blob: 15d61a02aebc84fef2574070d69d5be82b215a2d [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
Ulrich Weigand5f613df2013-05-06 16:15:19 +000014#include "SystemZISelLowering.h"
15#include "SystemZCallingConv.h"
16#include "SystemZConstantPoolValue.h"
17#include "SystemZMachineFunctionInfo.h"
18#include "SystemZTargetMachine.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
Will Dietz981af002013-10-12 00:55:57 +000023#include <cctype>
24
Ulrich Weigand5f613df2013-05-06 16:15:19 +000025using namespace llvm;
26
Chandler Carruth84e68b22014-04-22 02:41:26 +000027#define DEBUG_TYPE "systemz-lower"
28
Richard Sandifordf722a8e302013-10-16 11:10:55 +000029namespace {
30// Represents a sequence for extracting a 0/1 value from an IPM result:
31// (((X ^ XORValue) + AddValue) >> Bit)
32struct IPMConversion {
33 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
34 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
35
36 int64_t XORValue;
37 int64_t AddValue;
38 unsigned Bit;
39};
Richard Sandifordd420f732013-12-13 15:28:45 +000040
41// Represents information about a comparison.
42struct Comparison {
43 Comparison(SDValue Op0In, SDValue Op1In)
44 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
45
46 // The operands to the comparison.
47 SDValue Op0, Op1;
48
49 // The opcode that should be used to compare Op0 and Op1.
50 unsigned Opcode;
51
52 // A SystemZICMP value. Only used for integer comparisons.
53 unsigned ICmpType;
54
55 // The mask of CC values that Opcode can produce.
56 unsigned CCValid;
57
58 // The mask of CC values for which the original condition is true.
59 unsigned CCMask;
60};
Richard Sandifordc2312692014-03-06 10:38:30 +000061} // end anonymous namespace
Richard Sandifordf722a8e302013-10-16 11:10:55 +000062
Ulrich Weigand5f613df2013-05-06 16:15:19 +000063// Classify VT as either 32 or 64 bit.
64static bool is32Bit(EVT VT) {
65 switch (VT.getSimpleVT().SimpleTy) {
66 case MVT::i32:
67 return true;
68 case MVT::i64:
69 return false;
70 default:
71 llvm_unreachable("Unsupported type");
72 }
73}
74
75// Return a version of MachineOperand that can be safely used before the
76// final use.
77static MachineOperand earlyUseOperand(MachineOperand Op) {
78 if (Op.isReg())
79 Op.setIsKill(false);
80 return Op;
81}
82
83SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
84 : TargetLowering(tm, new TargetLoweringObjectFileELF()),
85 Subtarget(*tm.getSubtargetImpl()), TM(tm) {
86 MVT PtrVT = getPointerTy();
87
88 // Set up the register classes.
Richard Sandiford0755c932013-10-01 11:26:28 +000089 if (Subtarget.hasHighWord())
90 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
91 else
92 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
Ulrich Weigand5f613df2013-05-06 16:15:19 +000093 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
94 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
95 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97
98 // Compute derived properties from the register classes
99 computeRegisterProperties();
100
101 // Set up special registers.
102 setExceptionPointerRegister(SystemZ::R6D);
103 setExceptionSelectorRegister(SystemZ::R7D);
104 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
105
106 // TODO: It may be better to default to latency-oriented scheduling, however
107 // LLVM's current latency-oriented scheduler can't handle physreg definitions
Richard Sandiford14a44492013-05-22 13:38:45 +0000108 // such as SystemZ has with CC, so set this to the register-pressure
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000109 // scheduler, because it can.
110 setSchedulingPreference(Sched::RegPressure);
111
112 setBooleanContents(ZeroOrOneBooleanContent);
113 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
114
115 // Instructions are strings of 2-byte aligned 2-byte values.
116 setMinFunctionAlignment(2);
117
118 // Handle operations that are handled in a similar way for all types.
119 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
120 I <= MVT::LAST_FP_VALUETYPE;
121 ++I) {
122 MVT VT = MVT::SimpleValueType(I);
123 if (isTypeLegal(VT)) {
Richard Sandifordf722a8e302013-10-16 11:10:55 +0000124 // Lower SET_CC into an IPM-based sequence.
125 setOperationAction(ISD::SETCC, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000126
127 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
128 setOperationAction(ISD::SELECT, VT, Expand);
129
130 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
131 setOperationAction(ISD::SELECT_CC, VT, Custom);
132 setOperationAction(ISD::BR_CC, VT, Custom);
133 }
134 }
135
136 // Expand jump table branches as address arithmetic followed by an
137 // indirect jump.
138 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
139
140 // Expand BRCOND into a BR_CC (see above).
141 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
142
143 // Handle integer types.
144 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
145 I <= MVT::LAST_INTEGER_VALUETYPE;
146 ++I) {
147 MVT VT = MVT::SimpleValueType(I);
148 if (isTypeLegal(VT)) {
149 // Expand individual DIV and REMs into DIVREMs.
150 setOperationAction(ISD::SDIV, VT, Expand);
151 setOperationAction(ISD::UDIV, VT, Expand);
152 setOperationAction(ISD::SREM, VT, Expand);
153 setOperationAction(ISD::UREM, VT, Expand);
154 setOperationAction(ISD::SDIVREM, VT, Custom);
155 setOperationAction(ISD::UDIVREM, VT, Custom);
156
Richard Sandifordbef3d7a2013-12-10 10:49:34 +0000157 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
158 // stores, putting a serialization instruction after the stores.
159 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
160 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000161
Richard Sandiford41350a52013-12-24 15:18:04 +0000162 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
163 // available, or if the operand is constant.
164 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
165
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000166 // No special instructions for these.
167 setOperationAction(ISD::CTPOP, VT, Expand);
168 setOperationAction(ISD::CTTZ, VT, Expand);
169 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
170 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
171 setOperationAction(ISD::ROTR, VT, Expand);
172
Richard Sandiford7d86e472013-08-21 09:34:56 +0000173 // Use *MUL_LOHI where possible instead of MULH*.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000174 setOperationAction(ISD::MULHS, VT, Expand);
175 setOperationAction(ISD::MULHU, VT, Expand);
Richard Sandiford7d86e472013-08-21 09:34:56 +0000176 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
177 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000178
Richard Sandiforddc6c2c92014-03-21 10:56:30 +0000179 // Only z196 and above have native support for conversions to unsigned.
180 if (!Subtarget.hasFPExtension())
181 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000182 }
183 }
184
185 // Type legalization will convert 8- and 16-bit atomic operations into
186 // forms that operate on i32s (but still keeping the original memory VT).
187 // Lower them into full i32 operations.
188 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
189 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
190 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
191 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
192 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
193 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
194 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
195 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
196 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
197 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
198 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
199 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
200
Richard Sandiforddc6c2c92014-03-21 10:56:30 +0000201 // z10 has instructions for signed but not unsigned FP conversion.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000202 // Handle unsigned 32-bit types as signed 64-bit types.
Richard Sandiforddc6c2c92014-03-21 10:56:30 +0000203 if (!Subtarget.hasFPExtension()) {
204 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
205 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
206 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000207
208 // We have native support for a 64-bit CTLZ, via FLOGR.
209 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
210 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
211
212 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
213 setOperationAction(ISD::OR, MVT::i64, Custom);
214
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000215 // FIXME: Can we support these natively?
216 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
217 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
218 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
219
220 // We have native instructions for i8, i16 and i32 extensions, but not i1.
221 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
222 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
223 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
224 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
225
226 // Handle the various types of symbolic address.
227 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
228 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
229 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
230 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
231 setOperationAction(ISD::JumpTable, PtrVT, Custom);
232
233 // We need to handle dynamic allocations specially because of the
234 // 160-byte area at the bottom of the stack.
235 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
236
237 // Use custom expanders so that we can force the function to use
238 // a frame pointer.
239 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
240 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
241
Richard Sandiford03481332013-08-23 11:36:42 +0000242 // Handle prefetches with PFD or PFDRL.
243 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
244
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000245 // Handle floating-point types.
246 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
247 I <= MVT::LAST_FP_VALUETYPE;
248 ++I) {
249 MVT VT = MVT::SimpleValueType(I);
250 if (isTypeLegal(VT)) {
251 // We can use FI for FRINT.
252 setOperationAction(ISD::FRINT, VT, Legal);
253
Richard Sandifordaf5f66a2013-08-21 09:04:20 +0000254 // We can use the extended form of FI for other rounding operations.
255 if (Subtarget.hasFPExtension()) {
256 setOperationAction(ISD::FNEARBYINT, VT, Legal);
257 setOperationAction(ISD::FFLOOR, VT, Legal);
258 setOperationAction(ISD::FCEIL, VT, Legal);
259 setOperationAction(ISD::FTRUNC, VT, Legal);
260 setOperationAction(ISD::FROUND, VT, Legal);
261 }
262
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000263 // No special instructions for these.
264 setOperationAction(ISD::FSIN, VT, Expand);
265 setOperationAction(ISD::FCOS, VT, Expand);
266 setOperationAction(ISD::FREM, VT, Expand);
267 }
268 }
269
270 // We have fused multiply-addition for f32 and f64 but not f128.
271 setOperationAction(ISD::FMA, MVT::f32, Legal);
272 setOperationAction(ISD::FMA, MVT::f64, Legal);
273 setOperationAction(ISD::FMA, MVT::f128, Expand);
274
275 // Needed so that we don't try to implement f128 constant loads using
276 // a load-and-extend of a f80 constant (in cases where the constant
277 // would fit in an f80).
278 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
279
280 // Floating-point truncation and stores need to be done separately.
281 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
282 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
283 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
284
285 // We have 64-bit FPR<->GPR moves, but need special handling for
286 // 32-bit forms.
287 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
288 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
289
290 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
291 // structure, but VAEND is a no-op.
292 setOperationAction(ISD::VASTART, MVT::Other, Custom);
293 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
294 setOperationAction(ISD::VAEND, MVT::Other, Expand);
Richard Sandifordd131ff82013-07-08 09:35:23 +0000295
Richard Sandiford95bc5f92014-03-07 11:34:35 +0000296 // Codes for which we want to perform some z-specific combinations.
297 setTargetDAGCombine(ISD::SIGN_EXTEND);
298
Richard Sandifordd131ff82013-07-08 09:35:23 +0000299 // We want to use MVC in preference to even a single load/store pair.
300 MaxStoresPerMemcpy = 0;
301 MaxStoresPerMemcpyOptSize = 0;
Richard Sandiford47660c12013-07-09 09:32:42 +0000302
303 // The main memset sequence is a byte store followed by an MVC.
304 // Two STC or MV..I stores win over that, but the kind of fused stores
305 // generated by target-independent code don't when the byte value is
306 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
307 // than "STC;MVC". Handle the choice in target-specific code instead.
308 MaxStoresPerMemset = 0;
309 MaxStoresPerMemsetOptSize = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000310}
311
Richard Sandifordabc010b2013-11-06 12:16:02 +0000312EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
313 if (!VT.isVector())
314 return MVT::i32;
315 return VT.changeVectorElementTypeToInteger();
316}
317
318bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
Stephen Lin73de7bf2013-07-09 18:16:56 +0000319 VT = VT.getScalarType();
320
321 if (!VT.isSimple())
322 return false;
323
324 switch (VT.getSimpleVT().SimpleTy) {
325 case MVT::f32:
326 case MVT::f64:
327 return true;
328 case MVT::f128:
329 return false;
330 default:
331 break;
332 }
333
334 return false;
335}
336
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000337bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
338 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
339 return Imm.isZero() || Imm.isNegZero();
340}
341
Richard Sandiford46af5a22013-05-30 09:45:42 +0000342bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
Matt Arsenault25793a32014-02-05 23:15:53 +0000343 unsigned,
Richard Sandiford46af5a22013-05-30 09:45:42 +0000344 bool *Fast) const {
345 // Unaligned accesses should never be slower than the expanded version.
346 // We check specifically for aligned accesses in the few cases where
347 // they are required.
348 if (Fast)
349 *Fast = true;
350 return true;
351}
352
Richard Sandiford791bea42013-07-31 12:58:26 +0000353bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
354 Type *Ty) const {
355 // Punt on globals for now, although they can be used in limited
356 // RELATIVE LONG cases.
357 if (AM.BaseGV)
358 return false;
359
360 // Require a 20-bit signed offset.
361 if (!isInt<20>(AM.BaseOffs))
362 return false;
363
364 // Indexing is OK but no scale factor can be applied.
365 return AM.Scale == 0 || AM.Scale == 1;
366}
367
Richard Sandiford709bda62013-08-19 12:42:31 +0000368bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
369 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
370 return false;
371 unsigned FromBits = FromType->getPrimitiveSizeInBits();
372 unsigned ToBits = ToType->getPrimitiveSizeInBits();
373 return FromBits > ToBits;
374}
375
376bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
377 if (!FromVT.isInteger() || !ToVT.isInteger())
378 return false;
379 unsigned FromBits = FromVT.getSizeInBits();
380 unsigned ToBits = ToVT.getSizeInBits();
381 return FromBits > ToBits;
382}
383
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000384//===----------------------------------------------------------------------===//
385// Inline asm support
386//===----------------------------------------------------------------------===//
387
388TargetLowering::ConstraintType
389SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
390 if (Constraint.size() == 1) {
391 switch (Constraint[0]) {
392 case 'a': // Address register
393 case 'd': // Data register (equivalent to 'r')
394 case 'f': // Floating-point register
Richard Sandiford0755c932013-10-01 11:26:28 +0000395 case 'h': // High-part register
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000396 case 'r': // General-purpose register
397 return C_RegisterClass;
398
399 case 'Q': // Memory with base and unsigned 12-bit displacement
400 case 'R': // Likewise, plus an index
401 case 'S': // Memory with base and signed 20-bit displacement
402 case 'T': // Likewise, plus an index
403 case 'm': // Equivalent to 'T'.
404 return C_Memory;
405
406 case 'I': // Unsigned 8-bit constant
407 case 'J': // Unsigned 12-bit constant
408 case 'K': // Signed 16-bit constant
409 case 'L': // Signed 20-bit displacement (on all targets we support)
410 case 'M': // 0x7fffffff
411 return C_Other;
412
413 default:
414 break;
415 }
416 }
417 return TargetLowering::getConstraintType(Constraint);
418}
419
420TargetLowering::ConstraintWeight SystemZTargetLowering::
421getSingleConstraintMatchWeight(AsmOperandInfo &info,
422 const char *constraint) const {
423 ConstraintWeight weight = CW_Invalid;
424 Value *CallOperandVal = info.CallOperandVal;
425 // If we don't have a value, we can't do a match,
426 // but allow it at the lowest weight.
Craig Topper062a2ba2014-04-25 05:30:21 +0000427 if (!CallOperandVal)
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000428 return CW_Default;
429 Type *type = CallOperandVal->getType();
430 // Look at the constraint type.
431 switch (*constraint) {
432 default:
433 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
434 break;
435
436 case 'a': // Address register
437 case 'd': // Data register (equivalent to 'r')
Richard Sandiford0755c932013-10-01 11:26:28 +0000438 case 'h': // High-part register
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000439 case 'r': // General-purpose register
440 if (CallOperandVal->getType()->isIntegerTy())
441 weight = CW_Register;
442 break;
443
444 case 'f': // Floating-point register
445 if (type->isFloatingPointTy())
446 weight = CW_Register;
447 break;
448
449 case 'I': // Unsigned 8-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000450 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000451 if (isUInt<8>(C->getZExtValue()))
452 weight = CW_Constant;
453 break;
454
455 case 'J': // Unsigned 12-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000456 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000457 if (isUInt<12>(C->getZExtValue()))
458 weight = CW_Constant;
459 break;
460
461 case 'K': // Signed 16-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000462 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000463 if (isInt<16>(C->getSExtValue()))
464 weight = CW_Constant;
465 break;
466
467 case 'L': // Signed 20-bit displacement (on all targets we support)
Richard Sandiford21f5d682014-03-06 11:22:58 +0000468 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000469 if (isInt<20>(C->getSExtValue()))
470 weight = CW_Constant;
471 break;
472
473 case 'M': // 0x7fffffff
Richard Sandiford21f5d682014-03-06 11:22:58 +0000474 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000475 if (C->getZExtValue() == 0x7fffffff)
476 weight = CW_Constant;
477 break;
478 }
479 return weight;
480}
481
Richard Sandifordb8204052013-07-12 09:08:12 +0000482// Parse a "{tNNN}" register constraint for which the register type "t"
483// has already been verified. MC is the class associated with "t" and
484// Map maps 0-based register numbers to LLVM register numbers.
