blob: 8c33154742813847a6fb49fba056c75789562485 [file] [log] [blame]
Philip Reamesd16a9b12015-02-20 01:06:44 +00001//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
Igor Laevskye0317182015-05-19 15:59:05 +000017#include "llvm/Analysis/TargetTransformInfo.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000018#include "llvm/ADT/SetOperations.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/DenseSet.h"
Philip Reames4d80ede2015-04-10 23:11:26 +000021#include "llvm/ADT/SetVector.h"
Swaroop Sridhar665bc9c2015-05-20 01:07:23 +000022#include "llvm/ADT/StringRef.h"
Philip Reames15d55632015-09-09 23:26:08 +000023#include "llvm/ADT/MapVector.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000024#include "llvm/IR/BasicBlock.h"
25#include "llvm/IR/CallSite.h"
26#include "llvm/IR/Dominators.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/IRBuilder.h"
29#include "llvm/IR/InstIterator.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/Module.h"
Sanjoy Das353a19e2015-06-02 22:33:37 +000034#include "llvm/IR/MDBuilder.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000035#include "llvm/IR/Statepoint.h"
36#include "llvm/IR/Value.h"
37#include "llvm/IR/Verifier.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Transforms/Scalar.h"
41#include "llvm/Transforms/Utils/BasicBlockUtils.h"
42#include "llvm/Transforms/Utils/Cloning.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include "llvm/Transforms/Utils/PromoteMemToReg.h"
45
46#define DEBUG_TYPE "rewrite-statepoints-for-gc"
47
48using namespace llvm;
49
Philip Reamesd16a9b12015-02-20 01:06:44 +000050// Print the liveset found at the insert location
51static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52 cl::init(false));
Philip Reames704e78b2015-04-10 22:34:56 +000053static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000055// Print out the base pointers for debugging
Philip Reames704e78b2015-04-10 22:34:56 +000056static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000058
Igor Laevskye0317182015-05-19 15:59:05 +000059// Cost threshold measuring when it is profitable to rematerialize value instead
60// of relocating it
61static cl::opt<unsigned>
62RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63 cl::init(6));
64
Philip Reamese73300b2015-04-13 16:41:32 +000065#ifdef XDEBUG
66static bool ClobberNonLive = true;
67#else
68static bool ClobberNonLive = false;
69#endif
70static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71 cl::location(ClobberNonLive),
72 cl::Hidden);
73
Sanjoy Das25ec1a32015-10-16 02:41:00 +000074static cl::opt<bool>
75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76 cl::Hidden, cl::init(true));
77
Benjamin Kramer6f665452015-02-20 14:00:58 +000078namespace {
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000079struct RewriteStatepointsForGC : public ModulePass {
Philip Reamesd16a9b12015-02-20 01:06:44 +000080 static char ID; // Pass identification, replacement for typeid
81
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000082 RewriteStatepointsForGC() : ModulePass(ID) {
Philip Reamesd16a9b12015-02-20 01:06:44 +000083 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84 }
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000085 bool runOnFunction(Function &F);
86 bool runOnModule(Module &M) override {
87 bool Changed = false;
88 for (Function &F : M)
89 Changed |= runOnFunction(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +000090
91 if (Changed) {
Igor Laevskydde00292015-10-23 22:42:44 +000092 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
Sanjoy Das353a19e2015-06-02 22:33:37 +000093 // returns true for at least one function in the module. Since at least
94 // one function changed, we know that the precondition is satisfied.
Igor Laevskydde00292015-10-23 22:42:44 +000095 stripNonValidAttributes(M);
Sanjoy Das353a19e2015-06-02 22:33:37 +000096 }
97
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000098 return Changed;
99 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000100
101 void getAnalysisUsage(AnalysisUsage &AU) const override {
102 // We add and rewrite a bunch of instructions, but don't really do much
103 // else. We could in theory preserve a lot more analyses here.
104 AU.addRequired<DominatorTreeWrapperPass>();
Igor Laevskye0317182015-05-19 15:59:05 +0000105 AU.addRequired<TargetTransformInfoWrapperPass>();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000106 }
Sanjoy Das353a19e2015-06-02 22:33:37 +0000107
108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109 /// dereferenceability that are no longer valid/correct after
110 /// RewriteStatepointsForGC has run. This is because semantically, after
111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
Igor Laevskydde00292015-10-23 22:42:44 +0000112 /// heap. stripNonValidAttributes (conservatively) restores correctness
Sanjoy Das353a19e2015-06-02 22:33:37 +0000113 /// by erasing all attributes in the module that externally imply
114 /// dereferenceability.
Igor Laevsky1ef06552015-10-26 19:06:01 +0000115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116 /// can touch the entire heap including noalias objects.
Igor Laevskydde00292015-10-23 22:42:44 +0000117 void stripNonValidAttributes(Module &M);
Sanjoy Das353a19e2015-06-02 22:33:37 +0000118
Igor Laevskydde00292015-10-23 22:42:44 +0000119 // Helpers for stripNonValidAttributes
120 void stripNonValidAttributesFromBody(Function &F);
121 void stripNonValidAttributesFromPrototype(Function &F);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000122};
Benjamin Kramer6f665452015-02-20 14:00:58 +0000123} // namespace
Philip Reamesd16a9b12015-02-20 01:06:44 +0000124
125char RewriteStatepointsForGC::ID = 0;
126
Sanjoy Dasea45f0e2015-06-02 22:33:34 +0000127ModulePass *llvm::createRewriteStatepointsForGCPass() {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000128 return new RewriteStatepointsForGC();
129}
130
131INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132 "Make relocations explicit at statepoints", false, false)
133INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
135 "Make relocations explicit at statepoints", false, false)
136
137namespace {
Philip Reamesdf1ef082015-04-10 22:53:14 +0000138struct GCPtrLivenessData {
139 /// Values defined in this block.
140 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
141 /// Values used in this block (and thus live); does not included values
142 /// killed within this block.
143 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
144
145 /// Values live into this basic block (i.e. used by any
146 /// instruction in this basic block or ones reachable from here)
147 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
148
149 /// Values live out of this basic block (i.e. live into
150 /// any successor block)
151 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
152};
153
Philip Reamesd16a9b12015-02-20 01:06:44 +0000154// The type of the internal cache used inside the findBasePointers family
155// of functions. From the callers perspective, this is an opaque type and
156// should not be inspected.
157//
158// In the actual implementation this caches two relations:
159// - The base relation itself (i.e. this pointer is based on that one)
160// - The base defining value relation (i.e. before base_phi insertion)
161// Generally, after the execution of a full findBasePointer call, only the
162// base relation will remain. Internally, we add a mixture of the two
163// types, then update all the second type to the first type
Philip Reamese9c3b9b2015-02-20 22:48:20 +0000164typedef DenseMap<Value *, Value *> DefiningValueMapTy;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000165typedef DenseSet<Value *> StatepointLiveSetTy;
Sanjoy Das40bdd042015-10-07 21:32:35 +0000166typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
167 RematerializedValueMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000168
Philip Reamesd16a9b12015-02-20 01:06:44 +0000169struct PartiallyConstructedSafepointRecord {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000170 /// The set of values known to be live across this safepoint
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000171 StatepointLiveSetTy LiveSet;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000172
173 /// Mapping from live pointers to a base-defining-value
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000174 DenseMap<Value *, Value *> PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000175
Philip Reames0a3240f2015-02-20 21:34:11 +0000176 /// The *new* gc.statepoint instruction itself. This produces the token
177 /// that normal path gc.relocates and the gc.result are tied to.
178 Instruction *StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000179
Philip Reamesf2041322015-02-20 19:26:04 +0000180 /// Instruction to which exceptional gc relocates are attached
181 /// Makes it easier to iterate through them during relocationViaAlloca.
182 Instruction *UnwindToken;
Igor Laevskye0317182015-05-19 15:59:05 +0000183
184 /// Record live values we are rematerialized instead of relocating.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000185 /// They are not included into 'LiveSet' field.
Igor Laevskye0317182015-05-19 15:59:05 +0000186 /// Maps rematerialized copy to it's original value.
187 RematerializedValueMapTy RematerializedValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000188};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000189}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000190
Sanjoy Das25ec1a32015-10-16 02:41:00 +0000191static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
Sanjoy Dasacc43d12016-01-22 19:20:40 +0000192 Optional<OperandBundleUse> DeoptBundle =
193 CS.getOperandBundle(LLVMContext::OB_deopt);
Sanjoy Das25ec1a32015-10-16 02:41:00 +0000194
195 if (!DeoptBundle.hasValue()) {
196 assert(AllowStatepointWithNoDeoptInfo &&
197 "Found non-leaf call without deopt info!");
198 return None;
199 }
200
201 return DeoptBundle.getValue().Inputs;
202}
203
Philip Reamesdf1ef082015-04-10 22:53:14 +0000204/// Compute the live-in set for every basic block in the function
205static void computeLiveInValues(DominatorTree &DT, Function &F,
206 GCPtrLivenessData &Data);
207
208/// Given results from the dataflow liveness computation, find the set of live
209/// Values at a particular instruction.
210static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
211 StatepointLiveSetTy &out);
212
Philip Reamesd16a9b12015-02-20 01:06:44 +0000213// TODO: Once we can get to the GCStrategy, this becomes
Philip Reamesee8f0552015-12-23 01:42:15 +0000214// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000215
Craig Toppere3dcce92015-08-01 22:20:21 +0000216static bool isGCPointerType(Type *T) {
217 if (auto *PT = dyn_cast<PointerType>(T))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000218 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
219 // GC managed heap. We know that a pointer into this heap needs to be
220 // updated and that no other pointer does.
221 return (1 == PT->getAddressSpace());
222 return false;
223}
224
Philip Reames8531d8c2015-04-10 21:48:25 +0000225// Return true if this type is one which a) is a gc pointer or contains a GC
226// pointer and b) is of a type this code expects to encounter as a live value.
227// (The insertion code will assert that a type which matches (a) and not (b)
Philip Reames704e78b2015-04-10 22:34:56 +0000228// is not encountered.)
Philip Reames8531d8c2015-04-10 21:48:25 +0000229static bool isHandledGCPointerType(Type *T) {
230 // We fully support gc pointers
231 if (isGCPointerType(T))
232 return true;
233 // We partially support vectors of gc pointers. The code will assert if it
234 // can't handle something.
235 if (auto VT = dyn_cast<VectorType>(T))
236 if (isGCPointerType(VT->getElementType()))
237 return true;
238 return false;
239}
240
241#ifndef NDEBUG
242/// Returns true if this type contains a gc pointer whether we know how to
243/// handle that type or not.
244static bool containsGCPtrType(Type *Ty) {
Philip Reames704e78b2015-04-10 22:34:56 +0000245 if (isGCPointerType(Ty))
Philip Reames8531d8c2015-04-10 21:48:25 +0000246 return true;
247 if (VectorType *VT = dyn_cast<VectorType>(Ty))
248 return isGCPointerType(VT->getScalarType());
249 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
250 return containsGCPtrType(AT->getElementType());
251 if (StructType *ST = dyn_cast<StructType>(Ty))
Craig Topperd896b032015-11-29 05:38:08 +0000252 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
253 containsGCPtrType);
Philip Reames8531d8c2015-04-10 21:48:25 +0000254 return false;
255}
256
257// Returns true if this is a type which a) is a gc pointer or contains a GC
258// pointer and b) is of a type which the code doesn't expect (i.e. first class
259// aggregates). Used to trip assertions.
260static bool isUnhandledGCPointerType(Type *Ty) {
261 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
262}
263#endif
264
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000265static bool order_by_name(Value *a, Value *b) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000266 if (a->hasName() && b->hasName()) {
267 return -1 == a->getName().compare(b->getName());
268 } else if (a->hasName() && !b->hasName()) {
269 return true;
270 } else if (!a->hasName() && b->hasName()) {
271 return false;
272 } else {
273 // Better than nothing, but not stable
274 return a < b;
275 }
276}
277
Philip Reamesece70b82015-09-09 23:57:18 +0000278// Return the name of the value suffixed with the provided value, or if the
279// value didn't have a name, the default value specified.
280static std::string suffixed_name_or(Value *V, StringRef Suffix,
281 StringRef DefaultName) {
282 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
283}
284
Philip Reamesdf1ef082015-04-10 22:53:14 +0000285// Conservatively identifies any definitions which might be live at the
286// given instruction. The analysis is performed immediately before the
287// given instruction. Values defined by that instruction are not considered
288// live. Values used by that instruction are considered live.
289static void analyzeParsePointLiveness(
290 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
291 const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000292 Instruction *inst = CS.getInstruction();
293
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000294 StatepointLiveSetTy LiveSet;
295 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000296
297 if (PrintLiveSet) {
298 // Note: This output is used by several of the test cases
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000299 // The order of elements in a set is not stable, put them in a vec and sort
Philip Reamesd16a9b12015-02-20 01:06:44 +0000300 // by name
Philip Reamesdab35f32015-09-02 21:11:44 +0000301 SmallVector<Value *, 64> Temp;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000302 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
Philip Reamesdab35f32015-09-02 21:11:44 +0000303 std::sort(Temp.begin(), Temp.end(), order_by_name);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000304 errs() << "Live Variables:\n";
Philip Reamesdab35f32015-09-02 21:11:44 +0000305 for (Value *V : Temp)
306 dbgs() << " " << V->getName() << " " << *V << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000307 }
308 if (PrintLiveSetSize) {
309 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000310 errs() << "Number live values: " << LiveSet.size() << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000311 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000312 result.LiveSet = LiveSet;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000313}
314
Philip Reamesf5b8e472015-09-03 21:34:30 +0000315static bool isKnownBaseResult(Value *V);
316namespace {
317/// A single base defining value - An immediate base defining value for an
318/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
319/// For instructions which have multiple pointer [vector] inputs or that
320/// transition between vector and scalar types, there is no immediate base
321/// defining value. The 'base defining value' for 'Def' is the transitive
322/// closure of this relation stopping at the first instruction which has no
323/// immediate base defining value. The b.d.v. might itself be a base pointer,
324/// but it can also be an arbitrary derived pointer.
325struct BaseDefiningValueResult {
326 /// Contains the value which is the base defining value.
327 Value * const BDV;
328 /// True if the base defining value is also known to be an actual base
329 /// pointer.
330 const bool IsKnownBase;
331 BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
332 : BDV(BDV), IsKnownBase(IsKnownBase) {
333#ifndef NDEBUG
334 // Check consistency between new and old means of checking whether a BDV is
335 // a base.
336 bool MustBeBase = isKnownBaseResult(BDV);
337 assert(!MustBeBase || MustBeBase == IsKnownBase);
338#endif
339 }
340};
341}
342
343static BaseDefiningValueResult findBaseDefiningValue(Value *I);
Philip Reames311f7102015-05-12 22:19:52 +0000344
Philip Reames8fe7f132015-06-26 22:47:37 +0000345/// Return a base defining value for the 'Index' element of the given vector
346/// instruction 'I'. If Index is null, returns a BDV for the entire vector
347/// 'I'. As an optimization, this method will try to determine when the
348/// element is known to already be a base pointer. If this can be established,
349/// the second value in the returned pair will be true. Note that either a
350/// vector or a pointer typed value can be returned. For the former, the
351/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
352/// If the later, the return pointer is a BDV (or possibly a base) for the
353/// particular element in 'I'.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000354static BaseDefiningValueResult
Philip Reames66287132015-09-09 23:40:12 +0000355findBaseDefiningValueOfVector(Value *I) {
Philip Reames8531d8c2015-04-10 21:48:25 +0000356 // Each case parallels findBaseDefiningValue below, see that code for
357 // detailed motivation.
358
359 if (isa<Argument>(I))
360 // An incoming argument to the function is a base pointer
Philip Reamesf5b8e472015-09-03 21:34:30 +0000361 return BaseDefiningValueResult(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000362
Manuel Jacob734e7332016-01-09 04:02:16 +0000363 if (isa<Constant>(I))
364 // Constant vectors consist only of constant pointers.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000365 return BaseDefiningValueResult(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000366
Philip Reames8531d8c2015-04-10 21:48:25 +0000367 if (isa<LoadInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000368 return BaseDefiningValueResult(I, true);
Philip Reamesf5b8e472015-09-03 21:34:30 +0000369
Philip Reames66287132015-09-09 23:40:12 +0000370 if (isa<InsertElementInst>(I))
Philip Reames8fe7f132015-06-26 22:47:37 +0000371 // We don't know whether this vector contains entirely base pointers or
372 // not. To be conservatively correct, we treat it as a BDV and will
373 // duplicate code as needed to construct a parallel vector of bases.
