blob: 74e6e1baa0d2f5341f975d5107610d22d2265adc [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86CallingConv.h"
18#include "X86InstrBuilder.h"
19#include "X86InstrInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86RegisterInfo.h"
22#include "X86Subtarget.h"
23#include "X86TargetMachine.h"
24#include "llvm/Analysis/BranchProbabilityInfo.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000025#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/IR/CallSite.h"
31#include "llvm/IR/CallingConv.h"
Reid Kleckner28865802016-04-14 18:29:59 +000032#include "llvm/IR/DebugInfo.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000033#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/GetElementPtrTypeIterator.h"
35#include "llvm/IR/GlobalAlias.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Operator.h"
David Majnemerca194852015-02-10 22:00:34 +000040#include "llvm/MC/MCAsmInfo.h"
Rafael Espindolace4c2bc2015-06-23 12:21:54 +000041#include "llvm/MC/MCSymbol.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000042#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Target/TargetOptions.h"
44using namespace llvm;
45
46namespace {
47
48class X86FastISel final : public FastISel {
49 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
50 /// make the right decision when generating code for different targets.
51 const X86Subtarget *Subtarget;
52
53 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
54 /// floating point ops.
55 /// When SSE is available, use it for f32 operations.
56 /// When SSE2 is available, use it for f64 operations.
57 bool X86ScalarSSEf64;
58 bool X86ScalarSSEf32;
59
60public:
61 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
62 const TargetLibraryInfo *libInfo)
Eric Christophera1c535b2015-02-02 23:03:45 +000063 : FastISel(funcInfo, libInfo) {
64 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000065 X86ScalarSSEf64 = Subtarget->hasSSE2();
66 X86ScalarSSEf32 = Subtarget->hasSSE1();
67 }
68
69 bool fastSelectInstruction(const Instruction *I) override;
70
71 /// \brief The specified machine instr operand is a vreg, and that
72 /// vreg is being provided by the specified load instruction. If possible,
73 /// try to fold the load as an operand to the instruction, returning true if
74 /// possible.
75 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
76 const LoadInst *LI) override;
77
78 bool fastLowerArguments() override;
79 bool fastLowerCall(CallLoweringInfo &CLI) override;
80 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81
82#include "X86GenFastISel.inc"
83
84private:
Benjamin Kramerbdc49562016-06-12 15:39:02 +000085 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
86 const DebugLoc &DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000087
Pete Cooperd0dae3e2015-05-05 23:41:53 +000088 bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +000089 unsigned &ResultReg, unsigned Alignment = 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000090
Pete Cooperd0dae3e2015-05-05 23:41:53 +000091 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000092 MachineMemOperand *MMO = nullptr, bool Aligned = false);
93 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +000094 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000095 MachineMemOperand *MMO = nullptr, bool Aligned = false);
96
97 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
98 unsigned &ResultReg);
99
100 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
101 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102
103 bool X86SelectLoad(const Instruction *I);
104
105 bool X86SelectStore(const Instruction *I);
106
107 bool X86SelectRet(const Instruction *I);
108
109 bool X86SelectCmp(const Instruction *I);
110
111 bool X86SelectZExt(const Instruction *I);
112
113 bool X86SelectBranch(const Instruction *I);
114
115 bool X86SelectShift(const Instruction *I);
116
117 bool X86SelectDivRem(const Instruction *I);
118
119 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
120
121 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
122
123 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
124
125 bool X86SelectSelect(const Instruction *I);
126
127 bool X86SelectTrunc(const Instruction *I);
128
Andrea Di Biagio62622d22015-02-10 12:04:41 +0000129 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
130 const TargetRegisterClass *RC);
131
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000132 bool X86SelectFPExt(const Instruction *I);
133 bool X86SelectFPTrunc(const Instruction *I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +0000134 bool X86SelectSIToFP(const Instruction *I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000135
136 const X86InstrInfo *getInstrInfo() const {
Eric Christophera1c535b2015-02-02 23:03:45 +0000137 return Subtarget->getInstrInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000138 }
139 const X86TargetMachine *getTargetMachine() const {
140 return static_cast<const X86TargetMachine *>(&TM);
141 }
142
143 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
144
145 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
146 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
147 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
148 unsigned fastMaterializeConstant(const Constant *C) override;
149
150 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
151
152 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
153
154 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
155 /// computed in an SSE register, not on the X87 floating point stack.
156 bool isScalarFPTypeInSSEReg(EVT VT) const {
157 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
158 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
159 }
160
161 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
162
163 bool IsMemcpySmall(uint64_t Len);
164
165 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
166 X86AddressMode SrcAM, uint64_t Len);
167
168 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
169 const Value *Cond);
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000170
171 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
172 X86AddressMode &AM);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000173};
174
175} // end anonymous namespace.
176
177static std::pair<X86::CondCode, bool>
178getX86ConditionCode(CmpInst::Predicate Predicate) {
179 X86::CondCode CC = X86::COND_INVALID;
180 bool NeedSwap = false;
181 switch (Predicate) {
182 default: break;
183 // Floating-point Predicates
184 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000185 case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000186 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000187 case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000188 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000189 case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000190 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000191 case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000192 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
193 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
194 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
195 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000196 case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000197 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
198
199 // Integer Predicates
200 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
201 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
202 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
203 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
204 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
205 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
206 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
207 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
208 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
209 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
210 }
211
212 return std::make_pair(CC, NeedSwap);
213}
214
215static std::pair<unsigned, bool>
216getX86SSEConditionCode(CmpInst::Predicate Predicate) {
217 unsigned CC;
218 bool NeedSwap = false;
219
220 // SSE Condition code mapping:
221 // 0 - EQ
222 // 1 - LT
223 // 2 - LE
224 // 3 - UNORD
225 // 4 - NEQ
226 // 5 - NLT
227 // 6 - NLE
228 // 7 - ORD
229 switch (Predicate) {
230 default: llvm_unreachable("Unexpected predicate");
231 case CmpInst::FCMP_OEQ: CC = 0; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000232 case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000233 case CmpInst::FCMP_OLT: CC = 1; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000234 case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000235 case CmpInst::FCMP_OLE: CC = 2; break;
236 case CmpInst::FCMP_UNO: CC = 3; break;
237 case CmpInst::FCMP_UNE: CC = 4; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000238 case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000239 case CmpInst::FCMP_UGE: CC = 5; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000240 case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000241 case CmpInst::FCMP_UGT: CC = 6; break;
242 case CmpInst::FCMP_ORD: CC = 7; break;
243 case CmpInst::FCMP_UEQ:
244 case CmpInst::FCMP_ONE: CC = 8; break;
245 }
246
247 return std::make_pair(CC, NeedSwap);
248}
249
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000250/// \brief Adds a complex addressing mode to the given machine instr builder.
251/// Note, this will constrain the index register. If its not possible to
252/// constrain the given index register, then a new one will be created. The
253/// IndexReg field of the addressing mode will be updated to match in this case.
254const MachineInstrBuilder &
255X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
256 X86AddressMode &AM) {
257 // First constrain the index register. It needs to be a GR64_NOSP.
258 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
259 MIB->getNumOperands() +
260 X86::AddrIndexReg);
261 return ::addFullAddress(MIB, AM);
262}
263
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000264/// \brief Check if it is possible to fold the condition from the XALU intrinsic
265/// into the user. The condition code will only be updated on success.
266bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
267 const Value *Cond) {
268 if (!isa<ExtractValueInst>(Cond))
269 return false;
270
271 const auto *EV = cast<ExtractValueInst>(Cond);
272 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
273 return false;
274
275 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
276 MVT RetVT;
277 const Function *Callee = II->getCalledFunction();
278 Type *RetTy =
279 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
280 if (!isTypeLegal(RetTy, RetVT))
281 return false;
282
283 if (RetVT != MVT::i32 && RetVT != MVT::i64)
284 return false;
285
286 X86::CondCode TmpCC;
287 switch (II->getIntrinsicID()) {
288 default: return false;
289 case Intrinsic::sadd_with_overflow:
290 case Intrinsic::ssub_with_overflow:
291 case Intrinsic::smul_with_overflow:
292 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
293 case Intrinsic::uadd_with_overflow:
294 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
295 }
296
297 // Check if both instructions are in the same basic block.
298 if (II->getParent() != I->getParent())
299 return false;
300
301 // Make sure nothing is in the way
Duncan P. N. Exon Smithd77de642015-10-19 21:48:29 +0000302 BasicBlock::const_iterator Start(I);
303 BasicBlock::const_iterator End(II);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000304 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
305 // We only expect extractvalue instructions between the intrinsic and the
306 // instruction to be selected.
307 if (!isa<ExtractValueInst>(Itr))
308 return false;
309
310 // Check that the extractvalue operand comes from the intrinsic.
311 const auto *EVI = cast<ExtractValueInst>(Itr);
312 if (EVI->getAggregateOperand() != II)
313 return false;
314 }
315
316 CC = TmpCC;
317 return true;
318}
319
320bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
Mehdi Amini44ede332015-07-09 02:09:04 +0000321 EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000322 if (evt == MVT::Other || !evt.isSimple())
323 // Unhandled type. Halt "fast" selection and bail.
324 return false;
325
326 VT = evt.getSimpleVT();
327 // For now, require SSE/SSE2 for performing floating-point operations,
328 // since x87 requires additional work.
329 if (VT == MVT::f64 && !X86ScalarSSEf64)
330 return false;
331 if (VT == MVT::f32 && !X86ScalarSSEf32)
332 return false;
333 // Similarly, no f80 support yet.
334 if (VT == MVT::f80)
335 return false;
336 // We only handle legal types. For example, on x86-32 the instruction
337 // selector contains all of the 64-bit instructions from x86-64,
338 // under the assumption that i64 won't be used if the target doesn't
339 // support it.
340 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
341}
342
343#include "X86GenCallingConv.inc"
344
345/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
346/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
347/// Return true and the result register by reference if it is possible.
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000348bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000349 MachineMemOperand *MMO, unsigned &ResultReg,
350 unsigned Alignment) {
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000351 bool HasSSE41 = Subtarget->hasSSE41();
Craig Topperca9c0802016-06-02 04:19:45 +0000352 bool HasAVX = Subtarget->hasAVX();
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000353 bool HasAVX2 = Subtarget->hasAVX2();
354 bool IsNonTemporal = MMO && MMO->isNonTemporal();
355
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000356 // Get opcode and regclass of the output for the given load instruction.
357 unsigned Opc = 0;
358 const TargetRegisterClass *RC = nullptr;
359 switch (VT.getSimpleVT().SimpleTy) {
360 default: return false;
361 case MVT::i1:
362 case MVT::i8:
363 Opc = X86::MOV8rm;
364 RC = &X86::GR8RegClass;
365 break;
366 case MVT::i16:
367 Opc = X86::MOV16rm;
368 RC = &X86::GR16RegClass;
369 break;
370 case MVT::i32:
371 Opc = X86::MOV32rm;
372 RC = &X86::GR32RegClass;
373 break;
374 case MVT::i64:
375 // Must be in x86-64 mode.
376 Opc = X86::MOV64rm;
377 RC = &X86::GR64RegClass;
378 break;
379 case MVT::f32:
380 if (X86ScalarSSEf32) {
Craig Topperca9c0802016-06-02 04:19:45 +0000381 Opc = HasAVX ? X86::VMOVSSrm : X86::MOVSSrm;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000382 RC = &X86::FR32RegClass;
383 } else {
384 Opc = X86::LD_Fp32m;
385 RC = &X86::RFP32RegClass;
386 }
387 break;
388 case MVT::f64:
389 if (X86ScalarSSEf64) {
Craig Topperca9c0802016-06-02 04:19:45 +0000390 Opc = HasAVX ? X86::VMOVSDrm : X86::MOVSDrm;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000391 RC = &X86::FR64RegClass;
392 } else {
393 Opc = X86::LD_Fp64m;
394 RC = &X86::RFP64RegClass;
395 }
396 break;
397 case MVT::f80:
398 // No f80 support yet.
399 return false;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000400 case MVT::v4f32:
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000401 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
402 Opc = HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
403 else if (Alignment >= 16)
Craig Topperca9c0802016-06-02 04:19:45 +0000404 Opc = HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000405 else
Craig Topperca9c0802016-06-02 04:19:45 +0000406 Opc = HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000407 RC = &X86::VR128RegClass;
408 break;
409 case MVT::v2f64:
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000410 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
411 Opc = HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
412 else if (Alignment >= 16)
Craig Topperca9c0802016-06-02 04:19:45 +0000413 Opc = HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000414 else
Craig Topperca9c0802016-06-02 04:19:45 +0000415 Opc = HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000416 RC = &X86::VR128RegClass;
417 break;
418 case MVT::v4i32:
419 case MVT::v2i64:
420 case MVT::v8i16:
421 case MVT::v16i8:
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000422 if (IsNonTemporal && Alignment >= 16)
423 Opc = HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
424 else if (Alignment >= 16)
Craig Topperca9c0802016-06-02 04:19:45 +0000425 Opc = HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000426 else
Craig Topperca9c0802016-06-02 04:19:45 +0000427 Opc = HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000428 RC = &X86::VR128RegClass;
429 break;
Craig Topperca9c0802016-06-02 04:19:45 +0000430 case MVT::v8f32:
431 assert(HasAVX);
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000432 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
433 Opc = X86::VMOVNTDQAYrm;
434 else
435 Opc = (Alignment >= 32) ? X86::VMOVAPSYrm : X86::VMOVUPSYrm;
Craig Topperca9c0802016-06-02 04:19:45 +0000436 RC = &X86::VR256RegClass;
437 break;
438 case MVT::v4f64:
439 assert(HasAVX);
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000440 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
441 Opc = X86::VMOVNTDQAYrm;
442 else
443 Opc = (Alignment >= 32) ? X86::VMOVAPDYrm : X86::VMOVUPDYrm;
Craig Topperca9c0802016-06-02 04:19:45 +0000444 RC = &X86::VR256RegClass;
445 break;
446 case MVT::v8i32:
447 case MVT::v4i64:
448 case MVT::v16i16:
449 case MVT::v32i8:
450 assert(HasAVX);
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000451 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
452 Opc = X86::VMOVNTDQAYrm;
453 else
454 Opc = (Alignment >= 32) ? X86::VMOVDQAYrm : X86::VMOVDQUYrm;
Craig Topperca9c0802016-06-02 04:19:45 +0000455 RC = &X86::VR256RegClass;
456 break;
Craig Topper048a08a2016-06-02 04:51:37 +0000457 case MVT::v16f32:
458 assert(Subtarget->hasAVX512());
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000459 if (IsNonTemporal && Alignment >= 64)
460 Opc = X86::VMOVNTDQAZrm;
461 else
462 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
Craig Topper048a08a2016-06-02 04:51:37 +0000463 RC = &X86::VR512RegClass;
464 break;
465 case MVT::v8f64:
466 assert(Subtarget->hasAVX512());
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000467 if (IsNonTemporal && Alignment >= 64)
468 Opc = X86::VMOVNTDQAZrm;
469 else
470 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
Craig Topper048a08a2016-06-02 04:51:37 +0000471 RC = &X86::VR512RegClass;
472 break;
473 case MVT::v8i64:
474 case MVT::v16i32:
475 case MVT::v32i16:
476 case MVT::v64i8:
477 assert(Subtarget->hasAVX512());
478 // Note: There are a lot more choices based on type with AVX-512, but
479 // there's really no advantage when the load isn't masked.
