blob: 4a6d02806d4efd53a2289d952dd0652bfa093cf3 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Hal Finkel60db0582014-09-07 18:57:58 +000066#include "llvm/Analysis/AssumptionTracker.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000072#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000073#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000076#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000077#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000078#include "llvm/IR/GlobalAlias.h"
79#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000080#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000081#include "llvm/IR/Instructions.h"
82#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000083#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000084#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000085#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000086#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000087#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000088#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000089#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000090#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Hal Finkel60db0582014-09-07 18:57:58 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
David Majnemer32b8ccf2014-11-16 20:35:19 +0000678static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
679 APInt A = C1->getValue()->getValue();
680 APInt B = C2->getValue()->getValue();
681 uint32_t ABW = A.getBitWidth();
682 uint32_t BBW = B.getBitWidth();
683
684 if (ABW > BBW)
685 B = B.sext(ABW);
686 else if (ABW < BBW)
687 A = A.sext(BBW);
688
689 return APIntOps::srem(A, B);
690}
691
692static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
693 APInt A = C1->getValue()->getValue();
694 APInt B = C2->getValue()->getValue();
695 uint32_t ABW = A.getBitWidth();
696 uint32_t BBW = B.getBitWidth();
697
698 if (ABW > BBW)
699 B = B.sext(ABW);
700 else if (ABW < BBW)
701 A = A.sext(BBW);
702
703 return APIntOps::sdiv(A, B);
704}
705
David Majnemer0df1d122014-11-16 07:30:35 +0000706static const APInt urem(const SCEVConstant *C1, const SCEVConstant *C2) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000707 APInt A = C1->getValue()->getValue();
708 APInt B = C2->getValue()->getValue();
709 uint32_t ABW = A.getBitWidth();
710 uint32_t BBW = B.getBitWidth();
711
712 if (ABW > BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000713 B = B.zext(ABW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714 else if (ABW < BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000715 A = A.zext(BBW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000716
David Majnemer0df1d122014-11-16 07:30:35 +0000717 return APIntOps::urem(A, B);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000718}
719
David Majnemer0df1d122014-11-16 07:30:35 +0000720static const APInt udiv(const SCEVConstant *C1, const SCEVConstant *C2) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000721 APInt A = C1->getValue()->getValue();
722 APInt B = C2->getValue()->getValue();
723 uint32_t ABW = A.getBitWidth();
724 uint32_t BBW = B.getBitWidth();
725
726 if (ABW > BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000727 B = B.zext(ABW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000728 else if (ABW < BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000729 A = A.zext(BBW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000730
David Majnemer0df1d122014-11-16 07:30:35 +0000731 return APIntOps::udiv(A, B);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000732}
733
734namespace {
735struct FindSCEVSize {
736 int Size;
737 FindSCEVSize() : Size(0) {}
738
739 bool follow(const SCEV *S) {
740 ++Size;
741 // Keep looking at all operands of S.
742 return true;
743 }
744 bool isDone() const {
745 return false;
746 }
747};
748}
749
750// Returns the size of the SCEV S.
751static inline int sizeOfSCEV(const SCEV *S) {
752 FindSCEVSize F;
753 SCEVTraversal<FindSCEVSize> ST(F);
754 ST.visitAll(S);
755 return F.Size;
756}
757
758namespace {
759
David Majnemer32b8ccf2014-11-16 20:35:19 +0000760template <typename Derived>
761struct SCEVDivision : public SCEVVisitor<Derived, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000762public:
763 // Computes the Quotient and Remainder of the division of Numerator by
764 // Denominator.
765 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
766 const SCEV *Denominator, const SCEV **Quotient,
767 const SCEV **Remainder) {
768 assert(Numerator && Denominator && "Uninitialized SCEV");
769
David Majnemer32b8ccf2014-11-16 20:35:19 +0000770 SCEVDivision<Derived> D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000771
772 // Check for the trivial case here to avoid having to check for it in the
773 // rest of the code.
774 if (Numerator == Denominator) {
775 *Quotient = D.One;
776 *Remainder = D.Zero;
777 return;
778 }
779
780 if (Numerator->isZero()) {
781 *Quotient = D.Zero;
782 *Remainder = D.Zero;
783 return;
784 }
785
786 // Split the Denominator when it is a product.
787 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
788 const SCEV *Q, *R;
789 *Quotient = Numerator;
790 for (const SCEV *Op : T->operands()) {
791 divide(SE, *Quotient, Op, &Q, &R);
792 *Quotient = Q;
793
794 // Bail out when the Numerator is not divisible by one of the terms of
795 // the Denominator.
796 if (!R->isZero()) {
797 *Quotient = D.Zero;
798 *Remainder = Numerator;
799 return;
800 }
801 }
802 *Remainder = D.Zero;
803 return;
804 }
805
806 D.visit(Numerator);
807 *Quotient = D.Quotient;
808 *Remainder = D.Remainder;
809 }
810
811 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
812 : SE(S), Denominator(Denominator) {
813 Zero = SE.getConstant(Denominator->getType(), 0);
814 One = SE.getConstant(Denominator->getType(), 1);
815
816 // By default, we don't know how to divide Expr by Denominator.