485static std::pair<unsigned, const TargetRegisterClass *>
486parseRegisterNumber(const std::string &Constraint,
487 const TargetRegisterClass *RC, const unsigned *Map) {
488 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
489 if (isdigit(Constraint[2])) {
490 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
491 unsigned Index = atoi(Suffix.c_str());
492 if (Index < 16 && Map[Index])
493 return std::make_pair(Map[Index], RC);
494 }
Craig Topper062a2ba2014-04-25 05:30:21 +0000495 return std::make_pair(0U, nullptr);
Richard Sandifordb8204052013-07-12 09:08:12 +0000496}
497
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000498std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
Chad Rosier295bd432013-06-22 18:37:38 +0000499getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000500 if (Constraint.size() == 1) {
501 // GCC Constraint Letters
502 switch (Constraint[0]) {
503 default: break;
504 case 'd': // Data register (equivalent to 'r')
505 case 'r': // General-purpose register
506 if (VT == MVT::i64)
507 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
508 else if (VT == MVT::i128)
509 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
510 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
511
512 case 'a': // Address register
513 if (VT == MVT::i64)
514 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
515 else if (VT == MVT::i128)
516 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
517 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
518
Richard Sandiford0755c932013-10-01 11:26:28 +0000519 case 'h': // High-part register (an LLVM extension)
520 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
521
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000522 case 'f': // Floating-point register
523 if (VT == MVT::f64)
524 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
525 else if (VT == MVT::f128)
526 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
527 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
528 }
529 }
Richard Sandifordb8204052013-07-12 09:08:12 +0000530 if (Constraint[0] == '{') {
531 // We need to override the default register parsing for GPRs and FPRs
532 // because the interpretation depends on VT. The internal names of
533 // the registers are also different from the external names
534 // (F0D and F0S instead of F0, etc.).
535 if (Constraint[1] == 'r') {
536 if (VT == MVT::i32)
537 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
538 SystemZMC::GR32Regs);
539 if (VT == MVT::i128)
540 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
541 SystemZMC::GR128Regs);
542 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
543 SystemZMC::GR64Regs);
544 }
545 if (Constraint[1] == 'f') {
546 if (VT == MVT::f32)
547 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
548 SystemZMC::FP32Regs);
549 if (VT == MVT::f128)
550 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
551 SystemZMC::FP128Regs);
552 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
553 SystemZMC::FP64Regs);
554 }
555 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000556 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
557}
558
559void SystemZTargetLowering::
560LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
561 std::vector<SDValue> &Ops,
562 SelectionDAG &DAG) const {
563 // Only support length 1 constraints for now.
564 if (Constraint.length() == 1) {
565 switch (Constraint[0]) {
566 case 'I': // Unsigned 8-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000567 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000568 if (isUInt<8>(C->getZExtValue()))
569 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
570 Op.getValueType()));
571 return;
572
573 case 'J': // Unsigned 12-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000574 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000575 if (isUInt<12>(C->getZExtValue()))
576 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
577 Op.getValueType()));
578 return;
579
580 case 'K': // Signed 16-bit constant
Richard Sandiford21f5d682014-03-06 11:22:58 +0000581 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000582 if (isInt<16>(C->getSExtValue()))
583 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
584 Op.getValueType()));
585 return;
586
587 case 'L': // Signed 20-bit displacement (on all targets we support)
Richard Sandiford21f5d682014-03-06 11:22:58 +0000588 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000589 if (isInt<20>(C->getSExtValue()))
590 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
591 Op.getValueType()));
592 return;
593
594 case 'M': // 0x7fffffff
Richard Sandiford21f5d682014-03-06 11:22:58 +0000595 if (auto *C = dyn_cast<ConstantSDNode>(Op))
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000596 if (C->getZExtValue() == 0x7fffffff)
597 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
598 Op.getValueType()));
599 return;
600 }
601 }
602 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
603}
604
605//===----------------------------------------------------------------------===//
606// Calling conventions
607//===----------------------------------------------------------------------===//
608
609#include "SystemZGenCallingConv.inc"
610
Richard Sandiford709bda62013-08-19 12:42:31 +0000611bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
612 Type *ToType) const {
613 return isTruncateFree(FromType, ToType);
614}
615
616bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
617 if (!CI->isTailCall())
618 return false;
619 return true;
620}
621
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000622// Value is a value that has been passed to us in the location described by VA
623// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
624// any loads onto Chain.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000625static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000626 CCValAssign &VA, SDValue Chain,
627 SDValue Value) {
628 // If the argument has been promoted from a smaller type, insert an
629 // assertion to capture this.
630 if (VA.getLocInfo() == CCValAssign::SExt)
631 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
632 DAG.getValueType(VA.getValVT()));
633 else if (VA.getLocInfo() == CCValAssign::ZExt)
634 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
635 DAG.getValueType(VA.getValVT()));
636
637 if (VA.isExtInLoc())
638 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
639 else if (VA.getLocInfo() == CCValAssign::Indirect)
640 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
641 MachinePointerInfo(), false, false, false, 0);
642 else
643 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
644 return Value;
645}
646
647// Value is a value of type VA.getValVT() that we need to copy into
648// the location described by VA. Return a copy of Value converted to
649// VA.getValVT(). The caller is responsible for handling indirect values.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000650static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000651 CCValAssign &VA, SDValue Value) {
652 switch (VA.getLocInfo()) {
653 case CCValAssign::SExt:
654 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
655 case CCValAssign::ZExt:
656 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
657 case CCValAssign::AExt:
658 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
659 case CCValAssign::Full:
660 return Value;
661 default:
662 llvm_unreachable("Unhandled getLocInfo()");
663 }
664}
665
666SDValue SystemZTargetLowering::
667LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
668 const SmallVectorImpl<ISD::InputArg> &Ins,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000669 SDLoc DL, SelectionDAG &DAG,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000670 SmallVectorImpl<SDValue> &InVals) const {
671 MachineFunction &MF = DAG.getMachineFunction();
672 MachineFrameInfo *MFI = MF.getFrameInfo();
673 MachineRegisterInfo &MRI = MF.getRegInfo();
674 SystemZMachineFunctionInfo *FuncInfo =
675 MF.getInfo<SystemZMachineFunctionInfo>();
Richard Sandiford21f5d682014-03-06 11:22:58 +0000676 auto *TFL = static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000677
678 // Assign locations to all of the incoming arguments.
679 SmallVector<CCValAssign, 16> ArgLocs;
680 CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
681 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
682
683 unsigned NumFixedGPRs = 0;
684 unsigned NumFixedFPRs = 0;
685 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
686 SDValue ArgValue;
687 CCValAssign &VA = ArgLocs[I];
688 EVT LocVT = VA.getLocVT();
689 if (VA.isRegLoc()) {
690 // Arguments passed in registers
691 const TargetRegisterClass *RC;
692 switch (LocVT.getSimpleVT().SimpleTy) {
693 default:
694 // Integers smaller than i64 should be promoted to i64.
695 llvm_unreachable("Unexpected argument type");
696 case MVT::i32:
697 NumFixedGPRs += 1;
698 RC = &SystemZ::GR32BitRegClass;
699 break;
700 case MVT::i64:
701 NumFixedGPRs += 1;
702 RC = &SystemZ::GR64BitRegClass;
703 break;
704 case MVT::f32:
705 NumFixedFPRs += 1;
706 RC = &SystemZ::FP32BitRegClass;
707 break;
708 case MVT::f64:
709 NumFixedFPRs += 1;
710 RC = &SystemZ::FP64BitRegClass;
711 break;
712 }
713
714 unsigned VReg = MRI.createVirtualRegister(RC);
715 MRI.addLiveIn(VA.getLocReg(), VReg);
716 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
717 } else {
718 assert(VA.isMemLoc() && "Argument not register or memory");
719
720 // Create the frame index object for this incoming parameter.
721 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
722 VA.getLocMemOffset(), true);
723
724 // Create the SelectionDAG nodes corresponding to a load
725 // from this parameter. Unpromoted ints and floats are
726 // passed as right-justified 8-byte values.
727 EVT PtrVT = getPointerTy();
728 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
729 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
730 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
731 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
732 MachinePointerInfo::getFixedStack(FI),
733 false, false, false, 0);
734 }
735
736 // Convert the value of the argument register into the value that's
737 // being passed.
738 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
739 }
740
741 if (IsVarArg) {
742 // Save the number of non-varargs registers for later use by va_start, etc.
743 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
744 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
745
746 // Likewise the address (in the form of a frame index) of where the
747 // first stack vararg would be. The 1-byte size here is arbitrary.
748 int64_t StackSize = CCInfo.getNextStackOffset();
749 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
750
751 // ...and a similar frame index for the caller-allocated save area
752 // that will be used to store the incoming registers.
753 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
754 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
755 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
756
757 // Store the FPR varargs in the reserved frame slots. (We store the
758 // GPRs as part of the prologue.)
759 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
760 SDValue MemOps[SystemZ::NumArgFPRs];
761 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
762 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
763 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
764 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
765 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
766 &SystemZ::FP64BitRegClass);
767 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
768 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
769 MachinePointerInfo::getFixedStack(FI),
770 false, false, 0);
771
772 }
773 // Join the stores, which are independent of one another.
774 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
Craig Topper48d114b2014-04-26 18:35:24 +0000775 ArrayRef<SDValue>(&MemOps[NumFixedFPRs],
776 SystemZ::NumArgFPRs-NumFixedFPRs));
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000777 }
778 }
779
780 return Chain;
781}
782
Richard Sandiford709bda62013-08-19 12:42:31 +0000783static bool canUseSiblingCall(CCState ArgCCInfo,
784 SmallVectorImpl<CCValAssign> &ArgLocs) {
785 // Punt if there are any indirect or stack arguments, or if the call
786 // needs the call-saved argument register R6.
787 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
788 CCValAssign &VA = ArgLocs[I];
789 if (VA.getLocInfo() == CCValAssign::Indirect)
790 return false;
791 if (!VA.isRegLoc())
792 return false;
793 unsigned Reg = VA.getLocReg();
Richard Sandiford0755c932013-10-01 11:26:28 +0000794 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
Richard Sandiford709bda62013-08-19 12:42:31 +0000795 return false;
796 }
797 return true;
798}
799
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000800SDValue
801SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
802 SmallVectorImpl<SDValue> &InVals) const {
803 SelectionDAG &DAG = CLI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +0000804 SDLoc &DL = CLI.DL;
Craig Topperb94011f2013-07-14 04:42:23 +0000805 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
806 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
807 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000808 SDValue Chain = CLI.Chain;
809 SDValue Callee = CLI.Callee;
Richard Sandiford709bda62013-08-19 12:42:31 +0000810 bool &IsTailCall = CLI.IsTailCall;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000811 CallingConv::ID CallConv = CLI.CallConv;
812 bool IsVarArg = CLI.IsVarArg;
813 MachineFunction &MF = DAG.getMachineFunction();
814 EVT PtrVT = getPointerTy();
815
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000816 // Analyze the operands of the call, assigning locations to each operand.
817 SmallVector<CCValAssign, 16> ArgLocs;
818 CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
819 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
820
Richard Sandiford709bda62013-08-19 12:42:31 +0000821 // We don't support GuaranteedTailCallOpt, only automatically-detected
822 // sibling calls.
823 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
824 IsTailCall = false;
825
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000826 // Get a count of how many bytes are to be pushed on the stack.
827 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
828
829 // Mark the start of the call.
Richard Sandiford709bda62013-08-19 12:42:31 +0000830 if (!IsTailCall)
831 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
832 DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000833
834 // Copy argument values to their designated locations.
835 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
836 SmallVector<SDValue, 8> MemOpChains;
837 SDValue StackPtr;
838 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
839 CCValAssign &VA = ArgLocs[I];
840 SDValue ArgValue = OutVals[I];
841
842 if (VA.getLocInfo() == CCValAssign::Indirect) {
843 // Store the argument in a stack slot and pass its address.
844 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
845 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
846 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
847 MachinePointerInfo::getFixedStack(FI),
848 false, false, 0));
849 ArgValue = SpillSlot;
850 } else
851 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
852
853 if (VA.isRegLoc())
854 // Queue up the argument copies and emit them at the end.
855 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
856 else {
857 assert(VA.isMemLoc() && "Argument not register or memory");
858
859 // Work out the address of the stack slot. Unpromoted ints and
860 // floats are passed as right-justified 8-byte values.
861 if (!StackPtr.getNode())
862 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
863 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
864 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
865 Offset += 4;
866 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
867 DAG.getIntPtrConstant(Offset));
868
869 // Emit the store.
870 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
871 MachinePointerInfo(),
872 false, false, 0));
873 }
874 }
875
876 // Join the stores, which are independent of one another.
877 if (!MemOpChains.empty())
Craig Topper48d114b2014-04-26 18:35:24 +0000878 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000879
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000880 // Accept direct calls by converting symbolic call addresses to the
Richard Sandiford709bda62013-08-19 12:42:31 +0000881 // associated Target* opcodes. Force %r1 to be used for indirect
882 // tail calls.
883 SDValue Glue;
Richard Sandiford21f5d682014-03-06 11:22:58 +0000884 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000885 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
886 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
Richard Sandiford21f5d682014-03-06 11:22:58 +0000887 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000888 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
889 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
Richard Sandiford709bda62013-08-19 12:42:31 +0000890 } else if (IsTailCall) {
891 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
892 Glue = Chain.getValue(1);
893 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
894 }
895
896 // Build a sequence of copy-to-reg nodes, chained and glued together.
897 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
898 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
899 RegsToPass[I].second, Glue);
900 Glue = Chain.getValue(1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000901 }
902
903 // The first call operand is the chain and the second is the target address.
904 SmallVector<SDValue, 8> Ops;
905 Ops.push_back(Chain);
906 Ops.push_back(Callee);
907
908 // Add argument registers to the end of the list so that they are
909 // known live into the call.
910 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
911 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
912 RegsToPass[I].second.getValueType()));
913
914 // Glue the call to the argument copies, if any.
915 if (Glue.getNode())
916 Ops.push_back(Glue);
917
918 // Emit the call.
919 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Richard Sandiford709bda62013-08-19 12:42:31 +0000920 if (IsTailCall)
Craig Topper48d114b2014-04-26 18:35:24 +0000921 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
922 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000923 Glue = Chain.getValue(1);
924
925 // Mark the end of the call, which is glued to the call itself.
926 Chain = DAG.getCALLSEQ_END(Chain,
927 DAG.getConstant(NumBytes, PtrVT, true),
928 DAG.getConstant(0, PtrVT, true),
Andrew Trickad6d08a2013-05-29 22:03:55 +0000929 Glue, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000930 Glue = Chain.getValue(1);
931
932 // Assign locations to each value returned by this call.
933 SmallVector<CCValAssign, 16> RetLocs;
934 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
935 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
936
937 // Copy all of the result registers out of their specified physreg.
938 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
939 CCValAssign &VA = RetLocs[I];
940
941 // Copy the value out, gluing the copy to the end of the call sequence.
942 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
943 VA.getLocVT(), Glue);
944 Chain = RetValue.getValue(1);
945 Glue = RetValue.getValue(2);
946
947 // Convert the value of the return register into the value that's
948 // being returned.
949 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
950 }
951
952 return Chain;
953}
954
955SDValue
956SystemZTargetLowering::LowerReturn(SDValue Chain,
957 CallingConv::ID CallConv, bool IsVarArg,
958 const SmallVectorImpl<ISD::OutputArg> &Outs,
959 const SmallVectorImpl<SDValue> &OutVals,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000960 SDLoc DL, SelectionDAG &DAG) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000961 MachineFunction &MF = DAG.getMachineFunction();
962
963 // Assign locations to each returned value.
964 SmallVector<CCValAssign, 16> RetLocs;
965 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
966 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
967
968 // Quick exit for void returns
969 if (RetLocs.empty())
970 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
971
972 // Copy the result values into the output registers.
973 SDValue Glue;
974 SmallVector<SDValue, 4> RetOps;
975 RetOps.push_back(Chain);
976 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
977 CCValAssign &VA = RetLocs[I];
978 SDValue RetValue = OutVals[I];
979
980 // Make the return register live on exit.
981 assert(VA.isRegLoc() && "Can only return in registers!");
982
983 // Promote the value as required.
984 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
985
986 // Chain and glue the copies together.
987 unsigned Reg = VA.getLocReg();
988 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
989 Glue = Chain.getValue(1);
990 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
991 }
992
993 // Update chain and glue.
