63782007-02-06 03:00:16 +0000693 }
Richard Smith55bd3752017-04-13 20:29:59 +0000694
695 // Both operands are odd multiples of 2^Pow_2:
696 //
697 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
698 //
699 // This is a modified version of Stein's algorithm, taking advantage of
700 // efficient countTrailingZeros().
701 while (A != B) {
702 if (A.ugt(B)) {
703 A -= B;
704 A.lshrInPlace(A.countTrailingZeros() - Pow2);
705 } else {
706 B -= A;
707 B.lshrInPlace(B.countTrailingZeros() - Pow2);
708 }
709 }
710
Zhou Shengdac63782007-02-06 03:00:16 +0000711 return A;
712}
Chris Lattner28cbd1d2007-02-06 05:38:37 +0000713
Chris Lattner77527f52009-01-21 18:09:24 +0000714APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
JF Bastienc4986ce2018-09-08 03:55:25 +0000715 uint64_t I = bit_cast<uint64_t>(Double);
Reid Spencer974551a2007-02-27 01:28:10 +0000716
717 // Get the sign bit from the highest order bit
JF Bastienc4986ce2018-09-08 03:55:25 +0000718 bool isNeg = I >> 63;
Reid Spencer974551a2007-02-27 01:28:10 +0000719
720 // Get the 11-bit exponent and adjust for the 1023 bit bias
JF Bastienc4986ce2018-09-08 03:55:25 +0000721 int64_t exp = ((I >> 52) & 0x7ff) - 1023;
Reid Spencer974551a2007-02-27 01:28:10 +0000722
723 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd707d632007-02-12 20:02:55 +0000724 if (exp < 0)
Reid Spencer66d0d572007-02-28 01:30:08 +0000725 return APInt(width, 0u);
Reid Spencer974551a2007-02-27 01:28:10 +0000726
727 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
JF Bastienc4986ce2018-09-08 03:55:25 +0000728 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
Reid Spencer974551a2007-02-27 01:28:10 +0000729
730 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd707d632007-02-12 20:02:55 +0000731 if (exp < 52)
Eric Christopher820256b2009-08-21 04:06:45 +0000732 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer54abdcf2007-02-27 18:23:40 +0000733 APInt(width, mantissa >> (52 - exp));
734
735 // If the client didn't provide enough bits for us to shift the mantissa into
736 // then the result is undefined, just return 0
737 if (width <= exp - 52)
738 return APInt(width, 0);
Reid Spencer974551a2007-02-27 01:28:10 +0000739
740 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer54abdcf2007-02-27 18:23:40 +0000741 APInt Tmp(width, mantissa);
Craig Topper24e71012017-04-28 03:36:24 +0000742 Tmp <<= (unsigned)exp - 52;
Zhou Shengd707d632007-02-12 20:02:55 +0000743 return isNeg ? -Tmp : Tmp;
744}
745
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000746/// This function converts this APInt to a double.
Zhou Shengd707d632007-02-12 20:02:55 +0000747/// The layout for double is as following (IEEE Standard 754):
748/// --------------------------------------
749/// | Sign Exponent Fraction Bias |
750/// |-------------------------------------- |
751/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher820256b2009-08-21 04:06:45 +0000752/// --------------------------------------
Reid Spencer1d072122007-02-16 22:36:51 +0000753double APInt::roundToDouble(bool isSigned) const {
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000754
755 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen54be7852009-08-12 18:04:11 +0000756 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000757 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
758 if (isSigned) {
David Majnemer03992262016-06-24 21:15:36 +0000759 int64_t sext = SignExtend64(getWord(0), BitWidth);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000760 return double(sext);
761 } else
Dale Johannesen34c08bb2009-08-12 17:42:34 +0000762 return double(getWord(0));
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000763 }
764
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000765 // Determine if the value is negative.
Reid Spencer1d072122007-02-16 22:36:51 +0000766 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000767
768 // Construct the absolute value if we're negative.
Zhou Shengd707d632007-02-12 20:02:55 +0000769 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000770
771 // Figure out how many bits we're using.
Chris Lattner77527f52009-01-21 18:09:24 +0000772 unsigned n = Tmp.getActiveBits();
Zhou Shengd707d632007-02-12 20:02:55 +0000773
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000774 // The exponent (without bias normalization) is just the number of bits
775 // we are using. Note that the sign bit is gone since we constructed the
776 // absolute value.
777 uint64_t exp = n;
Zhou Shengd707d632007-02-12 20:02:55 +0000778
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000779 // Return infinity for exponent overflow
780 if (exp > 1023) {
781 if (!isSigned || !isNeg)
Jeff Cohene06855e2007-03-20 20:42:36 +0000782 return std::numeric_limits<double>::infinity();
Eric Christopher820256b2009-08-21 04:06:45 +0000783 else
Jeff Cohene06855e2007-03-20 20:42:36 +0000784 return -std::numeric_limits<double>::infinity();
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000785 }
786 exp += 1023; // Increment for 1023 bias
787
788 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
789 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd707d632007-02-12 20:02:55 +0000790 uint64_t mantissa;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000791 unsigned hiWord = whichWord(n-1);
792 if (hiWord == 0) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000793 mantissa = Tmp.U.pVal[0];
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000794 if (n > 52)
795 mantissa >>= n - 52; // shift down, we want the top 52 bits.
796 } else {
797 assert(hiWord > 0 && "huh?");
Craig Topperb339c6d2017-05-03 15:46:24 +0000798 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
799 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000800 mantissa = hibits | lobits;
801 }
802
Zhou Shengd707d632007-02-12 20:02:55 +0000803 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencerfbd48a52007-02-18 00:44:22 +0000804 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
JF Bastienc4986ce2018-09-08 03:55:25 +0000805 uint64_t I = sign | (exp << 52) | mantissa;
806 return bit_cast<double>(I);
Zhou Shengd707d632007-02-12 20:02:55 +0000807}
808
Reid Spencer1d072122007-02-16 22:36:51 +0000809// Truncate to new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000810APInt APInt::trunc(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000811 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner1ac3e252008-08-20 17:02:31 +0000812 assert(width && "Can't truncate to 0 bits");
Jay Foad583abbc2010-12-07 08:25:19 +0000813
814 if (width <= APINT_BITS_PER_WORD)
815 return APInt(width, getRawData()[0]);
816
817 APInt Result(getMemory(getNumWords(width)), width);
818
819 // Copy full words.
820 unsigned i;
821 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
Craig Topperb339c6d2017-05-03 15:46:24 +0000822 Result.U.pVal[i] = U.pVal[i];
Jay Foad583abbc2010-12-07 08:25:19 +0000823
824 // Truncate and copy any partial word.
825 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
826 if (bits != 0)
Craig Topperb339c6d2017-05-03 15:46:24 +0000827 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
Jay Foad583abbc2010-12-07 08:25:19 +0000828
829 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000830}
831
832// Sign extend to a new width.
Craig Topper1dec2812017-04-24 17:37:10 +0000833APInt APInt::sext(unsigned Width) const {
834 assert(Width > BitWidth && "Invalid APInt SignExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000835
Craig Topper1dec2812017-04-24 17:37:10 +0000836 if (Width <= APINT_BITS_PER_WORD)
Craig Topperb339c6d2017-05-03 15:46:24 +0000837 return APInt(Width, SignExtend64(U.VAL, BitWidth));
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000838
Craig Topper1dec2812017-04-24 17:37:10 +0000839 APInt Result(getMemory(getNumWords(Width)), Width);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000840
Craig Topper1dec2812017-04-24 17:37:10 +0000841 // Copy words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000842 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000843
Craig Topper1dec2812017-04-24 17:37:10 +0000844 // Sign extend the last word since there may be unused bits in the input.
Craig Topperb339c6d2017-05-03 15:46:24 +0000845 Result.U.pVal[getNumWords() - 1] =
846 SignExtend64(Result.U.pVal[getNumWords() - 1],
Craig Topper1dec2812017-04-24 17:37:10 +0000847 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
Jay Foad583abbc2010-12-07 08:25:19 +0000848
Craig Topper1dec2812017-04-24 17:37:10 +0000849 // Fill with sign bits.
Craig Topperb339c6d2017-05-03 15:46:24 +0000850 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
Craig Topper1dec2812017-04-24 17:37:10 +0000851 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
852 Result.clearUnusedBits();
Jay Foad583abbc2010-12-07 08:25:19 +0000853 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000854}
855
856// Zero extend to a new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000857APInt APInt::zext(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000858 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000859
860 if (width <= APINT_BITS_PER_WORD)
Craig Topperb339c6d2017-05-03 15:46:24 +0000861 return APInt(width, U.VAL);
Jay Foad583abbc2010-12-07 08:25:19 +0000862
863 APInt Result(getMemory(getNumWords(width)), width);
864
865 // Copy words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000866 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
Jay Foad583abbc2010-12-07 08:25:19 +0000867
868 // Zero remaining words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000869 std::memset(Result.U.pVal + getNumWords(), 0,
Craig Topper1dec2812017-04-24 17:37:10 +0000870 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
Jay Foad583abbc2010-12-07 08:25:19 +0000871
872 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000873}
874
Jay Foad583abbc2010-12-07 08:25:19 +0000875APInt APInt::zextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +0000876 if (BitWidth < width)
877 return zext(width);
878 if (BitWidth > width)
879 return trunc(width);
880 return *this;
881}
882
Jay Foad583abbc2010-12-07 08:25:19 +0000883APInt APInt::sextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +0000884 if (BitWidth < width)
885 return sext(width);
886 if (BitWidth > width)
887 return trunc(width);
888 return *this;
889}
890
Rafael Espindolabb893fe2012-01-27 23:33:07 +0000891APInt APInt::zextOrSelf(unsigned width) const {
892 if (BitWidth < width)
893 return zext(width);
894 return *this;
895}
896
897APInt APInt::sextOrSelf(unsigned width) const {
898 if (BitWidth < width)
899 return sext(width);
900 return *this;
901}
902
Zhou Shenge93db8f2007-02-09 07:48:24 +0000903/// Arithmetic right-shift this APInt by shiftAmt.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000904/// Arithmetic right-shift function.
Craig Topper8b373262017-04-24 17:18:47 +0000905void APInt::ashrInPlace(const APInt &shiftAmt) {
906 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +0000907}
908
909/// Arithmetic right-shift this APInt by shiftAmt.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000910/// Arithmetic right-shift function.
Craig Topper8b373262017-04-24 17:18:47 +0000911void APInt::ashrSlowCase(unsigned ShiftAmt) {
912 // Don't bother performing a no-op shift.
913 if (!ShiftAmt)
914 return;
Reid Spencer1825dd02007-03-02 22:39:11 +0000915
Craig Topper8b373262017-04-24 17:18:47 +0000916 // Save the original sign bit for later.
917 bool Negative = isNegative();
Reid Spencer522ca7c2007-02-25 01:56:07 +0000918
Hiroshi Inoue9ff23802018-04-09 04:37:53 +0000919 // WordShift is the inter-part shift; BitShift is intra-part shift.
Craig Topper8b373262017-04-24 17:18:47 +0000920 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
921 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000922
Craig Topper8b373262017-04-24 17:18:47 +0000923 unsigned WordsToMove = getNumWords() - WordShift;
924 if (WordsToMove != 0) {
925 // Sign extend the last word to fill in the unused bits.
Craig Topperb339c6d2017-05-03 15:46:24 +0000926 U.pVal[getNumWords() - 1] = SignExtend64(
927 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
Renato Golincc4a9122017-04-23 12:02:07 +0000928
Craig Topper8b373262017-04-24 17:18:47 +0000929 // Fastpath for moving by whole words.
930 if (BitShift == 0) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000931 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
Craig Topper8b373262017-04-24 17:18:47 +0000932 } else {
933 // Move the words containing significant bits.
934 for (unsigned i = 0; i != WordsToMove - 1; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000935 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
936 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
Renato Golincc4a9122017-04-23 12:02:07 +0000937
Craig Topper8b373262017-04-24 17:18:47 +0000938 // Handle the last word which has no high bits to copy.
Craig Topperb339c6d2017-05-03 15:46:24 +0000939 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
Craig Topper8b373262017-04-24 17:18:47 +0000940 // Sign extend one more time.
Craig Topperb339c6d2017-05-03 15:46:24 +0000941 U.pVal[WordsToMove - 1] =
942 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
Chris Lattnerdad2d092007-05-03 18:15:36 +0000943 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000944 }
945
Craig Topper8b373262017-04-24 17:18:47 +0000946 // Fill in the remainder based on the original sign.
Craig Topperb339c6d2017-05-03 15:46:24 +0000947 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
Craig Topper8b373262017-04-24 17:18:47 +0000948 WordShift * APINT_WORD_SIZE);
949 clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000950}
951
Zhou Shenge93db8f2007-02-09 07:48:24 +0000952/// Logical right-shift this APInt by shiftAmt.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000953/// Logical right-shift function.
