blob: 3eab719fa3b74497ee740ce6d58ba048e199c770 [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
Nico Weber432a3882018-04-30 14:59:11 +000030#include "llvm/Config/llvm-config.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000031#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000032#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CallSite.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000034#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000035#include "llvm/IR/Function.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000038#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000039#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000040#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000041#include "llvm/IR/PassManager.h"
42#include "llvm/IR/Use.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/AtomicOrdering.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000048#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000049#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000050#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000051#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000052#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000053#include <cassert>
54#include <iterator>
55#include <memory>
56#include <utility>
57
58using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000059
60#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000061
Geoff Berryefb0dd12016-06-14 21:19:40 +000062INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000063 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000064INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000066INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000068
Chad Rosier232e29e2016-07-06 21:20:47 +000069INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70 "Memory SSA Printer", false, false)
71INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73 "Memory SSA Printer", false, false)
74
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000075static cl::opt<unsigned> MaxCheckLimit(
76 "memssa-check-limit", cl::Hidden, cl::init(100),
77 cl::desc("The maximum number of stores/phis MemorySSA"
78 "will consider trying to walk past (default = 100)"));
79
Alina Sbirleacc2e8cc2018-08-15 17:34:55 +000080// Always verify MemorySSA if expensive checking is enabled.
81#ifdef EXPENSIVE_CHECKS
82bool llvm::VerifyMemorySSA = true;
83#else
84bool llvm::VerifyMemorySSA = false;
85#endif
86static cl::opt<bool, true>
87 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
88 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
Chad Rosier232e29e2016-07-06 21:20:47 +000089
George Burgess IVe1100f52016-02-02 22:46:49 +000090namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000091
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000092/// An assembly annotator class to print Memory SSA information in
George Burgess IVe1100f52016-02-02 22:46:49 +000093/// comments.
94class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
95 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000096
George Burgess IVe1100f52016-02-02 22:46:49 +000097 const MemorySSA *MSSA;
98
99public:
100 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
101
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000102 void emitBasicBlockStartAnnot(const BasicBlock *BB,
103 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000104 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
105 OS << "; " << *MA << "\n";
106 }
107
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000108 void emitInstructionAnnot(const Instruction *I,
109 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000110 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
111 OS << "; " << *MA << "\n";
112 }
113};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000114
115} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000116
George Burgess IV5f308972016-07-19 01:29:15 +0000117namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000118
Daniel Berlindff31de2016-08-02 21:57:52 +0000119/// Our current alias analysis API differentiates heavily between calls and
120/// non-calls, and functions called on one usually assert on the other.
121/// This class encapsulates the distinction to simplify other code that wants
122/// "Memory affecting instructions and related data" to use as a key.
123/// For example, this class is used as a densemap key in the use optimizer.
124class MemoryLocOrCall {
125public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000126 bool IsCall = false;
127
128 MemoryLocOrCall() = default;
Daniel Berlindff31de2016-08-02 21:57:52 +0000129 MemoryLocOrCall(MemoryUseOrDef *MUD)
130 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000131 MemoryLocOrCall(const MemoryUseOrDef *MUD)
132 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000133
134 MemoryLocOrCall(Instruction *Inst) {
135 if (ImmutableCallSite(Inst)) {
136 IsCall = true;
137 CS = ImmutableCallSite(Inst);
138 } else {
139 IsCall = false;
140 // There is no such thing as a memorylocation for a fence inst, and it is
141 // unique in that regard.
142 if (!isa<FenceInst>(Inst))
143 Loc = MemoryLocation::get(Inst);
144 }
145 }
146
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000147 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000148
Daniel Berlindff31de2016-08-02 21:57:52 +0000149 ImmutableCallSite getCS() const {
150 assert(IsCall);
151 return CS;
152 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000153
Daniel Berlindff31de2016-08-02 21:57:52 +0000154 MemoryLocation getLoc() const {
155 assert(!IsCall);
156 return Loc;
157 }
158
159 bool operator==(const MemoryLocOrCall &Other) const {
160 if (IsCall != Other.IsCall)
161 return false;
162
George Burgess IV3588fd42018-03-29 00:54:39 +0000163 if (!IsCall)
164 return Loc == Other.Loc;
165
166 if (CS.getCalledValue() != Other.CS.getCalledValue())
167 return false;
168
George Burgess IVaf0b06f2018-03-29 03:12:03 +0000169 return CS.arg_size() == Other.CS.arg_size() &&
170 std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
Daniel Berlindff31de2016-08-02 21:57:52 +0000171 }
172
173private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000174 union {
Daniel Berlind602e042017-01-25 20:56:19 +0000175 ImmutableCallSite CS;
176 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000177 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000178};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000179
180} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000181
182namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000183
Daniel Berlindff31de2016-08-02 21:57:52 +0000184template <> struct DenseMapInfo<MemoryLocOrCall> {
185 static inline MemoryLocOrCall getEmptyKey() {
186 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
187 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000188
Daniel Berlindff31de2016-08-02 21:57:52 +0000189 static inline MemoryLocOrCall getTombstoneKey() {
190 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
191 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000192
Daniel Berlindff31de2016-08-02 21:57:52 +0000193 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
George Burgess IV3588fd42018-03-29 00:54:39 +0000194 if (!MLOC.IsCall)
195 return hash_combine(
196 MLOC.IsCall,
197 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
198
199 hash_code hash =
200 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
201 MLOC.getCS().getCalledValue()));
202
203 for (const Value *Arg : MLOC.getCS().args())
204 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
205 return hash;
Daniel Berlindff31de2016-08-02 21:57:52 +0000206 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000207
Daniel Berlindff31de2016-08-02 21:57:52 +0000208 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
209 return LHS == RHS;
210 }
211};
Daniel Berlindf101192016-08-03 00:01:46 +0000212
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000213} // end namespace llvm
214
George Burgess IV82e355c2016-08-03 19:39:54 +0000215/// This does one-way checks to see if Use could theoretically be hoisted above
216/// MayClobber. This will not check the other way around.
217///
218/// This assumes that, for the purposes of MemorySSA, Use comes directly after
219/// MayClobber, with no potentially clobbering operations in between them.
220/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000221static bool areLoadsReorderable(const LoadInst *Use,
222 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000223 bool VolatileUse = Use->isVolatile();
224 bool VolatileClobber = MayClobber->isVolatile();
225 // Volatile operations may never be reordered with other volatile operations.
226 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000227 return false;
228 // Otherwise, volatile doesn't matter here. From the language reference:
229 // 'optimizers may change the order of volatile operations relative to
230 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000231
232 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
233 // is weaker, it can be moved above other loads. We just need to be sure that
234 // MayClobber isn't an acquire load, because loads can't be moved above
235 // acquire loads.
236 //
237 // Note that this explicitly *does* allow the free reordering of monotonic (or
238 // weaker) loads of the same address.
239 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
240 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
241 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000242 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000243}
244
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000245namespace {
246
247struct ClobberAlias {
248 bool IsClobber;
249 Optional<AliasResult> AR;
250};
251
252} // end anonymous namespace
253
254// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
255// ignored if IsClobber = false.
256static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
257 const MemoryLocation &UseLoc,
258 const Instruction *UseInst,
259 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000260 Instruction *DefInst = MD->getMemoryInst();
261 assert(DefInst && "Defining instruction not actually an instruction");
Daniel Berlin74603a62017-04-10 18:46:00 +0000262 ImmutableCallSite UseCS(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000263 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000264
Daniel Berlindf101192016-08-03 00:01:46 +0000265 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
266 // These intrinsics will show up as affecting memory, but they are just
George Burgess IVff08c802018-08-10 05:14:43 +0000267 // markers, mostly.
268 //
269 // FIXME: We probably don't actually want MemorySSA to model these at all
270 // (including creating MemoryAccesses for them): we just end up inventing
271 // clobbers where they don't really exist at all. Please see D43269 for
272 // context.
Daniel Berlindf101192016-08-03 00:01:46 +0000273 switch (II->getIntrinsicID()) {
274 case Intrinsic::lifetime_start:
Daniel Berlin74603a62017-04-10 18:46:00 +0000275 if (UseCS)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000276 return {false, NoAlias};
277 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
George Burgess IVff08c802018-08-10 05:14:43 +0000278 return {AR != NoAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000279 case Intrinsic::lifetime_end:
280 case Intrinsic::invariant_start:
281 case Intrinsic::invariant_end:
282 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000283 return {false, NoAlias};
Daniel Berlindf101192016-08-03 00:01:46 +0000284 default:
285 break;
286 }
287 }
288
Hans Wennborg70e22d12017-11-21 18:00:01 +0000289 if (UseCS) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000290 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000291 AR = isMustSet(I) ? MustAlias : MayAlias;
292 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000293 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000294
Alina Sbirleaca741a82017-12-22 19:54:03 +0000295 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
296 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000297 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000298
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000299 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
300 AR = isMustSet(I) ? MustAlias : MayAlias;
301 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000302}
303
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000304static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
305 const MemoryUseOrDef *MU,
306 const MemoryLocOrCall &UseMLOC,
307 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000308 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
309 // to exist while MemoryLocOrCall is pushed through places.
