blob: 4fcbf35f5675becf3883ec6a4ce5d0d93b6cdda9 [file] [log] [blame]
Chris Lattnerc0f58002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner36663782003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattnerf43e9742005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattnerc0f58002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattnercea57992005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnere63d8082006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukman2b3387a2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000029#include "llvm/Pass.h"
Chris Lattner9187f392005-05-08 20:09:57 +000030#include "llvm/Assembly/Writer.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000031#include "llvm/Support/CFG.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000032#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
Chris Lattner1e506502005-05-07 21:59:39 +000035#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000036using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000037
Chris Lattner79a42ac2006-12-19 21:40:18 +000038STATISTIC(NumLinear , "Number of insts linearized");
39STATISTIC(NumChanged, "Number of insts reassociated");
40STATISTIC(NumAnnihil, "Number of expr tree annihilated");
41STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000042
Chris Lattner79a42ac2006-12-19 21:40:18 +000043namespace {
Chris Lattner1e506502005-05-07 21:59:39 +000044 struct ValueEntry {
45 unsigned Rank;
46 Value *Op;
47 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
48 };
49 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
50 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
51 }
Chris Lattner4c065092006-03-04 09:31:13 +000052}
Chris Lattner1e506502005-05-07 21:59:39 +000053
Chris Lattner4c065092006-03-04 09:31:13 +000054/// PrintOps - Print out the expression identified in the Ops list.
55///
56static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
57 Module *M = I->getParent()->getParent()->getParent();
Bill Wendling22e978a2006-12-07 20:04:42 +000058 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner4c065092006-03-04 09:31:13 +000059 << *Ops[0].Op->getType();
60 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Bill Wendling22e978a2006-12-07 20:04:42 +000061 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M)
Chris Lattner4c065092006-03-04 09:31:13 +000062 << "," << Ops[i].Rank;
63}
64
65namespace {
Chris Lattnerc0f58002002-05-08 22:19:27 +000066 class Reassociate : public FunctionPass {
Chris Lattner10073a92002-07-25 06:17:51 +000067 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner8ac196d2003-08-13 16:16:26 +000068 std::map<Value*, unsigned> ValueRankMap;
Chris Lattner1e506502005-05-07 21:59:39 +000069 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +000070 public:
Chris Lattner113f4f42002-06-25 16:13:24 +000071 bool runOnFunction(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +000072
73 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner820d9712002-10-21 20:00:28 +000074 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +000075 }
76 private:
Chris Lattner113f4f42002-06-25 16:13:24 +000077 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +000078 unsigned getRank(Value *V);
Chris Lattner2fc319d2006-03-14 07:11:11 +000079 void ReassociateExpression(BinaryOperator *I);
Chris Lattnerc5f866b2006-03-14 16:04:29 +000080 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
81 unsigned Idx = 0);
Chris Lattner4c065092006-03-04 09:31:13 +000082 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
Chris Lattner1e506502005-05-07 21:59:39 +000083 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
84 void LinearizeExpr(BinaryOperator *I);
Chris Lattner4c065092006-03-04 09:31:13 +000085 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattner1e506502005-05-07 21:59:39 +000086 void ReassociateBB(BasicBlock *BB);
Chris Lattner4c065092006-03-04 09:31:13 +000087
88 void RemoveDeadBinaryOp(Value *V);
Chris Lattnerc0f58002002-05-08 22:19:27 +000089 };
Chris Lattnerb28b6802002-07-23 18:06:35 +000090
Chris Lattnerc2d3d312006-08-27 22:42:52 +000091 RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
Chris Lattnerc0f58002002-05-08 22:19:27 +000092}
93
Brian Gaeke960707c2003-11-11 22:41:34 +000094// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +000095FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +000096
Chris Lattner4c065092006-03-04 09:31:13 +000097void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencer266e42b2006-12-23 06:05:41 +000098 Instruction *Op = dyn_cast<Instruction>(V);
99 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
100 return;
Chris Lattner4c065092006-03-04 09:31:13 +0000101
Reid Spencer266e42b2006-12-23 06:05:41 +0000102 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner4c065092006-03-04 09:31:13 +0000103 RemoveDeadBinaryOp(LHS);
104 RemoveDeadBinaryOp(RHS);
105}
106
Chris Lattner9f284e02005-05-08 20:57:04 +0000107
108static bool isUnmovableInstruction(Instruction *I) {
109 if (I->getOpcode() == Instruction::PHI ||
110 I->getOpcode() == Instruction::Alloca ||
111 I->getOpcode() == Instruction::Load ||
112 I->getOpcode() == Instruction::Malloc ||
113 I->getOpcode() == Instruction::Invoke ||
114 I->getOpcode() == Instruction::Call ||
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000115 I->getOpcode() == Instruction::UDiv ||
116 I->getOpcode() == Instruction::SDiv ||
117 I->getOpcode() == Instruction::FDiv ||
Reid Spencer7eb55b32006-11-02 01:53:59 +0000118 I->getOpcode() == Instruction::URem ||
119 I->getOpcode() == Instruction::SRem ||
120 I->getOpcode() == Instruction::FRem)
Chris Lattner9f284e02005-05-08 20:57:04 +0000121 return true;
122 return false;
123}
124
Chris Lattner113f4f42002-06-25 16:13:24 +0000125void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000126 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000127
128 // Assign distinct ranks to function arguments
Chris Lattner531f9e92005-03-15 04:54:21 +0000129 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner8ac196d2003-08-13 16:16:26 +0000130 ValueRankMap[I] = ++i;
131
Chris Lattner113f4f42002-06-25 16:13:24 +0000132 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000133 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000134 E = RPOT.end(); I != E; ++I) {
135 BasicBlock *BB = *I;
136 unsigned BBRank = RankMap[BB] = ++i << 16;
137
138 // Walk the basic block, adding precomputed ranks for any instructions that
139 // we cannot move. This ensures that the ranks for these instructions are
140 // all different in the block.
