blob: 1c5858abf8cea2afa253837188fc62449a696bdc [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
Nico Weber432a3882018-04-30 14:59:11 +000030#include "llvm/Config/llvm-config.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000031#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000032#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CallSite.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000034#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000035#include "llvm/IR/Function.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000038#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000039#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000040#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000041#include "llvm/IR/PassManager.h"
42#include "llvm/IR/Use.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/AtomicOrdering.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000048#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000049#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000050#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000051#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000052#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000053#include <cassert>
54#include <iterator>
55#include <memory>
56#include <utility>
57
58using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000059
60#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000061
Geoff Berryefb0dd12016-06-14 21:19:40 +000062INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000063 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000064INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000066INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000068
Chad Rosier232e29e2016-07-06 21:20:47 +000069INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70 "Memory SSA Printer", false, false)
71INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73 "Memory SSA Printer", false, false)
74
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000075static cl::opt<unsigned> MaxCheckLimit(
76 "memssa-check-limit", cl::Hidden, cl::init(100),
77 cl::desc("The maximum number of stores/phis MemorySSA"
78 "will consider trying to walk past (default = 100)"));
79
Alina Sbirleacc2e8cc2018-08-15 17:34:55 +000080// Always verify MemorySSA if expensive checking is enabled.
81#ifdef EXPENSIVE_CHECKS
82bool llvm::VerifyMemorySSA = true;
83#else
84bool llvm::VerifyMemorySSA = false;
85#endif
86static cl::opt<bool, true>
87 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
88 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
Chad Rosier232e29e2016-07-06 21:20:47 +000089
George Burgess IVe1100f52016-02-02 22:46:49 +000090namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000091
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000092/// An assembly annotator class to print Memory SSA information in
George Burgess IVe1100f52016-02-02 22:46:49 +000093/// comments.
94class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
95 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000096
George Burgess IVe1100f52016-02-02 22:46:49 +000097 const MemorySSA *MSSA;
98
99public:
100 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
101
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000102 void emitBasicBlockStartAnnot(const BasicBlock *BB,
103 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000104 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
105 OS << "; " << *MA << "\n";
106 }
107
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000108 void emitInstructionAnnot(const Instruction *I,
109 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000110 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
111 OS << "; " << *MA << "\n";
112 }
113};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000114
115} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000116
George Burgess IV5f308972016-07-19 01:29:15 +0000117namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000118
Daniel Berlindff31de2016-08-02 21:57:52 +0000119/// Our current alias analysis API differentiates heavily between calls and
120/// non-calls, and functions called on one usually assert on the other.
121/// This class encapsulates the distinction to simplify other code that wants
122/// "Memory affecting instructions and related data" to use as a key.
123/// For example, this class is used as a densemap key in the use optimizer.
124class MemoryLocOrCall {
125public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000126 bool IsCall = false;
127
128 MemoryLocOrCall() = default;
Daniel Berlindff31de2016-08-02 21:57:52 +0000129 MemoryLocOrCall(MemoryUseOrDef *MUD)
130 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000131 MemoryLocOrCall(const MemoryUseOrDef *MUD)
132 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000133
134 MemoryLocOrCall(Instruction *Inst) {
135 if (ImmutableCallSite(Inst)) {
136 IsCall = true;
137 CS = ImmutableCallSite(Inst);
138 } else {
139 IsCall = false;
140 // There is no such thing as a memorylocation for a fence inst, and it is
141 // unique in that regard.
142 if (!isa<FenceInst>(Inst))
143 Loc = MemoryLocation::get(Inst);
144 }
145 }
146
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000147 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000148
Daniel Berlindff31de2016-08-02 21:57:52 +0000149 ImmutableCallSite getCS() const {
150 assert(IsCall);
151 return CS;
152 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000153
Daniel Berlindff31de2016-08-02 21:57:52 +0000154 MemoryLocation getLoc() const {
155 assert(!IsCall);
156 return Loc;
157 }
158
159 bool operator==(const MemoryLocOrCall &Other) const {
160 if (IsCall != Other.IsCall)
161 return false;
162
George Burgess IV3588fd42018-03-29 00:54:39 +0000163 if (!IsCall)
164 return Loc == Other.Loc;
165
166 if (CS.getCalledValue() != Other.CS.getCalledValue())
167 return false;
168
George Burgess IVaf0b06f2018-03-29 03:12:03 +0000169 return CS.arg_size() == Other.CS.arg_size() &&
170 std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
Daniel Berlindff31de2016-08-02 21:57:52 +0000171 }
172
173private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000174 union {
Daniel Berlind602e042017-01-25 20:56:19 +0000175 ImmutableCallSite CS;
176 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000177 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000178};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000179
180} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000181
182namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000183
Daniel Berlindff31de2016-08-02 21:57:52 +0000184template <> struct DenseMapInfo<MemoryLocOrCall> {
185 static inline MemoryLocOrCall getEmptyKey() {
186 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
187 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000188
Daniel Berlindff31de2016-08-02 21:57:52 +0000189 static inline MemoryLocOrCall getTombstoneKey() {
190 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
191 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000192
Daniel Berlindff31de2016-08-02 21:57:52 +0000193 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
George Burgess IV3588fd42018-03-29 00:54:39 +0000194 if (!MLOC.IsCall)
195 return hash_combine(
196 MLOC.IsCall,
197 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
198
199 hash_code hash =
200 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
201 MLOC.getCS().getCalledValue()));
202
203 for (const Value *Arg : MLOC.getCS().args())
204 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
205 return hash;
Daniel Berlindff31de2016-08-02 21:57:52 +0000206 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000207
Daniel Berlindff31de2016-08-02 21:57:52 +0000208 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
209 return LHS == RHS;
210 }
211};
Daniel Berlindf101192016-08-03 00:01:46 +0000212
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000213} // end namespace llvm
214
George Burgess IV82e355c2016-08-03 19:39:54 +0000215/// This does one-way checks to see if Use could theoretically be hoisted above
216/// MayClobber. This will not check the other way around.
217///
218/// This assumes that, for the purposes of MemorySSA, Use comes directly after
219/// MayClobber, with no potentially clobbering operations in between them.
220/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000221static bool areLoadsReorderable(const LoadInst *Use,
222 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000223 bool VolatileUse = Use->isVolatile();
224 bool VolatileClobber = MayClobber->isVolatile();
225 // Volatile operations may never be reordered with other volatile operations.
226 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000227 return false;
228 // Otherwise, volatile doesn't matter here. From the language reference:
229 // 'optimizers may change the order of volatile operations relative to
230 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000231
232 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
233 // is weaker, it can be moved above other loads. We just need to be sure that
234 // MayClobber isn't an acquire load, because loads can't be moved above
235 // acquire loads.
236 //
237 // Note that this explicitly *does* allow the free reordering of monotonic (or
238 // weaker) loads of the same address.
239 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
240 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
241 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000242 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000243}
244
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000245namespace {
246
247struct ClobberAlias {
248 bool IsClobber;
249 Optional<AliasResult> AR;
250};
251
252} // end anonymous namespace
253
254// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
255// ignored if IsClobber = false.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000256static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000257 const MemoryLocation &UseLoc,
258 const Instruction *UseInst,
259 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000260 Instruction *DefInst = MD->getMemoryInst();
261 assert(DefInst && "Defining instruction not actually an instruction");
Daniel Berlin74603a62017-04-10 18:46:00 +0000262 ImmutableCallSite UseCS(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000263 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000264
Daniel Berlindf101192016-08-03 00:01:46 +0000265 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
266 // These intrinsics will show up as affecting memory, but they are just
George Burgess IVff08c802018-08-10 05:14:43 +0000267 // markers, mostly.
268 //
269 // FIXME: We probably don't actually want MemorySSA to model these at all
270 // (including creating MemoryAccesses for them): we just end up inventing
271 // clobbers where they don't really exist at all. Please see D43269 for
272 // context.
Daniel Berlindf101192016-08-03 00:01:46 +0000273 switch (II->getIntrinsicID()) {
274 case Intrinsic::lifetime_start:
Daniel Berlin74603a62017-04-10 18:46:00 +0000275 if (UseCS)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000276 return {false, NoAlias};
277 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
George Burgess IVff08c802018-08-10 05:14:43 +0000278 return {AR != NoAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000279 case Intrinsic::lifetime_end:
280 case Intrinsic::invariant_start:
281 case Intrinsic::invariant_end:
282 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000283 return {false, NoAlias};
Daniel Berlindf101192016-08-03 00:01:46 +0000284 default:
285 break;
286 }
287 }
288
Hans Wennborg70e22d12017-11-21 18:00:01 +0000289 if (UseCS) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000290 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000291 AR = isMustSet(I) ? MustAlias : MayAlias;
292 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000293 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000294
Alina Sbirleaca741a82017-12-22 19:54:03 +0000295 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
296 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000297 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000298
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000299 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
300 AR = isMustSet(I) ? MustAlias : MayAlias;
301 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000302}
303
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000304static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
305 const MemoryUseOrDef *MU,
306 const MemoryLocOrCall &UseMLOC,
307 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000308 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
309 // to exist while MemoryLocOrCall is pushed through places.