Philip Reames66287132015-09-09 23:40:12 +0000374 return BaseDefiningValueResult(I, false);
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +0000375
Philip Reames8fe7f132015-06-26 22:47:37 +0000376 if (isa<ShuffleVectorInst>(I))
377 // We don't know whether this vector contains entirely base pointers or
378 // not. To be conservatively correct, we treat it as a BDV and will
379 // duplicate code as needed to construct a parallel vector of bases.
380 // TODO: There a number of local optimizations which could be applied here
381 // for particular sufflevector patterns.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000382 return BaseDefiningValueResult(I, false);
Philip Reames8fe7f132015-06-26 22:47:37 +0000383
384 // A PHI or Select is a base defining value. The outer findBasePointer
385 // algorithm is responsible for constructing a base value for this BDV.
386 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
387 "unknown vector instruction - no base found for vector element");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000388 return BaseDefiningValueResult(I, false);
Philip Reames8531d8c2015-04-10 21:48:25 +0000389}
390
Philip Reamesd16a9b12015-02-20 01:06:44 +0000391/// Helper function for findBasePointer - Will return a value which either a)
Philip Reames9ac4e382015-08-12 21:00:20 +0000392/// defines the base pointer for the input, b) blocks the simple search
393/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
394/// from pointer to vector type or back.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000395static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
Manuel Jacob0593cfd2016-01-09 03:08:49 +0000396 assert(I->getType()->isPtrOrPtrVectorTy() &&
397 "Illegal to ask for the base pointer of a non-pointer type");
398
Philip Reames8fe7f132015-06-26 22:47:37 +0000399 if (I->getType()->isVectorTy())
Philip Reamesf5b8e472015-09-03 21:34:30 +0000400 return findBaseDefiningValueOfVector(I);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000401
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000402 if (isa<Argument>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000403 // An incoming argument to the function is a base pointer
404 // We should have never reached here if this argument isn't an gc value
Philip Reamesf5b8e472015-09-03 21:34:30 +0000405 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000406
Manuel Jacob75cbfdc2016-01-05 04:06:21 +0000407 if (isa<Constant>(I))
408 // We assume that objects with a constant base (e.g. a global) can't move
409 // and don't need to be reported to the collector because they are always
410 // live. All constants have constant bases. Besides global references, all
411 // kinds of constants (e.g. undef, constant expressions, null pointers) can
412 // be introduced by the inliner or the optimizer, especially on dynamically
413 // dead paths. See e.g. test4 in constants.ll.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000414 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000415
Philip Reamesd16a9b12015-02-20 01:06:44 +0000416 if (CastInst *CI = dyn_cast<CastInst>(I)) {
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000417 Value *Def = CI->stripPointerCasts();
Manuel Jacob8050a492015-12-21 01:26:46 +0000418 // If stripping pointer casts changes the address space there is an
419 // addrspacecast in between.
420 assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
421 cast<PointerType>(CI->getType())->getAddressSpace() &&
422 "unsupported addrspacecast");
David Blaikie82ad7872015-02-20 23:44:24 +0000423 // If we find a cast instruction here, it means we've found a cast which is
424 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
425 // handle int->ptr conversion.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000426 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
427 return findBaseDefiningValue(Def);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000428 }
429
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000430 if (isa<LoadInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000431 // The value loaded is an gc base itself
432 return BaseDefiningValueResult(I, true);
433
Philip Reamesd16a9b12015-02-20 01:06:44 +0000434
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000435 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
436 // The base of this GEP is the base
437 return findBaseDefiningValue(GEP->getPointerOperand());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000438
439 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
440 switch (II->getIntrinsicID()) {
441 default:
442 // fall through to general call handling
443 break;
444 case Intrinsic::experimental_gc_statepoint:
Manuel Jacob4e4f60d2015-12-22 18:44:45 +0000445 llvm_unreachable("statepoints don't produce pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000446 case Intrinsic::experimental_gc_relocate: {
447 // Rerunning safepoint insertion after safepoints are already
448 // inserted is not supported. It could probably be made to work,
449 // but why are you doing this? There's no good reason.
450 llvm_unreachable("repeat safepoint insertion is not supported");
451 }
452 case Intrinsic::gcroot:
453 // Currently, this mechanism hasn't been extended to work with gcroot.
454 // There's no reason it couldn't be, but I haven't thought about the
455 // implications much.
456 llvm_unreachable(
457 "interaction with the gcroot mechanism is not supported");
458 }
459 }
460 // We assume that functions in the source language only return base
461 // pointers. This should probably be generalized via attributes to support
462 // both source language and internal functions.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000463 if (isa<CallInst>(I) || isa<InvokeInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000464 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000465
466 // I have absolutely no idea how to implement this part yet. It's not
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000467 // necessarily hard, I just haven't really looked at it yet.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000468 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
469
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000470 if (isa<AtomicCmpXchgInst>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000471 // A CAS is effectively a atomic store and load combined under a
472 // predicate. From the perspective of base pointers, we just treat it
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000473 // like a load.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000474 return BaseDefiningValueResult(I, true);
Philip Reames704e78b2015-04-10 22:34:56 +0000475
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000476 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
Philip Reames704e78b2015-04-10 22:34:56 +0000477 "binary ops which don't apply to pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000478
479 // The aggregate ops. Aggregates can either be in the heap or on the
480 // stack, but in either case, this is simply a field load. As a result,
481 // this is a defining definition of the base just like a load is.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000482 if (isa<ExtractValueInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000483 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000484
485 // We should never see an insert vector since that would require we be
486 // tracing back a struct value not a pointer value.
487 assert(!isa<InsertValueInst>(I) &&
488 "Base pointer for a struct is meaningless");
489
Philip Reames9ac4e382015-08-12 21:00:20 +0000490 // An extractelement produces a base result exactly when it's input does.
491 // We may need to insert a parallel instruction to extract the appropriate
492 // element out of the base vector corresponding to the input. Given this,
493 // it's analogous to the phi and select case even though it's not a merge.
Philip Reames66287132015-09-09 23:40:12 +0000494 if (isa<ExtractElementInst>(I))
495 // Note: There a lot of obvious peephole cases here. This are deliberately
496 // handled after the main base pointer inference algorithm to make writing
497 // test cases to exercise that code easier.
498 return BaseDefiningValueResult(I, false);
Philip Reames9ac4e382015-08-12 21:00:20 +0000499
Philip Reamesd16a9b12015-02-20 01:06:44 +0000500 // The last two cases here don't return a base pointer. Instead, they
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000501 // return a value which dynamically selects from among several base
Philip Reamesd16a9b12015-02-20 01:06:44 +0000502 // derived pointers (each with it's own base potentially). It's the job of
503 // the caller to resolve these.
Philip Reames704e78b2015-04-10 22:34:56 +0000504 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000505 "missing instruction case in findBaseDefiningValing");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000506 return BaseDefiningValueResult(I, false);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000507}
508
509/// Returns the base defining value for this value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000510static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
511 Value *&Cached = Cache[I];
Benjamin Kramer6f665452015-02-20 14:00:58 +0000512 if (!Cached) {
Philip Reamesf5b8e472015-09-03 21:34:30 +0000513 Cached = findBaseDefiningValue(I).BDV;
Philip Reames2a892a62015-07-23 22:25:26 +0000514 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
515 << Cached->getName() << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000516 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000517 assert(Cache[I] != nullptr);
Benjamin Kramer6f665452015-02-20 14:00:58 +0000518 return Cached;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000519}
520
521/// Return a base pointer for this value if known. Otherwise, return it's
522/// base defining value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000523static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
524 Value *Def = findBaseDefiningValueCached(I, Cache);
525 auto Found = Cache.find(Def);
526 if (Found != Cache.end()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000527 // Either a base-of relation, or a self reference. Caller must check.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000528 return Found->second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000529 }
530 // Only a BDV available
Philip Reames18d0feb2015-03-27 05:39:32 +0000531 return Def;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000532}
533
534/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
535/// is it known to be a base pointer? Or do we need to continue searching.
Philip Reames18d0feb2015-03-27 05:39:32 +0000536static bool isKnownBaseResult(Value *V) {
Philip Reames66287132015-09-09 23:40:12 +0000537 if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
538 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
539 !isa<ShuffleVectorInst>(V)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000540 // no recursion possible
541 return true;
542 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000543 if (isa<Instruction>(V) &&
544 cast<Instruction>(V)->getMetadata("is_base_value")) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000545 // This is a previously inserted base phi or select. We know
546 // that this is a base value.
547 return true;
548 }
549
550 // We need to keep searching
551 return false;
552}
553
Philip Reamesd16a9b12015-02-20 01:06:44 +0000554namespace {
Philip Reames9b141ed2015-07-23 22:49:14 +0000555/// Models the state of a single base defining value in the findBasePointer
556/// algorithm for determining where a new instruction is needed to propagate
557/// the base of this BDV.
558class BDVState {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000559public:
560 enum Status { Unknown, Base, Conflict };
561
Philip Reames9b141ed2015-07-23 22:49:14 +0000562 BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000563 assert(status != Base || b);
564 }
Philip Reames9b141ed2015-07-23 22:49:14 +0000565 explicit BDVState(Value *b) : status(Base), base(b) {}
566 BDVState() : status(Unknown), base(nullptr) {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000567
568 Status getStatus() const { return status; }
569 Value *getBase() const { return base; }
570
571 bool isBase() const { return getStatus() == Base; }
572 bool isUnknown() const { return getStatus() == Unknown; }
573 bool isConflict() const { return getStatus() == Conflict; }
574
Philip Reames9b141ed2015-07-23 22:49:14 +0000575 bool operator==(const BDVState &other) const {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000576 return base == other.base && status == other.status;
577 }
578
Philip Reames9b141ed2015-07-23 22:49:14 +0000579 bool operator!=(const BDVState &other) const { return !(*this == other); }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000580
Philip Reames2a892a62015-07-23 22:25:26 +0000581 LLVM_DUMP_METHOD
582 void dump() const { print(dbgs()); dbgs() << '\n'; }
583
584 void print(raw_ostream &OS) const {
Philip Reamesdab35f32015-09-02 21:11:44 +0000585 switch (status) {
586 case Unknown:
587 OS << "U";
588 break;
589 case Base:
590 OS << "B";
591 break;
592 case Conflict:
593 OS << "C";
594 break;
595 };
596 OS << " (" << base << " - "
Philip Reames2a892a62015-07-23 22:25:26 +0000597 << (base ? base->getName() : "nullptr") << "): ";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000598 }
599
600private:
601 Status status;
Philip Reamesdd0948a2015-12-18 03:53:28 +0000602 AssertingVH<Value> base; // non null only if status == base
Philip Reamesd16a9b12015-02-20 01:06:44 +0000603};
Philip Reamesb3967cd2015-09-02 22:30:53 +0000604}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000605
Philip Reames6906e922015-09-02 21:57:17 +0000606#ifndef NDEBUG
Philip Reamesb3967cd2015-09-02 22:30:53 +0000607static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
Philip Reames2a892a62015-07-23 22:25:26 +0000608 State.print(OS);
609 return OS;
610}
Philip Reames6906e922015-09-02 21:57:17 +0000611#endif
Philip Reames2a892a62015-07-23 22:25:26 +0000612
Philip Reamesb3967cd2015-09-02 22:30:53 +0000613namespace {
Philip Reames9b141ed2015-07-23 22:49:14 +0000614// Values of type BDVState form a lattice, and this is a helper
Philip Reamesd16a9b12015-02-20 01:06:44 +0000615// class that implementes the meet operation. The meat of the meet
Philip Reames9b141ed2015-07-23 22:49:14 +0000616// operation is implemented in MeetBDVStates::pureMeet
617class MeetBDVStates {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000618public:
Philip Reames273e6bb2015-07-23 21:41:27 +0000619 /// Initializes the currentResult to the TOP state so that if can be met with
620 /// any other state to produce that state.
Philip Reames9b141ed2015-07-23 22:49:14 +0000621 MeetBDVStates() {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000622
Philip Reames9b141ed2015-07-23 22:49:14 +0000623 // Destructively meet the current result with the given BDVState
624 void meetWith(BDVState otherState) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000625 currentResult = meet(otherState, currentResult);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000626 }
627
Philip Reames9b141ed2015-07-23 22:49:14 +0000628 BDVState getResult() const { return currentResult; }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000629
630private:
Philip Reames9b141ed2015-07-23 22:49:14 +0000631 BDVState currentResult;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000632
Philip Reames9b141ed2015-07-23 22:49:14 +0000633 /// Perform a meet operation on two elements of the BDVState lattice.
634 static BDVState meet(BDVState LHS, BDVState RHS) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000635 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
636 "math is wrong: meet does not commute!");
Philip Reames9b141ed2015-07-23 22:49:14 +0000637 BDVState Result = pureMeet(LHS, RHS);
Philip Reames2a892a62015-07-23 22:25:26 +0000638 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
639 << " produced " << Result << "\n");
640 return Result;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000641 }
642
Philip Reames9b141ed2015-07-23 22:49:14 +0000643 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000644 switch (stateA.getStatus()) {
Philip Reames9b141ed2015-07-23 22:49:14 +0000645 case BDVState::Unknown:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000646 return stateB;
647
Philip Reames9b141ed2015-07-23 22:49:14 +0000648 case BDVState::Base:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000649 assert(stateA.getBase() && "can't be null");
David Blaikie82ad7872015-02-20 23:44:24 +0000650 if (stateB.isUnknown())
Philip Reamesd16a9b12015-02-20 01:06:44 +0000651 return stateA;
David Blaikie82ad7872015-02-20 23:44:24 +0000652
653 if (stateB.isBase()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000654 if (stateA.getBase() == stateB.getBase()) {
655 assert(stateA == stateB && "equality broken!");
656 return stateA;
657 }
Philip Reames9b141ed2015-07-23 22:49:14 +0000658 return BDVState(BDVState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000659 }
David Blaikie82ad7872015-02-20 23:44:24 +0000660 assert(stateB.isConflict() && "only three states!");
Philip Reames9b141ed2015-07-23 22:49:14 +0000661 return BDVState(BDVState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000662
Philip Reames9b141ed2015-07-23 22:49:14 +0000663 case BDVState::Conflict:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000664 return stateA;
665 }
Reid Klecknera070ee52015-02-20 19:46:02 +0000666 llvm_unreachable("only three states!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000667 }
668};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000669}
Philip Reamesb3967cd2015-09-02 22:30:53 +0000670
671
Philip Reamesd16a9b12015-02-20 01:06:44 +0000672/// For a given value or instruction, figure out what base ptr it's derived
673/// from. For gc objects, this is simply itself. On success, returns a value
674/// which is the base pointer. (This is reliable and can be used for
675/// relocation.) On failure, returns nullptr.
Philip Reamesba198492015-04-14 00:41:34 +0000676static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000677 Value *def = findBaseOrBDV(I, cache);
678
679 if (isKnownBaseResult(def)) {
680 return def;
681 }
682
683 // Here's the rough algorithm:
684 // - For every SSA value, construct a mapping to either an actual base
685 // pointer or a PHI which obscures the base pointer.
686 // - Construct a mapping from PHI to unknown TOP state. Use an
687 // optimistic algorithm to propagate base pointer information. Lattice
688 // looks like:
689 // UNKNOWN
690 // b1 b2 b3 b4
691 // CONFLICT
692 // When algorithm terminates, all PHIs will either have a single concrete
693 // base or be in a conflict state.
694 // - For every conflict, insert a dummy PHI node without arguments. Add
695 // these to the base[Instruction] = BasePtr mapping. For every
696 // non-conflict, add the actual base.
697 // - For every conflict, add arguments for the base[a] of each input
698 // arguments.
699 //
700 // Note: A simpler form of this would be to add the conflict form of all
701 // PHIs without running the optimistic algorithm. This would be
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000702 // analogous to pessimistic data flow and would likely lead to an
Philip Reamesd16a9b12015-02-20 01:06:44 +0000703 // overall worse solution.
704
Philip Reames29e9ae72015-07-24 00:42:55 +0000705#ifndef NDEBUG
Philip Reames88958b22015-07-24 00:02:11 +0000706 auto isExpectedBDVType = [](Value *BDV) {
Philip Reames66287132015-09-09 23:40:12 +0000707 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
708 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
Philip Reames88958b22015-07-24 00:02:11 +0000709 };
Philip Reames29e9ae72015-07-24 00:42:55 +0000710#endif
Philip Reames88958b22015-07-24 00:02:11 +0000711
712 // Once populated, will contain a mapping from each potentially non-base BDV
713 // to a lattice value (described above) which corresponds to that BDV.