310 if (UseMLOC.IsCall)
311 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
312 AA);
313 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
314 AA);
315}
316
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000317// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000318bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
319 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000320 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000321}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000322
323namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000324
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000325struct UpwardsMemoryQuery {
326 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000327 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000328 // The pointer location we started the query with. This will be empty if
329 // IsCall is true.
330 MemoryLocation StartingLoc;
331 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000332 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000333 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000334 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000335 Optional<AliasResult> AR = MayAlias;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000336
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000337 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000338
339 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
340 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
341 if (!IsCall)
342 StartingLoc = MemoryLocation::get(Inst);
343 }
344};
345
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000346} // end anonymous namespace
347
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000348static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
349 AliasAnalysis &AA) {
350 Instruction *Inst = MD->getMemoryInst();
351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000353 case Intrinsic::lifetime_end:
354 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
355 default:
356 return false;
357 }
358 }
359 return false;
360}
361
362static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
363 const Instruction *I) {
364 // If the memory can't be changed, then loads of the memory can't be
365 // clobbered.
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000366 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000367 AA.pointsToConstantMemory(cast<LoadInst>(I)->
368 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000369}
370
George Burgess IV5f308972016-07-19 01:29:15 +0000371/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
372/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
373///
374/// This is meant to be as simple and self-contained as possible. Because it
375/// uses no cache, etc., it can be relatively expensive.
376///
377/// \param Start The MemoryAccess that we want to walk from.
378/// \param ClobberAt A clobber for Start.
379/// \param StartLoc The MemoryLocation for Start.
380/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to.
381/// \param Query The UpwardsMemoryQuery we used for our search.
382/// \param AA The AliasAnalysis we used for our search.
383static void LLVM_ATTRIBUTE_UNUSED
384checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
385 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
386 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
387 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
388
389 if (MSSA.isLiveOnEntryDef(Start)) {
390 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
391 "liveOnEntry must clobber itself");
392 return;
393 }
394
George Burgess IV5f308972016-07-19 01:29:15 +0000395 bool FoundClobber = false;
396 DenseSet<MemoryAccessPair> VisitedPhis;
397 SmallVector<MemoryAccessPair, 8> Worklist;
398 Worklist.emplace_back(Start, StartLoc);
399 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
400 // is found, complain.
401 while (!Worklist.empty()) {
402 MemoryAccessPair MAP = Worklist.pop_back_val();
403 // All we care about is that nothing from Start to ClobberAt clobbers Start.
404 // We learn nothing from revisiting nodes.
405 if (!VisitedPhis.insert(MAP).second)
406 continue;
407
408 for (MemoryAccess *MA : def_chain(MAP.first)) {
409 if (MA == ClobberAt) {
410 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
411 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
412 // since it won't let us short-circuit.
413 //
414 // Also, note that this can't be hoisted out of the `Worklist` loop,
415 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000416 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
417 if (!FoundClobber) {
418 ClobberAlias CA =
419 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
420 if (CA.IsClobber) {
421 FoundClobber = true;
422 // Not used: CA.AR;
423 }
424 }
George Burgess IV5f308972016-07-19 01:29:15 +0000425 }
426 break;
427 }
428
429 // We should never hit liveOnEntry, unless it's the clobber.
430 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
431
432 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
433 (void)MD;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000434 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
435 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000436 "Found clobber before reaching ClobberAt!");
437 continue;
438 }
439
440 assert(isa<MemoryPhi>(MA));
441 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
442 }
443 }
444
445 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
446 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
447 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
448 "ClobberAt never acted as a clobber");
449}
450
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000451namespace {
452
George Burgess IV5f308972016-07-19 01:29:15 +0000453/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
454/// in one class.
455class ClobberWalker {
456 /// Save a few bytes by using unsigned instead of size_t.
457 using ListIndex = unsigned;
458
459 /// Represents a span of contiguous MemoryDefs, potentially ending in a
460 /// MemoryPhi.
461 struct DefPath {
462 MemoryLocation Loc;
463 // Note that, because we always walk in reverse, Last will always dominate
464 // First. Also note that First and Last are inclusive.
465 MemoryAccess *First;
466 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000467 Optional<ListIndex> Previous;
468
469 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
470 Optional<ListIndex> Previous)
471 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
472
473 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
474 Optional<ListIndex> Previous)
475 : DefPath(Loc, Init, Init, Previous) {}
476 };
477
478 const MemorySSA &MSSA;
479 AliasAnalysis &AA;
480 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000481 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000482
483 // Phi optimization bookkeeping
484 SmallVector<DefPath, 32> Paths;
485 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000486
George Burgess IV5f308972016-07-19 01:29:15 +0000487 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000488 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000489 assert(From->getNumOperands() && "Phi with no operands?");
490
491 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000492 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
493 DomTreeNode *Node = DT.getNode(BB);
494 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000495 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
496 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000497 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000498 }
George Burgess IV5f308972016-07-19 01:29:15 +0000499 return Result;
500 }
501
502 /// Result of calling walkToPhiOrClobber.
503 struct UpwardsWalkResult {
504 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000505 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000506 MemoryAccess *Result;
507 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000508 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000509 };
510
511 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
512 /// This will update Desc.Last as it walks. It will (optionally) also stop at
513 /// StopAt.
514 ///
515 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000516 UpwardsWalkResult
517 walkToPhiOrClobber(DefPath &Desc,
518 const MemoryAccess *StopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000519 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
520
521 for (MemoryAccess *Current : def_chain(Desc.Last)) {
522 Desc.Last = Current;
523 if (Current == StopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000524 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000525
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000526 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
527 if (MSSA.isLiveOnEntryDef(MD))
528 return {MD, true, MustAlias};
529 ClobberAlias CA =
530 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
531 if (CA.IsClobber)
532 return {MD, true, CA.AR};
533 }
George Burgess IV5f308972016-07-19 01:29:15 +0000534 }
535
536 assert(isa<MemoryPhi>(Desc.Last) &&
537 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000538 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000539 }
540
541 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
542 ListIndex PriorNode) {
543 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
544 upward_defs_end());
545 for (const MemoryAccessPair &P : UpwardDefs) {
546 PausedSearches.push_back(Paths.size());
547 Paths.emplace_back(P.second, P.first, PriorNode);
548 }
549 }
550
551 /// Represents a search that terminated after finding a clobber. This clobber
552 /// may or may not be present in the path of defs from LastNode..SearchStart,
553 /// since it may have been retrieved from cache.
554 struct TerminatedPath {
555 MemoryAccess *Clobber;
556 ListIndex LastNode;
557 };
558
559 /// Get an access that keeps us from optimizing to the given phi.
560 ///
561 /// PausedSearches is an array of indices into the Paths array. Its incoming
562 /// value is the indices of searches that stopped at the last phi optimization
563 /// target. It's left in an unspecified state.
564 ///
565 /// If this returns None, NewPaused is a vector of searches that terminated
566 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000567 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000568 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000569 SmallVectorImpl<ListIndex> &PausedSearches,
570 SmallVectorImpl<ListIndex> &NewPaused,
571 SmallVectorImpl<TerminatedPath> &Terminated) {
572 assert(!PausedSearches.empty() && "No searches to continue?");
573
574 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
575 // PausedSearches as our stack.
576 while (!PausedSearches.empty()) {
577 ListIndex PathIndex = PausedSearches.pop_back_val();
578 DefPath &Node = Paths[PathIndex];
579
580 // If we've already visited this path with this MemoryLocation, we don't
581 // need to do so again.
582 //
583 // NOTE: That we just drop these paths on the ground makes caching
584 // behavior sporadic. e.g. given a diamond:
585 // A
586 // B C
587 // D
588 //
589 // ...If we walk D, B, A, C, we'll only cache the result of phi
590 // optimization for A, B, and D; C will be skipped because it dies here.
591 // This arguably isn't the worst thing ever, since:
592 // - We generally query things in a top-down order, so if we got below D
593 // without needing cache entries for {C, MemLoc}, then chances are
594 // that those cache entries would end up ultimately unused.
595 // - We still cache things for A, so C only needs to walk up a bit.
596 // If this behavior becomes problematic, we can fix without a ton of extra
597 // work.
598 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
599 continue;
600
601 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
602 if (Res.IsKnownClobber) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000603 assert(Res.Result != StopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000604 // If this wasn't a cache hit, we hit a clobber when walking. That's a
605 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000606 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000607 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000608 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000609
610 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000611 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000612 continue;
613 }
614
615 if (Res.Result == StopWhere) {
616 // We've hit our target. Save this path off for if we want to continue
617 // walking.