310 if (UseMLOC.IsCall)
311 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
312 AA);
313 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
314 AA);
315}
316
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000317// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000318bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
319 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000320 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000321}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000322
323namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000324
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000325struct UpwardsMemoryQuery {
326 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000327 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000328 // The pointer location we started the query with. This will be empty if
329 // IsCall is true.
330 MemoryLocation StartingLoc;
331 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000332 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000333 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000334 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000335 Optional<AliasResult> AR = MayAlias;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000336
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000337 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000338
339 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
340 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
341 if (!IsCall)
342 StartingLoc = MemoryLocation::get(Inst);
343 }
344};
345
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000346} // end anonymous namespace
347
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000348static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
349 AliasAnalysis &AA) {
350 Instruction *Inst = MD->getMemoryInst();
351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000353 case Intrinsic::lifetime_end:
354 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
355 default:
356 return false;
357 }
358 }
359 return false;
360}
361
362static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
363 const Instruction *I) {
364 // If the memory can't be changed, then loads of the memory can't be
365 // clobbered.
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000366 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000367 AA.pointsToConstantMemory(cast<LoadInst>(I)->
368 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000369}
370
George Burgess IV5f308972016-07-19 01:29:15 +0000371/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
372/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
373///
374/// This is meant to be as simple and self-contained as possible. Because it
375/// uses no cache, etc., it can be relatively expensive.
376///
377/// \param Start The MemoryAccess that we want to walk from.
378/// \param ClobberAt A clobber for Start.
379/// \param StartLoc The MemoryLocation for Start.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000380/// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
George Burgess IV5f308972016-07-19 01:29:15 +0000381/// \param Query The UpwardsMemoryQuery we used for our search.
382/// \param AA The AliasAnalysis we used for our search.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000383static void
384checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
George Burgess IV5f308972016-07-19 01:29:15 +0000385 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
386 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
387 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
388
389 if (MSSA.isLiveOnEntryDef(Start)) {
390 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
391 "liveOnEntry must clobber itself");
392 return;
393 }
394
George Burgess IV5f308972016-07-19 01:29:15 +0000395 bool FoundClobber = false;
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000396 DenseSet<ConstMemoryAccessPair> VisitedPhis;
397 SmallVector<ConstMemoryAccessPair, 8> Worklist;
George Burgess IV5f308972016-07-19 01:29:15 +0000398 Worklist.emplace_back(Start, StartLoc);
399 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
400 // is found, complain.
401 while (!Worklist.empty()) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000402 auto MAP = Worklist.pop_back_val();
George Burgess IV5f308972016-07-19 01:29:15 +0000403 // All we care about is that nothing from Start to ClobberAt clobbers Start.
404 // We learn nothing from revisiting nodes.
405 if (!VisitedPhis.insert(MAP).second)
406 continue;
407
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000408 for (const auto *MA : def_chain(MAP.first)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000409 if (MA == ClobberAt) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000410 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000411 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
412 // since it won't let us short-circuit.
413 //
414 // Also, note that this can't be hoisted out of the `Worklist` loop,
415 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000416 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
417 if (!FoundClobber) {
418 ClobberAlias CA =
419 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
420 if (CA.IsClobber) {
421 FoundClobber = true;
422 // Not used: CA.AR;
423 }
424 }
George Burgess IV5f308972016-07-19 01:29:15 +0000425 }
426 break;
427 }
428
429 // We should never hit liveOnEntry, unless it's the clobber.
430 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
431
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000432 // If Start is a Def, skip self.
433 if (MA == Start)
434 continue;
435
436 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000437 (void)MD;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000438 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
439 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000440 "Found clobber before reaching ClobberAt!");
441 continue;
442 }
443
444 assert(isa<MemoryPhi>(MA));
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000445 Worklist.append(
446 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
447 upward_defs_end());
George Burgess IV5f308972016-07-19 01:29:15 +0000448 }
449 }
450
451 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
452 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
453 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
454 "ClobberAt never acted as a clobber");
455}
456
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000457namespace {
458
George Burgess IV5f308972016-07-19 01:29:15 +0000459/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
460/// in one class.
461class ClobberWalker {
462 /// Save a few bytes by using unsigned instead of size_t.
463 using ListIndex = unsigned;
464
465 /// Represents a span of contiguous MemoryDefs, potentially ending in a
466 /// MemoryPhi.
467 struct DefPath {
468 MemoryLocation Loc;
469 // Note that, because we always walk in reverse, Last will always dominate
470 // First. Also note that First and Last are inclusive.
471 MemoryAccess *First;
472 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000473 Optional<ListIndex> Previous;
474
475 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
476 Optional<ListIndex> Previous)
477 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
478
479 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
480 Optional<ListIndex> Previous)
481 : DefPath(Loc, Init, Init, Previous) {}
482 };
483
484 const MemorySSA &MSSA;
485 AliasAnalysis &AA;
486 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000487 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000488
489 // Phi optimization bookkeeping
490 SmallVector<DefPath, 32> Paths;
491 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000492
George Burgess IV5f308972016-07-19 01:29:15 +0000493 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000494 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000495 assert(From->getNumOperands() && "Phi with no operands?");
496
497 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000498 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
499 DomTreeNode *Node = DT.getNode(BB);
500 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000501 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
502 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000503 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000504 }
George Burgess IV5f308972016-07-19 01:29:15 +0000505 return Result;
506 }
507
508 /// Result of calling walkToPhiOrClobber.
509 struct UpwardsWalkResult {
510 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000511 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000512 MemoryAccess *Result;
513 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000514 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000515 };
516
517 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
518 /// This will update Desc.Last as it walks. It will (optionally) also stop at
519 /// StopAt.
520 ///
521 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000522 UpwardsWalkResult
523 walkToPhiOrClobber(DefPath &Desc,
524 const MemoryAccess *StopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000525 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
526
527 for (MemoryAccess *Current : def_chain(Desc.Last)) {
528 Desc.Last = Current;
529 if (Current == StopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000530 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000531
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000532 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
533 if (MSSA.isLiveOnEntryDef(MD))
534 return {MD, true, MustAlias};
535 ClobberAlias CA =
536 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
537 if (CA.IsClobber)
538 return {MD, true, CA.AR};
539 }
George Burgess IV5f308972016-07-19 01:29:15 +0000540 }
541
542 assert(isa<MemoryPhi>(Desc.Last) &&
543 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000544 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000545 }
546
547 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
548 ListIndex PriorNode) {
549 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
550 upward_defs_end());
551 for (const MemoryAccessPair &P : UpwardDefs) {
552 PausedSearches.push_back(Paths.size());
553 Paths.emplace_back(P.second, P.first, PriorNode);
554 }
555 }
556
557 /// Represents a search that terminated after finding a clobber. This clobber
558 /// may or may not be present in the path of defs from LastNode..SearchStart,
559 /// since it may have been retrieved from cache.
560 struct TerminatedPath {
561 MemoryAccess *Clobber;
562 ListIndex LastNode;
563 };
564
565 /// Get an access that keeps us from optimizing to the given phi.
566 ///
567 /// PausedSearches is an array of indices into the Paths array. Its incoming
568 /// value is the indices of searches that stopped at the last phi optimization
569 /// target. It's left in an unspecified state.
570 ///
571 /// If this returns None, NewPaused is a vector of searches that terminated
572 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000573 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000574 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000575 SmallVectorImpl<ListIndex> &PausedSearches,
576 SmallVectorImpl<ListIndex> &NewPaused,
577 SmallVectorImpl<TerminatedPath> &Terminated) {
578 assert(!PausedSearches.empty() && "No searches to continue?");
579
580 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
581 // PausedSearches as our stack.
582 while (!PausedSearches.empty()) {
583 ListIndex PathIndex = PausedSearches.pop_back_val();
584 DefPath &Node = Paths[PathIndex];
585
586 // If we've already visited this path with this MemoryLocation, we don't
587 // need to do so again.
588 //
589 // NOTE: That we just drop these paths on the ground makes caching
590 // behavior sporadic. e.g. given a diamond:
591 // A
592 // B C
593 // D
594 //
595 // ...If we walk D, B, A, C, we'll only cache the result of phi
596 // optimization for A, B, and D; C will be skipped because it dies here.
597 // This arguably isn't the worst thing ever, since:
598 // - We generally query things in a top-down order, so if we got below D
599 // without needing cache entries for {C, MemLoc}, then chances are
600 // that those cache entries would end up ultimately unused.
601 // - We still cache things for A, so C only needs to walk up a bit.
602 // If this behavior becomes problematic, we can fix without a ton of extra
603 // work.
604 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
605 continue;
606
607 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
608 if (Res.IsKnownClobber) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000609 assert(Res.Result != StopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000610 // If this wasn't a cache hit, we hit a clobber when walking. That's a
611 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000612 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000613 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000614 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000615
616 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000617 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000618 continue;
619 }
620
621 if (Res.Result == StopWhere) {
622 // We've hit our target. Save this path off for if we want to continue
623 // walking.