Philip Reames15d55632015-09-09 23:26:08 +0000714 // We use the order of insertion (DFS over the def/use graph) to provide a
715 // stable deterministic ordering for visiting DenseMaps (which are unordered)
716 // below. This is important for deterministic compilation.
Philip Reames34d7a742015-09-10 00:22:49 +0000717 MapVector<Value *, BDVState> States;
Philip Reames15d55632015-09-09 23:26:08 +0000718
719 // Recursively fill in all base defining values reachable from the initial
720 // one for which we don't already know a definite base value for
Philip Reames88958b22015-07-24 00:02:11 +0000721 /* scope */ {
Philip Reames88958b22015-07-24 00:02:11 +0000722 SmallVector<Value*, 16> Worklist;
723 Worklist.push_back(def);
Philip Reames34d7a742015-09-10 00:22:49 +0000724 States.insert(std::make_pair(def, BDVState()));
Philip Reames88958b22015-07-24 00:02:11 +0000725 while (!Worklist.empty()) {
726 Value *Current = Worklist.pop_back_val();
727 assert(!isKnownBaseResult(Current) && "why did it get added?");
728
729 auto visitIncomingValue = [&](Value *InVal) {
730 Value *Base = findBaseOrBDV(InVal, cache);
731 if (isKnownBaseResult(Base))
732 // Known bases won't need new instructions introduced and can be
733 // ignored safely
734 return;
735 assert(isExpectedBDVType(Base) && "the only non-base values "
736 "we see should be base defining values");
Philip Reames34d7a742015-09-10 00:22:49 +0000737 if (States.insert(std::make_pair(Base, BDVState())).second)
Philip Reames88958b22015-07-24 00:02:11 +0000738 Worklist.push_back(Base);
739 };
740 if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
741 for (Value *InVal : Phi->incoming_values())
742 visitIncomingValue(InVal);
Philip Reames9ac4e382015-08-12 21:00:20 +0000743 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
Philip Reames88958b22015-07-24 00:02:11 +0000744 visitIncomingValue(Sel->getTrueValue());
745 visitIncomingValue(Sel->getFalseValue());
Philip Reames9ac4e382015-08-12 21:00:20 +0000746 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
747 visitIncomingValue(EE->getVectorOperand());
Philip Reames66287132015-09-09 23:40:12 +0000748 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
749 visitIncomingValue(IE->getOperand(0)); // vector operand
750 visitIncomingValue(IE->getOperand(1)); // scalar operand
Philip Reames9ac4e382015-08-12 21:00:20 +0000751 } else {
Philip Reames66287132015-09-09 23:40:12 +0000752 // There is one known class of instructions we know we don't handle.
753 assert(isa<ShuffleVectorInst>(Current));
Philip Reames9ac4e382015-08-12 21:00:20 +0000754 llvm_unreachable("unimplemented instruction case");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000755 }
756 }
757 }
758
Philip Reamesdab35f32015-09-02 21:11:44 +0000759#ifndef NDEBUG
760 DEBUG(dbgs() << "States after initialization:\n");
Philip Reames34d7a742015-09-10 00:22:49 +0000761 for (auto Pair : States) {
Philip Reamesdab35f32015-09-02 21:11:44 +0000762 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000763 }
Philip Reamesdab35f32015-09-02 21:11:44 +0000764#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000765
Philip Reames273e6bb2015-07-23 21:41:27 +0000766 // Return a phi state for a base defining value. We'll generate a new
767 // base state for known bases and expect to find a cached state otherwise.
768 auto getStateForBDV = [&](Value *baseValue) {
769 if (isKnownBaseResult(baseValue))
Philip Reames9b141ed2015-07-23 22:49:14 +0000770 return BDVState(baseValue);
Philip Reames34d7a742015-09-10 00:22:49 +0000771 auto I = States.find(baseValue);
772 assert(I != States.end() && "lookup failed!");
Philip Reames273e6bb2015-07-23 21:41:27 +0000773 return I->second;
774 };
775
Philip Reamesd16a9b12015-02-20 01:06:44 +0000776 bool progress = true;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000777 while (progress) {
Yaron Keren42a7adf2015-02-28 13:11:24 +0000778#ifndef NDEBUG
Philip Reamesb4e55f32015-09-10 00:32:56 +0000779 const size_t oldSize = States.size();
Yaron Keren42a7adf2015-02-28 13:11:24 +0000780#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000781 progress = false;
Philip Reames15d55632015-09-09 23:26:08 +0000782 // We're only changing values in this loop, thus safe to keep iterators.
783 // Since this is computing a fixed point, the order of visit does not
784 // effect the result. TODO: We could use a worklist here and make this run
785 // much faster.
Philip Reames34d7a742015-09-10 00:22:49 +0000786 for (auto Pair : States) {
Philip Reamesece70b82015-09-09 23:57:18 +0000787 Value *BDV = Pair.first;
788 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reames273e6bb2015-07-23 21:41:27 +0000789
Philip Reames9b141ed2015-07-23 22:49:14 +0000790 // Given an input value for the current instruction, return a BDVState
Philip Reames273e6bb2015-07-23 21:41:27 +0000791 // instance which represents the BDV of that value.
792 auto getStateForInput = [&](Value *V) mutable {
793 Value *BDV = findBaseOrBDV(V, cache);
794 return getStateForBDV(BDV);
795 };
796
Philip Reames9b141ed2015-07-23 22:49:14 +0000797 MeetBDVStates calculateMeet;
Philip Reamesece70b82015-09-09 23:57:18 +0000798 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000799 calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
800 calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
Philip Reamesece70b82015-09-09 23:57:18 +0000801 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000802 for (Value *Val : Phi->incoming_values())
Philip Reames273e6bb2015-07-23 21:41:27 +0000803 calculateMeet.meetWith(getStateForInput(Val));
Philip Reamesece70b82015-09-09 23:57:18 +0000804 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000805 // The 'meet' for an extractelement is slightly trivial, but it's still
806 // useful in that it drives us to conflict if our input is.
Philip Reames9ac4e382015-08-12 21:00:20 +0000807 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
Philip Reames66287132015-09-09 23:40:12 +0000808 } else {
809 // Given there's a inherent type mismatch between the operands, will
810 // *always* produce Conflict.
Philip Reamesece70b82015-09-09 23:57:18 +0000811 auto *IE = cast<InsertElementInst>(BDV);
Philip Reames66287132015-09-09 23:40:12 +0000812 calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
813 calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
Philip Reames9ac4e382015-08-12 21:00:20 +0000814 }
815
Philip Reames34d7a742015-09-10 00:22:49 +0000816 BDVState oldState = States[BDV];
Philip Reames9b141ed2015-07-23 22:49:14 +0000817 BDVState newState = calculateMeet.getResult();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000818 if (oldState != newState) {
819 progress = true;
Philip Reames34d7a742015-09-10 00:22:49 +0000820 States[BDV] = newState;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000821 }
822 }
823
Philip Reamesb4e55f32015-09-10 00:32:56 +0000824 assert(oldSize == States.size() &&
825 "fixed point shouldn't be adding any new nodes to state");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000826 }
827
Philip Reamesdab35f32015-09-02 21:11:44 +0000828#ifndef NDEBUG
829 DEBUG(dbgs() << "States after meet iteration:\n");
Philip Reames34d7a742015-09-10 00:22:49 +0000830 for (auto Pair : States) {
Philip Reamesdab35f32015-09-02 21:11:44 +0000831 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000832 }
Philip Reamesdab35f32015-09-02 21:11:44 +0000833#endif
834
Philip Reamesd16a9b12015-02-20 01:06:44 +0000835 // Insert Phis for all conflicts
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000836 // TODO: adjust naming patterns to avoid this order of iteration dependency
Philip Reames34d7a742015-09-10 00:22:49 +0000837 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +0000838 Instruction *I = cast<Instruction>(Pair.first);
839 BDVState State = Pair.second;
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000840 assert(!isKnownBaseResult(I) && "why did it get added?");
841 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
Philip Reames9ac4e382015-08-12 21:00:20 +0000842
843 // extractelement instructions are a bit special in that we may need to
844 // insert an extract even when we know an exact base for the instruction.
845 // The problem is that we need to convert from a vector base to a scalar
846 // base for the particular indice we're interested in.
847 if (State.isBase() && isa<ExtractElementInst>(I) &&
848 isa<VectorType>(State.getBase()->getType())) {
849 auto *EE = cast<ExtractElementInst>(I);
850 // TODO: In many cases, the new instruction is just EE itself. We should
851 // exploit this, but can't do it here since it would break the invariant
852 // about the BDV not being known to be a base.
853 auto *BaseInst = ExtractElementInst::Create(State.getBase(),
854 EE->getIndexOperand(),
855 "base_ee", EE);
856 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
Philip Reames34d7a742015-09-10 00:22:49 +0000857 States[I] = BDVState(BDVState::Base, BaseInst);
Philip Reames9ac4e382015-08-12 21:00:20 +0000858 }
Philip Reames66287132015-09-09 23:40:12 +0000859
860 // Since we're joining a vector and scalar base, they can never be the
861 // same. As a result, we should always see insert element having reached
862 // the conflict state.
863 if (isa<InsertElementInst>(I)) {
864 assert(State.isConflict());
865 }
Philip Reames9ac4e382015-08-12 21:00:20 +0000866
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000867 if (!State.isConflict())
Philip Reamesf986d682015-02-28 00:54:41 +0000868 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000869
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000870 /// Create and insert a new instruction which will represent the base of
871 /// the given instruction 'I'.
872 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
873 if (isa<PHINode>(I)) {
874 BasicBlock *BB = I->getParent();
875 int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
876 assert(NumPreds > 0 && "how did we reach here");
Philip Reamesece70b82015-09-09 23:57:18 +0000877 std::string Name = suffixed_name_or(I, ".base", "base_phi");
Philip Reamesfa2c6302015-07-24 19:01:39 +0000878 return PHINode::Create(I->getType(), NumPreds, Name, I);
Philip Reames9ac4e382015-08-12 21:00:20 +0000879 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
880 // The undef will be replaced later
881 UndefValue *Undef = UndefValue::get(Sel->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000882 std::string Name = suffixed_name_or(I, ".base", "base_select");
Philip Reames9ac4e382015-08-12 21:00:20 +0000883 return SelectInst::Create(Sel->getCondition(), Undef,
884 Undef, Name, Sel);
Philip Reames66287132015-09-09 23:40:12 +0000885 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000886 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000887 std::string Name = suffixed_name_or(I, ".base", "base_ee");
Philip Reames9ac4e382015-08-12 21:00:20 +0000888 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
889 EE);
Philip Reames66287132015-09-09 23:40:12 +0000890 } else {
891 auto *IE = cast<InsertElementInst>(I);
892 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
893 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000894 std::string Name = suffixed_name_or(I, ".base", "base_ie");
Philip Reames66287132015-09-09 23:40:12 +0000895 return InsertElementInst::Create(VecUndef, ScalarUndef,
896 IE->getOperand(2), Name, IE);
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000897 }
Philip Reames66287132015-09-09 23:40:12 +0000898
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000899 };
900 Instruction *BaseInst = MakeBaseInstPlaceholder(I);
901 // Add metadata marking this as a base value
902 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
Philip Reames34d7a742015-09-10 00:22:49 +0000903 States[I] = BDVState(BDVState::Conflict, BaseInst);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000904 }
905
Philip Reames3ea15892015-09-03 21:57:40 +0000906 // Returns a instruction which produces the base pointer for a given
907 // instruction. The instruction is assumed to be an input to one of the BDVs
908 // seen in the inference algorithm above. As such, we must either already
909 // know it's base defining value is a base, or have inserted a new
910 // instruction to propagate the base of it's BDV and have entered that newly
911 // introduced instruction into the state table. In either case, we are
912 // assured to be able to determine an instruction which produces it's base
913 // pointer.
914 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
915 Value *BDV = findBaseOrBDV(Input, cache);
916 Value *Base = nullptr;
917 if (isKnownBaseResult(BDV)) {
918 Base = BDV;
919 } else {
920 // Either conflict or base.
Philip Reames34d7a742015-09-10 00:22:49 +0000921 assert(States.count(BDV));
922 Base = States[BDV].getBase();
Philip Reames3ea15892015-09-03 21:57:40 +0000923 }
924 assert(Base && "can't be null");
925 // The cast is needed since base traversal may strip away bitcasts
926 if (Base->getType() != Input->getType() &&
927 InsertPt) {
928 Base = new BitCastInst(Base, Input->getType(), "cast",
929 InsertPt);
930 }
931 return Base;
932 };
933
Philip Reames15d55632015-09-09 23:26:08 +0000934 // Fixup all the inputs of the new PHIs. Visit order needs to be
935 // deterministic and predictable because we're naming newly created
936 // instructions.
Philip Reames34d7a742015-09-10 00:22:49 +0000937 for (auto Pair : States) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000938 Instruction *BDV = cast<Instruction>(Pair.first);
Philip Reamesc8ded462015-09-10 00:27:50 +0000939 BDVState State = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000940
Philip Reames7540e3a2015-09-10 00:01:53 +0000941 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reamesc8ded462015-09-10 00:27:50 +0000942 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
943 if (!State.isConflict())
Philip Reames28e61ce2015-02-28 01:57:44 +0000944 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000945
Philip Reamesc8ded462015-09-10 00:27:50 +0000946 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000947 PHINode *phi = cast<PHINode>(BDV);
Philip Reames28e61ce2015-02-28 01:57:44 +0000948 unsigned NumPHIValues = phi->getNumIncomingValues();
949 for (unsigned i = 0; i < NumPHIValues; i++) {
950 Value *InVal = phi->getIncomingValue(i);
951 BasicBlock *InBB = phi->getIncomingBlock(i);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000952
Philip Reames28e61ce2015-02-28 01:57:44 +0000953 // If we've already seen InBB, add the same incoming value
954 // we added for it earlier. The IR verifier requires phi
955 // nodes with multiple entries from the same basic block
956 // to have the same incoming value for each of those
957 // entries. If we don't do this check here and basephi
958 // has a different type than base, we'll end up adding two
959 // bitcasts (and hence two distinct values) as incoming
960 // values for the same basic block.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000961
Philip Reames28e61ce2015-02-28 01:57:44 +0000962 int blockIndex = basephi->getBasicBlockIndex(InBB);
963 if (blockIndex != -1) {
964 Value *oldBase = basephi->getIncomingValue(blockIndex);
965 basephi->addIncoming(oldBase, InBB);
Philip Reames3ea15892015-09-03 21:57:40 +0000966
Philip Reamesd16a9b12015-02-20 01:06:44 +0000967#ifndef NDEBUG
Philip Reames3ea15892015-09-03 21:57:40 +0000968 Value *Base = getBaseForInput(InVal, nullptr);
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000969 // In essence this assert states: the only way two
Philip Reames28e61ce2015-02-28 01:57:44 +0000970 // values incoming from the same basic block may be
971 // different is by being different bitcasts of the same
972 // value. A cleanup that remains TODO is changing
973 // findBaseOrBDV to return an llvm::Value of the correct
974 // type (and still remain pure). This will remove the
975 // need to add bitcasts.
Philip Reames3ea15892015-09-03 21:57:40 +0000976 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
Philip Reames28e61ce2015-02-28 01:57:44 +0000977 "sanity -- findBaseOrBDV should be pure!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000978#endif
Philip Reames28e61ce2015-02-28 01:57:44 +0000979 continue;
980 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000981
Philip Reames3ea15892015-09-03 21:57:40 +0000982 // Find the instruction which produces the base for each input. We may
983 // need to insert a bitcast in the incoming block.
984 // TODO: Need to split critical edges if insertion is needed
985 Value *Base = getBaseForInput(InVal, InBB->getTerminator());
986 basephi->addIncoming(Base, InBB);
Philip Reames28e61ce2015-02-28 01:57:44 +0000987 }
988 assert(basephi->getNumIncomingValues() == NumPHIValues);
Philip Reamesc8ded462015-09-10 00:27:50 +0000989 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000990 SelectInst *Sel = cast<SelectInst>(BDV);
Philip Reames28e61ce2015-02-28 01:57:44 +0000991 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
992 // something more safe and less hacky.
993 for (int i = 1; i <= 2; i++) {
Philip Reames3ea15892015-09-03 21:57:40 +0000994 Value *InVal = Sel->getOperand(i);
995 // Find the instruction which produces the base for each input. We may
996 // need to insert a bitcast.
997 Value *Base = getBaseForInput(InVal, BaseSel);
998 BaseSel->setOperand(i, Base);
Philip Reames28e61ce2015-02-28 01:57:44 +0000999 }
Philip Reamesc8ded462015-09-10 00:27:50 +00001000 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +00001001 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
Philip Reames3ea15892015-09-03 21:57:40 +00001002 // Find the instruction which produces the base for each input. We may
1003 // need to insert a bitcast.