618 NewPaused.push_back(PathIndex);
619 continue;
620 }
621
622 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
623 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
624 }
625
626 return None;
627 }
628
629 template <typename T, typename Walker>
630 struct generic_def_path_iterator
631 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
632 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000633 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000634 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
635
636 T &operator*() const { return curNode(); }
637
638 generic_def_path_iterator &operator++() {
639 N = curNode().Previous;
640 return *this;
641 }
642
643 bool operator==(const generic_def_path_iterator &O) const {
644 if (N.hasValue() != O.N.hasValue())
645 return false;
646 return !N.hasValue() || *N == *O.N;
647 }
648
649 private:
650 T &curNode() const { return W->Paths[*N]; }
651
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000652 Walker *W = nullptr;
653 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000654 };
655
656 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
657 using const_def_path_iterator =
658 generic_def_path_iterator<const DefPath, const ClobberWalker>;
659
660 iterator_range<def_path_iterator> def_path(ListIndex From) {
661 return make_range(def_path_iterator(this, From), def_path_iterator());
662 }
663
664 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
665 return make_range(const_def_path_iterator(this, From),
666 const_def_path_iterator());
667 }
668
669 struct OptznResult {
670 /// The path that contains our result.
671 TerminatedPath PrimaryClobber;
672 /// The paths that we can legally cache back from, but that aren't
673 /// necessarily the result of the Phi optimization.
674 SmallVector<TerminatedPath, 4> OtherClobbers;
675 };
676
677 ListIndex defPathIndex(const DefPath &N) const {
678 // The assert looks nicer if we don't need to do &N
679 const DefPath *NP = &N;
680 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
681 "Out of bounds DefPath!");
682 return NP - &Paths.front();
683 }
684
685 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
686 /// that act as legal clobbers. Note that this won't return *all* clobbers.
687 ///
688 /// Phi optimization algorithm tl;dr:
689 /// - Find the earliest def/phi, A, we can optimize to
690 /// - Find if all paths from the starting memory access ultimately reach A
691 /// - If not, optimization isn't possible.
692 /// - Otherwise, walk from A to another clobber or phi, A'.
693 /// - If A' is a def, we're done.
694 /// - If A' is a phi, try to optimize it.
695 ///
696 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
697 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
698 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
699 const MemoryLocation &Loc) {
700 assert(Paths.empty() && VisitedPhis.empty() &&
701 "Reset the optimization state.");
702
703 Paths.emplace_back(Loc, Start, Phi, None);
704 // Stores how many "valid" optimization nodes we had prior to calling
705 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
706 auto PriorPathsSize = Paths.size();
707
708 SmallVector<ListIndex, 16> PausedSearches;
709 SmallVector<ListIndex, 8> NewPaused;
710 SmallVector<TerminatedPath, 4> TerminatedPaths;
711
712 addSearches(Phi, PausedSearches, 0);
713
714 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
715 // Paths.
716 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
717 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000718 auto Dom = Paths.begin();
719 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
720 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
721 Dom = I;
722 auto Last = Paths.end() - 1;
723 if (Last != Dom)
724 std::iter_swap(Last, Dom);
725 };
726
727 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000728 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000729 assert(!MSSA.isLiveOnEntryDef(Current) &&
730 "liveOnEntry wasn't treated as a clobber?");
731
Daniel Berlind0420312017-04-01 09:01:12 +0000732 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000733 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
734 // optimization for the prior phi.
735 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
736 return MSSA.dominates(P.Clobber, Target);
737 }));
738
739 // FIXME: This is broken, because the Blocker may be reported to be
740 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000741 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000742 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000743 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000744
745 // Find the node we started at. We can't search based on N->Last, since
746 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000747 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000748 return defPathIndex(N) < PriorPathsSize;
749 });
750 assert(Iter != def_path_iterator());
751
752 DefPath &CurNode = *Iter;
753 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000754
755 // Two things:
756 // A. We can't reliably cache all of NewPaused back. Consider a case
757 // where we have two paths in NewPaused; one of which can't optimize
758 // above this phi, whereas the other can. If we cache the second path
759 // back, we'll end up with suboptimal cache entries. We can handle
760 // cases like this a bit better when we either try to find all
761 // clobbers that block phi optimization, or when our cache starts
762 // supporting unfinished searches.
763 // B. We can't reliably cache TerminatedPaths back here without doing
764 // extra checks; consider a case like:
765 // T
766 // / \
767 // D C
768 // \ /
769 // S
770 // Where T is our target, C is a node with a clobber on it, D is a
771 // diamond (with a clobber *only* on the left or right node, N), and
772 // S is our start. Say we walk to D, through the node opposite N
773 // (read: ignoring the clobber), and see a cache entry in the top
774 // node of D. That cache entry gets put into TerminatedPaths. We then
775 // walk up to C (N is later in our worklist), find the clobber, and
776 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
777 // the bottom part of D to the cached clobber, ignoring the clobber
778 // in N. Again, this problem goes away if we start tracking all
779 // blockers for a given phi optimization.
780 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
781 return {Result, {}};
782 }
783
784 // If there's nothing left to search, then all paths led to valid clobbers
785 // that we got from our cache; pick the nearest to the start, and allow
786 // the rest to be cached back.
787 if (NewPaused.empty()) {
788 MoveDominatedPathToEnd(TerminatedPaths);
789 TerminatedPath Result = TerminatedPaths.pop_back_val();
790 return {Result, std::move(TerminatedPaths)};
791 }
792
793 MemoryAccess *DefChainEnd = nullptr;
794 SmallVector<TerminatedPath, 4> Clobbers;
795 for (ListIndex Paused : NewPaused) {
796 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
797 if (WR.IsKnownClobber)
798 Clobbers.push_back({WR.Result, Paused});
799 else
800 // Micro-opt: If we hit the end of the chain, save it.
801 DefChainEnd = WR.Result;
802 }
803
804 if (!TerminatedPaths.empty()) {
805 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
806 // do it now.
807 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000808 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000809 DefChainEnd = MA;
810
811 // If any of the terminated paths don't dominate the phi we'll try to
812 // optimize, we need to figure out what they are and quit.
813 const BasicBlock *ChainBB = DefChainEnd->getBlock();
814 for (const TerminatedPath &TP : TerminatedPaths) {
815 // Because we know that DefChainEnd is as "high" as we can go, we
816 // don't need local dominance checks; BB dominance is sufficient.
817 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
818 Clobbers.push_back(TP);
819 }
820 }
821
822 // If we have clobbers in the def chain, find the one closest to Current
823 // and quit.
824 if (!Clobbers.empty()) {
825 MoveDominatedPathToEnd(Clobbers);
826 TerminatedPath Result = Clobbers.pop_back_val();
827 return {Result, std::move(Clobbers)};
828 }
829
830 assert(all_of(NewPaused,
831 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
832
833 // Because liveOnEntry is a clobber, this must be a phi.
834 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
835
836 PriorPathsSize = Paths.size();
837 PausedSearches.clear();
838 for (ListIndex I : NewPaused)
839 addSearches(DefChainPhi, PausedSearches, I);
840 NewPaused.clear();
841
842 Current = DefChainPhi;
843 }
844 }
845
George Burgess IV5f308972016-07-19 01:29:15 +0000846 void verifyOptResult(const OptznResult &R) const {
847 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
848 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
849 }));
850 }
851
852 void resetPhiOptznState() {
853 Paths.clear();
854 VisitedPhis.clear();
855 }
856
857public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000858 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
859 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000860
George Burgess IV5f308972016-07-19 01:29:15 +0000861 /// Finds the nearest clobber for the given query, optimizing phis if
862 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000863 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000864 Query = &Q;
865
866 MemoryAccess *Current = Start;
867 // This walker pretends uses don't exist. If we're handed one, silently grab
868 // its def. (This has the nice side-effect of ensuring we never cache uses)
869 if (auto *MU = dyn_cast<MemoryUse>(Start))
870 Current = MU->getDefiningAccess();
871
872 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
873 // Fast path for the overly-common case (no crazy phi optimization
874 // necessary)
875 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000876 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000877 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000878 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000879 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000880 } else {
881 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
882 Current, Q.StartingLoc);
883 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000884 resetPhiOptznState();
885 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000886 }
887
George Burgess IV5f308972016-07-19 01:29:15 +0000888#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000889 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000890#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000891 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000892 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000893
894 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000895};
896
897struct RenamePassData {
898 DomTreeNode *DTN;
899 DomTreeNode::const_iterator ChildIt;
900 MemoryAccess *IncomingVal;
901
902 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
903 MemoryAccess *M)
904 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000905
George Burgess IV5f308972016-07-19 01:29:15 +0000906 void swap(RenamePassData &RHS) {
907 std::swap(DTN, RHS.DTN);
908 std::swap(ChildIt, RHS.ChildIt);
909 std::swap(IncomingVal, RHS.IncomingVal);
910 }
911};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000912
913} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000914
915namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000916
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000917/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
George Burgess IV45f263d2018-05-26 02:28:55 +0000918/// longer does caching on its own, but the name has been retained for the
919/// moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000920class MemorySSA::CachingWalker final : public MemorySSAWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000921 ClobberWalker Walker;
George Burgess IV5f308972016-07-19 01:29:15 +0000922
923 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
George Burgess IV5f308972016-07-19 01:29:15 +0000924
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000925public:
926 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000927 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000928
George Burgess IV400ae402016-07-20 19:51:34 +0000929 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000930
George Burgess IV400ae402016-07-20 19:51:34 +0000931 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000932 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
George Burgess IV013fd732016-10-28 19:22:46 +0000933 const MemoryLocation &) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000934 void invalidateInfo(MemoryAccess *) override;
935
Geoff Berrycdf53332016-08-08 17:52:01 +0000936 void verify(const MemorySSA *MSSA) override {
937 MemorySSAWalker::verify(MSSA);
938 Walker.verify(MSSA);
939 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000940};
George Burgess IVe1100f52016-02-02 22:46:49 +0000941
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000942} // end namespace llvm
943
Daniel Berlin78cbd282017-02-20 22:26:03 +0000944void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
945 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000946 // Pass through values to our successors
947 for (const BasicBlock *S : successors(BB)) {
948 auto It = PerBlockAccesses.find(S);
949 // Rename the phi nodes in our successor block
950 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
951 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +0000952 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000953 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +0000954 if (RenameAllUses) {
955 int PhiIndex = Phi->getBasicBlockIndex(BB);
956 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
957 Phi->setIncomingValue(PhiIndex, IncomingVal);
958 } else
959 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +0000960 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000961}
George Burgess IVe1100f52016-02-02 22:46:49 +0000962
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000963/// Rename a single basic block into MemorySSA form.