624 NewPaused.push_back(PathIndex);
625 continue;
626 }
627
628 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
629 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
630 }
631
632 return None;
633 }
634
635 template <typename T, typename Walker>
636 struct generic_def_path_iterator
637 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
638 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000639 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000640 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
641
642 T &operator*() const { return curNode(); }
643
644 generic_def_path_iterator &operator++() {
645 N = curNode().Previous;
646 return *this;
647 }
648
649 bool operator==(const generic_def_path_iterator &O) const {
650 if (N.hasValue() != O.N.hasValue())
651 return false;
652 return !N.hasValue() || *N == *O.N;
653 }
654
655 private:
656 T &curNode() const { return W->Paths[*N]; }
657
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000658 Walker *W = nullptr;
659 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000660 };
661
662 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
663 using const_def_path_iterator =
664 generic_def_path_iterator<const DefPath, const ClobberWalker>;
665
666 iterator_range<def_path_iterator> def_path(ListIndex From) {
667 return make_range(def_path_iterator(this, From), def_path_iterator());
668 }
669
670 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
671 return make_range(const_def_path_iterator(this, From),
672 const_def_path_iterator());
673 }
674
675 struct OptznResult {
676 /// The path that contains our result.
677 TerminatedPath PrimaryClobber;
678 /// The paths that we can legally cache back from, but that aren't
679 /// necessarily the result of the Phi optimization.
680 SmallVector<TerminatedPath, 4> OtherClobbers;
681 };
682
683 ListIndex defPathIndex(const DefPath &N) const {
684 // The assert looks nicer if we don't need to do &N
685 const DefPath *NP = &N;
686 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
687 "Out of bounds DefPath!");
688 return NP - &Paths.front();
689 }
690
691 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
692 /// that act as legal clobbers. Note that this won't return *all* clobbers.
693 ///
694 /// Phi optimization algorithm tl;dr:
695 /// - Find the earliest def/phi, A, we can optimize to
696 /// - Find if all paths from the starting memory access ultimately reach A
697 /// - If not, optimization isn't possible.
698 /// - Otherwise, walk from A to another clobber or phi, A'.
699 /// - If A' is a def, we're done.
700 /// - If A' is a phi, try to optimize it.
701 ///
702 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
703 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
704 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
705 const MemoryLocation &Loc) {
706 assert(Paths.empty() && VisitedPhis.empty() &&
707 "Reset the optimization state.");
708
709 Paths.emplace_back(Loc, Start, Phi, None);
710 // Stores how many "valid" optimization nodes we had prior to calling
711 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
712 auto PriorPathsSize = Paths.size();
713
714 SmallVector<ListIndex, 16> PausedSearches;
715 SmallVector<ListIndex, 8> NewPaused;
716 SmallVector<TerminatedPath, 4> TerminatedPaths;
717
718 addSearches(Phi, PausedSearches, 0);
719
720 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
721 // Paths.
722 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
723 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000724 auto Dom = Paths.begin();
725 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
726 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
727 Dom = I;
728 auto Last = Paths.end() - 1;
729 if (Last != Dom)
730 std::iter_swap(Last, Dom);
731 };
732
733 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000734 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000735 assert(!MSSA.isLiveOnEntryDef(Current) &&
736 "liveOnEntry wasn't treated as a clobber?");
737
Daniel Berlind0420312017-04-01 09:01:12 +0000738 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000739 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
740 // optimization for the prior phi.
741 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
742 return MSSA.dominates(P.Clobber, Target);
743 }));
744
745 // FIXME: This is broken, because the Blocker may be reported to be
746 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000747 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000748 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000749 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000750
751 // Find the node we started at. We can't search based on N->Last, since
752 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000753 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000754 return defPathIndex(N) < PriorPathsSize;
755 });
756 assert(Iter != def_path_iterator());
757
758 DefPath &CurNode = *Iter;
759 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000760
761 // Two things:
762 // A. We can't reliably cache all of NewPaused back. Consider a case
763 // where we have two paths in NewPaused; one of which can't optimize
764 // above this phi, whereas the other can. If we cache the second path
765 // back, we'll end up with suboptimal cache entries. We can handle
766 // cases like this a bit better when we either try to find all
767 // clobbers that block phi optimization, or when our cache starts
768 // supporting unfinished searches.
769 // B. We can't reliably cache TerminatedPaths back here without doing
770 // extra checks; consider a case like:
771 // T
772 // / \
773 // D C
774 // \ /
775 // S
776 // Where T is our target, C is a node with a clobber on it, D is a
777 // diamond (with a clobber *only* on the left or right node, N), and
778 // S is our start. Say we walk to D, through the node opposite N
779 // (read: ignoring the clobber), and see a cache entry in the top
780 // node of D. That cache entry gets put into TerminatedPaths. We then
781 // walk up to C (N is later in our worklist), find the clobber, and
782 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
783 // the bottom part of D to the cached clobber, ignoring the clobber
784 // in N. Again, this problem goes away if we start tracking all
785 // blockers for a given phi optimization.
786 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
787 return {Result, {}};
788 }
789
790 // If there's nothing left to search, then all paths led to valid clobbers
791 // that we got from our cache; pick the nearest to the start, and allow
792 // the rest to be cached back.
793 if (NewPaused.empty()) {
794 MoveDominatedPathToEnd(TerminatedPaths);
795 TerminatedPath Result = TerminatedPaths.pop_back_val();
796 return {Result, std::move(TerminatedPaths)};
797 }
798
799 MemoryAccess *DefChainEnd = nullptr;
800 SmallVector<TerminatedPath, 4> Clobbers;
801 for (ListIndex Paused : NewPaused) {
802 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
803 if (WR.IsKnownClobber)
804 Clobbers.push_back({WR.Result, Paused});
805 else
806 // Micro-opt: If we hit the end of the chain, save it.
807 DefChainEnd = WR.Result;
808 }
809
810 if (!TerminatedPaths.empty()) {
811 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
812 // do it now.
813 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000814 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000815 DefChainEnd = MA;
816
817 // If any of the terminated paths don't dominate the phi we'll try to
818 // optimize, we need to figure out what they are and quit.
819 const BasicBlock *ChainBB = DefChainEnd->getBlock();
820 for (const TerminatedPath &TP : TerminatedPaths) {
821 // Because we know that DefChainEnd is as "high" as we can go, we
822 // don't need local dominance checks; BB dominance is sufficient.
823 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
824 Clobbers.push_back(TP);
825 }
826 }
827
828 // If we have clobbers in the def chain, find the one closest to Current
829 // and quit.
830 if (!Clobbers.empty()) {
831 MoveDominatedPathToEnd(Clobbers);
832 TerminatedPath Result = Clobbers.pop_back_val();
833 return {Result, std::move(Clobbers)};
834 }
835
836 assert(all_of(NewPaused,
837 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
838
839 // Because liveOnEntry is a clobber, this must be a phi.
840 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
841
842 PriorPathsSize = Paths.size();
843 PausedSearches.clear();
844 for (ListIndex I : NewPaused)
845 addSearches(DefChainPhi, PausedSearches, I);
846 NewPaused.clear();
847
848 Current = DefChainPhi;
849 }
850 }
851
George Burgess IV5f308972016-07-19 01:29:15 +0000852 void verifyOptResult(const OptznResult &R) const {
853 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
854 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
855 }));
856 }
857
858 void resetPhiOptznState() {
859 Paths.clear();
860 VisitedPhis.clear();
861 }
862
863public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000864 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
865 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000866
George Burgess IV5f308972016-07-19 01:29:15 +0000867 /// Finds the nearest clobber for the given query, optimizing phis if
868 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000869 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000870 Query = &Q;
871
872 MemoryAccess *Current = Start;
873 // This walker pretends uses don't exist. If we're handed one, silently grab
874 // its def. (This has the nice side-effect of ensuring we never cache uses)
875 if (auto *MU = dyn_cast<MemoryUse>(Start))
876 Current = MU->getDefiningAccess();
877
878 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
879 // Fast path for the overly-common case (no crazy phi optimization
880 // necessary)
881 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000882 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000883 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000884 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000885 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000886 } else {
887 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
888 Current, Q.StartingLoc);
889 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000890 resetPhiOptznState();
891 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000892 }
893
George Burgess IV5f308972016-07-19 01:29:15 +0000894#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000895 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000896#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000897 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000898 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000899
900 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000901};
902
903struct RenamePassData {
904 DomTreeNode *DTN;
905 DomTreeNode::const_iterator ChildIt;
906 MemoryAccess *IncomingVal;
907
908 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
909 MemoryAccess *M)
910 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000911
George Burgess IV5f308972016-07-19 01:29:15 +0000912 void swap(RenamePassData &RHS) {
913 std::swap(DTN, RHS.DTN);
914 std::swap(ChildIt, RHS.ChildIt);
915 std::swap(IncomingVal, RHS.IncomingVal);
916 }
917};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000918
919} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000920
921namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000922
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000923/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
George Burgess IV45f263d2018-05-26 02:28:55 +0000924/// longer does caching on its own, but the name has been retained for the
925/// moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000926class MemorySSA::CachingWalker final : public MemorySSAWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000927 ClobberWalker Walker;
George Burgess IV5f308972016-07-19 01:29:15 +0000928
929 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
George Burgess IV5f308972016-07-19 01:29:15 +0000930
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000931public:
932 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000933 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000934
George Burgess IV400ae402016-07-20 19:51:34 +0000935 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000936
George Burgess IV400ae402016-07-20 19:51:34 +0000937 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000938 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
George Burgess IV013fd732016-10-28 19:22:46 +0000939 const MemoryLocation &) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000940 void invalidateInfo(MemoryAccess *) override;
941
Geoff Berrycdf53332016-08-08 17:52:01 +0000942 void verify(const MemorySSA *MSSA) override {
943 MemorySSAWalker::verify(MSSA);
944 Walker.verify(MSSA);
945 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000946};
George Burgess IVe1100f52016-02-02 22:46:49 +0000947
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000948} // end namespace llvm
949
Daniel Berlin78cbd282017-02-20 22:26:03 +0000950void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
951 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000952 // Pass through values to our successors
953 for (const BasicBlock *S : successors(BB)) {
954 auto It = PerBlockAccesses.find(S);
955 // Rename the phi nodes in our successor block
956 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
957 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +0000958 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000959 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +0000960 if (RenameAllUses) {
961 int PhiIndex = Phi->getBasicBlockIndex(BB);
962 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
963 Phi->setIncomingValue(PhiIndex, IncomingVal);
964 } else
965 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +0000966 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000967}
George Burgess IVe1100f52016-02-02 22:46:49 +0000968
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000969/// Rename a single basic block into MemorySSA form.