1004 Value *Base = getBaseForInput(InVal, BaseEE);
Philip Reames9ac4e382015-08-12 21:00:20 +00001005 BaseEE->setOperand(0, Base);
Philip Reames66287132015-09-09 23:40:12 +00001006 } else {
Philip Reamesc8ded462015-09-10 00:27:50 +00001007 auto *BaseIE = cast<InsertElementInst>(State.getBase());
Philip Reames7540e3a2015-09-10 00:01:53 +00001008 auto *BdvIE = cast<InsertElementInst>(BDV);
Philip Reames66287132015-09-09 23:40:12 +00001009 auto UpdateOperand = [&](int OperandIdx) {
1010 Value *InVal = BdvIE->getOperand(OperandIdx);
Philip Reames953817b2015-09-10 00:44:10 +00001011 Value *Base = getBaseForInput(InVal, BaseIE);
Philip Reames66287132015-09-09 23:40:12 +00001012 BaseIE->setOperand(OperandIdx, Base);
1013 };
1014 UpdateOperand(0); // vector operand
1015 UpdateOperand(1); // scalar operand
Philip Reamesd16a9b12015-02-20 01:06:44 +00001016 }
Philip Reames66287132015-09-09 23:40:12 +00001017
Philip Reamesd16a9b12015-02-20 01:06:44 +00001018 }
1019
1020 // Cache all of our results so we can cheaply reuse them
1021 // NOTE: This is actually two caches: one of the base defining value
1022 // relation and one of the base pointer relation! FIXME
Philip Reames34d7a742015-09-10 00:22:49 +00001023 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +00001024 auto *BDV = Pair.first;
1025 Value *base = Pair.second.getBase();
1026 assert(BDV && base);
Philip Reames79fa9b72016-02-22 20:45:56 +00001027 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001028
Philip Reamesece70b82015-09-09 23:57:18 +00001029 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
Philip Reamesdab35f32015-09-02 21:11:44 +00001030 DEBUG(dbgs() << "Updating base value cache"
Philip Reamesece70b82015-09-09 23:57:18 +00001031 << " for: " << BDV->getName()
Philip Reamesdab35f32015-09-02 21:11:44 +00001032 << " from: " << fromstr
Philip Reamesece70b82015-09-09 23:57:18 +00001033 << " to: " << base->getName() << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001034
Philip Reames15d55632015-09-09 23:26:08 +00001035 if (cache.count(BDV)) {
Philip Reames79fa9b72016-02-22 20:45:56 +00001036 assert(isKnownBaseResult(base) &&
1037 "must be something we 'know' is a base pointer");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001038 // Once we transition from the BDV relation being store in the cache to
1039 // the base relation being stored, it must be stable
Philip Reames15d55632015-09-09 23:26:08 +00001040 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001041 "base relation should be stable");
1042 }
Philip Reames15d55632015-09-09 23:26:08 +00001043 cache[BDV] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001044 }
Manuel Jacob67f1d3a2015-12-29 22:16:41 +00001045 assert(cache.count(def));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001046 return cache[def];
1047}
1048
1049// For a set of live pointers (base and/or derived), identify the base
1050// pointer of the object which they are derived from. This routine will
1051// mutate the IR graph as needed to make the 'base' pointer live at the
1052// definition site of 'derived'. This ensures that any use of 'derived' can
1053// also use 'base'. This may involve the insertion of a number of
1054// additional PHI nodes.
1055//
1056// preconditions: live is a set of pointer type Values
1057//
1058// side effects: may insert PHI nodes into the existing CFG, will preserve
1059// CFG, will not remove or mutate any existing nodes
1060//
Philip Reamesf2041322015-02-20 19:26:04 +00001061// post condition: PointerToBase contains one (derived, base) pair for every
Philip Reamesd16a9b12015-02-20 01:06:44 +00001062// pointer in live. Note that derived can be equal to base if the original
1063// pointer was a base pointer.
Philip Reames704e78b2015-04-10 22:34:56 +00001064static void
1065findBasePointers(const StatepointLiveSetTy &live,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001066 DenseMap<Value *, Value *> &PointerToBase,
Philip Reamesba198492015-04-14 00:41:34 +00001067 DominatorTree *DT, DefiningValueMapTy &DVCache) {
Philip Reames2e5bcbe2015-02-28 01:52:09 +00001068 // For the naming of values inserted to be deterministic - which makes for
1069 // much cleaner and more stable tests - we need to assign an order to the
1070 // live values. DenseSets do not provide a deterministic order across runs.
Philip Reames704e78b2015-04-10 22:34:56 +00001071 SmallVector<Value *, 64> Temp;
Philip Reames2e5bcbe2015-02-28 01:52:09 +00001072 Temp.insert(Temp.end(), live.begin(), live.end());
1073 std::sort(Temp.begin(), Temp.end(), order_by_name);
1074 for (Value *ptr : Temp) {
Philip Reamesba198492015-04-14 00:41:34 +00001075 Value *base = findBasePointer(ptr, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001076 assert(base && "failed to find base pointer");
Philip Reamesf2041322015-02-20 19:26:04 +00001077 PointerToBase[ptr] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001078 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1079 DT->dominates(cast<Instruction>(base)->getParent(),
1080 cast<Instruction>(ptr)->getParent())) &&
1081 "The base we found better dominate the derived pointer");
1082
David Blaikie82ad7872015-02-20 23:44:24 +00001083 // If you see this trip and like to live really dangerously, the code should
1084 // be correct, just with idioms the verifier can't handle. You can try
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001085 // disabling the verifier at your own substantial risk.
Philip Reames704e78b2015-04-10 22:34:56 +00001086 assert(!isa<ConstantPointerNull>(base) &&
Philip Reames24c6cd52015-03-27 05:47:00 +00001087 "the relocation code needs adjustment to handle the relocation of "
1088 "a null pointer constant without causing false positives in the "
1089 "safepoint ir verifier.");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001090 }
1091}
1092
1093/// Find the required based pointers (and adjust the live set) for the given
1094/// parse point.
1095static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1096 const CallSite &CS,
1097 PartiallyConstructedSafepointRecord &result) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001098 DenseMap<Value *, Value *> PointerToBase;
1099 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001100
1101 if (PrintBasePointers) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001102 // Note: Need to print these in a stable order since this is checked in
1103 // some tests.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001104 errs() << "Base Pairs (w/o Relocation):\n";
Philip Reames704e78b2015-04-10 22:34:56 +00001105 SmallVector<Value *, 64> Temp;
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001106 Temp.reserve(PointerToBase.size());
Philip Reamesf2041322015-02-20 19:26:04 +00001107 for (auto Pair : PointerToBase) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001108 Temp.push_back(Pair.first);
1109 }
1110 std::sort(Temp.begin(), Temp.end(), order_by_name);
1111 for (Value *Ptr : Temp) {
1112 Value *Base = PointerToBase[Ptr];
Manuel Jacoba4efd8a2015-12-23 00:19:45 +00001113 errs() << " derived ";
1114 Ptr->printAsOperand(errs(), false);
1115 errs() << " base ";
1116 Base->printAsOperand(errs(), false);
1117 errs() << "\n";;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001118 }
1119 }
1120
Philip Reamesf2041322015-02-20 19:26:04 +00001121 result.PointerToBase = PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001122}
1123
Philip Reamesdf1ef082015-04-10 22:53:14 +00001124/// Given an updated version of the dataflow liveness results, update the
1125/// liveset and base pointer maps for the call site CS.
1126static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1127 const CallSite &CS,
1128 PartiallyConstructedSafepointRecord &result);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001129
Philip Reamesdf1ef082015-04-10 22:53:14 +00001130static void recomputeLiveInValues(
Justin Bogner843fb202015-12-15 19:40:57 +00001131 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
Philip Reamesd2b66462015-02-20 22:39:41 +00001132 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001133 // TODO-PERF: reuse the original liveness, then simply run the dataflow
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001134 // again. The old values are still live and will help it stabilize quickly.
Philip Reamesdf1ef082015-04-10 22:53:14 +00001135 GCPtrLivenessData RevisedLivenessData;
1136 computeLiveInValues(DT, F, RevisedLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001137 for (size_t i = 0; i < records.size(); i++) {
1138 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001139 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001140 recomputeLiveInValues(RevisedLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001141 }
1142}
1143
Sanjoy Das7ad67642015-10-20 01:06:24 +00001144// When inserting gc.relocate and gc.result calls, we need to ensure there are
1145// no uses of the original value / return value between the gc.statepoint and
1146// the gc.relocate / gc.result call. One case which can arise is a phi node
1147// starting one of the successor blocks. We also need to be able to insert the
1148// gc.relocates only on the path which goes through the statepoint. We might
1149// need to split an edge to make this possible.
Philip Reamesf209a152015-04-13 20:00:30 +00001150static BasicBlock *
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00001151normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1152 DominatorTree &DT) {
Philip Reames69e51ca2015-04-13 18:07:21 +00001153 BasicBlock *Ret = BB;
Sanjoy Dasff3dba72015-10-20 01:06:17 +00001154 if (!BB->getUniquePredecessor())
Chandler Carruth96ada252015-07-22 09:52:54 +00001155 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001156
Sanjoy Das7ad67642015-10-20 01:06:24 +00001157 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
Philip Reames69e51ca2015-04-13 18:07:21 +00001158 // from it
1159 FoldSingleEntryPHINodes(Ret);
Sanjoy Dasff3dba72015-10-20 01:06:17 +00001160 assert(!isa<PHINode>(Ret->begin()) &&
1161 "All PHI nodes should have been removed!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001162
Sanjoy Das7ad67642015-10-20 01:06:24 +00001163 // At this point, we can safely insert a gc.relocate or gc.result as the first
1164 // instruction in Ret if needed.
Philip Reames69e51ca2015-04-13 18:07:21 +00001165 return Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001166}
1167
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001168// Create new attribute set containing only attributes which can be transferred
Philip Reamesd16a9b12015-02-20 01:06:44 +00001169// from original call to the safepoint.
1170static AttributeSet legalizeCallAttributes(AttributeSet AS) {
Sanjoy Das810a59d2015-10-16 02:41:11 +00001171 AttributeSet Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001172
1173 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
Sanjoy Das810a59d2015-10-16 02:41:11 +00001174 unsigned Index = AS.getSlotIndex(Slot);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001175
Sanjoy Das810a59d2015-10-16 02:41:11 +00001176 if (Index == AttributeSet::ReturnIndex ||
1177 Index == AttributeSet::FunctionIndex) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001178
Sanjoy Das810a59d2015-10-16 02:41:11 +00001179 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001180
1181 // Do not allow certain attributes - just skip them
1182 // Safepoint can not be read only or read none.
Sanjoy Das810a59d2015-10-16 02:41:11 +00001183 if (Attr.hasAttribute(Attribute::ReadNone) ||
1184 Attr.hasAttribute(Attribute::ReadOnly))
Philip Reamesd16a9b12015-02-20 01:06:44 +00001185 continue;
1186
Sanjoy Das58fae7c2015-10-16 02:41:23 +00001187 // These attributes control the generation of the gc.statepoint call /
1188 // invoke itself; and once the gc.statepoint is in place, they're of no
1189 // use.
Sanjoy Das31203882016-03-17 01:56:10 +00001190 if (isStatepointDirectiveAttr(Attr))
Sanjoy Das58fae7c2015-10-16 02:41:23 +00001191 continue;
1192
Sanjoy Das810a59d2015-10-16 02:41:11 +00001193 Ret = Ret.addAttributes(
1194 AS.getContext(), Index,
1195 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001196 }
1197 }
1198
1199 // Just skip parameter attributes for now
1200 }
1201
Sanjoy Das810a59d2015-10-16 02:41:11 +00001202 return Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001203}
1204
1205/// Helper function to place all gc relocates necessary for the given
1206/// statepoint.
1207/// Inputs:
1208/// liveVariables - list of variables to be relocated.
1209/// liveStart - index of the first live variable.
1210/// basePtrs - base pointers.
1211/// statepointToken - statepoint instruction to which relocates should be
1212/// bound.
1213/// Builder - Llvm IR builder to be used to construct new calls.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001214static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
Sanjoy Das5665c992015-05-11 23:47:27 +00001215 const int LiveStart,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001216 ArrayRef<Value *> BasePtrs,
Sanjoy Das5665c992015-05-11 23:47:27 +00001217 Instruction *StatepointToken,
Benjamin Kramerf044d3f2015-03-09 16:23:46 +00001218 IRBuilder<> Builder) {
Philip Reames94babb72015-07-21 17:18:03 +00001219 if (LiveVariables.empty())
1220 return;
Sanjoy Dasb1942f12015-10-20 01:06:28 +00001221
1222 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1223 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1224 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1225 size_t Index = std::distance(LiveVec.begin(), ValIt);
1226 assert(Index < LiveVec.size() && "Bug in std::find?");
1227 return Index;
1228 };
Philip Reames74ce2e72015-07-21 16:51:17 +00001229 Module *M = StatepointToken->getModule();
Philip Reames5715f572016-01-09 01:31:13 +00001230
1231 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1232 // element type is i8 addrspace(1)*). We originally generated unique
1233 // declarations for each pointer type, but this proved problematic because
1234 // the intrinsic mangling code is incomplete and fragile. Since we're moving
1235 // towards a single unified pointer type anyways, we can just cast everything
1236 // to an i8* of the right address space. A bitcast is added later to convert
1237 // gc_relocate to the actual value's type.
1238 auto getGCRelocateDecl = [&] (Type *Ty) {
1239 assert(isHandledGCPointerType(Ty));
1240 auto AS = Ty->getScalarType()->getPointerAddressSpace();
1241 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1242 if (auto *VT = dyn_cast<VectorType>(Ty))
1243 NewTy = VectorType::get(NewTy, VT->getNumElements());
1244 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1245 {NewTy});
1246 };
1247
1248 // Lazily populated map from input types to the canonicalized form mentioned
1249 // in the comment above. This should probably be cached somewhere more
1250 // broadly.
1251 DenseMap<Type*, Value*> TypeToDeclMap;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001252
Sanjoy Das5665c992015-05-11 23:47:27 +00001253 for (unsigned i = 0; i < LiveVariables.size(); i++) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001254 // Generate the gc.relocate call and save the result
Sanjoy Das5665c992015-05-11 23:47:27 +00001255 Value *BaseIdx =
Sanjoy Dasb1942f12015-10-20 01:06:28 +00001256 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
Sanjoy Das3020b1b2015-10-20 01:06:31 +00001257 Value *LiveIdx = Builder.getInt32(LiveStart + i);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001258
Philip Reames5715f572016-01-09 01:31:13 +00001259 Type *Ty = LiveVariables[i]->getType();
1260 if (!TypeToDeclMap.count(Ty))
1261 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1262 Value *GCRelocateDecl = TypeToDeclMap[Ty];
1263
Philip Reamesd16a9b12015-02-20 01:06:44 +00001264 // only specify a debug name if we can give a useful one
Philip Reames74ce2e72015-07-21 16:51:17 +00001265 CallInst *Reloc = Builder.CreateCall(
David Blaikieff6409d2015-05-18 22:13:54 +00001266 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
Philip Reamesece70b82015-09-09 23:57:18 +00001267 suffixed_name_or(LiveVariables[i], ".relocated", ""));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001268 // Trick CodeGen into thinking there are lots of free registers at this
1269 // fake call.
Philip Reames74ce2e72015-07-21 16:51:17 +00001270 Reloc->setCallingConv(CallingConv::Cold);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001271 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001272}
1273
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001274namespace {
1275
1276/// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
1277/// avoids having to worry about keeping around dangling pointers to Values.
1278class DeferredReplacement {
1279 AssertingVH<Instruction> Old;
1280 AssertingVH<Instruction> New;
Sanjoy Das49e974b2016-04-05 23:18:35 +00001281 bool IsDeoptimize = false;
1282
1283 DeferredReplacement() {}
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001284
1285public:
1286 explicit DeferredReplacement(Instruction *Old, Instruction *New) :
1287 Old(Old), New(New) {
1288 assert(Old != New && "Not allowed!");
1289 }
1290
Sanjoy Das49e974b2016-04-05 23:18:35 +00001291 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1292#ifndef NDEBUG
1293 auto *F = cast<CallInst>(Old)->getCalledFunction();
1294 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1295 "Only way to construct a deoptimize deferred replacement");
1296#endif
1297 DeferredReplacement D;
1298 D.Old = Old;
1299 D.IsDeoptimize = true;
1300 return D;
1301 }
1302
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001303 /// Does the task represented by this instance.