Daniel Berlin78cbd282017-02-20 22:26:03 +0000964/// Uses the standard SSA renaming algorithm.
965/// \returns The new incoming value.
966MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
967 bool RenameAllUses) {
968 auto It = PerBlockAccesses.find(BB);
969 // Skip most processing if the list is empty.
970 if (It != PerBlockAccesses.end()) {
971 AccessList *Accesses = It->second.get();
972 for (MemoryAccess &L : *Accesses) {
973 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
974 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
975 MUD->setDefiningAccess(IncomingVal);
976 if (isa<MemoryDef>(&L))
977 IncomingVal = &L;
978 } else {
979 IncomingVal = &L;
980 }
981 }
982 }
George Burgess IVe1100f52016-02-02 22:46:49 +0000983 return IncomingVal;
984}
985
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000986/// This is the standard SSA renaming algorithm.
George Burgess IVe1100f52016-02-02 22:46:49 +0000987///
988/// We walk the dominator tree in preorder, renaming accesses, and then filling
989/// in phi nodes in our successors.
990void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +0000991 SmallPtrSetImpl<BasicBlock *> &Visited,
992 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000993 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +0000994 // Skip everything if we already renamed this block and we are skipping.
995 // Note: You can't sink this into the if, because we need it to occur
996 // regardless of whether we skip blocks or not.
997 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
998 if (SkipVisited && AlreadyVisited)
999 return;
1000
1001 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1002 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001003 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +00001004
1005 while (!WorkStack.empty()) {
1006 DomTreeNode *Node = WorkStack.back().DTN;
1007 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1008 IncomingVal = WorkStack.back().IncomingVal;
1009
1010 if (ChildIt == Node->end()) {
1011 WorkStack.pop_back();
1012 } else {
1013 DomTreeNode *Child = *ChildIt;
1014 ++WorkStack.back().ChildIt;
1015 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001016 // Note: You can't sink this into the if, because we need it to occur
1017 // regardless of whether we skip blocks or not.
1018 AlreadyVisited = !Visited.insert(BB).second;
1019 if (SkipVisited && AlreadyVisited) {
1020 // We already visited this during our renaming, which can happen when
1021 // being asked to rename multiple blocks. Figure out the incoming val,
1022 // which is the last def.
1023 // Incoming value can only change if there is a block def, and in that
1024 // case, it's the last block def in the list.
1025 if (auto *BlockDefs = getWritableBlockDefs(BB))
1026 IncomingVal = &*BlockDefs->rbegin();
1027 } else
1028 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1029 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001030 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1031 }
1032 }
1033}
1034
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001035/// This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001036/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1037/// being uses of the live on entry definition.
1038void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1039 assert(!DT->isReachableFromEntry(BB) &&
1040 "Reachable block found while handling unreachable blocks");
1041
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001042 // Make sure phi nodes in our reachable successors end up with a
1043 // LiveOnEntryDef for our incoming edge, even though our block is forward
1044 // unreachable. We could just disconnect these blocks from the CFG fully,
1045 // but we do not right now.
1046 for (const BasicBlock *S : successors(BB)) {
1047 if (!DT->isReachableFromEntry(S))
1048 continue;
1049 auto It = PerBlockAccesses.find(S);
1050 // Rename the phi nodes in our successor block
1051 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1052 continue;
1053 AccessList *Accesses = It->second.get();
1054 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1055 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1056 }
1057
George Burgess IVe1100f52016-02-02 22:46:49 +00001058 auto It = PerBlockAccesses.find(BB);
1059 if (It == PerBlockAccesses.end())
1060 return;
1061
1062 auto &Accesses = It->second;
1063 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1064 auto Next = std::next(AI);
1065 // If we have a phi, just remove it. We are going to replace all
1066 // users with live on entry.
1067 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1068 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1069 else
1070 Accesses->erase(AI);
1071 AI = Next;
1072 }
1073}
1074
Geoff Berryb96d3b22016-06-01 21:30:40 +00001075MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1076 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
George Burgess IV68ac9412018-02-23 23:07:18 +00001077 NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001078 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001079}
1080
George Burgess IVe1100f52016-02-02 22:46:49 +00001081MemorySSA::~MemorySSA() {
1082 // Drop all our references
1083 for (const auto &Pair : PerBlockAccesses)
1084 for (MemoryAccess &MA : *Pair.second)
1085 MA.dropAllReferences();
1086}
1087
Daniel Berlin14300262016-06-21 18:39:20 +00001088MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001089 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1090
1091 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001092 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001093 return Res.first->second.get();
1094}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001095
Daniel Berlind602e042017-01-25 20:56:19 +00001096MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1097 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1098
1099 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001100 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001101 return Res.first->second.get();
1102}
George Burgess IVe1100f52016-02-02 22:46:49 +00001103
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001104namespace llvm {
1105
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001106/// This class is a batch walker of all MemoryUse's in the program, and points
1107/// their defining access at the thing that actually clobbers them. Because it
1108/// is a batch walker that touches everything, it does not operate like the
1109/// other walkers. This walker is basically performing a top-down SSA renaming
1110/// pass, where the version stack is used as the cache. This enables it to be
1111/// significantly more time and memory efficient than using the regular walker,
1112/// which is walking bottom-up.
1113class MemorySSA::OptimizeUses {
1114public:
1115 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1116 DominatorTree *DT)
1117 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1118 Walker = MSSA->getWalker();
1119 }
1120
1121 void optimizeUses();
1122
1123private:
1124 /// This represents where a given memorylocation is in the stack.
1125 struct MemlocStackInfo {
1126 // This essentially is keeping track of versions of the stack. Whenever
1127 // the stack changes due to pushes or pops, these versions increase.
1128 unsigned long StackEpoch;
1129 unsigned long PopEpoch;
1130 // This is the lower bound of places on the stack to check. It is equal to
1131 // the place the last stack walk ended.
1132 // Note: Correctness depends on this being initialized to 0, which densemap
1133 // does
1134 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001135 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001136 // This is where the last walk for this memory location ended.
1137 unsigned long LastKill;
1138 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001139 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001140 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001141
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001142 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1143 SmallVectorImpl<MemoryAccess *> &,
1144 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001145
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001146 MemorySSA *MSSA;
1147 MemorySSAWalker *Walker;
1148 AliasAnalysis *AA;
1149 DominatorTree *DT;
1150};
1151
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001152} // end namespace llvm
1153
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001154/// Optimize the uses in a given block This is basically the SSA renaming
1155/// algorithm, with one caveat: We are able to use a single stack for all
1156/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1157/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1158/// going to be some position in that stack of possible ones.
1159///
1160/// We track the stack positions that each MemoryLocation needs
1161/// to check, and last ended at. This is because we only want to check the
1162/// things that changed since last time. The same MemoryLocation should
1163/// get clobbered by the same store (getModRefInfo does not use invariantness or
1164/// things like this, and if they start, we can modify MemoryLocOrCall to
1165/// include relevant data)
1166void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1167 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1168 SmallVectorImpl<MemoryAccess *> &VersionStack,
1169 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1170
1171 /// If no accesses, nothing to do.