Daniel Berlin78cbd282017-02-20 22:26:03 +0000970/// Uses the standard SSA renaming algorithm.
971/// \returns The new incoming value.
972MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
973 bool RenameAllUses) {
974 auto It = PerBlockAccesses.find(BB);
975 // Skip most processing if the list is empty.
976 if (It != PerBlockAccesses.end()) {
977 AccessList *Accesses = It->second.get();
978 for (MemoryAccess &L : *Accesses) {
979 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
980 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
981 MUD->setDefiningAccess(IncomingVal);
982 if (isa<MemoryDef>(&L))
983 IncomingVal = &L;
984 } else {
985 IncomingVal = &L;
986 }
987 }
988 }
George Burgess IVe1100f52016-02-02 22:46:49 +0000989 return IncomingVal;
990}
991
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000992/// This is the standard SSA renaming algorithm.
George Burgess IVe1100f52016-02-02 22:46:49 +0000993///
994/// We walk the dominator tree in preorder, renaming accesses, and then filling
995/// in phi nodes in our successors.
996void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +0000997 SmallPtrSetImpl<BasicBlock *> &Visited,
998 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000999 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +00001000 // Skip everything if we already renamed this block and we are skipping.
1001 // Note: You can't sink this into the if, because we need it to occur
1002 // regardless of whether we skip blocks or not.
1003 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1004 if (SkipVisited && AlreadyVisited)
1005 return;
1006
1007 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1008 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001009 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +00001010
1011 while (!WorkStack.empty()) {
1012 DomTreeNode *Node = WorkStack.back().DTN;
1013 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1014 IncomingVal = WorkStack.back().IncomingVal;
1015
1016 if (ChildIt == Node->end()) {
1017 WorkStack.pop_back();
1018 } else {
1019 DomTreeNode *Child = *ChildIt;
1020 ++WorkStack.back().ChildIt;
1021 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001022 // Note: You can't sink this into the if, because we need it to occur
1023 // regardless of whether we skip blocks or not.
1024 AlreadyVisited = !Visited.insert(BB).second;
1025 if (SkipVisited && AlreadyVisited) {
1026 // We already visited this during our renaming, which can happen when
1027 // being asked to rename multiple blocks. Figure out the incoming val,
1028 // which is the last def.
1029 // Incoming value can only change if there is a block def, and in that
1030 // case, it's the last block def in the list.
1031 if (auto *BlockDefs = getWritableBlockDefs(BB))
1032 IncomingVal = &*BlockDefs->rbegin();
1033 } else
1034 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1035 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001036 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1037 }
1038 }
1039}
1040
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001041/// This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001042/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1043/// being uses of the live on entry definition.
1044void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1045 assert(!DT->isReachableFromEntry(BB) &&
1046 "Reachable block found while handling unreachable blocks");
1047
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001048 // Make sure phi nodes in our reachable successors end up with a
1049 // LiveOnEntryDef for our incoming edge, even though our block is forward
1050 // unreachable. We could just disconnect these blocks from the CFG fully,
1051 // but we do not right now.
1052 for (const BasicBlock *S : successors(BB)) {
1053 if (!DT->isReachableFromEntry(S))
1054 continue;
1055 auto It = PerBlockAccesses.find(S);
1056 // Rename the phi nodes in our successor block
1057 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1058 continue;
1059 AccessList *Accesses = It->second.get();
1060 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1061 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1062 }
1063
George Burgess IVe1100f52016-02-02 22:46:49 +00001064 auto It = PerBlockAccesses.find(BB);
1065 if (It == PerBlockAccesses.end())
1066 return;
1067
1068 auto &Accesses = It->second;
1069 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1070 auto Next = std::next(AI);
1071 // If we have a phi, just remove it. We are going to replace all
1072 // users with live on entry.
1073 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1074 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1075 else
1076 Accesses->erase(AI);
1077 AI = Next;
1078 }
1079}
1080
Geoff Berryb96d3b22016-06-01 21:30:40 +00001081MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1082 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
George Burgess IV68ac9412018-02-23 23:07:18 +00001083 NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001084 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001085}
1086
George Burgess IVe1100f52016-02-02 22:46:49 +00001087MemorySSA::~MemorySSA() {
1088 // Drop all our references
1089 for (const auto &Pair : PerBlockAccesses)
1090 for (MemoryAccess &MA : *Pair.second)
1091 MA.dropAllReferences();
1092}
1093
Daniel Berlin14300262016-06-21 18:39:20 +00001094MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001095 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1096
1097 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001098 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001099 return Res.first->second.get();
1100}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001101
Daniel Berlind602e042017-01-25 20:56:19 +00001102MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1103 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1104
1105 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001106 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001107 return Res.first->second.get();
1108}
George Burgess IVe1100f52016-02-02 22:46:49 +00001109
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001110namespace llvm {
1111
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001112/// This class is a batch walker of all MemoryUse's in the program, and points
1113/// their defining access at the thing that actually clobbers them. Because it
1114/// is a batch walker that touches everything, it does not operate like the
1115/// other walkers. This walker is basically performing a top-down SSA renaming
1116/// pass, where the version stack is used as the cache. This enables it to be
1117/// significantly more time and memory efficient than using the regular walker,
1118/// which is walking bottom-up.
1119class MemorySSA::OptimizeUses {
1120public:
1121 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1122 DominatorTree *DT)
1123 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1124 Walker = MSSA->getWalker();
1125 }
1126
1127 void optimizeUses();
1128
1129private:
1130 /// This represents where a given memorylocation is in the stack.
1131 struct MemlocStackInfo {
1132 // This essentially is keeping track of versions of the stack. Whenever
1133 // the stack changes due to pushes or pops, these versions increase.
1134 unsigned long StackEpoch;
1135 unsigned long PopEpoch;
1136 // This is the lower bound of places on the stack to check. It is equal to
1137 // the place the last stack walk ended.
1138 // Note: Correctness depends on this being initialized to 0, which densemap
1139 // does
1140 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001141 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001142 // This is where the last walk for this memory location ended.
1143 unsigned long LastKill;
1144 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001145 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001146 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001147
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001148 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1149 SmallVectorImpl<MemoryAccess *> &,
1150 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001151
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001152 MemorySSA *MSSA;
1153 MemorySSAWalker *Walker;
1154 AliasAnalysis *AA;
1155 DominatorTree *DT;
1156};
1157
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001158} // end namespace llvm
1159
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001160/// Optimize the uses in a given block This is basically the SSA renaming
1161/// algorithm, with one caveat: We are able to use a single stack for all
1162/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1163/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1164/// going to be some position in that stack of possible ones.
1165///
1166/// We track the stack positions that each MemoryLocation needs
1167/// to check, and last ended at. This is because we only want to check the
1168/// things that changed since last time. The same MemoryLocation should
1169/// get clobbered by the same store (getModRefInfo does not use invariantness or
1170/// things like this, and if they start, we can modify MemoryLocOrCall to
1171/// include relevant data)
1172void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1173 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1174 SmallVectorImpl<MemoryAccess *> &VersionStack,
1175 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1176
1177 /// If no accesses, nothing to do.