1304 void doReplacement() {
1305 Instruction *OldI = Old;
1306 Instruction *NewI = New;
1307
1308 assert(OldI != NewI && "Disallowed at construction?!");
Sanjoy Das49e974b2016-04-05 23:18:35 +00001309 assert(!IsDeoptimize || !New && "Deoptimize instrinsics are not replaced!");
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001310
1311 Old = nullptr;
1312 New = nullptr;
1313
1314 if (NewI)
1315 OldI->replaceAllUsesWith(NewI);
Sanjoy Das49e974b2016-04-05 23:18:35 +00001316
1317 if (IsDeoptimize) {
1318 // Note: we've inserted instructions, so the call to llvm.deoptimize may
1319 // not necessarilly be followed by the matching return.
1320 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1321 new UnreachableInst(RI->getContext(), RI);
1322 RI->eraseFromParent();
1323 }
1324
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001325 OldI->eraseFromParent();
1326 }
1327};
1328}
1329
Philip Reamesd16a9b12015-02-20 01:06:44 +00001330static void
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001331makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1332 const SmallVectorImpl<Value *> &BasePtrs,
1333 const SmallVectorImpl<Value *> &LiveVariables,
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001334 PartiallyConstructedSafepointRecord &Result,
1335 std::vector<DeferredReplacement> &Replacements) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001336 assert(BasePtrs.size() == LiveVariables.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001337
Philip Reamesd16a9b12015-02-20 01:06:44 +00001338 // Then go ahead and use the builder do actually do the inserts. We insert
1339 // immediately before the previous instruction under the assumption that all
1340 // arguments will be available here. We can't insert afterwards since we may
1341 // be replacing a terminator.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001342 Instruction *InsertBefore = CS.getInstruction();
1343 IRBuilder<> Builder(InsertBefore);
1344
Sanjoy Das3c520a12015-10-08 23:18:38 +00001345 ArrayRef<Value *> GCArgs(LiveVariables);
Sanjoy Dasc9058ca2016-03-17 18:42:17 +00001346 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001347 uint32_t NumPatchBytes = 0;
1348 uint32_t Flags = uint32_t(StatepointFlags::None);
Sanjoy Das3c520a12015-10-08 23:18:38 +00001349
Sanjoy Dasbcf27522016-01-29 01:03:20 +00001350 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1351 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001352 ArrayRef<Use> TransitionArgs;
Sanjoy Das40992972016-01-29 01:03:17 +00001353 if (auto TransitionBundle =
1354 CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1355 Flags |= uint32_t(StatepointFlags::GCTransition);
1356 TransitionArgs = TransitionBundle->Inputs;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001357 }
Sanjoy Das49e974b2016-04-05 23:18:35 +00001358 bool IsDeoptimize = false;
Sanjoy Das40992972016-01-29 01:03:17 +00001359
Sanjoy Das31203882016-03-17 01:56:10 +00001360 StatepointDirectives SD =
1361 parseStatepointDirectivesFromAttrs(CS.getAttributes());
1362 if (SD.NumPatchBytes)
1363 NumPatchBytes = *SD.NumPatchBytes;
1364 if (SD.StatepointID)
1365 StatepointID = *SD.StatepointID;
Sanjoy Das40992972016-01-29 01:03:17 +00001366
Sanjoy Das31203882016-03-17 01:56:10 +00001367 Value *CallTarget = CS.getCalledValue();
Sanjoy Dasd4c78332016-03-25 20:12:13 +00001368 if (Function *F = dyn_cast<Function>(CallTarget)) {
1369 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1370 // Calls to llvm.experimental.deoptimize are lowered to calls the the
1371 // __llvm_deoptimize symbol. We want to resolve this now, since the
1372 // verifier does not allow taking the address of an intrinsic function.
1373
1374 SmallVector<Type *, 8> DomainTy;
1375 for (Value *Arg : CallArgs)
1376 DomainTy.push_back(Arg->getType());
Sanjoy Das49e974b2016-04-05 23:18:35 +00001377 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
Sanjoy Dasd4c78332016-03-25 20:12:13 +00001378 /* isVarArg = */ false);
1379
1380 // Note: CallTarget can be a bitcast instruction of a symbol if there are
1381 // calls to @llvm.experimental.deoptimize with different argument types in
1382 // the same module. This is fine -- we assume the frontend knew what it
1383 // was doing when generating this kind of IR.
1384 CallTarget =
1385 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
Sanjoy Das49e974b2016-04-05 23:18:35 +00001386
1387 IsDeoptimize = true;
Sanjoy Dasd4c78332016-03-25 20:12:13 +00001388 }
1389 }
Sanjoy Das40992972016-01-29 01:03:17 +00001390
Philip Reamesd16a9b12015-02-20 01:06:44 +00001391 // Create the statepoint given all the arguments
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001392 Instruction *Token = nullptr;
1393 AttributeSet ReturnAttrs;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001394 if (CS.isCall()) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001395 CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
Sanjoy Das3c520a12015-10-08 23:18:38 +00001396 CallInst *Call = Builder.CreateGCStatepointCall(
1397 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1398 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1399
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001400 Call->setTailCall(ToReplace->isTailCall());
1401 Call->setCallingConv(ToReplace->getCallingConv());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001402
1403 // Currently we will fail on parameter attributes and on certain
1404 // function attributes.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001405 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001406 // In case if we can handle this set of attributes - set up function attrs
Philip Reamesd16a9b12015-02-20 01:06:44 +00001407 // directly on statepoint and return attrs later for gc_result intrinsic.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001408 Call->setAttributes(NewAttrs.getFnAttributes());
1409 ReturnAttrs = NewAttrs.getRetAttributes();
Philip Reamesd16a9b12015-02-20 01:06:44 +00001410
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001411 Token = Call;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001412
1413 // Put the following gc_result and gc_relocate calls immediately after the
1414 // the old call (which we're about to delete)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001415 assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1416 Builder.SetInsertPoint(ToReplace->getNextNode());
1417 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
David Blaikie82ad7872015-02-20 23:44:24 +00001418 } else {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001419 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001420
1421 // Insert the new invoke into the old block. We'll remove the old one in a
1422 // moment at which point this will become the new terminator for the
1423 // original block.
Sanjoy Das3c520a12015-10-08 23:18:38 +00001424 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1425 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1426 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1427 GCArgs, "statepoint_token");
1428
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001429 Invoke->setCallingConv(ToReplace->getCallingConv());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001430
1431 // Currently we will fail on parameter attributes and on certain
1432 // function attributes.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001433 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001434 // In case if we can handle this set of attributes - set up function attrs
Philip Reamesd16a9b12015-02-20 01:06:44 +00001435 // directly on statepoint and return attrs later for gc_result intrinsic.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001436 Invoke->setAttributes(NewAttrs.getFnAttributes());
1437 ReturnAttrs = NewAttrs.getRetAttributes();
Philip Reamesd16a9b12015-02-20 01:06:44 +00001438
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001439 Token = Invoke;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001440
1441 // Generate gc relocates in exceptional path
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001442 BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1443 assert(!isa<PHINode>(UnwindBlock->begin()) &&
1444 UnwindBlock->getUniquePredecessor() &&
Philip Reames69e51ca2015-04-13 18:07:21 +00001445 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001446
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001447 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001448 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001449
Chen Lid71999e2015-12-26 07:54:32 +00001450 // Attach exceptional gc relocates to the landingpad.
1451 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001452 Result.UnwindToken = ExceptionalToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001453
Sanjoy Das3c520a12015-10-08 23:18:38 +00001454 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001455 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1456 Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001457
1458 // Generate gc relocates and returns for normal block
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001459 BasicBlock *NormalDest = ToReplace->getNormalDest();
1460 assert(!isa<PHINode>(NormalDest->begin()) &&
1461 NormalDest->getUniquePredecessor() &&
Philip Reames69e51ca2015-04-13 18:07:21 +00001462 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001463
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001464 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001465
1466 // gc relocates will be generated later as if it were regular call
1467 // statepoint
Philip Reamesd16a9b12015-02-20 01:06:44 +00001468 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001469 assert(Token && "Should be set in one of the above branches!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001470
Sanjoy Das49e974b2016-04-05 23:18:35 +00001471 if (IsDeoptimize) {
1472 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1473 // transform the tail-call like structure to a call to a void function
1474 // followed by unreachable to get better codegen.
1475 Replacements.push_back(
1476 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001477 } else {
Sanjoy Das49e974b2016-04-05 23:18:35 +00001478 Token->setName("statepoint_token");
1479 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1480 StringRef Name =
1481 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1482 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1483 GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1484
1485 // We cannot RAUW or delete CS.getInstruction() because it could be in the
1486 // live set of some other safepoint, in which case that safepoint's
1487 // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1488 // llvm::Instruction. Instead, we defer the replacement and deletion to
1489 // after the live sets have been made explicit in the IR, and we no longer
1490 // have raw pointers to worry about.
1491 Replacements.emplace_back(CS.getInstruction(), GCResult);
1492 } else {
1493 Replacements.emplace_back(CS.getInstruction(), nullptr);
1494 }
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001495 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001496
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001497 Result.StatepointToken = Token;
Philip Reames0a3240f2015-02-20 21:34:11 +00001498
Philip Reamesd16a9b12015-02-20 01:06:44 +00001499 // Second, create a gc.relocate for every live variable
Sanjoy Das3c520a12015-10-08 23:18:38 +00001500 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001501 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001502}
1503
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001504static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
1505 SmallVectorImpl<Value *> &LiveVec) {
1506 assert(BaseVec.size() == LiveVec.size());
1507
Sanjoy Das3794eeb2016-01-29 16:50:34 +00001508 struct BaseDerivedPair {
1509 Value *Base;
1510 Value *Derived;
Sanjoy Das3794eeb2016-01-29 16:50:34 +00001511 };
1512
1513 SmallVector<BaseDerivedPair, 64> NameOrdering;
1514 NameOrdering.reserve(BaseVec.size());
1515
1516 for (size_t i = 0, e = BaseVec.size(); i < e; i++)
Sanjoy Dasc816f032016-01-29 17:20:49 +00001517 NameOrdering.push_back({BaseVec[i], LiveVec[i]});
Sanjoy Das3794eeb2016-01-29 16:50:34 +00001518
Sanjoy Dasc816f032016-01-29 17:20:49 +00001519 std::sort(NameOrdering.begin(), NameOrdering.end(),
David Majnemer75f492e2016-01-29 17:46:57 +00001520 [](const BaseDerivedPair &L, const BaseDerivedPair &R) {
Sanjoy Dasc816f032016-01-29 17:20:49 +00001521 return L.Derived->getName() < R.Derived->getName();
1522 });
Sanjoy Das3794eeb2016-01-29 16:50:34 +00001523
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001524 for (size_t i = 0; i < BaseVec.size(); i++) {
Sanjoy Das3794eeb2016-01-29 16:50:34 +00001525 BaseVec[i] = NameOrdering[i].Base;
1526 LiveVec[i] = NameOrdering[i].Derived;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001527 }
1528}
1529
1530// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1531// which make the relocations happening at this safepoint explicit.
Philip Reames704e78b2015-04-10 22:34:56 +00001532//
Philip Reamesd16a9b12015-02-20 01:06:44 +00001533// WARNING: Does not do any fixup to adjust users of the original live
1534// values. That's the callers responsibility.
1535static void
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001536makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001537 PartiallyConstructedSafepointRecord &Result,
1538 std::vector<DeferredReplacement> &Replacements) {
Sanjoy Das1ede5362015-10-08 23:18:22 +00001539 const auto &LiveSet = Result.LiveSet;
1540 const auto &PointerToBase = Result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001541
1542 // Convert to vector for efficient cross referencing.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001543 SmallVector<Value *, 64> BaseVec, LiveVec;
1544 LiveVec.reserve(LiveSet.size());
1545 BaseVec.reserve(LiveSet.size());
1546 for (Value *L : LiveSet) {
1547 LiveVec.push_back(L);
Philip Reames74ce2e72015-07-21 16:51:17 +00001548 assert(PointerToBase.count(L));
Sanjoy Das1ede5362015-10-08 23:18:22 +00001549 Value *Base = PointerToBase.find(L)->second;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001550 BaseVec.push_back(Base);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001551 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001552 assert(LiveVec.size() == BaseVec.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001553
1554 // To make the output IR slightly more stable (for use in diffs), ensure a
1555 // fixed order of the values in the safepoint (by sorting the value name).
1556 // The order is otherwise meaningless.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001557 StabilizeOrder(BaseVec, LiveVec);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001558
1559 // Do the actual rewriting and delete the old statepoint
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001560 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001561}
1562
1563// Helper function for the relocationViaAlloca.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001564//
1565// It receives iterator to the statepoint gc relocates and emits a store to the
1566// assigned location (via allocaMap) for the each one of them. It adds the
1567// visited values into the visitedLiveValues set, which we will later use them
1568// for sanity checking.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001569static void
Sanjoy Das5665c992015-05-11 23:47:27 +00001570insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1571 DenseMap<Value *, Value *> &AllocaMap,
1572 DenseSet<Value *> &VisitedLiveValues) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001573
Sanjoy Das5665c992015-05-11 23:47:27 +00001574 for (User *U : GCRelocs) {
Manuel Jacob83eefa62016-01-05 04:03:00 +00001575 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1576 if (!Relocate)
Philip Reamesd16a9b12015-02-20 01:06:44 +00001577 continue;
1578
Sanjoy Das565f7862016-01-29 16:54:49 +00001579 Value *OriginalValue = Relocate->getDerivedPtr();
Sanjoy Das5665c992015-05-11 23:47:27 +00001580 assert(AllocaMap.count(OriginalValue));
1581 Value *Alloca = AllocaMap[OriginalValue];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001582
1583 // Emit store into the related alloca
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001584 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
Sanjoy Das89c54912015-05-11 18:49:34 +00001585 // the correct type according to alloca.
Manuel Jacob83eefa62016-01-05 04:03:00 +00001586 assert(Relocate->getNextNode() &&
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001587 "Should always have one since it's not a terminator");
Manuel Jacob83eefa62016-01-05 04:03:00 +00001588 IRBuilder<> Builder(Relocate->getNextNode());
Sanjoy Das89c54912015-05-11 18:49:34 +00001589 Value *CastedRelocatedValue =
Manuel Jacob83eefa62016-01-05 04:03:00 +00001590 Builder.CreateBitCast(Relocate,
Philip Reamesece70b82015-09-09 23:57:18 +00001591 cast<AllocaInst>(Alloca)->getAllocatedType(),
Manuel Jacob83eefa62016-01-05 04:03:00 +00001592 suffixed_name_or(Relocate, ".casted", ""));
Sanjoy Das89c54912015-05-11 18:49:34 +00001593
Sanjoy Das5665c992015-05-11 23:47:27 +00001594 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1595 Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001596
1597#ifndef NDEBUG
Sanjoy Das5665c992015-05-11 23:47:27 +00001598 VisitedLiveValues.insert(OriginalValue);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001599#endif
1600 }
1601}
1602
Igor Laevskye0317182015-05-19 15:59:05 +00001603// Helper function for the "relocationViaAlloca". Similar to the
1604// "insertRelocationStores" but works for rematerialized values.
Joseph Tremouletadc23762016-02-05 01:42:52 +00001605static void insertRematerializationStores(
1606 const RematerializedValueMapTy &RematerializedValues,
1607 DenseMap<Value *, Value *> &AllocaMap,
1608 DenseSet<Value *> &VisitedLiveValues) {
Igor Laevskye0317182015-05-19 15:59:05 +00001609
1610 for (auto RematerializedValuePair: RematerializedValues) {
1611 Instruction *RematerializedValue = RematerializedValuePair.first;
1612 Value *OriginalValue = RematerializedValuePair.second;
1613
1614 assert(AllocaMap.count(OriginalValue) &&
1615 "Can not find alloca for rematerialized value");
1616 Value *Alloca = AllocaMap[OriginalValue];
1617
1618 StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1619 Store->insertAfter(RematerializedValue);
1620
1621#ifndef NDEBUG
1622 VisitedLiveValues.insert(OriginalValue);
1623#endif
1624 }
1625}
1626
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001627/// Do all the relocation update via allocas and mem2reg
Philip Reamesd16a9b12015-02-20 01:06:44 +00001628static void relocationViaAlloca(
Igor Laevsky285fe842015-05-19 16:29:43 +00001629 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001630 ArrayRef<PartiallyConstructedSafepointRecord> Records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001631#ifndef NDEBUG
Philip Reamesa6ebf072015-03-27 05:53:16 +00001632 // record initial number of (static) allocas; we'll check we have the same
1633 // number when we get done.