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000480 if (IsNonTemporal && Alignment >= 64)
481 Opc = X86::VMOVNTDQAZrm;
482 else
483 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
Craig Topper048a08a2016-06-02 04:51:37 +0000484 RC = &X86::VR512RegClass;
485 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000486 }
487
488 ResultReg = createResultReg(RC);
489 MachineInstrBuilder MIB =
490 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
491 addFullAddress(MIB, AM);
492 if (MMO)
493 MIB->addMemOperand(*FuncInfo.MF, MMO);
494 return true;
495}
496
497/// X86FastEmitStore - Emit a machine instruction to store a value Val of
498/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
499/// and a displacement offset, or a GlobalAddress,
500/// i.e. V. Return true if it is possible.
501bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000502 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000503 MachineMemOperand *MMO, bool Aligned) {
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000504 bool HasSSE2 = Subtarget->hasSSE2();
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000505 bool HasSSE4A = Subtarget->hasSSE4A();
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000506 bool HasAVX = Subtarget->hasAVX();
507 bool IsNonTemporal = MMO && MMO->isNonTemporal();
508
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000509 // Get opcode and regclass of the output for the given store instruction.
510 unsigned Opc = 0;
511 switch (VT.getSimpleVT().SimpleTy) {
512 case MVT::f80: // No f80 support yet.
513 default: return false;
514 case MVT::i1: {
515 // Mask out all but lowest bit.
516 unsigned AndResult = createResultReg(&X86::GR8RegClass);
517 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
518 TII.get(X86::AND8ri), AndResult)
519 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
520 ValReg = AndResult;
Justin Bognerb03fd122016-08-17 05:10:15 +0000521 LLVM_FALLTHROUGH; // handle i1 as i8.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000522 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000523 case MVT::i8: Opc = X86::MOV8mr; break;
524 case MVT::i16: Opc = X86::MOV16mr; break;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000525 case MVT::i32:
526 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
527 break;
528 case MVT::i64:
529 // Must be in x86-64 mode.
530 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
531 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000532 case MVT::f32:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000533 if (X86ScalarSSEf32) {
534 if (IsNonTemporal && HasSSE4A)
535 Opc = X86::MOVNTSS;
536 else
537 Opc = HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
538 } else
539 Opc = X86::ST_Fp32m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000540 break;
541 case MVT::f64:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000542 if (X86ScalarSSEf32) {
543 if (IsNonTemporal && HasSSE4A)
544 Opc = X86::MOVNTSD;
545 else
546 Opc = HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
547 } else
548 Opc = X86::ST_Fp64m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000549 break;
550 case MVT::v4f32:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000551 if (Aligned) {
552 if (IsNonTemporal)
553 Opc = HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
554 else
555 Opc = HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
556 } else
557 Opc = HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000558 break;
559 case MVT::v2f64:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000560 if (Aligned) {
561 if (IsNonTemporal)
562 Opc = HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
563 else
564 Opc = HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
565 } else
566 Opc = HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000567 break;
568 case MVT::v4i32:
569 case MVT::v2i64:
570 case MVT::v8i16:
571 case MVT::v16i8:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000572 if (Aligned) {
573 if (IsNonTemporal)
574 Opc = HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
575 else
576 Opc = HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
577 } else
Craig Topperca9c0802016-06-02 04:19:45 +0000578 Opc = HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
579 break;
580 case MVT::v8f32:
581 assert(HasAVX);
582 if (Aligned)
583 Opc = IsNonTemporal ? X86::VMOVNTPSYmr : X86::VMOVAPSYmr;
584 else
585 Opc = X86::VMOVUPSYmr;
586 break;
587 case MVT::v4f64:
588 assert(HasAVX);
589 if (Aligned) {
590 Opc = IsNonTemporal ? X86::VMOVNTPDYmr : X86::VMOVAPDYmr;
591 } else
592 Opc = X86::VMOVUPDYmr;
593 break;
594 case MVT::v8i32:
595 case MVT::v4i64:
596 case MVT::v16i16:
597 case MVT::v32i8:
598 assert(HasAVX);
599 if (Aligned)
600 Opc = IsNonTemporal ? X86::VMOVNTDQYmr : X86::VMOVDQAYmr;
601 else
602 Opc = X86::VMOVDQUYmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000603 break;
Craig Topper048a08a2016-06-02 04:51:37 +0000604 case MVT::v16f32:
605 assert(Subtarget->hasAVX512());
606 if (Aligned)
607 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
608 else
609 Opc = X86::VMOVUPSZmr;
610 break;
611 case MVT::v8f64:
612 assert(Subtarget->hasAVX512());
613 if (Aligned) {
614 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
615 } else
616 Opc = X86::VMOVUPDZmr;
617 break;
618 case MVT::v8i64:
619 case MVT::v16i32:
620 case MVT::v32i16:
621 case MVT::v64i8:
622 assert(Subtarget->hasAVX512());
623 // Note: There are a lot more choices based on type with AVX-512, but
624 // there's really no advantage when the store isn't masked.
625 if (Aligned)
626 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
627 else
628 Opc = X86::VMOVDQU64Zmr;
629 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000630 }
631
Quentin Colombetbf200682016-04-27 22:33:42 +0000632 const MCInstrDesc &Desc = TII.get(Opc);
633 // Some of the instructions in the previous switch use FR128 instead
634 // of FR32 for ValReg. Make sure the register we feed the instruction
635 // matches its register class constraints.
636 // Note: This is fine to do a copy from FR32 to FR128, this is the
637 // same registers behind the scene and actually why it did not trigger
638 // any bugs before.
639 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000640 MachineInstrBuilder MIB =
Quentin Colombetbf200682016-04-27 22:33:42 +0000641 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000642 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
643 if (MMO)
644 MIB->addMemOperand(*FuncInfo.MF, MMO);
645
646 return true;
647}
648
649bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000650 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000651 MachineMemOperand *MMO, bool Aligned) {
652 // Handle 'null' like i32/i64 0.
653 if (isa<ConstantPointerNull>(Val))
654 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
655
656 // If this is a store of a simple constant, fold the constant into the store.
657 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
658 unsigned Opc = 0;
659 bool Signed = true;
660 switch (VT.getSimpleVT().SimpleTy) {
661 default: break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000662 case MVT::i1:
663 Signed = false;
664 LLVM_FALLTHROUGH; // Handle as i8.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000665 case MVT::i8: Opc = X86::MOV8mi; break;
666 case MVT::i16: Opc = X86::MOV16mi; break;
667 case MVT::i32: Opc = X86::MOV32mi; break;
668 case MVT::i64:
669 // Must be a 32-bit sign extended value.
670 if (isInt<32>(CI->getSExtValue()))
671 Opc = X86::MOV64mi32;
672 break;
673 }
674
675 if (Opc) {
676 MachineInstrBuilder MIB =
677 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
678 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
679 : CI->getZExtValue());
680 if (MMO)
681 MIB->addMemOperand(*FuncInfo.MF, MMO);
682 return true;
683 }
684 }
685
686 unsigned ValReg = getRegForValue(Val);
687 if (ValReg == 0)
688 return false;
689
690 bool ValKill = hasTrivialKill(Val);
691 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
692}
693
694/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
695/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
696/// ISD::SIGN_EXTEND).
697bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
698 unsigned Src, EVT SrcVT,
699 unsigned &ResultReg) {
700 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
701 Src, /*TODO: Kill=*/false);
702 if (RR == 0)
703 return false;
704
705 ResultReg = RR;
706 return true;
707}
708
709bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
710 // Handle constant address.
711 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
712 // Can't handle alternate code models yet.
713 if (TM.getCodeModel() != CodeModel::Small)
714 return false;
715
716 // Can't handle TLS yet.
717 if (GV->isThreadLocal())
718 return false;
719
720 // RIP-relative addresses can't have additional register operands, so if
721 // we've already folded stuff into the addressing mode, just force the
722 // global value into its own register, which we can use as the basereg.
723 if (!Subtarget->isPICStyleRIPRel() ||
724 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
725 // Okay, we've committed to selecting this global. Set up the address.
726 AM.GV = GV;
727
728 // Allow the subtarget to classify the global.
Rafael Espindolaab03eb02016-05-19 22:07:57 +0000729 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000730
731 // If this reference is relative to the pic base, set it now.
732 if (isGlobalRelativeToPICBase(GVFlags)) {
733 // FIXME: How do we know Base.Reg is free??
734 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
735 }
736
737 // Unless the ABI requires an extra load, return a direct reference to
738 // the global.
739 if (!isGlobalStubReference(GVFlags)) {
740 if (Subtarget->isPICStyleRIPRel()) {
741 // Use rip-relative addressing if we can. Above we verified that the
742 // base and index registers are unused.
743 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
744 AM.Base.Reg = X86::RIP;
745 }
746 AM.GVOpFlags = GVFlags;
747 return true;
748 }
749
750 // Ok, we need to do a load from a stub. If we've already loaded from
751 // this stub, reuse the loaded pointer, otherwise emit the load now.
752 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
753 unsigned LoadReg;
754 if (I != LocalValueMap.end() && I->second != 0) {
755 LoadReg = I->second;
756 } else {
757 // Issue load from stub.
758 unsigned Opc = 0;
759 const TargetRegisterClass *RC = nullptr;
760 X86AddressMode StubAM;
761 StubAM.Base.Reg = AM.Base.Reg;
762 StubAM.GV = GV;
763 StubAM.GVOpFlags = GVFlags;
764
765 // Prepare for inserting code in the local-value area.
766 SavePoint SaveInsertPt = enterLocalValueArea();
767
Mehdi Amini44ede332015-07-09 02:09:04 +0000768 if (TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000769 Opc = X86::MOV64rm;
770 RC = &X86::GR64RegClass;
771
772 if (Subtarget->isPICStyleRIPRel())
773 StubAM.Base.Reg = X86::RIP;
774 } else {
775 Opc = X86::MOV32rm;
776 RC = &X86::GR32RegClass;
777 }
778
779 LoadReg = createResultReg(RC);
780 MachineInstrBuilder LoadMI =
781 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
782 addFullAddress(LoadMI, StubAM);
783
784 // Ok, back to normal mode.
785 leaveLocalValueArea(SaveInsertPt);
786
787 // Prevent loading GV stub multiple times in same MBB.
788 LocalValueMap[V] = LoadReg;
789 }
790
791 // Now construct the final address. Note that the Disp, Scale,
792 // and Index values may already be set here.
793 AM.Base.Reg = LoadReg;
794 AM.GV = nullptr;
795 return true;
796 }
797 }
798
799 // If all else fails, try to materialize the value in a register.
800 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
801 if (AM.Base.Reg == 0) {
802 AM.Base.Reg = getRegForValue(V);
803 return AM.Base.Reg != 0;
804 }
805 if (AM.IndexReg == 0) {
806 assert(AM.Scale == 1 && "Scale with no index!");
807 AM.IndexReg = getRegForValue(V);
808 return AM.IndexReg != 0;
809 }
810 }
811
812 return false;
813}
814
815/// X86SelectAddress - Attempt to fill in an address from the given value.
816///
817bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
818 SmallVector<const Value *, 32> GEPs;
819redo_gep:
820 const User *U = nullptr;
821 unsigned Opcode = Instruction::UserOp1;
822 if (const Instruction *I = dyn_cast<Instruction>(V)) {
823 // Don't walk into other basic blocks; it's possible we haven't
824 // visited them yet, so the instructions may not yet be assigned
825 // virtual registers.
826 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
827 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
828 Opcode = I->getOpcode();
829 U = I;
830 }
831 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
832 Opcode = C->getOpcode();
833 U = C;
834 }
835
836 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
837 if (Ty->getAddressSpace() > 255)
838 // Fast instruction selection doesn't support the special
839 // address spaces.
840 return false;
841
842 switch (Opcode) {
843 default: break;
844 case Instruction::BitCast:
845 // Look past bitcasts.
846 return X86SelectAddress(U->getOperand(0), AM);
847
848 case Instruction::IntToPtr:
849 // Look past no-op inttoptrs.
Mehdi Amini44ede332015-07-09 02:09:04 +0000850 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
851 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000852 return X86SelectAddress(U->getOperand(0), AM);
853 break;
854
855 case Instruction::PtrToInt:
856 // Look past no-op ptrtoints.
Mehdi Amini44ede332015-07-09 02:09:04 +0000857 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000858 return X86SelectAddress(U->getOperand(0), AM);
859 break;
860
861 case Instruction::Alloca: {
862 // Do static allocas.
863 const AllocaInst *A = cast<AllocaInst>(V);
864 DenseMap<const AllocaInst *, int>::iterator SI =
865 FuncInfo.StaticAllocaMap.find(A);
866 if (SI != FuncInfo.StaticAllocaMap.end()) {
867 AM.BaseType = X86AddressMode::FrameIndexBase;
868 AM.Base.FrameIndex = SI->second;
869 return true;
870 }
871 break;
872 }
873
874 case Instruction::Add: {
875 // Adds of constants are common and easy enough.
876 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
877 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
878 // They have to fit in the 32-bit signed displacement field though.
879 if (isInt<32>(Disp)) {
880 AM.Disp = (uint32_t)Disp;
881 return X86SelectAddress(U->getOperand(0), AM);
882 }
883 }
884 break;
885 }
886
887 case Instruction::GetElementPtr: {
888 X86AddressMode SavedAM = AM;
889
890 // Pattern-match simple GEPs.
891 uint64_t Disp = (int32_t)AM.Disp;
892 unsigned IndexReg = AM.IndexReg;
893 unsigned Scale = AM.Scale;
894 gep_type_iterator GTI = gep_type_begin(U);
895 // Iterate through the indices, folding what we can. Constants can be
896 // folded, and one dynamic index can be handled, if the scale is supported.
897 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
898 i != e; ++i, ++GTI) {
899 const Value *Op = *i;
900 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
901 const StructLayout *SL = DL.getStructLayout(STy);
902 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
903 continue;
904 }
905
906 // A array/variable index is always of the form i*S where S is the
907 // constant scale size. See if we can push the scale into immediates.
908 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
909 for (;;) {
910 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
911 // Constant-offset addressing.
912 Disp += CI->getSExtValue() * S;
913 break;
914 }
915 if (canFoldAddIntoGEP(U, Op)) {
916 // A compatible add with a constant operand. Fold the constant.
917 ConstantInt *CI =
918 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
919 Disp += CI->getSExtValue() * S;
920 // Iterate on the other operand.
921 Op = cast<AddOperator>(Op)->getOperand(0);
922 continue;
923 }
924 if (IndexReg == 0 &&
925 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
926 (S == 1 || S == 2 || S == 4 || S == 8)) {
927 // Scaled-index addressing.
928 Scale = S;
929 IndexReg = getRegForGEPIndex(Op).first;
930 if (IndexReg == 0)
931 return false;
932 break;
933 }
934 // Unsupported.
935 goto unsupported_gep;
936 }
937 }
938
939 // Check for displacement overflow.
940 if (!isInt<32>(Disp))
941 break;
942
943 AM.IndexReg = IndexReg;
944 AM.Scale = Scale;
945 AM.Disp = (uint32_t)Disp;
946 GEPs.push_back(V);
947
948 if (const GetElementPtrInst *GEP =
949 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
950 // Ok, the GEP indices were covered by constant-offset and scaled-index
951 // addressing. Update the address state and move on to examining the base.
952 V = GEP;
953 goto redo_gep;
954 } else if (X86SelectAddress(U->getOperand(0), AM)) {
955 return true;
956 }
957
958 // If we couldn't merge the gep value into this addr mode, revert back to
959 // our address and just match the value instead of completely failing.