141 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
142 if (isUnmovableInstruction(I))
143 ValueRankMap[I] = ++BBRank;
144 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000145}
146
147unsigned Reassociate::getRank(Value *V) {
Chris Lattner8ac196d2003-08-13 16:16:26 +0000148 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
149
Chris Lattnerf43e9742005-05-07 04:08:02 +0000150 Instruction *I = dyn_cast<Instruction>(V);
151 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattnerc0f58002002-05-08 22:19:27 +0000152
Chris Lattnerf43e9742005-05-07 04:08:02 +0000153 unsigned &CachedRank = ValueRankMap[I];
154 if (CachedRank) return CachedRank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000155
Chris Lattnerf43e9742005-05-07 04:08:02 +0000156 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
157 // we can reassociate expressions for code motion! Since we do not recurse
158 // for PHI nodes, we cannot have infinite recursion here, because there
159 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000160 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
161 for (unsigned i = 0, e = I->getNumOperands();
162 i != e && Rank != MaxRank; ++i)
163 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000164
Chris Lattner6e2086d2005-05-08 00:08:33 +0000165 // If this is a not or neg instruction, do not count it for rank. This
166 // assures us that X and ~X will have the same rank.
Chris Lattner03c49532007-01-15 02:27:26 +0000167 if (!I->getType()->isInteger() ||
Chris Lattner6e2086d2005-05-08 00:08:33 +0000168 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
169 ++Rank;
170
Bill Wendling22e978a2006-12-07 20:04:42 +0000171 //DOUT << "Calculated Rank[" << V->getName() << "] = "
172 // << Rank << "\n";
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000173
Chris Lattner6e2086d2005-05-08 00:08:33 +0000174 return CachedRank = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000175}
176
Chris Lattner1e506502005-05-07 21:59:39 +0000177/// isReassociableOp - Return true if V is an instruction of the specified
178/// opcode and if it only has one use.
179static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000180 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattner1e506502005-05-07 21:59:39 +0000181 cast<Instruction>(V)->getOpcode() == Opcode)
182 return cast<BinaryOperator>(V);
183 return 0;
184}
Chris Lattnerc0f58002002-05-08 22:19:27 +0000185
Chris Lattner877b1142005-05-08 21:28:52 +0000186/// LowerNegateToMultiply - Replace 0-X with X*-1.
187///
188static Instruction *LowerNegateToMultiply(Instruction *Neg) {
Reid Spencer2eadb532007-01-21 00:29:26 +0000189 Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
Chris Lattner877b1142005-05-08 21:28:52 +0000190
191 std::string NegName = Neg->getName(); Neg->setName("");
192 Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
193 Neg);
194 Neg->replaceAllUsesWith(Res);
195 Neg->eraseFromParent();
196 return Res;
197}
198
Chris Lattner1e506502005-05-07 21:59:39 +0000199// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
200// Note that if D is also part of the expression tree that we recurse to
201// linearize it as well. Besides that case, this does not recurse into A,B, or
202// C.
203void Reassociate::LinearizeExpr(BinaryOperator *I) {
204 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
205 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000206 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattner1e506502005-05-07 21:59:39 +0000207 isReassociableOp(RHS, I->getOpcode()) &&
208 "Not an expression that needs linearization?");
Misha Brukmanb1c93172005-04-21 23:48:37 +0000209
Bill Wendling22e978a2006-12-07 20:04:42 +0000210 DOUT << "Linear" << *LHS << *RHS << *I;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000211
Chris Lattner1e506502005-05-07 21:59:39 +0000212 // Move the RHS instruction to live immediately before I, avoiding breaking
213 // dominator properties.