994 RetOps[0] = Chain;
995 if (Glue.getNode())
996 RetOps.push_back(Glue);
997
Craig Topper48d114b2014-04-26 18:35:24 +0000998 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000999}
1000
Richard Sandiford9afe6132013-12-10 10:36:34 +00001001SDValue SystemZTargetLowering::
1002prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
1003 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1004}
1005
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001006// CC is a comparison that will be implemented using an integer or
1007// floating-point comparison. Return the condition code mask for
1008// a branch on true. In the integer case, CCMASK_CMP_UO is set for
1009// unsigned comparisons and clear for signed ones. In the floating-point
1010// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1011static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1012#define CONV(X) \
1013 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1014 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1015 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1016
1017 switch (CC) {
1018 default:
1019 llvm_unreachable("Invalid integer condition!");
1020
1021 CONV(EQ);
1022 CONV(NE);
1023 CONV(GT);
1024 CONV(GE);
1025 CONV(LT);
1026 CONV(LE);
1027
1028 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1029 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1030 }
1031#undef CONV
1032}
1033
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001034// Return a sequence for getting a 1 from an IPM result when CC has a
1035// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1036// The handling of CC values outside CCValid doesn't matter.
1037static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1038 // Deal with cases where the result can be taken directly from a bit
1039 // of the IPM result.
1040 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1041 return IPMConversion(0, 0, SystemZ::IPM_CC);
1042 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1043 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1044
1045 // Deal with cases where we can add a value to force the sign bit
1046 // to contain the right value. Putting the bit in 31 means we can
1047 // use SRL rather than RISBG(L), and also makes it easier to get a
1048 // 0/-1 value, so it has priority over the other tests below.
1049 //
1050 // These sequences rely on the fact that the upper two bits of the
1051 // IPM result are zero.
1052 uint64_t TopBit = uint64_t(1) << 31;
1053 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1054 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1055 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1056 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1057 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1058 | SystemZ::CCMASK_1
1059 | SystemZ::CCMASK_2)))
1060 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1061 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1062 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1063 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1064 | SystemZ::CCMASK_2
1065 | SystemZ::CCMASK_3)))
1066 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1067
1068 // Next try inverting the value and testing a bit. 0/1 could be
1069 // handled this way too, but we dealt with that case above.
1070 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1071 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1072
1073 // Handle cases where adding a value forces a non-sign bit to contain
1074 // the right value.
1075 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1076 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1077 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1078 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1079
Alp Tokercb402912014-01-24 17:20:08 +00001080 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001081 // can be done by inverting the low CC bit and applying one of the
1082 // sign-based extractions above.
1083 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1084 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1085 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1086 return IPMConversion(1 << SystemZ::IPM_CC,
1087 TopBit - (3 << SystemZ::IPM_CC), 31);
1088 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1089 | SystemZ::CCMASK_1
1090 | SystemZ::CCMASK_3)))
1091 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1092 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1093 | SystemZ::CCMASK_2
1094 | SystemZ::CCMASK_3)))
1095 return IPMConversion(1 << SystemZ::IPM_CC,
1096 TopBit - (1 << SystemZ::IPM_CC), 31);
1097
1098 llvm_unreachable("Unexpected CC combination");
1099}
1100
Richard Sandifordd420f732013-12-13 15:28:45 +00001101// If C can be converted to a comparison against zero, adjust the operands
Richard Sandiforda0757082013-08-01 10:29:45 +00001102// as necessary.
Richard Sandifordd420f732013-12-13 15:28:45 +00001103static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
1104 if (C.ICmpType == SystemZICMP::UnsignedOnly)
Richard Sandiforda0757082013-08-01 10:29:45 +00001105 return;
1106
Richard Sandiford21f5d682014-03-06 11:22:58 +00001107 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
Richard Sandiforda0757082013-08-01 10:29:45 +00001108 if (!ConstOp1)
1109 return;
1110
1111 int64_t Value = ConstOp1->getSExtValue();
Richard Sandifordd420f732013-12-13 15:28:45 +00001112 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1113 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1114 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1115 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1116 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1117 C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
Richard Sandiforda0757082013-08-01 10:29:45 +00001118 }
1119}
1120
Richard Sandifordd420f732013-12-13 15:28:45 +00001121// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1122// adjust the operands as necessary.
1123static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001124 // For us to make any changes, it must a comparison between a single-use
1125 // load and a constant.
Richard Sandifordd420f732013-12-13 15:28:45 +00001126 if (!C.Op0.hasOneUse() ||
1127 C.Op0.getOpcode() != ISD::LOAD ||
1128 C.Op1.getOpcode() != ISD::Constant)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001129 return;
1130
1131 // We must have an 8- or 16-bit load.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001132 auto *Load = cast<LoadSDNode>(C.Op0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001133 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1134 if (NumBits != 8 && NumBits != 16)
1135 return;
1136
1137 // The load must be an extending one and the constant must be within the
1138 // range of the unextended value.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001139 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
Richard Sandifordd420f732013-12-13 15:28:45 +00001140 uint64_t Value = ConstOp1->getZExtValue();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001141 uint64_t Mask = (1 << NumBits) - 1;
1142 if (Load->getExtensionType() == ISD::SEXTLOAD) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001143 // Make sure that ConstOp1 is in range of C.Op0.
1144 int64_t SignedValue = ConstOp1->getSExtValue();
1145 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001146 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001147 if (C.ICmpType != SystemZICMP::SignedOnly) {
1148 // Unsigned comparison between two sign-extended values is equivalent
1149 // to unsigned comparison between two zero-extended values.
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001150 Value &= Mask;
Richard Sandifordd420f732013-12-13 15:28:45 +00001151 } else if (NumBits == 8) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001152 // Try to treat the comparison as unsigned, so that we can use CLI.
1153 // Adjust CCMask and Value as necessary.
Richard Sandifordd420f732013-12-13 15:28:45 +00001154 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001155 // Test whether the high bit of the byte is set.
Richard Sandifordd420f732013-12-13 15:28:45 +00001156 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1157 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001158 // Test whether the high bit of the byte is clear.
Richard Sandifordd420f732013-12-13 15:28:45 +00001159 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001160 else
1161 // No instruction exists for this combination.
1162 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001163 C.ICmpType = SystemZICMP::UnsignedOnly;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001164 }
1165 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1166 if (Value > Mask)
1167 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001168 assert(C.ICmpType == SystemZICMP::Any &&
1169 "Signedness shouldn't matter here.");
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001170 } else
1171 return;
1172
1173 // Make sure that the first operand is an i32 of the right extension type.
Richard Sandifordd420f732013-12-13 15:28:45 +00001174 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1175 ISD::SEXTLOAD :
1176 ISD::ZEXTLOAD);
1177 if (C.Op0.getValueType() != MVT::i32 ||
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001178 Load->getExtensionType() != ExtType)
Richard Sandifordd420f732013-12-13 15:28:45 +00001179 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1180 Load->getChain(), Load->getBasePtr(),
1181 Load->getPointerInfo(), Load->getMemoryVT(),
1182 Load->isVolatile(), Load->isNonTemporal(),
1183 Load->getAlignment());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001184
1185 // Make sure that the second operand is an i32 with the right value.
Richard Sandifordd420f732013-12-13 15:28:45 +00001186 if (C.Op1.getValueType() != MVT::i32 ||
1187 Value != ConstOp1->getZExtValue())
1188 C.Op1 = DAG.getConstant(Value, MVT::i32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001189}
1190
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001191// Return true if Op is either an unextended load, or a load suitable
1192// for integer register-memory comparisons of type ICmpType.
1193static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001194 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001195 if (Load) {
1196 // There are no instructions to compare a register with a memory byte.
1197 if (Load->getMemoryVT() == MVT::i8)
1198 return false;
1199 // Otherwise decide on extension type.
Richard Sandiford24e597b2013-08-23 11:27:19 +00001200 switch (Load->getExtensionType()) {
1201 case ISD::NON_EXTLOAD:
Richard Sandiford24e597b2013-08-23 11:27:19 +00001202 return true;
1203 case ISD::SEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001204 return ICmpType != SystemZICMP::UnsignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001205 case ISD::ZEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001206 return ICmpType != SystemZICMP::SignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001207 default:
1208 break;
1209 }
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001210 }
Richard Sandiford24e597b2013-08-23 11:27:19 +00001211 return false;
1212}
1213
Richard Sandifordd420f732013-12-13 15:28:45 +00001214// Return true if it is better to swap the operands of C.
1215static bool shouldSwapCmpOperands(const Comparison &C) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001216 // Leave f128 comparisons alone, since they have no memory forms.
Richard Sandifordd420f732013-12-13 15:28:45 +00001217 if (C.Op0.getValueType() == MVT::f128)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001218 return false;
1219
1220 // Always keep a floating-point constant second, since comparisons with
1221 // zero can use LOAD TEST and comparisons with other constants make a
1222 // natural memory operand.
Richard Sandifordd420f732013-12-13 15:28:45 +00001223 if (isa<ConstantFPSDNode>(C.Op1))
Richard Sandiford24e597b2013-08-23 11:27:19 +00001224 return false;
1225
1226 // Never swap comparisons with zero since there are many ways to optimize
1227 // those later.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001228 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
Richard Sandifordd420f732013-12-13 15:28:45 +00001229 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001230 return false;
1231
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001232 // Also keep natural memory operands second if the loaded value is
1233 // only used here. Several comparisons have memory forms.
Richard Sandifordd420f732013-12-13 15:28:45 +00001234 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001235 return false;
1236
Richard Sandiford24e597b2013-08-23 11:27:19 +00001237 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1238 // In that case we generally prefer the memory to be second.
Richard Sandifordd420f732013-12-13 15:28:45 +00001239 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001240 // The only exceptions are when the second operand is a constant and
1241 // we can use things like CHHSI.
Richard Sandifordd420f732013-12-13 15:28:45 +00001242 if (!ConstOp1)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001243 return true;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001244 // The unsigned memory-immediate instructions can handle 16-bit
1245 // unsigned integers.
Richard Sandifordd420f732013-12-13 15:28:45 +00001246 if (C.ICmpType != SystemZICMP::SignedOnly &&
1247 isUInt<16>(ConstOp1->getZExtValue()))
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001248 return false;
1249 // The signed memory-immediate instructions can handle 16-bit
1250 // signed integers.
Richard Sandifordd420f732013-12-13 15:28:45 +00001251 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1252 isInt<16>(ConstOp1->getSExtValue()))
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001253 return false;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001254 return true;
1255 }
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001256
1257 // Try to promote the use of CGFR and CLGFR.
Richard Sandifordd420f732013-12-13 15:28:45 +00001258 unsigned Opcode0 = C.Op0.getOpcode();
1259 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001260 return true;
Richard Sandifordd420f732013-12-13 15:28:45 +00001261 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001262 return true;
Richard Sandifordd420f732013-12-13 15:28:45 +00001263 if (C.ICmpType != SystemZICMP::SignedOnly &&
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001264 Opcode0 == ISD::AND &&
Richard Sandifordd420f732013-12-13 15:28:45 +00001265 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1266 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001267 return true;
1268
Richard Sandiford24e597b2013-08-23 11:27:19 +00001269 return false;
1270}
1271
Richard Sandiford73170f82013-12-11 11:45:08 +00001272// Return a version of comparison CC mask CCMask in which the LT and GT
1273// actions are swapped.
1274static unsigned reverseCCMask(unsigned CCMask) {
1275 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1276 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1277 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1278 (CCMask & SystemZ::CCMASK_CMP_UO));
1279}
1280
Richard Sandiford0847c452013-12-13 15:50:30 +00001281// Check whether C tests for equality between X and Y and whether X - Y
1282// or Y - X is also computed. In that case it's better to compare the
1283// result of the subtraction against zero.
1284static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
1285 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1286 C.CCMask == SystemZ::CCMASK_CMP_NE) {
Richard Sandiford28c111e2014-03-06 11:00:15 +00001287 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
Richard Sandiford0847c452013-12-13 15:50:30 +00001288 SDNode *N = *I;
1289 if (N->getOpcode() == ISD::SUB &&
1290 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1291 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1292 C.Op0 = SDValue(N, 0);
1293 C.Op1 = DAG.getConstant(0, N->getValueType(0));
1294 return;
1295 }
1296 }
1297 }
1298}
1299
Richard Sandifordd420f732013-12-13 15:28:45 +00001300// Check whether C compares a floating-point value with zero and if that
1301// floating-point value is also negated. In this case we can use the
1302// negation to set CC, so avoiding separate LOAD AND TEST and
1303// LOAD (NEGATIVE/COMPLEMENT) instructions.
1304static void adjustForFNeg(Comparison &C) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001305 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
Richard Sandiford73170f82013-12-11 11:45:08 +00001306 if (C1 && C1->isZero()) {
Richard Sandiford28c111e2014-03-06 11:00:15 +00001307 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
Richard Sandiford73170f82013-12-11 11:45:08 +00001308 SDNode *N = *I;
1309 if (N->getOpcode() == ISD::FNEG) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001310 C.Op0 = SDValue(N, 0);
1311 C.CCMask = reverseCCMask(C.CCMask);
Richard Sandiford73170f82013-12-11 11:45:08 +00001312 return;
1313 }
1314 }
1315 }
1316}
1317
Richard Sandifordd420f732013-12-13 15:28:45 +00001318// Check whether C compares (shl X, 32) with 0 and whether X is
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001319// also sign-extended. In that case it is better to test the result
1320// of the sign extension using LTGFR.
1321//
1322// This case is important because InstCombine transforms a comparison
1323// with (sext (trunc X)) into a comparison with (shl X, 32).
Richard Sandifordd420f732013-12-13 15:28:45 +00001324static void adjustForLTGFR(Comparison &C) {
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001325 // Check for a comparison between (shl X, 32) and 0.
Richard Sandifordd420f732013-12-13 15:28:45 +00001326 if (C.Op0.getOpcode() == ISD::SHL &&
1327 C.Op0.getValueType() == MVT::i64 &&
1328 C.Op1.getOpcode() == ISD::Constant &&
1329 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001330 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001331 if (C1 && C1->getZExtValue() == 32) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001332 SDValue ShlOp0 = C.Op0.getOperand(0);
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001333 // See whether X has any SIGN_EXTEND_INREG uses.
Richard Sandiford28c111e2014-03-06 11:00:15 +00001334 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001335 SDNode *N = *I;
1336 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1337 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001338 C.Op0 = SDValue(N, 0);
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001339 return;
1340 }
1341 }
1342 }
1343 }
1344}
1345
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001346// If C compares the truncation of an extending load, try to compare
1347// the untruncated value instead. This exposes more opportunities to
1348// reuse CC.
1349static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
1350 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1351 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1352 C.Op1.getOpcode() == ISD::Constant &&
1353 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001354 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001355 if (L->getMemoryVT().getStoreSizeInBits()
1356 <= C.Op0.getValueType().getSizeInBits()) {
1357 unsigned Type = L->getExtensionType();
1358 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1359 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1360 C.Op0 = C.Op0.getOperand(0);
1361 C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
1362 }
1363 }
1364 }
1365}
1366
Richard Sandiford030c1652013-09-13 09:09:50 +00001367// Return true if shift operation N has an in-range constant shift value.
1368// Store it in ShiftVal if so.
1369static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
Richard Sandiford21f5d682014-03-06 11:22:58 +00001370 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
Richard Sandiford030c1652013-09-13 09:09:50 +00001371 if (!Shift)
1372 return false;
1373
1374 uint64_t Amount = Shift->getZExtValue();
1375 if (Amount >= N.getValueType().getSizeInBits())
1376 return false;
1377
1378 ShiftVal = Amount;
1379 return true;
1380}
1381
1382// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1383// instruction and whether the CC value is descriptive enough to handle
1384// a comparison of type Opcode between the AND result and CmpVal.
1385// CCMask says which comparison result is being tested and BitSize is
1386// the number of bits in the operands. If TEST UNDER MASK can be used,
1387// return the corresponding CC mask, otherwise return 0.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001388static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1389 uint64_t Mask, uint64_t CmpVal,
1390 unsigned ICmpType) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001391 assert(Mask != 0 && "ANDs with zero should have been removed by now");
1392
Richard Sandiford030c1652013-09-13 09:09:50 +00001393 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1394 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1395 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1396 return 0;
1397
Richard Sandiford113c8702013-09-03 15:38:35 +00001398 // Work out the masks for the lowest and highest bits.
1399 unsigned HighShift = 63 - countLeadingZeros(Mask);
1400 uint64_t High = uint64_t(1) << HighShift;
1401 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1402
1403 // Signed ordered comparisons are effectively unsigned if the sign
1404 // bit is dropped.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001405 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
Richard Sandiford113c8702013-09-03 15:38:35 +00001406
1407 // Check for equality comparisons with 0, or the equivalent.