1172 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1173 if (Accesses == nullptr)
1174 return;
1175
1176 // Pop everything that doesn't dominate the current block off the stack,
1177 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001178 while (true) {
1179 assert(
1180 !VersionStack.empty() &&
1181 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001182 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1183 if (DT->dominates(BackBlock, BB))
1184 break;
1185 while (VersionStack.back()->getBlock() == BackBlock)
1186 VersionStack.pop_back();
1187 ++PopEpoch;
1188 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001189
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001190 for (MemoryAccess &MA : *Accesses) {
1191 auto *MU = dyn_cast<MemoryUse>(&MA);
1192 if (!MU) {
1193 VersionStack.push_back(&MA);
1194 ++StackEpoch;
1195 continue;
1196 }
1197
George Burgess IV024f3d22016-08-03 19:57:02 +00001198 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001199 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001200 continue;
1201 }
1202
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001203 MemoryLocOrCall UseMLOC(MU);
1204 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001205 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001206 // stack due to changing blocks. We may have to reset the lower bound or
1207 // last kill info.
1208 if (LocInfo.PopEpoch != PopEpoch) {
1209 LocInfo.PopEpoch = PopEpoch;
1210 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001211 // If the lower bound was in something that no longer dominates us, we
1212 // have to reset it.
1213 // We can't simply track stack size, because the stack may have had
1214 // pushes/pops in the meantime.
1215 // XXX: This is non-optimal, but only is slower cases with heavily
1216 // branching dominator trees. To get the optimal number of queries would
1217 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1218 // the top of that stack dominates us. This does not seem worth it ATM.
1219 // A much cheaper optimization would be to always explore the deepest
1220 // branch of the dominator tree first. This will guarantee this resets on
1221 // the smallest set of blocks.
1222 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001223 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001224 // Reset the lower bound of things to check.
1225 // TODO: Some day we should be able to reset to last kill, rather than
1226 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001227 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001228 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001229 LocInfo.LastKillValid = false;
1230 }
1231 } else if (LocInfo.StackEpoch != StackEpoch) {
1232 // If all that has changed is the StackEpoch, we only have to check the
1233 // new things on the stack, because we've checked everything before. In
1234 // this case, the lower bound of things to check remains the same.
1235 LocInfo.PopEpoch = PopEpoch;
1236 LocInfo.StackEpoch = StackEpoch;
1237 }
1238 if (!LocInfo.LastKillValid) {
1239 LocInfo.LastKill = VersionStack.size() - 1;
1240 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001241 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001242 }
1243
1244 // At this point, we should have corrected last kill and LowerBound to be
1245 // in bounds.
1246 assert(LocInfo.LowerBound < VersionStack.size() &&
1247 "Lower bound out of range");
1248 assert(LocInfo.LastKill < VersionStack.size() &&
1249 "Last kill info out of range");
1250 // In any case, the new upper bound is the top of the stack.
1251 unsigned long UpperBound = VersionStack.size() - 1;
1252
1253 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001254 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1255 << *(MU->getMemoryInst()) << ")"
1256 << " because there are "
1257 << UpperBound - LocInfo.LowerBound
1258 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001259 // Because we did not walk, LastKill is no longer valid, as this may
1260 // have been a kill.
1261 LocInfo.LastKillValid = false;
1262 continue;
1263 }
1264 bool FoundClobberResult = false;
1265 while (UpperBound > LocInfo.LowerBound) {
1266 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1267 // For phis, use the walker, see where we ended up, go there
1268 Instruction *UseInst = MU->getMemoryInst();
1269 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1270 // We are guaranteed to find it or something is wrong
1271 while (VersionStack[UpperBound] != Result) {
1272 assert(UpperBound != 0);
1273 --UpperBound;
1274 }
1275 FoundClobberResult = true;
1276 break;
1277 }
1278
1279 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001280 // If the lifetime of the pointer ends at this instruction, it's live on
1281 // entry.
1282 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1283 // Reset UpperBound to liveOnEntryDef's place in the stack
1284 UpperBound = 0;
1285 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001286 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001287 break;
1288 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001289 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1290 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001291 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001292 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001293 break;
1294 }
1295 --UpperBound;
1296 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001297
1298 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1299
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001300 // At the end of this loop, UpperBound is either a clobber, or lower bound
1301 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1302 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001303 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001304 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1305 LocInfo.AR = None;
1306 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001307 LocInfo.LastKill = UpperBound;
1308 } else {
1309 // Otherwise, we checked all the new ones, and now we know we can get to
1310 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001311 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001312 }
1313 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001314 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001315 }
1316}
1317
1318/// Optimize uses to point to their actual clobbering definitions.
1319void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001320 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001321 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001322 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1323
1324 unsigned long StackEpoch = 1;
1325 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001326 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001327 for (const auto *DomNode : depth_first(DT->getRootNode()))
1328 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1329 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001330}
1331
Daniel Berlin3d512a22016-08-22 19:14:30 +00001332void MemorySSA::placePHINodes(
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001333 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001334 // Determine where our MemoryPhi's should go
1335 ForwardIDFCalculator IDFs(*DT);
1336 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001337 SmallVector<BasicBlock *, 32> IDFBlocks;
1338 IDFs.calculate(IDFBlocks);
1339
1340 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001341 for (auto &BB : IDFBlocks)
1342 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001343}
1344
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001345void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001346 // We create an access to represent "live on entry", for things like
1347 // arguments or users of globals, where the memory they use is defined before
1348 // the beginning of the function. We do not actually insert it into the IR.
1349 // We do not define a live on exit for the immediate uses, and thus our
1350 // semantics do *not* imply that something with no immediate uses can simply
1351 // be removed.
1352 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001353 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1354 &StartingPoint, NextID++));
George Burgess IVe1100f52016-02-02 22:46:49 +00001355
1356 // We maintain lists of memory accesses per-block, trading memory for time. We
1357 // could just look up the memory access for every possible instruction in the
1358 // stream.
1359 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001360 // Go through each block, figure out where defs occur, and chain together all
1361 // the accesses.
1362 for (BasicBlock &B : F) {
Daniel Berlin7898ca62016-02-07 01:52:15 +00001363 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001364 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001365 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001366 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001367 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001368 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001369 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001370
George Burgess IVe1100f52016-02-02 22:46:49 +00001371 if (!Accesses)
1372 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001373 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001374 if (isa<MemoryDef>(MUD)) {
1375 InsertIntoDef = true;
1376 if (!Defs)
1377 Defs = getOrCreateDefsList(&B);
1378 Defs->push_back(*MUD);
1379 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001380 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001381 if (InsertIntoDef)
1382 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001383 }
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001384 placePHINodes(DefiningBlocks);
George Burgess IVe1100f52016-02-02 22:46:49 +00001385
1386 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1387 // filled in with all blocks.
1388 SmallPtrSet<BasicBlock *, 16> Visited;
1389 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1390
George Burgess IV5f308972016-07-19 01:29:15 +00001391 CachingWalker *Walker = getWalkerImpl();
1392
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001393 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001394
George Burgess IVe1100f52016-02-02 22:46:49 +00001395 // Mark the uses in unreachable blocks as live on entry, so that they go
1396 // somewhere.
1397 for (auto &BB : F)
1398 if (!Visited.count(&BB))
1399 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001400}
George Burgess IVe1100f52016-02-02 22:46:49 +00001401
George Burgess IV5f308972016-07-19 01:29:15 +00001402MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1403
1404MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001405 if (Walker)
1406 return Walker.get();
1407
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001408 Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001409 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001410}
1411
Daniel Berlind602e042017-01-25 20:56:19 +00001412// This is a helper function used by the creation routines. It places NewAccess
1413// into the access and defs lists for a given basic block, at the given
1414// insertion point.
1415void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1416 const BasicBlock *BB,
1417 InsertionPlace Point) {
1418 auto *Accesses = getOrCreateAccessList(BB);
1419 if (Point == Beginning) {
1420 // If it's a phi node, it goes first, otherwise, it goes after any phi
1421 // nodes.
1422 if (isa<MemoryPhi>(NewAccess)) {
1423 Accesses->push_front(NewAccess);
1424 auto *Defs = getOrCreateDefsList(BB);
1425 Defs->push_front(*NewAccess);
1426 } else {
1427 auto AI = find_if_not(
1428 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1429 Accesses->insert(AI, NewAccess);
1430 if (!isa<MemoryUse>(NewAccess)) {
1431 auto *Defs = getOrCreateDefsList(BB);
1432 auto DI = find_if_not(
1433 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1434 Defs->insert(DI, *NewAccess);
1435 }
1436 }
1437 } else {
1438 Accesses->push_back(NewAccess);
1439 if (!isa<MemoryUse>(NewAccess)) {
1440 auto *Defs = getOrCreateDefsList(BB);
1441 Defs->push_back(*NewAccess);
1442 }
1443 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001444 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001445}
1446
1447void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1448 AccessList::iterator InsertPt) {
1449 auto *Accesses = getWritableBlockAccesses(BB);
1450 bool WasEnd = InsertPt == Accesses->end();
1451 Accesses->insert(AccessList::iterator(InsertPt), What);
1452 if (!isa<MemoryUse>(What)) {
1453 auto *Defs = getOrCreateDefsList(BB);
1454 // If we got asked to insert at the end, we have an easy job, just shove it
1455 // at the end. If we got asked to insert before an existing def, we also get
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001456 // an iterator. If we got asked to insert before a use, we have to hunt for
Daniel Berlind602e042017-01-25 20:56:19 +00001457 // the next def.