1178 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1179 if (Accesses == nullptr)
1180 return;
1181
1182 // Pop everything that doesn't dominate the current block off the stack,
1183 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001184 while (true) {
1185 assert(
1186 !VersionStack.empty() &&
1187 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001188 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1189 if (DT->dominates(BackBlock, BB))
1190 break;
1191 while (VersionStack.back()->getBlock() == BackBlock)
1192 VersionStack.pop_back();
1193 ++PopEpoch;
1194 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001195
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001196 for (MemoryAccess &MA : *Accesses) {
1197 auto *MU = dyn_cast<MemoryUse>(&MA);
1198 if (!MU) {
1199 VersionStack.push_back(&MA);
1200 ++StackEpoch;
1201 continue;
1202 }
1203
George Burgess IV024f3d22016-08-03 19:57:02 +00001204 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001205 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001206 continue;
1207 }
1208
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001209 MemoryLocOrCall UseMLOC(MU);
1210 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001211 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001212 // stack due to changing blocks. We may have to reset the lower bound or
1213 // last kill info.
1214 if (LocInfo.PopEpoch != PopEpoch) {
1215 LocInfo.PopEpoch = PopEpoch;
1216 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001217 // If the lower bound was in something that no longer dominates us, we
1218 // have to reset it.
1219 // We can't simply track stack size, because the stack may have had
1220 // pushes/pops in the meantime.
1221 // XXX: This is non-optimal, but only is slower cases with heavily
1222 // branching dominator trees. To get the optimal number of queries would
1223 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1224 // the top of that stack dominates us. This does not seem worth it ATM.
1225 // A much cheaper optimization would be to always explore the deepest
1226 // branch of the dominator tree first. This will guarantee this resets on
1227 // the smallest set of blocks.
1228 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001229 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001230 // Reset the lower bound of things to check.
1231 // TODO: Some day we should be able to reset to last kill, rather than
1232 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001233 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001234 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001235 LocInfo.LastKillValid = false;
1236 }
1237 } else if (LocInfo.StackEpoch != StackEpoch) {
1238 // If all that has changed is the StackEpoch, we only have to check the
1239 // new things on the stack, because we've checked everything before. In
1240 // this case, the lower bound of things to check remains the same.
1241 LocInfo.PopEpoch = PopEpoch;
1242 LocInfo.StackEpoch = StackEpoch;
1243 }
1244 if (!LocInfo.LastKillValid) {
1245 LocInfo.LastKill = VersionStack.size() - 1;
1246 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001247 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001248 }
1249
1250 // At this point, we should have corrected last kill and LowerBound to be
1251 // in bounds.
1252 assert(LocInfo.LowerBound < VersionStack.size() &&
1253 "Lower bound out of range");
1254 assert(LocInfo.LastKill < VersionStack.size() &&
1255 "Last kill info out of range");
1256 // In any case, the new upper bound is the top of the stack.
1257 unsigned long UpperBound = VersionStack.size() - 1;
1258
1259 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001260 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1261 << *(MU->getMemoryInst()) << ")"
1262 << " because there are "
1263 << UpperBound - LocInfo.LowerBound
1264 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001265 // Because we did not walk, LastKill is no longer valid, as this may
1266 // have been a kill.
1267 LocInfo.LastKillValid = false;
1268 continue;
1269 }
1270 bool FoundClobberResult = false;
1271 while (UpperBound > LocInfo.LowerBound) {
1272 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1273 // For phis, use the walker, see where we ended up, go there
1274 Instruction *UseInst = MU->getMemoryInst();
1275 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1276 // We are guaranteed to find it or something is wrong
1277 while (VersionStack[UpperBound] != Result) {
1278 assert(UpperBound != 0);
1279 --UpperBound;
1280 }
1281 FoundClobberResult = true;
1282 break;
1283 }
1284
1285 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001286 // If the lifetime of the pointer ends at this instruction, it's live on
1287 // entry.
1288 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1289 // Reset UpperBound to liveOnEntryDef's place in the stack
1290 UpperBound = 0;
1291 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001292 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001293 break;
1294 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001295 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1296 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001297 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001298 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001299 break;
1300 }
1301 --UpperBound;
1302 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001303
1304 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1305
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001306 // At the end of this loop, UpperBound is either a clobber, or lower bound
1307 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1308 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001309 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001310 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1311 LocInfo.AR = None;
1312 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001313 LocInfo.LastKill = UpperBound;
1314 } else {
1315 // Otherwise, we checked all the new ones, and now we know we can get to
1316 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001317 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001318 }
1319 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001320 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001321 }
1322}
1323
1324/// Optimize uses to point to their actual clobbering definitions.
1325void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001326 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001327 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001328 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1329
1330 unsigned long StackEpoch = 1;
1331 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001332 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001333 for (const auto *DomNode : depth_first(DT->getRootNode()))
1334 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1335 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001336}
1337
Daniel Berlin3d512a22016-08-22 19:14:30 +00001338void MemorySSA::placePHINodes(
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001339 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001340 // Determine where our MemoryPhi's should go
1341 ForwardIDFCalculator IDFs(*DT);
1342 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001343 SmallVector<BasicBlock *, 32> IDFBlocks;
1344 IDFs.calculate(IDFBlocks);
1345
1346 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001347 for (auto &BB : IDFBlocks)
1348 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001349}
1350
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001351void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001352 // We create an access to represent "live on entry", for things like
1353 // arguments or users of globals, where the memory they use is defined before
1354 // the beginning of the function. We do not actually insert it into the IR.
1355 // We do not define a live on exit for the immediate uses, and thus our
1356 // semantics do *not* imply that something with no immediate uses can simply
1357 // be removed.
1358 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001359 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1360 &StartingPoint, NextID++));
George Burgess IVe1100f52016-02-02 22:46:49 +00001361
1362 // We maintain lists of memory accesses per-block, trading memory for time. We
1363 // could just look up the memory access for every possible instruction in the
1364 // stream.
1365 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001366 // Go through each block, figure out where defs occur, and chain together all
1367 // the accesses.
1368 for (BasicBlock &B : F) {
Daniel Berlin7898ca62016-02-07 01:52:15 +00001369 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001370 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001371 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001372 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001373 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001374 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001375 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001376
George Burgess IVe1100f52016-02-02 22:46:49 +00001377 if (!Accesses)
1378 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001379 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001380 if (isa<MemoryDef>(MUD)) {
1381 InsertIntoDef = true;
1382 if (!Defs)
1383 Defs = getOrCreateDefsList(&B);
1384 Defs->push_back(*MUD);
1385 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001386 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001387 if (InsertIntoDef)
1388 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001389 }
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001390 placePHINodes(DefiningBlocks);
George Burgess IVe1100f52016-02-02 22:46:49 +00001391
1392 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1393 // filled in with all blocks.
1394 SmallPtrSet<BasicBlock *, 16> Visited;
1395 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1396
George Burgess IV5f308972016-07-19 01:29:15 +00001397 CachingWalker *Walker = getWalkerImpl();
1398
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001399 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001400
George Burgess IVe1100f52016-02-02 22:46:49 +00001401 // Mark the uses in unreachable blocks as live on entry, so that they go
1402 // somewhere.
1403 for (auto &BB : F)
1404 if (!Visited.count(&BB))
1405 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001406}
George Burgess IVe1100f52016-02-02 22:46:49 +00001407
George Burgess IV5f308972016-07-19 01:29:15 +00001408MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1409
1410MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001411 if (Walker)
1412 return Walker.get();
1413
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001414 Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001415 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001416}
1417
Daniel Berlind602e042017-01-25 20:56:19 +00001418// This is a helper function used by the creation routines. It places NewAccess
1419// into the access and defs lists for a given basic block, at the given
1420// insertion point.
1421void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1422 const BasicBlock *BB,
1423 InsertionPlace Point) {
1424 auto *Accesses = getOrCreateAccessList(BB);
1425 if (Point == Beginning) {
1426 // If it's a phi node, it goes first, otherwise, it goes after any phi
1427 // nodes.
1428 if (isa<MemoryPhi>(NewAccess)) {
1429 Accesses->push_front(NewAccess);
1430 auto *Defs = getOrCreateDefsList(BB);
1431 Defs->push_front(*NewAccess);
1432 } else {
1433 auto AI = find_if_not(
1434 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1435 Accesses->insert(AI, NewAccess);
1436 if (!isa<MemoryUse>(NewAccess)) {
1437 auto *Defs = getOrCreateDefsList(BB);
1438 auto DI = find_if_not(
1439 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1440 Defs->insert(DI, *NewAccess);
1441 }
1442 }
1443 } else {
1444 Accesses->push_back(NewAccess);
1445 if (!isa<MemoryUse>(NewAccess)) {
1446 auto *Defs = getOrCreateDefsList(BB);
1447 Defs->push_back(*NewAccess);
1448 }
1449 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001450 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001451}
1452
1453void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1454 AccessList::iterator InsertPt) {
1455 auto *Accesses = getWritableBlockAccesses(BB);
1456 bool WasEnd = InsertPt == Accesses->end();
1457 Accesses->insert(AccessList::iterator(InsertPt), What);
1458 if (!isa<MemoryUse>(What)) {
1459 auto *Defs = getOrCreateDefsList(BB);
1460 // If we got asked to insert at the end, we have an easy job, just shove it
1461 // at the end. If we got asked to insert before an existing def, we also get
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001462 // an iterator. If we got asked to insert before a use, we have to hunt for
Daniel Berlind602e042017-01-25 20:56:19 +00001463 // the next def.