1408 if (CmpVal == 0) {
1409 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1410 return SystemZ::CCMASK_TM_ALL_0;
1411 if (CCMask == SystemZ::CCMASK_CMP_NE)
1412 return SystemZ::CCMASK_TM_SOME_1;
1413 }
1414 if (EffectivelyUnsigned && CmpVal <= Low) {
1415 if (CCMask == SystemZ::CCMASK_CMP_LT)
1416 return SystemZ::CCMASK_TM_ALL_0;
1417 if (CCMask == SystemZ::CCMASK_CMP_GE)
1418 return SystemZ::CCMASK_TM_SOME_1;
1419 }
1420 if (EffectivelyUnsigned && CmpVal < Low) {
1421 if (CCMask == SystemZ::CCMASK_CMP_LE)
1422 return SystemZ::CCMASK_TM_ALL_0;
1423 if (CCMask == SystemZ::CCMASK_CMP_GT)
1424 return SystemZ::CCMASK_TM_SOME_1;
1425 }
1426
1427 // Check for equality comparisons with the mask, or the equivalent.
1428 if (CmpVal == Mask) {
1429 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1430 return SystemZ::CCMASK_TM_ALL_1;
1431 if (CCMask == SystemZ::CCMASK_CMP_NE)
1432 return SystemZ::CCMASK_TM_SOME_0;
1433 }
1434 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1435 if (CCMask == SystemZ::CCMASK_CMP_GT)
1436 return SystemZ::CCMASK_TM_ALL_1;
1437 if (CCMask == SystemZ::CCMASK_CMP_LE)
1438 return SystemZ::CCMASK_TM_SOME_0;
1439 }
1440 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1441 if (CCMask == SystemZ::CCMASK_CMP_GE)
1442 return SystemZ::CCMASK_TM_ALL_1;
1443 if (CCMask == SystemZ::CCMASK_CMP_LT)
1444 return SystemZ::CCMASK_TM_SOME_0;
1445 }
1446
1447 // Check for ordered comparisons with the top bit.
1448 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1449 if (CCMask == SystemZ::CCMASK_CMP_LE)
1450 return SystemZ::CCMASK_TM_MSB_0;
1451 if (CCMask == SystemZ::CCMASK_CMP_GT)
1452 return SystemZ::CCMASK_TM_MSB_1;
1453 }
1454 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1455 if (CCMask == SystemZ::CCMASK_CMP_LT)
1456 return SystemZ::CCMASK_TM_MSB_0;
1457 if (CCMask == SystemZ::CCMASK_CMP_GE)
1458 return SystemZ::CCMASK_TM_MSB_1;
1459 }
1460
1461 // If there are just two bits, we can do equality checks for Low and High
1462 // as well.
1463 if (Mask == Low + High) {
1464 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1465 return SystemZ::CCMASK_TM_MIXED_MSB_0;
1466 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1467 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1468 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1469 return SystemZ::CCMASK_TM_MIXED_MSB_1;
1470 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1471 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1472 }
1473
1474 // Looks like we've exhausted our options.
1475 return 0;
1476}
1477
Richard Sandifordd420f732013-12-13 15:28:45 +00001478// See whether C can be implemented as a TEST UNDER MASK instruction.
1479// Update the arguments with the TM version if so.
1480static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001481 // Check that we have a comparison with a constant.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001482 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
Richard Sandifordd420f732013-12-13 15:28:45 +00001483 if (!ConstOp1)
Richard Sandiford35b9be22013-08-28 10:31:43 +00001484 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001485 uint64_t CmpVal = ConstOp1->getZExtValue();
Richard Sandiford35b9be22013-08-28 10:31:43 +00001486
1487 // Check whether the nonconstant input is an AND with a constant mask.
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001488 Comparison NewC(C);
1489 uint64_t MaskVal;
Craig Topper062a2ba2014-04-25 05:30:21 +00001490 ConstantSDNode *Mask = nullptr;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001491 if (C.Op0.getOpcode() == ISD::AND) {
1492 NewC.Op0 = C.Op0.getOperand(0);
1493 NewC.Op1 = C.Op0.getOperand(1);
1494 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1495 if (!Mask)
1496 return;
1497 MaskVal = Mask->getZExtValue();
1498 } else {
1499 // There is no instruction to compare with a 64-bit immediate
1500 // so use TMHH instead if possible. We need an unsigned ordered
1501 // comparison with an i64 immediate.
1502 if (NewC.Op0.getValueType() != MVT::i64 ||
1503 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1504 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1505 NewC.ICmpType == SystemZICMP::SignedOnly)
1506 return;
1507 // Convert LE and GT comparisons into LT and GE.
1508 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
1509 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
1510 if (CmpVal == uint64_t(-1))
1511 return;
1512 CmpVal += 1;
1513 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1514 }
1515 // If the low N bits of Op1 are zero than the low N bits of Op0 can
1516 // be masked off without changing the result.
1517 MaskVal = -(CmpVal & -CmpVal);
1518 NewC.ICmpType = SystemZICMP::UnsignedOnly;
1519 }
Richard Sandiford35b9be22013-08-28 10:31:43 +00001520
Richard Sandiford113c8702013-09-03 15:38:35 +00001521 // Check whether the combination of mask, comparison value and comparison
1522 // type are suitable.
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001523 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
Richard Sandiford030c1652013-09-13 09:09:50 +00001524 unsigned NewCCMask, ShiftVal;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001525 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1526 NewC.Op0.getOpcode() == ISD::SHL &&
1527 isSimpleShift(NewC.Op0, ShiftVal) &&
1528 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1529 MaskVal >> ShiftVal,
Richard Sandiford030c1652013-09-13 09:09:50 +00001530 CmpVal >> ShiftVal,
1531 SystemZICMP::Any))) {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001532 NewC.Op0 = NewC.Op0.getOperand(0);
1533 MaskVal >>= ShiftVal;
1534 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1535 NewC.Op0.getOpcode() == ISD::SRL &&
1536 isSimpleShift(NewC.Op0, ShiftVal) &&
1537 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
Richard Sandiford030c1652013-09-13 09:09:50 +00001538 MaskVal << ShiftVal,
1539 CmpVal << ShiftVal,
1540 SystemZICMP::UnsignedOnly))) {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001541 NewC.Op0 = NewC.Op0.getOperand(0);
1542 MaskVal <<= ShiftVal;
Richard Sandiford030c1652013-09-13 09:09:50 +00001543 } else {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001544 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
1545 NewC.ICmpType);
Richard Sandiford030c1652013-09-13 09:09:50 +00001546 if (!NewCCMask)
1547 return;
1548 }
Richard Sandiford113c8702013-09-03 15:38:35 +00001549
Richard Sandiford35b9be22013-08-28 10:31:43 +00001550 // Go ahead and make the change.
Richard Sandifordd420f732013-12-13 15:28:45 +00001551 C.Opcode = SystemZISD::TM;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001552 C.Op0 = NewC.Op0;
1553 if (Mask && Mask->getZExtValue() == MaskVal)
1554 C.Op1 = SDValue(Mask, 0);
1555 else
1556 C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
Richard Sandifordd420f732013-12-13 15:28:45 +00001557 C.CCValid = SystemZ::CCMASK_TM;
1558 C.CCMask = NewCCMask;
Richard Sandiford35b9be22013-08-28 10:31:43 +00001559}
1560
Richard Sandifordd420f732013-12-13 15:28:45 +00001561// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
1562static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1563 ISD::CondCode Cond) {
1564 Comparison C(CmpOp0, CmpOp1);
1565 C.CCMask = CCMaskForCondCode(Cond);
1566 if (C.Op0.getValueType().isFloatingPoint()) {
1567 C.CCValid = SystemZ::CCMASK_FCMP;
1568 C.Opcode = SystemZISD::FCMP;
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001569 adjustForFNeg(C);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001570 } else {
Richard Sandifordd420f732013-12-13 15:28:45 +00001571 C.CCValid = SystemZ::CCMASK_ICMP;
1572 C.Opcode = SystemZISD::ICMP;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001573 // Choose the type of comparison. Equality and inequality tests can
1574 // use either signed or unsigned comparisons. The choice also doesn't
1575 // matter if both sign bits are known to be clear. In those cases we
1576 // want to give the main isel code the freedom to choose whichever
1577 // form fits best.
Richard Sandifordd420f732013-12-13 15:28:45 +00001578 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1579 C.CCMask == SystemZ::CCMASK_CMP_NE ||
1580 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
1581 C.ICmpType = SystemZICMP::Any;
1582 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
1583 C.ICmpType = SystemZICMP::UnsignedOnly;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001584 else
Richard Sandifordd420f732013-12-13 15:28:45 +00001585 C.ICmpType = SystemZICMP::SignedOnly;
1586 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
1587 adjustZeroCmp(DAG, C);
1588 adjustSubwordCmp(DAG, C);
Richard Sandiford0847c452013-12-13 15:50:30 +00001589 adjustForSubtraction(DAG, C);
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001590 adjustForLTGFR(C);
1591 adjustICmpTruncate(DAG, C);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001592 }
1593
Richard Sandifordd420f732013-12-13 15:28:45 +00001594 if (shouldSwapCmpOperands(C)) {
1595 std::swap(C.Op0, C.Op1);
1596 C.CCMask = reverseCCMask(C.CCMask);
Richard Sandiford24e597b2013-08-23 11:27:19 +00001597 }
1598
Richard Sandifordd420f732013-12-13 15:28:45 +00001599 adjustForTestUnderMask(DAG, C);
Richard Sandifordd420f732013-12-13 15:28:45 +00001600 return C;
1601}
1602
1603// Emit the comparison instruction described by C.
1604static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1605 if (C.Opcode == SystemZISD::ICMP)
1606 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
1607 DAG.getConstant(C.ICmpType, MVT::i32));
1608 if (C.Opcode == SystemZISD::TM) {
1609 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1610 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1611 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
1612 DAG.getConstant(RegisterOnly, MVT::i32));
1613 }
1614 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001615}
1616
Richard Sandiford7d86e472013-08-21 09:34:56 +00001617// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1618// 64 bits. Extend is the extension type to use. Store the high part
1619// in Hi and the low part in Lo.
1620static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1621 unsigned Extend, SDValue Op0, SDValue Op1,
1622 SDValue &Hi, SDValue &Lo) {
1623 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1624 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1625 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1626 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1627 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1628 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1629}
1630
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001631// Lower a binary operation that produces two VT results, one in each
1632// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
1633// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1634// on the extended Op0 and (unextended) Op1. Store the even register result
1635// in Even and the odd register result in Odd.
Andrew Trickef9de2a2013-05-25 02:42:55 +00001636static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001637 unsigned Extend, unsigned Opcode,
1638 SDValue Op0, SDValue Op1,
1639 SDValue &Even, SDValue &Odd) {
1640 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1641 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1642 SDValue(In128, 0), Op1);
1643 bool Is32Bit = is32Bit(VT);
Richard Sandifordd8163202013-09-13 09:12:44 +00001644 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1645 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001646}
1647
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001648// Return an i32 value that is 1 if the CC value produced by Glue is
1649// in the mask CCMask and 0 otherwise. CC is known to have a value
1650// in CCValid, so other values can be ignored.
1651static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
1652 unsigned CCValid, unsigned CCMask) {
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001653 IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
1654 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1655
1656 if (Conversion.XORValue)
1657 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
1658 DAG.getConstant(Conversion.XORValue, MVT::i32));
1659
1660 if (Conversion.AddValue)
1661 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
1662 DAG.getConstant(Conversion.AddValue, MVT::i32));
1663
1664 // The SHR/AND sequence should get optimized to an RISBG.
1665 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
1666 DAG.getConstant(Conversion.Bit, MVT::i32));
1667 if (Conversion.Bit != 31)
1668 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
1669 DAG.getConstant(1, MVT::i32));
1670 return Result;
1671}
1672
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001673SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
1674 SelectionDAG &DAG) const {
1675 SDValue CmpOp0 = Op.getOperand(0);
1676 SDValue CmpOp1 = Op.getOperand(1);
1677 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1678 SDLoc DL(Op);
1679
Richard Sandifordd420f732013-12-13 15:28:45 +00001680 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1681 SDValue Glue = emitCmp(DAG, DL, C);
1682 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001683}
1684
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001685SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1686 SDValue Chain = Op.getOperand(0);
1687 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1688 SDValue CmpOp0 = Op.getOperand(2);
1689 SDValue CmpOp1 = Op.getOperand(3);
1690 SDValue Dest = Op.getOperand(4);
Andrew Trickef9de2a2013-05-25 02:42:55 +00001691 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001692
Richard Sandifordd420f732013-12-13 15:28:45 +00001693 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1694 SDValue Glue = emitCmp(DAG, DL, C);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001695 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
Richard Sandifordd420f732013-12-13 15:28:45 +00001696 Chain, DAG.getConstant(C.CCValid, MVT::i32),
1697 DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001698}
1699
Richard Sandiford57485472013-12-13 15:35:00 +00001700// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
1701// allowing Pos and Neg to be wider than CmpOp.
1702static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
1703 return (Neg.getOpcode() == ISD::SUB &&
1704 Neg.getOperand(0).getOpcode() == ISD::Constant &&
1705 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
1706 Neg.getOperand(1) == Pos &&
1707 (Pos == CmpOp ||
1708 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
1709 Pos.getOperand(0) == CmpOp)));
1710}
1711
1712// Return the absolute or negative absolute of Op; IsNegative decides which.
1713static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
1714 bool IsNegative) {
1715 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
1716 if (IsNegative)
1717 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
1718 DAG.getConstant(0, Op.getValueType()), Op);
1719 return Op;
1720}
1721
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001722SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1723 SelectionDAG &DAG) const {
1724 SDValue CmpOp0 = Op.getOperand(0);
1725 SDValue CmpOp1 = Op.getOperand(1);
1726 SDValue TrueOp = Op.getOperand(2);
1727 SDValue FalseOp = Op.getOperand(3);
1728 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001729 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001730
Richard Sandifordd420f732013-12-13 15:28:45 +00001731 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
Richard Sandiford57485472013-12-13 15:35:00 +00001732
1733 // Check for absolute and negative-absolute selections, including those
1734 // where the comparison value is sign-extended (for LPGFR and LNGFR).
1735 // This check supplements the one in DAGCombiner.
1736 if (C.Opcode == SystemZISD::ICMP &&
1737 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
1738 C.CCMask != SystemZ::CCMASK_CMP_NE &&
1739 C.Op1.getOpcode() == ISD::Constant &&
1740 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1741 if (isAbsolute(C.Op0, TrueOp, FalseOp))
1742 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
1743 if (isAbsolute(C.Op0, FalseOp, TrueOp))
1744 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
1745 }
1746
Richard Sandifordd420f732013-12-13 15:28:45 +00001747 SDValue Glue = emitCmp(DAG, DL, C);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001748
1749 // Special case for handling -1/0 results. The shifts we use here
1750 // should get optimized with the IPM conversion sequence.
Richard Sandiford21f5d682014-03-06 11:22:58 +00001751 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
1752 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001753 if (TrueC && FalseC) {
1754 int64_t TrueVal = TrueC->getSExtValue();
1755 int64_t FalseVal = FalseC->getSExtValue();
1756 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
1757 // Invert the condition if we want -1 on false.
1758 if (TrueVal == 0)
Richard Sandifordd420f732013-12-13 15:28:45 +00001759 C.CCMask ^= C.CCValid;
1760 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001761 EVT VT = Op.getValueType();
1762 // Extend the result to VT. Upper bits are ignored.
1763 if (!is32Bit(VT))
1764 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
1765 // Sign-extend from the low bit.
1766 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
1767 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
1768 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
1769 }
1770 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001771
Richard Sandiford3d768e32013-07-31 12:30:20 +00001772 SmallVector<SDValue, 5> Ops;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001773 Ops.push_back(TrueOp);
1774 Ops.push_back(FalseOp);
Richard Sandifordd420f732013-12-13 15:28:45 +00001775 Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32));
1776 Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32));
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001777 Ops.push_back(Glue);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001778
1779 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
Craig Topper48d114b2014-04-26 18:35:24 +00001780 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001781}
1782
1783SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1784 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001785 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001786 const GlobalValue *GV = Node->getGlobal();
1787 int64_t Offset = Node->getOffset();
1788 EVT PtrVT = getPointerTy();
1789 Reloc::Model RM = TM.getRelocationModel();
1790 CodeModel::Model CM = TM.getCodeModel();
1791
1792 SDValue Result;
1793 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
Richard Sandiford54b36912013-09-27 15:14:04 +00001794 // Assign anchors at 1<<12 byte boundaries.
1795 uint64_t Anchor = Offset & ~uint64_t(0xfff);
1796 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1797 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1798
1799 // The offset can be folded into the address if it is aligned to a halfword.
