blob: 805a003f18f8adaead92272e8fefb81c918b37ff [file] [log] [blame]
Karthik Bhat76aa6622015-04-20 04:38:33 +00001//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines common loop utility functions.
11//
12//===----------------------------------------------------------------------===//
13
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000014#include "llvm/Transforms/Utils/LoopUtils.h"
Chandler Carruth4a000882017-06-25 22:45:31 +000015#include "llvm/ADT/ScopeExit.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000016#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/BasicAliasAnalysis.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000018#include "llvm/Analysis/GlobalsModRef.h"
Philip Reamesa21d5f12018-03-15 21:04:28 +000019#include "llvm/Analysis/InstructionSimplify.h"
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000020#include "llvm/Analysis/LoopInfo.h"
Igor Laevskyc3ccf5d2016-10-28 12:57:20 +000021#include "llvm/Analysis/LoopPass.h"
Philip Reames23aed5e2018-03-20 22:45:23 +000022#include "llvm/Analysis/MustExecute.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000023#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000024#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
Elena Demikhovskyc434d092016-05-10 07:33:35 +000025#include "llvm/Analysis/ScalarEvolutionExpander.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000026#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000027#include "llvm/Analysis/TargetTransformInfo.h"
Chad Rosiera097bc62018-02-04 15:42:24 +000028#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000029#include "llvm/IR/Dominators.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000030#include "llvm/IR/Instructions.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000031#include "llvm/IR/Module.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000032#include "llvm/IR/PatternMatch.h"
33#include "llvm/IR/ValueHandle.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000034#include "llvm/Pass.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000035#include "llvm/Support/Debug.h"
Chad Rosiera097bc62018-02-04 15:42:24 +000036#include "llvm/Support/KnownBits.h"
Chandler Carruth4a000882017-06-25 22:45:31 +000037#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000038
39using namespace llvm;
40using namespace llvm::PatternMatch;
41
42#define DEBUG_TYPE "loop-utils"
43
Tyler Nowicki0a913102015-06-16 18:07:34 +000044bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45 SmallPtrSetImpl<Instruction *> &Set) {
Karthik Bhat76aa6622015-04-20 04:38:33 +000046 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
47 if (!Set.count(dyn_cast<Instruction>(*Use)))
48 return false;
49 return true;
50}
51
Chad Rosierc94f8e22015-08-27 14:12:17 +000052bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
53 switch (Kind) {
54 default:
55 break;
56 case RK_IntegerAdd:
57 case RK_IntegerMult:
58 case RK_IntegerOr:
59 case RK_IntegerAnd:
60 case RK_IntegerXor:
61 case RK_IntegerMinMax:
62 return true;
63 }
64 return false;
65}
66
67bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
68 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
69}
70
71bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
72 switch (Kind) {
73 default:
74 break;
75 case RK_IntegerAdd:
76 case RK_IntegerMult:
77 case RK_FloatAdd:
78 case RK_FloatMult:
79 return true;
80 }
81 return false;
82}
83
Chad Rosiera097bc62018-02-04 15:42:24 +000084/// Determines if Phi may have been type-promoted. If Phi has a single user
85/// that ANDs the Phi with a type mask, return the user. RT is updated to
86/// account for the narrower bit width represented by the mask, and the AND
87/// instruction is added to CI.
88static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
89 SmallPtrSetImpl<Instruction *> &Visited,
90 SmallPtrSetImpl<Instruction *> &CI) {
Chad Rosierc94f8e22015-08-27 14:12:17 +000091 if (!Phi->hasOneUse())
92 return Phi;
93
94 const APInt *M = nullptr;
95 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
96
97 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
98 // with a new integer type of the corresponding bit width.
Craig Topper72ee6942017-06-24 06:24:01 +000099 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
Chad Rosierc94f8e22015-08-27 14:12:17 +0000100 int32_t Bits = (*M + 1).exactLogBase2();
101 if (Bits > 0) {
102 RT = IntegerType::get(Phi->getContext(), Bits);
103 Visited.insert(Phi);
104 CI.insert(J);
105 return J;
106 }
107 }
108 return Phi;
109}
110
Chad Rosiera097bc62018-02-04 15:42:24 +0000111/// Compute the minimal bit width needed to represent a reduction whose exit
112/// instruction is given by Exit.
113static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
114 DemandedBits *DB,
115 AssumptionCache *AC,
116 DominatorTree *DT) {
117 bool IsSigned = false;
118 const DataLayout &DL = Exit->getModule()->getDataLayout();
119 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
Chad Rosierc94f8e22015-08-27 14:12:17 +0000120
Chad Rosiera097bc62018-02-04 15:42:24 +0000121 if (DB) {
122 // Use the demanded bits analysis to determine the bits that are live out
123 // of the exit instruction, rounding up to the nearest power of two. If the
124 // use of demanded bits results in a smaller bit width, we know the value
125 // must be positive (i.e., IsSigned = false), because if this were not the
126 // case, the sign bit would have been demanded.
127 auto Mask = DB->getDemandedBits(Exit);
128 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
129 }
Chad Rosierc94f8e22015-08-27 14:12:17 +0000130
Chad Rosiera097bc62018-02-04 15:42:24 +0000131 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
132 // If demanded bits wasn't able to limit the bit width, we can try to use
133 // value tracking instead. This can be the case, for example, if the value
134 // may be negative.
135 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
136 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
137 MaxBitWidth = NumTypeBits - NumSignBits;
138 KnownBits Bits = computeKnownBits(Exit, DL);
139 if (!Bits.isNonNegative()) {
140 // If the value is not known to be non-negative, we set IsSigned to true,
141 // meaning that we will use sext instructions instead of zext
142 // instructions to restore the original type.
143 IsSigned = true;
144 if (!Bits.isNegative())
145 // If the value is not known to be negative, we don't known what the
146 // upper bit is, and therefore, we don't know what kind of extend we
147 // will need. In this case, just increase the bit width by one bit and
148 // use sext.
149 ++MaxBitWidth;
Chad Rosierc94f8e22015-08-27 14:12:17 +0000150 }
151 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000152 if (!isPowerOf2_64(MaxBitWidth))
153 MaxBitWidth = NextPowerOf2(MaxBitWidth);
154
155 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
156 IsSigned);
157}
158
159/// Collect cast instructions that can be ignored in the vectorizer's cost
160/// model, given a reduction exit value and the minimal type in which the
161/// reduction can be represented.
162static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
163 Type *RecurrenceType,
164 SmallPtrSetImpl<Instruction *> &Casts) {
165
166 SmallVector<Instruction *, 8> Worklist;
167 SmallPtrSet<Instruction *, 8> Visited;
168 Worklist.push_back(Exit);
169
170 while (!Worklist.empty()) {
171 Instruction *Val = Worklist.pop_back_val();
172 Visited.insert(Val);
173 if (auto *Cast = dyn_cast<CastInst>(Val))
174 if (Cast->getSrcTy() == RecurrenceType) {
175 // If the source type of a cast instruction is equal to the recurrence
176 // type, it will be eliminated, and should be ignored in the vectorizer
177 // cost model.
178 Casts.insert(Cast);
179 continue;
180 }
181
182 // Add all operands to the work list if they are loop-varying values that
183 // we haven't yet visited.
184 for (Value *O : cast<User>(Val)->operands())
185 if (auto *I = dyn_cast<Instruction>(O))
186 if (TheLoop->contains(I) && !Visited.count(I))
187 Worklist.push_back(I);
188 }
Chad Rosierc94f8e22015-08-27 14:12:17 +0000189}
190
Tyler Nowicki0a913102015-06-16 18:07:34 +0000191bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
192 Loop *TheLoop, bool HasFunNoNaNAttr,
Chad Rosiera097bc62018-02-04 15:42:24 +0000193 RecurrenceDescriptor &RedDes,
194 DemandedBits *DB,
195 AssumptionCache *AC,
196 DominatorTree *DT) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000197 if (Phi->getNumIncomingValues() != 2)
198 return false;
199
200 // Reduction variables are only found in the loop header block.
201 if (Phi->getParent() != TheLoop->getHeader())
202 return false;
203
204 // Obtain the reduction start value from the value that comes from the loop
205 // preheader.
206 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
207
208 // ExitInstruction is the single value which is used outside the loop.
209 // We only allow for a single reduction value to be used outside the loop.
210 // This includes users of the reduction, variables (which form a cycle
211 // which ends in the phi node).
212 Instruction *ExitInstruction = nullptr;
213 // Indicates that we found a reduction operation in our scan.