960 AM = SavedAM;
961
David Majnemerd7708772016-06-24 04:05:21 +0000962 for (const Value *I : reverse(GEPs))
963 if (handleConstantAddresses(I, AM))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000964 return true;
965
966 return false;
967 unsupported_gep:
968 // Ok, the GEP indices weren't all covered.
969 break;
970 }
971 }
972
973 return handleConstantAddresses(V, AM);
974}
975
976/// X86SelectCallAddress - Attempt to fill in an address from the given value.
977///
978bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
979 const User *U = nullptr;
980 unsigned Opcode = Instruction::UserOp1;
981 const Instruction *I = dyn_cast<Instruction>(V);
982 // Record if the value is defined in the same basic block.
983 //
984 // This information is crucial to know whether or not folding an
985 // operand is valid.
986 // Indeed, FastISel generates or reuses a virtual register for all
987 // operands of all instructions it selects. Obviously, the definition and
988 // its uses must use the same virtual register otherwise the produced
989 // code is incorrect.
990 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
991 // registers for values that are alive across basic blocks. This ensures
992 // that the values are consistently set between across basic block, even
993 // if different instruction selection mechanisms are used (e.g., a mix of
994 // SDISel and FastISel).
995 // For values local to a basic block, the instruction selection process
996 // generates these virtual registers with whatever method is appropriate
997 // for its needs. In particular, FastISel and SDISel do not share the way
998 // local virtual registers are set.
999 // Therefore, this is impossible (or at least unsafe) to share values
1000 // between basic blocks unless they use the same instruction selection
1001 // method, which is not guarantee for X86.
1002 // Moreover, things like hasOneUse could not be used accurately, if we
1003 // allow to reference values across basic blocks whereas they are not
1004 // alive across basic blocks initially.
1005 bool InMBB = true;
1006 if (I) {
1007 Opcode = I->getOpcode();
1008 U = I;
1009 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1010 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1011 Opcode = C->getOpcode();
1012 U = C;
1013 }
1014
1015 switch (Opcode) {
1016 default: break;
1017 case Instruction::BitCast:
1018 // Look past bitcasts if its operand is in the same BB.
1019 if (InMBB)
1020 return X86SelectCallAddress(U->getOperand(0), AM);
1021 break;
1022
1023 case Instruction::IntToPtr:
1024 // Look past no-op inttoptrs if its operand is in the same BB.
1025 if (InMBB &&
Mehdi Amini44ede332015-07-09 02:09:04 +00001026 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1027 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001028 return X86SelectCallAddress(U->getOperand(0), AM);
1029 break;
1030
1031 case Instruction::PtrToInt:
1032 // Look past no-op ptrtoints if its operand is in the same BB.
Mehdi Amini44ede332015-07-09 02:09:04 +00001033 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001034 return X86SelectCallAddress(U->getOperand(0), AM);
1035 break;
1036 }
1037
1038 // Handle constant address.
1039 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1040 // Can't handle alternate code models yet.
1041 if (TM.getCodeModel() != CodeModel::Small)
1042 return false;
1043
1044 // RIP-relative addresses can't have additional register operands.
1045 if (Subtarget->isPICStyleRIPRel() &&
1046 (AM.Base.Reg != 0 || AM.IndexReg != 0))
1047 return false;
1048
1049 // Can't handle DLL Import.
1050 if (GV->hasDLLImportStorageClass())
1051 return false;
1052
1053 // Can't handle TLS.
1054 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1055 if (GVar->isThreadLocal())
1056 return false;
1057
1058 // Okay, we've committed to selecting this global. Set up the basic address.
1059 AM.GV = GV;
1060
1061 // No ABI requires an extra load for anything other than DLLImport, which
1062 // we rejected above. Return a direct reference to the global.
1063 if (Subtarget->isPICStyleRIPRel()) {
1064 // Use rip-relative addressing if we can. Above we verified that the
1065 // base and index registers are unused.
1066 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1067 AM.Base.Reg = X86::RIP;
Rafael Espindolac7e98132016-05-20 12:20:10 +00001068 } else {
1069 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001070 }
1071
1072 return true;
1073 }
1074
1075 // If all else fails, try to materialize the value in a register.
1076 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1077 if (AM.Base.Reg == 0) {
1078 AM.Base.Reg = getRegForValue(V);
1079 return AM.Base.Reg != 0;
1080 }
1081 if (AM.IndexReg == 0) {
1082 assert(AM.Scale == 1 && "Scale with no index!");
1083 AM.IndexReg = getRegForValue(V);
1084 return AM.IndexReg != 0;
1085 }
1086 }
1087
1088 return false;
1089}
1090
1091
1092/// X86SelectStore - Select and emit code to implement store instructions.
1093bool X86FastISel::X86SelectStore(const Instruction *I) {
1094 // Atomic stores need special handling.
1095 const StoreInst *S = cast<StoreInst>(I);
1096
1097 if (S->isAtomic())
1098 return false;
1099
Manman Ren57518142016-04-11 21:08:06 +00001100 const Value *PtrV = I->getOperand(1);
1101 if (TLI.supportSwiftError()) {
1102 // Swifterror values can come from either a function parameter with
1103 // swifterror attribute or an alloca with swifterror attribute.
1104 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1105 if (Arg->hasSwiftErrorAttr())
1106 return false;
1107 }
1108
1109 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1110 if (Alloca->isSwiftError())
1111 return false;
1112 }
1113 }
1114
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001115 const Value *Val = S->getValueOperand();
1116 const Value *Ptr = S->getPointerOperand();
1117
1118 MVT VT;
1119 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1120 return false;
1121
1122 unsigned Alignment = S->getAlignment();
1123 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1124 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1125 Alignment = ABIAlignment;
1126 bool Aligned = Alignment >= ABIAlignment;
1127
1128 X86AddressMode AM;
1129 if (!X86SelectAddress(Ptr, AM))
1130 return false;
1131
1132 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1133}
1134
1135/// X86SelectRet - Select and emit code to implement ret instructions.
1136bool X86FastISel::X86SelectRet(const Instruction *I) {
1137 const ReturnInst *Ret = cast<ReturnInst>(I);
1138 const Function &F = *I->getParent()->getParent();
1139 const X86MachineFunctionInfo *X86MFInfo =
1140 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1141
1142 if (!FuncInfo.CanLowerReturn)
1143 return false;
1144
Manman Ren57518142016-04-11 21:08:06 +00001145 if (TLI.supportSwiftError() &&
1146 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1147 return false;
1148
Manman Rened967f32016-01-12 01:08:46 +00001149 if (TLI.supportSplitCSR(FuncInfo.MF))
1150 return false;
1151
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001152 CallingConv::ID CC = F.getCallingConv();
1153 if (CC != CallingConv::C &&
1154 CC != CallingConv::Fast &&
1155 CC != CallingConv::X86_FastCall &&
Nico Weberecdf45b2016-07-14 13:54:26 +00001156 CC != CallingConv::X86_StdCall &&
Nico Weberc7bf6462016-07-12 01:30:35 +00001157 CC != CallingConv::X86_ThisCall &&
Nico Weber8d66df12016-07-15 20:18:37 +00001158 CC != CallingConv::X86_64_SysV &&
1159 CC != CallingConv::X86_64_Win64)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001160 return false;
1161
Nico Weberc7bf6462016-07-12 01:30:35 +00001162 // Don't handle popping bytes if they don't fit the ret's immediate.
1163 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001164 return false;
1165
1166 // fastcc with -tailcallopt is intended to provide a guaranteed
1167 // tail call optimization. Fastisel doesn't know how to do that.
1168 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1169 return false;
1170
1171 // Let SDISel handle vararg functions.
1172 if (F.isVarArg())
1173 return false;
1174
1175 // Build a list of return value registers.
1176 SmallVector<unsigned, 4> RetRegs;
1177
1178 if (Ret->getNumOperands() > 0) {
1179 SmallVector<ISD::OutputArg, 4> Outs;
Mehdi Amini44ede332015-07-09 02:09:04 +00001180 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001181
1182 // Analyze operands of the call, assigning locations to each operand.
1183 SmallVector<CCValAssign, 16> ValLocs;
1184 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1185 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1186
1187 const Value *RV = Ret->getOperand(0);
1188 unsigned Reg = getRegForValue(RV);
1189 if (Reg == 0)
1190 return false;
1191
1192 // Only handle a single return value for now.
1193 if (ValLocs.size() != 1)
1194 return false;
1195
1196 CCValAssign &VA = ValLocs[0];
1197
1198 // Don't bother handling odd stuff for now.
1199 if (VA.getLocInfo() != CCValAssign::Full)
1200 return false;
1201 // Only handle register returns for now.
1202 if (!VA.isRegLoc())
1203 return false;
1204
1205 // The calling-convention tables for x87 returns don't tell
1206 // the whole story.
1207 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1208 return false;
1209
1210 unsigned SrcReg = Reg + VA.getValNo();
Mehdi Amini44ede332015-07-09 02:09:04 +00001211 EVT SrcVT = TLI.getValueType(DL, RV->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001212 EVT DstVT = VA.getValVT();
1213 // Special handling for extended integers.
1214 if (SrcVT != DstVT) {
1215 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1216 return false;
1217
1218 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1219 return false;
1220
1221 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1222
1223 if (SrcVT == MVT::i1) {
1224 if (Outs[0].Flags.isSExt())
1225 return false;
1226 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1227 SrcVT = MVT::i8;
1228 }
1229 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1230 ISD::SIGN_EXTEND;
1231 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1232 SrcReg, /*TODO: Kill=*/false);
1233 }
1234
1235 // Make the copy.
1236 unsigned DstReg = VA.getLocReg();
1237 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1238 // Avoid a cross-class copy. This is very unlikely.
1239 if (!SrcRC->contains(DstReg))
1240 return false;
1241 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1242 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1243
1244 // Add register to return instruction.
1245 RetRegs.push_back(VA.getLocReg());
1246 }
1247
Manman Ren1c3f65a2016-04-26 18:08:06 +00001248 // Swift calling convention does not require we copy the sret argument
1249 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1250
Dimitry Andric227b9282016-01-03 17:22:03 +00001251 // All x86 ABIs require that for returning structs by value we copy
1252 // the sret argument into %rax/%eax (depending on ABI) for the return.
1253 // We saved the argument into a virtual register in the entry block,
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00001254 // so now we copy the value out and into %rax/%eax.
Manman Ren1c3f65a2016-04-26 18:08:06 +00001255 if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001256 unsigned Reg = X86MFInfo->getSRetReturnReg();
1257 assert(Reg &&
1258 "SRetReturnReg should have been set in LowerFormalArguments()!");
1259 unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1261 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1262 RetRegs.push_back(RetReg);
1263 }
1264
1265 // Now emit the RET.
Nico Weberc7bf6462016-07-12 01:30:35 +00001266 MachineInstrBuilder MIB;
1267 if (X86MFInfo->getBytesToPopOnReturn()) {
1268 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1269 TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1270 .addImm(X86MFInfo->getBytesToPopOnReturn());
1271 } else {
1272 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1273 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1274 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001275 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1276 MIB.addReg(RetRegs[i], RegState::Implicit);
1277 return true;
1278}
1279
1280/// X86SelectLoad - Select and emit code to implement load instructions.
1281///
1282bool X86FastISel::X86SelectLoad(const Instruction *I) {
1283 const LoadInst *LI = cast<LoadInst>(I);
1284
1285 // Atomic loads need special handling.
1286 if (LI->isAtomic())
1287 return false;
1288
Manman Ren57518142016-04-11 21:08:06 +00001289 const Value *SV = I->getOperand(0);
1290 if (TLI.supportSwiftError()) {
1291 // Swifterror values can come from either a function parameter with
1292 // swifterror attribute or an alloca with swifterror attribute.
1293 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1294 if (Arg->hasSwiftErrorAttr())
1295 return false;
1296 }
1297
1298 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1299 if (Alloca->isSwiftError())
1300 return false;
1301 }
1302 }
1303
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001304 MVT VT;
1305 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1306 return false;
1307
1308 const Value *Ptr = LI->getPointerOperand();
1309
1310 X86AddressMode AM;
1311 if (!X86SelectAddress(Ptr, AM))
1312 return false;
1313
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001314 unsigned Alignment = LI->getAlignment();
1315 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1316 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1317 Alignment = ABIAlignment;
1318
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001319 unsigned ResultReg = 0;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001320 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1321 Alignment))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001322 return false;
1323
1324 updateValueMap(I, ResultReg);
1325 return true;
1326}
1327
1328static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1329 bool HasAVX = Subtarget->hasAVX();
1330 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1331 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1332
1333 switch (VT.getSimpleVT().SimpleTy) {
1334 default: return 0;
1335 case MVT::i8: return X86::CMP8rr;
1336 case MVT::i16: return X86::CMP16rr;
1337 case MVT::i32: return X86::CMP32rr;
1338 case MVT::i64: return X86::CMP64rr;
1339 case MVT::f32:
1340 return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
1341 case MVT::f64:
1342 return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
1343 }
1344}
1345
Rafael Espindola19141f22015-03-16 14:05:49 +00001346/// If we have a comparison with RHS as the RHS of the comparison, return an
1347/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001348static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
Rafael Espindola933f51a2015-03-16 14:25:08 +00001349 int64_t Val = RHSC->getSExtValue();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001350 switch (VT.getSimpleVT().SimpleTy) {
1351 // Otherwise, we can't fold the immediate into this comparison.
Rafael Espindola19141f22015-03-16 14:05:49 +00001352 default:
1353 return 0;
1354 case MVT::i8:
1355 return X86::CMP8ri;
1356 case MVT::i16:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001357 if (isInt<8>(Val))
1358 return X86::CMP16ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001359 return X86::CMP16ri;
1360 case MVT::i32:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001361 if (isInt<8>(Val))
1362 return X86::CMP32ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001363 return X86::CMP32ri;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001364 case MVT::i64:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001365 if (isInt<8>(Val))
1366 return X86::CMP64ri8;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001367 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1368 // field.
Rafael Espindola933f51a2015-03-16 14:25:08 +00001369 if (isInt<32>(Val))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001370 return X86::CMP64ri32;
1371 return 0;
1372 }
1373}
1374
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001375bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1376 const DebugLoc &CurDbgLoc) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001377 unsigned Op0Reg = getRegForValue(Op0);
1378 if (Op0Reg == 0) return false;
1379
1380 // Handle 'null' like i32/i64 0.
1381 if (isa<ConstantPointerNull>(Op1))
1382 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1383
1384 // We have two options: compare with register or immediate. If the RHS of
1385 // the compare is an immediate that we can fold into this compare, use
1386 // CMPri, otherwise use CMPrr.
1387 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1388 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1389 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1390 .addReg(Op0Reg)
1391 .addImm(Op1C->getSExtValue());
1392 return true;
1393 }
1394 }
1395
1396 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1397 if (CompareOpc == 0) return false;
1398
1399 unsigned Op1Reg = getRegForValue(Op1);
1400 if (Op1Reg == 0) return false;
1401 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1402 .addReg(Op0Reg)
1403 .addReg(Op1Reg);
1404
1405 return true;
1406}
1407
1408bool X86FastISel::X86SelectCmp(const Instruction *I) {
1409 const CmpInst *CI = cast<CmpInst>(I);
1410
1411 MVT VT;
1412 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1413 return false;
1414
Elena Demikhovskyad0a56f2016-07-06 14:15:43 +00001415 if (I->getType()->isIntegerTy(1) && Subtarget->hasAVX512())
1416 return false;
1417
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001418 // Try to optimize or fold the cmp.