1800 Offset -= Anchor;
1801 if (Offset != 0 && (Offset & 1) == 0) {
1802 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1803 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001804 Offset = 0;
1805 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001806 } else {
1807 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1808 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1809 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1810 MachinePointerInfo::getGOT(), false, false, false, 0);
1811 }
1812
1813 // If there was a non-zero offset that we didn't fold, create an explicit
1814 // addition for it.
1815 if (Offset != 0)
1816 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1817 DAG.getConstant(Offset, PtrVT));
1818
1819 return Result;
1820}
1821
1822SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1823 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001824 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001825 const GlobalValue *GV = Node->getGlobal();
1826 EVT PtrVT = getPointerTy();
1827 TLSModel::Model model = TM.getTLSModel(GV);
1828
1829 if (model != TLSModel::LocalExec)
1830 llvm_unreachable("only local-exec TLS mode supported");
1831
1832 // The high part of the thread pointer is in access register 0.
1833 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1834 DAG.getConstant(0, MVT::i32));
1835 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1836
1837 // The low part of the thread pointer is in access register 1.
1838 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1839 DAG.getConstant(1, MVT::i32));
1840 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1841
1842 // Merge them into a single 64-bit address.
1843 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1844 DAG.getConstant(32, PtrVT));
1845 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1846
1847 // Get the offset of GA from the thread pointer.
1848 SystemZConstantPoolValue *CPV =
1849 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1850
1851 // Force the offset into the constant pool and load it from there.
1852 SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1853 SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1854 CPAddr, MachinePointerInfo::getConstantPool(),
1855 false, false, false, 0);
1856
1857 // Add the base and offset together.
1858 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1859}
1860
1861SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1862 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001863 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001864 const BlockAddress *BA = Node->getBlockAddress();
1865 int64_t Offset = Node->getOffset();
1866 EVT PtrVT = getPointerTy();
1867
1868 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1869 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1870 return Result;
1871}
1872
1873SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1874 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001875 SDLoc DL(JT);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001876 EVT PtrVT = getPointerTy();
1877 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1878
1879 // Use LARL to load the address of the table.
1880 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1881}
1882
1883SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1884 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001885 SDLoc DL(CP);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001886 EVT PtrVT = getPointerTy();
1887
1888 SDValue Result;
1889 if (CP->isMachineConstantPoolEntry())
1890 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1891 CP->getAlignment());
1892 else
1893 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1894 CP->getAlignment(), CP->getOffset());
1895
1896 // Use LARL to load the address of the constant pool entry.
1897 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1898}
1899
1900SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1901 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001902 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001903 SDValue In = Op.getOperand(0);
1904 EVT InVT = In.getValueType();
1905 EVT ResVT = Op.getValueType();
1906
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001907 if (InVT == MVT::i32 && ResVT == MVT::f32) {
Richard Sandifordf6377fb2013-10-01 14:31:11 +00001908 SDValue In64;
1909 if (Subtarget.hasHighWord()) {
1910 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
1911 MVT::i64);
1912 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1913 MVT::i64, SDValue(U64, 0), In);
1914 } else {
1915 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1916 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
1917 DAG.getConstant(32, MVT::i64));
1918 }
1919 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
Richard Sandiford87a44362013-09-30 10:28:35 +00001920 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
Richard Sandifordd8163202013-09-13 09:12:44 +00001921 DL, MVT::f32, Out64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001922 }
1923 if (InVT == MVT::f32 && ResVT == MVT::i32) {
1924 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
Richard Sandiford87a44362013-09-30 10:28:35 +00001925 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
Richard Sandifordd8163202013-09-13 09:12:44 +00001926 MVT::f64, SDValue(U64, 0), In);
1927 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
Richard Sandifordf6377fb2013-10-01 14:31:11 +00001928 if (Subtarget.hasHighWord())
1929 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
1930 MVT::i32, Out64);
1931 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
1932 DAG.getConstant(32, MVT::i64));
1933 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001934 }
1935 llvm_unreachable("Unexpected bitcast combination");
1936}
1937
1938SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1939 SelectionDAG &DAG) const {
1940 MachineFunction &MF = DAG.getMachineFunction();
1941 SystemZMachineFunctionInfo *FuncInfo =
1942 MF.getInfo<SystemZMachineFunctionInfo>();
1943 EVT PtrVT = getPointerTy();
1944
1945 SDValue Chain = Op.getOperand(0);
1946 SDValue Addr = Op.getOperand(1);
1947 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001948 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001949
1950 // The initial values of each field.
1951 const unsigned NumFields = 4;
1952 SDValue Fields[NumFields] = {
1953 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1954 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1955 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1956 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1957 };
1958
1959 // Store each field into its respective slot.
1960 SDValue MemOps[NumFields];
1961 unsigned Offset = 0;
1962 for (unsigned I = 0; I < NumFields; ++I) {
1963 SDValue FieldAddr = Addr;
1964 if (Offset != 0)
1965 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1966 DAG.getIntPtrConstant(Offset));
1967 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1968 MachinePointerInfo(SV, Offset),
1969 false, false, 0);
1970 Offset += 8;
1971 }
Craig Topper48d114b2014-04-26 18:35:24 +00001972 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001973}
1974
1975SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1976 SelectionDAG &DAG) const {
1977 SDValue Chain = Op.getOperand(0);
1978 SDValue DstPtr = Op.getOperand(1);
1979 SDValue SrcPtr = Op.getOperand(2);
1980 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1981 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001982 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001983
1984 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1985 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1986 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1987}
1988
1989SDValue SystemZTargetLowering::
1990lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1991 SDValue Chain = Op.getOperand(0);
1992 SDValue Size = Op.getOperand(1);
Andrew Trickef9de2a2013-05-25 02:42:55 +00001993 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001994
1995 unsigned SPReg = getStackPointerRegisterToSaveRestore();
1996
1997 // Get a reference to the stack pointer.
1998 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1999
2000 // Get the new stack pointer value.
2001 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
2002
2003 // Copy the new stack pointer back.
2004 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2005
2006 // The allocated data lives above the 160 bytes allocated for the standard
2007 // frame, plus any outgoing stack arguments. We don't know how much that
2008 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2009 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2010 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2011
2012 SDValue Ops[2] = { Result, Chain };
2013 return DAG.getMergeValues(Ops, 2, DL);
2014}
2015
Richard Sandiford7d86e472013-08-21 09:34:56 +00002016SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2017 SelectionDAG &DAG) const {
2018 EVT VT = Op.getValueType();
2019 SDLoc DL(Op);
2020 SDValue Ops[2];
2021 if (is32Bit(VT))
2022 // Just do a normal 64-bit multiplication and extract the results.
2023 // We define this so that it can be used for constant division.
2024 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2025 Op.getOperand(1), Ops[1], Ops[0]);
2026 else {
2027 // Do a full 128-bit multiplication based on UMUL_LOHI64:
2028 //
2029 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2030 //
2031 // but using the fact that the upper halves are either all zeros
2032 // or all ones:
2033 //
2034 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2035 //
2036 // and grouping the right terms together since they are quicker than the
2037 // multiplication:
2038 //
2039 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2040 SDValue C63 = DAG.getConstant(63, MVT::i64);
2041 SDValue LL = Op.getOperand(0);
2042 SDValue RL = Op.getOperand(1);
2043 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2044 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2045 // UMUL_LOHI64 returns the low result in the odd register and the high
2046 // result in the even register. SMUL_LOHI is defined to return the
2047 // low half first, so the results are in reverse order.
2048 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2049 LL, RL, Ops[1], Ops[0]);
2050 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2051 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2052 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2053 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2054 }
2055 return DAG.getMergeValues(Ops, 2, DL);
2056}
2057
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002058SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2059 SelectionDAG &DAG) const {
2060 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002061 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002062 SDValue Ops[2];
Richard Sandiford7d86e472013-08-21 09:34:56 +00002063 if (is32Bit(VT))
2064 // Just do a normal 64-bit multiplication and extract the results.
2065 // We define this so that it can be used for constant division.
2066 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2067 Op.getOperand(1), Ops[1], Ops[0]);
2068 else
2069 // UMUL_LOHI64 returns the low result in the odd register and the high
2070 // result in the even register. UMUL_LOHI is defined to return the
2071 // low half first, so the results are in reverse order.
2072 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2073 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002074 return DAG.getMergeValues(Ops, 2, DL);
2075}
2076
2077SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2078 SelectionDAG &DAG) const {
2079 SDValue Op0 = Op.getOperand(0);
2080 SDValue Op1 = Op.getOperand(1);
2081 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002082 SDLoc DL(Op);
Richard Sandiforde6e78852013-07-02 15:40:22 +00002083 unsigned Opcode;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002084
2085 // We use DSGF for 32-bit division.
2086 if (is32Bit(VT)) {
2087 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
Richard Sandiforde6e78852013-07-02 15:40:22 +00002088 Opcode = SystemZISD::SDIVREM32;
2089 } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2090 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
2091 Opcode = SystemZISD::SDIVREM32;
2092 } else
2093 Opcode = SystemZISD::SDIVREM64;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002094
2095 // DSG(F) takes a 64-bit dividend, so the even register in the GR128
2096 // input is "don't care". The instruction returns the remainder in
2097 // the even register and the quotient in the odd register.
2098 SDValue Ops[2];
Richard Sandiforde6e78852013-07-02 15:40:22 +00002099 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002100 Op0, Op1, Ops[1], Ops[0]);
2101 return DAG.getMergeValues(Ops, 2, DL);
2102}
2103
2104SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
2105 SelectionDAG &DAG) const {
2106 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002107 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002108
2109 // DL(G) uses a double-width dividend, so we need to clear the even
2110 // register in the GR128 input. The instruction returns the remainder
2111 // in the even register and the quotient in the odd register.
2112 SDValue Ops[2];
2113 if (is32Bit(VT))
2114 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
2115 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2116 else
2117 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
2118 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2119 return DAG.getMergeValues(Ops, 2, DL);
2120}
2121
2122SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
2123 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
2124
2125 // Get the known-zero masks for each operand.
2126 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
2127 APInt KnownZero[2], KnownOne[2];
2128 DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
2129 DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
2130
2131 // See if the upper 32 bits of one operand and the lower 32 bits of the
2132 // other are known zero. They are the low and high operands respectively.
2133 uint64_t Masks[] = { KnownZero[0].getZExtValue(),
2134 KnownZero[1].getZExtValue() };
2135 unsigned High, Low;
2136 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
2137 High = 1, Low = 0;
2138 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
2139 High = 0, Low = 1;
2140 else
2141 return Op;
2142
2143 SDValue LowOp = Ops[Low];
2144 SDValue HighOp = Ops[High];
2145
2146 // If the high part is a constant, we're better off using IILH.
2147 if (HighOp.getOpcode() == ISD::Constant)
2148 return Op;
2149
2150 // If the low part is a constant that is outside the range of LHI,
2151 // then we're better off using IILF.
2152 if (LowOp.getOpcode() == ISD::Constant) {
2153 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
2154 if (!isInt<16>(Value))
2155 return Op;
2156 }
2157
2158 // Check whether the high part is an AND that doesn't change the
2159 // high 32 bits and just masks out low bits. We can skip it if so.
2160 if (HighOp.getOpcode() == ISD::AND &&
2161 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
Richard Sandifordccc2a7c2013-12-03 11:01:54 +00002162 SDValue HighOp0 = HighOp.getOperand(0);
2163 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
2164 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
2165 HighOp = HighOp0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002166 }
2167
2168 // Take advantage of the fact that all GR32 operations only change the
2169 // low 32 bits by truncating Low to an i32 and inserting it directly
2170 // using a subreg. The interesting cases are those where the truncation
2171 // can be folded.
Andrew Trickef9de2a2013-05-25 02:42:55 +00002172 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002173 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
Richard Sandiford87a44362013-09-30 10:28:35 +00002174 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
Richard Sandifordd8163202013-09-13 09:12:44 +00002175 MVT::i64, HighOp, Low32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002176}
2177
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002178// Op is an atomic load. Lower it into a normal volatile load.
2179SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
2180 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00002181 auto *Node = cast<AtomicSDNode>(Op.getNode());
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002182 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
2183 Node->getChain(), Node->getBasePtr(),
2184 Node->getMemoryVT(), Node->getMemOperand());
2185}
2186
2187// Op is an atomic store. Lower it into a normal volatile store followed
2188// by a serialization.
2189SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
2190 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00002191 auto *Node = cast<AtomicSDNode>(Op.getNode());
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002192 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
2193 Node->getBasePtr(), Node->getMemoryVT(),
2194 Node->getMemOperand());
2195 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
2196 Chain), 0);
2197}
2198
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002199// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
2200// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002201SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
2202 SelectionDAG &DAG,
2203 unsigned Opcode) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00002204 auto *Node = cast<AtomicSDNode>(Op.getNode());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002205
2206 // 32-bit operations need no code outside the main loop.
2207 EVT NarrowVT = Node->getMemoryVT();
2208 EVT WideVT = MVT::i32;
2209 if (NarrowVT == WideVT)
2210 return Op;
2211
2212 int64_t BitSize = NarrowVT.getSizeInBits();
2213 SDValue ChainIn = Node->getChain();
2214 SDValue Addr = Node->getBasePtr();
2215 SDValue Src2 = Node->getVal();
2216 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002217 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002218 EVT PtrVT = Addr.getValueType();
2219
2220 // Convert atomic subtracts of constants into additions.
2221 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
Richard Sandiford21f5d682014-03-06 11:22:58 +00002222 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002223 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
2224 Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
2225 }
2226
2227 // Get the address of the containing word.
2228 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2229 DAG.getConstant(-4, PtrVT));
2230
2231 // Get the number of bits that the word must be rotated left in order
2232 // to bring the field to the top bits of a GR32.
2233 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2234 DAG.getConstant(3, PtrVT));
2235 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2236
2237 // Get the complementing shift amount, for rotating a field in the top
2238 // bits back to its proper position.
2239 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2240 DAG.getConstant(0, WideVT), BitShift);
2241
2242 // Extend the source operand to 32 bits and prepare it for the inner loop.
2243 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
2244 // operations require the source to be shifted in advance. (This shift
2245 // can be folded if the source is constant.) For AND and NAND, the lower
2246 // bits must be set, while for other opcodes they should be left clear.
2247 if (Opcode != SystemZISD::ATOMIC_SWAPW)
2248 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
2249 DAG.getConstant(32 - BitSize, WideVT));
2250 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
2251 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
2252 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
2253 DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
2254
2255 // Construct the ATOMIC_LOADW_* node.
2256 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2257 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
2258 DAG.getConstant(BitSize, WideVT) };
2259 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
2260 array_lengthof(Ops),
2261 NarrowVT, MMO);
2262
2263 // Rotate the result of the final CS so that the field is in the lower
2264 // bits of a GR32, then truncate it.
2265 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
2266 DAG.getConstant(BitSize, WideVT));
2267 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
2268
2269 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
2270 return DAG.getMergeValues(RetOps, 2, DL);
2271}
2272
Richard Sandiford41350a52013-12-24 15:18:04 +00002273// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
Richard Sandiford002019a2013-12-24 15:22:39 +00002274// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
Richard Sandiford41350a52013-12-24 15:18:04 +00002275// operations into additions.
2276SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
2277 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00002278 auto *Node = cast<AtomicSDNode>(Op.getNode());
Richard Sandiford41350a52013-12-24 15:18:04 +00002279 EVT MemVT = Node->getMemoryVT();
2280 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
2281 // A full-width operation.
2282 assert(Op.getValueType() == MemVT && "Mismatched VTs");
2283 SDValue Src2 = Node->getVal();
2284 SDValue NegSrc2;
2285 SDLoc DL(Src2);
2286
Richard Sandiford21f5d682014-03-06 11:22:58 +00002287 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
Richard Sandiford41350a52013-12-24 15:18:04 +00002288 // Use an addition if the operand is constant and either LAA(G) is
2289 // available or the negative value is in the range of A(G)FHI.
2290 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
2291 if (isInt<32>(Value) || TM.getSubtargetImpl()->hasInterlockedAccess1())
2292 NegSrc2 = DAG.getConstant(Value, MemVT);
2293 } else if (TM.getSubtargetImpl()->hasInterlockedAccess1())
2294 // Use LAA(G) if available.
2295 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
2296 Src2);
2297
2298 if (NegSrc2.getNode())
2299 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
2300 Node->getChain(), Node->getBasePtr(), NegSrc2,
2301 Node->getMemOperand(), Node->getOrdering(),
2302 Node->getSynchScope());
2303
2304 // Use the node as-is.
2305 return Op;
2306 }
2307
2308 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2309}
2310
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002311// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
2312// into a fullword ATOMIC_CMP_SWAPW operation.