1464 if (WasEnd) {
1465 Defs->push_back(*What);
1466 } else if (isa<MemoryDef>(InsertPt)) {
1467 Defs->insert(InsertPt->getDefsIterator(), *What);
1468 } else {
1469 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1470 ++InsertPt;
1471 // Either we found a def, or we are inserting at the end
1472 if (InsertPt == Accesses->end())
1473 Defs->push_back(*What);
1474 else
1475 Defs->insert(InsertPt->getDefsIterator(), *What);
1476 }
1477 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001478 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001479}
1480
George Burgess IV5676a5d2018-08-22 22:34:38 +00001481void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1482 // Keep it in the lookup tables, remove from the lists
1483 removeFromLists(What, false);
1484
1485 // Note that moving should implicitly invalidate the optimized state of a
1486 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1487 // MemoryDef.
1488 if (auto *MD = dyn_cast<MemoryDef>(What))
1489 MD->resetOptimized();
1490 What->setBlock(BB);
1491}
1492
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001493// Move What before Where in the IR. The end result is that What will belong to
Daniel Berlin60ead052017-01-28 01:23:13 +00001494// the right lists and have the right Block set, but will not otherwise be
1495// correct. It will not have the right defining access, and if it is a def,
1496// things below it will not properly be updated.
1497void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1498 AccessList::iterator Where) {
George Burgess IV5676a5d2018-08-22 22:34:38 +00001499 prepareForMoveTo(What, BB);
Daniel Berlin60ead052017-01-28 01:23:13 +00001500 insertIntoListsBefore(What, BB, Where);
1501}
1502
Alina Sbirlea0f533552018-07-11 22:11:46 +00001503void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001504 InsertionPlace Point) {
Alina Sbirlea0f533552018-07-11 22:11:46 +00001505 if (isa<MemoryPhi>(What)) {
1506 assert(Point == Beginning &&
1507 "Can only move a Phi at the beginning of the block");
1508 // Update lookup table entry
1509 ValueToMemoryAccess.erase(What->getBlock());
1510 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1511 (void)Inserted;
1512 assert(Inserted && "Cannot move a Phi to a block that already has one");
1513 }
1514
George Burgess IV5676a5d2018-08-22 22:34:38 +00001515 prepareForMoveTo(What, BB);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001516 insertIntoListsForBlock(What, BB, Point);
1517}
1518
Daniel Berlin14300262016-06-21 18:39:20 +00001519MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1520 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001521 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001522 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001523 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001524 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001525 return Phi;
1526}
1527
1528MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1529 MemoryAccess *Definition) {
1530 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1531 MemoryUseOrDef *NewAccess = createNewAccess(I);
1532 assert(
1533 NewAccess != nullptr &&
1534 "Tried to create a memory access for a non-memory touching instruction");
1535 NewAccess->setDefiningAccess(Definition);
1536 return NewAccess;
1537}
1538
Daniel Berlind952cea2017-04-07 01:28:36 +00001539// Return true if the instruction has ordering constraints.
1540// Note specifically that this only considers stores and loads
1541// because others are still considered ModRef by getModRefInfo.
1542static inline bool isOrdered(const Instruction *I) {
1543 if (auto *SI = dyn_cast<StoreInst>(I)) {
1544 if (!SI->isUnordered())
1545 return true;
1546 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1547 if (!LI->isUnordered())
1548 return true;
1549 }
1550 return false;
1551}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001552
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001553/// Helper function to create new memory accesses
Peter Collingbourneffecb142016-05-26 01:19:17 +00001554MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001555 // The assume intrinsic has a control dependency which we model by claiming
1556 // that it writes arbitrarily. Ignore that fake memory dependency here.
1557 // FIXME: Replace this special casing with a more accurate modelling of
1558 // assume's control dependency.
1559 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1560 if (II->getIntrinsicID() == Intrinsic::assume)
1561 return nullptr;
1562
George Burgess IVe1100f52016-02-02 22:46:49 +00001563 // Find out what affect this instruction has on memory.
Alina Sbirlea967e7962017-08-01 00:28:29 +00001564 ModRefInfo ModRef = AA->getModRefInfo(I, None);
Daniel Berlind952cea2017-04-07 01:28:36 +00001565 // The isOrdered check is used to ensure that volatiles end up as defs
1566 // (atomics end up as ModRef right now anyway). Until we separate the
1567 // ordering chain from the memory chain, this enables people to see at least
1568 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1569 // will still give an answer that bypasses other volatile loads. TODO:
1570 // Separate memory aliasing and ordering into two different chains so that we
1571 // can precisely represent both "what memory will this read/write/is clobbered
1572 // by" and "what instructions can I move this past".
Alina Sbirlea63d22502017-12-05 20:12:23 +00001573 bool Def = isModSet(ModRef) || isOrdered(I);
1574 bool Use = isRefSet(ModRef);
George Burgess IVe1100f52016-02-02 22:46:49 +00001575
1576 // It's possible for an instruction to not modify memory at all. During
1577 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001578 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001579 return nullptr;
1580
George Burgess IVb42b7622016-03-11 19:34:03 +00001581 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001582 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001583 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001584 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001585 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001586 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001587 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001588}
1589
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001590/// Returns true if \p Replacer dominates \p Replacee .
George Burgess IVe1100f52016-02-02 22:46:49 +00001591bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1592 const MemoryAccess *Replacee) const {
1593 if (isa<MemoryUseOrDef>(Replacee))
1594 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1595 const auto *MP = cast<MemoryPhi>(Replacee);
1596 // For a phi node, the use occurs in the predecessor block of the phi node.
1597 // Since we may occur multiple times in the phi node, we have to check each
1598 // operand to ensure Replacer dominates each operand where Replacee occurs.
1599 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001600 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001601 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1602 return false;
1603 }
1604 return true;
1605}
1606
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001607/// Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001608void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1609 assert(MA->use_empty() &&
1610 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001611 BlockNumbering.erase(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001612 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001613 MUD->setDefiningAccess(nullptr);
1614 // Invalidate our walker's cache if necessary
1615 if (!isa<MemoryUse>(MA))
1616 Walker->invalidateInfo(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001617
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001618 Value *MemoryInst;
George Burgess IV2cbf9732018-06-22 22:34:07 +00001619 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001620 MemoryInst = MUD->getMemoryInst();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001621 else
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001622 MemoryInst = MA->getBlock();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001623
Daniel Berlin5130cc82016-07-31 21:08:20 +00001624 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1625 if (VMA->second == MA)
1626 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001627}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001628
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001629/// Properly remove \p MA from all of MemorySSA's lists.
Daniel Berlin60ead052017-01-28 01:23:13 +00001630///
1631/// Because of the way the intrusive list and use lists work, it is important to
1632/// do removal in the right order.
1633/// ShouldDelete defaults to true, and will cause the memory access to also be
1634/// deleted, not just removed.
1635void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001636 BasicBlock *BB = MA->getBlock();
Daniel Berlind602e042017-01-25 20:56:19 +00001637 // The access list owns the reference, so we erase it from the non-owning list
1638 // first.
1639 if (!isa<MemoryUse>(MA)) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001640 auto DefsIt = PerBlockDefs.find(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001641 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1642 Defs->remove(*MA);
1643 if (Defs->empty())
1644 PerBlockDefs.erase(DefsIt);
1645 }
1646
Daniel Berlin60ead052017-01-28 01:23:13 +00001647 // The erase call here will delete it. If we don't want it deleted, we call
1648 // remove instead.
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001649 auto AccessIt = PerBlockAccesses.find(BB);
Daniel Berlinada263d2016-06-20 20:21:33 +00001650 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001651 if (ShouldDelete)
1652 Accesses->erase(MA);
1653 else
1654 Accesses->remove(MA);
1655
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001656 if (Accesses->empty()) {
George Burgess IVe0e6e482016-03-02 02:35:04 +00001657 PerBlockAccesses.erase(AccessIt);
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001658 BlockNumberingValid.erase(BB);
1659 }
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001660}
1661
George Burgess IVe1100f52016-02-02 22:46:49 +00001662void MemorySSA::print(raw_ostream &OS) const {
1663 MemorySSAAnnotatedWriter Writer(this);
1664 F.print(OS, &Writer);
1665}
1666
Aaron Ballman615eb472017-10-15 14:32:27 +00001667#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001668LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001669#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001670
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001671void MemorySSA::verifyMemorySSA() const {
1672 verifyDefUses(F);
1673 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001674 verifyOrdering(F);
George Burgess IV97ec6242018-06-25 05:30:36 +00001675 verifyDominationNumbers(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001676 Walker->verify(this);
Alina Sbirleaf5403d82018-08-29 18:26:04 +00001677 verifyClobberSanity(F);
1678}
1679
1680/// Check sanity of the clobbering instruction for access MA.