1419 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1420 unsigned ResultReg = 0;
1421 switch (Predicate) {
1422 default: break;
1423 case CmpInst::FCMP_FALSE: {
1424 ResultReg = createResultReg(&X86::GR32RegClass);
1425 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1426 ResultReg);
1427 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1428 X86::sub_8bit);
1429 if (!ResultReg)
1430 return false;
1431 break;
1432 }
1433 case CmpInst::FCMP_TRUE: {
1434 ResultReg = createResultReg(&X86::GR8RegClass);
1435 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1436 ResultReg).addImm(1);
1437 break;
1438 }
1439 }
1440
1441 if (ResultReg) {
1442 updateValueMap(I, ResultReg);
1443 return true;
1444 }
1445
1446 const Value *LHS = CI->getOperand(0);
1447 const Value *RHS = CI->getOperand(1);
1448
1449 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1450 // We don't have to materialize a zero constant for this case and can just use
1451 // %x again on the RHS.
1452 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1453 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1454 if (RHSC && RHSC->isNullValue())
1455 RHS = LHS;
1456 }
1457
1458 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
Craig Topper428169a2016-09-05 07:14:21 +00001459 static const uint16_t SETFOpcTable[2][3] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001460 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1461 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1462 };
Craig Topper428169a2016-09-05 07:14:21 +00001463 const uint16_t *SETFOpc = nullptr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001464 switch (Predicate) {
1465 default: break;
1466 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1467 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1468 }
1469
1470 ResultReg = createResultReg(&X86::GR8RegClass);
1471 if (SETFOpc) {
1472 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1473 return false;
1474
1475 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1476 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1477 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1478 FlagReg1);
1479 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1480 FlagReg2);
1481 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1482 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1483 updateValueMap(I, ResultReg);
1484 return true;
1485 }
1486
1487 X86::CondCode CC;
1488 bool SwapArgs;
1489 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1490 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1491 unsigned Opc = X86::getSETFromCond(CC);
1492
1493 if (SwapArgs)
1494 std::swap(LHS, RHS);
1495
1496 // Emit a compare of LHS/RHS.
1497 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1498 return false;
1499
1500 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1501 updateValueMap(I, ResultReg);
1502 return true;
1503}
1504
1505bool X86FastISel::X86SelectZExt(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001506 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001507 if (!TLI.isTypeLegal(DstVT))
1508 return false;
1509
1510 unsigned ResultReg = getRegForValue(I->getOperand(0));
1511 if (ResultReg == 0)
1512 return false;
1513
1514 // Handle zero-extension from i1 to i8, which is common.
Mehdi Amini44ede332015-07-09 02:09:04 +00001515 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001516 if (SrcVT.SimpleTy == MVT::i1) {
1517 // Set the high bits to zero.
1518 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1519 SrcVT = MVT::i8;
1520
1521 if (ResultReg == 0)
1522 return false;
1523 }
1524
1525 if (DstVT == MVT::i64) {
1526 // Handle extension to 64-bits via sub-register shenanigans.
1527 unsigned MovInst;
1528
1529 switch (SrcVT.SimpleTy) {
1530 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1531 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1532 case MVT::i32: MovInst = X86::MOV32rr; break;
1533 default: llvm_unreachable("Unexpected zext to i64 source type");
1534 }
1535
1536 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1538 .addReg(ResultReg);
1539
1540 ResultReg = createResultReg(&X86::GR64RegClass);
1541 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1542 ResultReg)
1543 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1544 } else if (DstVT != MVT::i8) {
1545 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1546 ResultReg, /*Kill=*/true);
1547 if (ResultReg == 0)
1548 return false;
1549 }
1550
1551 updateValueMap(I, ResultReg);
1552 return true;
1553}
1554
1555bool X86FastISel::X86SelectBranch(const Instruction *I) {
1556 // Unconditional branches are selected by tablegen-generated code.
1557 // Handle a conditional branch.
1558 const BranchInst *BI = cast<BranchInst>(I);
1559 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1560 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1561
1562 // Fold the common case of a conditional branch with a comparison
1563 // in the same block (values defined on other blocks may not have
1564 // initialized registers).
1565 X86::CondCode CC;
1566 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1567 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001568 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001569
1570 // Try to optimize or fold the cmp.
1571 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1572 switch (Predicate) {
1573 default: break;
1574 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1575 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1576 }
1577
1578 const Value *CmpLHS = CI->getOperand(0);
1579 const Value *CmpRHS = CI->getOperand(1);
1580
1581 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1582 // 0.0.
1583 // We don't have to materialize a zero constant for this case and can just
1584 // use %x again on the RHS.
1585 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1586 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1587 if (CmpRHSC && CmpRHSC->isNullValue())
1588 CmpRHS = CmpLHS;
1589 }
1590
1591 // Try to take advantage of fallthrough opportunities.
1592 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1593 std::swap(TrueMBB, FalseMBB);
1594 Predicate = CmpInst::getInversePredicate(Predicate);
1595 }
1596
1597 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1598 // code check. Instead two branch instructions are required to check all
1599 // the flags. First we change the predicate to a supported condition code,
1600 // which will be the first branch. Later one we will emit the second
1601 // branch.
1602 bool NeedExtraBranch = false;
1603 switch (Predicate) {
1604 default: break;
1605 case CmpInst::FCMP_OEQ:
Justin Bognerb03fd122016-08-17 05:10:15 +00001606 std::swap(TrueMBB, FalseMBB);
1607 LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001608 case CmpInst::FCMP_UNE:
1609 NeedExtraBranch = true;
1610 Predicate = CmpInst::FCMP_ONE;
1611 break;
1612 }
1613
1614 bool SwapArgs;
1615 unsigned BranchOpc;
1616 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1617 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1618
1619 BranchOpc = X86::GetCondBranchFromCond(CC);
1620 if (SwapArgs)
1621 std::swap(CmpLHS, CmpRHS);
1622
1623 // Emit a compare of the LHS and RHS, setting the flags.
1624 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1625 return false;
1626
1627 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1628 .addMBB(TrueMBB);
1629
1630 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1631 // to UNE above).
1632 if (NeedExtraBranch) {
1633 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1634 .addMBB(TrueMBB);
1635 }
1636
Matthias Braun17af6072015-08-26 01:38:00 +00001637 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001638 return true;
1639 }
1640 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1641 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1642 // typically happen for _Bool and C++ bools.
1643 MVT SourceVT;
1644 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1645 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1646 unsigned TestOpc = 0;
1647 switch (SourceVT.SimpleTy) {
1648 default: break;
1649 case MVT::i8: TestOpc = X86::TEST8ri; break;
1650 case MVT::i16: TestOpc = X86::TEST16ri; break;
1651 case MVT::i32: TestOpc = X86::TEST32ri; break;
1652 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1653 }
1654 if (TestOpc) {
1655 unsigned OpReg = getRegForValue(TI->getOperand(0));
1656 if (OpReg == 0) return false;
Guy Blank9ae797a2016-08-21 08:02:27 +00001657
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001658 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1659 .addReg(OpReg).addImm(1);
1660
1661 unsigned JmpOpc = X86::JNE_1;
1662 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1663 std::swap(TrueMBB, FalseMBB);
1664 JmpOpc = X86::JE_1;
1665 }
1666
1667 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1668 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001669
1670 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001671 return true;
1672 }
1673 }
1674 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1675 // Fake request the condition, otherwise the intrinsic might be completely
1676 // optimized away.
1677 unsigned TmpReg = getRegForValue(BI->getCondition());
1678 if (TmpReg == 0)
1679 return false;
1680
1681 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1682
1683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1684 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001685 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001686 return true;
1687 }
1688
1689 // Otherwise do a clumsy setcc and re-test it.
1690 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1691 // in an explicit cast, so make sure to handle that correctly.
1692 unsigned OpReg = getRegForValue(BI->getCondition());
1693 if (OpReg == 0) return false;
1694
Guy Blank9ae797a2016-08-21 08:02:27 +00001695 // In case OpReg is a K register, kortest against itself.
1696 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass)
1697 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::KORTESTWrr))
1698 .addReg(OpReg)
1699 .addReg(OpReg);
1700 else
1701 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1702 .addReg(OpReg)
1703 .addImm(1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1705 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001706 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001707 return true;
1708}
1709
1710bool X86FastISel::X86SelectShift(const Instruction *I) {
1711 unsigned CReg = 0, OpReg = 0;
1712 const TargetRegisterClass *RC = nullptr;
1713 if (I->getType()->isIntegerTy(8)) {
1714 CReg = X86::CL;
1715 RC = &X86::GR8RegClass;
1716 switch (I->getOpcode()) {
1717 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1718 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1719 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1720 default: return false;
1721 }
1722 } else if (I->getType()->isIntegerTy(16)) {
1723 CReg = X86::CX;
1724 RC = &X86::GR16RegClass;
1725 switch (I->getOpcode()) {
1726 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1727 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1728 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1729 default: return false;
1730 }
1731 } else if (I->getType()->isIntegerTy(32)) {
1732 CReg = X86::ECX;
1733 RC = &X86::GR32RegClass;
1734 switch (I->getOpcode()) {
1735 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1736 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1737 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1738 default: return false;
1739 }
1740 } else if (I->getType()->isIntegerTy(64)) {
1741 CReg = X86::RCX;
1742 RC = &X86::GR64RegClass;
1743 switch (I->getOpcode()) {
1744 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1745 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1746 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1747 default: return false;
1748 }
1749 } else {
1750 return false;
1751 }
1752
1753 MVT VT;
1754 if (!isTypeLegal(I->getType(), VT))
1755 return false;
1756
1757 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1758 if (Op0Reg == 0) return false;
1759
1760 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1761 if (Op1Reg == 0) return false;
1762 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1763 CReg).addReg(Op1Reg);
1764
1765 // The shift instruction uses X86::CL. If we defined a super-register
1766 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1767 if (CReg != X86::CL)
1768 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1769 TII.get(TargetOpcode::KILL), X86::CL)
1770 .addReg(CReg, RegState::Kill);
1771
1772 unsigned ResultReg = createResultReg(RC);
1773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1774 .addReg(Op0Reg);
1775 updateValueMap(I, ResultReg);
1776 return true;
1777}
1778
1779bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1780 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1781 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1782 const static bool S = true; // IsSigned
1783 const static bool U = false; // !IsSigned
1784 const static unsigned Copy = TargetOpcode::COPY;
1785 // For the X86 DIV/IDIV instruction, in most cases the dividend
1786 // (numerator) must be in a specific register pair highreg:lowreg,
1787 // producing the quotient in lowreg and the remainder in highreg.
1788 // For most data types, to set up the instruction, the dividend is
1789 // copied into lowreg, and lowreg is sign-extended or zero-extended
1790 // into highreg. The exception is i8, where the dividend is defined
1791 // as a single register rather than a register pair, and we
1792 // therefore directly sign-extend or zero-extend the dividend into
1793 // lowreg, instead of copying, and ignore the highreg.
1794 const static struct DivRemEntry {
1795 // The following portion depends only on the data type.
1796 const TargetRegisterClass *RC;
1797 unsigned LowInReg; // low part of the register pair
1798 unsigned HighInReg; // high part of the register pair
1799 // The following portion depends on both the data type and the operation.
1800 struct DivRemResult {
1801 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1802 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1803 // highreg, or copying a zero into highreg.
1804 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1805 // zero/sign-extending into lowreg for i8.
1806 unsigned DivRemResultReg; // Register containing the desired result.
1807 bool IsOpSigned; // Whether to use signed or unsigned form.
1808 } ResultTable[NumOps];
1809 } OpTable[NumTypes] = {
1810 { &X86::GR8RegClass, X86::AX, 0, {
1811 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1812 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1813 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1814 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1815 }
1816 }, // i8
1817 { &X86::GR16RegClass, X86::AX, X86::DX, {
1818 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1819 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1820 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1821 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1822 }
1823 }, // i16
1824 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1825 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1826 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1827 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1828 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1829 }
1830 }, // i32
1831 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1832 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1833 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1834 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1835 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1836 }
1837 }, // i64
1838 };
1839
1840 MVT VT;
1841 if (!isTypeLegal(I->getType(), VT))
1842 return false;
1843
1844 unsigned TypeIndex, OpIndex;
1845 switch (VT.SimpleTy) {
1846 default: return false;
1847 case MVT::i8: TypeIndex = 0; break;
1848 case MVT::i16: TypeIndex = 1; break;
1849 case MVT::i32: TypeIndex = 2; break;
1850 case MVT::i64: TypeIndex = 3;
1851 if (!Subtarget->is64Bit())
1852 return false;
1853 break;
1854 }
1855
1856 switch (I->getOpcode()) {
1857 default: llvm_unreachable("Unexpected div/rem opcode");
1858 case Instruction::SDiv: OpIndex = 0; break;
1859 case Instruction::SRem: OpIndex = 1; break;
1860 case Instruction::UDiv: OpIndex = 2; break;
1861 case Instruction::URem: OpIndex = 3; break;
1862 }
1863
1864 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1865 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1866 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1867 if (Op0Reg == 0)
1868 return false;
1869 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1870 if (Op1Reg == 0)
1871 return false;
1872
1873 // Move op0 into low-order input register.
1874 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1875 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1876 // Zero-extend or sign-extend into high-order input register.
1877 if (OpEntry.OpSignExtend) {
1878 if (OpEntry.IsOpSigned)
1879 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1880 TII.get(OpEntry.OpSignExtend));
1881 else {
1882 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1883 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1884 TII.get(X86::MOV32r0), Zero32);
1885
1886 // Copy the zero into the appropriate sub/super/identical physical
1887 // register. Unfortunately the operations needed are not uniform enough
1888 // to fit neatly into the table above.
1889 if (VT.SimpleTy == MVT::i16) {
1890 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1891 TII.get(Copy), TypeEntry.HighInReg)
1892 .addReg(Zero32, 0, X86::sub_16bit);
1893 } else if (VT.SimpleTy == MVT::i32) {
1894 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1895 TII.get(Copy), TypeEntry.HighInReg)
1896 .addReg(Zero32);
1897 } else if (VT.SimpleTy == MVT::i64) {
1898 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1899 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1900 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1901 }
1902 }
1903 }
1904 // Generate the DIV/IDIV instruction.
1905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1906 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1907 // For i8 remainder, we can't reference AH directly, as we'll end
1908 // up with bogus copies like %R9B = COPY %AH. Reference AX
1909 // instead to prevent AH references in a REX instruction.
1910 //
1911 // The current assumption of the fast register allocator is that isel
1912 // won't generate explicit references to the GPR8_NOREX registers. If
1913 // the allocator and/or the backend get enhanced to be more robust in
1914 // that regard, this can be, and should be, removed.
1915 unsigned ResultReg = 0;
1916 if ((I->getOpcode() == Instruction::SRem ||
1917 I->getOpcode() == Instruction::URem) &&
1918 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1919 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1920 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1921 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1922 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1923
1924 // Shift AX right by 8 bits instead of using AH.
1925 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1926 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1927
1928 // Now reference the 8-bit subreg of the result.
1929 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1930 /*Kill=*/true, X86::sub_8bit);
1931 }
1932 // Copy the result out of the physreg if we haven't already.
1933 if (!ResultReg) {
1934 ResultReg = createResultReg(TypeEntry.RC);
1935 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
1936 .addReg(OpEntry.DivRemResultReg);
1937 }
1938 updateValueMap(I, ResultReg);
1939
1940 return true;
1941}
1942
1943/// \brief Emit a conditional move instruction (if the are supported) to lower
1944/// the select.
1945bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
1946 // Check if the subtarget supports these instructions.
1947 if (!Subtarget->hasCMov())
1948 return false;
1949
1950 // FIXME: Add support for i8.