2313SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
2314 SelectionDAG &DAG) const {
Richard Sandiford21f5d682014-03-06 11:22:58 +00002315 auto *Node = cast<AtomicSDNode>(Op.getNode());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002316
2317 // We have native support for 32-bit compare and swap.
2318 EVT NarrowVT = Node->getMemoryVT();
2319 EVT WideVT = MVT::i32;
2320 if (NarrowVT == WideVT)
2321 return Op;
2322
2323 int64_t BitSize = NarrowVT.getSizeInBits();
2324 SDValue ChainIn = Node->getOperand(0);
2325 SDValue Addr = Node->getOperand(1);
2326 SDValue CmpVal = Node->getOperand(2);
2327 SDValue SwapVal = Node->getOperand(3);
2328 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002329 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002330 EVT PtrVT = Addr.getValueType();
2331
2332 // Get the address of the containing word.
2333 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2334 DAG.getConstant(-4, PtrVT));
2335
2336 // Get the number of bits that the word must be rotated left in order
2337 // to bring the field to the top bits of a GR32.
2338 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2339 DAG.getConstant(3, PtrVT));
2340 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2341
2342 // Get the complementing shift amount, for rotating a field in the top
2343 // bits back to its proper position.
2344 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2345 DAG.getConstant(0, WideVT), BitShift);
2346
2347 // Construct the ATOMIC_CMP_SWAPW node.
2348 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2349 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
2350 NegBitShift, DAG.getConstant(BitSize, WideVT) };
2351 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
2352 VTList, Ops, array_lengthof(Ops),
2353 NarrowVT, MMO);
2354 return AtomicOp;
2355}
2356
2357SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
2358 SelectionDAG &DAG) const {
2359 MachineFunction &MF = DAG.getMachineFunction();
2360 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002361 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002362 SystemZ::R15D, Op.getValueType());
2363}
2364
2365SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
2366 SelectionDAG &DAG) const {
2367 MachineFunction &MF = DAG.getMachineFunction();
2368 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002369 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002370 SystemZ::R15D, Op.getOperand(1));
2371}
2372
Richard Sandiford03481332013-08-23 11:36:42 +00002373SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
2374 SelectionDAG &DAG) const {
2375 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2376 if (!IsData)
2377 // Just preserve the chain.
2378 return Op.getOperand(0);
2379
2380 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2381 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
Richard Sandiford21f5d682014-03-06 11:22:58 +00002382 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
Richard Sandiford03481332013-08-23 11:36:42 +00002383 SDValue Ops[] = {
2384 Op.getOperand(0),
2385 DAG.getConstant(Code, MVT::i32),
2386 Op.getOperand(1)
2387 };
2388 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
2389 Node->getVTList(), Ops, array_lengthof(Ops),
2390 Node->getMemoryVT(), Node->getMemOperand());
2391}
2392
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002393SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
2394 SelectionDAG &DAG) const {
2395 switch (Op.getOpcode()) {
2396 case ISD::BR_CC:
2397 return lowerBR_CC(Op, DAG);
2398 case ISD::SELECT_CC:
2399 return lowerSELECT_CC(Op, DAG);
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002400 case ISD::SETCC:
2401 return lowerSETCC(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002402 case ISD::GlobalAddress:
2403 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
2404 case ISD::GlobalTLSAddress:
2405 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
2406 case ISD::BlockAddress:
2407 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
2408 case ISD::JumpTable:
2409 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
2410 case ISD::ConstantPool:
2411 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
2412 case ISD::BITCAST:
2413 return lowerBITCAST(Op, DAG);
2414 case ISD::VASTART:
2415 return lowerVASTART(Op, DAG);
2416 case ISD::VACOPY:
2417 return lowerVACOPY(Op, DAG);
2418 case ISD::DYNAMIC_STACKALLOC:
2419 return lowerDYNAMIC_STACKALLOC(Op, DAG);
Richard Sandiford7d86e472013-08-21 09:34:56 +00002420 case ISD::SMUL_LOHI:
2421 return lowerSMUL_LOHI(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002422 case ISD::UMUL_LOHI:
2423 return lowerUMUL_LOHI(Op, DAG);
2424 case ISD::SDIVREM:
2425 return lowerSDIVREM(Op, DAG);
2426 case ISD::UDIVREM:
2427 return lowerUDIVREM(Op, DAG);
2428 case ISD::OR:
2429 return lowerOR(Op, DAG);
2430 case ISD::ATOMIC_SWAP:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002431 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2432 case ISD::ATOMIC_STORE:
2433 return lowerATOMIC_STORE(Op, DAG);
2434 case ISD::ATOMIC_LOAD:
2435 return lowerATOMIC_LOAD(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002436 case ISD::ATOMIC_LOAD_ADD:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002437 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002438 case ISD::ATOMIC_LOAD_SUB:
Richard Sandiford41350a52013-12-24 15:18:04 +00002439 return lowerATOMIC_LOAD_SUB(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002440 case ISD::ATOMIC_LOAD_AND:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002441 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002442 case ISD::ATOMIC_LOAD_OR:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002443 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002444 case ISD::ATOMIC_LOAD_XOR:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002445 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002446 case ISD::ATOMIC_LOAD_NAND:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002447 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002448 case ISD::ATOMIC_LOAD_MIN:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002449 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002450 case ISD::ATOMIC_LOAD_MAX:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002451 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002452 case ISD::ATOMIC_LOAD_UMIN:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002453 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002454 case ISD::ATOMIC_LOAD_UMAX:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002455 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002456 case ISD::ATOMIC_CMP_SWAP:
2457 return lowerATOMIC_CMP_SWAP(Op, DAG);
2458 case ISD::STACKSAVE:
2459 return lowerSTACKSAVE(Op, DAG);
2460 case ISD::STACKRESTORE:
2461 return lowerSTACKRESTORE(Op, DAG);
Richard Sandiford03481332013-08-23 11:36:42 +00002462 case ISD::PREFETCH:
2463 return lowerPREFETCH(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002464 default:
2465 llvm_unreachable("Unexpected node to lower");
2466 }
2467}
2468
2469const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2470#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2471 switch (Opcode) {
2472 OPCODE(RET_FLAG);
2473 OPCODE(CALL);
Richard Sandiford709bda62013-08-19 12:42:31 +00002474 OPCODE(SIBCALL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002475 OPCODE(PCREL_WRAPPER);
Richard Sandiford54b36912013-09-27 15:14:04 +00002476 OPCODE(PCREL_OFFSET);
Richard Sandiford57485472013-12-13 15:35:00 +00002477 OPCODE(IABS);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00002478 OPCODE(ICMP);
2479 OPCODE(FCMP);
Richard Sandiford35b9be22013-08-28 10:31:43 +00002480 OPCODE(TM);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002481 OPCODE(BR_CCMASK);
2482 OPCODE(SELECT_CCMASK);
2483 OPCODE(ADJDYNALLOC);
2484 OPCODE(EXTRACT_ACCESS);
2485 OPCODE(UMUL_LOHI64);
2486 OPCODE(SDIVREM64);
2487 OPCODE(UDIVREM32);
2488 OPCODE(UDIVREM64);
Richard Sandifordd131ff82013-07-08 09:35:23 +00002489 OPCODE(MVC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002490 OPCODE(MVC_LOOP);
Richard Sandiford178273a2013-09-05 10:36:45 +00002491 OPCODE(NC);
2492 OPCODE(NC_LOOP);
2493 OPCODE(OC);
2494 OPCODE(OC_LOOP);
2495 OPCODE(XC);
2496 OPCODE(XC_LOOP);
Richard Sandiford761703a2013-08-12 10:17:33 +00002497 OPCODE(CLC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002498 OPCODE(CLC_LOOP);
Richard Sandifordca232712013-08-16 11:21:54 +00002499 OPCODE(STRCMP);
Richard Sandifordbb83a502013-08-16 11:29:37 +00002500 OPCODE(STPCPY);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00002501 OPCODE(SEARCH_STRING);
Richard Sandiford564681c2013-08-12 10:28:10 +00002502 OPCODE(IPM);
Richard Sandiford9afe6132013-12-10 10:36:34 +00002503 OPCODE(SERIALIZE);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002504 OPCODE(ATOMIC_SWAPW);
2505 OPCODE(ATOMIC_LOADW_ADD);
2506 OPCODE(ATOMIC_LOADW_SUB);
2507 OPCODE(ATOMIC_LOADW_AND);
2508 OPCODE(ATOMIC_LOADW_OR);
2509 OPCODE(ATOMIC_LOADW_XOR);
2510 OPCODE(ATOMIC_LOADW_NAND);
2511 OPCODE(ATOMIC_LOADW_MIN);
2512 OPCODE(ATOMIC_LOADW_MAX);
2513 OPCODE(ATOMIC_LOADW_UMIN);
2514 OPCODE(ATOMIC_LOADW_UMAX);
2515 OPCODE(ATOMIC_CMP_SWAPW);
Richard Sandiford03481332013-08-23 11:36:42 +00002516 OPCODE(PREFETCH);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002517 }
Craig Topper062a2ba2014-04-25 05:30:21 +00002518 return nullptr;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002519#undef OPCODE
2520}
2521
Richard Sandiford95bc5f92014-03-07 11:34:35 +00002522SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
2523 DAGCombinerInfo &DCI) const {
2524 SelectionDAG &DAG = DCI.DAG;
2525 unsigned Opcode = N->getOpcode();
2526 if (Opcode == ISD::SIGN_EXTEND) {
2527 // Convert (sext (ashr (shl X, C1), C2)) to
2528 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
2529 // cheap as narrower ones.
2530 SDValue N0 = N->getOperand(0);
2531 EVT VT = N->getValueType(0);
2532 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
2533 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2534 SDValue Inner = N0.getOperand(0);
2535 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
2536 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
2537 unsigned Extra = (VT.getSizeInBits() -
2538 N0.getValueType().getSizeInBits());
2539 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
2540 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
2541 EVT ShiftVT = N0.getOperand(1).getValueType();
2542 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
2543 Inner.getOperand(0));
2544 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
2545 DAG.getConstant(NewShlAmt, ShiftVT));
2546 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
2547 DAG.getConstant(NewSraAmt, ShiftVT));
2548 }
2549 }
2550 }
2551 }
2552 return SDValue();
2553}
2554
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002555//===----------------------------------------------------------------------===//
2556// Custom insertion
2557//===----------------------------------------------------------------------===//
2558
2559// Create a new basic block after MBB.
2560static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2561 MachineFunction &MF = *MBB->getParent();
2562 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00002563 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002564 return NewMBB;
2565}
2566
Richard Sandifordbe133a82013-08-28 09:01:51 +00002567// Split MBB after MI and return the new block (the one that contains
2568// instructions after MI).
2569static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2570 MachineBasicBlock *MBB) {
2571 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2572 NewMBB->splice(NewMBB->begin(), MBB,
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00002573 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
Richard Sandifordbe133a82013-08-28 09:01:51 +00002574 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2575 return NewMBB;
2576}
2577
Richard Sandiford5e318f02013-08-27 09:54:29 +00002578// Split MBB before MI and return the new block (the one that contains MI).
2579static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2580 MachineBasicBlock *MBB) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002581 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002582 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002583 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2584 return NewMBB;
2585}
2586
Richard Sandiford5e318f02013-08-27 09:54:29 +00002587// Force base value Base into a register before MI. Return the register.
2588static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2589 const SystemZInstrInfo *TII) {
2590 if (Base.isReg())
2591 return Base.getReg();
2592
2593 MachineBasicBlock *MBB = MI->getParent();
2594 MachineFunction &MF = *MBB->getParent();
2595 MachineRegisterInfo &MRI = MF.getRegInfo();
2596
2597 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2598 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2599 .addOperand(Base).addImm(0).addReg(0);
2600 return Reg;
2601}
2602
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002603// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2604MachineBasicBlock *
2605SystemZTargetLowering::emitSelect(MachineInstr *MI,
2606 MachineBasicBlock *MBB) const {
2607 const SystemZInstrInfo *TII = TM.getInstrInfo();
2608
2609 unsigned DestReg = MI->getOperand(0).getReg();
2610 unsigned TrueReg = MI->getOperand(1).getReg();
2611 unsigned FalseReg = MI->getOperand(2).getReg();
Richard Sandiford3d768e32013-07-31 12:30:20 +00002612 unsigned CCValid = MI->getOperand(3).getImm();
2613 unsigned CCMask = MI->getOperand(4).getImm();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002614 DebugLoc DL = MI->getDebugLoc();
2615
2616 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002617 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002618 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2619
2620 // StartMBB:
Richard Sandiford0fb90ab2013-05-28 10:41:11 +00002621 // BRC CCMask, JoinMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002622 // # fallthrough to FalseMBB
2623 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00002624 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2625 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002626 MBB->addSuccessor(JoinMBB);
2627 MBB->addSuccessor(FalseMBB);
2628
2629 // FalseMBB:
2630 // # fallthrough to JoinMBB
2631 MBB = FalseMBB;
2632 MBB->addSuccessor(JoinMBB);
2633
2634 // JoinMBB:
2635 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2636 // ...
2637 MBB = JoinMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002638 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002639 .addReg(TrueReg).addMBB(StartMBB)
2640 .addReg(FalseReg).addMBB(FalseMBB);
2641
2642 MI->eraseFromParent();
2643 return JoinMBB;
2644}
2645
Richard Sandifordb86a8342013-06-27 09:27:40 +00002646// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2647// StoreOpcode is the store to use and Invert says whether the store should
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002648// happen when the condition is false rather than true. If a STORE ON
2649// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
Richard Sandifordb86a8342013-06-27 09:27:40 +00002650MachineBasicBlock *
2651SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2652 MachineBasicBlock *MBB,
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002653 unsigned StoreOpcode, unsigned STOCOpcode,
2654 bool Invert) const {
Richard Sandifordb86a8342013-06-27 09:27:40 +00002655 const SystemZInstrInfo *TII = TM.getInstrInfo();
2656
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002657 unsigned SrcReg = MI->getOperand(0).getReg();
2658 MachineOperand Base = MI->getOperand(1);
2659 int64_t Disp = MI->getOperand(2).getImm();
2660 unsigned IndexReg = MI->getOperand(3).getReg();
Richard Sandiford3d768e32013-07-31 12:30:20 +00002661 unsigned CCValid = MI->getOperand(4).getImm();
2662 unsigned CCMask = MI->getOperand(5).getImm();
Richard Sandifordb86a8342013-06-27 09:27:40 +00002663 DebugLoc DL = MI->getDebugLoc();
2664
2665 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2666
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002667 // Use STOCOpcode if possible. We could use different store patterns in
2668 // order to avoid matching the index register, but the performance trade-offs
2669 // might be more complicated in that case.
2670 if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
2671 if (Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00002672 CCMask ^= CCValid;
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002673 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +00002674 .addReg(SrcReg).addOperand(Base).addImm(Disp)
2675 .addImm(CCValid).addImm(CCMask);
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002676 MI->eraseFromParent();
2677 return MBB;
2678 }
2679
Richard Sandifordb86a8342013-06-27 09:27:40 +00002680 // Get the condition needed to branch around the store.
2681 if (!Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00002682 CCMask ^= CCValid;
Richard Sandifordb86a8342013-06-27 09:27:40 +00002683
2684 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002685 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002686 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2687
2688 // StartMBB:
2689 // BRC CCMask, JoinMBB
2690 // # fallthrough to FalseMBB
Richard Sandifordb86a8342013-06-27 09:27:40 +00002691 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00002692 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2693 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002694 MBB->addSuccessor(JoinMBB);
2695 MBB->addSuccessor(FalseMBB);
2696
2697 // FalseMBB:
2698 // store %SrcReg, %Disp(%Index,%Base)
2699 // # fallthrough to JoinMBB
2700 MBB = FalseMBB;
2701 BuildMI(MBB, DL, TII->get(StoreOpcode))
2702 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2703 MBB->addSuccessor(JoinMBB);
2704
2705 MI->eraseFromParent();
2706 return JoinMBB;
2707}
2708
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002709// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2710// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
2711// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2712// BitSize is the width of the field in bits, or 0 if this is a partword
2713// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2714// is one of the operands. Invert says whether the field should be
2715// inverted after performing BinOpcode (e.g. for NAND).
2716MachineBasicBlock *
2717SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2718 MachineBasicBlock *MBB,
2719 unsigned BinOpcode,
2720 unsigned BitSize,
2721 bool Invert) const {
2722 const SystemZInstrInfo *TII = TM.getInstrInfo();
2723 MachineFunction &MF = *MBB->getParent();
2724 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002725 bool IsSubWord = (BitSize < 32);
2726
2727 // Extract the operands. Base can be a register or a frame index.