1681void MemorySSA::checkClobberSanityAccess(const MemoryAccess *MA) const {
1682 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1683 if (!MUD->isOptimized())
1684 return;
1685 auto *I = MUD->getMemoryInst();
1686 auto Loc = MemoryLocation::getOrNone(I);
1687 if (Loc == None)
1688 return;
1689 auto *Clobber = MUD->getOptimized();
1690 UpwardsMemoryQuery Q(I, MUD);
1691 checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA);
1692 }
1693}
1694
1695void MemorySSA::verifyClobberSanity(const Function &F) const {
1696#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1697 for (const BasicBlock &BB : F) {
1698 const AccessList *Accesses = getBlockAccesses(&BB);
1699 if (!Accesses)
1700 continue;
1701 for (const MemoryAccess &MA : *Accesses)
1702 checkClobberSanityAccess(&MA);
1703 }
1704#endif
Daniel Berlin14300262016-06-21 18:39:20 +00001705}
1706
George Burgess IV97ec6242018-06-25 05:30:36 +00001707/// Verify that all of the blocks we believe to have valid domination numbers
1708/// actually have valid domination numbers.
1709void MemorySSA::verifyDominationNumbers(const Function &F) const {
1710#ifndef NDEBUG
1711 if (BlockNumberingValid.empty())
1712 return;
1713
1714 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1715 for (const BasicBlock &BB : F) {
1716 if (!ValidBlocks.count(&BB))
1717 continue;
1718
1719 ValidBlocks.erase(&BB);
1720
1721 const AccessList *Accesses = getBlockAccesses(&BB);
1722 // It's correct to say an empty block has valid numbering.
1723 if (!Accesses)
1724 continue;
1725
1726 // Block numbering starts at 1.
1727 unsigned long LastNumber = 0;
1728 for (const MemoryAccess &MA : *Accesses) {
1729 auto ThisNumberIter = BlockNumbering.find(&MA);
1730 assert(ThisNumberIter != BlockNumbering.end() &&
1731 "MemoryAccess has no domination number in a valid block!");
1732
1733 unsigned long ThisNumber = ThisNumberIter->second;
1734 assert(ThisNumber > LastNumber &&
1735 "Domination numbers should be strictly increasing!");
1736 LastNumber = ThisNumber;
1737 }
1738 }
1739
1740 assert(ValidBlocks.empty() &&
1741 "All valid BasicBlocks should exist in F -- dangling pointers?");
1742#endif
1743}
1744
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001745/// Verify that the order and existence of MemoryAccesses matches the
Daniel Berlin14300262016-06-21 18:39:20 +00001746/// order and existence of memory affecting instructions.
1747void MemorySSA::verifyOrdering(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001748#ifndef NDEBUG
Daniel Berlin14300262016-06-21 18:39:20 +00001749 // Walk all the blocks, comparing what the lookups think and what the access
1750 // lists think, as well as the order in the blocks vs the order in the access
1751 // lists.
1752 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001753 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001754 for (BasicBlock &B : F) {
1755 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001756 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001757 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001758 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001759 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001760 ActualDefs.push_back(Phi);
1761 }
1762
Daniel Berlin14300262016-06-21 18:39:20 +00001763 for (Instruction &I : B) {
1764 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001765 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1766 "We have memory affecting instructions "
1767 "in this block but they are not in the "
1768 "access list or defs list");
1769 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001770 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001771 if (isa<MemoryDef>(MA))
1772 ActualDefs.push_back(MA);
1773 }
Daniel Berlin14300262016-06-21 18:39:20 +00001774 }
1775 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001776 // accesses and an access list.
1777 // Same with defs.
1778 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001779 continue;
1780 assert(AL->size() == ActualAccesses.size() &&
1781 "We don't have the same number of accesses in the block as on the "
1782 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001783 assert((DL || ActualDefs.size() == 0) &&
1784 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001785 assert((!DL || DL->size() == ActualDefs.size()) &&
1786 "We don't have the same number of defs in the block as on the "
1787 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001788 auto ALI = AL->begin();
1789 auto AAI = ActualAccesses.begin();
1790 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1791 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1792 ++ALI;
1793 ++AAI;
1794 }
1795 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001796 if (DL) {
1797 auto DLI = DL->begin();
1798 auto ADI = ActualDefs.begin();
1799 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1800 assert(&*DLI == *ADI && "Not the same defs in the same order");
1801 ++DLI;
1802 ++ADI;
1803 }
1804 }
1805 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001806 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00001807#endif
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001808}
1809
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001810/// Verify the domination properties of MemorySSA by checking that each
George Burgess IVe1100f52016-02-02 22:46:49 +00001811/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001812void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001813#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001814 for (BasicBlock &B : F) {
1815 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001816 if (MemoryPhi *MP = getMemoryAccess(&B))
1817 for (const Use &U : MP->uses())
1818 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001819
George Burgess IVe1100f52016-02-02 22:46:49 +00001820 for (Instruction &I : B) {
1821 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1822 if (!MD)
1823 continue;
1824
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001825 for (const Use &U : MD->uses())
1826 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001827 }
1828 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001829#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001830}
1831
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001832/// Verify the def-use lists in MemorySSA, by verifying that \p Use
George Burgess IVe1100f52016-02-02 22:46:49 +00001833/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001834void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001835#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001836 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001837 if (!Def)
1838 assert(isLiveOnEntryDef(Use) &&
1839 "Null def but use not point to live on entry def");
1840 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001841 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001842 "Did not find use in def's use list");
1843#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001844}
1845
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001846/// Verify the immediate use information, by walking all the memory
George Burgess IVe1100f52016-02-02 22:46:49 +00001847/// accesses and verifying that, for each use, it appears in the
1848/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001849void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001850#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001851 for (BasicBlock &B : F) {
1852 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001853 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001854 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1855 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001856 "Incomplete MemoryPhi Node");
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001857 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001858 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001859 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1860 pred_end(&B) &&
1861 "Incoming phi block not a block predecessor");
1862 }
Daniel Berlin14300262016-06-21 18:39:20 +00001863 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001864
1865 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001866 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1867 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001868 }
1869 }
1870 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00001871#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001872}
1873
Daniel Berlin5c46b942016-07-19 22:49:43 +00001874/// Perform a local numbering on blocks so that instruction ordering can be
1875/// determined in constant time.
1876/// TODO: We currently just number in order. If we numbered by N, we could
1877/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1878/// log2(N) sequences of mixed before and after) without needing to invalidate
1879/// the numbering.
1880void MemorySSA::renumberBlock(const BasicBlock *B) const {
1881 // The pre-increment ensures the numbers really start at 1.
1882 unsigned long CurrentNumber = 0;
1883 const AccessList *AL = getBlockAccesses(B);
1884 assert(AL != nullptr && "Asking to renumber an empty block");
1885 for (const auto &I : *AL)
1886 BlockNumbering[&I] = ++CurrentNumber;
1887 BlockNumberingValid.insert(B);
1888}
1889
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001890/// Determine, for two memory accesses in the same block,
George Burgess IVe1100f52016-02-02 22:46:49 +00001891/// whether \p Dominator dominates \p Dominatee.
1892/// \returns True if \p Dominator dominates \p Dominatee.
1893bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1894 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001895 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001896
Daniel Berlin19860302016-07-19 23:08:08 +00001897 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001898 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001899 // A node dominates itself.
1900 if (Dominatee == Dominator)
1901 return true;
1902
1903 // When Dominatee is defined on function entry, it is not dominated by another
1904 // memory access.
1905 if (isLiveOnEntryDef(Dominatee))
1906 return false;
1907
1908 // When Dominator is defined on function entry, it dominates the other memory
1909 // access.
1910 if (isLiveOnEntryDef(Dominator))
1911 return true;
1912
Daniel Berlin5c46b942016-07-19 22:49:43 +00001913 if (!BlockNumberingValid.count(DominatorBlock))
1914 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001915
Daniel Berlin5c46b942016-07-19 22:49:43 +00001916 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1917 // All numbers start with 1
1918 assert(DominatorNum != 0 && "Block was not numbered properly");
1919 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1920 assert(DominateeNum != 0 && "Block was not numbered properly");
1921 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001922}
1923
George Burgess IV5f308972016-07-19 01:29:15 +00001924bool MemorySSA::dominates(const MemoryAccess *Dominator,
1925 const MemoryAccess *Dominatee) const {
1926 if (Dominator == Dominatee)
1927 return true;
1928
1929 if (isLiveOnEntryDef(Dominatee))
1930 return false;
1931
1932 if (Dominator->getBlock() != Dominatee->getBlock())
1933 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1934 return locallyDominates(Dominator, Dominatee);
1935}
1936
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001937bool MemorySSA::dominates(const MemoryAccess *Dominator,
1938 const Use &Dominatee) const {
1939 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1940 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1941 // The def must dominate the incoming block of the phi.
1942 if (UseBB != Dominator->getBlock())
1943 return DT->dominates(Dominator->getBlock(), UseBB);
1944 // If the UseBB and the DefBB are the same, compare locally.
1945 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1946 }
1947 // If it's not a PHI node use, the normal dominates can already handle it.