Craig Topperfc947bc2017-04-18 17:14:21 +0000954void APInt::lshrInPlace(const APInt &shiftAmt) {
955 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +0000956}
957
958/// Logical right-shift this APInt by shiftAmt.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000959/// Logical right-shift function.
Craig Topperae8bd672017-04-18 19:13:27 +0000960void APInt::lshrSlowCase(unsigned ShiftAmt) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000961 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000962}
963
Zhou Shenge93db8f2007-02-09 07:48:24 +0000964/// Left-shift this APInt by shiftAmt.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000965/// Left-shift function.
Craig Topper24e71012017-04-28 03:36:24 +0000966APInt &APInt::operator<<=(const APInt &shiftAmt) {
Nick Lewycky030c4502009-01-19 17:42:33 +0000967 // It's undefined behavior in C to shift by BitWidth or greater.
Craig Topper24e71012017-04-28 03:36:24 +0000968 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
969 return *this;
Dan Gohman105c1d42008-02-29 01:40:47 +0000970}
971
Craig Toppera8a4f0d2017-04-18 04:39:48 +0000972void APInt::shlSlowCase(unsigned ShiftAmt) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000973 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
Craig Toppera8a4f0d2017-04-18 04:39:48 +0000974 clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000975}
976
Joey Gouly51c0ae52017-02-07 11:58:22 +0000977// Calculate the rotate amount modulo the bit width.
978static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
979 unsigned rotBitWidth = rotateAmt.getBitWidth();
980 APInt rot = rotateAmt;
981 if (rotBitWidth < BitWidth) {
982 // Extend the rotate APInt, so that the urem doesn't divide by 0.
983 // e.g. APInt(1, 32) would give APInt(1, 0).
984 rot = rotateAmt.zext(BitWidth);
985 }
986 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
987 return rot.getLimitedValue(BitWidth);
988}
989
Dan Gohman105c1d42008-02-29 01:40:47 +0000990APInt APInt::rotl(const APInt &rotateAmt) const {
Joey Gouly51c0ae52017-02-07 11:58:22 +0000991 return rotl(rotateModulo(BitWidth, rotateAmt));
Dan Gohman105c1d42008-02-29 01:40:47 +0000992}
993
Chris Lattner77527f52009-01-21 18:09:24 +0000994APInt APInt::rotl(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +0000995 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +0000996 if (rotateAmt == 0)
997 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +0000998 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +0000999}
1000
Dan Gohman105c1d42008-02-29 01:40:47 +00001001APInt APInt::rotr(const APInt &rotateAmt) const {
Joey Gouly51c0ae52017-02-07 11:58:22 +00001002 return rotr(rotateModulo(BitWidth, rotateAmt));
Dan Gohman105c1d42008-02-29 01:40:47 +00001003}
1004
Chris Lattner77527f52009-01-21 18:09:24 +00001005APInt APInt::rotr(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001006 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001007 if (rotateAmt == 0)
1008 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001009 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001010}
Reid Spencerd99feaf2007-03-01 05:39:56 +00001011
1012// Square Root - this method computes and returns the square root of "this".
1013// Three mechanisms are used for computation. For small values (<= 5 bits),
1014// a table lookup is done. This gets some performance for common cases. For
1015// values using less than 52 bits, the value is converted to double and then
1016// the libc sqrt function is called. The result is rounded and then converted
1017// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher820256b2009-08-21 04:06:45 +00001018// the Babylonian method for computing square roots is used.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001019APInt APInt::sqrt() const {
1020
1021 // Determine the magnitude of the value.
Chris Lattner77527f52009-01-21 18:09:24 +00001022 unsigned magnitude = getActiveBits();
Reid Spencerd99feaf2007-03-01 05:39:56 +00001023
1024 // Use a fast table for some small values. This also gets rid of some
1025 // rounding errors in libc sqrt for small values.
1026 if (magnitude <= 5) {
Reid Spencer2f6ad4d2007-03-01 17:47:31 +00001027 static const uint8_t results[32] = {
Reid Spencerc8841d22007-03-01 06:23:32 +00001028 /* 0 */ 0,
1029 /* 1- 2 */ 1, 1,
Eric Christopher820256b2009-08-21 04:06:45 +00001030 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerc8841d22007-03-01 06:23:32 +00001031 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1032 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1033 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1034 /* 31 */ 6
1035 };
Craig Topperb339c6d2017-05-03 15:46:24 +00001036 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
Reid Spencerd99feaf2007-03-01 05:39:56 +00001037 }
1038
1039 // If the magnitude of the value fits in less than 52 bits (the precision of
1040 // an IEEE double precision floating point value), then we can use the
1041 // libc sqrt function which will probably use a hardware sqrt computation.
1042 // This should be faster than the algorithm below.
Jeff Cohenb622c112007-03-05 00:00:42 +00001043 if (magnitude < 52) {
Eric Christopher820256b2009-08-21 04:06:45 +00001044 return APInt(BitWidth,
Craig Topperb339c6d2017-05-03 15:46:24 +00001045 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1046 : U.pVal[0])))));
Jeff Cohenb622c112007-03-05 00:00:42 +00001047 }
Reid Spencerd99feaf2007-03-01 05:39:56 +00001048
1049 // Okay, all the short cuts are exhausted. We must compute it. The following
1050 // is a classical Babylonian method for computing the square root. This code
Sanjay Patel4cb54e02014-09-11 15:41:01 +00001051 // was adapted to APInt from a wikipedia article on such computations.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001052 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher820256b2009-08-21 04:06:45 +00001053 // Calculate_an_integer_square_root.
Chris Lattner77527f52009-01-21 18:09:24 +00001054 unsigned nbits = BitWidth, i = 4;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001055 APInt testy(BitWidth, 16);
1056 APInt x_old(BitWidth, 1);
1057 APInt x_new(BitWidth, 0);
1058 APInt two(BitWidth, 2);
1059
1060 // Select a good starting value using binary logarithms.
Eric Christopher820256b2009-08-21 04:06:45 +00001061 for (;; i += 2, testy = testy.shl(2))
Reid Spencerd99feaf2007-03-01 05:39:56 +00001062 if (i >= nbits || this->ule(testy)) {
1063 x_old = x_old.shl(i / 2);
1064 break;
1065 }
1066
Eric Christopher820256b2009-08-21 04:06:45 +00001067 // Use the Babylonian method to arrive at the integer square root:
Reid Spencerd99feaf2007-03-01 05:39:56 +00001068 for (;;) {
1069 x_new = (this->udiv(x_old) + x_old).udiv(two);
1070 if (x_old.ule(x_new))
1071 break;
1072 x_old = x_new;
1073 }
1074
1075 // Make sure we return the closest approximation
Eric Christopher820256b2009-08-21 04:06:45 +00001076 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencercf817562007-03-02 04:21:55 +00001077 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher820256b2009-08-21 04:06:45 +00001078 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencercf817562007-03-02 04:21:55 +00001079 // floating point representation after 192 bits. There are no discrepancies
1080 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001081 APInt square(x_old * x_old);
1082 APInt nextSquare((x_old + 1) * (x_old +1));
1083 if (this->ult(square))
1084 return x_old;
David Blaikie54c94622011-12-01 20:58:30 +00001085 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1086 APInt midpoint((nextSquare - square).udiv(two));
1087 APInt offset(*this - square);
1088 if (offset.ult(midpoint))
1089 return x_old;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001090 return x_old + 1;
1091}
1092
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001093/// Computes the multiplicative inverse of this APInt for a given modulo. The
1094/// iterative extended Euclidean algorithm is used to solve for this value,
1095/// however we simplify it to speed up calculating only the inverse, and take
1096/// advantage of div+rem calculations. We also use some tricks to avoid copying
1097/// (potentially large) APInts around.
1098APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1099 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1100
1101 // Using the properties listed at the following web page (accessed 06/21/08):
1102 // http://www.numbertheory.org/php/euclid.html
1103 // (especially the properties numbered 3, 4 and 9) it can be proved that
1104 // BitWidth bits suffice for all the computations in the algorithm implemented
1105 // below. More precisely, this number of bits suffice if the multiplicative
1106 // inverse exists, but may not suffice for the general extended Euclidean
1107 // algorithm.
1108
1109 APInt r[2] = { modulo, *this };
1110 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1111 APInt q(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001112
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001113 unsigned i;
1114 for (i = 0; r[i^1] != 0; i ^= 1) {
1115 // An overview of the math without the confusing bit-flipping:
1116 // q = r[i-2] / r[i-1]
1117 // r[i] = r[i-2] % r[i-1]
1118 // t[i] = t[i-2] - t[i-1] * q
1119 udivrem(r[i], r[i^1], q, r[i]);
1120 t[i] -= t[i^1] * q;
1121 }
1122
1123 // If this APInt and the modulo are not coprime, there is no multiplicative
1124 // inverse, so return 0. We check this by looking at the next-to-last
1125 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1126 // algorithm.
1127 if (r[i] != 1)
1128 return APInt(BitWidth, 0);
1129
1130 // The next-to-last t is the multiplicative inverse. However, we are
Craig Topper3fbecad2017-05-11 17:57:43 +00001131 // interested in a positive inverse. Calculate a positive one from a negative
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001132 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00001133 // abs(t[i]) is known to be less than *this/2 (see the link above).
Craig Topperdbd62192017-05-11 18:40:53 +00001134 if (t[i].isNegative())
1135 t[i] += modulo;
1136
1137 return std::move(t[i]);
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001138}
1139
Jay Foadfe0c6482009-04-30 10:15:35 +00001140/// Calculate the magic numbers required to implement a signed integer division
1141/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1142/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1143/// Warren, Jr., chapter 10.
1144APInt::ms APInt::magic() const {
1145 const APInt& d = *this;
1146 unsigned p;
1147 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foadfe0c6482009-04-30 10:15:35 +00001148 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foadfe0c6482009-04-30 10:15:35 +00001149 struct ms mag;
Eric Christopher820256b2009-08-21 04:06:45 +00001150
Jay Foadfe0c6482009-04-30 10:15:35 +00001151 ad = d.abs();
1152 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1153 anc = t - 1 - t.urem(ad); // absolute value of nc
1154 p = d.getBitWidth() - 1; // initialize p
1155 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1156 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1157 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1158 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1159 do {
1160 p = p + 1;
1161 q1 = q1<<1; // update q1 = 2p/abs(nc)
1162 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1163 if (r1.uge(anc)) { // must be unsigned comparison
1164 q1 = q1 + 1;
1165 r1 = r1 - anc;
1166 }
1167 q2 = q2<<1; // update q2 = 2p/abs(d)
1168 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1169 if (r2.uge(ad)) { // must be unsigned comparison
1170 q2 = q2 + 1;
1171 r2 = r2 - ad;
1172 }
1173 delta = ad - r2;
Cameron Zwarich8731d0c2011-02-21 00:22:02 +00001174 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
Eric Christopher820256b2009-08-21 04:06:45 +00001175
Jay Foadfe0c6482009-04-30 10:15:35 +00001176 mag.m = q2 + 1;
1177 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1178 mag.s = p - d.getBitWidth(); // resulting shift
1179 return mag;
1180}
1181
1182/// Calculate the magic numbers required to implement an unsigned integer
1183/// division by a constant as a sequence of multiplies, adds and shifts.
1184/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1185/// S. Warren, Jr., chapter 10.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001186/// LeadingZeros can be used to simplify the calculation if the upper bits
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001187/// of the divided value are known zero.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001188APInt::mu APInt::magicu(unsigned LeadingZeros) const {
Jay Foadfe0c6482009-04-30 10:15:35 +00001189 const APInt& d = *this;
1190 unsigned p;
1191 APInt nc, delta, q1, r1, q2, r2;
1192 struct mu magu;
1193 magu.a = 0; // initialize "add" indicator
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001194 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
Jay Foadfe0c6482009-04-30 10:15:35 +00001195 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1196 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1197
Benjamin Kramer3aab6a82012-07-11 18:31:59 +00001198 nc = allOnes - (allOnes - d).urem(d);
Jay Foadfe0c6482009-04-30 10:15:35 +00001199 p = d.getBitWidth() - 1; // initialize p
1200 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1201 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1202 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1203 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1204 do {
1205 p = p + 1;
1206 if (r1.uge(nc - r1)) {
1207 q1 = q1 + q1 + 1; // update q1
1208 r1 = r1 + r1 - nc; // update r1
1209 }
1210 else {
1211 q1 = q1+q1; // update q1
1212 r1 = r1+r1; // update r1
1213 }
1214 if ((r2 + 1).uge(d - r2)) {
1215 if (q2.uge(signedMax)) magu.a = 1;
1216 q2 = q2+q2 + 1; // update q2
1217 r2 = r2+r2 + 1 - d; // update r2
1218 }
1219 else {
1220 if (q2.uge(signedMin)) magu.a = 1;
1221 q2 = q2+q2; // update q2
1222 r2 = r2+r2 + 1; // update r2
1223 }
1224 delta = d - 1 - r2;
1225 } while (p < d.getBitWidth()*2 &&
1226 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1227 magu.m = q2 + 1; // resulting magic number
1228 magu.s = p - d.getBitWidth(); // resulting shift
1229 return magu;
1230}
1231
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001232/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1233/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1234/// variables here have the same names as in the algorithm. Comments explain
1235/// the algorithm and any deviation from it.