1458 if (WasEnd) {
1459 Defs->push_back(*What);
1460 } else if (isa<MemoryDef>(InsertPt)) {
1461 Defs->insert(InsertPt->getDefsIterator(), *What);
1462 } else {
1463 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1464 ++InsertPt;
1465 // Either we found a def, or we are inserting at the end
1466 if (InsertPt == Accesses->end())
1467 Defs->push_back(*What);
1468 else
1469 Defs->insert(InsertPt->getDefsIterator(), *What);
1470 }
1471 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001472 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001473}
1474
George Burgess IV5676a5d2018-08-22 22:34:38 +00001475void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1476 // Keep it in the lookup tables, remove from the lists
1477 removeFromLists(What, false);
1478
1479 // Note that moving should implicitly invalidate the optimized state of a
1480 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1481 // MemoryDef.
1482 if (auto *MD = dyn_cast<MemoryDef>(What))
1483 MD->resetOptimized();
1484 What->setBlock(BB);
1485}
1486
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001487// Move What before Where in the IR. The end result is that What will belong to
Daniel Berlin60ead052017-01-28 01:23:13 +00001488// the right lists and have the right Block set, but will not otherwise be
1489// correct. It will not have the right defining access, and if it is a def,
1490// things below it will not properly be updated.
1491void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1492 AccessList::iterator Where) {
George Burgess IV5676a5d2018-08-22 22:34:38 +00001493 prepareForMoveTo(What, BB);
Daniel Berlin60ead052017-01-28 01:23:13 +00001494 insertIntoListsBefore(What, BB, Where);
1495}
1496
Alina Sbirlea0f533552018-07-11 22:11:46 +00001497void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001498 InsertionPlace Point) {
Alina Sbirlea0f533552018-07-11 22:11:46 +00001499 if (isa<MemoryPhi>(What)) {
1500 assert(Point == Beginning &&
1501 "Can only move a Phi at the beginning of the block");
1502 // Update lookup table entry
1503 ValueToMemoryAccess.erase(What->getBlock());
1504 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1505 (void)Inserted;
1506 assert(Inserted && "Cannot move a Phi to a block that already has one");
1507 }
1508
George Burgess IV5676a5d2018-08-22 22:34:38 +00001509 prepareForMoveTo(What, BB);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001510 insertIntoListsForBlock(What, BB, Point);
1511}
1512
Daniel Berlin14300262016-06-21 18:39:20 +00001513MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1514 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001515 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001516 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001517 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001518 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001519 return Phi;
1520}
1521
1522MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1523 MemoryAccess *Definition) {
1524 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1525 MemoryUseOrDef *NewAccess = createNewAccess(I);
1526 assert(
1527 NewAccess != nullptr &&
1528 "Tried to create a memory access for a non-memory touching instruction");
1529 NewAccess->setDefiningAccess(Definition);
1530 return NewAccess;
1531}
1532
Daniel Berlind952cea2017-04-07 01:28:36 +00001533// Return true if the instruction has ordering constraints.
1534// Note specifically that this only considers stores and loads
1535// because others are still considered ModRef by getModRefInfo.
1536static inline bool isOrdered(const Instruction *I) {
1537 if (auto *SI = dyn_cast<StoreInst>(I)) {
1538 if (!SI->isUnordered())
1539 return true;
1540 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1541 if (!LI->isUnordered())
1542 return true;
1543 }
1544 return false;
1545}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001546
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001547/// Helper function to create new memory accesses
Peter Collingbourneffecb142016-05-26 01:19:17 +00001548MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001549 // The assume intrinsic has a control dependency which we model by claiming
1550 // that it writes arbitrarily. Ignore that fake memory dependency here.
1551 // FIXME: Replace this special casing with a more accurate modelling of
1552 // assume's control dependency.
1553 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1554 if (II->getIntrinsicID() == Intrinsic::assume)
1555 return nullptr;
1556
George Burgess IVe1100f52016-02-02 22:46:49 +00001557 // Find out what affect this instruction has on memory.
Alina Sbirlea967e7962017-08-01 00:28:29 +00001558 ModRefInfo ModRef = AA->getModRefInfo(I, None);
Daniel Berlind952cea2017-04-07 01:28:36 +00001559 // The isOrdered check is used to ensure that volatiles end up as defs
1560 // (atomics end up as ModRef right now anyway). Until we separate the
1561 // ordering chain from the memory chain, this enables people to see at least
1562 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1563 // will still give an answer that bypasses other volatile loads. TODO:
1564 // Separate memory aliasing and ordering into two different chains so that we
1565 // can precisely represent both "what memory will this read/write/is clobbered
1566 // by" and "what instructions can I move this past".
Alina Sbirlea63d22502017-12-05 20:12:23 +00001567 bool Def = isModSet(ModRef) || isOrdered(I);
1568 bool Use = isRefSet(ModRef);
George Burgess IVe1100f52016-02-02 22:46:49 +00001569
1570 // It's possible for an instruction to not modify memory at all. During
1571 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001572 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001573 return nullptr;
1574
George Burgess IVb42b7622016-03-11 19:34:03 +00001575 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001576 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001577 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001578 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001579 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001580 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001581 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001582}
1583
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001584/// Returns true if \p Replacer dominates \p Replacee .
George Burgess IVe1100f52016-02-02 22:46:49 +00001585bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1586 const MemoryAccess *Replacee) const {
1587 if (isa<MemoryUseOrDef>(Replacee))
1588 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1589 const auto *MP = cast<MemoryPhi>(Replacee);
1590 // For a phi node, the use occurs in the predecessor block of the phi node.
1591 // Since we may occur multiple times in the phi node, we have to check each
1592 // operand to ensure Replacer dominates each operand where Replacee occurs.
1593 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001594 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001595 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1596 return false;
1597 }
1598 return true;
1599}
1600
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001601/// Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001602void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1603 assert(MA->use_empty() &&
1604 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001605 BlockNumbering.erase(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001606 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001607 MUD->setDefiningAccess(nullptr);
1608 // Invalidate our walker's cache if necessary
1609 if (!isa<MemoryUse>(MA))
1610 Walker->invalidateInfo(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001611
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001612 Value *MemoryInst;
George Burgess IV2cbf9732018-06-22 22:34:07 +00001613 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001614 MemoryInst = MUD->getMemoryInst();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001615 else
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001616 MemoryInst = MA->getBlock();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001617
Daniel Berlin5130cc82016-07-31 21:08:20 +00001618 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1619 if (VMA->second == MA)
1620 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001621}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001622
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001623/// Properly remove \p MA from all of MemorySSA's lists.
Daniel Berlin60ead052017-01-28 01:23:13 +00001624///
1625/// Because of the way the intrusive list and use lists work, it is important to
1626/// do removal in the right order.
1627/// ShouldDelete defaults to true, and will cause the memory access to also be
1628/// deleted, not just removed.
1629void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001630 BasicBlock *BB = MA->getBlock();
Daniel Berlind602e042017-01-25 20:56:19 +00001631 // The access list owns the reference, so we erase it from the non-owning list
1632 // first.
1633 if (!isa<MemoryUse>(MA)) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001634 auto DefsIt = PerBlockDefs.find(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001635 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1636 Defs->remove(*MA);
1637 if (Defs->empty())
1638 PerBlockDefs.erase(DefsIt);
1639 }
1640
Daniel Berlin60ead052017-01-28 01:23:13 +00001641 // The erase call here will delete it. If we don't want it deleted, we call
1642 // remove instead.
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001643 auto AccessIt = PerBlockAccesses.find(BB);
Daniel Berlinada263d2016-06-20 20:21:33 +00001644 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001645 if (ShouldDelete)
1646 Accesses->erase(MA);
1647 else
1648 Accesses->remove(MA);
1649
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001650 if (Accesses->empty()) {
George Burgess IVe0e6e482016-03-02 02:35:04 +00001651 PerBlockAccesses.erase(AccessIt);
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001652 BlockNumberingValid.erase(BB);
1653 }
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001654}
1655
George Burgess IVe1100f52016-02-02 22:46:49 +00001656void MemorySSA::print(raw_ostream &OS) const {
1657 MemorySSAAnnotatedWriter Writer(this);
1658 F.print(OS, &Writer);
1659}
1660
Aaron Ballman615eb472017-10-15 14:32:27 +00001661#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001662LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001663#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001664
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001665void MemorySSA::verifyMemorySSA() const {
1666 verifyDefUses(F);
1667 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001668 verifyOrdering(F);
George Burgess IV97ec6242018-06-25 05:30:36 +00001669 verifyDominationNumbers(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001670 Walker->verify(this);
Daniel Berlin14300262016-06-21 18:39:20 +00001671}
1672
George Burgess IV97ec6242018-06-25 05:30:36 +00001673/// Verify that all of the blocks we believe to have valid domination numbers
1674/// actually have valid domination numbers.