1634 int InitialAllocaNum = 0;
Philip Reames704e78b2015-04-10 22:34:56 +00001635 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1636 I++)
Philip Reamesa6ebf072015-03-27 05:53:16 +00001637 if (isa<AllocaInst>(*I))
1638 InitialAllocaNum++;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001639#endif
1640
1641 // TODO-PERF: change data structures, reserve
Igor Laevsky285fe842015-05-19 16:29:43 +00001642 DenseMap<Value *, Value *> AllocaMap;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001643 SmallVector<AllocaInst *, 200> PromotableAllocas;
Igor Laevskye0317182015-05-19 15:59:05 +00001644 // Used later to chack that we have enough allocas to store all values
1645 std::size_t NumRematerializedValues = 0;
Igor Laevsky285fe842015-05-19 16:29:43 +00001646 PromotableAllocas.reserve(Live.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001647
Igor Laevskye0317182015-05-19 15:59:05 +00001648 // Emit alloca for "LiveValue" and record it in "allocaMap" and
1649 // "PromotableAllocas"
1650 auto emitAllocaFor = [&](Value *LiveValue) {
1651 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1652 F.getEntryBlock().getFirstNonPHI());
Igor Laevsky285fe842015-05-19 16:29:43 +00001653 AllocaMap[LiveValue] = Alloca;
Igor Laevskye0317182015-05-19 15:59:05 +00001654 PromotableAllocas.push_back(Alloca);
1655 };
1656
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001657 // Emit alloca for each live gc pointer
1658 for (Value *V : Live)
1659 emitAllocaFor(V);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001660
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001661 // Emit allocas for rematerialized values
1662 for (const auto &Info : Records)
Igor Laevsky285fe842015-05-19 16:29:43 +00001663 for (auto RematerializedValuePair : Info.RematerializedValues) {
Igor Laevskye0317182015-05-19 15:59:05 +00001664 Value *OriginalValue = RematerializedValuePair.second;
Igor Laevsky285fe842015-05-19 16:29:43 +00001665 if (AllocaMap.count(OriginalValue) != 0)
Igor Laevskye0317182015-05-19 15:59:05 +00001666 continue;
1667
1668 emitAllocaFor(OriginalValue);
1669 ++NumRematerializedValues;
1670 }
Igor Laevsky285fe842015-05-19 16:29:43 +00001671
Philip Reamesd16a9b12015-02-20 01:06:44 +00001672 // The next two loops are part of the same conceptual operation. We need to
1673 // insert a store to the alloca after the original def and at each
1674 // redefinition. We need to insert a load before each use. These are split
1675 // into distinct loops for performance reasons.
1676
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001677 // Update gc pointer after each statepoint: either store a relocated value or
1678 // null (if no relocated value was found for this gc pointer and it is not a
1679 // gc_result). This must happen before we update the statepoint with load of
1680 // alloca otherwise we lose the link between statepoint and old def.
1681 for (const auto &Info : Records) {
Igor Laevsky285fe842015-05-19 16:29:43 +00001682 Value *Statepoint = Info.StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001683
1684 // This will be used for consistency check
Igor Laevsky285fe842015-05-19 16:29:43 +00001685 DenseSet<Value *> VisitedLiveValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001686
1687 // Insert stores for normal statepoint gc relocates
Igor Laevsky285fe842015-05-19 16:29:43 +00001688 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001689
1690 // In case if it was invoke statepoint
1691 // we will insert stores for exceptional path gc relocates.
Philip Reames0a3240f2015-02-20 21:34:11 +00001692 if (isa<InvokeInst>(Statepoint)) {
Igor Laevsky285fe842015-05-19 16:29:43 +00001693 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1694 VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001695 }
1696
Igor Laevskye0317182015-05-19 15:59:05 +00001697 // Do similar thing with rematerialized values
Igor Laevsky285fe842015-05-19 16:29:43 +00001698 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1699 VisitedLiveValues);
Igor Laevskye0317182015-05-19 15:59:05 +00001700
Philip Reamese73300b2015-04-13 16:41:32 +00001701 if (ClobberNonLive) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001702 // As a debugging aid, pretend that an unrelocated pointer becomes null at
Philip Reamese73300b2015-04-13 16:41:32 +00001703 // the gc.statepoint. This will turn some subtle GC problems into
1704 // slightly easier to debug SEGVs. Note that on large IR files with
1705 // lots of gc.statepoints this is extremely costly both memory and time
1706 // wise.
1707 SmallVector<AllocaInst *, 64> ToClobber;
Igor Laevsky285fe842015-05-19 16:29:43 +00001708 for (auto Pair : AllocaMap) {
Philip Reamese73300b2015-04-13 16:41:32 +00001709 Value *Def = Pair.first;
1710 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001711
Philip Reamese73300b2015-04-13 16:41:32 +00001712 // This value was relocated
Igor Laevsky285fe842015-05-19 16:29:43 +00001713 if (VisitedLiveValues.count(Def)) {
Philip Reamese73300b2015-04-13 16:41:32 +00001714 continue;
1715 }
1716 ToClobber.push_back(Alloca);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001717 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001718
Philip Reamese73300b2015-04-13 16:41:32 +00001719 auto InsertClobbersAt = [&](Instruction *IP) {
1720 for (auto *AI : ToClobber) {
Eduard Burtescu90c44492016-01-18 00:10:01 +00001721 auto PT = cast<PointerType>(AI->getAllocatedType());
Philip Reamese73300b2015-04-13 16:41:32 +00001722 Constant *CPN = ConstantPointerNull::get(PT);
Igor Laevsky285fe842015-05-19 16:29:43 +00001723 StoreInst *Store = new StoreInst(CPN, AI);
1724 Store->insertBefore(IP);
Philip Reamese73300b2015-04-13 16:41:32 +00001725 }
1726 };
1727
1728 // Insert the clobbering stores. These may get intermixed with the
1729 // gc.results and gc.relocates, but that's fine.
1730 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001731 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1732 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
Philip Reamese73300b2015-04-13 16:41:32 +00001733 } else {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001734 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001735 }
David Blaikie82ad7872015-02-20 23:44:24 +00001736 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001737 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001738
1739 // Update use with load allocas and add store for gc_relocated.
Igor Laevsky285fe842015-05-19 16:29:43 +00001740 for (auto Pair : AllocaMap) {
1741 Value *Def = Pair.first;
1742 Value *Alloca = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001743
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001744 // We pre-record the uses of allocas so that we dont have to worry about
1745 // later update that changes the user information..
1746
Igor Laevsky285fe842015-05-19 16:29:43 +00001747 SmallVector<Instruction *, 20> Uses;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001748 // PERF: trade a linear scan for repeated reallocation
Igor Laevsky285fe842015-05-19 16:29:43 +00001749 Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1750 for (User *U : Def->users()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001751 if (!isa<ConstantExpr>(U)) {
1752 // If the def has a ConstantExpr use, then the def is either a
1753 // ConstantExpr use itself or null. In either case
1754 // (recursively in the first, directly in the second), the oop
1755 // it is ultimately dependent on is null and this particular
1756 // use does not need to be fixed up.
Igor Laevsky285fe842015-05-19 16:29:43 +00001757 Uses.push_back(cast<Instruction>(U));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001758 }
1759 }
1760
Igor Laevsky285fe842015-05-19 16:29:43 +00001761 std::sort(Uses.begin(), Uses.end());
1762 auto Last = std::unique(Uses.begin(), Uses.end());
1763 Uses.erase(Last, Uses.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001764
Igor Laevsky285fe842015-05-19 16:29:43 +00001765 for (Instruction *Use : Uses) {
1766 if (isa<PHINode>(Use)) {
1767 PHINode *Phi = cast<PHINode>(Use);
1768 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1769 if (Def == Phi->getIncomingValue(i)) {
1770 LoadInst *Load = new LoadInst(
1771 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1772 Phi->setIncomingValue(i, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001773 }
1774 }
1775 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001776 LoadInst *Load = new LoadInst(Alloca, "", Use);
1777 Use->replaceUsesOfWith(Def, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001778 }
1779 }
1780
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001781 // Emit store for the initial gc value. Store must be inserted after load,
1782 // otherwise store will be in alloca's use list and an extra load will be
1783 // inserted before it.
Igor Laevsky285fe842015-05-19 16:29:43 +00001784 StoreInst *Store = new StoreInst(Def, Alloca);
1785 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1786 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
Philip Reames6da37852015-03-04 00:13:52 +00001787 // InvokeInst is a TerminatorInst so the store need to be inserted
1788 // into its normal destination block.
Igor Laevsky285fe842015-05-19 16:29:43 +00001789 BasicBlock *NormalDest = Invoke->getNormalDest();
1790 Store->insertBefore(NormalDest->getFirstNonPHI());
Philip Reames6da37852015-03-04 00:13:52 +00001791 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001792 assert(!Inst->isTerminator() &&
Philip Reames6da37852015-03-04 00:13:52 +00001793 "The only TerminatorInst that can produce a value is "
1794 "InvokeInst which is handled above.");
Igor Laevsky285fe842015-05-19 16:29:43 +00001795 Store->insertAfter(Inst);
Philip Reames6da37852015-03-04 00:13:52 +00001796 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001797 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001798 assert(isa<Argument>(Def));
1799 Store->insertAfter(cast<Instruction>(Alloca));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001800 }
1801 }
1802
Igor Laevsky285fe842015-05-19 16:29:43 +00001803 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001804 "we must have the same allocas with lives");
1805 if (!PromotableAllocas.empty()) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001806 // Apply mem2reg to promote alloca to SSA
Philip Reamesd16a9b12015-02-20 01:06:44 +00001807 PromoteMemToReg(PromotableAllocas, DT);
1808 }
1809
1810#ifndef NDEBUG
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001811 for (auto &I : F.getEntryBlock())
1812 if (isa<AllocaInst>(I))
Philip Reamesa6ebf072015-03-27 05:53:16 +00001813 InitialAllocaNum--;
1814 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001815#endif
1816}
1817
1818/// Implement a unique function which doesn't require we sort the input
1819/// vector. Doing so has the effect of changing the output of a couple of
1820/// tests in ways which make them less useful in testing fused safepoints.
Philip Reamesd2b66462015-02-20 22:39:41 +00001821template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
Benjamin Kramer258ea0d2015-06-13 19:50:38 +00001822 SmallSet<T, 8> Seen;
1823 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1824 return !Seen.insert(V).second;
1825 }), Vec.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001826}
1827
Philip Reamesd16a9b12015-02-20 01:06:44 +00001828/// Insert holders so that each Value is obviously live through the entire
Philip Reamesf209a152015-04-13 20:00:30 +00001829/// lifetime of the call.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001830static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
Philip Reamesf209a152015-04-13 20:00:30 +00001831 SmallVectorImpl<CallInst *> &Holders) {
Philip Reames21142752015-04-13 19:07:47 +00001832 if (Values.empty())
1833 // No values to hold live, might as well not insert the empty holder
1834 return;
1835
Sanjay Patelaf674fb2015-12-14 17:24:23 +00001836 Module *M = CS.getInstruction()->getModule();
Philip Reamesf209a152015-04-13 20:00:30 +00001837 // Use a dummy vararg function to actually hold the values live
1838 Function *Func = cast<Function>(M->getOrInsertFunction(
1839 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001840 if (CS.isCall()) {
1841 // For call safepoints insert dummy calls right after safepoint
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001842 Holders.push_back(CallInst::Create(Func, Values, "",
1843 &*++CS.getInstruction()->getIterator()));
Philip Reamesf209a152015-04-13 20:00:30 +00001844 return;
1845 }
1846 // For invoke safepooints insert dummy calls both in normal and
1847 // exceptional destination blocks
1848 auto *II = cast<InvokeInst>(CS.getInstruction());
1849 Holders.push_back(CallInst::Create(
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001850 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
Philip Reamesf209a152015-04-13 20:00:30 +00001851 Holders.push_back(CallInst::Create(
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001852 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001853}
1854
1855static void findLiveReferences(
Justin Bogner843fb202015-12-15 19:40:57 +00001856 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
Philip Reamesd2b66462015-02-20 22:39:41 +00001857 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001858 GCPtrLivenessData OriginalLivenessData;
1859 computeLiveInValues(DT, F, OriginalLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001860 for (size_t i = 0; i < records.size(); i++) {
1861 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001862 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001863 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001864 }
1865}
1866
Igor Laevskye0317182015-05-19 15:59:05 +00001867// Helper function for the "rematerializeLiveValues". It walks use chain
1868// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1869// values are visited (currently it is GEP's and casts). Returns true if it
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001870// successfully reached "BaseValue" and false otherwise.
Igor Laevskye0317182015-05-19 15:59:05 +00001871// Fills "ChainToBase" array with all visited values. "BaseValue" is not
1872// recorded.
1873static bool findRematerializableChainToBasePointer(
1874 SmallVectorImpl<Instruction*> &ChainToBase,
1875 Value *CurrentValue, Value *BaseValue) {
1876
1877 // We have found a base value
1878 if (CurrentValue == BaseValue) {
1879 return true;
1880 }
1881
1882 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1883 ChainToBase.push_back(GEP);
1884 return findRematerializableChainToBasePointer(ChainToBase,
1885 GEP->getPointerOperand(),
1886 BaseValue);
1887 }
1888
1889 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
Igor Laevskye0317182015-05-19 15:59:05 +00001890 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1891 return false;
1892
1893 ChainToBase.push_back(CI);
Manuel Jacob9db5b932015-12-28 20:14:05 +00001894 return findRematerializableChainToBasePointer(ChainToBase,
1895 CI->getOperand(0), BaseValue);
Igor Laevskye0317182015-05-19 15:59:05 +00001896 }
1897
1898 // Not supported instruction in the chain
1899 return false;
1900}
1901
1902// Helper function for the "rematerializeLiveValues". Compute cost of the use
1903// chain we are going to rematerialize.
1904static unsigned
1905chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1906 TargetTransformInfo &TTI) {
1907 unsigned Cost = 0;
1908
1909 for (Instruction *Instr : Chain) {
1910 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1911 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1912 "non noop cast is found during rematerialization");
1913
1914 Type *SrcTy = CI->getOperand(0)->getType();
1915 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1916
1917 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1918 // Cost of the address calculation
Eduard Burtescu19eb0312016-01-19 17:28:00 +00001919 Type *ValTy = GEP->getSourceElementType();
Igor Laevskye0317182015-05-19 15:59:05 +00001920 Cost += TTI.getAddressComputationCost(ValTy);
1921
1922 // And cost of the GEP itself
1923 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1924 // allowed for the external usage)
1925 if (!GEP->hasAllConstantIndices())
1926 Cost += 2;
1927
1928 } else {
1929 llvm_unreachable("unsupported instruciton type during rematerialization");
1930 }
1931 }
1932
1933 return Cost;
1934}
1935
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001936// From the statepoint live set pick values that are cheaper to recompute then
1937// to relocate. Remove this values from the live set, rematerialize them after
Igor Laevskye0317182015-05-19 15:59:05 +00001938// statepoint and record them in "Info" structure. Note that similar to
1939// relocated values we don't do any user adjustments here.
1940static void rematerializeLiveValues(CallSite CS,
1941 PartiallyConstructedSafepointRecord &Info,
1942 TargetTransformInfo &TTI) {
Aaron Ballmanff7d4fa2015-05-20 14:53:50 +00001943 const unsigned int ChainLengthThreshold = 10;
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00001944
Igor Laevskye0317182015-05-19 15:59:05 +00001945 // Record values we are going to delete from this statepoint live set.
1946 // We can not di this in following loop due to iterator invalidation.
1947 SmallVector<Value *, 32> LiveValuesToBeDeleted;
1948
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001949 for (Value *LiveValue: Info.LiveSet) {
Igor Laevskye0317182015-05-19 15:59:05 +00001950 // For each live pointer find it's defining chain
1951 SmallVector<Instruction *, 3> ChainToBase;
Philip Reames74ce2e72015-07-21 16:51:17 +00001952 assert(Info.PointerToBase.count(LiveValue));
Igor Laevskye0317182015-05-19 15:59:05 +00001953 bool FoundChain =
1954 findRematerializableChainToBasePointer(ChainToBase,
1955 LiveValue,
1956 Info.PointerToBase[LiveValue]);
1957 // Nothing to do, or chain is too long
1958 if (!FoundChain ||
1959 ChainToBase.size() == 0 ||
1960 ChainToBase.size() > ChainLengthThreshold)
1961 continue;
1962
1963 // Compute cost of this chain
1964 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1965 // TODO: We can also account for cases when we will be able to remove some
1966 // of the rematerialized values by later optimization passes. I.e if
1967 // we rematerialized several intersecting chains. Or if original values
1968 // don't have any uses besides this statepoint.