Craig Topper6271bc72017-05-10 18:15:20 +00001236static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
Chris Lattner77527f52009-01-21 18:09:24 +00001237 unsigned m, unsigned n) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001238 assert(u && "Must provide dividend");
1239 assert(v && "Must provide divisor");
1240 assert(q && "Must provide quotient");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001241 assert(u != v && u != q && v != q && "Must use different memory");
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001242 assert(n>1 && "n must be > 1");
1243
Yaron Keren39fc5a62015-03-26 19:45:19 +00001244 // b denotes the base of the number system. In our case b is 2^32.
George Burgess IV381fc0e2016-08-25 01:05:08 +00001245 const uint64_t b = uint64_t(1) << 32;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001246
Craig Topper03106bb2017-11-24 20:29:04 +00001247// The DEBUG macros here tend to be spam in the debug output if you're not
1248// debugging this code. Disable them unless KNUTH_DEBUG is defined.
Tim Northoverb3766452018-08-06 11:43:11 +00001249#ifdef KNUTH_DEBUG
1250#define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1251#else
1252#define DEBUG_KNUTH(X) do {} while(false)
Craig Topper03106bb2017-11-24 20:29:04 +00001253#endif
1254
Tim Northoverb3766452018-08-06 11:43:11 +00001255 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1256 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1257 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1258 DEBUG_KNUTH(dbgs() << " by");
1259 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1260 DEBUG_KNUTH(dbgs() << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001261 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1262 // u and v by d. Note that we have taken Knuth's advice here to use a power
1263 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1264 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001265 // shift amount from the leading zeros. We are basically normalizing the u
1266 // and v so that its high bits are shifted to the top of v's range without
1267 // overflow. Note that this can require an extra word in u so that u must
1268 // be of length m+n+1.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001269 unsigned shift = countLeadingZeros(v[n-1]);
Craig Topper6271bc72017-05-10 18:15:20 +00001270 uint32_t v_carry = 0;
1271 uint32_t u_carry = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001272 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001273 for (unsigned i = 0; i < m+n; ++i) {
Craig Topper6271bc72017-05-10 18:15:20 +00001274 uint32_t u_tmp = u[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001275 u[i] = (u[i] << shift) | u_carry;
1276 u_carry = u_tmp;
Reid Spencer100502d2007-02-17 03:16:00 +00001277 }
Chris Lattner77527f52009-01-21 18:09:24 +00001278 for (unsigned i = 0; i < n; ++i) {
Craig Topper6271bc72017-05-10 18:15:20 +00001279 uint32_t v_tmp = v[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001280 v[i] = (v[i] << shift) | v_carry;
1281 v_carry = v_tmp;
1282 }
1283 }
1284 u[m+n] = u_carry;
Yaron Keren39fc5a62015-03-26 19:45:19 +00001285
Tim Northoverb3766452018-08-06 11:43:11 +00001286 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:");
1287 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1288 DEBUG_KNUTH(dbgs() << " by");
1289 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1290 DEBUG_KNUTH(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001291
1292 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1293 int j = m;
1294 do {
Tim Northoverb3766452018-08-06 11:43:11 +00001295 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001296 // D3. [Calculate q'.].
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001297 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1298 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1299 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
Craig Topper4b83b4d2017-05-13 00:35:30 +00001300 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001301 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher820256b2009-08-21 04:06:45 +00001302 // value qp is one too large, and it eliminates all cases where qp is two
1303 // too large.
Craig Topper2c9a7062017-05-13 07:14:17 +00001304 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
Tim Northoverb3766452018-08-06 11:43:11 +00001305 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencercb292e42007-02-23 01:57:13 +00001306 uint64_t qp = dividend / v[n-1];
1307 uint64_t rp = dividend % v[n-1];
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001308 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1309 qp--;
1310 rp += v[n-1];
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001311 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencera5e0d202007-02-24 03:58:46 +00001312 qp--;
Reid Spencercb292e42007-02-23 01:57:13 +00001313 }
Tim Northoverb3766452018-08-06 11:43:11 +00001314 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001315
Reid Spencercb292e42007-02-23 01:57:13 +00001316 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1317 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1318 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher820256b2009-08-21 04:06:45 +00001319 // a subtraction.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001320 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1321 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1322 // true value plus b**(n+1), namely as the b's complement of
1323 // the true value, and a "borrow" to the left should be remembered.
Pawel Bylica86ac4472015-04-24 07:38:39 +00001324 int64_t borrow = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001325 for (unsigned i = 0; i < n; ++i) {
Pawel Bylica86ac4472015-04-24 07:38:39 +00001326 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
Craig Topper2c9a7062017-05-13 07:14:17 +00001327 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1328 u[j+i] = Lo_32(subres);
1329 borrow = Hi_32(p) - Hi_32(subres);
Tim Northoverb3766452018-08-06 11:43:11 +00001330 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001331 << ", borrow = " << borrow << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001332 }
Pawel Bylica86ac4472015-04-24 07:38:39 +00001333 bool isNeg = u[j+n] < borrow;
Craig Topper2c9a7062017-05-13 07:14:17 +00001334 u[j+n] -= Lo_32(borrow);
Pawel Bylica86ac4472015-04-24 07:38:39 +00001335
Tim Northoverb3766452018-08-06 11:43:11 +00001336 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1337 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1338 DEBUG_KNUTH(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001339
Eric Christopher820256b2009-08-21 04:06:45 +00001340 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001341 // negative, go to step D6; otherwise go on to step D7.
Craig Topper2c9a7062017-05-13 07:14:17 +00001342 q[j] = Lo_32(qp);
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001343 if (isNeg) {
Eric Christopher820256b2009-08-21 04:06:45 +00001344 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001345 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher820256b2009-08-21 04:06:45 +00001346 // this possibility. Decrease q[j] by 1
Reid Spencercb292e42007-02-23 01:57:13 +00001347 q[j]--;
Eric Christopher820256b2009-08-21 04:06:45 +00001348 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1349 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencercb292e42007-02-23 01:57:13 +00001350 // since it cancels with the borrow that occurred in D4.
1351 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +00001352 for (unsigned i = 0; i < n; i++) {
Craig Topper6271bc72017-05-10 18:15:20 +00001353 uint32_t limit = std::min(u[j+i],v[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001354 u[j+i] += v[i] + carry;
Reid Spencera5e0d202007-02-24 03:58:46 +00001355 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001356 }
Reid Spencera5e0d202007-02-24 03:58:46 +00001357 u[j+n] += carry;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001358 }
Tim Northoverb3766452018-08-06 11:43:11 +00001359 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1360 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1361 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001362
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001363 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
Reid Spencercb292e42007-02-23 01:57:13 +00001364 } while (--j >= 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001365
Tim Northoverb3766452018-08-06 11:43:11 +00001366 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1367 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1368 DEBUG_KNUTH(dbgs() << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001369
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001370 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1371 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1372 // compute the remainder (urem uses this).
1373 if (r) {
1374 // The value d is expressed by the "shift" value above since we avoided
1375 // multiplication by d by using a shift left. So, all we have to do is
Simon Pilgrim0099beb2017-03-09 13:57:04 +00001376 // shift right here.
Reid Spencer468ad9112007-02-24 20:38:01 +00001377 if (shift) {
Craig Topper6271bc72017-05-10 18:15:20 +00001378 uint32_t carry = 0;
Tim Northoverb3766452018-08-06 11:43:11 +00001379 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
Reid Spencer468ad9112007-02-24 20:38:01 +00001380 for (int i = n-1; i >= 0; i--) {
1381 r[i] = (u[i] >> shift) | carry;
1382 carry = u[i] << (32 - shift);
Tim Northoverb3766452018-08-06 11:43:11 +00001383 DEBUG_KNUTH(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001384 }
1385 } else {
1386 for (int i = n-1; i >= 0; i--) {
1387 r[i] = u[i];
Tim Northoverb3766452018-08-06 11:43:11 +00001388 DEBUG_KNUTH(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001389 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001390 }
Tim Northoverb3766452018-08-06 11:43:11 +00001391 DEBUG_KNUTH(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001392 }
Tim Northoverb3766452018-08-06 11:43:11 +00001393 DEBUG_KNUTH(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001394}
1395
Craig Topper8885f932017-05-19 16:43:54 +00001396void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1397 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001398 assert(lhsWords >= rhsWords && "Fractional result");
1399
Eric Christopher820256b2009-08-21 04:06:45 +00001400 // First, compose the values into an array of 32-bit words instead of
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001401 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohman4a618822010-02-10 16:03:48 +00001402 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopher820256b2009-08-21 04:06:45 +00001403 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1404 // can't use 64-bit operands here because we don't have native results of
1405 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001406 // work on large-endian machines.
Chris Lattner77527f52009-01-21 18:09:24 +00001407 unsigned n = rhsWords * 2;
1408 unsigned m = (lhsWords * 2) - n;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001409
1410 // Allocate space for the temporary values we need either on the stack, if
1411 // it will fit, or on the heap if it won't.
Craig Topper6271bc72017-05-10 18:15:20 +00001412 uint32_t SPACE[128];
1413 uint32_t *U = nullptr;
1414 uint32_t *V = nullptr;
1415 uint32_t *Q = nullptr;
1416 uint32_t *R = nullptr;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001417 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1418 U = &SPACE[0];
1419 V = &SPACE[m+n+1];
1420 Q = &SPACE[(m+n+1) + n];
1421 if (Remainder)
1422 R = &SPACE[(m+n+1) + n + (m+n)];
1423 } else {
Craig Topper6271bc72017-05-10 18:15:20 +00001424 U = new uint32_t[m + n + 1];
1425 V = new uint32_t[n];
1426 Q = new uint32_t[m+n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001427 if (Remainder)
Craig Topper6271bc72017-05-10 18:15:20 +00001428 R = new uint32_t[n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001429 }
1430
1431 // Initialize the dividend
Craig Topper6271bc72017-05-10 18:15:20 +00001432 memset(U, 0, (m+n+1)*sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001433 for (unsigned i = 0; i < lhsWords; ++i) {
Craig Topper8885f932017-05-19 16:43:54 +00001434 uint64_t tmp = LHS[i];
Craig Topper6271bc72017-05-10 18:15:20 +00001435 U[i * 2] = Lo_32(tmp);
1436 U[i * 2 + 1] = Hi_32(tmp);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001437 }
1438 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1439
Reid Spencer522ca7c2007-02-25 01:56:07 +00001440 // Initialize the divisor
Craig Topper6271bc72017-05-10 18:15:20 +00001441 memset(V, 0, (n)*sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001442 for (unsigned i = 0; i < rhsWords; ++i) {
Craig Topper8885f932017-05-19 16:43:54 +00001443 uint64_t tmp = RHS[i];
Craig Topper6271bc72017-05-10 18:15:20 +00001444 V[i * 2] = Lo_32(tmp);
1445 V[i * 2 + 1] = Hi_32(tmp);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001446 }
1447
Reid Spencer522ca7c2007-02-25 01:56:07 +00001448 // initialize the quotient and remainder
Craig Topper6271bc72017-05-10 18:15:20 +00001449 memset(Q, 0, (m+n) * sizeof(uint32_t));
Reid Spencer522ca7c2007-02-25 01:56:07 +00001450 if (Remainder)
Craig Topper6271bc72017-05-10 18:15:20 +00001451 memset(R, 0, n * sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001452
Eric Christopher820256b2009-08-21 04:06:45 +00001453 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001454 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher820256b2009-08-21 04:06:45 +00001455 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001456 // contain any zero words or the Knuth algorithm fails.
1457 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1458 n--;
1459 m++;
1460 }
1461 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1462 m--;
1463
1464 // If we're left with only a single word for the divisor, Knuth doesn't work
1465 // so we implement the short division algorithm here. This is much simpler
1466 // and faster because we are certain that we can divide a 64-bit quantity
1467 // by a 32-bit quantity at hardware speed and short division is simply a
1468 // series of such operations. This is just like doing short division but we
1469 // are using base 2^32 instead of base 10.
1470 assert(n != 0 && "Divide by zero?");
1471 if (n == 1) {
Craig Topper6271bc72017-05-10 18:15:20 +00001472 uint32_t divisor = V[0];
1473 uint32_t remainder = 0;
Craig Topper6a1d0202017-05-15 22:01:03 +00001474 for (int i = m; i >= 0; i--) {
Craig Topper6271bc72017-05-10 18:15:20 +00001475 uint64_t partial_dividend = Make_64(remainder, U[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001476 if (partial_dividend == 0) {
1477 Q[i] = 0;
1478 remainder = 0;
1479 } else if (partial_dividend < divisor) {
1480 Q[i] = 0;
Craig Topper6271bc72017-05-10 18:15:20 +00001481 remainder = Lo_32(partial_dividend);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001482 } else if (partial_dividend == divisor) {
1483 Q[i] = 1;
1484 remainder = 0;
1485 } else {
Craig Topper6271bc72017-05-10 18:15:20 +00001486 Q[i] = Lo_32(partial_dividend / divisor);
1487 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001488 }
1489 }
1490 if (R)
1491 R[0] = remainder;
1492 } else {
1493 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1494 // case n > 1.