214 bool FoundReduxOp = false;
215
216 // We start with the PHI node and scan for all of the users of this
217 // instruction. All users must be instructions that can be used as reduction
218 // variables (such as ADD). We must have a single out-of-block user. The cycle
219 // must include the original PHI.
220 bool FoundStartPHI = false;
221
222 // To recognize min/max patterns formed by a icmp select sequence, we store
223 // the number of instruction we saw from the recognized min/max pattern,
224 // to make sure we only see exactly the two instructions.
225 unsigned NumCmpSelectPatternInst = 0;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000226 InstDesc ReduxDesc(false, nullptr);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000227
Chad Rosierc94f8e22015-08-27 14:12:17 +0000228 // Data used for determining if the recurrence has been type-promoted.
229 Type *RecurrenceType = Phi->getType();
230 SmallPtrSet<Instruction *, 4> CastInsts;
231 Instruction *Start = Phi;
232 bool IsSigned = false;
233
Karthik Bhat76aa6622015-04-20 04:38:33 +0000234 SmallPtrSet<Instruction *, 8> VisitedInsts;
235 SmallVector<Instruction *, 8> Worklist;
Chad Rosierc94f8e22015-08-27 14:12:17 +0000236
237 // Return early if the recurrence kind does not match the type of Phi. If the
238 // recurrence kind is arithmetic, we attempt to look through AND operations
239 // resulting from the type promotion performed by InstCombine. Vector
240 // operations are not limited to the legal integer widths, so we may be able
241 // to evaluate the reduction in the narrower width.
242 if (RecurrenceType->isFloatingPointTy()) {
243 if (!isFloatingPointRecurrenceKind(Kind))
244 return false;
245 } else {
246 if (!isIntegerRecurrenceKind(Kind))
247 return false;
248 if (isArithmeticRecurrenceKind(Kind))
249 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
250 }
251
252 Worklist.push_back(Start);
253 VisitedInsts.insert(Start);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000254
255 // A value in the reduction can be used:
256 // - By the reduction:
257 // - Reduction operation:
258 // - One use of reduction value (safe).
259 // - Multiple use of reduction value (not safe).
260 // - PHI:
261 // - All uses of the PHI must be the reduction (safe).
262 // - Otherwise, not safe.
Michael Kuperstein7cefb402017-01-18 19:02:52 +0000263 // - By instructions outside of the loop (safe).
264 // * One value may have several outside users, but all outside
265 // uses must be of the same value.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000266 // - By an instruction that is not part of the reduction (not safe).
267 // This is either:
268 // * An instruction type other than PHI or the reduction operation.
269 // * A PHI in the header other than the initial PHI.
270 while (!Worklist.empty()) {
271 Instruction *Cur = Worklist.back();
272 Worklist.pop_back();
273
274 // No Users.
275 // If the instruction has no users then this is a broken chain and can't be
276 // a reduction variable.
277 if (Cur->use_empty())
278 return false;
279
280 bool IsAPhi = isa<PHINode>(Cur);
281
282 // A header PHI use other than the original PHI.
283 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
284 return false;
285
286 // Reductions of instructions such as Div, and Sub is only possible if the
287 // LHS is the reduction variable.
288 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
289 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
290 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
291 return false;
292
Chad Rosierc94f8e22015-08-27 14:12:17 +0000293 // Any reduction instruction must be of one of the allowed kinds. We ignore
294 // the starting value (the Phi or an AND instruction if the Phi has been
295 // type-promoted).
296 if (Cur != Start) {
297 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
298 if (!ReduxDesc.isRecurrence())
299 return false;
300 }
Karthik Bhat76aa6622015-04-20 04:38:33 +0000301
302 // A reduction operation must only have one use of the reduction value.
303 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
304 hasMultipleUsesOf(Cur, VisitedInsts))
305 return false;
306
307 // All inputs to a PHI node must be a reduction value.
308 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
309 return false;
310
311 if (Kind == RK_IntegerMinMax &&
312 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
313 ++NumCmpSelectPatternInst;
314 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
315 ++NumCmpSelectPatternInst;
316
317 // Check whether we found a reduction operator.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000318 FoundReduxOp |= !IsAPhi && Cur != Start;
Karthik Bhat76aa6622015-04-20 04:38:33 +0000319
320 // Process users of current instruction. Push non-PHI nodes after PHI nodes
321 // onto the stack. This way we are going to have seen all inputs to PHI
322 // nodes once we get to them.
323 SmallVector<Instruction *, 8> NonPHIs;
324 SmallVector<Instruction *, 8> PHIs;
325 for (User *U : Cur->users()) {
326 Instruction *UI = cast<Instruction>(U);
327
328 // Check if we found the exit user.
329 BasicBlock *Parent = UI->getParent();
330 if (!TheLoop->contains(Parent)) {
Michael Kuperstein7cefb402017-01-18 19:02:52 +0000331 // If we already know this instruction is used externally, move on to
332 // the next user.
333 if (ExitInstruction == Cur)
334 continue;
335
336 // Exit if you find multiple values used outside or if the header phi
337 // node is being used. In this case the user uses the value of the
338 // previous iteration, in which case we would loose "VF-1" iterations of
339 // the reduction operation if we vectorize.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000340 if (ExitInstruction != nullptr || Cur == Phi)
341 return false;
342
343 // The instruction used by an outside user must be the last instruction
344 // before we feed back to the reduction phi. Otherwise, we loose VF-1
345 // operations on the value.
David Majnemer42531262016-08-12 03:55:06 +0000346 if (!is_contained(Phi->operands(), Cur))
Karthik Bhat76aa6622015-04-20 04:38:33 +0000347 return false;
348
349 ExitInstruction = Cur;
350 continue;
351 }
352
353 // Process instructions only once (termination). Each reduction cycle
354 // value must only be used once, except by phi nodes and min/max
355 // reductions which are represented as a cmp followed by a select.
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000356 InstDesc IgnoredVal(false, nullptr);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000357 if (VisitedInsts.insert(UI).second) {
358 if (isa<PHINode>(UI))
359 PHIs.push_back(UI);
360 else
361 NonPHIs.push_back(UI);
362 } else if (!isa<PHINode>(UI) &&
363 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
364 !isa<SelectInst>(UI)) ||
Tyler Nowicki0a913102015-06-16 18:07:34 +0000365 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
Karthik Bhat76aa6622015-04-20 04:38:33 +0000366 return false;
367
368 // Remember that we completed the cycle.
369 if (UI == Phi)
370 FoundStartPHI = true;
371 }
372 Worklist.append(PHIs.begin(), PHIs.end());
373 Worklist.append(NonPHIs.begin(), NonPHIs.end());
374 }
375
376 // This means we have seen one but not the other instruction of the
377 // pattern or more than just a select and cmp.
378 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
379 NumCmpSelectPatternInst != 2)
380 return false;
381
382 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
383 return false;
384
Chad Rosiera097bc62018-02-04 15:42:24 +0000385 if (Start != Phi) {
386 // If the starting value is not the same as the phi node, we speculatively
387 // looked through an 'and' instruction when evaluating a potential
388 // arithmetic reduction to determine if it may have been type-promoted.
389 //
390 // We now compute the minimal bit width that is required to represent the
391 // reduction. If this is the same width that was indicated by the 'and', we
392 // can represent the reduction in the smaller type. The 'and' instruction
393 // will be eliminated since it will essentially be a cast instruction that
394 // can be ignore in the cost model. If we compute a different type than we
395 // did when evaluating the 'and', the 'and' will not be eliminated, and we
396 // will end up with different kinds of operations in the recurrence
397 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
398 // the case.
399 //
400 // The vectorizer relies on InstCombine to perform the actual
401 // type-shrinking. It does this by inserting instructions to truncate the
402 // exit value of the reduction to the width indicated by RecurrenceType and
403 // then extend this value back to the original width. If IsSigned is false,
404 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
405 // used.
406 //
407 // TODO: We should not rely on InstCombine to rewrite the reduction in the
408 // smaller type. We should just generate a correctly typed expression
409 // to begin with.
410 Type *ComputedType;
411 std::tie(ComputedType, IsSigned) =
412 computeRecurrenceType(ExitInstruction, DB, AC, DT);
413 if (ComputedType != RecurrenceType)
Chad Rosierc94f8e22015-08-27 14:12:17 +0000414 return false;
415
Chad Rosiera097bc62018-02-04 15:42:24 +0000416 // The recurrence expression will be represented in a narrower type. If
417 // there are any cast instructions that will be unnecessary, collect them
418 // in CastInsts. Note that the 'and' instruction was already included in
419 // this list.