1969
1970 // For invokes we need to rematerialize each chain twice - for normal and
1971 // for unwind basic blocks. Model this by multiplying cost by two.
1972 if (CS.isInvoke()) {
1973 Cost *= 2;
1974 }
1975 // If it's too expensive - skip it
1976 if (Cost >= RematerializationThreshold)
1977 continue;
1978
1979 // Remove value from the live set
1980 LiveValuesToBeDeleted.push_back(LiveValue);
1981
1982 // Clone instructions and record them inside "Info" structure
1983
1984 // Walk backwards to visit top-most instructions first
1985 std::reverse(ChainToBase.begin(), ChainToBase.end());
1986
1987 // Utility function which clones all instructions from "ChainToBase"
1988 // and inserts them before "InsertBefore". Returns rematerialized value
1989 // which should be used after statepoint.
1990 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1991 Instruction *LastClonedValue = nullptr;
1992 Instruction *LastValue = nullptr;
1993 for (Instruction *Instr: ChainToBase) {
1994 // Only GEP's and casts are suported as we need to be careful to not
1995 // introduce any new uses of pointers not in the liveset.
1996 // Note that it's fine to introduce new uses of pointers which were
1997 // otherwise not used after this statepoint.
1998 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1999
2000 Instruction *ClonedValue = Instr->clone();
2001 ClonedValue->insertBefore(InsertBefore);
2002 ClonedValue->setName(Instr->getName() + ".remat");
2003
2004 // If it is not first instruction in the chain then it uses previously
2005 // cloned value. We should update it to use cloned value.
2006 if (LastClonedValue) {
2007 assert(LastValue);
2008 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2009#ifndef NDEBUG
Igor Laevskyd83f6972015-05-21 13:02:14 +00002010 // Assert that cloned instruction does not use any instructions from
2011 // this chain other than LastClonedValue
2012 for (auto OpValue : ClonedValue->operand_values()) {
2013 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2014 ChainToBase.end() &&
2015 "incorrect use in rematerialization chain");
Igor Laevskye0317182015-05-19 15:59:05 +00002016 }
2017#endif
2018 }
2019
2020 LastClonedValue = ClonedValue;
2021 LastValue = Instr;
2022 }
2023 assert(LastClonedValue);
2024 return LastClonedValue;
2025 };
2026
2027 // Different cases for calls and invokes. For invokes we need to clone
2028 // instructions both on normal and unwind path.
2029 if (CS.isCall()) {
2030 Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2031 assert(InsertBefore);
2032 Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2033 Info.RematerializedValues[RematerializedValue] = LiveValue;
2034 } else {
2035 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2036
2037 Instruction *NormalInsertBefore =
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002038 &*Invoke->getNormalDest()->getFirstInsertionPt();
Igor Laevskye0317182015-05-19 15:59:05 +00002039 Instruction *UnwindInsertBefore =
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002040 &*Invoke->getUnwindDest()->getFirstInsertionPt();
Igor Laevskye0317182015-05-19 15:59:05 +00002041
2042 Instruction *NormalRematerializedValue =
2043 rematerializeChain(NormalInsertBefore);
2044 Instruction *UnwindRematerializedValue =
2045 rematerializeChain(UnwindInsertBefore);
2046
2047 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2048 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2049 }
2050 }
2051
2052 // Remove rematerializaed values from the live set
2053 for (auto LiveValue: LiveValuesToBeDeleted) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002054 Info.LiveSet.erase(LiveValue);
Igor Laevskye0317182015-05-19 15:59:05 +00002055 }
2056}
2057
Justin Bogner843fb202015-12-15 19:40:57 +00002058static bool insertParsePoints(Function &F, DominatorTree &DT,
2059 TargetTransformInfo &TTI,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002060 SmallVectorImpl<CallSite> &ToUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002061#ifndef NDEBUG
2062 // sanity check the input
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002063 std::set<CallSite> Uniqued;
2064 Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2065 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00002066
Sanjoy Dasbcf27522016-01-29 01:03:20 +00002067 for (CallSite CS : ToUpdate)
2068 assert(CS.getInstruction()->getFunction() == &F);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002069#endif
2070
Philip Reames69e51ca2015-04-13 18:07:21 +00002071 // When inserting gc.relocates for invokes, we need to be able to insert at
2072 // the top of the successor blocks. See the comment on
2073 // normalForInvokeSafepoint on exactly what is needed. Note that this step
Philip Reamesf209a152015-04-13 20:00:30 +00002074 // may restructure the CFG.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002075 for (CallSite CS : ToUpdate) {
Philip Reamesf209a152015-04-13 20:00:30 +00002076 if (!CS.isInvoke())
2077 continue;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002078 auto *II = cast<InvokeInst>(CS.getInstruction());
2079 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2080 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
Philip Reamesf209a152015-04-13 20:00:30 +00002081 }
Philip Reames69e51ca2015-04-13 18:07:21 +00002082
Philip Reamesd16a9b12015-02-20 01:06:44 +00002083 // A list of dummy calls added to the IR to keep various values obviously
2084 // live in the IR. We'll remove all of these when done.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002085 SmallVector<CallInst *, 64> Holders;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002086
2087 // Insert a dummy call with all of the arguments to the vm_state we'll need
2088 // for the actual safepoint insertion. This ensures reference arguments in
2089 // the deopt argument list are considered live through the safepoint (and
2090 // thus makes sure they get relocated.)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002091 for (CallSite CS : ToUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002092 SmallVector<Value *, 64> DeoptValues;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002093
Sanjoy Das40992972016-01-29 01:03:17 +00002094 for (Value *Arg : GetDeoptBundleOperands(CS)) {
Philip Reames8531d8c2015-04-10 21:48:25 +00002095 assert(!isUnhandledGCPointerType(Arg->getType()) &&
2096 "support for FCA unimplemented");
2097 if (isHandledGCPointerType(Arg->getType()))
Philip Reamesd16a9b12015-02-20 01:06:44 +00002098 DeoptValues.push_back(Arg);
2099 }
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002100
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002101 insertUseHolderAfter(CS, DeoptValues, Holders);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002102 }
2103
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002104 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00002105
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002106 // A) Identify all gc pointers which are statically live at the given call
Philip Reamesd16a9b12015-02-20 01:06:44 +00002107 // site.
Justin Bogner843fb202015-12-15 19:40:57 +00002108 findLiveReferences(F, DT, ToUpdate, Records);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002109
2110 // B) Find the base pointers for each live pointer
2111 /* scope for caching */ {
2112 // Cache the 'defining value' relation used in the computation and
2113 // insertion of base phis and selects. This ensures that we don't insert
2114 // large numbers of duplicate base_phis.
2115 DefiningValueMapTy DVCache;
2116
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002117 for (size_t i = 0; i < Records.size(); i++) {
2118 PartiallyConstructedSafepointRecord &info = Records[i];
2119 findBasePointers(DT, DVCache, ToUpdate[i], info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002120 }
2121 } // end of cache scope
2122
2123 // The base phi insertion logic (for any safepoint) may have inserted new
2124 // instructions which are now live at some safepoint. The simplest such
2125 // example is:
2126 // loop:
2127 // phi a <-- will be a new base_phi here
2128 // safepoint 1 <-- that needs to be live here
2129 // gep a + 1
2130 // safepoint 2
2131 // br loop
Philip Reamesd16a9b12015-02-20 01:06:44 +00002132 // We insert some dummy calls after each safepoint to definitely hold live
2133 // the base pointers which were identified for that safepoint. We'll then
2134 // ask liveness for _every_ base inserted to see what is now live. Then we
2135 // remove the dummy calls.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002136 Holders.reserve(Holders.size() + Records.size());
2137 for (size_t i = 0; i < Records.size(); i++) {
2138 PartiallyConstructedSafepointRecord &Info = Records[i];
Philip Reamesd16a9b12015-02-20 01:06:44 +00002139
2140 SmallVector<Value *, 128> Bases;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002141 for (auto Pair : Info.PointerToBase)
Philip Reamesd16a9b12015-02-20 01:06:44 +00002142 Bases.push_back(Pair.second);
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002143
2144 insertUseHolderAfter(ToUpdate[i], Bases, Holders);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002145 }
2146
Philip Reamesdf1ef082015-04-10 22:53:14 +00002147 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2148 // need to rerun liveness. We may *also* have inserted new defs, but that's
2149 // not the key issue.
Justin Bogner843fb202015-12-15 19:40:57 +00002150 recomputeLiveInValues(F, DT, ToUpdate, Records);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002151
Philip Reamesd16a9b12015-02-20 01:06:44 +00002152 if (PrintBasePointers) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002153 for (auto &Info : Records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002154 errs() << "Base Pairs: (w/Relocation)\n";
Manuel Jacoba4efd8a2015-12-23 00:19:45 +00002155 for (auto Pair : Info.PointerToBase) {
2156 errs() << " derived ";
2157 Pair.first->printAsOperand(errs(), false);
2158 errs() << " base ";
2159 Pair.second->printAsOperand(errs(), false);
2160 errs() << "\n";
2161 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002162 }
2163 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002164
Manuel Jacob990dfa62015-12-22 16:50:44 +00002165 // It is possible that non-constant live variables have a constant base. For
2166 // example, a GEP with a variable offset from a global. In this case we can
2167 // remove it from the liveset. We already don't add constants to the liveset
2168 // because we assume they won't move at runtime and the GC doesn't need to be
2169 // informed about them. The same reasoning applies if the base is constant.
2170 // Note that the relocation placement code relies on this filtering for
2171 // correctness as it expects the base to be in the liveset, which isn't true
2172 // if the base is constant.
2173 for (auto &Info : Records)
2174 for (auto &BasePair : Info.PointerToBase)
2175 if (isa<Constant>(BasePair.second))
2176 Info.LiveSet.erase(BasePair.first);
2177
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002178 for (CallInst *CI : Holders)
2179 CI->eraseFromParent();
2180
2181 Holders.clear();
Philip Reamesd16a9b12015-02-20 01:06:44 +00002182
Igor Laevskye0317182015-05-19 15:59:05 +00002183 // In order to reduce live set of statepoint we might choose to rematerialize
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002184 // some values instead of relocating them. This is purely an optimization and
Igor Laevskye0317182015-05-19 15:59:05 +00002185 // does not influence correctness.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002186 for (size_t i = 0; i < Records.size(); i++)
2187 rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
Igor Laevskye0317182015-05-19 15:59:05 +00002188
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002189 // We need this to safely RAUW and delete call or invoke return values that
2190 // may themselves be live over a statepoint. For details, please see usage in
2191 // makeStatepointExplicitImpl.
2192 std::vector<DeferredReplacement> Replacements;
2193
Philip Reamesd16a9b12015-02-20 01:06:44 +00002194 // Now run through and replace the existing statepoints with new ones with
2195 // the live variables listed. We do not yet update uses of the values being
2196 // relocated. We have references to live variables that need to
2197 // survive to the last iteration of this loop. (By construction, the
2198 // previous statepoint can not be a live variable, thus we can and remove
2199 // the old statepoint calls as we go.)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002200 for (size_t i = 0; i < Records.size(); i++)
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002201 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002202
2203 ToUpdate.clear(); // prevent accident use of invalid CallSites
Philip Reamesd16a9b12015-02-20 01:06:44 +00002204
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002205 for (auto &PR : Replacements)
2206 PR.doReplacement();
2207
2208 Replacements.clear();
2209
2210 for (auto &Info : Records) {
2211 // These live sets may contain state Value pointers, since we replaced calls
2212 // with operand bundles with calls wrapped in gc.statepoint, and some of
2213 // those calls may have been def'ing live gc pointers. Clear these out to
2214 // avoid accidentally using them.
2215 //
2216 // TODO: We should create a separate data structure that does not contain
2217 // these live sets, and migrate to using that data structure from this point
2218 // onward.
2219 Info.LiveSet.clear();
2220 Info.PointerToBase.clear();
2221 }
2222
Philip Reamesd16a9b12015-02-20 01:06:44 +00002223 // Do all the fixups of the original live variables to their relocated selves
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002224 SmallVector<Value *, 128> Live;
2225 for (size_t i = 0; i < Records.size(); i++) {
2226 PartiallyConstructedSafepointRecord &Info = Records[i];
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002227
Philip Reamesd16a9b12015-02-20 01:06:44 +00002228 // We can't simply save the live set from the original insertion. One of
2229 // the live values might be the result of a call which needs a safepoint.
2230 // That Value* no longer exists and we need to use the new gc_result.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002231 // Thankfully, the live set is embedded in the statepoint (and updated), so
Philip Reamesd16a9b12015-02-20 01:06:44 +00002232 // we just grab that.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002233 Statepoint Statepoint(Info.StatepointToken);
2234 Live.insert(Live.end(), Statepoint.gc_args_begin(),
2235 Statepoint.gc_args_end());
Philip Reames9a2e01d2015-04-13 17:35:55 +00002236#ifndef NDEBUG
2237 // Do some basic sanity checks on our liveness results before performing
2238 // relocation. Relocation can and will turn mistakes in liveness results
2239 // into non-sensical code which is must harder to debug.
2240 // TODO: It would be nice to test consistency as well
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002241 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
Philip Reames9a2e01d2015-04-13 17:35:55 +00002242 "statepoint must be reachable or liveness is meaningless");
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002243 for (Value *V : Statepoint.gc_args()) {
Philip Reames9a2e01d2015-04-13 17:35:55 +00002244 if (!isa<Instruction>(V))
2245 // Non-instruction values trivial dominate all possible uses
2246 continue;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002247 auto *LiveInst = cast<Instruction>(V);
Philip Reames9a2e01d2015-04-13 17:35:55 +00002248 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2249 "unreachable values should never be live");
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002250 assert(DT.dominates(LiveInst, Info.StatepointToken) &&
Philip Reames9a2e01d2015-04-13 17:35:55 +00002251 "basic SSA liveness expectation violated by liveness analysis");
2252 }
2253#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002254 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002255 unique_unsorted(Live);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002256
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002257#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +00002258 // sanity check
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002259 for (auto *Ptr : Live)
Philip Reames5715f572016-01-09 01:31:13 +00002260 assert(isHandledGCPointerType(Ptr->getType()) &&
2261 "must be a gc pointer type");
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002262#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002263
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002264 relocationViaAlloca(F, DT, Live, Records);
2265 return !Records.empty();
Philip Reamesd16a9b12015-02-20 01:06:44 +00002266}
2267
Sanjoy Das353a19e2015-06-02 22:33:37 +00002268// Handles both return values and arguments for Functions and CallSites.
2269template <typename AttrHolder>
Igor Laevskydde00292015-10-23 22:42:44 +00002270static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2271 unsigned Index) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002272 AttrBuilder R;
2273 if (AH.getDereferenceableBytes(Index))
2274 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2275 AH.getDereferenceableBytes(Index)));
2276 if (AH.getDereferenceableOrNullBytes(Index))
2277 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2278 AH.getDereferenceableOrNullBytes(Index)));
Igor Laevsky1ef06552015-10-26 19:06:01 +00002279 if (AH.doesNotAlias(Index))
2280 R.addAttribute(Attribute::NoAlias);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002281
2282 if (!R.empty())
2283 AH.setAttributes(AH.getAttributes().removeAttributes(
2284 Ctx, Index, AttributeSet::get(Ctx, Index, R)));
Vasileios Kalintiris9f77f612015-06-03 08:51:30 +00002285}
Sanjoy Das353a19e2015-06-02 22:33:37 +00002286
2287void
Igor Laevskydde00292015-10-23 22:42:44 +00002288RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002289 LLVMContext &Ctx = F.getContext();
2290
2291 for (Argument &A : F.args())
2292 if (isa<PointerType>(A.getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002293 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002294
2295 if (isa<PointerType>(F.getReturnType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002296 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002297}
2298
Igor Laevskydde00292015-10-23 22:42:44 +00002299void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002300 if (F.empty())
2301 return;
2302
2303 LLVMContext &Ctx = F.getContext();
2304 MDBuilder Builder(Ctx);
2305
Nico Rieck78199512015-08-06 19:10:45 +00002306 for (Instruction &I : instructions(F)) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002307 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2308 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2309 bool IsImmutableTBAA =
2310 MD->getNumOperands() == 4 &&
2311 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2312
2313 if (!IsImmutableTBAA)
2314 continue; // no work to do, MD_tbaa is already marked mutable
2315
2316 MDNode *Base = cast<MDNode>(MD->getOperand(0));
2317 MDNode *Access = cast<MDNode>(MD->getOperand(1));
2318 uint64_t Offset =
2319 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2320
2321 MDNode *MutableTBAA =
2322 Builder.createTBAAStructTagNode(Base, Access, Offset);
2323 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2324 }
2325
2326 if (CallSite CS = CallSite(&I)) {
2327 for (int i = 0, e = CS.arg_size(); i != e; i++)
2328 if (isa<PointerType>(CS.getArgument(i)->getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002329 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002330 if (isa<PointerType>(CS.getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002331 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002332 }
2333 }
2334}
2335
Philip Reamesd16a9b12015-02-20 01:06:44 +00002336/// Returns true if this function should be rewritten by this pass. The main
2337/// point of this function is as an extension point for custom logic.