1495 KnuthDiv(U, V, Q, R, m, n);
1496 }
1497
1498 // If the caller wants the quotient
1499 if (Quotient) {
Craig Topper8885f932017-05-19 16:43:54 +00001500 for (unsigned i = 0; i < lhsWords; ++i)
1501 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001502 }
1503
1504 // If the caller wants the remainder
1505 if (Remainder) {
Craig Topper8885f932017-05-19 16:43:54 +00001506 for (unsigned i = 0; i < rhsWords; ++i)
1507 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001508 }
1509
1510 // Clean up the memory we allocated.
Reid Spencer522ca7c2007-02-25 01:56:07 +00001511 if (U != &SPACE[0]) {
1512 delete [] U;
1513 delete [] V;
1514 delete [] Q;
1515 delete [] R;
1516 }
Reid Spencer100502d2007-02-17 03:16:00 +00001517}
1518
Craig Topper8885f932017-05-19 16:43:54 +00001519APInt APInt::udiv(const APInt &RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001520 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001521
1522 // First, deal with the easy case
1523 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001524 assert(RHS.U.VAL != 0 && "Divide by zero?");
1525 return APInt(BitWidth, U.VAL / RHS.U.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001526 }
Reid Spencer39867762007-02-17 02:07:07 +00001527
Reid Spencer39867762007-02-17 02:07:07 +00001528 // Get some facts about the LHS and RHS number of bits and words
Craig Topper62de0392017-05-10 07:50:15 +00001529 unsigned lhsWords = getNumWords(getActiveBits());
Craig Topperb1a71ca2017-05-12 21:45:50 +00001530 unsigned rhsBits = RHS.getActiveBits();
1531 unsigned rhsWords = getNumWords(rhsBits);
1532 assert(rhsWords && "Divided by zero???");
Reid Spencer39867762007-02-17 02:07:07 +00001533
1534 // Deal with some degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001535 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +00001536 // 0 / X ===> 0
Eric Christopher820256b2009-08-21 04:06:45 +00001537 return APInt(BitWidth, 0);
Craig Topperb1a71ca2017-05-12 21:45:50 +00001538 if (rhsBits == 1)
1539 // X / 1 ===> X
1540 return *this;
Craig Topper24ae6952017-05-08 23:49:49 +00001541 if (lhsWords < rhsWords || this->ult(RHS))
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001542 // X / Y ===> 0, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001543 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001544 if (*this == RHS)
Reid Spencer58a6a432007-02-21 08:21:52 +00001545 // X / X ===> 1
1546 return APInt(BitWidth, 1);
Craig Topper06da0812017-05-12 18:18:57 +00001547 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
Reid Spencer39867762007-02-17 02:07:07 +00001548 // All high words are zero, just use native divide
Craig Topperb339c6d2017-05-03 15:46:24 +00001549 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001550
1551 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Craig Topper8885f932017-05-19 16:43:54 +00001552 APInt Quotient(BitWidth, 0); // to hold result.
1553 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1554 return Quotient;
1555}
1556
1557APInt APInt::udiv(uint64_t RHS) const {
1558 assert(RHS != 0 && "Divide by zero?");
1559
1560 // First, deal with the easy case
1561 if (isSingleWord())
1562 return APInt(BitWidth, U.VAL / RHS);
1563
1564 // Get some facts about the LHS words.
1565 unsigned lhsWords = getNumWords(getActiveBits());
1566
1567 // Deal with some degenerate cases
1568 if (!lhsWords)
1569 // 0 / X ===> 0
1570 return APInt(BitWidth, 0);
1571 if (RHS == 1)
1572 // X / 1 ===> X
1573 return *this;
1574 if (this->ult(RHS))
1575 // X / Y ===> 0, iff X < Y
1576 return APInt(BitWidth, 0);
1577 if (*this == RHS)
1578 // X / X ===> 1
1579 return APInt(BitWidth, 1);
1580 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1581 // All high words are zero, just use native divide
1582 return APInt(BitWidth, this->U.pVal[0] / RHS);
1583
1584 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1585 APInt Quotient(BitWidth, 0); // to hold result.
1586 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001587 return Quotient;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001588}
1589
Jakub Staszak6605c602013-02-20 00:17:42 +00001590APInt APInt::sdiv(const APInt &RHS) const {
1591 if (isNegative()) {
1592 if (RHS.isNegative())
1593 return (-(*this)).udiv(-RHS);
1594 return -((-(*this)).udiv(RHS));
1595 }
1596 if (RHS.isNegative())
1597 return -(this->udiv(-RHS));
1598 return this->udiv(RHS);
1599}
1600
Craig Topper8885f932017-05-19 16:43:54 +00001601APInt APInt::sdiv(int64_t RHS) const {
1602 if (isNegative()) {
1603 if (RHS < 0)
1604 return (-(*this)).udiv(-RHS);
1605 return -((-(*this)).udiv(RHS));
1606 }
1607 if (RHS < 0)
1608 return -(this->udiv(-RHS));
1609 return this->udiv(RHS);
1610}
1611
1612APInt APInt::urem(const APInt &RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001613 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001614 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001615 assert(RHS.U.VAL != 0 && "Remainder by zero?");
1616 return APInt(BitWidth, U.VAL % RHS.U.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001617 }
Reid Spencer39867762007-02-17 02:07:07 +00001618
Reid Spencer58a6a432007-02-21 08:21:52 +00001619 // Get some facts about the LHS
Craig Topper62de0392017-05-10 07:50:15 +00001620 unsigned lhsWords = getNumWords(getActiveBits());
Reid Spencer39867762007-02-17 02:07:07 +00001621
1622 // Get some facts about the RHS
Craig Topperb1a71ca2017-05-12 21:45:50 +00001623 unsigned rhsBits = RHS.getActiveBits();
1624 unsigned rhsWords = getNumWords(rhsBits);
Reid Spencer39867762007-02-17 02:07:07 +00001625 assert(rhsWords && "Performing remainder operation by zero ???");
1626
Reid Spencer39867762007-02-17 02:07:07 +00001627 // Check the degenerate cases
Craig Topper24ae6952017-05-08 23:49:49 +00001628 if (lhsWords == 0)
Reid Spencer58a6a432007-02-21 08:21:52 +00001629 // 0 % Y ===> 0
1630 return APInt(BitWidth, 0);
Craig Topperb1a71ca2017-05-12 21:45:50 +00001631 if (rhsBits == 1)
1632 // X % 1 ===> 0
1633 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001634 if (lhsWords < rhsWords || this->ult(RHS))
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001635 // X % Y ===> X, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001636 return *this;
Craig Topper24ae6952017-05-08 23:49:49 +00001637 if (*this == RHS)
Reid Spencer39867762007-02-17 02:07:07 +00001638 // X % X == 0;
Reid Spencer58a6a432007-02-21 08:21:52 +00001639 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001640 if (lhsWords == 1)
Reid Spencer39867762007-02-17 02:07:07 +00001641 // All high words are zero, just use native remainder
Craig Topperb339c6d2017-05-03 15:46:24 +00001642 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001643
Reid Spencer4c50b522007-05-13 23:44:59 +00001644 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Craig Topper8885f932017-05-19 16:43:54 +00001645 APInt Remainder(BitWidth, 0);
1646 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1647 return Remainder;
1648}
1649
1650uint64_t APInt::urem(uint64_t RHS) const {
1651 assert(RHS != 0 && "Remainder by zero?");
1652
1653 if (isSingleWord())
1654 return U.VAL % RHS;
1655
1656 // Get some facts about the LHS
1657 unsigned lhsWords = getNumWords(getActiveBits());
1658
1659 // Check the degenerate cases
1660 if (lhsWords == 0)
1661 // 0 % Y ===> 0
1662 return 0;
1663 if (RHS == 1)
1664 // X % 1 ===> 0
1665 return 0;
1666 if (this->ult(RHS))
1667 // X % Y ===> X, iff X < Y
1668 return getZExtValue();
1669 if (*this == RHS)
1670 // X % X == 0;
1671 return 0;
1672 if (lhsWords == 1)
1673 // All high words are zero, just use native remainder
1674 return U.pVal[0] % RHS;
1675
1676 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1677 uint64_t Remainder;
1678 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001679 return Remainder;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001680}
Reid Spencer100502d2007-02-17 03:16:00 +00001681
Jakub Staszak6605c602013-02-20 00:17:42 +00001682APInt APInt::srem(const APInt &RHS) const {
1683 if (isNegative()) {
1684 if (RHS.isNegative())
1685 return -((-(*this)).urem(-RHS));
1686 return -((-(*this)).urem(RHS));
1687 }
1688 if (RHS.isNegative())
1689 return this->urem(-RHS);
1690 return this->urem(RHS);
1691}
1692
Craig Topper8885f932017-05-19 16:43:54 +00001693int64_t APInt::srem(int64_t RHS) const {
1694 if (isNegative()) {
1695 if (RHS < 0)
1696 return -((-(*this)).urem(-RHS));
1697 return -((-(*this)).urem(RHS));
1698 }
1699 if (RHS < 0)
1700 return this->urem(-RHS);
1701 return this->urem(RHS);
1702}
1703
Eric Christopher820256b2009-08-21 04:06:45 +00001704void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer4c50b522007-05-13 23:44:59 +00001705 APInt &Quotient, APInt &Remainder) {
David Majnemer7f039202014-12-14 09:41:56 +00001706 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper2579c7c2017-05-12 21:45:44 +00001707 unsigned BitWidth = LHS.BitWidth;
David Majnemer7f039202014-12-14 09:41:56 +00001708
1709 // First, deal with the easy case
1710 if (LHS.isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001711 assert(RHS.U.VAL != 0 && "Divide by zero?");
1712 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1713 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
Craig Topper2579c7c2017-05-12 21:45:44 +00001714 Quotient = APInt(BitWidth, QuotVal);
1715 Remainder = APInt(BitWidth, RemVal);
David Majnemer7f039202014-12-14 09:41:56 +00001716 return;
1717 }
1718
Reid Spencer4c50b522007-05-13 23:44:59 +00001719 // Get some size facts about the dividend and divisor
Craig Topper62de0392017-05-10 07:50:15 +00001720 unsigned lhsWords = getNumWords(LHS.getActiveBits());
Craig Topperb1a71ca2017-05-12 21:45:50 +00001721 unsigned rhsBits = RHS.getActiveBits();
1722 unsigned rhsWords = getNumWords(rhsBits);
Craig Topper4bdd6212017-05-12 18:19:01 +00001723 assert(rhsWords && "Performing divrem operation by zero ???");
Reid Spencer4c50b522007-05-13 23:44:59 +00001724
1725 // Check the degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001726 if (lhsWords == 0) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001727 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1728 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0
Reid Spencer4c50b522007-05-13 23:44:59 +00001729 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001730 }
1731
Craig Topperb1a71ca2017-05-12 21:45:50 +00001732 if (rhsBits == 1) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001733 Quotient = LHS; // X / 1 ===> X
1734 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0
Craig Topperb1a71ca2017-05-12 21:45:50 +00001735 }
1736
Eric Christopher820256b2009-08-21 04:06:45 +00001737 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001738 Remainder = LHS; // X % Y ===> X, iff X < Y
1739 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
Reid Spencer4c50b522007-05-13 23:44:59 +00001740 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001741 }
1742
Reid Spencer4c50b522007-05-13 23:44:59 +00001743 if (LHS == RHS) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001744 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1745 Remainder = APInt(BitWidth, 0); // X % X ===> 0;
Reid Spencer4c50b522007-05-13 23:44:59 +00001746 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001747 }
1748
Craig Topper8885f932017-05-19 16:43:54 +00001749 // Make sure there is enough space to hold the results.
1750 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1751 // change the size. This is necessary if Quotient or Remainder is aliased
1752 // with LHS or RHS.
1753 Quotient.reallocate(BitWidth);
1754 Remainder.reallocate(BitWidth);
1755
Craig Topper06da0812017-05-12 18:18:57 +00001756 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
Reid Spencer4c50b522007-05-13 23:44:59 +00001757 // There is only one word to consider so use the native versions.
Craig Topper93eabae2017-05-10 18:15:14 +00001758 uint64_t lhsValue = LHS.U.pVal[0];
1759 uint64_t rhsValue = RHS.U.pVal[0];
Craig Topper87694032017-05-12 07:21:09 +00001760 Quotient = lhsValue / rhsValue;
1761 Remainder = lhsValue % rhsValue;
Reid Spencer4c50b522007-05-13 23:44:59 +00001762 return;
1763 }
1764
1765 // Okay, lets do it the long way
Craig Topper8885f932017-05-19 16:43:54 +00001766 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1767 Remainder.U.pVal);
1768 // Clear the rest of the Quotient and Remainder.