420 //
421 // TODO: A better way to represent this may be to tag in some way all the
422 // instructions that are a part of the reduction. The vectorizer cost
423 // model could then apply the recurrence type to these instructions,
424 // without needing a white list of instructions to ignore.
425 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
426 }
427
Karthik Bhat76aa6622015-04-20 04:38:33 +0000428 // We found a reduction var if we have reached the original phi node and we
429 // only have a single instruction with out-of-loop users.
430
431 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
Tyler Nowicki0a913102015-06-16 18:07:34 +0000432 // is saved as part of the RecurrenceDescriptor.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000433
434 // Save the description of this reduction variable.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000435 RecurrenceDescriptor RD(
436 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
437 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000438 RedDes = RD;
439
440 return true;
441}
442
443/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
444/// pattern corresponding to a min(X, Y) or max(X, Y).
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000445RecurrenceDescriptor::InstDesc
446RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000447
448 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
449 "Expect a select instruction");
450 Instruction *Cmp = nullptr;
451 SelectInst *Select = nullptr;
452
453 // We must handle the select(cmp()) as a single instruction. Advance to the
454 // select.
455 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
456 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000457 return InstDesc(false, I);
458 return InstDesc(Select, Prev.getMinMaxKind());
Karthik Bhat76aa6622015-04-20 04:38:33 +0000459 }
460
461 // Only handle single use cases for now.
462 if (!(Select = dyn_cast<SelectInst>(I)))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000463 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000464 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
465 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000466 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000467 if (!Cmp->hasOneUse())
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000468 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000469
470 Value *CmpLeft;
471 Value *CmpRight;
472
473 // Look for a min/max pattern.
474 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000475 return InstDesc(Select, MRK_UIntMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000476 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000477 return InstDesc(Select, MRK_UIntMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000478 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000479 return InstDesc(Select, MRK_SIntMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000480 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000481 return InstDesc(Select, MRK_SIntMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000482 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000483 return InstDesc(Select, MRK_FloatMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000484 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000485 return InstDesc(Select, MRK_FloatMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000486 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000487 return InstDesc(Select, MRK_FloatMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000488 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000489 return InstDesc(Select, MRK_FloatMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000490
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000491 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000492}
493
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000494RecurrenceDescriptor::InstDesc
Tyler Nowicki0a913102015-06-16 18:07:34 +0000495RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000496 InstDesc &Prev, bool HasFunNoNaNAttr) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000497 bool FP = I->getType()->isFloatingPointTy();
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000498 Instruction *UAI = Prev.getUnsafeAlgebraInst();
Sanjay Patel629c4112017-11-06 16:27:15 +0000499 if (!UAI && FP && !I->isFast())
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000500 UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
501
Karthik Bhat76aa6622015-04-20 04:38:33 +0000502 switch (I->getOpcode()) {
503 default:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000504 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000505 case Instruction::PHI:
Tim Northover10a1e8b2016-05-27 16:40:27 +0000506 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
Karthik Bhat76aa6622015-04-20 04:38:33 +0000507 case Instruction::Sub:
508 case Instruction::Add:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000509 return InstDesc(Kind == RK_IntegerAdd, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000510 case Instruction::Mul:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000511 return InstDesc(Kind == RK_IntegerMult, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000512 case Instruction::And:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000513 return InstDesc(Kind == RK_IntegerAnd, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000514 case Instruction::Or:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000515 return InstDesc(Kind == RK_IntegerOr, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000516 case Instruction::Xor:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000517 return InstDesc(Kind == RK_IntegerXor, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000518 case Instruction::FMul:
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000519 return InstDesc(Kind == RK_FloatMult, I, UAI);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000520 case Instruction::FSub:
521 case Instruction::FAdd:
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000522 return InstDesc(Kind == RK_FloatAdd, I, UAI);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000523 case Instruction::FCmp:
524 case Instruction::ICmp:
525 case Instruction::Select:
526 if (Kind != RK_IntegerMinMax &&
527 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000528 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000529 return isMinMaxSelectCmpPattern(I, Prev);
530 }
531}
532
Tyler Nowicki0a913102015-06-16 18:07:34 +0000533bool RecurrenceDescriptor::hasMultipleUsesOf(
Karthik Bhat76aa6622015-04-20 04:38:33 +0000534 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
535 unsigned NumUses = 0;
536 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
537 ++Use) {
538 if (Insts.count(dyn_cast<Instruction>(*Use)))
539 ++NumUses;
540 if (NumUses > 1)
541 return true;
542 }
543
544 return false;
545}
Tyler Nowicki0a913102015-06-16 18:07:34 +0000546bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
Chad Rosiera097bc62018-02-04 15:42:24 +0000547 RecurrenceDescriptor &RedDes,
548 DemandedBits *DB, AssumptionCache *AC,
549 DominatorTree *DT) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000550
Karthik Bhat76aa6622015-04-20 04:38:33 +0000551 BasicBlock *Header = TheLoop->getHeader();
552 Function &F = *Header->getParent();
Nirav Dave8dd66e52016-03-30 15:41:12 +0000553 bool HasFunNoNaNAttr =
554 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
Karthik Bhat76aa6622015-04-20 04:38:33 +0000555
Chad Rosiera097bc62018-02-04 15:42:24 +0000556 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
557 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000558 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
559 return true;
560 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000561 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
562 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000563 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
564 return true;
565 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000566 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
567 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000568 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
569 return true;
570 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000571 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
572 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000573 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
574 return true;
575 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000576 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
577 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000578 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
579 return true;
580 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000581 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
582 DB, AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000583 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
584 return true;
585 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000586 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
587 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000588 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
589 return true;
590 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000591 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
592 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000593 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
594 return true;
595 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000596 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
597 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000598 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
599 return true;
600 }
601 // Not a reduction of known type.
602 return false;
603}
604
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000605bool RecurrenceDescriptor::isFirstOrderRecurrence(
606 PHINode *Phi, Loop *TheLoop,
607 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
Matthew Simpson29c997c2016-02-19 17:56:08 +0000608
609 // Ensure the phi node is in the loop header and has two incoming values.
610 if (Phi->getParent() != TheLoop->getHeader() ||
611 Phi->getNumIncomingValues() != 2)
612 return false;
613
614 // Ensure the loop has a preheader and a single latch block. The loop
615 // vectorizer will need the latch to set up the next iteration of the loop.
616 auto *Preheader = TheLoop->getLoopPreheader();
617 auto *Latch = TheLoop->getLoopLatch();
618 if (!Preheader || !Latch)
619 return false;
620
621 // Ensure the phi node's incoming blocks are the loop preheader and latch.
622 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
623 Phi->getBasicBlockIndex(Latch) < 0)
624 return false;
625
626 // Get the previous value. The previous value comes from the latch edge while
627 // the initial value comes form the preheader edge.
628 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000629 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
630 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
Matthew Simpson29c997c2016-02-19 17:56:08 +0000631 return false;
632
Anna Thomasdcdb3252017-04-13 18:59:25 +0000633 // Ensure every user of the phi node is dominated by the previous value.
634 // The dominance requirement ensures the loop vectorizer will not need to
635 // vectorize the initial value prior to the first iteration of the loop.
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000636 // TODO: Consider extending this sinking to handle other kinds of instructions
637 // and expressions, beyond sinking a single cast past Previous.
638 if (Phi->hasOneUse()) {
639 auto *I = Phi->user_back();
640 if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
641 DT->dominates(Previous, I->user_back())) {
Ayal Zaks25e28002017-08-15 08:32:59 +0000642 if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
643 SinkAfter[I] = Previous;
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000644 return true;
645 }
646 }
647
Matthew Simpson29c997c2016-02-19 17:56:08 +0000648 for (User *U : Phi->users())
Anna Thomas00dc1b72017-04-11 21:02:00 +0000649 if (auto *I = dyn_cast<Instruction>(U)) {
Matthew Simpson29c997c2016-02-19 17:56:08 +0000650 if (!DT->dominates(Previous, I))
651 return false;
Anna Thomas00dc1b72017-04-11 21:02:00 +0000652 }
Matthew Simpson29c997c2016-02-19 17:56:08 +0000653
654 return true;
655}
656
Karthik Bhat76aa6622015-04-20 04:38:33 +0000657/// This function returns the identity element (or neutral element) for
658/// the operation K.
Tyler Nowicki0a913102015-06-16 18:07:34 +0000659Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
660 Type *Tp) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000661 switch (K) {
662 case RK_IntegerXor:
663 case RK_IntegerAdd:
664 case RK_IntegerOr:
665 // Adding, Xoring, Oring zero to a number does not change it.