1951 if (RetVT < MVT::i16 || RetVT > MVT::i64)
1952 return false;
1953
1954 const Value *Cond = I->getOperand(0);
1955 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1956 bool NeedTest = true;
1957 X86::CondCode CC = X86::COND_NE;
1958
1959 // Optimize conditions coming from a compare if both instructions are in the
1960 // same basic block (values defined in other basic blocks may not have
1961 // initialized registers).
1962 const auto *CI = dyn_cast<CmpInst>(Cond);
1963 if (CI && (CI->getParent() == I->getParent())) {
1964 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1965
1966 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
Craig Topper428169a2016-09-05 07:14:21 +00001967 static const uint16_t SETFOpcTable[2][3] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001968 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
1969 { X86::SETPr, X86::SETNEr, X86::OR8rr }
1970 };
Craig Topper428169a2016-09-05 07:14:21 +00001971 const uint16_t *SETFOpc = nullptr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001972 switch (Predicate) {
1973 default: break;
1974 case CmpInst::FCMP_OEQ:
1975 SETFOpc = &SETFOpcTable[0][0];
1976 Predicate = CmpInst::ICMP_NE;
1977 break;
1978 case CmpInst::FCMP_UNE:
1979 SETFOpc = &SETFOpcTable[1][0];
1980 Predicate = CmpInst::ICMP_NE;
1981 break;
1982 }
1983
1984 bool NeedSwap;
1985 std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
1986 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1987
1988 const Value *CmpLHS = CI->getOperand(0);
1989 const Value *CmpRHS = CI->getOperand(1);
1990 if (NeedSwap)
1991 std::swap(CmpLHS, CmpRHS);
1992
Mehdi Amini44ede332015-07-09 02:09:04 +00001993 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001994 // Emit a compare of the LHS and RHS, setting the flags.
1995 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
1996 return false;
1997
1998 if (SETFOpc) {
1999 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
2000 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
2001 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
2002 FlagReg1);
2003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
2004 FlagReg2);
2005 auto const &II = TII.get(SETFOpc[2]);
2006 if (II.getNumDefs()) {
2007 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
2008 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2009 .addReg(FlagReg2).addReg(FlagReg1);
2010 } else {
2011 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2012 .addReg(FlagReg2).addReg(FlagReg1);
2013 }
2014 }
2015 NeedTest = false;
2016 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2017 // Fake request the condition, otherwise the intrinsic might be completely
2018 // optimized away.
2019 unsigned TmpReg = getRegForValue(Cond);
2020 if (TmpReg == 0)
2021 return false;
2022
2023 NeedTest = false;
2024 }
2025
2026 if (NeedTest) {
2027 // Selects operate on i1, however, CondReg is 8 bits width and may contain
2028 // garbage. Indeed, only the less significant bit is supposed to be
2029 // accurate. If we read more than the lsb, we may see non-zero values
2030 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2031 // the select. This is achieved by performing TEST against 1.
2032 unsigned CondReg = getRegForValue(Cond);
2033 if (CondReg == 0)
2034 return false;
2035 bool CondIsKill = hasTrivialKill(Cond);
2036
Guy Blank9ae797a2016-08-21 08:02:27 +00002037 // In case OpReg is a K register, kortest against itself.
2038 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass)
2039 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2040 TII.get(X86::KORTESTWrr))
2041 .addReg(CondReg, getKillRegState(CondIsKill))
2042 .addReg(CondReg);
2043 else
2044 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2045 .addReg(CondReg, getKillRegState(CondIsKill))
2046 .addImm(1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002047 }
2048
2049 const Value *LHS = I->getOperand(1);
2050 const Value *RHS = I->getOperand(2);
2051
2052 unsigned RHSReg = getRegForValue(RHS);
2053 bool RHSIsKill = hasTrivialKill(RHS);
2054
2055 unsigned LHSReg = getRegForValue(LHS);
2056 bool LHSIsKill = hasTrivialKill(LHS);
2057
2058 if (!LHSReg || !RHSReg)
2059 return false;
2060
2061 unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
2062 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
2063 LHSReg, LHSIsKill);
2064 updateValueMap(I, ResultReg);
2065 return true;
2066}
2067
Sanjay Patel302404b2015-03-05 21:46:54 +00002068/// \brief Emit SSE or AVX instructions to lower the select.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002069///
2070/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2071/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
Sanjay Patel302404b2015-03-05 21:46:54 +00002072/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002073bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2074 // Optimize conditions coming from a compare if both instructions are in the
2075 // same basic block (values defined in other basic blocks may not have
2076 // initialized registers).
2077 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2078 if (!CI || (CI->getParent() != I->getParent()))
2079 return false;
2080
2081 if (I->getType() != CI->getOperand(0)->getType() ||
2082 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2083 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2084 return false;
2085
2086 const Value *CmpLHS = CI->getOperand(0);
2087 const Value *CmpRHS = CI->getOperand(1);
2088 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2089
2090 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2091 // We don't have to materialize a zero constant for this case and can just use
2092 // %x again on the RHS.
2093 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2094 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2095 if (CmpRHSC && CmpRHSC->isNullValue())
2096 CmpRHS = CmpLHS;
2097 }
2098
2099 unsigned CC;
2100 bool NeedSwap;
2101 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2102 if (CC > 7)
2103 return false;
2104
2105 if (NeedSwap)
2106 std::swap(CmpLHS, CmpRHS);
2107
Sanjay Patel302404b2015-03-05 21:46:54 +00002108 // Choose the SSE instruction sequence based on data type (float or double).
Craig Topper428169a2016-09-05 07:14:21 +00002109 static const uint16_t OpcTable[2][4] = {
Sanjay Patel302404b2015-03-05 21:46:54 +00002110 { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr },
2111 { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002112 };
2113
Craig Topper428169a2016-09-05 07:14:21 +00002114 const uint16_t *Opc = nullptr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002115 switch (RetVT.SimpleTy) {
2116 default: return false;
Sanjay Patel302404b2015-03-05 21:46:54 +00002117 case MVT::f32: Opc = &OpcTable[0][0]; break;
2118 case MVT::f64: Opc = &OpcTable[1][0]; break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002119 }
2120
2121 const Value *LHS = I->getOperand(1);
2122 const Value *RHS = I->getOperand(2);
2123
2124 unsigned LHSReg = getRegForValue(LHS);
2125 bool LHSIsKill = hasTrivialKill(LHS);
2126
2127 unsigned RHSReg = getRegForValue(RHS);
2128 bool RHSIsKill = hasTrivialKill(RHS);
2129
2130 unsigned CmpLHSReg = getRegForValue(CmpLHS);
2131 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2132
2133 unsigned CmpRHSReg = getRegForValue(CmpRHS);
2134 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2135
2136 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2137 return false;
2138
2139 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
Sanjay Patel302404b2015-03-05 21:46:54 +00002140 unsigned ResultReg;
2141
2142 if (Subtarget->hasAVX()) {
Matthias Braun818c78d2015-08-31 18:25:11 +00002143 const TargetRegisterClass *FR32 = &X86::FR32RegClass;
2144 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2145
Sanjay Patel302404b2015-03-05 21:46:54 +00002146 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2147 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2148 // uses XMM0 as the selection register. That may need just as many
2149 // instructions as the AND/ANDN/OR sequence due to register moves, so
2150 // don't bother.
2151 unsigned CmpOpcode =
2152 (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2153 unsigned BlendOpcode =
2154 (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2155
Matthias Braun818c78d2015-08-31 18:25:11 +00002156 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, FR32, CmpLHSReg, CmpLHSIsKill,
Sanjay Patel302404b2015-03-05 21:46:54 +00002157 CmpRHSReg, CmpRHSIsKill, CC);
Matthias Braun818c78d2015-08-31 18:25:11 +00002158 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2159 LHSReg, LHSIsKill, CmpReg, true);
2160 ResultReg = createResultReg(RC);
2161 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2162 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
Sanjay Patel302404b2015-03-05 21:46:54 +00002163 } else {
2164 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2165 CmpRHSReg, CmpRHSIsKill, CC);
2166 unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
2167 LHSReg, LHSIsKill);
2168 unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
2169 RHSReg, RHSIsKill);
2170 ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
2171 AndReg, /*IsKill=*/true);
2172 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002173 updateValueMap(I, ResultReg);
2174 return true;
2175}
2176
2177bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2178 // These are pseudo CMOV instructions and will be later expanded into control-
2179 // flow.
2180 unsigned Opc;
2181 switch (RetVT.SimpleTy) {
2182 default: return false;
2183 case MVT::i8: Opc = X86::CMOV_GR8; break;
2184 case MVT::i16: Opc = X86::CMOV_GR16; break;
2185 case MVT::i32: Opc = X86::CMOV_GR32; break;
2186 case MVT::f32: Opc = X86::CMOV_FR32; break;
2187 case MVT::f64: Opc = X86::CMOV_FR64; break;
2188 }
2189
2190 const Value *Cond = I->getOperand(0);
2191 X86::CondCode CC = X86::COND_NE;
2192
2193 // Optimize conditions coming from a compare if both instructions are in the
2194 // same basic block (values defined in other basic blocks may not have
2195 // initialized registers).
2196 const auto *CI = dyn_cast<CmpInst>(Cond);
2197 if (CI && (CI->getParent() == I->getParent())) {
2198 bool NeedSwap;
2199 std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
2200 if (CC > X86::LAST_VALID_COND)
2201 return false;
2202
2203 const Value *CmpLHS = CI->getOperand(0);
2204 const Value *CmpRHS = CI->getOperand(1);
2205
2206 if (NeedSwap)
2207 std::swap(CmpLHS, CmpRHS);
2208
Mehdi Amini44ede332015-07-09 02:09:04 +00002209 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002210 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2211 return false;
2212 } else {
2213 unsigned CondReg = getRegForValue(Cond);
2214 if (CondReg == 0)
2215 return false;
2216 bool CondIsKill = hasTrivialKill(Cond);
Guy Blank9ae797a2016-08-21 08:02:27 +00002217
2218 // In case OpReg is a K register, kortest against itself.
2219 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass)
2220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2221 TII.get(X86::KORTESTWrr))
2222 .addReg(CondReg, getKillRegState(CondIsKill))
2223 .addReg(CondReg);
2224 else
2225 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2226 .addReg(CondReg, getKillRegState(CondIsKill))
2227 .addImm(1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002228 }
2229
2230 const Value *LHS = I->getOperand(1);
2231 const Value *RHS = I->getOperand(2);
2232
2233 unsigned LHSReg = getRegForValue(LHS);
2234 bool LHSIsKill = hasTrivialKill(LHS);
2235
2236 unsigned RHSReg = getRegForValue(RHS);
2237 bool RHSIsKill = hasTrivialKill(RHS);
2238
2239 if (!LHSReg || !RHSReg)
2240 return false;
2241
2242 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2243
2244 unsigned ResultReg =
2245 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2246 updateValueMap(I, ResultReg);
2247 return true;
2248}
2249
2250bool X86FastISel::X86SelectSelect(const Instruction *I) {
2251 MVT RetVT;
2252 if (!isTypeLegal(I->getType(), RetVT))
2253 return false;
2254
2255 // Check if we can fold the select.
2256 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2257 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2258 const Value *Opnd = nullptr;
2259 switch (Predicate) {
2260 default: break;
2261 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2262 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2263 }
2264 // No need for a select anymore - this is an unconditional move.
2265 if (Opnd) {
2266 unsigned OpReg = getRegForValue(Opnd);
2267 if (OpReg == 0)
2268 return false;
2269 bool OpIsKill = hasTrivialKill(Opnd);
2270 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2271 unsigned ResultReg = createResultReg(RC);
2272 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2273 TII.get(TargetOpcode::COPY), ResultReg)
2274 .addReg(OpReg, getKillRegState(OpIsKill));
2275 updateValueMap(I, ResultReg);
2276 return true;
2277 }
2278 }
2279
2280 // First try to use real conditional move instructions.
2281 if (X86FastEmitCMoveSelect(RetVT, I))
2282 return true;
2283
2284 // Try to use a sequence of SSE instructions to simulate a conditional move.
2285 if (X86FastEmitSSESelect(RetVT, I))
2286 return true;
2287
2288 // Fall-back to pseudo conditional move instructions, which will be later
2289 // converted to control-flow.
2290 if (X86FastEmitPseudoSelect(RetVT, I))
2291 return true;
2292
2293 return false;
2294}
2295
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002296bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
Andrea Di Biagio98c36702015-04-20 11:56:59 +00002297 // The target-independent selection algorithm in FastISel already knows how
2298 // to select a SINT_TO_FP if the target is SSE but not AVX.
2299 // Early exit if the subtarget doesn't have AVX.
2300 if (!Subtarget->hasAVX())
2301 return false;
2302
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002303 if (!I->getOperand(0)->getType()->isIntegerTy(32))
2304 return false;
2305
2306 // Select integer to float/double conversion.
2307 unsigned OpReg = getRegForValue(I->getOperand(0));
2308 if (OpReg == 0)
2309 return false;
2310
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002311 const TargetRegisterClass *RC = nullptr;
2312 unsigned Opcode;
2313
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002314 if (I->getType()->isDoubleTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002315 // sitofp int -> double
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002316 Opcode = X86::VCVTSI2SDrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002317 RC = &X86::FR64RegClass;
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002318 } else if (I->getType()->isFloatTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002319 // sitofp int -> float
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002320 Opcode = X86::VCVTSI2SSrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002321 RC = &X86::FR32RegClass;
2322 } else
2323 return false;
2324
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002325 unsigned ImplicitDefReg = createResultReg(RC);
2326 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2327 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2328 unsigned ResultReg =
2329 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002330 updateValueMap(I, ResultReg);
2331 return true;
2332}
2333
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002334// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2335bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2336 unsigned TargetOpc,
2337 const TargetRegisterClass *RC) {
2338 assert((I->getOpcode() == Instruction::FPExt ||
2339 I->getOpcode() == Instruction::FPTrunc) &&
2340 "Instruction must be an FPExt or FPTrunc!");
2341
2342 unsigned OpReg = getRegForValue(I->getOperand(0));
2343 if (OpReg == 0)
2344 return false;
2345
2346 unsigned ResultReg = createResultReg(RC);
2347 MachineInstrBuilder MIB;
2348 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2349 ResultReg);
2350 if (Subtarget->hasAVX())
2351 MIB.addReg(OpReg);
2352 MIB.addReg(OpReg);
2353 updateValueMap(I, ResultReg);
2354 return true;
2355}
2356
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002357bool X86FastISel::X86SelectFPExt(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002358 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2359 I->getOperand(0)->getType()->isFloatTy()) {
2360 // fpext from float to double.
2361 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2362 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002363 }
2364
2365 return false;
2366}
2367
2368bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002369 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2370 I->getOperand(0)->getType()->isDoubleTy()) {
2371 // fptrunc from double to float.
2372 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2373 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002374 }
2375
2376 return false;
2377}
2378
2379bool X86FastISel::X86SelectTrunc(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002380 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2381 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002382
2383 // This code only handles truncation to byte.
2384 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2385 return false;
2386 if (!TLI.isTypeLegal(SrcVT))
2387 return false;
2388
2389 unsigned InputReg = getRegForValue(I->getOperand(0));
2390 if (!InputReg)
2391 // Unhandled operand. Halt "fast" selection and bail.
2392 return false;
2393
2394 if (SrcVT == MVT::i8) {
2395 // Truncate from i8 to i1; no code needed.
2396 updateValueMap(I, InputReg);
2397 return true;
2398 }
2399
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002400 bool KillInputReg = false;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002401 if (!Subtarget->is64Bit()) {
2402 // If we're on x86-32; we can't extract an i8 from a general register.