1769 std::memset(Quotient.U.pVal + lhsWords, 0,
1770 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1771 std::memset(Remainder.U.pVal + rhsWords, 0,
1772 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1773}
1774
1775void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1776 uint64_t &Remainder) {
1777 assert(RHS != 0 && "Divide by zero?");
1778 unsigned BitWidth = LHS.BitWidth;
1779
1780 // First, deal with the easy case
1781 if (LHS.isSingleWord()) {
1782 uint64_t QuotVal = LHS.U.VAL / RHS;
1783 Remainder = LHS.U.VAL % RHS;
1784 Quotient = APInt(BitWidth, QuotVal);
1785 return;
1786 }
1787
1788 // Get some size facts about the dividend and divisor
1789 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1790
1791 // Check the degenerate cases
1792 if (lhsWords == 0) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001793 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1794 Remainder = 0; // 0 % Y ===> 0
Craig Topper8885f932017-05-19 16:43:54 +00001795 return;
1796 }
1797
1798 if (RHS == 1) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001799 Quotient = LHS; // X / 1 ===> X
1800 Remainder = 0; // X % 1 ===> 0
1801 return;
Craig Topper8885f932017-05-19 16:43:54 +00001802 }
1803
1804 if (LHS.ult(RHS)) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001805 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1806 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
Craig Topper8885f932017-05-19 16:43:54 +00001807 return;
1808 }
1809
1810 if (LHS == RHS) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001811 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1812 Remainder = 0; // X % X ===> 0;
Craig Topper8885f932017-05-19 16:43:54 +00001813 return;
1814 }
1815
1816 // Make sure there is enough space to hold the results.
1817 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1818 // change the size. This is necessary if Quotient is aliased with LHS.
1819 Quotient.reallocate(BitWidth);
1820
1821 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1822 // There is only one word to consider so use the native versions.
1823 uint64_t lhsValue = LHS.U.pVal[0];
1824 Quotient = lhsValue / RHS;
1825 Remainder = lhsValue % RHS;
1826 return;
1827 }
1828
1829 // Okay, lets do it the long way
1830 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1831 // Clear the rest of the Quotient.
1832 std::memset(Quotient.U.pVal + lhsWords, 0,
1833 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
Reid Spencer4c50b522007-05-13 23:44:59 +00001834}
1835
Jakub Staszak6605c602013-02-20 00:17:42 +00001836void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1837 APInt &Quotient, APInt &Remainder) {
1838 if (LHS.isNegative()) {
1839 if (RHS.isNegative())
1840 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1841 else {
1842 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
Craig Topperb3c1f562017-05-11 07:02:04 +00001843 Quotient.negate();
Jakub Staszak6605c602013-02-20 00:17:42 +00001844 }
Craig Topperb3c1f562017-05-11 07:02:04 +00001845 Remainder.negate();
Jakub Staszak6605c602013-02-20 00:17:42 +00001846 } else if (RHS.isNegative()) {
1847 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
Craig Topperb3c1f562017-05-11 07:02:04 +00001848 Quotient.negate();
Jakub Staszak6605c602013-02-20 00:17:42 +00001849 } else {
1850 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1851 }
1852}
1853
Craig Topper8885f932017-05-19 16:43:54 +00001854void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1855 APInt &Quotient, int64_t &Remainder) {
1856 uint64_t R = Remainder;
1857 if (LHS.isNegative()) {
1858 if (RHS < 0)
1859 APInt::udivrem(-LHS, -RHS, Quotient, R);
1860 else {
1861 APInt::udivrem(-LHS, RHS, Quotient, R);
1862 Quotient.negate();
1863 }
1864 R = -R;
1865 } else if (RHS < 0) {
1866 APInt::udivrem(LHS, -RHS, Quotient, R);
1867 Quotient.negate();
1868 } else {
1869 APInt::udivrem(LHS, RHS, Quotient, R);
1870 }
1871 Remainder = R;
1872}
1873
Chris Lattner2c819b02010-10-13 23:54:10 +00001874APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001875 APInt Res = *this+RHS;
1876 Overflow = isNonNegative() == RHS.isNonNegative() &&
1877 Res.isNonNegative() != isNonNegative();
1878 return Res;
1879}
1880
Chris Lattner698661c2010-10-14 00:05:07 +00001881APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1882 APInt Res = *this+RHS;
1883 Overflow = Res.ult(RHS);
1884 return Res;
1885}
1886
Chris Lattner2c819b02010-10-13 23:54:10 +00001887APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001888 APInt Res = *this - RHS;
1889 Overflow = isNonNegative() != RHS.isNonNegative() &&
1890 Res.isNonNegative() != isNonNegative();
1891 return Res;
1892}
1893
Chris Lattner698661c2010-10-14 00:05:07 +00001894APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerb9681ad2010-10-14 00:30:00 +00001895 APInt Res = *this-RHS;
1896 Overflow = Res.ugt(*this);
Chris Lattner698661c2010-10-14 00:05:07 +00001897 return Res;
1898}
1899
Chris Lattner2c819b02010-10-13 23:54:10 +00001900APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001901 // MININT/-1 --> overflow.
1902 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1903 return sdiv(RHS);
1904}
1905
Chris Lattner2c819b02010-10-13 23:54:10 +00001906APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001907 APInt Res = *this * RHS;
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001908
Chris Lattner79bdd882010-10-13 23:46:33 +00001909 if (*this != 0 && RHS != 0)
1910 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1911 else
1912 Overflow = false;
1913 return Res;
1914}
1915
Frits van Bommel0bb2ad22011-03-27 14:26:13 +00001916APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
Fangrui Songacc76412019-04-19 02:06:06 +00001917 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1918 Overflow = true;
1919 return *this * RHS;
1920 }
Frits van Bommel0bb2ad22011-03-27 14:26:13 +00001921
Fangrui Songacc76412019-04-19 02:06:06 +00001922 APInt Res = lshr(1) * RHS;
1923 Overflow = Res.isNegative();
1924 Res <<= 1;
1925 if ((*this)[0]) {
1926 Res += RHS;
1927 if (Res.ult(RHS))
1928 Overflow = true;
1929 }
Frits van Bommel0bb2ad22011-03-27 14:26:13 +00001930 return Res;
1931}
1932
David Majnemera2521382014-10-13 21:48:30 +00001933APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1934 Overflow = ShAmt.uge(getBitWidth());
Chris Lattner79bdd882010-10-13 23:46:33 +00001935 if (Overflow)
David Majnemera2521382014-10-13 21:48:30 +00001936 return APInt(BitWidth, 0);
Chris Lattner79bdd882010-10-13 23:46:33 +00001937
1938 if (isNonNegative()) // Don't allow sign change.
David Majnemera2521382014-10-13 21:48:30 +00001939 Overflow = ShAmt.uge(countLeadingZeros());
Chris Lattner79bdd882010-10-13 23:46:33 +00001940 else
David Majnemera2521382014-10-13 21:48:30 +00001941 Overflow = ShAmt.uge(countLeadingOnes());
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001942
Chris Lattner79bdd882010-10-13 23:46:33 +00001943 return *this << ShAmt;
1944}
1945
David Majnemera2521382014-10-13 21:48:30 +00001946APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1947 Overflow = ShAmt.uge(getBitWidth());
1948 if (Overflow)
1949 return APInt(BitWidth, 0);
1950
1951 Overflow = ShAmt.ugt(countLeadingZeros());
1952
1953 return *this << ShAmt;
1954}
1955
Sanjay Patel7ef0b312018-11-20 16:47:59 +00001956APInt APInt::sadd_sat(const APInt &RHS) const {
1957 bool Overflow;
1958 APInt Res = sadd_ov(RHS, Overflow);
1959 if (!Overflow)
1960 return Res;
Chris Lattner79bdd882010-10-13 23:46:33 +00001961
Sanjay Patel7ef0b312018-11-20 16:47:59 +00001962 return isNegative() ? APInt::getSignedMinValue(BitWidth)
1963 : APInt::getSignedMaxValue(BitWidth);
1964}
1965
1966APInt APInt::uadd_sat(const APInt &RHS) const {
1967 bool Overflow;
1968 APInt Res = uadd_ov(RHS, Overflow);
1969 if (!Overflow)
1970 return Res;
1971
1972 return APInt::getMaxValue(BitWidth);
1973}
1974
1975APInt APInt::ssub_sat(const APInt &RHS) const {
1976 bool Overflow;
1977 APInt Res = ssub_ov(RHS, Overflow);
1978 if (!Overflow)
1979 return Res;
1980
1981 return isNegative() ? APInt::getSignedMinValue(BitWidth)
1982 : APInt::getSignedMaxValue(BitWidth);
1983}
1984
1985APInt APInt::usub_sat(const APInt &RHS) const {
1986 bool Overflow;
1987 APInt Res = usub_ov(RHS, Overflow);
1988 if (!Overflow)
1989 return Res;
1990
1991 return APInt(BitWidth, 0);
1992}
Chris Lattner79bdd882010-10-13 23:46:33 +00001993
1994
Benjamin Kramer92d89982010-07-14 22:38:02 +00001995void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
Reid Spencer1ba83352007-02-21 03:55:44 +00001996 // Check our assumptions here
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00001997 assert(!str.empty() && "Invalid string length");
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001998 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +00001999 radix == 36) &&
2000 "Radix should be 2, 8, 10, 16, or 36!");
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002001
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002002 StringRef::iterator p = str.begin();
2003 size_t slen = str.size();
2004 bool isNeg = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002005 if (*p == '-' || *p == '+') {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002006 p++;
2007 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +00002008 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002009 }
Chris Lattnerdad2d092007-05-03 18:15:36 +00002010 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002011 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2012 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002013 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2014 "Insufficient bit width");
Reid Spencer1ba83352007-02-21 03:55:44 +00002015
Craig Topperb339c6d2017-05-03 15:46:24 +00002016 // Allocate memory if needed
2017 if (isSingleWord())
2018 U.VAL = 0;
2019 else
2020 U.pVal = getClearedMemory(getNumWords());
Reid Spencer1ba83352007-02-21 03:55:44 +00002021
2022 // Figure out if we can shift instead of multiply
Chris Lattner77527f52009-01-21 18:09:24 +00002023 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer1ba83352007-02-21 03:55:44 +00002024
Reid Spencer1ba83352007-02-21 03:55:44 +00002025 // Enter digit traversal loop
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002026 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaardadb15712009-08-21 03:15:28 +00002027 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar60964092009-08-21 06:48:37 +00002028 assert(digit < radix && "Invalid character in digit string");
Reid Spencer1ba83352007-02-21 03:55:44 +00002029
Reid Spencera93c9812007-05-16 19:18:22 +00002030 // Shift or multiply the value by the radix
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002031 if (slen > 1) {
2032 if (shift)
2033 *this <<= shift;
2034 else
Craig Topperf15bec52017-05-08 04:55:12 +00002035 *this *= radix;
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002036 }
Reid Spencer1ba83352007-02-21 03:55:44 +00002037
2038 // Add in the digit we just interpreted
Craig Topperb7d8faa2017-04-02 06:59:38 +00002039 *this += digit;
Reid Spencer100502d2007-02-17 03:16:00 +00002040 }
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002041 // If its negative, put it in two's complement form
Craig Topperef0114c2017-05-10 20:01:38 +00002042 if (isNeg)
2043 this->negate();
Reid Spencer100502d2007-02-17 03:16:00 +00002044}
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002045
Chris Lattner17f71652008-08-17 07:19:36 +00002046void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002047 bool Signed, bool formatAsCLiteral) const {
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00002048 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +00002049 Radix == 36) &&
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002050 "Radix should be 2, 8, 10, 16, or 36!");
Eric Christopher820256b2009-08-21 04:06:45 +00002051
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002052 const char *Prefix = "";
2053 if (formatAsCLiteral) {
2054 switch (Radix) {
2055 case 2:
2056 // Binary literals are a non-standard extension added in gcc 4.3:
2057 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2058 Prefix = "0b";
2059 break;
2060 case 8:
2061 Prefix = "0";
2062 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002063 case 10:
2064 break; // No prefix
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002065 case 16:
2066 Prefix = "0x";
2067 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002068 default:
2069 llvm_unreachable("Invalid radix!");
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002070 }
2071 }
2072
Chris Lattner17f71652008-08-17 07:19:36 +00002073 // First, check for a zero value and just short circuit the logic below.