666 return ConstantInt::get(Tp, 0);
667 case RK_IntegerMult:
668 // Multiplying a number by 1 does not change it.
669 return ConstantInt::get(Tp, 1);
670 case RK_IntegerAnd:
671 // AND-ing a number with an all-1 value does not change it.
672 return ConstantInt::get(Tp, -1, true);
673 case RK_FloatMult:
674 // Multiplying a number by 1 does not change it.
675 return ConstantFP::get(Tp, 1.0L);
676 case RK_FloatAdd:
677 // Adding zero to a number does not change it.
678 return ConstantFP::get(Tp, 0.0L);
679 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000680 llvm_unreachable("Unknown recurrence kind");
Karthik Bhat76aa6622015-04-20 04:38:33 +0000681 }
682}
683
Tyler Nowicki0a913102015-06-16 18:07:34 +0000684/// This function translates the recurrence kind to an LLVM binary operator.
685unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000686 switch (Kind) {
687 case RK_IntegerAdd:
688 return Instruction::Add;
689 case RK_IntegerMult:
690 return Instruction::Mul;
691 case RK_IntegerOr:
692 return Instruction::Or;
693 case RK_IntegerAnd:
694 return Instruction::And;
695 case RK_IntegerXor:
696 return Instruction::Xor;
697 case RK_FloatMult:
698 return Instruction::FMul;
699 case RK_FloatAdd:
700 return Instruction::FAdd;
701 case RK_IntegerMinMax:
702 return Instruction::ICmp;
703 case RK_FloatMinMax:
704 return Instruction::FCmp;
705 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000706 llvm_unreachable("Unknown recurrence operation");
Karthik Bhat76aa6622015-04-20 04:38:33 +0000707 }
708}
709
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000710Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
711 MinMaxRecurrenceKind RK,
712 Value *Left, Value *Right) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000713 CmpInst::Predicate P = CmpInst::ICMP_NE;
714 switch (RK) {
715 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000716 llvm_unreachable("Unknown min/max recurrence kind");
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000717 case MRK_UIntMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000718 P = CmpInst::ICMP_ULT;
719 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000720 case MRK_UIntMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000721 P = CmpInst::ICMP_UGT;
722 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000723 case MRK_SIntMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000724 P = CmpInst::ICMP_SLT;
725 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000726 case MRK_SIntMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000727 P = CmpInst::ICMP_SGT;
728 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000729 case MRK_FloatMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000730 P = CmpInst::FCMP_OLT;
731 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000732 case MRK_FloatMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000733 P = CmpInst::FCMP_OGT;
734 break;
735 }
736
Sanjay Patel629c4112017-11-06 16:27:15 +0000737 // We only match FP sequences that are 'fast', so we can unconditionally
James Molloy50a4c272015-09-21 19:41:19 +0000738 // set it on any generated instructions.
739 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
740 FastMathFlags FMF;
Sanjay Patel629c4112017-11-06 16:27:15 +0000741 FMF.setFast();
Sanjay Patela2528152016-01-12 18:03:37 +0000742 Builder.setFastMathFlags(FMF);
James Molloy50a4c272015-09-21 19:41:19 +0000743
Karthik Bhat76aa6622015-04-20 04:38:33 +0000744 Value *Cmp;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000745 if (RK == MRK_FloatMin || RK == MRK_FloatMax)
Karthik Bhat76aa6622015-04-20 04:38:33 +0000746 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
747 else
748 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
749
750 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
751 return Select;
752}
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000753
James Molloy1bbf15c2015-08-27 09:53:00 +0000754InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
Dorit Nuzman4750c782017-12-14 07:56:31 +0000755 const SCEV *Step, BinaryOperator *BOp,
756 SmallVectorImpl<Instruction *> *Casts)
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000757 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
James Molloy1bbf15c2015-08-27 09:53:00 +0000758 assert(IK != IK_NoInduction && "Not an induction");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000759
760 // Start value type should match the induction kind and the value
761 // itself should not be null.
James Molloy1bbf15c2015-08-27 09:53:00 +0000762 assert(StartValue && "StartValue is null");
James Molloy1bbf15c2015-08-27 09:53:00 +0000763 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
764 "StartValue is not a pointer for pointer induction");
765 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
766 "StartValue is not an integer for integer induction");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000767
768 // Check the Step Value. It should be non-zero integer value.
769 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
770 "Step value is zero");
771
772 assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
773 "Step value should be constant for pointer induction");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000774 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
775 "StepValue is not an integer");
776
777 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
778 "StepValue is not FP for FpInduction");
779 assert((IK != IK_FpInduction || (InductionBinOp &&
780 (InductionBinOp->getOpcode() == Instruction::FAdd ||
781 InductionBinOp->getOpcode() == Instruction::FSub))) &&
782 "Binary opcode should be specified for FP induction");
Dorit Nuzman4750c782017-12-14 07:56:31 +0000783
784 if (Casts) {
785 for (auto &Inst : *Casts) {
786 RedundantCasts.push_back(Inst);
787 }
788 }
James Molloy1bbf15c2015-08-27 09:53:00 +0000789}
790
791int InductionDescriptor::getConsecutiveDirection() const {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000792 ConstantInt *ConstStep = getConstIntStepValue();
793 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
794 return ConstStep->getSExtValue();
James Molloy1bbf15c2015-08-27 09:53:00 +0000795 return 0;
796}
797
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000798ConstantInt *InductionDescriptor::getConstIntStepValue() const {
799 if (isa<SCEVConstant>(Step))
800 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
801 return nullptr;
802}
803
804Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
805 ScalarEvolution *SE,
806 const DataLayout& DL) const {
807
808 SCEVExpander Exp(*SE, DL, "induction");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000809 assert(Index->getType() == Step->getType() &&
810 "Index type does not match StepValue type");
James Molloy1bbf15c2015-08-27 09:53:00 +0000811 switch (IK) {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000812 case IK_IntInduction: {
James Molloy1bbf15c2015-08-27 09:53:00 +0000813 assert(Index->getType() == StartValue->getType() &&
814 "Index type does not match StartValue type");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000815
816 // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
817 // and calculate (Start + Index * Step) for all cases, without
818 // special handling for "isOne" and "isMinusOne".
819 // But in the real life the result code getting worse. We mix SCEV
820 // expressions and ADD/SUB operations and receive redundant
821 // intermediate values being calculated in different ways and
822 // Instcombine is unable to reduce them all.
823
824 if (getConstIntStepValue() &&
825 getConstIntStepValue()->isMinusOne())
James Molloy1bbf15c2015-08-27 09:53:00 +0000826 return B.CreateSub(StartValue, Index);
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000827 if (getConstIntStepValue() &&
828 getConstIntStepValue()->isOne())
829 return B.CreateAdd(StartValue, Index);
830 const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
831 SE->getMulExpr(Step, SE->getSCEV(Index)));
832 return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
833 }
834 case IK_PtrInduction: {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000835 assert(isa<SCEVConstant>(Step) &&
836 "Expected constant step for pointer induction");
837 const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
838 Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
James Molloy1bbf15c2015-08-27 09:53:00 +0000839 return B.CreateGEP(nullptr, StartValue, Index);
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000840 }
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000841 case IK_FpInduction: {
842 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
843 assert(InductionBinOp &&
844 (InductionBinOp->getOpcode() == Instruction::FAdd ||
845 InductionBinOp->getOpcode() == Instruction::FSub) &&
846 "Original bin op should be defined for FP induction");
847
848 Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
849
850 // Floating point operations had to be 'fast' to enable the induction.
851 FastMathFlags Flags;
Sanjay Patel629c4112017-11-06 16:27:15 +0000852 Flags.setFast();
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000853
854 Value *MulExp = B.CreateFMul(StepValue, Index);
855 if (isa<Instruction>(MulExp))
856 // We have to check, the MulExp may be a constant.
857 cast<Instruction>(MulExp)->setFastMathFlags(Flags);
858
859 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
860 MulExp, "induction");
861 if (isa<Instruction>(BOp))
862 cast<Instruction>(BOp)->setFastMathFlags(Flags);
863
864 return BOp;
865 }
James Molloy1bbf15c2015-08-27 09:53:00 +0000866 case IK_NoInduction:
867 return nullptr;
868 }
869 llvm_unreachable("invalid enum");
870}
871
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000872bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
873 ScalarEvolution *SE,
874 InductionDescriptor &D) {
875
876 // Here we only handle FP induction variables.
877 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
878
879 if (TheLoop->getHeader() != Phi->getParent())
880 return false;
881
882 // The loop may have multiple entrances or multiple exits; we can analyze
883 // this phi if it has a unique entry value and a unique backedge value.