Chris Lattner9f269e42005-08-08 19:11:57 +0000214 RHS->moveBefore(I);
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000215
Chris Lattner1e506502005-05-07 21:59:39 +0000216 // Move operands around to do the linearization.
217 I->setOperand(1, RHS->getOperand(0));
218 RHS->setOperand(0, LHS);
219 I->setOperand(0, RHS);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000220
Chris Lattner1e506502005-05-07 21:59:39 +0000221 ++NumLinear;
222 MadeChange = true;
Bill Wendling22e978a2006-12-07 20:04:42 +0000223 DOUT << "Linearized: " << *I;
Chris Lattner1e506502005-05-07 21:59:39 +0000224
225 // If D is part of this expression tree, tail recurse.
226 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
227 LinearizeExpr(I);
228}
229
230
231/// LinearizeExprTree - Given an associative binary expression tree, traverse
232/// all of the uses putting it into canonical form. This forces a left-linear
233/// form of the the expression (((a+b)+c)+d), and collects information about the
234/// rank of the non-tree operands.
235///
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000236/// NOTE: These intentionally destroys the expression tree operands (turning
237/// them into undef values) to reduce #uses of the values. This means that the
238/// caller MUST use something like RewriteExprTree to put the values back in.
239///
Chris Lattner1e506502005-05-07 21:59:39 +0000240void Reassociate::LinearizeExprTree(BinaryOperator *I,
241 std::vector<ValueEntry> &Ops) {
242 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
243 unsigned Opcode = I->getOpcode();
244
245 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
246 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
247 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
248
Chris Lattner877b1142005-05-08 21:28:52 +0000249 // If this is a multiply expression tree and it contains internal negations,
250 // transform them into multiplies by -1 so they can be reassociated.
251 if (I->getOpcode() == Instruction::Mul) {
252 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
253 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
254 LHSBO = isReassociableOp(LHS, Opcode);
255 }
256 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
257 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
258 RHSBO = isReassociableOp(RHS, Opcode);
259 }
260 }
261
Chris Lattner1e506502005-05-07 21:59:39 +0000262 if (!LHSBO) {
263 if (!RHSBO) {
264 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
265 // such, just remember these operands and their rank.
266 Ops.push_back(ValueEntry(getRank(LHS), LHS));
267 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000268
269 // Clear the leaves out.
270 I->setOperand(0, UndefValue::get(I->getType()));
271 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner1e506502005-05-07 21:59:39 +0000272 return;
273 } else {
274 // Turn X+(Y+Z) -> (Y+Z)+X
275 std::swap(LHSBO, RHSBO);
276 std::swap(LHS, RHS);
277 bool Success = !I->swapOperands();
278 assert(Success && "swapOperands failed");
279 MadeChange = true;
280 }
281 } else if (RHSBO) {
282 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
283 // part of the expression tree.
284 LinearizeExpr(I);
285 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
286 RHS = I->getOperand(1);
287 RHSBO = 0;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000288 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000289
Chris Lattner1e506502005-05-07 21:59:39 +0000290 // Okay, now we know that the LHS is a nested expression and that the RHS is
291 // not. Perform reassociation.
292 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattnerc0f58002002-05-08 22:19:27 +0000293
Chris Lattner1e506502005-05-07 21:59:39 +0000294 // Move LHS right before I to make sure that the tree expression dominates all
295 // values.
Chris Lattner9f269e42005-08-08 19:11:57 +0000296 LHSBO->moveBefore(I);
Chris Lattner98b3ecd2003-08-12 21:45:24 +0000297
Chris Lattner1e506502005-05-07 21:59:39 +0000298 // Linearize the expression tree on the LHS.
299 LinearizeExprTree(LHSBO, Ops);
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000300
Chris Lattner1e506502005-05-07 21:59:39 +0000301 // Remember the RHS operand and its rank.
302 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000303
304 // Clear the RHS leaf out.
305 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000306}
307
Chris Lattner1e506502005-05-07 21:59:39 +0000308// RewriteExprTree - Now that the operands for this expression tree are
309// linearized and optimized, emit them in-order. This function is written to be
310// tail recursive.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000311void Reassociate::RewriteExprTree(BinaryOperator *I,
312 std::vector<ValueEntry> &Ops,
313 unsigned i) {
Chris Lattner1e506502005-05-07 21:59:39 +0000314 if (i+2 == Ops.size()) {
315 if (I->getOperand(0) != Ops[i].Op ||
316 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattner4c065092006-03-04 09:31:13 +0000317 Value *OldLHS = I->getOperand(0);
Bill Wendling22e978a2006-12-07 20:04:42 +0000318 DOUT << "RA: " << *I;
Chris Lattner1e506502005-05-07 21:59:39 +0000319 I->setOperand(0, Ops[i].Op);
320 I->setOperand(1, Ops[i+1].Op);
Bill Wendling22e978a2006-12-07 20:04:42 +0000321 DOUT << "TO: " << *I;
Chris Lattner1e506502005-05-07 21:59:39 +0000322 MadeChange = true;
323 ++NumChanged;
Chris Lattner4c065092006-03-04 09:31:13 +0000324
325 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
326 // delete the extra, now dead, nodes.