2074 if (*this == 0) {
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002075 while (*Prefix) {
2076 Str.push_back(*Prefix);
2077 ++Prefix;
2078 };
Chris Lattner17f71652008-08-17 07:19:36 +00002079 Str.push_back('0');
2080 return;
2081 }
Eric Christopher820256b2009-08-21 04:06:45 +00002082
Douglas Gregor663c0682011-09-14 15:54:46 +00002083 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
Eric Christopher820256b2009-08-21 04:06:45 +00002084
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002085 if (isSingleWord()) {
Chris Lattner17f71652008-08-17 07:19:36 +00002086 char Buffer[65];
Craig Toppere6a23182017-05-24 07:00:55 +00002087 char *BufPtr = std::end(Buffer);
Eric Christopher820256b2009-08-21 04:06:45 +00002088
Chris Lattner17f71652008-08-17 07:19:36 +00002089 uint64_t N;
Chris Lattnerb91c9032010-08-18 00:33:47 +00002090 if (!Signed) {
Chris Lattner17f71652008-08-17 07:19:36 +00002091 N = getZExtValue();
Chris Lattnerb91c9032010-08-18 00:33:47 +00002092 } else {
2093 int64_t I = getSExtValue();
2094 if (I >= 0) {
2095 N = I;
2096 } else {
2097 Str.push_back('-');
2098 N = -(uint64_t)I;
2099 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002100 }
Eric Christopher820256b2009-08-21 04:06:45 +00002101
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002102 while (*Prefix) {
2103 Str.push_back(*Prefix);
2104 ++Prefix;
2105 };
2106
Chris Lattner17f71652008-08-17 07:19:36 +00002107 while (N) {
2108 *--BufPtr = Digits[N % Radix];
2109 N /= Radix;
2110 }
Craig Toppere6a23182017-05-24 07:00:55 +00002111 Str.append(BufPtr, std::end(Buffer));
Chris Lattner17f71652008-08-17 07:19:36 +00002112 return;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002113 }
2114
Chris Lattner17f71652008-08-17 07:19:36 +00002115 APInt Tmp(*this);
Eric Christopher820256b2009-08-21 04:06:45 +00002116
Chris Lattner17f71652008-08-17 07:19:36 +00002117 if (Signed && isNegative()) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002118 // They want to print the signed version and it is a negative value
2119 // Flip the bits and add one to turn it into the equivalent positive
2120 // value and put a '-' in the result.
Craig Topperef0114c2017-05-10 20:01:38 +00002121 Tmp.negate();
Chris Lattner17f71652008-08-17 07:19:36 +00002122 Str.push_back('-');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002123 }
Eric Christopher820256b2009-08-21 04:06:45 +00002124
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002125 while (*Prefix) {
2126 Str.push_back(*Prefix);
2127 ++Prefix;
2128 };
2129
Chris Lattner17f71652008-08-17 07:19:36 +00002130 // We insert the digits backward, then reverse them to get the right order.
2131 unsigned StartDig = Str.size();
Eric Christopher820256b2009-08-21 04:06:45 +00002132
2133 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2134 // because the number of bits per digit (1, 3 and 4 respectively) divides
Craig Topperd7ed50d2017-04-02 06:59:36 +00002135 // equally. We just shift until the value is zero.
Douglas Gregor663c0682011-09-14 15:54:46 +00002136 if (Radix == 2 || Radix == 8 || Radix == 16) {
Chris Lattner17f71652008-08-17 07:19:36 +00002137 // Just shift tmp right for each digit width until it becomes zero
2138 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2139 unsigned MaskAmt = Radix - 1;
Eric Christopher820256b2009-08-21 04:06:45 +00002140
Craig Topperecb97da2017-05-10 18:15:24 +00002141 while (Tmp.getBoolValue()) {
Chris Lattner17f71652008-08-17 07:19:36 +00002142 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2143 Str.push_back(Digits[Digit]);
Craig Topperfc947bc2017-04-18 17:14:21 +00002144 Tmp.lshrInPlace(ShiftAmt);
Chris Lattner17f71652008-08-17 07:19:36 +00002145 }
2146 } else {
Craig Topperecb97da2017-05-10 18:15:24 +00002147 while (Tmp.getBoolValue()) {
Craig Topper8885f932017-05-19 16:43:54 +00002148 uint64_t Digit;
2149 udivrem(Tmp, Radix, Tmp, Digit);
Chris Lattner17f71652008-08-17 07:19:36 +00002150 assert(Digit < Radix && "divide failed");
2151 Str.push_back(Digits[Digit]);
Chris Lattner17f71652008-08-17 07:19:36 +00002152 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002153 }
Eric Christopher820256b2009-08-21 04:06:45 +00002154
Chris Lattner17f71652008-08-17 07:19:36 +00002155 // Reverse the digits before returning.
2156 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002157}
2158
Pawel Bylica6eeeac72015-04-06 13:31:39 +00002159/// Returns the APInt as a std::string. Note that this is an inefficient method.
2160/// It is better to pass in a SmallVector/SmallString to the methods above.
Chris Lattner17f71652008-08-17 07:19:36 +00002161std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2162 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002163 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
Daniel Dunbar8b0b1152009-08-19 20:07:03 +00002164 return S.str();
Reid Spencer1ba83352007-02-21 03:55:44 +00002165}
Chris Lattner6b695682007-08-16 15:56:55 +00002166
Aaron Ballman615eb472017-10-15 14:32:27 +00002167#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Yaron Kereneb2a2542016-01-29 20:50:44 +00002168LLVM_DUMP_METHOD void APInt::dump() const {
Chris Lattner17f71652008-08-17 07:19:36 +00002169 SmallString<40> S, U;
2170 this->toStringUnsigned(U);
2171 this->toStringSigned(S);
David Greenef32fcb42010-01-05 01:28:52 +00002172 dbgs() << "APInt(" << BitWidth << "b, "
Davide Italiano5a473d22017-01-31 21:26:18 +00002173 << U << "u " << S << "s)\n";
Chris Lattner17f71652008-08-17 07:19:36 +00002174}
Matthias Braun8c209aa2017-01-28 02:02:38 +00002175#endif
Chris Lattner17f71652008-08-17 07:19:36 +00002176
Chris Lattner0c19df42008-08-23 22:23:09 +00002177void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner17f71652008-08-17 07:19:36 +00002178 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002179 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
Yaron Keren92e1b622015-03-18 10:17:07 +00002180 OS << S;
Chris Lattner17f71652008-08-17 07:19:36 +00002181}
2182
Chris Lattner6b695682007-08-16 15:56:55 +00002183// This implements a variety of operations on a representation of
2184// arbitrary precision, two's-complement, bignum integer values.
2185
Chris Lattner96cffa62009-08-23 23:11:28 +00002186// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2187// and unrestricting assumption.
Craig Topper55229b72017-04-02 19:17:22 +00002188static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2189 "Part width must be divisible by 2!");
Chris Lattner6b695682007-08-16 15:56:55 +00002190
2191/* Some handy functions local to this file. */
Chris Lattner6b695682007-08-16 15:56:55 +00002192
Craig Topper76f42462017-03-28 05:32:53 +00002193/* Returns the integer part with the least significant BITS set.
2194 BITS cannot be zero. */
Craig Topper55229b72017-04-02 19:17:22 +00002195static inline APInt::WordType lowBitMask(unsigned bits) {
2196 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002197
Craig Topper55229b72017-04-02 19:17:22 +00002198 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
Craig Topper76f42462017-03-28 05:32:53 +00002199}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002200
Craig Topper76f42462017-03-28 05:32:53 +00002201/* Returns the value of the lower half of PART. */
Craig Topper55229b72017-04-02 19:17:22 +00002202static inline APInt::WordType lowHalf(APInt::WordType part) {
2203 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
Craig Topper76f42462017-03-28 05:32:53 +00002204}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002205
Craig Topper76f42462017-03-28 05:32:53 +00002206/* Returns the value of the upper half of PART. */
Craig Topper55229b72017-04-02 19:17:22 +00002207static inline APInt::WordType highHalf(APInt::WordType part) {
2208 return part >> (APInt::APINT_BITS_PER_WORD / 2);
Craig Topper76f42462017-03-28 05:32:53 +00002209}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002210
Craig Topper76f42462017-03-28 05:32:53 +00002211/* Returns the bit number of the most significant set bit of a part.
2212 If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002213static unsigned partMSB(APInt::WordType value) {
Craig Topper76f42462017-03-28 05:32:53 +00002214 return findLastSet(value, ZB_Max);
2215}
Chris Lattner6b695682007-08-16 15:56:55 +00002216
Craig Topper76f42462017-03-28 05:32:53 +00002217/* Returns the bit number of the least significant set bit of a
2218 part. If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002219static unsigned partLSB(APInt::WordType value) {
Craig Topper76f42462017-03-28 05:32:53 +00002220 return findFirstSet(value, ZB_Max);
Alexander Kornienkof00654e2015-06-23 09:49:53 +00002221}
Chris Lattner6b695682007-08-16 15:56:55 +00002222
2223/* Sets the least significant part of a bignum to the input value, and
2224 zeroes out higher parts. */
Craig Topper55229b72017-04-02 19:17:22 +00002225void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002226 assert(parts > 0);
Neil Boothb6182162007-10-08 13:47:12 +00002227
Chris Lattner6b695682007-08-16 15:56:55 +00002228 dst[0] = part;
Craig Topperb0038162017-03-28 05:32:52 +00002229 for (unsigned i = 1; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002230 dst[i] = 0;
2231}
2232
2233/* Assign one bignum to another. */
Craig Topper55229b72017-04-02 19:17:22 +00002234void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002235 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002236 dst[i] = src[i];
2237}
2238
2239/* Returns true if a bignum is zero, false otherwise. */
Craig Topper55229b72017-04-02 19:17:22 +00002240bool APInt::tcIsZero(const WordType *src, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002241 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002242 if (src[i])
2243 return false;
2244
2245 return true;
2246}
2247
2248/* Extract the given bit of a bignum; returns 0 or 1. */
Craig Topper55229b72017-04-02 19:17:22 +00002249int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002250 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002251}
2252
John McCalldcb9a7a2010-02-28 02:51:25 +00002253/* Set the given bit of a bignum. */
Craig Topper55229b72017-04-02 19:17:22 +00002254void APInt::tcSetBit(WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002255 parts[whichWord(bit)] |= maskBit(bit);
Chris Lattner6b695682007-08-16 15:56:55 +00002256}
2257
John McCalldcb9a7a2010-02-28 02:51:25 +00002258/* Clears the given bit of a bignum. */
Craig Topper55229b72017-04-02 19:17:22 +00002259void APInt::tcClearBit(WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002260 parts[whichWord(bit)] &= ~maskBit(bit);
John McCalldcb9a7a2010-02-28 02:51:25 +00002261}
2262
Neil Boothc8b650a2007-10-06 00:43:45 +00002263/* Returns the bit number of the least significant set bit of a
2264 number. If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002265unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
Craig Topperb0038162017-03-28 05:32:52 +00002266 for (unsigned i = 0; i < n; i++) {
2267 if (parts[i] != 0) {
2268 unsigned lsb = partLSB(parts[i]);
Chris Lattner6b695682007-08-16 15:56:55 +00002269
Craig Topper55229b72017-04-02 19:17:22 +00002270 return lsb + i * APINT_BITS_PER_WORD;
Craig Topperb0038162017-03-28 05:32:52 +00002271 }
Chris Lattner6b695682007-08-16 15:56:55 +00002272 }
2273
2274 return -1U;
2275}
2276
Neil Boothc8b650a2007-10-06 00:43:45 +00002277/* Returns the bit number of the most significant set bit of a number.