2403 // First issue a copy to GR16_ABCD or GR32_ABCD.
2404 const TargetRegisterClass *CopyRC =
2405 (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
2406 unsigned CopyReg = createResultReg(CopyRC);
2407 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2408 TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
2409 InputReg = CopyReg;
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002410 KillInputReg = true;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002411 }
2412
2413 // Issue an extract_subreg.
2414 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002415 InputReg, KillInputReg,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002416 X86::sub_8bit);
2417 if (!ResultReg)
2418 return false;
2419
2420 updateValueMap(I, ResultReg);
2421 return true;
2422}
2423
2424bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2425 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2426}
2427
2428bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2429 X86AddressMode SrcAM, uint64_t Len) {
2430
2431 // Make sure we don't bloat code by inlining very large memcpy's.
2432 if (!IsMemcpySmall(Len))
2433 return false;
2434
2435 bool i64Legal = Subtarget->is64Bit();
2436
2437 // We don't care about alignment here since we just emit integer accesses.
2438 while (Len) {
2439 MVT VT;
2440 if (Len >= 8 && i64Legal)
2441 VT = MVT::i64;
2442 else if (Len >= 4)
2443 VT = MVT::i32;
2444 else if (Len >= 2)
2445 VT = MVT::i16;
2446 else
2447 VT = MVT::i8;
2448
2449 unsigned Reg;
2450 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2451 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2452 assert(RV && "Failed to emit load or store??");
2453
2454 unsigned Size = VT.getSizeInBits()/8;
2455 Len -= Size;
2456 DestAM.Disp += Size;
2457 SrcAM.Disp += Size;
2458 }
2459
2460 return true;
2461}
2462
2463bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2464 // FIXME: Handle more intrinsics.
2465 switch (II->getIntrinsicID()) {
2466 default: return false;
Andrea Di Biagio70351782015-02-20 19:37:14 +00002467 case Intrinsic::convert_from_fp16:
2468 case Intrinsic::convert_to_fp16: {
Eric Christopher824f42f2015-05-12 01:26:05 +00002469 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
Andrea Di Biagio70351782015-02-20 19:37:14 +00002470 return false;
2471
2472 const Value *Op = II->getArgOperand(0);
2473 unsigned InputReg = getRegForValue(Op);
2474 if (InputReg == 0)
2475 return false;
2476
2477 // F16C only allows converting from float to half and from half to float.
2478 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2479 if (IsFloatToHalf) {
2480 if (!Op->getType()->isFloatTy())
2481 return false;
2482 } else {
2483 if (!II->getType()->isFloatTy())
2484 return false;
2485 }
2486
2487 unsigned ResultReg = 0;
2488 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2489 if (IsFloatToHalf) {
2490 // 'InputReg' is implicitly promoted from register class FR32 to
2491 // register class VR128 by method 'constrainOperandRegClass' which is
2492 // directly called by 'fastEmitInst_ri'.
2493 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
Ahmed Bougacha68a8efa2016-02-02 01:44:03 +00002494 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2495 // It's consistent with the other FP instructions, which are usually
2496 // controlled by MXCSR.
2497 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
Andrea Di Biagio70351782015-02-20 19:37:14 +00002498
2499 // Move the lower 32-bits of ResultReg to another register of class GR32.
2500 ResultReg = createResultReg(&X86::GR32RegClass);
2501 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2502 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2503 .addReg(InputReg, RegState::Kill);
2504
2505 // The result value is in the lower 16-bits of ResultReg.
2506 unsigned RegIdx = X86::sub_16bit;
2507 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2508 } else {
2509 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2510 // Explicitly sign-extend the input to 32-bit.
2511 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2512 /*Kill=*/false);
2513
2514 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2515 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2516 InputReg, /*Kill=*/true);
2517
2518 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2519
2520 // The result value is in the lower 32-bits of ResultReg.
2521 // Emit an explicit copy from register class VR128 to register class FR32.
2522 ResultReg = createResultReg(&X86::FR32RegClass);
2523 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2524 TII.get(TargetOpcode::COPY), ResultReg)
2525 .addReg(InputReg, RegState::Kill);
2526 }
2527
2528 updateValueMap(II, ResultReg);
2529 return true;
2530 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002531 case Intrinsic::frameaddress: {
David Majnemerca194852015-02-10 22:00:34 +00002532 MachineFunction *MF = FuncInfo.MF;
2533 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2534 return false;
2535
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002536 Type *RetTy = II->getCalledFunction()->getReturnType();
2537
2538 MVT VT;
2539 if (!isTypeLegal(RetTy, VT))
2540 return false;
2541
2542 unsigned Opc;
2543 const TargetRegisterClass *RC = nullptr;
2544
2545 switch (VT.SimpleTy) {
2546 default: llvm_unreachable("Invalid result type for frameaddress.");
2547 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2548 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2549 }
2550
2551 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2552 // we get the wrong frame register.
Matthias Braun941a7052016-07-28 18:40:00 +00002553 MachineFrameInfo &MFI = MF->getFrameInfo();
2554 MFI.setFrameAddressIsTaken(true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002555
Eric Christophera1c535b2015-02-02 23:03:45 +00002556 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
David Majnemerca194852015-02-10 22:00:34 +00002557 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002558 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2559 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2560 "Invalid Frame Register!");
2561
2562 // Always make a copy of the frame register to to a vreg first, so that we
2563 // never directly reference the frame register (the TwoAddressInstruction-
2564 // Pass doesn't like that).
2565 unsigned SrcReg = createResultReg(RC);
2566 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2567 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2568
2569 // Now recursively load from the frame address.
2570 // movq (%rbp), %rax
2571 // movq (%rax), %rax
2572 // movq (%rax), %rax
2573 // ...
2574 unsigned DestReg;
2575 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2576 while (Depth--) {
2577 DestReg = createResultReg(RC);
2578 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2579 TII.get(Opc), DestReg), SrcReg);
2580 SrcReg = DestReg;
2581 }
2582
2583 updateValueMap(II, SrcReg);
2584 return true;
2585 }
2586 case Intrinsic::memcpy: {
2587 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2588 // Don't handle volatile or variable length memcpys.
2589 if (MCI->isVolatile())
2590 return false;
2591
2592 if (isa<ConstantInt>(MCI->getLength())) {
2593 // Small memcpy's are common enough that we want to do them
2594 // without a call if possible.
2595 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2596 if (IsMemcpySmall(Len)) {
2597 X86AddressMode DestAM, SrcAM;
2598 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2599 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2600 return false;
2601 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2602 return true;
2603 }
2604 }
2605
2606 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2607 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2608 return false;
2609
2610 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2611 return false;
2612
Pete Cooper67cf9a72015-11-19 05:56:52 +00002613 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002614 }
2615 case Intrinsic::memset: {
2616 const MemSetInst *MSI = cast<MemSetInst>(II);
2617
2618 if (MSI->isVolatile())
2619 return false;
2620
2621 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2622 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2623 return false;
2624
2625 if (MSI->getDestAddressSpace() > 255)
2626 return false;
2627
Pete Cooper67cf9a72015-11-19 05:56:52 +00002628 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002629 }
2630 case Intrinsic::stackprotector: {
2631 // Emit code to store the stack guard onto the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002632 EVT PtrTy = TLI.getPointerTy(DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002633
2634 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2635 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2636
2637 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2638
2639 // Grab the frame index.
2640 X86AddressMode AM;
2641 if (!X86SelectAddress(Slot, AM)) return false;
2642 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2643 return true;
2644 }
2645 case Intrinsic::dbg_declare: {
2646 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2647 X86AddressMode AM;
2648 assert(DI->getAddress() && "Null address should be checked earlier!");
2649 if (!X86SelectAddress(DI->getAddress(), AM))
2650 return false;
2651 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2652 // FIXME may need to add RegState::Debug to any registers produced,
2653 // although ESP/EBP should be the only ones at the moment.
Duncan P. N. Exon Smith3bef6a32015-04-03 19:20:26 +00002654 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2655 "Expected inlined-at fields to agree");
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002656 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2657 .addImm(0)
2658 .addMetadata(DI->getVariable())
2659 .addMetadata(DI->getExpression());
2660 return true;
2661 }
2662 case Intrinsic::trap: {
2663 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2664 return true;
2665 }
2666 case Intrinsic::sqrt: {
2667 if (!Subtarget->hasSSE1())
2668 return false;
2669
2670 Type *RetTy = II->getCalledFunction()->getReturnType();
2671
2672 MVT VT;
2673 if (!isTypeLegal(RetTy, VT))
2674 return false;
2675
2676 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2677 // is not generated by FastISel yet.
2678 // FIXME: Update this code once tablegen can handle it.
Craig Toppercf65c622016-03-02 04:42:31 +00002679 static const uint16_t SqrtOpc[2][2] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002680 {X86::SQRTSSr, X86::VSQRTSSr},
2681 {X86::SQRTSDr, X86::VSQRTSDr}
2682 };
2683 bool HasAVX = Subtarget->hasAVX();
2684 unsigned Opc;
2685 const TargetRegisterClass *RC;
2686 switch (VT.SimpleTy) {
2687 default: return false;
2688 case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
2689 case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
2690 }
2691
2692 const Value *SrcVal = II->getArgOperand(0);
2693 unsigned SrcReg = getRegForValue(SrcVal);
2694
2695 if (SrcReg == 0)
2696 return false;
2697
2698 unsigned ImplicitDefReg = 0;
2699 if (HasAVX) {
2700 ImplicitDefReg = createResultReg(RC);
2701 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2702 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2703 }
2704
2705 unsigned ResultReg = createResultReg(RC);
2706 MachineInstrBuilder MIB;
2707 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2708 ResultReg);
2709
2710 if (ImplicitDefReg)
2711 MIB.addReg(ImplicitDefReg);
2712
2713 MIB.addReg(SrcReg);
2714
2715 updateValueMap(II, ResultReg);
2716 return true;
2717 }
2718 case Intrinsic::sadd_with_overflow:
2719 case Intrinsic::uadd_with_overflow:
2720 case Intrinsic::ssub_with_overflow:
2721 case Intrinsic::usub_with_overflow:
2722 case Intrinsic::smul_with_overflow:
2723 case Intrinsic::umul_with_overflow: {
2724 // This implements the basic lowering of the xalu with overflow intrinsics
2725 // into add/sub/mul followed by either seto or setb.
2726 const Function *Callee = II->getCalledFunction();
2727 auto *Ty = cast<StructType>(Callee->getReturnType());
2728 Type *RetTy = Ty->getTypeAtIndex(0U);
2729 Type *CondTy = Ty->getTypeAtIndex(1);
2730
2731 MVT VT;
2732 if (!isTypeLegal(RetTy, VT))
2733 return false;
2734
2735 if (VT < MVT::i8 || VT > MVT::i64)
2736 return false;
2737
2738 const Value *LHS = II->getArgOperand(0);
2739 const Value *RHS = II->getArgOperand(1);
2740
2741 // Canonicalize immediate to the RHS.
2742 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2743 isCommutativeIntrinsic(II))
2744 std::swap(LHS, RHS);
2745
2746 bool UseIncDec = false;
2747 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2748 UseIncDec = true;
2749
2750 unsigned BaseOpc, CondOpc;
2751 switch (II->getIntrinsicID()) {
2752 default: llvm_unreachable("Unexpected intrinsic!");
2753 case Intrinsic::sadd_with_overflow:
2754 BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2755 CondOpc = X86::SETOr;
2756 break;
2757 case Intrinsic::uadd_with_overflow:
2758 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2759 case Intrinsic::ssub_with_overflow:
2760 BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2761 CondOpc = X86::SETOr;
2762 break;
2763 case Intrinsic::usub_with_overflow:
2764 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2765 case Intrinsic::smul_with_overflow:
2766 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2767 case Intrinsic::umul_with_overflow:
2768 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2769 }
2770
2771 unsigned LHSReg = getRegForValue(LHS);
2772 if (LHSReg == 0)
2773 return false;
2774 bool LHSIsKill = hasTrivialKill(LHS);
2775
2776 unsigned ResultReg = 0;
2777 // Check if we have an immediate version.
2778 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
Craig Topper66111882016-06-02 04:19:42 +00002779 static const uint16_t Opc[2][4] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002780 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2781 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2782 };
2783
2784 if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2785 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2786 bool IsDec = BaseOpc == X86ISD::DEC;
2787 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2788 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2789 .addReg(LHSReg, getKillRegState(LHSIsKill));
2790 } else
2791 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2792 CI->getZExtValue());
2793 }
2794
2795 unsigned RHSReg;
2796 bool RHSIsKill;
2797 if (!ResultReg) {
2798 RHSReg = getRegForValue(RHS);
2799 if (RHSReg == 0)
2800 return false;
2801 RHSIsKill = hasTrivialKill(RHS);
2802 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2803 RHSIsKill);
2804 }
2805
2806 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2807 // it manually.
2808 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
Craig Toppercf65c622016-03-02 04:42:31 +00002809 static const uint16_t MULOpc[] =
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002810 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
Craig Toppercf65c622016-03-02 04:42:31 +00002811 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002812 // First copy the first operand into RAX, which is an implicit input to
2813 // the X86::MUL*r instruction.
2814 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2815 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2816 .addReg(LHSReg, getKillRegState(LHSIsKill));
2817 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2818 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2819 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
Craig Toppercf65c622016-03-02 04:42:31 +00002820 static const uint16_t MULOpc[] =
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002821 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2822 if (VT == MVT::i8) {
2823 // Copy the first operand into AL, which is an implicit input to the
2824 // X86::IMUL8r instruction.
2825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2826 TII.get(TargetOpcode::COPY), X86::AL)
2827 .addReg(LHSReg, getKillRegState(LHSIsKill));
2828 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2829 RHSIsKill);
2830 } else
2831 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2832 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2833 RHSReg, RHSIsKill);
2834 }
2835
2836 if (!ResultReg)
2837 return false;
2838
2839 unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
2840 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2841 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2842 ResultReg2);
2843
2844 updateValueMap(II, ResultReg, 2);
2845 return true;
2846 }
2847 case Intrinsic::x86_sse_cvttss2si:
2848 case Intrinsic::x86_sse_cvttss2si64:
2849 case Intrinsic::x86_sse2_cvttsd2si:
2850 case Intrinsic::x86_sse2_cvttsd2si64: {
2851 bool IsInputDouble;
2852 switch (II->getIntrinsicID()) {
2853 default: llvm_unreachable("Unexpected intrinsic.");
2854 case Intrinsic::x86_sse_cvttss2si:
2855 case Intrinsic::x86_sse_cvttss2si64:
2856 if (!Subtarget->hasSSE1())
2857 return false;
2858 IsInputDouble = false;
2859 break;
2860 case Intrinsic::x86_sse2_cvttsd2si:
2861 case Intrinsic::x86_sse2_cvttsd2si64:
2862 if (!Subtarget->hasSSE2())
2863 return false;
2864 IsInputDouble = true;
2865 break;
2866 }
2867
2868 Type *RetTy = II->getCalledFunction()->getReturnType();
2869 MVT VT;
2870 if (!isTypeLegal(RetTy, VT))
2871 return false;
2872
Craig Topper66111882016-06-02 04:19:42 +00002873 static const uint16_t CvtOpc[2][2][2] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002874 { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
2875 { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
2876 { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
2877 { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
2878 };
2879 bool HasAVX = Subtarget->hasAVX();
2880 unsigned Opc;
2881 switch (VT.SimpleTy) {
2882 default: llvm_unreachable("Unexpected result type.");
2883 case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
2884 case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
2885 }
2886
2887 // Check if we can fold insertelement instructions into the convert.