884 if (Phi->getNumIncomingValues() != 2)
885 return false;
886 Value *BEValue = nullptr, *StartValue = nullptr;
887 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
888 BEValue = Phi->getIncomingValue(0);
889 StartValue = Phi->getIncomingValue(1);
890 } else {
891 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
Dorit Nuzman4750c782017-12-14 07:56:31 +0000892 "Unexpected Phi node in the loop");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000893 BEValue = Phi->getIncomingValue(1);
894 StartValue = Phi->getIncomingValue(0);
895 }
896
897 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
898 if (!BOp)
899 return false;
900
901 Value *Addend = nullptr;
902 if (BOp->getOpcode() == Instruction::FAdd) {
903 if (BOp->getOperand(0) == Phi)
904 Addend = BOp->getOperand(1);
905 else if (BOp->getOperand(1) == Phi)
906 Addend = BOp->getOperand(0);
907 } else if (BOp->getOpcode() == Instruction::FSub)
908 if (BOp->getOperand(0) == Phi)
909 Addend = BOp->getOperand(1);
910
911 if (!Addend)
912 return false;
913
914 // The addend should be loop invariant
915 if (auto *I = dyn_cast<Instruction>(Addend))
916 if (TheLoop->contains(I))
917 return false;
918
919 // FP Step has unknown SCEV
920 const SCEV *Step = SE->getUnknown(Addend);
921 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
922 return true;
923}
924
Dorit Nuzman4750c782017-12-14 07:56:31 +0000925/// This function is called when we suspect that the update-chain of a phi node
Simon Pilgrima74f4ae2018-04-06 17:01:54 +0000926/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
927/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
928/// predicate P under which the SCEV expression for the phi can be the
929/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
930/// cast instructions that are involved in the update-chain of this induction.
931/// A caller that adds the required runtime predicate can be free to drop these
932/// cast instructions, and compute the phi using \p AR (instead of some scev
Dorit Nuzman4750c782017-12-14 07:56:31 +0000933/// expression with casts).
934///
935/// For example, without a predicate the scev expression can take the following
936/// form:
937/// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
938///
939/// It corresponds to the following IR sequence:
940/// %for.body:
941/// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
942/// %casted_phi = "ExtTrunc i64 %x"
943/// %add = add i64 %casted_phi, %step
944///
945/// where %x is given in \p PN,
946/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
947/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
948/// several forms, for example, such as:
949/// ExtTrunc1: %casted_phi = and %x, 2^n-1
950/// or:
951/// ExtTrunc2: %t = shl %x, m
952/// %casted_phi = ashr %t, m
953///
954/// If we are able to find such sequence, we return the instructions
955/// we found, namely %casted_phi and the instructions on its use-def chain up
956/// to the phi (not including the phi).
Benjamin Kramer802e6252017-12-24 12:46:22 +0000957static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
958 const SCEVUnknown *PhiScev,
959 const SCEVAddRecExpr *AR,
960 SmallVectorImpl<Instruction *> &CastInsts) {
Dorit Nuzman4750c782017-12-14 07:56:31 +0000961
962 assert(CastInsts.empty() && "CastInsts is expected to be empty.");
963 auto *PN = cast<PHINode>(PhiScev->getValue());
964 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
965 const Loop *L = AR->getLoop();
966
Simon Pilgrima74f4ae2018-04-06 17:01:54 +0000967 // Find any cast instructions that participate in the def-use chain of
Dorit Nuzman4750c782017-12-14 07:56:31 +0000968 // PhiScev in the loop.
969 // FORNOW/TODO: We currently expect the def-use chain to include only
970 // two-operand instructions, where one of the operands is an invariant.
971 // createAddRecFromPHIWithCasts() currently does not support anything more
972 // involved than that, so we keep the search simple. This can be
973 // extended/generalized as needed.
974
975 auto getDef = [&](const Value *Val) -> Value * {
976 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
977 if (!BinOp)
978 return nullptr;
979 Value *Op0 = BinOp->getOperand(0);
980 Value *Op1 = BinOp->getOperand(1);
981 Value *Def = nullptr;
982 if (L->isLoopInvariant(Op0))
983 Def = Op1;
984 else if (L->isLoopInvariant(Op1))
985 Def = Op0;
986 return Def;
987 };
988
989 // Look for the instruction that defines the induction via the
990 // loop backedge.
991 BasicBlock *Latch = L->getLoopLatch();
992 if (!Latch)
993 return false;
994 Value *Val = PN->getIncomingValueForBlock(Latch);
995 if (!Val)
996 return false;
997
998 // Follow the def-use chain until the induction phi is reached.
999 // If on the way we encounter a Value that has the same SCEV Expr as the
1000 // phi node, we can consider the instructions we visit from that point
1001 // as part of the cast-sequence that can be ignored.
1002 bool InCastSequence = false;
1003 auto *Inst = dyn_cast<Instruction>(Val);
1004 while (Val != PN) {
1005 // If we encountered a phi node other than PN, or if we left the loop,
1006 // we bail out.
1007 if (!Inst || !L->contains(Inst)) {
1008 return false;
1009 }
1010 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1011 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1012 InCastSequence = true;
1013 if (InCastSequence) {
1014 // Only the last instruction in the cast sequence is expected to have
1015 // uses outside the induction def-use chain.
1016 if (!CastInsts.empty())
1017 if (!Inst->hasOneUse())
1018 return false;
1019 CastInsts.push_back(Inst);
1020 }
1021 Val = getDef(Val);
1022 if (!Val)
1023 return false;
1024 Inst = dyn_cast<Instruction>(Val);
1025 }
1026
1027 return InCastSequence;
1028}
1029
Elena Demikhovsky376a18b2016-07-24 07:24:54 +00001030bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
Silviu Barangac05bab82016-05-05 15:20:39 +00001031 PredicatedScalarEvolution &PSE,
1032 InductionDescriptor &D,
1033 bool Assume) {
1034 Type *PhiTy = Phi->getType();
Elena Demikhovsky376a18b2016-07-24 07:24:54 +00001035
1036 // Handle integer and pointer inductions variables.
1037 // Now we handle also FP induction but not trying to make a
1038 // recurrent expression from the PHI node in-place.
1039
1040 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
1041 !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
Silviu Barangac05bab82016-05-05 15:20:39 +00001042 return false;
1043
Elena Demikhovsky376a18b2016-07-24 07:24:54 +00001044 if (PhiTy->isFloatingPointTy())
1045 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1046
Silviu Barangac05bab82016-05-05 15:20:39 +00001047 const SCEV *PhiScev = PSE.getSCEV(Phi);
1048 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1049
1050 // We need this expression to be an AddRecExpr.
1051 if (Assume && !AR)
1052 AR = PSE.getAsAddRec(Phi);
1053
1054 if (!AR) {
1055 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1056 return false;
1057 }
1058
Dorit Nuzman4750c782017-12-14 07:56:31 +00001059 // Record any Cast instructions that participate in the induction update
1060 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1061 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1062 // only after enabling Assume with PSCEV, this means we may have encountered
1063 // cast instructions that required adding a runtime check in order to
1064 // guarantee the correctness of the AddRecurence respresentation of the
1065 // induction.
1066 if (PhiScev != AR && SymbolicPhi) {
1067 SmallVector<Instruction *, 2> Casts;
1068 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1069 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1070 }
1071
Elena Demikhovsky376a18b2016-07-24 07:24:54 +00001072 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
Silviu Barangac05bab82016-05-05 15:20:39 +00001073}
1074
Dorit Nuzman4750c782017-12-14 07:56:31 +00001075bool InductionDescriptor::isInductionPHI(
1076 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1077 InductionDescriptor &D, const SCEV *Expr,
1078 SmallVectorImpl<Instruction *> *CastsToIgnore) {
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001079 Type *PhiTy = Phi->getType();
1080 // We only handle integer and pointer inductions variables.
1081 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1082 return false;
1083
1084 // Check that the PHI is consecutive.
Silviu Barangac05bab82016-05-05 15:20:39 +00001085 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001086 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
Silviu Barangac05bab82016-05-05 15:20:39 +00001087
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001088 if (!AR) {
1089 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1090 return false;
1091 }
1092
Michael Kupersteinee31cbe2017-01-10 19:32:30 +00001093 if (AR->getLoop() != TheLoop) {
1094 // FIXME: We should treat this as a uniform. Unfortunately, we
1095 // don't currently know how to handled uniform PHIs.