2278 If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002279unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
Chris Lattner6b695682007-08-16 15:56:55 +00002280 do {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002281 --n;
Chris Lattner6b695682007-08-16 15:56:55 +00002282
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002283 if (parts[n] != 0) {
Craig Topperb0038162017-03-28 05:32:52 +00002284 unsigned msb = partMSB(parts[n]);
Chris Lattner6b695682007-08-16 15:56:55 +00002285
Craig Topper55229b72017-04-02 19:17:22 +00002286 return msb + n * APINT_BITS_PER_WORD;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002287 }
Chris Lattner6b695682007-08-16 15:56:55 +00002288 } while (n);
2289
2290 return -1U;
2291}
2292
Neil Boothb6182162007-10-08 13:47:12 +00002293/* Copy the bit vector of width srcBITS from SRC, starting at bit
2294 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2295 the least significant bit of DST. All high bits above srcBITS in
2296 DST are zero-filled. */
2297void
Craig Topper55229b72017-04-02 19:17:22 +00002298APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
Craig Topper6a8518082017-03-28 05:32:55 +00002299 unsigned srcBits, unsigned srcLSB) {
Craig Topper55229b72017-04-02 19:17:22 +00002300 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002301 assert(dstParts <= dstCount);
Neil Boothb6182162007-10-08 13:47:12 +00002302
Craig Topper55229b72017-04-02 19:17:22 +00002303 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
Neil Boothb6182162007-10-08 13:47:12 +00002304 tcAssign (dst, src + firstSrcPart, dstParts);
2305
Craig Topper55229b72017-04-02 19:17:22 +00002306 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
Neil Boothb6182162007-10-08 13:47:12 +00002307 tcShiftRight (dst, dstParts, shift);
2308
Craig Topper55229b72017-04-02 19:17:22 +00002309 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
Neil Boothb6182162007-10-08 13:47:12 +00002310 in DST. If this is less that srcBits, append the rest, else
2311 clear the high bits. */
Craig Topper55229b72017-04-02 19:17:22 +00002312 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
Neil Boothb6182162007-10-08 13:47:12 +00002313 if (n < srcBits) {
Craig Topper55229b72017-04-02 19:17:22 +00002314 WordType mask = lowBitMask (srcBits - n);
Neil Boothb6182162007-10-08 13:47:12 +00002315 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
Craig Topper55229b72017-04-02 19:17:22 +00002316 << n % APINT_BITS_PER_WORD);
Neil Boothb6182162007-10-08 13:47:12 +00002317 } else if (n > srcBits) {
Craig Topper55229b72017-04-02 19:17:22 +00002318 if (srcBits % APINT_BITS_PER_WORD)
2319 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
Neil Boothb6182162007-10-08 13:47:12 +00002320 }
2321
2322 /* Clear high parts. */
2323 while (dstParts < dstCount)
2324 dst[dstParts++] = 0;
2325}
2326
Chris Lattner6b695682007-08-16 15:56:55 +00002327/* DST += RHS + C where C is zero or one. Returns the carry flag. */
Craig Topper55229b72017-04-02 19:17:22 +00002328APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2329 WordType c, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002330 assert(c <= 1);
2331
Craig Topperb0038162017-03-28 05:32:52 +00002332 for (unsigned i = 0; i < parts; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002333 WordType l = dst[i];
Chris Lattner6b695682007-08-16 15:56:55 +00002334 if (c) {
2335 dst[i] += rhs[i] + 1;
2336 c = (dst[i] <= l);
2337 } else {
2338 dst[i] += rhs[i];
2339 c = (dst[i] < l);
2340 }
2341 }
2342
2343 return c;
2344}
2345
Craig Topper92fc4772017-04-13 04:36:06 +00002346/// This function adds a single "word" integer, src, to the multiple
2347/// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2348/// 1 is returned if there is a carry out, otherwise 0 is returned.
2349/// @returns the carry of the addition.
2350APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2351 unsigned parts) {
2352 for (unsigned i = 0; i < parts; ++i) {
2353 dst[i] += src;
2354 if (dst[i] >= src)
2355 return 0; // No need to carry so exit early.
2356 src = 1; // Carry one to next digit.
2357 }
2358
2359 return 1;
2360}
2361
Chris Lattner6b695682007-08-16 15:56:55 +00002362/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
Craig Topper55229b72017-04-02 19:17:22 +00002363APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2364 WordType c, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002365 assert(c <= 1);
2366
Craig Topperb0038162017-03-28 05:32:52 +00002367 for (unsigned i = 0; i < parts; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002368 WordType l = dst[i];
Chris Lattner6b695682007-08-16 15:56:55 +00002369 if (c) {
2370 dst[i] -= rhs[i] + 1;
2371 c = (dst[i] >= l);
2372 } else {
2373 dst[i] -= rhs[i];
2374 c = (dst[i] > l);
2375 }
2376 }
2377
2378 return c;
2379}
2380
Craig Topper92fc4772017-04-13 04:36:06 +00002381/// This function subtracts a single "word" (64-bit word), src, from
2382/// the multi-word integer array, dst[], propagating the borrowed 1 value until
2383/// no further borrowing is needed or it runs out of "words" in dst. The result
2384/// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2385/// exhausted. In other words, if src > dst then this function returns 1,
2386/// otherwise 0.
2387/// @returns the borrow out of the subtraction
2388APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2389 unsigned parts) {
2390 for (unsigned i = 0; i < parts; ++i) {
2391 WordType Dst = dst[i];
2392 dst[i] -= src;
2393 if (src <= Dst)
2394 return 0; // No need to borrow so exit early.
2395 src = 1; // We have to "borrow 1" from next "word"
2396 }
2397
2398 return 1;
2399}
2400
Chris Lattner6b695682007-08-16 15:56:55 +00002401/* Negate a bignum in-place. */
Craig Topper55229b72017-04-02 19:17:22 +00002402void APInt::tcNegate(WordType *dst, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002403 tcComplement(dst, parts);
2404 tcIncrement(dst, parts);
2405}
2406
Neil Boothc8b650a2007-10-06 00:43:45 +00002407/* DST += SRC * MULTIPLIER + CARRY if add is true
2408 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner6b695682007-08-16 15:56:55 +00002409
2410 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2411 they must start at the same point, i.e. DST == SRC.
2412
2413 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2414 returned. Otherwise DST is filled with the least significant
2415 DSTPARTS parts of the result, and if all of the omitted higher
2416 parts were zero return zero, otherwise overflow occurred and
2417 return one. */
Craig Topper55229b72017-04-02 19:17:22 +00002418int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2419 WordType multiplier, WordType carry,
Craig Topper6a8518082017-03-28 05:32:55 +00002420 unsigned srcParts, unsigned dstParts,
2421 bool add) {
Chris Lattner6b695682007-08-16 15:56:55 +00002422 /* Otherwise our writes of DST kill our later reads of SRC. */
2423 assert(dst <= src || dst >= src + srcParts);
2424 assert(dstParts <= srcParts + 1);
2425
2426 /* N loops; minimum of dstParts and srcParts. */
Craig Topper0cbab7c2017-05-08 06:34:39 +00002427 unsigned n = std::min(dstParts, srcParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002428
Craig Topperc96a84d2017-05-08 06:34:41 +00002429 for (unsigned i = 0; i < n; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002430 WordType low, mid, high, srcPart;
Chris Lattner6b695682007-08-16 15:56:55 +00002431
2432 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2433
2434 This cannot overflow, because
2435
2436 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2437
2438 which is less than n^2. */
2439
2440 srcPart = src[i];
2441
Craig Topper6a8518082017-03-28 05:32:55 +00002442 if (multiplier == 0 || srcPart == 0) {
Chris Lattner6b695682007-08-16 15:56:55 +00002443 low = carry;
2444 high = 0;
2445 } else {
2446 low = lowHalf(srcPart) * lowHalf(multiplier);
2447 high = highHalf(srcPart) * highHalf(multiplier);
2448
2449 mid = lowHalf(srcPart) * highHalf(multiplier);
2450 high += highHalf(mid);
Craig Topper55229b72017-04-02 19:17:22 +00002451 mid <<= APINT_BITS_PER_WORD / 2;
Chris Lattner6b695682007-08-16 15:56:55 +00002452 if (low + mid < low)
2453 high++;
2454 low += mid;
2455
2456 mid = highHalf(srcPart) * lowHalf(multiplier);
2457 high += highHalf(mid);
Craig Topper55229b72017-04-02 19:17:22 +00002458 mid <<= APINT_BITS_PER_WORD / 2;
Chris Lattner6b695682007-08-16 15:56:55 +00002459 if (low + mid < low)
2460 high++;
2461 low += mid;
2462
2463 /* Now add carry. */
2464 if (low + carry < low)
2465 high++;
2466 low += carry;
2467 }
2468
2469 if (add) {
2470 /* And now DST[i], and store the new low part there. */
2471 if (low + dst[i] < low)
2472 high++;
2473 dst[i] += low;
2474 } else
2475 dst[i] = low;
2476
2477 carry = high;
2478 }
2479
Craig Topperc96a84d2017-05-08 06:34:41 +00002480 if (srcParts < dstParts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002481 /* Full multiplication, there is no overflow. */
Craig Topperc96a84d2017-05-08 06:34:41 +00002482 assert(srcParts + 1 == dstParts);
2483 dst[srcParts] = carry;
Chris Lattner6b695682007-08-16 15:56:55 +00002484 return 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002485 }
Craig Toppera6c142a2017-05-08 06:34:36 +00002486
2487 /* We overflowed if there is carry. */
2488 if (carry)
2489 return 1;
2490
2491 /* We would overflow if any significant unwritten parts would be
2492 non-zero. This is true if any remaining src parts are non-zero
2493 and the multiplier is non-zero. */
2494 if (multiplier)
Craig Topperc96a84d2017-05-08 06:34:41 +00002495 for (unsigned i = dstParts; i < srcParts; i++)
Craig Toppera6c142a2017-05-08 06:34:36 +00002496 if (src[i])
2497 return 1;
2498
2499 /* We fitted in the narrow destination. */
2500 return 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002501}
2502
2503/* DST = LHS * RHS, where DST has the same width as the operands and
2504 is filled with the least significant parts of the result. Returns
2505 one if overflow occurred, otherwise zero. DST must be disjoint
2506 from both operands. */
Craig Topper55229b72017-04-02 19:17:22 +00002507int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2508 const WordType *rhs, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002509 assert(dst != lhs && dst != rhs);
2510
Craig Topperb0038162017-03-28 05:32:52 +00002511 int overflow = 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002512 tcSet(dst, 0, parts);
2513
Craig Topperb0038162017-03-28 05:32:52 +00002514 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002515 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2516 parts - i, true);
2517
2518 return overflow;
2519}
2520
Craig Topper0acb6652017-05-09 16:47:33 +00002521/// DST = LHS * RHS, where DST has width the sum of the widths of the
2522/// operands. No overflow occurs. DST must be disjoint from both operands.
2523void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2524 const WordType *rhs, unsigned lhsParts,
2525 unsigned rhsParts) {
Neil Booth0ea72a92007-10-06 00:24:48 +00002526 /* Put the narrower number on the LHS for less loops below. */
Craig Toppera6c142a2017-05-08 06:34:36 +00002527 if (lhsParts > rhsParts)
Neil Booth0ea72a92007-10-06 00:24:48 +00002528 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002529
Craig Toppera6c142a2017-05-08 06:34:36 +00002530 assert(dst != lhs && dst != rhs);
Chris Lattner6b695682007-08-16 15:56:55 +00002531
Craig Toppera6c142a2017-05-08 06:34:36 +00002532 tcSet(dst, 0, rhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002533
Craig Toppera6c142a2017-05-08 06:34:36 +00002534 for (unsigned i = 0; i < lhsParts; i++)
2535 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
Chris Lattner6b695682007-08-16 15:56:55 +00002536}
2537
2538/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2539 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2540 set REMAINDER to the remainder, return zero. i.e.
2541
2542 OLD_LHS = RHS * LHS + REMAINDER
2543
2544 SCRATCH is a bignum of the same size as the operands and result for
2545 use by the routine; its contents need not be initialized and are
2546 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2547*/
Craig Topper55229b72017-04-02 19:17:22 +00002548int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2549 WordType *remainder, WordType *srhs,
Craig Topper6a8518082017-03-28 05:32:55 +00002550 unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002551 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2552
Craig Topperb0038162017-03-28 05:32:52 +00002553 unsigned shiftCount = tcMSB(rhs, parts) + 1;
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002554 if (shiftCount == 0)
Chris Lattner6b695682007-08-16 15:56:55 +00002555 return true;
2556
Craig Topper55229b72017-04-02 19:17:22 +00002557 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2558 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2559 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
Chris Lattner6b695682007-08-16 15:56:55 +00002560
2561 tcAssign(srhs, rhs, parts);
2562 tcShiftLeft(srhs, parts, shiftCount);
2563 tcAssign(remainder, lhs, parts);
2564 tcSet(lhs, 0, parts);
2565
2566 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2567 the total. */
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002568 for (;;) {
Craig Toppera584af52017-05-10 07:50:17 +00002569 int compare = tcCompare(remainder, srhs, parts);
2570 if (compare >= 0) {
2571 tcSubtract(remainder, srhs, 0, parts);
2572 lhs[n] |= mask;
2573 }
Chris Lattner6b695682007-08-16 15:56:55 +00002574
Craig Toppera584af52017-05-10 07:50:17 +00002575 if (shiftCount == 0)
2576 break;
2577 shiftCount--;
2578 tcShiftRight(srhs, parts, 1);
2579 if ((mask >>= 1) == 0) {
2580 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2581 n--;
2582 }
Chris Lattner6b695682007-08-16 15:56:55 +00002583 }
2584
2585 return false;
2586}
2587
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002588/// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2589/// no restrictions on Count.
2590void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2591 // Don't bother performing a no-op shift.
2592 if (!Count)
2593 return;
Chris Lattner6b695682007-08-16 15:56:55 +00002594
Craig Topperc6b05682017-04-24 17:00:22 +00002595 // WordShift is the inter-part shift; BitShift is the intra-part shift.
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002596 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2597 unsigned BitShift = Count % APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002598
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002599 // Fastpath for moving by whole words.
2600 if (BitShift == 0) {
2601 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2602 } else {
2603 while (Words-- > WordShift) {
2604 Dst[Words] = Dst[Words - WordShift] << BitShift;
2605 if (Words > WordShift)
2606 Dst[Words] |=
2607 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
Neil Boothb6182162007-10-08 13:47:12 +00002608 }
Neil Boothb6182162007-10-08 13:47:12 +00002609 }
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002610
2611 // Fill in the remainder with 0s.