1948 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1949}
1950
George Burgess IVe1100f52016-02-02 22:46:49 +00001951const static char LiveOnEntryStr[] = "liveOnEntry";
1952
Reid Kleckner96ab8722017-05-18 17:24:10 +00001953void MemoryAccess::print(raw_ostream &OS) const {
1954 switch (getValueID()) {
1955 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1956 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1957 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1958 }
1959 llvm_unreachable("invalid value id");
1960}
1961
George Burgess IVe1100f52016-02-02 22:46:49 +00001962void MemoryDef::print(raw_ostream &OS) const {
1963 MemoryAccess *UO = getDefiningAccess();
1964
George Burgess IVaa283d82018-06-14 19:55:53 +00001965 auto printID = [&OS](MemoryAccess *A) {
1966 if (A && A->getID())
1967 OS << A->getID();
1968 else
1969 OS << LiveOnEntryStr;
1970 };
1971
George Burgess IVe1100f52016-02-02 22:46:49 +00001972 OS << getID() << " = MemoryDef(";
George Burgess IVaa283d82018-06-14 19:55:53 +00001973 printID(UO);
1974 OS << ")";
1975
1976 if (isOptimized()) {
1977 OS << "->";
1978 printID(getOptimized());
1979
1980 if (Optional<AliasResult> AR = getOptimizedAccessType())
1981 OS << " " << *AR;
1982 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001983}
1984
1985void MemoryPhi::print(raw_ostream &OS) const {
1986 bool First = true;
1987 OS << getID() << " = MemoryPhi(";
1988 for (const auto &Op : operands()) {
1989 BasicBlock *BB = getIncomingBlock(Op);
1990 MemoryAccess *MA = cast<MemoryAccess>(Op);
1991 if (!First)
1992 OS << ',';
1993 else
1994 First = false;
1995
1996 OS << '{';
1997 if (BB->hasName())
1998 OS << BB->getName();
1999 else
2000 BB->printAsOperand(OS, false);
2001 OS << ',';
2002 if (unsigned ID = MA->getID())
2003 OS << ID;
2004 else
2005 OS << LiveOnEntryStr;
2006 OS << '}';
2007 }
2008 OS << ')';
2009}
2010
George Burgess IVe1100f52016-02-02 22:46:49 +00002011void MemoryUse::print(raw_ostream &OS) const {
2012 MemoryAccess *UO = getDefiningAccess();
2013 OS << "MemoryUse(";
2014 if (UO && UO->getID())
2015 OS << UO->getID();
2016 else
2017 OS << LiveOnEntryStr;
2018 OS << ')';
George Burgess IVaa283d82018-06-14 19:55:53 +00002019
2020 if (Optional<AliasResult> AR = getOptimizedAccessType())
2021 OS << " " << *AR;
George Burgess IVe1100f52016-02-02 22:46:49 +00002022}
2023
2024void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00002025// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00002026#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00002027 print(dbgs());
2028 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00002029#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00002030}
2031
Chad Rosier232e29e2016-07-06 21:20:47 +00002032char MemorySSAPrinterLegacyPass::ID = 0;
2033
2034MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2035 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2036}
2037
2038void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2039 AU.setPreservesAll();
2040 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00002041}
2042
2043bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2044 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2045 MSSA.print(dbgs());
2046 if (VerifyMemorySSA)
2047 MSSA.verifyMemorySSA();
2048 return false;
2049}
2050
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002051AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00002052
Daniel Berlin1e98c042016-09-26 17:22:54 +00002053MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2054 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00002055 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2056 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002057 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002058}
2059
Geoff Berryb96d3b22016-06-01 21:30:40 +00002060PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2061 FunctionAnalysisManager &AM) {
2062 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00002063 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00002064
2065 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00002066}
2067
Geoff Berryb96d3b22016-06-01 21:30:40 +00002068PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2069 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00002070 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002071
2072 return PreservedAnalyses::all();
2073}
2074
2075char MemorySSAWrapperPass::ID = 0;
2076
2077MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2078 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2079}
2080
2081void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2082
2083void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002084 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002085 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2086 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00002087}
2088
Geoff Berryb96d3b22016-06-01 21:30:40 +00002089bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2090 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2091 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2092 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002093 return false;
2094}
2095
Geoff Berryb96d3b22016-06-01 21:30:40 +00002096void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00002097
Geoff Berryb96d3b22016-06-01 21:30:40 +00002098void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002099 MSSA->print(OS);
2100}
2101
George Burgess IVe1100f52016-02-02 22:46:49 +00002102MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2103
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002104MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2105 DominatorTree *D)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002106 : MemorySSAWalker(M), Walker(*M, *A, *D) {}
George Burgess IVe1100f52016-02-02 22:46:49 +00002107
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002108void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +00002109 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2110 MUD->resetOptimized();
Daniel Berlin83fc77b2016-03-01 18:46:54 +00002111}
2112
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002113/// Walk the use-def chains starting at \p MA and find
George Burgess IVe1100f52016-02-02 22:46:49 +00002114/// the MemoryAccess that actually clobbers Loc.
2115///
2116/// \returns our clobbering memory access
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002117MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2118 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
George Burgess IV0034e392018-04-09 23:09:27 +00002119 return Walker.findClobber(StartingAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002120}
2121
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002122MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002123 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002124 if (isa<MemoryPhi>(StartingAccess))
2125 return StartingAccess;
2126
2127 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2128 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2129 return StartingUseOrDef;
2130
2131 Instruction *I = StartingUseOrDef->getMemoryInst();
2132
2133 // Conservatively, fences are always clobbers, so don't perform the walk if we
2134 // hit a fence.
David Majnemera940f362016-07-15 17:19:24 +00002135 if (!ImmutableCallSite(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002136 return StartingUseOrDef;
2137
2138 UpwardsMemoryQuery Q;
2139 Q.OriginalAccess = StartingUseOrDef;
2140 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002141 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002142 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002143
George Burgess IVe1100f52016-02-02 22:46:49 +00002144 // Unlike the other function, do not walk to the def of a def, because we are
2145 // handed something we already believe is the clobbering access.
2146 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2147 ? StartingUseOrDef->getDefiningAccess()
2148 : StartingUseOrDef;
2149
2150 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002151 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2152 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2153 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2154 LLVM_DEBUG(dbgs() << *Clobber << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002155 return Clobber;
2156}
2157
2158MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002159MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2160 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2161 // If this is a MemoryPhi, we can't do anything.
2162 if (!StartingAccess)
2163 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002164
Daniel Berlincd2deac2016-10-20 20:13:45 +00002165 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002166 // Note: Currently, we store the optimized def result in a separate field,
2167 // since we can't use the defining access.
George Burgess IV6f49f4a2018-02-24 00:15:21 +00002168 if (StartingAccess->isOptimized())
2169 return StartingAccess->getOptimized();
Daniel Berlincd2deac2016-10-20 20:13:45 +00002170
George Burgess IV400ae402016-07-20 19:51:34 +00002171 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV5f308972016-07-19 01:29:15 +00002172 UpwardsMemoryQuery Q(I, StartingAccess);
George Burgess IV44477c62018-03-11 04:16:12 +00002173 // We can't sanely do anything with a fence, since they conservatively clobber
2174 // all memory, and have no locations to get pointers from to try to
2175 // disambiguate.
George Burgess IV5f308972016-07-19 01:29:15 +00002176 if (!Q.IsCall && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002177 return StartingAccess;
2178
George Burgess IV024f3d22016-08-03 19:57:02 +00002179 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2180 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002181 StartingAccess->setOptimized(LiveOnEntry);
2182 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002183 return LiveOnEntry;
2184 }
2185
George Burgess IVe1100f52016-02-02 22:46:49 +00002186 // Start with the thing we already think clobbers this location
2187 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2188
2189 // At this point, DefiningAccess may be the live on entry def.
2190 // If it is, we will not get a better result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002191 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
George Burgess IV44477c62018-03-11 04:16:12 +00002192 StartingAccess->setOptimized(DefiningAccess);
2193 StartingAccess->setOptimizedAccessType(None);
George Burgess IVe1100f52016-02-02 22:46:49 +00002194 return DefiningAccess;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002195 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002196
2197 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002198 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2199 LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
2200 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2201 LLVM_DEBUG(dbgs() << *Result << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002202
George Burgess IV44477c62018-03-11 04:16:12 +00002203 StartingAccess->setOptimized(Result);
2204 if (MSSA->isLiveOnEntryDef(Result))
2205 StartingAccess->setOptimizedAccessType(None);
2206 else if (Q.AR == MustAlias)
2207 StartingAccess->setOptimizedAccessType(MustAlias);
George Burgess IVe1100f52016-02-02 22:46:49 +00002208
2209 return Result;
2210}
2211
George Burgess IVe1100f52016-02-02 22:46:49 +00002212MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002213DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002214 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2215 return Use->getDefiningAccess();
2216 return MA;
2217}
2218
2219MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002220 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002221 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2222 return Use->getDefiningAccess();
2223 return StartingAccess;
2224}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002225
2226void MemoryPhi::deleteMe(DerivedUser *Self) {
2227 delete static_cast<MemoryPhi *>(Self);
2228}
2229
2230void MemoryDef::deleteMe(DerivedUser *Self) {
2231 delete static_cast<MemoryDef *>(Self);
2232}
2233
2234void MemoryUse::deleteMe(DerivedUser *Self) {
2235 delete static_cast<MemoryUse *>(Self);
2236}