1096 DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
Dorit Nuzman4750c782017-12-14 07:56:31 +00001097 return false;
Michael Kupersteinee31cbe2017-01-10 19:32:30 +00001098 }
1099
James Molloy1bbf15c2015-08-27 09:53:00 +00001100 Value *StartValue =
1101 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001102 const SCEV *Step = AR->getStepRecurrence(*SE);
1103 // Calculate the pointer stride and check if it is consecutive.
Elena Demikhovskyc434d092016-05-10 07:33:35 +00001104 // The stride may be a constant or a loop invariant integer value.
1105 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
Elena Demikhovsky376a18b2016-07-24 07:24:54 +00001106 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001107 return false;
1108
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001109 if (PhiTy->isIntegerTy()) {
Dorit Nuzman4750c782017-12-14 07:56:31 +00001110 D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr,
1111 CastsToIgnore);
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001112 return true;
1113 }
1114
1115 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
Elena Demikhovskyc434d092016-05-10 07:33:35 +00001116 // Pointer induction should be a constant.
1117 if (!ConstStep)
1118 return false;
1119
1120 ConstantInt *CV = ConstStep->getValue();
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001121 Type *PointerElementType = PhiTy->getPointerElementType();
1122 // The pointer stride cannot be determined if the pointer element type is not
1123 // sized.
1124 if (!PointerElementType->isSized())
1125 return false;
1126
1127 const DataLayout &DL = Phi->getModule()->getDataLayout();
1128 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
David Majnemerb58f32f2015-06-05 10:52:40 +00001129 if (!Size)
1130 return false;
1131
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001132 int64_t CVSize = CV->getSExtValue();
1133 if (CVSize % Size)
1134 return false;
Elena Demikhovskyc434d092016-05-10 07:33:35 +00001135 auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
1136 true /* signed */);
James Molloy1bbf15c2015-08-27 09:53:00 +00001137 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001138 return true;
1139}
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001140
Chandler Carruth4a000882017-06-25 22:45:31 +00001141bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
1142 bool PreserveLCSSA) {
1143 bool Changed = false;
1144
1145 // We re-use a vector for the in-loop predecesosrs.
1146 SmallVector<BasicBlock *, 4> InLoopPredecessors;
1147
1148 auto RewriteExit = [&](BasicBlock *BB) {
1149 assert(InLoopPredecessors.empty() &&
1150 "Must start with an empty predecessors list!");
1151 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
1152
1153 // See if there are any non-loop predecessors of this exit block and
1154 // keep track of the in-loop predecessors.
1155 bool IsDedicatedExit = true;
1156 for (auto *PredBB : predecessors(BB))
1157 if (L->contains(PredBB)) {
1158 if (isa<IndirectBrInst>(PredBB->getTerminator()))
1159 // We cannot rewrite exiting edges from an indirectbr.
1160 return false;
1161
1162 InLoopPredecessors.push_back(PredBB);
1163 } else {
1164 IsDedicatedExit = false;
1165 }
1166
1167 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
1168
1169 // Nothing to do if this is already a dedicated exit.
1170 if (IsDedicatedExit)
1171 return false;
1172
1173 auto *NewExitBB = SplitBlockPredecessors(
1174 BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
1175
1176 if (!NewExitBB)
1177 DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
1178 << *L << "\n");
1179 else
1180 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
1181 << NewExitBB->getName() << "\n");
1182 return true;
1183 };
1184
1185 // Walk the exit blocks directly rather than building up a data structure for
1186 // them, but only visit each one once.
1187 SmallPtrSet<BasicBlock *, 4> Visited;
1188 for (auto *BB : L->blocks())
1189 for (auto *SuccBB : successors(BB)) {
1190 // We're looking for exit blocks so skip in-loop successors.
1191 if (L->contains(SuccBB))
1192 continue;
1193
1194 // Visit each exit block exactly once.
1195 if (!Visited.insert(SuccBB).second)
1196 continue;
1197
1198 Changed |= RewriteExit(SuccBB);
1199 }
1200
1201 return Changed;
1202}
1203
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001204/// \brief Returns the instructions that use values defined in the loop.
1205SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
1206 SmallVector<Instruction *, 8> UsedOutside;
1207
1208 for (auto *Block : L->getBlocks())
1209 // FIXME: I believe that this could use copy_if if the Inst reference could
1210 // be adapted into a pointer.
1211 for (auto &Inst : *Block) {
1212 auto Users = Inst.users();
David Majnemer0a16c222016-08-11 21:15:00 +00001213 if (any_of(Users, [&](User *U) {
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001214 auto *Use = cast<Instruction>(U);
1215 return !L->contains(Use->getParent());
1216 }))
1217 UsedOutside.push_back(&Inst);
1218 }
1219
1220 return UsedOutside;
1221}
Chandler Carruth31088a92016-02-19 10:45:18 +00001222
1223void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1224 // By definition, all loop passes need the LoopInfo analysis and the
1225 // Dominator tree it depends on. Because they all participate in the loop
1226 // pass manager, they must also preserve these.
1227 AU.addRequired<DominatorTreeWrapperPass>();
1228 AU.addPreserved<DominatorTreeWrapperPass>();
1229 AU.addRequired<LoopInfoWrapperPass>();
1230 AU.addPreserved<LoopInfoWrapperPass>();
1231
1232 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1233 // here because users shouldn't directly get them from this header.
1234 extern char &LoopSimplifyID;
1235 extern char &LCSSAID;
1236 AU.addRequiredID(LoopSimplifyID);
1237 AU.addPreservedID(LoopSimplifyID);
1238 AU.addRequiredID(LCSSAID);
1239 AU.addPreservedID(LCSSAID);
Igor Laevskyc3ccf5d2016-10-28 12:57:20 +00001240 // This is used in the LPPassManager to perform LCSSA verification on passes
1241 // which preserve lcssa form
1242 AU.addRequired<LCSSAVerificationPass>();
1243 AU.addPreserved<LCSSAVerificationPass>();
Chandler Carruth31088a92016-02-19 10:45:18 +00001244
1245 // Loop passes are designed to run inside of a loop pass manager which means
1246 // that any function analyses they require must be required by the first loop
1247 // pass in the manager (so that it is computed before the loop pass manager
1248 // runs) and preserved by all loop pasess in the manager. To make this
1249 // reasonably robust, the set needed for most loop passes is maintained here.
1250 // If your loop pass requires an analysis not listed here, you will need to
1251 // carefully audit the loop pass manager nesting structure that results.
1252 AU.addRequired<AAResultsWrapperPass>();
1253 AU.addPreserved<AAResultsWrapperPass>();
1254 AU.addPreserved<BasicAAWrapperPass>();
1255 AU.addPreserved<GlobalsAAWrapperPass>();
1256 AU.addPreserved<SCEVAAWrapperPass>();
1257 AU.addRequired<ScalarEvolutionWrapperPass>();
1258 AU.addPreserved<ScalarEvolutionWrapperPass>();
1259}
1260
1261/// Manually defined generic "LoopPass" dependency initialization. This is used
1262/// to initialize the exact set of passes from above in \c
1263/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1264/// with:
1265///
1266/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
1267///
1268/// As-if "LoopPass" were a pass.
1269void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1270 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1271 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1272 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
Easwaran Ramane12c4872016-06-09 19:44:46 +00001273 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
Chandler Carruth31088a92016-02-19 10:45:18 +00001274 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1275 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1276 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1277 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1278 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1279}
Adam Nemet963341c2016-04-21 17:33:17 +00001280
Adam Nemetfe3def72016-04-22 19:10:05 +00001281/// \brief Find string metadata for loop
1282///
1283/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1284/// operand or null otherwise. If the string metadata is not found return
1285/// Optional's not-a-value.
1286Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1287 StringRef Name) {
Adam Nemet963341c2016-04-21 17:33:17 +00001288 MDNode *LoopID = TheLoop->getLoopID();
Adam Nemetfe3def72016-04-22 19:10:05 +00001289 // Return none if LoopID is false.
Adam Nemet963341c2016-04-21 17:33:17 +00001290 if (!LoopID)
Adam Nemetfe3def72016-04-22 19:10:05 +00001291 return None;
Adam Nemet293be662016-04-21 17:33:20 +00001292
1293 // First operand should refer to the loop id itself.
1294 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1295 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1296
Adam Nemet963341c2016-04-21 17:33:17 +00001297 // Iterate over LoopID operands and look for MDString Metadata
1298 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1299 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1300 if (!MD)
1301 continue;
1302 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1303 if (!S)
1304 continue;
1305 // Return true if MDString holds expected MetaData.