2338static bool shouldRewriteStatepointsIn(Function &F) {
2339 // TODO: This should check the GCStrategy
Philip Reames2ef029c2015-02-20 18:56:14 +00002340 if (F.hasGC()) {
Mehdi Amini599ebf22016-01-08 02:28:20 +00002341 const auto &FunctionGCName = F.getGC();
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002342 const StringRef StatepointExampleName("statepoint-example");
2343 const StringRef CoreCLRName("coreclr");
2344 return (StatepointExampleName == FunctionGCName) ||
NAKAMURA Takumi5582a6a2015-05-25 01:43:34 +00002345 (CoreCLRName == FunctionGCName);
2346 } else
Philip Reames2ef029c2015-02-20 18:56:14 +00002347 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002348}
2349
Igor Laevskydde00292015-10-23 22:42:44 +00002350void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002351#ifndef NDEBUG
2352 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2353 "precondition!");
2354#endif
2355
2356 for (Function &F : M)
Igor Laevskydde00292015-10-23 22:42:44 +00002357 stripNonValidAttributesFromPrototype(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002358
2359 for (Function &F : M)
Igor Laevskydde00292015-10-23 22:42:44 +00002360 stripNonValidAttributesFromBody(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002361}
2362
Philip Reamesd16a9b12015-02-20 01:06:44 +00002363bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2364 // Nothing to do for declarations.
2365 if (F.isDeclaration() || F.empty())
2366 return false;
2367
2368 // Policy choice says not to rewrite - the most common reason is that we're
2369 // compiling code without a GCStrategy.
2370 if (!shouldRewriteStatepointsIn(F))
2371 return false;
2372
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00002373 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
Justin Bogner843fb202015-12-15 19:40:57 +00002374 TargetTransformInfo &TTI =
2375 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Philip Reames704e78b2015-04-10 22:34:56 +00002376
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002377 auto NeedsRewrite = [](Instruction &I) {
Sanjoy Das40992972016-01-29 01:03:17 +00002378 if (ImmutableCallSite CS = ImmutableCallSite(&I))
Sanjoy Dasd4c78332016-03-25 20:12:13 +00002379 return !callsGCLeafFunction(CS) && !isStatepoint(CS);
Sanjoy Das40992972016-01-29 01:03:17 +00002380 return false;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002381 };
2382
Philip Reames85b36a82015-04-10 22:07:04 +00002383 // Gather all the statepoints which need rewritten. Be careful to only
2384 // consider those in reachable code since we need to ask dominance queries
2385 // when rewriting. We'll delete the unreachable ones in a moment.
Philip Reamesd2b66462015-02-20 22:39:41 +00002386 SmallVector<CallSite, 64> ParsePointNeeded;
Philip Reamesf66d7372015-04-10 22:16:58 +00002387 bool HasUnreachableStatepoint = false;
Nico Rieck78199512015-08-06 19:10:45 +00002388 for (Instruction &I : instructions(F)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002389 // TODO: only the ones with the flag set!
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002390 if (NeedsRewrite(I)) {
Philip Reames85b36a82015-04-10 22:07:04 +00002391 if (DT.isReachableFromEntry(I.getParent()))
2392 ParsePointNeeded.push_back(CallSite(&I));
2393 else
Philip Reamesf66d7372015-04-10 22:16:58 +00002394 HasUnreachableStatepoint = true;
Philip Reames85b36a82015-04-10 22:07:04 +00002395 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002396 }
2397
Philip Reames85b36a82015-04-10 22:07:04 +00002398 bool MadeChange = false;
Philip Reames704e78b2015-04-10 22:34:56 +00002399
Philip Reames85b36a82015-04-10 22:07:04 +00002400 // Delete any unreachable statepoints so that we don't have unrewritten
2401 // statepoints surviving this pass. This makes testing easier and the
2402 // resulting IR less confusing to human readers. Rather than be fancy, we
2403 // just reuse a utility function which removes the unreachable blocks.
Philip Reamesf66d7372015-04-10 22:16:58 +00002404 if (HasUnreachableStatepoint)
Philip Reames85b36a82015-04-10 22:07:04 +00002405 MadeChange |= removeUnreachableBlocks(F);
2406
Philip Reamesd16a9b12015-02-20 01:06:44 +00002407 // Return early if no work to do.
2408 if (ParsePointNeeded.empty())
Philip Reames85b36a82015-04-10 22:07:04 +00002409 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002410
Philip Reames85b36a82015-04-10 22:07:04 +00002411 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2412 // These are created by LCSSA. They have the effect of increasing the size
2413 // of liveness sets for no good reason. It may be harder to do this post
2414 // insertion since relocations and base phis can confuse things.
2415 for (BasicBlock &BB : F)
2416 if (BB.getUniquePredecessor()) {
2417 MadeChange = true;
2418 FoldSingleEntryPHINodes(&BB);
2419 }
2420
Philip Reames971dc3a2015-08-12 22:11:45 +00002421 // Before we start introducing relocations, we want to tweak the IR a bit to
2422 // avoid unfortunate code generation effects. The main example is that we
2423 // want to try to make sure the comparison feeding a branch is after any
2424 // safepoints. Otherwise, we end up with a comparison of pre-relocation
2425 // values feeding a branch after relocation. This is semantically correct,
2426 // but results in extra register pressure since both the pre-relocation and
2427 // post-relocation copies must be available in registers. For code without
2428 // relocations this is handled elsewhere, but teaching the scheduler to
2429 // reverse the transform we're about to do would be slightly complex.
2430 // Note: This may extend the live range of the inputs to the icmp and thus
2431 // increase the liveset of any statepoint we move over. This is profitable
2432 // as long as all statepoints are in rare blocks. If we had in-register
2433 // lowering for live values this would be a much safer transform.
2434 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2435 if (auto *BI = dyn_cast<BranchInst>(TI))
2436 if (BI->isConditional())
2437 return dyn_cast<Instruction>(BI->getCondition());
2438 // TODO: Extend this to handle switches
2439 return nullptr;
2440 };
2441 for (BasicBlock &BB : F) {
2442 TerminatorInst *TI = BB.getTerminator();
2443 if (auto *Cond = getConditionInst(TI))
2444 // TODO: Handle more than just ICmps here. We should be able to move
2445 // most instructions without side effects or memory access.
2446 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2447 MadeChange = true;
2448 Cond->moveBefore(TI);
2449 }
2450 }
2451
Justin Bogner843fb202015-12-15 19:40:57 +00002452 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
Philip Reames85b36a82015-04-10 22:07:04 +00002453 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002454}
Philip Reamesdf1ef082015-04-10 22:53:14 +00002455
2456// liveness computation via standard dataflow
2457// -------------------------------------------------------------------
2458
2459// TODO: Consider using bitvectors for liveness, the set of potentially
2460// interesting values should be small and easy to pre-compute.
2461
Philip Reamesdf1ef082015-04-10 22:53:14 +00002462/// Compute the live-in set for the location rbegin starting from
2463/// the live-out set of the basic block
2464static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2465 BasicBlock::reverse_iterator rend,
2466 DenseSet<Value *> &LiveTmp) {
2467
2468 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2469 Instruction *I = &*ritr;
2470
2471 // KILL/Def - Remove this definition from LiveIn
2472 LiveTmp.erase(I);
2473
2474 // Don't consider *uses* in PHI nodes, we handle their contribution to
2475 // predecessor blocks when we seed the LiveOut sets
2476 if (isa<PHINode>(I))
2477 continue;
2478
2479 // USE - Add to the LiveIn set for this instruction
2480 for (Value *V : I->operands()) {
2481 assert(!isUnhandledGCPointerType(V->getType()) &&
2482 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002483 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2484 // The choice to exclude all things constant here is slightly subtle.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002485 // There are two independent reasons:
Philip Reames63294cb2015-04-26 19:48:03 +00002486 // - We assume that things which are constant (from LLVM's definition)
2487 // do not move at runtime. For example, the address of a global
2488 // variable is fixed, even though it's contents may not be.
2489 // - Second, we can't disallow arbitrary inttoptr constants even
2490 // if the language frontend does. Optimization passes are free to
2491 // locally exploit facts without respect to global reachability. This
2492 // can create sections of code which are dynamically unreachable and
2493 // contain just about anything. (see constants.ll in tests)
Philip Reamesdf1ef082015-04-10 22:53:14 +00002494 LiveTmp.insert(V);
2495 }
2496 }
2497 }
2498}
2499
2500static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2501
2502 for (BasicBlock *Succ : successors(BB)) {
2503 const BasicBlock::iterator E(Succ->getFirstNonPHI());
2504 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2505 PHINode *Phi = cast<PHINode>(&*I);
2506 Value *V = Phi->getIncomingValueForBlock(BB);
2507 assert(!isUnhandledGCPointerType(V->getType()) &&
2508 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002509 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002510 LiveTmp.insert(V);
2511 }
2512 }
2513 }
2514}
2515
2516static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2517 DenseSet<Value *> KillSet;
2518 for (Instruction &I : *BB)
2519 if (isHandledGCPointerType(I.getType()))
2520 KillSet.insert(&I);
2521 return KillSet;
2522}
2523
Philip Reames9638ff92015-04-11 00:06:47 +00002524#ifndef NDEBUG
Philip Reamesdf1ef082015-04-10 22:53:14 +00002525/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
2526/// sanity check for the liveness computation.
2527static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2528 TerminatorInst *TI, bool TermOkay = false) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002529 for (Value *V : Live) {
2530 if (auto *I = dyn_cast<Instruction>(V)) {
2531 // The terminator can be a member of the LiveOut set. LLVM's definition
2532 // of instruction dominance states that V does not dominate itself. As
2533 // such, we need to special case this to allow it.
2534 if (TermOkay && TI == I)
2535 continue;
2536 assert(DT.dominates(I, TI) &&
2537 "basic SSA liveness expectation violated by liveness analysis");
2538 }
2539 }
Philip Reamesdf1ef082015-04-10 22:53:14 +00002540}
2541
2542/// Check that all the liveness sets used during the computation of liveness
2543/// obey basic SSA properties. This is useful for finding cases where we miss
2544/// a def.
2545static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2546 BasicBlock &BB) {
2547 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2548 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2549 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2550}
Philip Reames9638ff92015-04-11 00:06:47 +00002551#endif
Philip Reamesdf1ef082015-04-10 22:53:14 +00002552
2553static void computeLiveInValues(DominatorTree &DT, Function &F,
2554 GCPtrLivenessData &Data) {
2555
Matthias Braunb30f2f512016-01-30 01:24:31 +00002556 SmallSetVector<BasicBlock *, 32> Worklist;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002557 auto AddPredsToWorklist = [&](BasicBlock *BB) {
Philip Reames4d80ede2015-04-10 23:11:26 +00002558 // We use a SetVector so that we don't have duplicates in the worklist.
2559 Worklist.insert(pred_begin(BB), pred_end(BB));
Philip Reamesdf1ef082015-04-10 22:53:14 +00002560 };
2561 auto NextItem = [&]() {
2562 BasicBlock *BB = Worklist.back();
2563 Worklist.pop_back();
Philip Reamesdf1ef082015-04-10 22:53:14 +00002564 return BB;
2565 };
2566
2567 // Seed the liveness for each individual block
2568 for (BasicBlock &BB : F) {
2569 Data.KillSet[&BB] = computeKillSet(&BB);
2570 Data.LiveSet[&BB].clear();
2571 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2572
2573#ifndef NDEBUG
2574 for (Value *Kill : Data.KillSet[&BB])
2575 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2576#endif
2577
2578 Data.LiveOut[&BB] = DenseSet<Value *>();
2579 computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2580 Data.LiveIn[&BB] = Data.LiveSet[&BB];
2581 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2582 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2583 if (!Data.LiveIn[&BB].empty())
2584 AddPredsToWorklist(&BB);
2585 }
2586
2587 // Propagate that liveness until stable
2588 while (!Worklist.empty()) {
2589 BasicBlock *BB = NextItem();
2590
2591 // Compute our new liveout set, then exit early if it hasn't changed
2592 // despite the contribution of our successor.
2593 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2594 const auto OldLiveOutSize = LiveOut.size();
2595 for (BasicBlock *Succ : successors(BB)) {
2596 assert(Data.LiveIn.count(Succ));
2597 set_union(LiveOut, Data.LiveIn[Succ]);
2598 }
2599 // assert OutLiveOut is a subset of LiveOut
2600 if (OldLiveOutSize == LiveOut.size()) {
2601 // If the sets are the same size, then we didn't actually add anything
2602 // when unioning our successors LiveIn Thus, the LiveIn of this block
2603 // hasn't changed.
2604 continue;
2605 }
2606 Data.LiveOut[BB] = LiveOut;
2607
2608 // Apply the effects of this basic block
2609 DenseSet<Value *> LiveTmp = LiveOut;
2610 set_union(LiveTmp, Data.LiveSet[BB]);
2611 set_subtract(LiveTmp, Data.KillSet[BB]);
2612
2613 assert(Data.LiveIn.count(BB));
2614 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2615 // assert: OldLiveIn is a subset of LiveTmp
2616 if (OldLiveIn.size() != LiveTmp.size()) {
2617 Data.LiveIn[BB] = LiveTmp;
2618 AddPredsToWorklist(BB);
2619 }
2620 } // while( !worklist.empty() )
2621
2622#ifndef NDEBUG
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002623 // Sanity check our output against SSA properties. This helps catch any
Philip Reamesdf1ef082015-04-10 22:53:14 +00002624 // missing kills during the above iteration.
2625 for (BasicBlock &BB : F) {
2626 checkBasicSSA(DT, Data, BB);
2627 }
2628#endif
2629}
2630
2631static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2632 StatepointLiveSetTy &Out) {
2633
2634 BasicBlock *BB = Inst->getParent();
2635
2636 // Note: The copy is intentional and required
2637 assert(Data.LiveOut.count(BB));
2638 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2639
2640 // We want to handle the statepoint itself oddly. It's
2641 // call result is not live (normal), nor are it's arguments
2642 // (unless they're used again later). This adjustment is
2643 // specifically what we need to relocate
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002644 BasicBlock::reverse_iterator rend(Inst->getIterator());
Philip Reamesdf1ef082015-04-10 22:53:14 +00002645 computeLiveInValues(BB->rbegin(), rend, LiveOut);
2646 LiveOut.erase(Inst);
2647 Out.insert(LiveOut.begin(), LiveOut.end());
2648}
2649
2650static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2651 const CallSite &CS,
2652 PartiallyConstructedSafepointRecord &Info) {
2653 Instruction *Inst = CS.getInstruction();
2654 StatepointLiveSetTy Updated;
2655 findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2656
2657#ifndef NDEBUG
2658 DenseSet<Value *> Bases;
2659 for (auto KVPair : Info.PointerToBase) {
2660 Bases.insert(KVPair.second);
2661 }
2662#endif
2663 // We may have base pointers which are now live that weren't before. We need
2664 // to update the PointerToBase structure to reflect this.
2665 for (auto V : Updated)
2666 if (!Info.PointerToBase.count(V)) {
2667 assert(Bases.count(V) && "can't find base for unexpected live value");
2668 Info.PointerToBase[V] = V;
2669 continue;
2670 }
2671
2672#ifndef NDEBUG
2673 for (auto V : Updated) {
2674 assert(Info.PointerToBase.count(V) &&
2675 "must be able to find base for live value");
2676 }
2677#endif
2678
2679 // Remove any stale base mappings - this can happen since our liveness is
2680 // more precise then the one inherent in the base pointer analysis
2681 DenseSet<Value *> ToErase;
2682 for (auto KVPair : Info.PointerToBase)
2683 if (!Updated.count(KVPair.first))
2684 ToErase.insert(KVPair.first);
2685 for (auto V : ToErase)
2686 Info.PointerToBase.erase(V);
2687
2688#ifndef NDEBUG
2689 for (auto KVPair : Info.PointerToBase)
2690 assert(Updated.count(KVPair.first) && "record for non-live value");
2691#endif
2692
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002693 Info.LiveSet = Updated;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002694}