2888 const Value *Op = II->getArgOperand(0);
2889 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
2890 const Value *Index = IE->getOperand(2);
2891 if (!isa<ConstantInt>(Index))
2892 break;
2893 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
2894
2895 if (Idx == 0) {
2896 Op = IE->getOperand(1);
2897 break;
2898 }
2899 Op = IE->getOperand(0);
2900 }
2901
2902 unsigned Reg = getRegForValue(Op);
2903 if (Reg == 0)
2904 return false;
2905
2906 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
2907 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2908 .addReg(Reg);
2909
2910 updateValueMap(II, ResultReg);
2911 return true;
2912 }
2913 }
2914}
2915
2916bool X86FastISel::fastLowerArguments() {
2917 if (!FuncInfo.CanLowerReturn)
2918 return false;
2919
2920 const Function *F = FuncInfo.Fn;
2921 if (F->isVarArg())
2922 return false;
2923
2924 CallingConv::ID CC = F->getCallingConv();
2925 if (CC != CallingConv::C)
2926 return false;
2927
2928 if (Subtarget->isCallingConvWin64(CC))
2929 return false;
2930
2931 if (!Subtarget->is64Bit())
2932 return false;
2933
2934 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
2935 unsigned GPRCnt = 0;
2936 unsigned FPRCnt = 0;
2937 unsigned Idx = 0;
2938 for (auto const &Arg : F->args()) {
2939 // The first argument is at index 1.
2940 ++Idx;
2941 if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2942 F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2943 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
Manman Renf46262e2016-03-29 17:37:21 +00002944 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
Manman Ren57518142016-04-11 21:08:06 +00002945 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002946 F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2947 return false;
2948
2949 Type *ArgTy = Arg.getType();
2950 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
2951 return false;
2952
Mehdi Amini44ede332015-07-09 02:09:04 +00002953 EVT ArgVT = TLI.getValueType(DL, ArgTy);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002954 if (!ArgVT.isSimple()) return false;
2955 switch (ArgVT.getSimpleVT().SimpleTy) {
2956 default: return false;
2957 case MVT::i32:
2958 case MVT::i64:
2959 ++GPRCnt;
2960 break;
2961 case MVT::f32:
2962 case MVT::f64:
2963 if (!Subtarget->hasSSE1())
2964 return false;
2965 ++FPRCnt;
2966 break;
2967 }
2968
2969 if (GPRCnt > 6)
2970 return false;
2971
2972 if (FPRCnt > 8)
2973 return false;
2974 }
2975
2976 static const MCPhysReg GPR32ArgRegs[] = {
2977 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
2978 };
2979 static const MCPhysReg GPR64ArgRegs[] = {
2980 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
2981 };
2982 static const MCPhysReg XMMArgRegs[] = {
2983 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2984 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2985 };
2986
2987 unsigned GPRIdx = 0;
2988 unsigned FPRIdx = 0;
2989 for (auto const &Arg : F->args()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002990 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002991 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2992 unsigned SrcReg;
2993 switch (VT.SimpleTy) {
2994 default: llvm_unreachable("Unexpected value type.");
2995 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
2996 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002997 case MVT::f32: LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002998 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
2999 }
3000 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3001 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3002 // Without this, EmitLiveInCopies may eliminate the livein if its only
3003 // use is a bitcast (which isn't turned into an instruction).
3004 unsigned ResultReg = createResultReg(RC);
3005 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3006 TII.get(TargetOpcode::COPY), ResultReg)
3007 .addReg(DstReg, getKillRegState(true));
3008 updateValueMap(&Arg, ResultReg);
3009 }
3010 return true;
3011}
3012
Nico Weberaf7e8462016-07-14 01:52:51 +00003013static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3014 CallingConv::ID CC,
3015 ImmutableCallSite *CS) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003016 if (Subtarget->is64Bit())
3017 return 0;
3018 if (Subtarget->getTargetTriple().isOSMSVCRT())
3019 return 0;
3020 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3021 CC == CallingConv::HiPE)
3022 return 0;
Sanjoy Dasb11b4402015-11-04 20:33:45 +00003023
3024 if (CS)
3025 if (CS->arg_empty() || !CS->paramHasAttr(1, Attribute::StructRet) ||
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00003026 CS->paramHasAttr(1, Attribute::InReg) || Subtarget->isTargetMCU())
Sanjoy Dasb11b4402015-11-04 20:33:45 +00003027 return 0;
3028
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003029 return 4;
3030}
3031
3032bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3033 auto &OutVals = CLI.OutVals;
3034 auto &OutFlags = CLI.OutFlags;
3035 auto &OutRegs = CLI.OutRegs;
3036 auto &Ins = CLI.Ins;
3037 auto &InRegs = CLI.InRegs;
3038 CallingConv::ID CC = CLI.CallConv;
3039 bool &IsTailCall = CLI.IsTailCall;
3040 bool IsVarArg = CLI.IsVarArg;
3041 const Value *Callee = CLI.Callee;
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00003042 MCSymbol *Symbol = CLI.Symbol;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003043
3044 bool Is64Bit = Subtarget->is64Bit();
3045 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
3046
3047 // Handle only C, fastcc, and webkit_js calling conventions for now.
3048 switch (CC) {
3049 default: return false;
3050 case CallingConv::C:
3051 case CallingConv::Fast:
3052 case CallingConv::WebKit_JS:
Manman Renf8bdd882016-04-05 22:41:47 +00003053 case CallingConv::Swift:
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003054 case CallingConv::X86_FastCall:
Nico Weberecdf45b2016-07-14 13:54:26 +00003055 case CallingConv::X86_StdCall:
Nico Weberaf7e8462016-07-14 01:52:51 +00003056 case CallingConv::X86_ThisCall:
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003057 case CallingConv::X86_64_Win64:
3058 case CallingConv::X86_64_SysV:
3059 break;
3060 }
3061
3062 // Allow SelectionDAG isel to handle tail calls.
3063 if (IsTailCall)
3064 return false;
3065
3066 // fastcc with -tailcallopt is intended to provide a guaranteed
3067 // tail call optimization. Fastisel doesn't know how to do that.
3068 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
3069 return false;
3070
3071 // Don't know how to handle Win64 varargs yet. Nothing special needed for
3072 // x86-32. Special handling for x86-64 is implemented.
3073 if (IsVarArg && IsWin64)
3074 return false;
3075
3076 // Don't know about inalloca yet.
3077 if (CLI.CS && CLI.CS->hasInAllocaArgument())
3078 return false;
3079
Manman Ren57518142016-04-11 21:08:06 +00003080 for (auto Flag : CLI.OutFlags)
3081 if (Flag.isSwiftError())
3082 return false;
3083
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003084 SmallVector<MVT, 16> OutVTs;
3085 SmallVector<unsigned, 16> ArgRegs;
3086
3087 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3088 // instruction. This is safe because it is common to all FastISel supported
3089 // calling conventions on x86.
3090 for (int i = 0, e = OutVals.size(); i != e; ++i) {
3091 Value *&Val = OutVals[i];
3092 ISD::ArgFlagsTy Flags = OutFlags[i];
3093 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3094 if (CI->getBitWidth() < 32) {
3095 if (Flags.isSExt())
3096 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3097 else
3098 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3099 }
3100 }
3101
3102 // Passing bools around ends up doing a trunc to i1 and passing it.
3103 // Codegen this as an argument + "and 1".
3104 MVT VT;
3105 auto *TI = dyn_cast<TruncInst>(Val);
3106 unsigned ResultReg;
3107 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3108 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3109 TI->hasOneUse()) {
3110 Value *PrevVal = TI->getOperand(0);
3111 ResultReg = getRegForValue(PrevVal);
3112
3113 if (!ResultReg)
3114 return false;
3115
3116 if (!isTypeLegal(PrevVal->getType(), VT))
3117 return false;
3118
3119 ResultReg =
3120 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3121 } else {
3122 if (!isTypeLegal(Val->getType(), VT))
3123 return false;
3124 ResultReg = getRegForValue(Val);
3125 }
3126
3127 if (!ResultReg)
3128 return false;
3129
3130 ArgRegs.push_back(ResultReg);
3131 OutVTs.push_back(VT);
3132 }
3133
3134 // Analyze operands of the call, assigning locations to each operand.
3135 SmallVector<CCValAssign, 16> ArgLocs;
3136 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3137
3138 // Allocate shadow area for Win64
3139 if (IsWin64)
3140 CCInfo.AllocateStack(32, 8);
3141
3142 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3143
3144 // Get a count of how many bytes are to be pushed on the stack.
Jeroen Ketema740f9d72015-09-29 10:12:57 +00003145 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003146
3147 // Issue CALLSEQ_START
3148 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3149 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
Michael Kuperstein13fbd452015-02-01 16:56:04 +00003150 .addImm(NumBytes).addImm(0);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003151
3152 // Walk the register/memloc assignments, inserting copies/loads.
Eric Christophera1c535b2015-02-02 23:03:45 +00003153 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003154 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3155 CCValAssign const &VA = ArgLocs[i];
3156 const Value *ArgVal = OutVals[VA.getValNo()];
3157 MVT ArgVT = OutVTs[VA.getValNo()];
3158
3159 if (ArgVT == MVT::x86mmx)
3160 return false;
3161
3162 unsigned ArgReg = ArgRegs[VA.getValNo()];
3163
3164 // Promote the value if needed.
3165 switch (VA.getLocInfo()) {
3166 case CCValAssign::Full: break;
3167 case CCValAssign::SExt: {
3168 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3169 "Unexpected extend");
David Majnemer2c5aeab2016-05-04 00:22:23 +00003170
3171 if (ArgVT.SimpleTy == MVT::i1)
3172 return false;
3173
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003174 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3175 ArgVT, ArgReg);
3176 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3177 ArgVT = VA.getLocVT();
3178 break;
3179 }
3180 case CCValAssign::ZExt: {
3181 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3182 "Unexpected extend");
David Majnemer2c5aeab2016-05-04 00:22:23 +00003183
3184 // Handle zero-extension from i1 to i8, which is common.
3185 if (ArgVT.SimpleTy == MVT::i1) {
3186 // Set the high bits to zero.
3187 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3188 ArgVT = MVT::i8;
3189
3190 if (ArgReg == 0)
3191 return false;
3192 }
3193
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003194 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3195 ArgVT, ArgReg);
3196 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3197 ArgVT = VA.getLocVT();
3198 break;
3199 }
3200 case CCValAssign::AExt: {
3201 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3202 "Unexpected extend");
3203 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3204 ArgVT, ArgReg);
3205 if (!Emitted)
3206 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3207 ArgVT, ArgReg);
3208 if (!Emitted)
3209 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3210 ArgVT, ArgReg);
3211
3212 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3213 ArgVT = VA.getLocVT();
3214 break;
3215 }
3216 case CCValAssign::BCvt: {
3217 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3218 /*TODO: Kill=*/false);
3219 assert(ArgReg && "Failed to emit a bitcast!");
3220 ArgVT = VA.getLocVT();
3221 break;
3222 }
3223 case CCValAssign::VExt:
3224 // VExt has not been implemented, so this should be impossible to reach
3225 // for now. However, fallback to Selection DAG isel once implemented.
3226 return false;
3227 case CCValAssign::AExtUpper:
3228 case CCValAssign::SExtUpper:
3229 case CCValAssign::ZExtUpper:
3230 case CCValAssign::FPExt:
3231 llvm_unreachable("Unexpected loc info!");
3232 case CCValAssign::Indirect:
3233 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3234 // support this.
3235 return false;
3236 }
3237
3238 if (VA.isRegLoc()) {
3239 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3240 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3241 OutRegs.push_back(VA.getLocReg());
3242 } else {
3243 assert(VA.isMemLoc());
3244
3245 // Don't emit stores for undef values.
3246 if (isa<UndefValue>(ArgVal))
3247 continue;
3248
3249 unsigned LocMemOffset = VA.getLocMemOffset();
3250 X86AddressMode AM;
3251 AM.Base.Reg = RegInfo->getStackRegister();
3252 AM.Disp = LocMemOffset;
3253 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3254 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3255 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003256 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3257 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003258 if (Flags.isByVal()) {
3259 X86AddressMode SrcAM;
3260 SrcAM.Base.Reg = ArgReg;
3261 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3262 return false;
3263 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3264 // If this is a really simple value, emit this with the Value* version
3265 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3266 // as it can cause us to reevaluate the argument.
3267 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3268 return false;
3269 } else {
3270 bool ValIsKill = hasTrivialKill(ArgVal);
3271 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3272 return false;
3273 }
3274 }
3275 }
3276
3277 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3278 // GOT pointer.
3279 if (Subtarget->isPICStyleGOT()) {
3280 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3281 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3282 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3283 }
3284
3285 if (Is64Bit && IsVarArg && !IsWin64) {
3286 // From AMD64 ABI document:
3287 // For calls that may call functions that use varargs or stdargs
3288 // (prototype-less calls or calls to functions containing ellipsis (...) in
3289 // the declaration) %al is used as hidden argument to specify the number
3290 // of SSE registers used. The contents of %al do not need to match exactly
3291 // the number of registers, but must be an ubound on the number of SSE
3292 // registers used and is in the range 0 - 8 inclusive.
3293
3294 // Count the number of XMM registers allocated.
3295 static const MCPhysReg XMMArgRegs[] = {
3296 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3297 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3298 };
Tim Northover3b6b7ca2015-02-21 02:11:17 +00003299 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003300 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3301 && "SSE registers cannot be used when SSE is disabled");
3302 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3303 X86::AL).addImm(NumXMMRegs);
3304 }
3305
3306 // Materialize callee address in a register. FIXME: GV address can be
3307 // handled with a CALLpcrel32 instead.
3308 X86AddressMode CalleeAM;
3309 if (!X86SelectCallAddress(Callee, CalleeAM))
3310 return false;
3311
3312 unsigned CalleeOp = 0;
3313 const GlobalValue *GV = nullptr;
3314 if (CalleeAM.GV != nullptr) {
3315 GV = CalleeAM.GV;
3316 } else if (CalleeAM.Base.Reg != 0) {
3317 CalleeOp = CalleeAM.Base.Reg;
3318 } else
3319 return false;
3320
3321 // Issue the call.
3322 MachineInstrBuilder MIB;
3323 if (CalleeOp) {
3324 // Register-indirect call.
3325 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3326 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3327 .addReg(CalleeOp);
3328 } else {
3329 // Direct call.
3330 assert(GV && "Not a direct call");
3331 unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
3332
3333 // See if we need any target-specific flags on the GV operand.
Rafael Espindola46107b92016-05-19 18:49:29 +00003334 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
Asaf Badouh89406d12016-04-20 08:32:57 +00003335 // Ignore NonLazyBind attribute in FastISel
3336 if (OpFlags == X86II::MO_GOTPCREL)
3337 OpFlags = 0;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003338
3339 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00003340 if (Symbol)
3341 MIB.addSym(Symbol, OpFlags);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003342 else
3343 MIB.addGlobalAddress(GV, 0, OpFlags);
3344 }
3345
3346 // Add a register mask operand representing the call-preserved registers.
3347 // Proper defs for return values will be added by setPhysRegsDeadExcept().
Eric Christopher9deb75d2015-03-11 22:42:13 +00003348 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003349
3350 // Add an implicit use GOT pointer in EBX.