327 RemoveDeadBinaryOp(OldLHS);
Chris Lattner1e506502005-05-07 21:59:39 +0000328 }
329 return;
330 }
331 assert(i+2 < Ops.size() && "Ops index out of range!");
332
333 if (I->getOperand(1) != Ops[i].Op) {
Bill Wendling22e978a2006-12-07 20:04:42 +0000334 DOUT << "RA: " << *I;
Chris Lattner1e506502005-05-07 21:59:39 +0000335 I->setOperand(1, Ops[i].Op);
Bill Wendling22e978a2006-12-07 20:04:42 +0000336 DOUT << "TO: " << *I;
Chris Lattner1e506502005-05-07 21:59:39 +0000337 MadeChange = true;
338 ++NumChanged;
339 }
Chris Lattner4c065092006-03-04 09:31:13 +0000340
341 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
342 assert(LHS->getOpcode() == I->getOpcode() &&
343 "Improper expression tree!");
344
345 // Compactify the tree instructions together with each other to guarantee
346 // that the expression tree is dominated by all of Ops.
347 LHS->moveBefore(I);
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000348 RewriteExprTree(LHS, Ops, i+1);
Chris Lattner1e506502005-05-07 21:59:39 +0000349}
350
351
Chris Lattnerc0f58002002-05-08 22:19:27 +0000352
Chris Lattner7bc532d2002-05-16 04:37:07 +0000353// NegateValue - Insert instructions before the instruction pointed to by BI,
354// that computes the negative version of the value specified. The negative
355// version of the value is returned, and BI is left pointing at the instruction
356// that should be processed next by the reassociation pass.
357//
Chris Lattnerf43e9742005-05-07 04:08:02 +0000358static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner7bc532d2002-05-16 04:37:07 +0000359 // We are trying to expose opportunity for reassociation. One of the things
360 // that we want to do to achieve this is to push a negation as deep into an
361 // expression chain as possible, to expose the add instructions. In practice,
362 // this means that we turn this:
363 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
364 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
365 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman7eb05a12003-08-18 14:43:39 +0000366 // we introduce tons of unnecessary negation instructions...
Chris Lattner7bc532d2002-05-16 04:37:07 +0000367 //
368 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000369 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner9fe263a2005-09-02 06:38:04 +0000370 // Push the negates through the add.
371 I->setOperand(0, NegateValue(I->getOperand(0), BI));
372 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattner7bc532d2002-05-16 04:37:07 +0000373
Chris Lattner9fe263a2005-09-02 06:38:04 +0000374 // We must move the add instruction here, because the neg instructions do
375 // not dominate the old add instruction in general. By moving it, we are
376 // assured that the neg instructions we just inserted dominate the
377 // instruction we are about to insert after them.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000378 //
Chris Lattner9fe263a2005-09-02 06:38:04 +0000379 I->moveBefore(BI);
380 I->setName(I->getName()+".neg");
381 return I;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000382 }
383
384 // Insert a 'neg' instruction that subtracts the value from zero to get the
385 // negation.
386 //
Chris Lattnerf43e9742005-05-07 04:08:02 +0000387 return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
388}
389
Chris Lattnerf43e9742005-05-07 04:08:02 +0000390/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
391/// only used by an add, transform this into (X+(0-Y)) to promote better
392/// reassociation.
393static Instruction *BreakUpSubtract(Instruction *Sub) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000394 // Don't bother to break this up unless either the LHS is an associable add or
395 // if this is only used by one.
396 if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
397 !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
398 !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
399 return 0;
400
401 // Convert a subtract into an add and a neg instruction... so that sub
402 // instructions can be commuted with other add instructions...
403 //
404 // Calculate the negative value of Operand 1 of the sub instruction...
405 // and set it as the RHS of the add instruction we just made...
406 //
407 std::string Name = Sub->getName();
408 Sub->setName("");
409 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
410 Instruction *New =
411 BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
412
413 // Everyone now refers to the add instruction.
414 Sub->replaceAllUsesWith(New);
415 Sub->eraseFromParent();
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000416
Bill Wendling22e978a2006-12-07 20:04:42 +0000417 DOUT << "Negated: " << *New;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000418 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000419}
420
Chris Lattnercea57992005-05-07 04:24:13 +0000421/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
422/// by one, change this into a multiply by a constant to assist with further
423/// reassociation.