2728 // Src2 can be a register or immediate.
2729 unsigned Dest = MI->getOperand(0).getReg();
2730 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2731 int64_t Disp = MI->getOperand(2).getImm();
2732 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
2733 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2734 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2735 DebugLoc DL = MI->getDebugLoc();
2736 if (IsSubWord)
2737 BitSize = MI->getOperand(6).getImm();
2738
2739 // Subword operations use 32-bit registers.
2740 const TargetRegisterClass *RC = (BitSize <= 32 ?
2741 &SystemZ::GR32BitRegClass :
2742 &SystemZ::GR64BitRegClass);
2743 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2744 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2745
2746 // Get the right opcodes for the displacement.
2747 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2748 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2749 assert(LOpcode && CSOpcode && "Displacement out of range");
2750
2751 // Create virtual registers for temporary results.
2752 unsigned OrigVal = MRI.createVirtualRegister(RC);
2753 unsigned OldVal = MRI.createVirtualRegister(RC);
2754 unsigned NewVal = (BinOpcode || IsSubWord ?
2755 MRI.createVirtualRegister(RC) : Src2.getReg());
2756 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2757 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2758
2759 // Insert a basic block for the main loop.
2760 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002761 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002762 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2763
2764 // StartMBB:
2765 // ...
2766 // %OrigVal = L Disp(%Base)
2767 // # fall through to LoopMMB
2768 MBB = StartMBB;
2769 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2770 .addOperand(Base).addImm(Disp).addReg(0);
2771 MBB->addSuccessor(LoopMBB);
2772
2773 // LoopMBB:
2774 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2775 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2776 // %RotatedNewVal = OP %RotatedOldVal, %Src2
2777 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2778 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2779 // JNE LoopMBB
2780 // # fall through to DoneMMB
2781 MBB = LoopMBB;
2782 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2783 .addReg(OrigVal).addMBB(StartMBB)
2784 .addReg(Dest).addMBB(LoopMBB);
2785 if (IsSubWord)
2786 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2787 .addReg(OldVal).addReg(BitShift).addImm(0);
2788 if (Invert) {
2789 // Perform the operation normally and then invert every bit of the field.
2790 unsigned Tmp = MRI.createVirtualRegister(RC);
2791 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2792 .addReg(RotatedOldVal).addOperand(Src2);
2793 if (BitSize < 32)
2794 // XILF with the upper BitSize bits set.
Richard Sandiford652784e2013-09-25 11:11:53 +00002795 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002796 .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2797 else if (BitSize == 32)
2798 // XILF with every bit set.
Richard Sandiford652784e2013-09-25 11:11:53 +00002799 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002800 .addReg(Tmp).addImm(~uint32_t(0));
2801 else {
2802 // Use LCGR and add -1 to the result, which is more compact than
2803 // an XILF, XILH pair.
2804 unsigned Tmp2 = MRI.createVirtualRegister(RC);
2805 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2806 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2807 .addReg(Tmp2).addImm(-1);
2808 }
2809 } else if (BinOpcode)
2810 // A simply binary operation.
2811 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2812 .addReg(RotatedOldVal).addOperand(Src2);
2813 else if (IsSubWord)
2814 // Use RISBG to rotate Src2 into position and use it to replace the
2815 // field in RotatedOldVal.
2816 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2817 .addReg(RotatedOldVal).addReg(Src2.getReg())
2818 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2819 if (IsSubWord)
2820 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2821 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2822 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2823 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00002824 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2825 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002826 MBB->addSuccessor(LoopMBB);
2827 MBB->addSuccessor(DoneMBB);
2828
2829 MI->eraseFromParent();
2830 return DoneMBB;
2831}
2832
2833// Implement EmitInstrWithCustomInserter for pseudo
2834// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
2835// instruction that should be used to compare the current field with the
2836// minimum or maximum value. KeepOldMask is the BRC condition-code mask
2837// for when the current field should be kept. BitSize is the width of
2838// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2839MachineBasicBlock *
2840SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2841 MachineBasicBlock *MBB,
2842 unsigned CompareOpcode,
2843 unsigned KeepOldMask,
2844 unsigned BitSize) const {
2845 const SystemZInstrInfo *TII = TM.getInstrInfo();
2846 MachineFunction &MF = *MBB->getParent();
2847 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002848 bool IsSubWord = (BitSize < 32);
2849
2850 // Extract the operands. Base can be a register or a frame index.
2851 unsigned Dest = MI->getOperand(0).getReg();
2852 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2853 int64_t Disp = MI->getOperand(2).getImm();
2854 unsigned Src2 = MI->getOperand(3).getReg();
2855 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2856 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2857 DebugLoc DL = MI->getDebugLoc();
2858 if (IsSubWord)
2859 BitSize = MI->getOperand(6).getImm();
2860
2861 // Subword operations use 32-bit registers.
2862 const TargetRegisterClass *RC = (BitSize <= 32 ?
2863 &SystemZ::GR32BitRegClass :
2864 &SystemZ::GR64BitRegClass);
2865 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2866 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2867
2868 // Get the right opcodes for the displacement.
2869 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2870 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2871 assert(LOpcode && CSOpcode && "Displacement out of range");
2872
2873 // Create virtual registers for temporary results.
2874 unsigned OrigVal = MRI.createVirtualRegister(RC);
2875 unsigned OldVal = MRI.createVirtualRegister(RC);
2876 unsigned NewVal = MRI.createVirtualRegister(RC);
2877 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2878 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2879 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2880
2881 // Insert 3 basic blocks for the loop.
2882 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002883 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002884 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2885 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2886 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2887
2888 // StartMBB:
2889 // ...
2890 // %OrigVal = L Disp(%Base)
2891 // # fall through to LoopMMB
2892 MBB = StartMBB;
2893 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2894 .addOperand(Base).addImm(Disp).addReg(0);
2895 MBB->addSuccessor(LoopMBB);
2896
2897 // LoopMBB:
2898 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2899 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2900 // CompareOpcode %RotatedOldVal, %Src2
Richard Sandiford312425f2013-05-20 14:23:08 +00002901 // BRC KeepOldMask, UpdateMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002902 MBB = LoopMBB;
2903 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2904 .addReg(OrigVal).addMBB(StartMBB)
2905 .addReg(Dest).addMBB(UpdateMBB);
2906 if (IsSubWord)
2907 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2908 .addReg(OldVal).addReg(BitShift).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00002909 BuildMI(MBB, DL, TII->get(CompareOpcode))
2910 .addReg(RotatedOldVal).addReg(Src2);
2911 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00002912 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002913 MBB->addSuccessor(UpdateMBB);
2914 MBB->addSuccessor(UseAltMBB);
2915
2916 // UseAltMBB:
2917 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2918 // # fall through to UpdateMMB
2919 MBB = UseAltMBB;
2920 if (IsSubWord)
2921 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2922 .addReg(RotatedOldVal).addReg(Src2)
2923 .addImm(32).addImm(31 + BitSize).addImm(0);
2924 MBB->addSuccessor(UpdateMBB);
2925
2926 // UpdateMBB:
2927 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2928 // [ %RotatedAltVal, UseAltMBB ]
2929 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2930 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2931 // JNE LoopMBB
2932 // # fall through to DoneMMB
2933 MBB = UpdateMBB;
2934 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2935 .addReg(RotatedOldVal).addMBB(LoopMBB)
2936 .addReg(RotatedAltVal).addMBB(UseAltMBB);
2937 if (IsSubWord)
2938 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2939 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2940 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2941 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00002942 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2943 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002944 MBB->addSuccessor(LoopMBB);
2945 MBB->addSuccessor(DoneMBB);
2946
2947 MI->eraseFromParent();
2948 return DoneMBB;
2949}
2950
2951// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2952// instruction MI.
2953MachineBasicBlock *
2954SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2955 MachineBasicBlock *MBB) const {
2956 const SystemZInstrInfo *TII = TM.getInstrInfo();
2957 MachineFunction &MF = *MBB->getParent();
2958 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002959
2960 // Extract the operands. Base can be a register or a frame index.
2961 unsigned Dest = MI->getOperand(0).getReg();
2962 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2963 int64_t Disp = MI->getOperand(2).getImm();
2964 unsigned OrigCmpVal = MI->getOperand(3).getReg();
2965 unsigned OrigSwapVal = MI->getOperand(4).getReg();
2966 unsigned BitShift = MI->getOperand(5).getReg();
2967 unsigned NegBitShift = MI->getOperand(6).getReg();
2968 int64_t BitSize = MI->getOperand(7).getImm();
2969 DebugLoc DL = MI->getDebugLoc();
2970
2971 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2972
2973 // Get the right opcodes for the displacement.
2974 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
2975 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2976 assert(LOpcode && CSOpcode && "Displacement out of range");
2977
2978 // Create virtual registers for temporary results.
2979 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
2980 unsigned OldVal = MRI.createVirtualRegister(RC);
2981 unsigned CmpVal = MRI.createVirtualRegister(RC);
2982 unsigned SwapVal = MRI.createVirtualRegister(RC);
2983 unsigned StoreVal = MRI.createVirtualRegister(RC);
2984 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
2985 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
2986 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2987
2988 // Insert 2 basic blocks for the loop.
2989 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002990 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002991 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2992 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
2993
2994 // StartMBB:
2995 // ...
2996 // %OrigOldVal = L Disp(%Base)
2997 // # fall through to LoopMMB
2998 MBB = StartMBB;
2999 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
3000 .addOperand(Base).addImm(Disp).addReg(0);
3001 MBB->addSuccessor(LoopMBB);
3002
3003 // LoopMBB:
3004 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
3005 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
3006 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
3007 // %Dest = RLL %OldVal, BitSize(%BitShift)
3008 // ^^ The low BitSize bits contain the field
3009 // of interest.
3010 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
3011 // ^^ Replace the upper 32-BitSize bits of the
3012 // comparison value with those that we loaded,
3013 // so that we can use a full word comparison.
Richard Sandiford8a757bb2013-07-31 12:11:07 +00003014 // CR %Dest, %RetryCmpVal
3015 // JNE DoneMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003016 // # Fall through to SetMBB
3017 MBB = LoopMBB;
3018 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
3019 .addReg(OrigOldVal).addMBB(StartMBB)
3020 .addReg(RetryOldVal).addMBB(SetMBB);
3021 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
3022 .addReg(OrigCmpVal).addMBB(StartMBB)
3023 .addReg(RetryCmpVal).addMBB(SetMBB);
3024 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
3025 .addReg(OrigSwapVal).addMBB(StartMBB)
3026 .addReg(RetrySwapVal).addMBB(SetMBB);
3027 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
3028 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
3029 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
3030 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00003031 BuildMI(MBB, DL, TII->get(SystemZ::CR))
3032 .addReg(Dest).addReg(RetryCmpVal);
3033 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00003034 .addImm(SystemZ::CCMASK_ICMP)
3035 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003036 MBB->addSuccessor(DoneMBB);
3037 MBB->addSuccessor(SetMBB);
3038
3039 // SetMBB:
3040 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
3041 // ^^ Replace the upper 32-BitSize bits of the new
3042 // value with those that we loaded.
3043 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
3044 // ^^ Rotate the new field to its proper position.
3045 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
3046 // JNE LoopMBB
3047 // # fall through to ExitMMB
3048 MBB = SetMBB;
3049 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
3050 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3051 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
3052 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
3053 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
3054 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00003055 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3056 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003057 MBB->addSuccessor(LoopMBB);
3058 MBB->addSuccessor(DoneMBB);
3059
3060 MI->eraseFromParent();
3061 return DoneMBB;
3062}
3063
3064// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
3065// if the high register of the GR128 value must be cleared or false if
Richard Sandiford87a44362013-09-30 10:28:35 +00003066// it's "don't care". SubReg is subreg_l32 when extending a GR32
3067// and subreg_l64 when extending a GR64.
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003068MachineBasicBlock *
3069SystemZTargetLowering::emitExt128(MachineInstr *MI,
3070 MachineBasicBlock *MBB,
3071 bool ClearEven, unsigned SubReg) const {
3072 const SystemZInstrInfo *TII = TM.getInstrInfo();
3073 MachineFunction &MF = *MBB->getParent();
3074 MachineRegisterInfo &MRI = MF.getRegInfo();
3075 DebugLoc DL = MI->getDebugLoc();
3076
3077 unsigned Dest = MI->getOperand(0).getReg();
3078 unsigned Src = MI->getOperand(1).getReg();
3079 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3080
3081 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
3082 if (ClearEven) {
3083 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3084 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
3085
3086 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
3087 .addImm(0);
3088 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
Richard Sandiford87a44362013-09-30 10:28:35 +00003089 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003090 In128 = NewIn128;
3091 }
3092 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
3093 .addReg(In128).addReg(Src).addImm(SubReg);
3094
3095 MI->eraseFromParent();
3096 return MBB;
3097}
3098
Richard Sandifordd131ff82013-07-08 09:35:23 +00003099MachineBasicBlock *
Richard Sandiford564681c2013-08-12 10:28:10 +00003100SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
3101 MachineBasicBlock *MBB,
3102 unsigned Opcode) const {
Richard Sandifordd131ff82013-07-08 09:35:23 +00003103 const SystemZInstrInfo *TII = TM.getInstrInfo();
Richard Sandiford5e318f02013-08-27 09:54:29 +00003104 MachineFunction &MF = *MBB->getParent();
3105 MachineRegisterInfo &MRI = MF.getRegInfo();
Richard Sandifordd131ff82013-07-08 09:35:23 +00003106 DebugLoc DL = MI->getDebugLoc();
3107
Richard Sandiford5e318f02013-08-27 09:54:29 +00003108 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
Richard Sandifordd131ff82013-07-08 09:35:23 +00003109 uint64_t DestDisp = MI->getOperand(1).getImm();
Richard Sandiford5e318f02013-08-27 09:54:29 +00003110 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
Richard Sandifordd131ff82013-07-08 09:35:23 +00003111 uint64_t SrcDisp = MI->getOperand(3).getImm();
3112 uint64_t Length = MI->getOperand(4).getImm();
3113
Richard Sandifordbe133a82013-08-28 09:01:51 +00003114 // When generating more than one CLC, all but the last will need to
3115 // branch to the end when a difference is found.
3116 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
Craig Topper062a2ba2014-04-25 05:30:21 +00003117 splitBlockAfter(MI, MBB) : nullptr);
Richard Sandifordbe133a82013-08-28 09:01:51 +00003118
Richard Sandiford5e318f02013-08-27 09:54:29 +00003119 // Check for the loop form, in which operand 5 is the trip count.
3120 if (MI->getNumExplicitOperands() > 5) {
3121 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
3122
3123 uint64_t StartCountReg = MI->getOperand(5).getReg();
3124 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
3125 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
3126 forceReg(MI, DestBase, TII));
3127
3128 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
3129 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
3130 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
3131 MRI.createVirtualRegister(RC));
3132 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
3133 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
3134 MRI.createVirtualRegister(RC));
3135
3136 RC = &SystemZ::GR64BitRegClass;
3137 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
3138 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
3139
3140 MachineBasicBlock *StartMBB = MBB;
3141 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3142 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
Richard Sandifordbe133a82013-08-28 09:01:51 +00003143 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003144
3145 // StartMBB:
3146 // # fall through to LoopMMB
3147 MBB->addSuccessor(LoopMBB);
3148
3149 // LoopMBB:
3150 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00003151 // [ %NextDestReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00003152 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00003153 // [ %NextSrcReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00003154 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00003155 // [ %NextCountReg, NextMBB ]
3156 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
Richard Sandiford5e318f02013-08-27 09:54:29 +00003157 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
Richard Sandifordbe133a82013-08-28 09:01:51 +00003158 // ( JLH EndMBB )
3159 //
3160 // The prefetch is used only for MVC. The JLH is used only for CLC.