3351 if (Subtarget->isPICStyleGOT())
3352 MIB.addReg(X86::EBX, RegState::Implicit);
3353
3354 if (Is64Bit && IsVarArg && !IsWin64)
3355 MIB.addReg(X86::AL, RegState::Implicit);
3356
3357 // Add implicit physical register uses to the call.
3358 for (auto Reg : OutRegs)
3359 MIB.addReg(Reg, RegState::Implicit);
3360
3361 // Issue CALLSEQ_END
3362 unsigned NumBytesForCalleeToPop =
Nico Weberaf7e8462016-07-14 01:52:51 +00003363 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3364 TM.Options.GuaranteedTailCallOpt)
3365 ? NumBytes // Callee pops everything.
3366 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003367 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3368 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3369 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3370
3371 // Now handle call return values.
3372 SmallVector<CCValAssign, 16> RVLocs;
3373 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3374 CLI.RetTy->getContext());
3375 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3376
3377 // Copy all of the result registers out of their specified physreg.
3378 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3379 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3380 CCValAssign &VA = RVLocs[i];
3381 EVT CopyVT = VA.getValVT();
3382 unsigned CopyReg = ResultReg + i;
3383
3384 // If this is x86-64, and we disabled SSE, we can't return FP values
3385 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3386 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3387 report_fatal_error("SSE register return with SSE disabled");
3388 }
3389
3390 // If we prefer to use the value in xmm registers, copy it out as f80 and
3391 // use a truncate to move it from fp stack reg to xmm reg.
3392 if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
3393 isScalarFPTypeInSSEReg(VA.getValVT())) {
3394 CopyVT = MVT::f80;
3395 CopyReg = createResultReg(&X86::RFP80RegClass);
3396 }
3397
3398 // Copy out the result.
3399 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3400 TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
3401 InRegs.push_back(VA.getLocReg());
3402
3403 // Round the f80 to the right size, which also moves it to the appropriate
3404 // xmm register. This is accomplished by storing the f80 value in memory
3405 // and then loading it back.
3406 if (CopyVT != VA.getValVT()) {
3407 EVT ResVT = VA.getValVT();
3408 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3409 unsigned MemSize = ResVT.getSizeInBits()/8;
3410 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3411 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3412 TII.get(Opc)), FI)
3413 .addReg(CopyReg);
3414 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3415 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3416 TII.get(Opc), ResultReg + i), FI);
3417 }
3418 }
3419
3420 CLI.ResultReg = ResultReg;
3421 CLI.NumResultRegs = RVLocs.size();
3422 CLI.Call = MIB;
3423
3424 return true;
3425}
3426
3427bool
3428X86FastISel::fastSelectInstruction(const Instruction *I) {
3429 switch (I->getOpcode()) {
3430 default: break;
3431 case Instruction::Load:
3432 return X86SelectLoad(I);
3433 case Instruction::Store:
3434 return X86SelectStore(I);
3435 case Instruction::Ret:
3436 return X86SelectRet(I);
3437 case Instruction::ICmp:
3438 case Instruction::FCmp:
3439 return X86SelectCmp(I);
3440 case Instruction::ZExt:
3441 return X86SelectZExt(I);
3442 case Instruction::Br:
3443 return X86SelectBranch(I);
3444 case Instruction::LShr:
3445 case Instruction::AShr:
3446 case Instruction::Shl:
3447 return X86SelectShift(I);
3448 case Instruction::SDiv:
3449 case Instruction::UDiv:
3450 case Instruction::SRem:
3451 case Instruction::URem:
3452 return X86SelectDivRem(I);
3453 case Instruction::Select:
3454 return X86SelectSelect(I);
3455 case Instruction::Trunc:
3456 return X86SelectTrunc(I);
3457 case Instruction::FPExt:
3458 return X86SelectFPExt(I);
3459 case Instruction::FPTrunc:
3460 return X86SelectFPTrunc(I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00003461 case Instruction::SIToFP:
3462 return X86SelectSIToFP(I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003463 case Instruction::IntToPtr: // Deliberate fall-through.
3464 case Instruction::PtrToInt: {
Mehdi Amini44ede332015-07-09 02:09:04 +00003465 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3466 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003467 if (DstVT.bitsGT(SrcVT))
3468 return X86SelectZExt(I);
3469 if (DstVT.bitsLT(SrcVT))
3470 return X86SelectTrunc(I);
3471 unsigned Reg = getRegForValue(I->getOperand(0));
3472 if (Reg == 0) return false;
3473 updateValueMap(I, Reg);
3474 return true;
3475 }
Andrea Di Biagio77f62652015-10-02 16:08:05 +00003476 case Instruction::BitCast: {
3477 // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3478 if (!Subtarget->hasSSE2())
3479 return false;
3480
3481 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3482 EVT DstVT = TLI.getValueType(DL, I->getType());
3483
3484 if (!SrcVT.isSimple() || !DstVT.isSimple())
3485 return false;
3486
3487 if (!SrcVT.is128BitVector() &&
3488 !(Subtarget->hasAVX() && SrcVT.is256BitVector()))
3489 return false;
3490
3491 unsigned Reg = getRegForValue(I->getOperand(0));
3492 if (Reg == 0)
3493 return false;
3494
3495 // No instruction is needed for conversion. Reuse the register used by
3496 // the fist operand.
3497 updateValueMap(I, Reg);
3498 return true;
3499 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003500 }
3501
3502 return false;
3503}
3504
3505unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3506 if (VT > MVT::i64)
3507 return 0;
3508
3509 uint64_t Imm = CI->getZExtValue();
3510 if (Imm == 0) {
3511 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3512 switch (VT.SimpleTy) {
3513 default: llvm_unreachable("Unexpected value type");
3514 case MVT::i1:
3515 case MVT::i8:
3516 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3517 X86::sub_8bit);
3518 case MVT::i16:
3519 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3520 X86::sub_16bit);
3521 case MVT::i32:
3522 return SrcReg;
3523 case MVT::i64: {
3524 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3525 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3526 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3527 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3528 return ResultReg;
3529 }
3530 }
3531 }
3532
3533 unsigned Opc = 0;
3534 switch (VT.SimpleTy) {
3535 default: llvm_unreachable("Unexpected value type");
Justin Bognercd1d5aa2016-08-17 20:30:52 +00003536 case MVT::i1: VT = MVT::i8; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003537 case MVT::i8: Opc = X86::MOV8ri; break;
3538 case MVT::i16: Opc = X86::MOV16ri; break;
3539 case MVT::i32: Opc = X86::MOV32ri; break;
3540 case MVT::i64: {
3541 if (isUInt<32>(Imm))
3542 Opc = X86::MOV32ri;
3543 else if (isInt<32>(Imm))
3544 Opc = X86::MOV64ri32;
3545 else
3546 Opc = X86::MOV64ri;
3547 break;
3548 }
3549 }
3550 if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3551 unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3552 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3553 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3554 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3555 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3556 return ResultReg;
3557 }
3558 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3559}
3560
3561unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3562 if (CFP->isNullValue())
3563 return fastMaterializeFloatZero(CFP);
3564
3565 // Can't handle alternate code models yet.
3566 CodeModel::Model CM = TM.getCodeModel();
3567 if (CM != CodeModel::Small && CM != CodeModel::Large)
3568 return 0;
3569
3570 // Get opcode and regclass of the output for the given load instruction.
3571 unsigned Opc = 0;
3572 const TargetRegisterClass *RC = nullptr;
3573 switch (VT.SimpleTy) {
3574 default: return 0;
3575 case MVT::f32:
3576 if (X86ScalarSSEf32) {
3577 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3578 RC = &X86::FR32RegClass;
3579 } else {
3580 Opc = X86::LD_Fp32m;
3581 RC = &X86::RFP32RegClass;
3582 }
3583 break;
3584 case MVT::f64:
3585 if (X86ScalarSSEf64) {
3586 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3587 RC = &X86::FR64RegClass;
3588 } else {
3589 Opc = X86::LD_Fp64m;
3590 RC = &X86::RFP64RegClass;
3591 }
3592 break;
3593 case MVT::f80:
3594 // No f80 support yet.
3595 return 0;
3596 }
3597
3598 // MachineConstantPool wants an explicit alignment.
3599 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3600 if (Align == 0) {
3601 // Alignment of vector types. FIXME!
3602 Align = DL.getTypeAllocSize(CFP->getType());
3603 }
3604
3605 // x86-32 PIC requires a PIC base register for constant pools.
3606 unsigned PICBase = 0;
Rafael Espindolac7e98132016-05-20 12:20:10 +00003607 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3608 if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003609 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
Rafael Espindolac7e98132016-05-20 12:20:10 +00003610 else if (OpFlag == X86II::MO_GOTOFF)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003611 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
Rafael Espindolac7e98132016-05-20 12:20:10 +00003612 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003613 PICBase = X86::RIP;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003614
3615 // Create the load from the constant pool.
3616 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3617 unsigned ResultReg = createResultReg(RC);
3618
3619 if (CM == CodeModel::Large) {
3620 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3621 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3622 AddrReg)
3623 .addConstantPoolIndex(CPI, 0, OpFlag);
3624 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3625 TII.get(Opc), ResultReg);
3626 addDirectMem(MIB, AddrReg);
3627 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003628 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3629 MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003630 MIB->addMemOperand(*FuncInfo.MF, MMO);
3631 return ResultReg;
3632 }
3633
3634 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3635 TII.get(Opc), ResultReg),
3636 CPI, PICBase, OpFlag);
3637 return ResultReg;
3638}
3639
3640unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3641 // Can't handle alternate code models yet.
3642 if (TM.getCodeModel() != CodeModel::Small)
3643 return 0;
3644
3645 // Materialize addresses with LEA/MOV instructions.
3646 X86AddressMode AM;
3647 if (X86SelectAddress(GV, AM)) {
3648 // If the expression is just a basereg, then we're done, otherwise we need
3649 // to emit an LEA.
3650 if (AM.BaseType == X86AddressMode::RegBase &&
3651 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3652 return AM.Base.Reg;
3653
3654 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3655 if (TM.getRelocationModel() == Reloc::Static &&
Mehdi Amini44ede332015-07-09 02:09:04 +00003656 TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003657 // The displacement code could be more than 32 bits away so we need to use
3658 // an instruction with a 64 bit immediate
3659 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3660 ResultReg)
3661 .addGlobalAddress(GV);
3662 } else {
Mehdi Amini44ede332015-07-09 02:09:04 +00003663 unsigned Opc =
3664 TLI.getPointerTy(DL) == MVT::i32
3665 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3666 : X86::LEA64r;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003667 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3668 TII.get(Opc), ResultReg), AM);
3669 }
3670 return ResultReg;
3671 }
3672 return 0;
3673}
3674
3675unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
Mehdi Amini44ede332015-07-09 02:09:04 +00003676 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003677
3678 // Only handle simple types.
3679 if (!CEVT.isSimple())
3680 return 0;
3681 MVT VT = CEVT.getSimpleVT();
3682
3683 if (const auto *CI = dyn_cast<ConstantInt>(C))
3684 return X86MaterializeInt(CI, VT);
3685 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3686 return X86MaterializeFP(CFP, VT);
3687 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3688 return X86MaterializeGV(GV, VT);
3689
3690 return 0;
3691}
3692
3693unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3694 // Fail on dynamic allocas. At this point, getRegForValue has already
3695 // checked its CSE maps, so if we're here trying to handle a dynamic
3696 // alloca, we're not going to succeed. X86SelectAddress has a
3697 // check for dynamic allocas, because it's called directly from
3698 // various places, but targetMaterializeAlloca also needs a check
3699 // in order to avoid recursion between getRegForValue,
3700 // X86SelectAddrss, and targetMaterializeAlloca.
3701 if (!FuncInfo.StaticAllocaMap.count(C))
3702 return 0;
3703 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3704
3705 X86AddressMode AM;
3706 if (!X86SelectAddress(C, AM))
3707 return 0;
Mehdi Amini44ede332015-07-09 02:09:04 +00003708 unsigned Opc =
3709 TLI.getPointerTy(DL) == MVT::i32
3710 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3711 : X86::LEA64r;
3712 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003713 unsigned ResultReg = createResultReg(RC);
3714 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3715 TII.get(Opc), ResultReg), AM);
3716 return ResultReg;
3717}
3718
3719unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3720 MVT VT;
3721 if (!isTypeLegal(CF->getType(), VT))
3722 return 0;
3723
3724 // Get opcode and regclass for the given zero.
3725 unsigned Opc = 0;
3726 const TargetRegisterClass *RC = nullptr;
3727 switch (VT.SimpleTy) {
3728 default: return 0;
3729 case MVT::f32:
3730 if (X86ScalarSSEf32) {
3731 Opc = X86::FsFLD0SS;
3732 RC = &X86::FR32RegClass;
3733 } else {
3734 Opc = X86::LD_Fp032;
3735 RC = &X86::RFP32RegClass;
3736 }
3737 break;
3738 case MVT::f64:
3739 if (X86ScalarSSEf64) {
3740 Opc = X86::FsFLD0SD;
3741 RC = &X86::FR64RegClass;
3742 } else {
3743 Opc = X86::LD_Fp064;
3744 RC = &X86::RFP64RegClass;
3745 }
3746 break;
3747 case MVT::f80:
3748 // No f80 support yet.
3749 return 0;
3750 }
3751
3752 unsigned ResultReg = createResultReg(RC);
3753 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3754 return ResultReg;
3755}
3756
3757
3758bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3759 const LoadInst *LI) {
3760 const Value *Ptr = LI->getPointerOperand();
3761 X86AddressMode AM;
3762 if (!X86SelectAddress(Ptr, AM))
3763 return false;
3764
3765 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3766
3767 unsigned Size = DL.getTypeAllocSize(LI->getType());
3768 unsigned Alignment = LI->getAlignment();
3769
3770 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3771 Alignment = DL.getABITypeAlignment(LI->getType());
3772
3773 SmallVector<MachineOperand, 8> AddrOps;
3774 AM.getFullAddress(AddrOps);
3775
Keno Fischere70b31f2015-06-08 20:09:58 +00003776 MachineInstr *Result = XII.foldMemoryOperandImpl(
Duncan P. N. Exon Smith9cfc75c2016-06-30 00:01:54 +00003777 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
Keno Fischere70b31f2015-06-08 20:09:58 +00003778 /*AllowCommute=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003779 if (!Result)
3780 return false;
3781
Pete Cooperd31583d2015-05-06 21:37:19 +00003782 // The index register could be in the wrong register class. Unfortunately,
3783 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3784 // to just look at OpNo + the offset to the index reg. We actually need to
3785 // scan the instruction to find the index reg and see if its the correct reg
3786 // class.
Matthias Braune41e1462015-05-29 02:56:46 +00003787 unsigned OperandNo = 0;
3788 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3789 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3790 MachineOperand &MO = *I;
3791 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
Pete Cooperd31583d2015-05-06 21:37:19 +00003792 continue;
3793 // Found the index reg, now try to rewrite it.
Pete Cooperd31583d2015-05-06 21:37:19 +00003794 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
Matthias Braune41e1462015-05-29 02:56:46 +00003795 MO.getReg(), OperandNo);
3796 if (IndexReg == MO.getReg())
Pete Cooperd31583d2015-05-06 21:37:19 +00003797 continue;
Matthias Braune41e1462015-05-29 02:56:46 +00003798 MO.setReg(IndexReg);
Pete Cooperd31583d2015-05-06 21:37:19 +00003799 }
3800
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003801 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003802 MI->eraseFromParent();
3803 return true;
3804}
3805
3806
3807namespace llvm {
3808 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
3809 const TargetLibraryInfo *libInfo) {
3810 return new X86FastISel(funcInfo, libInfo);
3811 }
3812}