2612 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
Chris Lattner6b695682007-08-16 15:56:55 +00002613}
2614
Craig Topper9575d8f2017-04-17 21:43:43 +00002615/// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2616/// are no restrictions on Count.
2617void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2618 // Don't bother performing a no-op shift.
2619 if (!Count)
2620 return;
Chris Lattner6b695682007-08-16 15:56:55 +00002621
Craig Topperc6b05682017-04-24 17:00:22 +00002622 // WordShift is the inter-part shift; BitShift is the intra-part shift.
Craig Topper9575d8f2017-04-17 21:43:43 +00002623 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2624 unsigned BitShift = Count % APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002625
Craig Topper9575d8f2017-04-17 21:43:43 +00002626 unsigned WordsToMove = Words - WordShift;
2627 // Fastpath for moving by whole words.
2628 if (BitShift == 0) {
2629 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2630 } else {
2631 for (unsigned i = 0; i != WordsToMove; ++i) {
2632 Dst[i] = Dst[i + WordShift] >> BitShift;
2633 if (i + 1 != WordsToMove)
2634 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
Neil Boothb6182162007-10-08 13:47:12 +00002635 }
Chris Lattner6b695682007-08-16 15:56:55 +00002636 }
Craig Topper9575d8f2017-04-17 21:43:43 +00002637
2638 // Fill in the remainder with 0s.
2639 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
Chris Lattner6b695682007-08-16 15:56:55 +00002640}
2641
2642/* Bitwise and of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002643void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002644 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002645 dst[i] &= rhs[i];
2646}
2647
2648/* Bitwise inclusive or of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002649void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002650 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002651 dst[i] |= rhs[i];
2652}
2653
2654/* Bitwise exclusive or of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002655void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002656 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002657 dst[i] ^= rhs[i];
2658}
2659
2660/* Complement a bignum in-place. */
Craig Topper55229b72017-04-02 19:17:22 +00002661void APInt::tcComplement(WordType *dst, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002662 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002663 dst[i] = ~dst[i];
2664}
2665
2666/* Comparison (unsigned) of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002667int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
Craig Topper6a8518082017-03-28 05:32:55 +00002668 unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002669 while (parts) {
Craig Topper99cfe4f2017-04-01 21:50:06 +00002670 parts--;
Craig Topper1dc8fc82017-04-21 16:13:15 +00002671 if (lhs[parts] != rhs[parts])
2672 return (lhs[parts] > rhs[parts]) ? 1 : -1;
Craig Topper99cfe4f2017-04-01 21:50:06 +00002673 }
Chris Lattner6b695682007-08-16 15:56:55 +00002674
2675 return 0;
2676}
2677
Chris Lattner6b695682007-08-16 15:56:55 +00002678/* Set the least significant BITS bits of a bignum, clear the
2679 rest. */
Craig Topper55229b72017-04-02 19:17:22 +00002680void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
Craig Topper6a8518082017-03-28 05:32:55 +00002681 unsigned bits) {
Craig Topperb0038162017-03-28 05:32:52 +00002682 unsigned i = 0;
Craig Topper55229b72017-04-02 19:17:22 +00002683 while (bits > APINT_BITS_PER_WORD) {
2684 dst[i++] = ~(WordType) 0;
2685 bits -= APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002686 }
2687
2688 if (bits)
Craig Topper55229b72017-04-02 19:17:22 +00002689 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
Chris Lattner6b695682007-08-16 15:56:55 +00002690
2691 while (i < parts)
2692 dst[i++] = 0;
2693}
Tim Shen802c31c2018-06-25 23:49:20 +00002694
2695APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2696 APInt::Rounding RM) {
2697 // Currently udivrem always rounds down.
2698 switch (RM) {
2699 case APInt::Rounding::DOWN:
2700 case APInt::Rounding::TOWARD_ZERO:
2701 return A.udiv(B);
2702 case APInt::Rounding::UP: {
2703 APInt Quo, Rem;
2704 APInt::udivrem(A, B, Quo, Rem);
2705 if (Rem == 0)
2706 return Quo;
2707 return Quo + 1;
2708 }
2709 }
Simon Pilgrim9b3b0fe2018-06-26 09:31:18 +00002710 llvm_unreachable("Unknown APInt::Rounding enum");
Tim Shen802c31c2018-06-25 23:49:20 +00002711}
2712
2713APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2714 APInt::Rounding RM) {
2715 switch (RM) {
2716 case APInt::Rounding::DOWN:
2717 case APInt::Rounding::UP: {
2718 APInt Quo, Rem;
2719 APInt::sdivrem(A, B, Quo, Rem);
2720 if (Rem == 0)
2721 return Quo;
2722 // This algorithm deals with arbitrary rounding mode used by sdivrem.
2723 // We want to check whether the non-integer part of the mathematical value
2724 // is negative or not. If the non-integer part is negative, we need to round
2725 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2726 // already rounded down.
2727 if (RM == APInt::Rounding::DOWN) {
2728 if (Rem.isNegative() != B.isNegative())
2729 return Quo - 1;
2730 return Quo;
2731 }
2732 if (Rem.isNegative() != B.isNegative())
2733 return Quo;
2734 return Quo + 1;
2735 }
2736 // Currently sdiv rounds twards zero.
2737 case APInt::Rounding::TOWARD_ZERO:
2738 return A.sdiv(B);
2739 }
Simon Pilgrim9b3b0fe2018-06-26 09:31:18 +00002740 llvm_unreachable("Unknown APInt::Rounding enum");
Tim Shen802c31c2018-06-25 23:49:20 +00002741}
Krzysztof Parzyszek90f32492018-08-02 19:13:35 +00002742
2743Optional<APInt>
2744llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2745 unsigned RangeWidth) {
2746 unsigned CoeffWidth = A.getBitWidth();
2747 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2748 assert(RangeWidth <= CoeffWidth &&
2749 "Value range width should be less than coefficient width");
2750 assert(RangeWidth > 1 && "Value range bit width should be > 1");
2751
2752 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2753 << "x + " << C << ", rw:" << RangeWidth << '\n');
2754
2755 // Identify 0 as a (non)solution immediately.
2756 if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
2757 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2758 return APInt(CoeffWidth, 0);
2759 }
2760
2761 // The result of APInt arithmetic has the same bit width as the operands,
2762 // so it can actually lose high bits. A product of two n-bit integers needs
2763 // 2n-1 bits to represent the full value.
2764 // The operation done below (on quadratic coefficients) that can produce
2765 // the largest value is the evaluation of the equation during bisection,
2766 // which needs 3 times the bitwidth of the coefficient, so the total number
2767 // of required bits is 3n.
2768 //
2769 // The purpose of this extension is to simulate the set Z of all integers,
2770 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2771 // and negative numbers (not so much in a modulo arithmetic). The method
2772 // used to solve the equation is based on the standard formula for real
2773 // numbers, and uses the concepts of "positive" and "negative" with their
2774 // usual meanings.
2775 CoeffWidth *= 3;
2776 A = A.sext(CoeffWidth);
2777 B = B.sext(CoeffWidth);
2778 C = C.sext(CoeffWidth);
2779
2780 // Make A > 0 for simplicity. Negate cannot overflow at this point because
2781 // the bit width has increased.
2782 if (A.isNegative()) {
2783 A.negate();
2784 B.negate();
2785 C.negate();
2786 }
2787
2788 // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2789 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2790 // and R = 2^BitWidth.
2791 // Since we're trying not only to find exact solutions, but also values
2792 // that "wrap around", such a set will always have a solution, i.e. an x
2793 // that satisfies at least one of the equations, or such that |q(x)|
2794 // exceeds kR, while |q(x-1)| for the same k does not.
2795 //
2796 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2797 // positive solution n (in the above sense), and also such that the n
2798 // will be the least among all solutions corresponding to k = 0, 1, ...
2799 // (more precisely, the least element in the set
2800 // { n(k) | k is such that a solution n(k) exists }).
2801 //
2802 // Consider the parabola (over real numbers) that corresponds to the
2803 // quadratic equation. Since A > 0, the arms of the parabola will point
2804 // up. Picking different values of k will shift it up and down by R.
2805 //
2806 // We want to shift the parabola in such a way as to reduce the problem
2807 // of solving q(x) = kR to solving shifted_q(x) = 0.
2808 // (The interesting solutions are the ceilings of the real number
2809 // solutions.)
2810 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2811 APInt TwoA = 2 * A;
2812 APInt SqrB = B * B;
2813 bool PickLow;
2814
Krzysztof Parzyszekdfd5fad2018-08-02 19:38:18 +00002815 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
Krzysztof Parzyszek90f32492018-08-02 19:13:35 +00002816 assert(A.isStrictlyPositive());
2817 APInt T = V.abs().urem(A);
2818 if (T.isNullValue())
2819 return V;
2820 return V.isNegative() ? V+T : V+(A-T);
2821 };
2822
2823 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2824 // iff B is positive.
2825 if (B.isNonNegative()) {
2826 // If B >= 0, the vertex it at a negative location (or at 0), so in
2827 // order to have a non-negative solution we need to pick k that makes
2828 // C-kR negative. To satisfy all the requirements for the solution
2829 // that we are looking for, it needs to be closest to 0 of all k.
2830 C = C.srem(R);
2831 if (C.isStrictlyPositive())
2832 C -= R;
2833 // Pick the greater solution.
2834 PickLow = false;
2835 } else {
2836 // If B < 0, the vertex is at a positive location. For any solution
2837 // to exist, the discriminant must be non-negative. This means that
2838 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2839 // lower bound on values of k: kR >= C - B^2/4A.
2840 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2841 // Round LowkR up (towards +inf) to the nearest kR.
2842 LowkR = RoundUp(LowkR, R);
2843
2844 // If there exists k meeting the condition above, and such that
2845 // C-kR > 0, there will be two positive real number solutions of
2846 // q(x) = kR. Out of all such values of k, pick the one that makes
2847 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2848 // In other words, find maximum k such that LowkR <= kR < C.
2849 if (C.sgt(LowkR)) {
2850 // If LowkR < C, then such a k is guaranteed to exist because
2851 // LowkR itself is a multiple of R.
2852 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R)
2853 // Pick the smaller solution.
2854 PickLow = true;
2855 } else {
2856 // If C-kR < 0 for all potential k's, it means that one solution
2857 // will be negative, while the other will be positive. The positive
2858 // solution will shift towards 0 if the parabola is moved up.
2859 // Pick the kR closest to the lower bound (i.e. make C-kR closest
2860 // to 0, or in other words, out of all parabolas that have solutions,
2861 // pick the one that is the farthest "up").
2862 // Since LowkR is itself a multiple of R, simply take C-LowkR.
2863 C -= LowkR;
2864 // Pick the greater solution.
2865 PickLow = false;
2866 }
2867 }
2868
2869 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2870 << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2871
2872 APInt D = SqrB - 4*A*C;
2873 assert(D.isNonNegative() && "Negative discriminant");
2874 APInt SQ = D.sqrt();
2875
2876 APInt Q = SQ * SQ;
2877 bool InexactSQ = Q != D;
2878 // The calculated SQ may actually be greater than the exact (non-integer)
2879 // value. If that's the case, decremement SQ to get a value that is lower.
2880 if (Q.sgt(D))
2881 SQ -= 1;
2882
2883 APInt X;
2884 APInt Rem;
2885
2886 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2887 // When using the quadratic formula directly, the calculated low root
2888 // may be greater than the exact one, since we would be subtracting SQ.
2889 // To make sure that the calculated root is not greater than the exact
2890 // one, subtract SQ+1 when calculating the low root (for inexact value
2891 // of SQ).
2892 if (PickLow)
2893 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2894 else
2895 APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2896
2897 // The updated coefficients should be such that the (exact) solution is
2898 // positive. Since APInt division rounds towards 0, the calculated one
2899 // can be 0, but cannot be negative.
2900 assert(X.isNonNegative() && "Solution should be non-negative");
2901
2902 if (!InexactSQ && Rem.isNullValue()) {
2903 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2904 return X;
2905 }
2906
2907 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2908 // The exact value of the square root of D should be between SQ and SQ+1.
2909 // This implies that the solution should be between that corresponding to
2910 // SQ (i.e. X) and that corresponding to SQ+1.
2911 //
2912 // The calculated X cannot be greater than the exact (real) solution.
2913 // Actually it must be strictly less than the exact solution, while
2914 // X+1 will be greater than or equal to it.
2915
2916 APInt VX = (A*X + B)*X + C;
2917 APInt VY = VX + TwoA*X + A + B;
2918 bool SignChange = VX.isNegative() != VY.isNegative() ||
2919 VX.isNullValue() != VY.isNullValue();
2920 // If the sign did not change between X and X+1, X is not a valid solution.
2921 // This could happen when the actual (exact) roots don't have an integer
2922 // between them, so they would both be contained between X and X+1.
2923 if (!SignChange) {
2924 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2925 return None;
2926 }
2927
2928 X += 1;
2929 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2930 return X;
2931}