3161 MBB = LoopMBB;
3162
3163 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
3164 .addReg(StartDestReg).addMBB(StartMBB)
3165 .addReg(NextDestReg).addMBB(NextMBB);
3166 if (!HaveSingleBase)
3167 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
3168 .addReg(StartSrcReg).addMBB(StartMBB)
3169 .addReg(NextSrcReg).addMBB(NextMBB);
3170 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
3171 .addReg(StartCountReg).addMBB(StartMBB)
3172 .addReg(NextCountReg).addMBB(NextMBB);
3173 if (Opcode == SystemZ::MVC)
3174 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
3175 .addImm(SystemZ::PFD_WRITE)
3176 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
3177 BuildMI(MBB, DL, TII->get(Opcode))
3178 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
3179 .addReg(ThisSrcReg).addImm(SrcDisp);
3180 if (EndMBB) {
3181 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3182 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3183 .addMBB(EndMBB);
3184 MBB->addSuccessor(EndMBB);
3185 MBB->addSuccessor(NextMBB);
3186 }
3187
3188 // NextMBB:
Richard Sandiford5e318f02013-08-27 09:54:29 +00003189 // %NextDestReg = LA 256(%ThisDestReg)
3190 // %NextSrcReg = LA 256(%ThisSrcReg)
3191 // %NextCountReg = AGHI %ThisCountReg, -1
3192 // CGHI %NextCountReg, 0
3193 // JLH LoopMBB
3194 // # fall through to DoneMMB
3195 //
3196 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
Richard Sandifordbe133a82013-08-28 09:01:51 +00003197 MBB = NextMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00003198
Richard Sandiford5e318f02013-08-27 09:54:29 +00003199 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
3200 .addReg(ThisDestReg).addImm(256).addReg(0);
3201 if (!HaveSingleBase)
3202 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
3203 .addReg(ThisSrcReg).addImm(256).addReg(0);
3204 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
3205 .addReg(ThisCountReg).addImm(-1);
3206 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
3207 .addReg(NextCountReg).addImm(0);
3208 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3209 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3210 .addMBB(LoopMBB);
3211 MBB->addSuccessor(LoopMBB);
3212 MBB->addSuccessor(DoneMBB);
3213
3214 DestBase = MachineOperand::CreateReg(NextDestReg, false);
3215 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
3216 Length &= 255;
3217 MBB = DoneMBB;
3218 }
3219 // Handle any remaining bytes with straight-line code.
3220 while (Length > 0) {
3221 uint64_t ThisLength = std::min(Length, uint64_t(256));
3222 // The previous iteration might have created out-of-range displacements.
3223 // Apply them using LAY if so.
3224 if (!isUInt<12>(DestDisp)) {
3225 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3226 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3227 .addOperand(DestBase).addImm(DestDisp).addReg(0);
3228 DestBase = MachineOperand::CreateReg(Reg, false);
3229 DestDisp = 0;
3230 }
3231 if (!isUInt<12>(SrcDisp)) {
3232 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3233 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3234 .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
3235 SrcBase = MachineOperand::CreateReg(Reg, false);
3236 SrcDisp = 0;
3237 }
3238 BuildMI(*MBB, MI, DL, TII->get(Opcode))
3239 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
3240 .addOperand(SrcBase).addImm(SrcDisp);
3241 DestDisp += ThisLength;
3242 SrcDisp += ThisLength;
3243 Length -= ThisLength;
Richard Sandifordbe133a82013-08-28 09:01:51 +00003244 // If there's another CLC to go, branch to the end if a difference
3245 // was found.
3246 if (EndMBB && Length > 0) {
3247 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
3248 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3249 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3250 .addMBB(EndMBB);
3251 MBB->addSuccessor(EndMBB);
3252 MBB->addSuccessor(NextMBB);
3253 MBB = NextMBB;
3254 }
3255 }
3256 if (EndMBB) {
3257 MBB->addSuccessor(EndMBB);
3258 MBB = EndMBB;
3259 MBB->addLiveIn(SystemZ::CC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003260 }
Richard Sandifordd131ff82013-07-08 09:35:23 +00003261
3262 MI->eraseFromParent();
3263 return MBB;
3264}
3265
Richard Sandifordca232712013-08-16 11:21:54 +00003266// Decompose string pseudo-instruction MI into a loop that continually performs
3267// Opcode until CC != 3.
3268MachineBasicBlock *
3269SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
3270 MachineBasicBlock *MBB,
3271 unsigned Opcode) const {
3272 const SystemZInstrInfo *TII = TM.getInstrInfo();
3273 MachineFunction &MF = *MBB->getParent();
3274 MachineRegisterInfo &MRI = MF.getRegInfo();
3275 DebugLoc DL = MI->getDebugLoc();
3276
3277 uint64_t End1Reg = MI->getOperand(0).getReg();
3278 uint64_t Start1Reg = MI->getOperand(1).getReg();
3279 uint64_t Start2Reg = MI->getOperand(2).getReg();
3280 uint64_t CharReg = MI->getOperand(3).getReg();
3281
3282 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
3283 uint64_t This1Reg = MRI.createVirtualRegister(RC);
3284 uint64_t This2Reg = MRI.createVirtualRegister(RC);
3285 uint64_t End2Reg = MRI.createVirtualRegister(RC);
3286
3287 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00003288 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Richard Sandifordca232712013-08-16 11:21:54 +00003289 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3290
3291 // StartMBB:
Richard Sandifordca232712013-08-16 11:21:54 +00003292 // # fall through to LoopMMB
Richard Sandifordca232712013-08-16 11:21:54 +00003293 MBB->addSuccessor(LoopMBB);
3294
3295 // LoopMBB:
3296 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
3297 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
Richard Sandiford7789b082013-09-30 08:48:38 +00003298 // R0L = %CharReg
3299 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
Richard Sandifordca232712013-08-16 11:21:54 +00003300 // JO LoopMBB
3301 // # fall through to DoneMMB
Richard Sandiford6f6d5512013-08-20 09:38:48 +00003302 //
Richard Sandiford7789b082013-09-30 08:48:38 +00003303 // The load of R0L can be hoisted by post-RA LICM.
Richard Sandifordca232712013-08-16 11:21:54 +00003304 MBB = LoopMBB;
Richard Sandifordca232712013-08-16 11:21:54 +00003305
3306 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
3307 .addReg(Start1Reg).addMBB(StartMBB)
3308 .addReg(End1Reg).addMBB(LoopMBB);
3309 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
3310 .addReg(Start2Reg).addMBB(StartMBB)
3311 .addReg(End2Reg).addMBB(LoopMBB);
Richard Sandiford7789b082013-09-30 08:48:38 +00003312 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
Richard Sandifordca232712013-08-16 11:21:54 +00003313 BuildMI(MBB, DL, TII->get(Opcode))
3314 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
3315 .addReg(This1Reg).addReg(This2Reg);
3316 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3317 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
3318 MBB->addSuccessor(LoopMBB);
3319 MBB->addSuccessor(DoneMBB);
3320
3321 DoneMBB->addLiveIn(SystemZ::CC);
3322
3323 MI->eraseFromParent();
3324 return DoneMBB;
3325}
3326
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003327MachineBasicBlock *SystemZTargetLowering::
3328EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
3329 switch (MI->getOpcode()) {
Richard Sandiford7c5c0ea2013-10-01 13:10:16 +00003330 case SystemZ::Select32Mux:
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003331 case SystemZ::Select32:
3332 case SystemZ::SelectF32:
3333 case SystemZ::Select64:
3334 case SystemZ::SelectF64:
3335 case SystemZ::SelectF128:
3336 return emitSelect(MI, MBB);
3337
Richard Sandiford2896d042013-10-01 14:33:55 +00003338 case SystemZ::CondStore8Mux:
3339 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
3340 case SystemZ::CondStore8MuxInv:
3341 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
3342 case SystemZ::CondStore16Mux:
3343 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
3344 case SystemZ::CondStore16MuxInv:
3345 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003346 case SystemZ::CondStore8:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003347 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003348 case SystemZ::CondStore8Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003349 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003350 case SystemZ::CondStore16:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003351 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003352 case SystemZ::CondStore16Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003353 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003354 case SystemZ::CondStore32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003355 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003356 case SystemZ::CondStore32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003357 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003358 case SystemZ::CondStore64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003359 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003360 case SystemZ::CondStore64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003361 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003362 case SystemZ::CondStoreF32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003363 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003364 case SystemZ::CondStoreF32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003365 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003366 case SystemZ::CondStoreF64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003367 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003368 case SystemZ::CondStoreF64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003369 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003370
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003371 case SystemZ::AEXT128_64:
Richard Sandiford87a44362013-09-30 10:28:35 +00003372 return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003373 case SystemZ::ZEXT128_32:
Richard Sandiford87a44362013-09-30 10:28:35 +00003374 return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003375 case SystemZ::ZEXT128_64:
Richard Sandiford87a44362013-09-30 10:28:35 +00003376 return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003377
3378 case SystemZ::ATOMIC_SWAPW:
3379 return emitAtomicLoadBinary(MI, MBB, 0, 0);
3380 case SystemZ::ATOMIC_SWAP_32:
3381 return emitAtomicLoadBinary(MI, MBB, 0, 32);
3382 case SystemZ::ATOMIC_SWAP_64:
3383 return emitAtomicLoadBinary(MI, MBB, 0, 64);
3384
3385 case SystemZ::ATOMIC_LOADW_AR:
3386 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
3387 case SystemZ::ATOMIC_LOADW_AFI:
3388 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
3389 case SystemZ::ATOMIC_LOAD_AR:
3390 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
3391 case SystemZ::ATOMIC_LOAD_AHI:
3392 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
3393 case SystemZ::ATOMIC_LOAD_AFI:
3394 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
3395 case SystemZ::ATOMIC_LOAD_AGR:
3396 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
3397 case SystemZ::ATOMIC_LOAD_AGHI:
3398 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
3399 case SystemZ::ATOMIC_LOAD_AGFI:
3400 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
3401
3402 case SystemZ::ATOMIC_LOADW_SR:
3403 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
3404 case SystemZ::ATOMIC_LOAD_SR:
3405 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
3406 case SystemZ::ATOMIC_LOAD_SGR:
3407 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
3408
3409 case SystemZ::ATOMIC_LOADW_NR:
3410 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
3411 case SystemZ::ATOMIC_LOADW_NILH:
Richard Sandiford652784e2013-09-25 11:11:53 +00003412 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003413 case SystemZ::ATOMIC_LOAD_NR:
3414 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00003415 case SystemZ::ATOMIC_LOAD_NILL:
3416 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
3417 case SystemZ::ATOMIC_LOAD_NILH:
3418 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
3419 case SystemZ::ATOMIC_LOAD_NILF:
3420 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003421 case SystemZ::ATOMIC_LOAD_NGR:
3422 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003423 case SystemZ::ATOMIC_LOAD_NILL64:
3424 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
3425 case SystemZ::ATOMIC_LOAD_NILH64:
3426 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
Richard Sandiford70284282013-10-01 14:20:41 +00003427 case SystemZ::ATOMIC_LOAD_NIHL64:
3428 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
3429 case SystemZ::ATOMIC_LOAD_NIHH64:
3430 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003431 case SystemZ::ATOMIC_LOAD_NILF64:
3432 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
Richard Sandiford70284282013-10-01 14:20:41 +00003433 case SystemZ::ATOMIC_LOAD_NIHF64:
3434 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003435
3436 case SystemZ::ATOMIC_LOADW_OR:
3437 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
3438 case SystemZ::ATOMIC_LOADW_OILH:
Richard Sandiford652784e2013-09-25 11:11:53 +00003439 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003440 case SystemZ::ATOMIC_LOAD_OR:
3441 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00003442 case SystemZ::ATOMIC_LOAD_OILL:
3443 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
3444 case SystemZ::ATOMIC_LOAD_OILH:
3445 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
3446 case SystemZ::ATOMIC_LOAD_OILF:
3447 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003448 case SystemZ::ATOMIC_LOAD_OGR:
3449 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003450 case SystemZ::ATOMIC_LOAD_OILL64:
3451 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
3452 case SystemZ::ATOMIC_LOAD_OILH64:
3453 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
Richard Sandiford6e96ac62013-10-01 13:22:41 +00003454 case SystemZ::ATOMIC_LOAD_OIHL64:
3455 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
3456 case SystemZ::ATOMIC_LOAD_OIHH64:
3457 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003458 case SystemZ::ATOMIC_LOAD_OILF64:
3459 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
Richard Sandiford6e96ac62013-10-01 13:22:41 +00003460 case SystemZ::ATOMIC_LOAD_OIHF64:
3461 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003462
3463 case SystemZ::ATOMIC_LOADW_XR:
3464 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3465 case SystemZ::ATOMIC_LOADW_XILF:
Richard Sandiford652784e2013-09-25 11:11:53 +00003466 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003467 case SystemZ::ATOMIC_LOAD_XR:
3468 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00003469 case SystemZ::ATOMIC_LOAD_XILF:
3470 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003471 case SystemZ::ATOMIC_LOAD_XGR:
3472 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003473 case SystemZ::ATOMIC_LOAD_XILF64:
3474 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
Richard Sandiford5718dac2013-10-01 14:08:44 +00003475 case SystemZ::ATOMIC_LOAD_XIHF64:
3476 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003477
3478 case SystemZ::ATOMIC_LOADW_NRi:
3479 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3480 case SystemZ::ATOMIC_LOADW_NILHi:
Richard Sandiford652784e2013-09-25 11:11:53 +00003481 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003482 case SystemZ::ATOMIC_LOAD_NRi:
3483 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00003484 case SystemZ::ATOMIC_LOAD_NILLi:
3485 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3486 case SystemZ::ATOMIC_LOAD_NILHi:
3487 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3488 case SystemZ::ATOMIC_LOAD_NILFi:
3489 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003490 case SystemZ::ATOMIC_LOAD_NGRi:
3491 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00003492 case SystemZ::ATOMIC_LOAD_NILL64i:
3493 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3494 case SystemZ::ATOMIC_LOAD_NILH64i:
3495 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
Richard Sandiford70284282013-10-01 14:20:41 +00003496 case SystemZ::ATOMIC_LOAD_NIHL64i:
3497 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
3498 case SystemZ::ATOMIC_LOAD_NIHH64i:
3499 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00003500 case SystemZ::ATOMIC_LOAD_NILF64i:
3501 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
Richard Sandiford70284282013-10-01 14:20:41 +00003502 case SystemZ::ATOMIC_LOAD_NIHF64i:
3503 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003504
3505 case SystemZ::ATOMIC_LOADW_MIN:
3506 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3507 SystemZ::CCMASK_CMP_LE, 0);
3508 case SystemZ::ATOMIC_LOAD_MIN_32:
3509 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3510 SystemZ::CCMASK_CMP_LE, 32);
3511 case SystemZ::ATOMIC_LOAD_MIN_64:
3512 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3513 SystemZ::CCMASK_CMP_LE, 64);
3514
3515 case SystemZ::ATOMIC_LOADW_MAX:
3516 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3517 SystemZ::CCMASK_CMP_GE, 0);
3518 case SystemZ::ATOMIC_LOAD_MAX_32:
3519 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3520 SystemZ::CCMASK_CMP_GE, 32);
3521 case SystemZ::ATOMIC_LOAD_MAX_64:
3522 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3523 SystemZ::CCMASK_CMP_GE, 64);
3524
3525 case SystemZ::ATOMIC_LOADW_UMIN:
3526 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3527 SystemZ::CCMASK_CMP_LE, 0);
3528 case SystemZ::ATOMIC_LOAD_UMIN_32:
3529 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3530 SystemZ::CCMASK_CMP_LE, 32);
3531 case SystemZ::ATOMIC_LOAD_UMIN_64:
3532 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3533 SystemZ::CCMASK_CMP_LE, 64);
3534
3535 case SystemZ::ATOMIC_LOADW_UMAX:
3536 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3537 SystemZ::CCMASK_CMP_GE, 0);
3538 case SystemZ::ATOMIC_LOAD_UMAX_32:
3539 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3540 SystemZ::CCMASK_CMP_GE, 32);
3541 case SystemZ::ATOMIC_LOAD_UMAX_64:
3542 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3543 SystemZ::CCMASK_CMP_GE, 64);
3544
3545 case SystemZ::ATOMIC_CMP_SWAPW:
3546 return emitAtomicCmpSwapW(MI, MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003547 case SystemZ::MVCSequence:
3548 case SystemZ::MVCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00003549 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
Richard Sandiford178273a2013-09-05 10:36:45 +00003550 case SystemZ::NCSequence:
3551 case SystemZ::NCLoop:
3552 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3553 case SystemZ::OCSequence:
3554 case SystemZ::OCLoop:
3555 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3556 case SystemZ::XCSequence:
3557 case SystemZ::XCLoop:
3558 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003559 case SystemZ::CLCSequence:
3560 case SystemZ::CLCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00003561 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
Richard Sandifordca232712013-08-16 11:21:54 +00003562 case SystemZ::CLSTLoop:
3563 return emitStringWrapper(MI, MBB, SystemZ::CLST);
Richard Sandifordbb83a502013-08-16 11:29:37 +00003564 case SystemZ::MVSTLoop:
3565 return emitStringWrapper(MI, MBB, SystemZ::MVST);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00003566 case SystemZ::SRSTLoop:
3567 return emitStringWrapper(MI, MBB, SystemZ::SRST);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003568 default:
3569 llvm_unreachable("Unexpected instr type to insert");
3570 }
3571}