1306 if (Name.equals(S->getString()))
Adam Nemetfe3def72016-04-22 19:10:05 +00001307 switch (MD->getNumOperands()) {
1308 case 1:
1309 return nullptr;
1310 case 2:
1311 return &MD->getOperand(1);
1312 default:
1313 llvm_unreachable("loop metadata has 0 or 1 operand");
1314 }
Adam Nemet963341c2016-04-21 17:33:17 +00001315 }
Adam Nemetfe3def72016-04-22 19:10:05 +00001316 return None;
Adam Nemet963341c2016-04-21 17:33:17 +00001317}
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001318
Alina Sbirlea7ed58562017-09-15 00:04:16 +00001319/// Does a BFS from a given node to all of its children inside a given loop.
1320/// The returned vector of nodes includes the starting point.
1321SmallVector<DomTreeNode *, 16>
1322llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
1323 SmallVector<DomTreeNode *, 16> Worklist;
1324 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
1325 // Only include subregions in the top level loop.
1326 BasicBlock *BB = DTN->getBlock();
1327 if (CurLoop->contains(BB))
1328 Worklist.push_back(DTN);
1329 };
1330
1331 AddRegionToWorklist(N);
1332
1333 for (size_t I = 0; I < Worklist.size(); I++)
1334 for (DomTreeNode *Child : Worklist[I]->getChildren())
1335 AddRegionToWorklist(Child);
1336
1337 return Worklist;
1338}
1339
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001340void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
1341 ScalarEvolution *SE = nullptr,
1342 LoopInfo *LI = nullptr) {
Hans Wennborg899809d2017-10-04 21:14:07 +00001343 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001344 auto *Preheader = L->getLoopPreheader();
1345 assert(Preheader && "Preheader should exist!");
1346
1347 // Now that we know the removal is safe, remove the loop by changing the
1348 // branch from the preheader to go to the single exit block.
1349 //
1350 // Because we're deleting a large chunk of code at once, the sequence in which
1351 // we remove things is very important to avoid invalidation issues.
1352
1353 // Tell ScalarEvolution that the loop is deleted. Do this before
1354 // deleting the loop so that ScalarEvolution can look at the loop
1355 // to determine what it needs to clean up.
1356 if (SE)
1357 SE->forgetLoop(L);
1358
1359 auto *ExitBlock = L->getUniqueExitBlock();
1360 assert(ExitBlock && "Should have a unique exit block!");
1361 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
1362
1363 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
1364 assert(OldBr && "Preheader must end with a branch");
1365 assert(OldBr->isUnconditional() && "Preheader must have a single successor");
1366 // Connect the preheader to the exit block. Keep the old edge to the header
1367 // around to perform the dominator tree update in two separate steps
1368 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
1369 // preheader -> header.
1370 //
1371 //
1372 // 0. Preheader 1. Preheader 2. Preheader
1373 // | | | |
1374 // V | V |
1375 // Header <--\ | Header <--\ | Header <--\
1376 // | | | | | | | | | | |
1377 // | V | | | V | | | V |
1378 // | Body --/ | | Body --/ | | Body --/
1379 // V V V V V
1380 // Exit Exit Exit
1381 //
1382 // By doing this is two separate steps we can perform the dominator tree
1383 // update without using the batch update API.
1384 //
1385 // Even when the loop is never executed, we cannot remove the edge from the
1386 // source block to the exit block. Consider the case where the unexecuted loop
1387 // branches back to an outer loop. If we deleted the loop and removed the edge
1388 // coming to this inner loop, this will break the outer loop structure (by
1389 // deleting the backedge of the outer loop). If the outer loop is indeed a
1390 // non-loop, it will be deleted in a future iteration of loop deletion pass.
1391 IRBuilder<> Builder(OldBr);
1392 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
1393 // Remove the old branch. The conditional branch becomes a new terminator.
1394 OldBr->eraseFromParent();
1395
1396 // Rewrite phis in the exit block to get their inputs from the Preheader
1397 // instead of the exiting block.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +00001398 for (PHINode &P : ExitBlock->phis()) {
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001399 // Set the zero'th element of Phi to be from the preheader and remove all
1400 // other incoming values. Given the loop has dedicated exits, all other
1401 // incoming values must be from the exiting blocks.
1402 int PredIndex = 0;
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +00001403 P.setIncomingBlock(PredIndex, Preheader);
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001404 // Removes all incoming values from all other exiting blocks (including
1405 // duplicate values from an exiting block).
1406 // Nuke all entries except the zero'th entry which is the preheader entry.
1407 // NOTE! We need to remove Incoming Values in the reverse order as done
1408 // below, to keep the indices valid for deletion (removeIncomingValues
1409 // updates getNumIncomingValues and shifts all values down into the operand
1410 // being deleted).
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +00001411 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
1412 P.removeIncomingValue(e - i, false);
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001413
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +00001414 assert((P.getNumIncomingValues() == 1 &&
1415 P.getIncomingBlock(PredIndex) == Preheader) &&
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001416 "Should have exactly one value and that's from the preheader!");
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001417 }
1418
1419 // Disconnect the loop body by branching directly to its exit.
1420 Builder.SetInsertPoint(Preheader->getTerminator());
1421 Builder.CreateBr(ExitBlock);
1422 // Remove the old branch.
1423 Preheader->getTerminator()->eraseFromParent();
1424
1425 if (DT) {
1426 // Update the dominator tree by informing it about the new edge from the
1427 // preheader to the exit.
1428 DT->insertEdge(Preheader, ExitBlock);
1429 // Inform the dominator tree about the removed edge.
1430 DT->deleteEdge(Preheader, L->getHeader());
1431 }
1432
Serguei Katkova757d652018-01-12 07:24:43 +00001433 // Given LCSSA form is satisfied, we should not have users of instructions
1434 // within the dead loop outside of the loop. However, LCSSA doesn't take
1435 // unreachable uses into account. We handle them here.
1436 // We could do it after drop all references (in this case all users in the
1437 // loop will be already eliminated and we have less work to do but according
1438 // to API doc of User::dropAllReferences only valid operation after dropping
1439 // references, is deletion. So let's substitute all usages of
1440 // instruction from the loop with undef value of corresponding type first.
1441 for (auto *Block : L->blocks())
1442 for (Instruction &I : *Block) {
1443 auto *Undef = UndefValue::get(I.getType());
1444 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
1445 Use &U = *UI;
1446 ++UI;
1447 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
1448 if (L->contains(Usr->getParent()))
1449 continue;
1450 // If we have a DT then we can check that uses outside a loop only in
1451 // unreachable block.
1452 if (DT)
1453 assert(!DT->isReachableFromEntry(U) &&
1454 "Unexpected user in reachable block");
1455 U.set(Undef);
1456 }
1457 }
1458
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001459 // Remove the block from the reference counting scheme, so that we can
1460 // delete it freely later.
1461 for (auto *Block : L->blocks())
1462 Block->dropAllReferences();
1463
1464 if (LI) {
1465 // Erase the instructions and the blocks without having to worry
1466 // about ordering because we already dropped the references.
1467 // NOTE: This iteration is safe because erasing the block does not remove
1468 // its entry from the loop's block list. We do that in the next section.
1469 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
1470 LpI != LpE; ++LpI)
1471 (*LpI)->eraseFromParent();
1472
1473 // Finally, the blocks from loopinfo. This has to happen late because
1474 // otherwise our loop iterators won't work.
1475
1476 SmallPtrSet<BasicBlock *, 8> blocks;
1477 blocks.insert(L->block_begin(), L->block_end());
1478 for (BasicBlock *BB : blocks)
1479 LI->removeBlock(BB);
1480
1481 // The last step is to update LoopInfo now that we've eliminated this loop.
1482 LI->erase(L);
1483 }
1484}
1485
Dehao Chen41d72a82016-11-17 01:17:02 +00001486Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1487 // Only support loops with a unique exiting block, and a latch.
1488 if (!L->getExitingBlock())
1489 return None;
1490
Hiroshi Inoued24ddcd2018-01-19 10:55:29 +00001491 // Get the branch weights for the loop's backedge.
Dehao Chen41d72a82016-11-17 01:17:02 +00001492 BranchInst *LatchBR =
1493 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1494 if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1495 return None;
1496
1497 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1498 LatchBR->getSuccessor(1) == L->getHeader()) &&
1499 "At least one edge out of the latch must go to the header");
1500
1501 // To estimate the number of times the loop body was executed, we want to
1502 // know the number of times the backedge was taken, vs. the number of times
1503 // we exited the loop.