424static Instruction *ConvertShiftToMul(Instruction *Shl) {
Chris Lattnerd6bde462006-03-14 06:55:18 +0000425 // If an operand of this shift is a reassociable multiply, or if the shift
426 // is used by a reassociable multiply or add, turn into a multiply.
427 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
428 (Shl->hasOneUse() &&
429 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
430 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
431 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
432 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
433
434 std::string Name = Shl->getName(); Shl->setName("");
435 Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
436 Name, Shl);
437 Shl->replaceAllUsesWith(Mul);
438 Shl->eraseFromParent();
439 return Mul;
440 }
441 return 0;
Chris Lattnercea57992005-05-07 04:24:13 +0000442}
443
Chris Lattner5847e5e2005-05-08 18:59:37 +0000444// Scan backwards and forwards among values with the same rank as element i to
445// see if X exists. If X does not exist, return i.
446static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
447 Value *X) {
448 unsigned XRank = Ops[i].Rank;
449 unsigned e = Ops.size();
450 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
451 if (Ops[j].Op == X)
452 return j;
453 // Scan backwards
454 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
455 if (Ops[j].Op == X)
456 return j;
457 return i;
458}
459
Chris Lattner4c065092006-03-04 09:31:13 +0000460/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
461/// and returning the result. Insert the tree before I.
462static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
463 if (Ops.size() == 1) return Ops.back();
464
465 Value *V1 = Ops.back();
466 Ops.pop_back();
467 Value *V2 = EmitAddTreeOfValues(I, Ops);
468 return BinaryOperator::createAdd(V2, V1, "tmp", I);
469}
470
471/// RemoveFactorFromExpression - If V is an expression tree that is a
472/// multiplication sequence, and if this sequence contains a multiply by Factor,
473/// remove Factor from the tree and return the new tree.
474Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
475 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
476 if (!BO) return 0;
477
478 std::vector<ValueEntry> Factors;
479 LinearizeExprTree(BO, Factors);
480
481 bool FoundFactor = false;
482 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
483 if (Factors[i].Op == Factor) {
484 FoundFactor = true;
485 Factors.erase(Factors.begin()+i);
486 break;
487 }
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000488 if (!FoundFactor) {
489 // Make sure to restore the operands to the expression tree.
490 RewriteExprTree(BO, Factors);
491 return 0;
492 }
Chris Lattner4c065092006-03-04 09:31:13 +0000493
494 if (Factors.size() == 1) return Factors[0].Op;
495
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000496 RewriteExprTree(BO, Factors);
Chris Lattner4c065092006-03-04 09:31:13 +0000497 return BO;
498}
499
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000500/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
501/// add its operands as factors, otherwise add V to the list of factors.
502static void FindSingleUseMultiplyFactors(Value *V,
503 std::vector<Value*> &Factors) {
504 BinaryOperator *BO;
505 if ((!V->hasOneUse() && !V->use_empty()) ||
506 !(BO = dyn_cast<BinaryOperator>(V)) ||
507 BO->getOpcode() != Instruction::Mul) {
508 Factors.push_back(V);
509 return;
510 }
511
512 // Otherwise, add the LHS and RHS to the list of factors.
513 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
514 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
515}
516
517
Chris Lattner4c065092006-03-04 09:31:13 +0000518
519Value *Reassociate::OptimizeExpression(BinaryOperator *I,
520 std::vector<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +0000521 // Now that we have the linearized expression tree, try to optimize it.
522 // Start by folding any constants that we found.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000523 bool IterateOptimization = false;
Chris Lattner4c065092006-03-04 09:31:13 +0000524 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattnere1850b82005-05-08 00:19:31 +0000525
Chris Lattner4c065092006-03-04 09:31:13 +0000526 unsigned Opcode = I->getOpcode();
527
Chris Lattnere1850b82005-05-08 00:19:31 +0000528 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
529 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
530 Ops.pop_back();
531 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattner4c065092006-03-04 09:31:13 +0000532 return OptimizeExpression(I, Ops);
Chris Lattnere1850b82005-05-08 00:19:31 +0000533 }
534
535 // Check for destructive annihilation due to a constant being used.