1675void MemorySSA::verifyDominationNumbers(const Function &F) const {
1676#ifndef NDEBUG
1677 if (BlockNumberingValid.empty())
1678 return;
1679
1680 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1681 for (const BasicBlock &BB : F) {
1682 if (!ValidBlocks.count(&BB))
1683 continue;
1684
1685 ValidBlocks.erase(&BB);
1686
1687 const AccessList *Accesses = getBlockAccesses(&BB);
1688 // It's correct to say an empty block has valid numbering.
1689 if (!Accesses)
1690 continue;
1691
1692 // Block numbering starts at 1.
1693 unsigned long LastNumber = 0;
1694 for (const MemoryAccess &MA : *Accesses) {
1695 auto ThisNumberIter = BlockNumbering.find(&MA);
1696 assert(ThisNumberIter != BlockNumbering.end() &&
1697 "MemoryAccess has no domination number in a valid block!");
1698
1699 unsigned long ThisNumber = ThisNumberIter->second;
1700 assert(ThisNumber > LastNumber &&
1701 "Domination numbers should be strictly increasing!");
1702 LastNumber = ThisNumber;
1703 }
1704 }
1705
1706 assert(ValidBlocks.empty() &&
1707 "All valid BasicBlocks should exist in F -- dangling pointers?");
1708#endif
1709}
1710
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001711/// Verify that the order and existence of MemoryAccesses matches the
Daniel Berlin14300262016-06-21 18:39:20 +00001712/// order and existence of memory affecting instructions.
1713void MemorySSA::verifyOrdering(Function &F) const {
1714 // Walk all the blocks, comparing what the lookups think and what the access
1715 // lists think, as well as the order in the blocks vs the order in the access
1716 // lists.
1717 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001718 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001719 for (BasicBlock &B : F) {
1720 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001721 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001722 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001723 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001724 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001725 ActualDefs.push_back(Phi);
1726 }
1727
Daniel Berlin14300262016-06-21 18:39:20 +00001728 for (Instruction &I : B) {
1729 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001730 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1731 "We have memory affecting instructions "
1732 "in this block but they are not in the "
1733 "access list or defs list");
1734 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001735 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001736 if (isa<MemoryDef>(MA))
1737 ActualDefs.push_back(MA);
1738 }
Daniel Berlin14300262016-06-21 18:39:20 +00001739 }
1740 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001741 // accesses and an access list.
1742 // Same with defs.
1743 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001744 continue;
1745 assert(AL->size() == ActualAccesses.size() &&
1746 "We don't have the same number of accesses in the block as on the "
1747 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001748 assert((DL || ActualDefs.size() == 0) &&
1749 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001750 assert((!DL || DL->size() == ActualDefs.size()) &&
1751 "We don't have the same number of defs in the block as on the "
1752 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001753 auto ALI = AL->begin();
1754 auto AAI = ActualAccesses.begin();
1755 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1756 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1757 ++ALI;
1758 ++AAI;
1759 }
1760 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001761 if (DL) {
1762 auto DLI = DL->begin();
1763 auto ADI = ActualDefs.begin();
1764 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1765 assert(&*DLI == *ADI && "Not the same defs in the same order");
1766 ++DLI;
1767 ++ADI;
1768 }
1769 }
1770 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001771 }
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001772}
1773
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001774/// Verify the domination properties of MemorySSA by checking that each
George Burgess IVe1100f52016-02-02 22:46:49 +00001775/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001776void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001777#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001778 for (BasicBlock &B : F) {
1779 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001780 if (MemoryPhi *MP = getMemoryAccess(&B))
1781 for (const Use &U : MP->uses())
1782 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001783
George Burgess IVe1100f52016-02-02 22:46:49 +00001784 for (Instruction &I : B) {
1785 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1786 if (!MD)
1787 continue;
1788
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001789 for (const Use &U : MD->uses())
1790 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001791 }
1792 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001793#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001794}
1795
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001796/// Verify the def-use lists in MemorySSA, by verifying that \p Use
George Burgess IVe1100f52016-02-02 22:46:49 +00001797/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001798void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001799#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001800 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001801 if (!Def)
1802 assert(isLiveOnEntryDef(Use) &&
1803 "Null def but use not point to live on entry def");
1804 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001805 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001806 "Did not find use in def's use list");
1807#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001808}
1809
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001810/// Verify the immediate use information, by walking all the memory
George Burgess IVe1100f52016-02-02 22:46:49 +00001811/// accesses and verifying that, for each use, it appears in the
1812/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001813void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001814 for (BasicBlock &B : F) {
1815 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001816 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001817 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1818 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001819 "Incomplete MemoryPhi Node");
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001820 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001821 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001822 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1823 pred_end(&B) &&
1824 "Incoming phi block not a block predecessor");
1825 }
Daniel Berlin14300262016-06-21 18:39:20 +00001826 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001827
1828 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001829 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1830 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001831 }
1832 }
1833 }
1834}
1835
Daniel Berlin5c46b942016-07-19 22:49:43 +00001836/// Perform a local numbering on blocks so that instruction ordering can be
1837/// determined in constant time.
1838/// TODO: We currently just number in order. If we numbered by N, we could
1839/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1840/// log2(N) sequences of mixed before and after) without needing to invalidate
1841/// the numbering.
1842void MemorySSA::renumberBlock(const BasicBlock *B) const {
1843 // The pre-increment ensures the numbers really start at 1.
1844 unsigned long CurrentNumber = 0;
1845 const AccessList *AL = getBlockAccesses(B);
1846 assert(AL != nullptr && "Asking to renumber an empty block");
1847 for (const auto &I : *AL)
1848 BlockNumbering[&I] = ++CurrentNumber;
1849 BlockNumberingValid.insert(B);
1850}
1851
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001852/// Determine, for two memory accesses in the same block,
George Burgess IVe1100f52016-02-02 22:46:49 +00001853/// whether \p Dominator dominates \p Dominatee.
1854/// \returns True if \p Dominator dominates \p Dominatee.
1855bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1856 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001857 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001858
Daniel Berlin19860302016-07-19 23:08:08 +00001859 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001860 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001861 // A node dominates itself.
1862 if (Dominatee == Dominator)
1863 return true;
1864
1865 // When Dominatee is defined on function entry, it is not dominated by another
1866 // memory access.
1867 if (isLiveOnEntryDef(Dominatee))
1868 return false;
1869
1870 // When Dominator is defined on function entry, it dominates the other memory
1871 // access.
1872 if (isLiveOnEntryDef(Dominator))
1873 return true;
1874
Daniel Berlin5c46b942016-07-19 22:49:43 +00001875 if (!BlockNumberingValid.count(DominatorBlock))
1876 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001877
Daniel Berlin5c46b942016-07-19 22:49:43 +00001878 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1879 // All numbers start with 1
1880 assert(DominatorNum != 0 && "Block was not numbered properly");
1881 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1882 assert(DominateeNum != 0 && "Block was not numbered properly");
1883 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001884}
1885
George Burgess IV5f308972016-07-19 01:29:15 +00001886bool MemorySSA::dominates(const MemoryAccess *Dominator,
1887 const MemoryAccess *Dominatee) const {
1888 if (Dominator == Dominatee)
1889 return true;
1890
1891 if (isLiveOnEntryDef(Dominatee))
1892 return false;
1893
1894 if (Dominator->getBlock() != Dominatee->getBlock())
1895 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1896 return locallyDominates(Dominator, Dominatee);
1897}
1898
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001899bool MemorySSA::dominates(const MemoryAccess *Dominator,
1900 const Use &Dominatee) const {
1901 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1902 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1903 // The def must dominate the incoming block of the phi.
1904 if (UseBB != Dominator->getBlock())
1905 return DT->dominates(Dominator->getBlock(), UseBB);
1906 // If the UseBB and the DefBB are the same, compare locally.
1907 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1908 }
1909 // If it's not a PHI node use, the normal dominates can already handle it.