Dehao Chen41d72a82016-11-17 01:17:02 +00001504 uint64_t TrueVal, FalseVal;
Michael Kupersteinb151a642016-11-30 21:13:57 +00001505 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
Dehao Chen41d72a82016-11-17 01:17:02 +00001506 return None;
1507
Michael Kupersteinb151a642016-11-30 21:13:57 +00001508 if (!TrueVal || !FalseVal)
1509 return 0;
Dehao Chen41d72a82016-11-17 01:17:02 +00001510
Michael Kupersteinb151a642016-11-30 21:13:57 +00001511 // Divide the count of the backedge by the count of the edge exiting the loop,
1512 // rounding to nearest.
Dehao Chen41d72a82016-11-17 01:17:02 +00001513 if (LatchBR->getSuccessor(0) == L->getHeader())
Michael Kupersteinb151a642016-11-30 21:13:57 +00001514 return (TrueVal + (FalseVal / 2)) / FalseVal;
Dehao Chen41d72a82016-11-17 01:17:02 +00001515 else
Michael Kupersteinb151a642016-11-30 21:13:57 +00001516 return (FalseVal + (TrueVal / 2)) / TrueVal;
Dehao Chen41d72a82016-11-17 01:17:02 +00001517}
Amara Emersoncf9daa32017-05-09 10:43:25 +00001518
1519/// \brief Adds a 'fast' flag to floating point operations.
1520static Value *addFastMathFlag(Value *V) {
1521 if (isa<FPMathOperator>(V)) {
1522 FastMathFlags Flags;
Sanjay Patel629c4112017-11-06 16:27:15 +00001523 Flags.setFast();
Amara Emersoncf9daa32017-05-09 10:43:25 +00001524 cast<Instruction>(V)->setFastMathFlags(Flags);
1525 }
1526 return V;
1527}
1528
Simon Pilgrim23c21822018-04-09 15:44:20 +00001529// Helper to generate an ordered reduction.
1530Value *
1531llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
1532 unsigned Op,
1533 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1534 ArrayRef<Value *> RedOps) {
1535 unsigned VF = Src->getType()->getVectorNumElements();
1536
1537 // Extract and apply reduction ops in ascending order:
1538 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1539 Value *Result = Acc;
1540 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1541 Value *Ext =
1542 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1543
1544 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1545 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1546 "bin.rdx");
1547 } else {
1548 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1549 "Invalid min/max");
1550 Result = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, Result,
1551 Ext);
1552 }
1553
1554 if (!RedOps.empty())
1555 propagateIRFlags(Result, RedOps);
1556 }
1557
1558 return Result;
1559}
1560
Amara Emersoncf9daa32017-05-09 10:43:25 +00001561// Helper to generate a log2 shuffle reduction.
Amara Emerson836b0f42017-05-10 09:42:49 +00001562Value *
1563llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1564 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1565 ArrayRef<Value *> RedOps) {
Amara Emersoncf9daa32017-05-09 10:43:25 +00001566 unsigned VF = Src->getType()->getVectorNumElements();
1567 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1568 // and vector ops, reducing the set of values being computed by half each
1569 // round.
1570 assert(isPowerOf2_32(VF) &&
1571 "Reduction emission only supported for pow2 vectors!");
1572 Value *TmpVec = Src;
1573 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1574 for (unsigned i = VF; i != 1; i >>= 1) {
1575 // Move the upper half of the vector to the lower half.
1576 for (unsigned j = 0; j != i / 2; ++j)
1577 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1578
1579 // Fill the rest of the mask with undef.
1580 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1581 UndefValue::get(Builder.getInt32Ty()));
1582
1583 Value *Shuf = Builder.CreateShuffleVector(
1584 TmpVec, UndefValue::get(TmpVec->getType()),
1585 ConstantVector::get(ShuffleMask), "rdx.shuf");
1586
1587 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1588 // Floating point operations had to be 'fast' to enable the reduction.
1589 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1590 TmpVec, Shuf, "bin.rdx"));
1591 } else {
1592 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1593 "Invalid min/max");
1594 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1595 Shuf);
1596 }
1597 if (!RedOps.empty())
1598 propagateIRFlags(TmpVec, RedOps);
1599 }
1600 // The result is in the first element of the vector.
1601 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1602}
1603
1604/// Create a simple vector reduction specified by an opcode and some
1605/// flags (if generating min/max reductions).
1606Value *llvm::createSimpleTargetReduction(
1607 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1608 Value *Src, TargetTransformInfo::ReductionFlags Flags,
1609 ArrayRef<Value *> RedOps) {
1610 assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1611
1612 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1613 std::function<Value*()> BuildFunc;
1614 using RD = RecurrenceDescriptor;
1615 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1616 // TODO: Support creating ordered reductions.
Sanjay Patel1ea7b6f2017-12-06 19:11:23 +00001617 FastMathFlags FMFFast;
1618 FMFFast.setFast();
Amara Emersoncf9daa32017-05-09 10:43:25 +00001619
1620 switch (Opcode) {
1621 case Instruction::Add:
1622 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1623 break;
1624 case Instruction::Mul:
1625 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1626 break;
1627 case Instruction::And:
1628 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1629 break;
1630 case Instruction::Or:
1631 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1632 break;
1633 case Instruction::Xor:
1634 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1635 break;
1636 case Instruction::FAdd:
1637 BuildFunc = [&]() {
1638 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
Sanjay Patel1ea7b6f2017-12-06 19:11:23 +00001639 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001640 return Rdx;
1641 };
1642 break;
1643 case Instruction::FMul:
1644 BuildFunc = [&]() {
1645 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
Sanjay Patel1ea7b6f2017-12-06 19:11:23 +00001646 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001647 return Rdx;
1648 };
1649 break;
1650 case Instruction::ICmp:
1651 if (Flags.IsMaxOp) {
1652 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1653 BuildFunc = [&]() {
1654 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1655 };
1656 } else {
1657 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1658 BuildFunc = [&]() {
1659 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1660 };
1661 }
1662 break;
1663 case Instruction::FCmp:
1664 if (Flags.IsMaxOp) {
1665 MinMaxKind = RD::MRK_FloatMax;
1666 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1667 } else {
1668 MinMaxKind = RD::MRK_FloatMin;
1669 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1670 }
1671 break;
1672 default:
1673 llvm_unreachable("Unhandled opcode");
1674 break;
1675 }
1676 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1677 return BuildFunc();
1678 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1679}
1680
1681/// Create a vector reduction using a given recurrence descriptor.
Sanjay Patel3e069f52017-12-06 19:37:00 +00001682Value *llvm::createTargetReduction(IRBuilder<> &B,
Amara Emersoncf9daa32017-05-09 10:43:25 +00001683 const TargetTransformInfo *TTI,
1684 RecurrenceDescriptor &Desc, Value *Src,
1685 bool NoNaN) {
1686 // TODO: Support in-order reductions based on the recurrence descriptor.
Sanjay Patel3e069f52017-12-06 19:37:00 +00001687 using RD = RecurrenceDescriptor;
1688 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
Amara Emersoncf9daa32017-05-09 10:43:25 +00001689 TargetTransformInfo::ReductionFlags Flags;
1690 Flags.NoNaN = NoNaN;
Amara Emersoncf9daa32017-05-09 10:43:25 +00001691 switch (RecKind) {
Sanjay Patel3e069f52017-12-06 19:37:00 +00001692 case RD::RK_FloatAdd:
1693 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
1694 case RD::RK_FloatMult:
1695 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1696 case RD::RK_IntegerAdd:
1697 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1698 case RD::RK_IntegerMult:
1699 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1700 case RD::RK_IntegerAnd:
1701 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1702 case RD::RK_IntegerOr:
1703 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1704 case RD::RK_IntegerXor:
1705 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1706 case RD::RK_IntegerMinMax: {
1707 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1708 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1709 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1710 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001711 }
Sanjay Patel3e069f52017-12-06 19:37:00 +00001712 case RD::RK_FloatMinMax: {
1713 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1714 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001715 }
1716 default:
1717 llvm_unreachable("Unhandled RecKind");
1718 }
1719}
1720
Dinar Temirbulatova61f4b82017-07-19 10:02:07 +00001721void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1722 auto *VecOp = dyn_cast<Instruction>(I);
1723 if (!VecOp)
1724 return;
1725 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1726 : dyn_cast<Instruction>(OpValue);
1727 if (!Intersection)
1728 return;
1729 const unsigned Opcode = Intersection->getOpcode();
1730 VecOp->copyIRFlags(Intersection);
1731 for (auto *V : VL) {
1732 auto *Instr = dyn_cast<Instruction>(V);
1733 if (!Instr)
1734 continue;
1735 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1736 VecOp->andIRFlags(V);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001737 }
1738}