Zhou Sheng75b871f2007-01-11 12:24:14 +0000536 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattnere1850b82005-05-08 00:19:31 +0000537 switch (Opcode) {
538 default: break;
539 case Instruction::And:
540 if (CstVal->isNullValue()) { // ... & 0 -> 0
Chris Lattner5847e5e2005-05-08 18:59:37 +0000541 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000542 return CstVal;
Chris Lattnere1850b82005-05-08 00:19:31 +0000543 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
544 Ops.pop_back();
545 }
546 break;
547 case Instruction::Mul:
548 if (CstVal->isNullValue()) { // ... * 0 -> 0
Chris Lattner5847e5e2005-05-08 18:59:37 +0000549 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000550 return CstVal;
Reid Spencere0fc4df2006-10-20 07:07:24 +0000551 } else if (cast<ConstantInt>(CstVal)->getZExtValue() == 1) {
Chris Lattnere1850b82005-05-08 00:19:31 +0000552 Ops.pop_back(); // ... * 1 -> ...
553 }
554 break;
555 case Instruction::Or:
556 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
Chris Lattner5847e5e2005-05-08 18:59:37 +0000557 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000558 return CstVal;
Chris Lattnere1850b82005-05-08 00:19:31 +0000559 }
560 // FALLTHROUGH!
561 case Instruction::Add:
562 case Instruction::Xor:
563 if (CstVal->isNullValue()) // ... [|^+] 0 -> ...
564 Ops.pop_back();
565 break;
566 }
Chris Lattner4c065092006-03-04 09:31:13 +0000567 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattnere1850b82005-05-08 00:19:31 +0000568
569 // Handle destructive annihilation do to identities between elements in the
570 // argument list here.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000571 switch (Opcode) {
572 default: break;
573 case Instruction::And:
574 case Instruction::Or:
575 case Instruction::Xor:
576 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
577 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
578 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
579 // First, check for X and ~X in the operand list.
Chris Lattnerd1325da2005-09-02 05:23:22 +0000580 assert(i < Ops.size());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000581 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
582 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
583 unsigned FoundX = FindInOperandList(Ops, i, X);
584 if (FoundX != i) {
585 if (Opcode == Instruction::And) { // ...&X&~X = 0
Chris Lattner5847e5e2005-05-08 18:59:37 +0000586 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000587 return Constant::getNullValue(X->getType());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000588 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
Chris Lattner5847e5e2005-05-08 18:59:37 +0000589 ++NumAnnihil;
Zhou Sheng75b871f2007-01-11 12:24:14 +0000590 return ConstantInt::getAllOnesValue(X->getType());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000591 }
592 }
593 }
594
595 // Next, check for duplicate pairs of values, which we assume are next to
596 // each other, due to our sorting criteria.
Chris Lattnerd1325da2005-09-02 05:23:22 +0000597 assert(i < Ops.size());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000598 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
599 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
600 // Drop duplicate values.
601 Ops.erase(Ops.begin()+i);
602 --i; --e;
603 IterateOptimization = true;
604 ++NumAnnihil;
605 } else {
606 assert(Opcode == Instruction::Xor);
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000607 if (e == 2) {
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000608 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000609 return Constant::getNullValue(Ops[0].Op->getType());
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000610 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000611 // ... X^X -> ...
612 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000613 i -= 1; e -= 2;
Chris Lattner5847e5e2005-05-08 18:59:37 +0000614 IterateOptimization = true;
615 ++NumAnnihil;
616 }
617 }
618 }
619 break;
620
621 case Instruction::Add:
622 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner4c065092006-03-04 09:31:13 +0000623 // can simplify the expression. X+-X == 0.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000624 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattnerd1325da2005-09-02 05:23:22 +0000625 assert(i < Ops.size());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000626 // Check for X and -X in the operand list.
627 if (BinaryOperator::isNeg(Ops[i].Op)) {
628 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
629 unsigned FoundX = FindInOperandList(Ops, i, X);
630 if (FoundX != i) {
631 // Remove X and -X from the operand list.
632 if (Ops.size() == 2) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000633 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000634 return Constant::getNullValue(X->getType());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000635 } else {
636 Ops.erase(Ops.begin()+i);
Chris Lattnerd1325da2005-09-02 05:23:22 +0000637 if (i < FoundX)
638 --FoundX;
639 else
640 --i; // Need to back up an extra one.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000641 Ops.erase(Ops.begin()+FoundX);
642 IterateOptimization = true;
643 ++NumAnnihil;
Chris Lattnerd1325da2005-09-02 05:23:22 +0000644 --i; // Revisit element.
645 e -= 2; // Removed two elements.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000646 }
647 }
648 }
649 }
Chris Lattner4c065092006-03-04 09:31:13 +0000650
651
652 // Scan the operand list, checking to see if there are any common factors
653 // between operands. Consider something like A*A+A*B*C+D. We would like to
654 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
655 // To efficiently find this, we count the number of times a factor occurs
656 // for any ADD operands that are MULs.
657 std::map<Value*, unsigned> FactorOccurrences;
658 unsigned MaxOcc = 0;
659 Value *MaxOccVal = 0;
Reid Spencer2eadb532007-01-21 00:29:26 +0000660 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
661 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
662 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
663 // Compute all of the factors of this added value.