1910 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1911}
1912
George Burgess IVe1100f52016-02-02 22:46:49 +00001913const static char LiveOnEntryStr[] = "liveOnEntry";
1914
Reid Kleckner96ab8722017-05-18 17:24:10 +00001915void MemoryAccess::print(raw_ostream &OS) const {
1916 switch (getValueID()) {
1917 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1918 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1919 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1920 }
1921 llvm_unreachable("invalid value id");
1922}
1923
George Burgess IVe1100f52016-02-02 22:46:49 +00001924void MemoryDef::print(raw_ostream &OS) const {
1925 MemoryAccess *UO = getDefiningAccess();
1926
George Burgess IVaa283d82018-06-14 19:55:53 +00001927 auto printID = [&OS](MemoryAccess *A) {
1928 if (A && A->getID())
1929 OS << A->getID();
1930 else
1931 OS << LiveOnEntryStr;
1932 };
1933
George Burgess IVe1100f52016-02-02 22:46:49 +00001934 OS << getID() << " = MemoryDef(";
George Burgess IVaa283d82018-06-14 19:55:53 +00001935 printID(UO);
1936 OS << ")";
1937
1938 if (isOptimized()) {
1939 OS << "->";
1940 printID(getOptimized());
1941
1942 if (Optional<AliasResult> AR = getOptimizedAccessType())
1943 OS << " " << *AR;
1944 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001945}
1946
1947void MemoryPhi::print(raw_ostream &OS) const {
1948 bool First = true;
1949 OS << getID() << " = MemoryPhi(";
1950 for (const auto &Op : operands()) {
1951 BasicBlock *BB = getIncomingBlock(Op);
1952 MemoryAccess *MA = cast<MemoryAccess>(Op);
1953 if (!First)
1954 OS << ',';
1955 else
1956 First = false;
1957
1958 OS << '{';
1959 if (BB->hasName())
1960 OS << BB->getName();
1961 else
1962 BB->printAsOperand(OS, false);
1963 OS << ',';
1964 if (unsigned ID = MA->getID())
1965 OS << ID;
1966 else
1967 OS << LiveOnEntryStr;
1968 OS << '}';
1969 }
1970 OS << ')';
1971}
1972
George Burgess IVe1100f52016-02-02 22:46:49 +00001973void MemoryUse::print(raw_ostream &OS) const {
1974 MemoryAccess *UO = getDefiningAccess();
1975 OS << "MemoryUse(";
1976 if (UO && UO->getID())
1977 OS << UO->getID();
1978 else
1979 OS << LiveOnEntryStr;
1980 OS << ')';
George Burgess IVaa283d82018-06-14 19:55:53 +00001981
1982 if (Optional<AliasResult> AR = getOptimizedAccessType())
1983 OS << " " << *AR;
George Burgess IVe1100f52016-02-02 22:46:49 +00001984}
1985
1986void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00001987// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00001988#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00001989 print(dbgs());
1990 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00001991#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001992}
1993
Chad Rosier232e29e2016-07-06 21:20:47 +00001994char MemorySSAPrinterLegacyPass::ID = 0;
1995
1996MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1997 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1998}
1999
2000void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2001 AU.setPreservesAll();
2002 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00002003}
2004
2005bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2006 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2007 MSSA.print(dbgs());
2008 if (VerifyMemorySSA)
2009 MSSA.verifyMemorySSA();
2010 return false;
2011}
2012
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002013AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00002014
Daniel Berlin1e98c042016-09-26 17:22:54 +00002015MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2016 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00002017 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2018 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002019 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002020}
2021
Geoff Berryb96d3b22016-06-01 21:30:40 +00002022PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2023 FunctionAnalysisManager &AM) {
2024 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00002025 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00002026
2027 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00002028}
2029
Geoff Berryb96d3b22016-06-01 21:30:40 +00002030PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2031 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00002032 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002033
2034 return PreservedAnalyses::all();
2035}
2036
2037char MemorySSAWrapperPass::ID = 0;
2038
2039MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2040 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2041}
2042
2043void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2044
2045void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002046 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002047 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2048 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00002049}
2050
Geoff Berryb96d3b22016-06-01 21:30:40 +00002051bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2052 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2053 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2054 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002055 return false;
2056}
2057
Geoff Berryb96d3b22016-06-01 21:30:40 +00002058void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00002059
Geoff Berryb96d3b22016-06-01 21:30:40 +00002060void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002061 MSSA->print(OS);
2062}
2063
George Burgess IVe1100f52016-02-02 22:46:49 +00002064MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2065
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002066MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2067 DominatorTree *D)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002068 : MemorySSAWalker(M), Walker(*M, *A, *D) {}
George Burgess IVe1100f52016-02-02 22:46:49 +00002069
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002070void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +00002071 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2072 MUD->resetOptimized();
Daniel Berlin83fc77b2016-03-01 18:46:54 +00002073}
2074
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002075/// Walk the use-def chains starting at \p MA and find
George Burgess IVe1100f52016-02-02 22:46:49 +00002076/// the MemoryAccess that actually clobbers Loc.
2077///
2078/// \returns our clobbering memory access
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002079MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2080 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
George Burgess IV0034e392018-04-09 23:09:27 +00002081 return Walker.findClobber(StartingAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002082}
2083
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002084MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002085 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002086 if (isa<MemoryPhi>(StartingAccess))
2087 return StartingAccess;
2088
2089 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2090 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2091 return StartingUseOrDef;
2092
2093 Instruction *I = StartingUseOrDef->getMemoryInst();
2094
2095 // Conservatively, fences are always clobbers, so don't perform the walk if we
2096 // hit a fence.
David Majnemera940f362016-07-15 17:19:24 +00002097 if (!ImmutableCallSite(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002098 return StartingUseOrDef;
2099
2100 UpwardsMemoryQuery Q;
2101 Q.OriginalAccess = StartingUseOrDef;
2102 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002103 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002104 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002105
George Burgess IVe1100f52016-02-02 22:46:49 +00002106 // Unlike the other function, do not walk to the def of a def, because we are
2107 // handed something we already believe is the clobbering access.
2108 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2109 ? StartingUseOrDef->getDefiningAccess()
2110 : StartingUseOrDef;
2111
2112 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002113 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2114 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2115 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2116 LLVM_DEBUG(dbgs() << *Clobber << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002117 return Clobber;
2118}
2119
2120MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002121MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2122 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2123 // If this is a MemoryPhi, we can't do anything.
2124 if (!StartingAccess)
2125 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002126
Daniel Berlincd2deac2016-10-20 20:13:45 +00002127 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002128 // Note: Currently, we store the optimized def result in a separate field,
2129 // since we can't use the defining access.
George Burgess IV6f49f4a2018-02-24 00:15:21 +00002130 if (StartingAccess->isOptimized())
2131 return StartingAccess->getOptimized();
Daniel Berlincd2deac2016-10-20 20:13:45 +00002132
George Burgess IV400ae402016-07-20 19:51:34 +00002133 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV5f308972016-07-19 01:29:15 +00002134 UpwardsMemoryQuery Q(I, StartingAccess);
George Burgess IV44477c62018-03-11 04:16:12 +00002135 // We can't sanely do anything with a fence, since they conservatively clobber
2136 // all memory, and have no locations to get pointers from to try to
2137 // disambiguate.
George Burgess IV5f308972016-07-19 01:29:15 +00002138 if (!Q.IsCall && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002139 return StartingAccess;
2140
George Burgess IV024f3d22016-08-03 19:57:02 +00002141 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2142 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002143 StartingAccess->setOptimized(LiveOnEntry);
2144 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002145 return LiveOnEntry;
2146 }
2147
George Burgess IVe1100f52016-02-02 22:46:49 +00002148 // Start with the thing we already think clobbers this location
2149 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2150
2151 // At this point, DefiningAccess may be the live on entry def.
2152 // If it is, we will not get a better result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002153 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
George Burgess IV44477c62018-03-11 04:16:12 +00002154 StartingAccess->setOptimized(DefiningAccess);
2155 StartingAccess->setOptimizedAccessType(None);
George Burgess IVe1100f52016-02-02 22:46:49 +00002156 return DefiningAccess;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002157 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002158
2159 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002160 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2161 LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
2162 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2163 LLVM_DEBUG(dbgs() << *Result << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002164
George Burgess IV44477c62018-03-11 04:16:12 +00002165 StartingAccess->setOptimized(Result);
2166 if (MSSA->isLiveOnEntryDef(Result))
2167 StartingAccess->setOptimizedAccessType(None);
2168 else if (Q.AR == MustAlias)
2169 StartingAccess->setOptimizedAccessType(MustAlias);
George Burgess IVe1100f52016-02-02 22:46:49 +00002170
2171 return Result;
2172}
2173
George Burgess IVe1100f52016-02-02 22:46:49 +00002174MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002175DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002176 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2177 return Use->getDefiningAccess();
2178 return MA;
2179}
2180
2181MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002182 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002183 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2184 return Use->getDefiningAccess();
2185 return StartingAccess;
2186}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002187
2188void MemoryPhi::deleteMe(DerivedUser *Self) {
2189 delete static_cast<MemoryPhi *>(Self);
2190}
2191
2192void MemoryDef::deleteMe(DerivedUser *Self) {
2193 delete static_cast<MemoryDef *>(Self);
2194}
2195
2196void MemoryUse::deleteMe(DerivedUser *Self) {
2197 delete static_cast<MemoryUse *>(Self);
2198}