664 std::vector<Value*> Factors;
665 FindSingleUseMultiplyFactors(BOp, Factors);
666 assert(Factors.size() > 1 && "Bad linearize!");
667
668 // Add one to FactorOccurrences for each unique factor in this op.
669 if (Factors.size() == 2) {
670 unsigned Occ = ++FactorOccurrences[Factors[0]];
671 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
672 if (Factors[0] != Factors[1]) { // Don't double count A*A.
673 Occ = ++FactorOccurrences[Factors[1]];
674 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
675 }
676 } else {
677 std::set<Value*> Duplicates;
678 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
679 if (Duplicates.insert(Factors[i]).second) {
680 unsigned Occ = ++FactorOccurrences[Factors[i]];
681 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
Chris Lattner4c065092006-03-04 09:31:13 +0000682 }
Chris Lattner4c065092006-03-04 09:31:13 +0000683 }
684 }
Reid Spencer2eadb532007-01-21 00:29:26 +0000685 }
Chris Lattner4c065092006-03-04 09:31:13 +0000686 }
687 }
688
689 // If any factor occurred more than one time, we can pull it out.
690 if (MaxOcc > 1) {
Bill Wendling22e978a2006-12-07 20:04:42 +0000691 DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
Chris Lattner4c065092006-03-04 09:31:13 +0000692
693 // Create a new instruction that uses the MaxOccVal twice. If we don't do
694 // this, we could otherwise run into situations where removing a factor
695 // from an expression will drop a use of maxocc, and this can cause
696 // RemoveFactorFromExpression on successive values to behave differently.
697 Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
698 std::vector<Value*> NewMulOps;
699 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
700 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
701 NewMulOps.push_back(V);
702 Ops.erase(Ops.begin()+i);
703 --i; --e;
704 }
705 }
706
707 // No need for extra uses anymore.
708 delete DummyInst;
709
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000710 unsigned NumAddedValues = NewMulOps.size();
Chris Lattner4c065092006-03-04 09:31:13 +0000711 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000712 Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
Chris Lattner4c065092006-03-04 09:31:13 +0000713
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000714 // Now that we have inserted V and its sole use, optimize it. This allows
715 // us to handle cases that require multiple factoring steps, such as this:
716 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
717 if (NumAddedValues > 1)
718 ReassociateExpression(cast<BinaryOperator>(V));
719
Chris Lattner4c065092006-03-04 09:31:13 +0000720 ++NumFactor;
721
722 if (Ops.size() == 0)
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000723 return V2;
Chris Lattner4c065092006-03-04 09:31:13 +0000724
725 // Add the new value to the list of things being added.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000726 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
Chris Lattner4c065092006-03-04 09:31:13 +0000727
728 // Rewrite the tree so that there is now a use of V.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000729 RewriteExprTree(I, Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000730 return OptimizeExpression(I, Ops);
731 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000732 break;
733 //case Instruction::Mul:
734 }
735
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000736 if (IterateOptimization)
Chris Lattner4c065092006-03-04 09:31:13 +0000737 return OptimizeExpression(I, Ops);
738 return 0;
Chris Lattnere1850b82005-05-08 00:19:31 +0000739}
740
Chris Lattner7bc532d2002-05-16 04:37:07 +0000741
Chris Lattnerf43e9742005-05-07 04:08:02 +0000742/// ReassociateBB - Inspect all of the instructions in this basic block,
743/// reassociating them as we go.
Chris Lattner1e506502005-05-07 21:59:39 +0000744void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattner4c065092006-03-04 09:31:13 +0000745 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
746 Instruction *BI = BBI++;
Chris Lattner31c667e2005-05-10 03:39:25 +0000747 if (BI->getOpcode() == Instruction::Shl &&
748 isa<ConstantInt>(BI->getOperand(1)))
749 if (Instruction *NI = ConvertShiftToMul(BI)) {
750 MadeChange = true;
751 BI = NI;
752 }
753
Chris Lattnerc4f8e2b2005-05-08 21:33:47 +0000754 // Reject cases where it is pointless to do this.
Reid Spencer266e42b2006-12-23 06:05:41 +0000755 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
Chris Lattnere63d8082006-04-28 04:14:49 +0000756 isa<PackedType>(BI->getType()))
Chris Lattnerc4f8e2b2005-05-08 21:33:47 +0000757 continue; // Floating point ops are not associative.
758
Chris Lattnerf43e9742005-05-07 04:08:02 +0000759 // If this is a subtract instruction which is not already in negate form,
760 // see if we can convert it to X+-Y.
Chris Lattner877b1142005-05-08 21:28:52 +0000761 if (BI->getOpcode() == Instruction::Sub) {
762 if (!BinaryOperator::isNeg(BI)) {
763 if (Instruction *NI = BreakUpSubtract(BI)) {
764 MadeChange = true;
765 BI = NI;
766 }
767 } else {
768 // Otherwise, this is a negation. See if the operand is a multiply tree
769 // and if this is not an inner node of a multiply tree.
770 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
771 (!BI->hasOneUse() ||
772 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
773 BI = LowerNegateToMultiply(BI);
774 MadeChange = true;
775 }
Chris Lattnerf43e9742005-05-07 04:08:02 +0000776 }
Chris Lattner877b1142005-05-08 21:28:52 +0000777 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000778
Chris Lattner1e506502005-05-07 21:59:39 +0000779 // If this instruction is a commutative binary operator, process it.
780 if (!BI->isAssociative()) continue;
781 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000782
Chris Lattner1e506502005-05-07 21:59:39 +0000783 // If this is an interior node of a reassociable tree, ignore it until we
784 // get to the root of the tree, to avoid N^2 analysis.
785 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
786 continue;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000787
Chris Lattnerb5e381a2005-09-02 07:07:58 +0000788 // If this is an add tree that is used by a sub instruction, ignore it
789 // until we process the subtract.
790 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
791 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
792 continue;
793
Chris Lattner2fc319d2006-03-14 07:11:11 +0000794 ReassociateExpression(I);
795 }
796}
Chris Lattner1e506502005-05-07 21:59:39 +0000797
Chris Lattner2fc319d2006-03-14 07:11:11 +0000798void Reassociate::ReassociateExpression(BinaryOperator *I) {
799
800 // First, walk the expression tree, linearizing the tree, collecting
801 std::vector<ValueEntry> Ops;
802 LinearizeExprTree(I, Ops);
803
Bill Wendling22e978a2006-12-07 20:04:42 +0000804 DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
Chris Lattner2fc319d2006-03-14 07:11:11 +0000805
806 // Now that we have linearized the tree to a list and have gathered all of
807 // the operands and their ranks, sort the operands by their rank. Use a
808 // stable_sort so that values with equal ranks will have their relative
809 // positions maintained (and so the compiler is deterministic). Note that
810 // this sorts so that the highest ranking values end up at the beginning of
811 // the vector.
812 std::stable_sort(Ops.begin(), Ops.end());
813
814 // OptimizeExpression - Now that we have the expression tree in a convenient
815 // sorted form, optimize it globally if possible.
816 if (Value *V = OptimizeExpression(I, Ops)) {
817 // This expression tree simplified to something that isn't a tree,
818 // eliminate it.
Bill Wendling22e978a2006-12-07 20:04:42 +0000819 DOUT << "Reassoc to scalar: " << *V << "\n";
Chris Lattner2fc319d2006-03-14 07:11:11 +0000820 I->replaceAllUsesWith(V);
821 RemoveDeadBinaryOp(I);
822 return;
823 }
824
825 // We want to sink immediates as deeply as possible except in the case where
826 // this is a multiply tree used only by an add, and the immediate is a -1.
827 // In this case we reassociate to put the negation on the outside so that we
828 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
829 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
830 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
831 isa<ConstantInt>(Ops.back().Op) &&
832 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
833 Ops.insert(Ops.begin(), Ops.back());
834 Ops.pop_back();
835 }
836
Bill Wendling22e978a2006-12-07 20:04:42 +0000837 DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
Chris Lattner2fc319d2006-03-14 07:11:11 +0000838
839 if (Ops.size() == 1) {
840 // This expression tree simplified to something that isn't a tree,
841 // eliminate it.
842 I->replaceAllUsesWith(Ops[0].Op);
843 RemoveDeadBinaryOp(I);
844 } else {
845 // Now that we ordered and optimized the expressions, splat them back into
846 // the expression tree, removing any unneeded nodes.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000847 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000848 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000849}
850
851
Chris Lattner113f4f42002-06-25 16:13:24 +0000852bool Reassociate::runOnFunction(Function &F) {
Chris Lattnerc0f58002002-05-08 22:19:27 +0000853 // Recalculate the rank map for F
854 BuildRankMap(F);
855
Chris Lattner1e506502005-05-07 21:59:39 +0000856 MadeChange = false;
Chris Lattner113f4f42002-06-25 16:13:24 +0000857 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattner1e506502005-05-07 21:59:39 +0000858 ReassociateBB(FI);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000859
860 // We are done with the rank map...
861 RankMap.clear();
Chris Lattner8ac196d2003-08-13 16:16:26 +0000862 ValueRankMap.clear();
Chris Lattner1e506502005-05-07 21:59:39 +0000863 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000864}
Brian Gaeke960707c2003-11-11 22:41:34 +0000865