817 // Providing the default here simplifies the rest of the code.
818 Quotient = Zero;
819 Remainder = Numerator;
820 }
821
822 // Except in the trivial case described above, we do not know how to divide
823 // Expr by Denominator for the following functions with empty implementation.
824 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
825 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
826 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
827 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
828 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
829 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
830 void visitUnknown(const SCEVUnknown *Numerator) {}
831 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
832
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000833 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
834 const SCEV *StartQ, *StartR, *StepQ, *StepR;
835 assert(Numerator->isAffine() && "Numerator should be affine");
836 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
837 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
838 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
839 Numerator->getNoWrapFlags());
840 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
841 Numerator->getNoWrapFlags());
842 }
843
844 void visitAddExpr(const SCEVAddExpr *Numerator) {
845 SmallVector<const SCEV *, 2> Qs, Rs;
846 Type *Ty = Denominator->getType();
847
848 for (const SCEV *Op : Numerator->operands()) {
849 const SCEV *Q, *R;
850 divide(SE, Op, Denominator, &Q, &R);
851
852 // Bail out if types do not match.
853 if (Ty != Q->getType() || Ty != R->getType()) {
854 Quotient = Zero;
855 Remainder = Numerator;
856 return;
857 }
858
859 Qs.push_back(Q);
860 Rs.push_back(R);
861 }
862
863 if (Qs.size() == 1) {
864 Quotient = Qs[0];
865 Remainder = Rs[0];
866 return;
867 }
868
869 Quotient = SE.getAddExpr(Qs);
870 Remainder = SE.getAddExpr(Rs);
871 }
872
873 void visitMulExpr(const SCEVMulExpr *Numerator) {
874 SmallVector<const SCEV *, 2> Qs;
875 Type *Ty = Denominator->getType();
876
877 bool FoundDenominatorTerm = false;
878 for (const SCEV *Op : Numerator->operands()) {
879 // Bail out if types do not match.
880 if (Ty != Op->getType()) {
881 Quotient = Zero;
882 Remainder = Numerator;
883 return;
884 }
885
886 if (FoundDenominatorTerm) {
887 Qs.push_back(Op);
888 continue;
889 }
890
891 // Check whether Denominator divides one of the product operands.
892 const SCEV *Q, *R;
893 divide(SE, Op, Denominator, &Q, &R);
894 if (!R->isZero()) {
895 Qs.push_back(Op);
896 continue;
897 }
898
899 // Bail out if types do not match.
900 if (Ty != Q->getType()) {
901 Quotient = Zero;
902 Remainder = Numerator;
903 return;
904 }
905
906 FoundDenominatorTerm = true;
907 Qs.push_back(Q);
908 }
909
910 if (FoundDenominatorTerm) {
911 Remainder = Zero;
912 if (Qs.size() == 1)
913 Quotient = Qs[0];
914 else
915 Quotient = SE.getMulExpr(Qs);
916 return;
917 }
918
919 if (!isa<SCEVUnknown>(Denominator)) {
920 Quotient = Zero;
921 Remainder = Numerator;
922 return;
923 }
924
925 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
926 ValueToValueMap RewriteMap;
927 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
928 cast<SCEVConstant>(Zero)->getValue();
929 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
930
931 if (Remainder->isZero()) {
932 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
933 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
934 cast<SCEVConstant>(One)->getValue();
935 Quotient =
936 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
937 return;
938 }
939
940 // Quotient is (Numerator - Remainder) divided by Denominator.
941 const SCEV *Q, *R;
942 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
943 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
944 // This SCEV does not seem to simplify: fail the division here.
945 Quotient = Zero;
946 Remainder = Numerator;
947 return;
948 }
949 divide(SE, Diff, Denominator, &Q, &R);
950 assert(R == Zero &&
951 "(Numerator - Remainder) should evenly divide Denominator");
952 Quotient = Q;
953 }
954
955private:
956 ScalarEvolution &SE;
957 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000958
959 friend struct SCEVSDivision;
960 friend struct SCEVUDivision;
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000961};
David Majnemer32b8ccf2014-11-16 20:35:19 +0000962
963struct SCEVSDivision : public SCEVDivision<SCEVSDivision> {
964 void visitConstant(const SCEVConstant *Numerator) {
965 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
966 Quotient = SE.getConstant(sdiv(Numerator, D));
967 Remainder = SE.getConstant(srem(Numerator, D));
968 return;
969 }
970 }
971};
972
973struct SCEVUDivision : public SCEVDivision<SCEVUDivision> {
974 void visitConstant(const SCEVConstant *Numerator) {
975 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
976 Quotient = SE.getConstant(udiv(Numerator, D));
977 Remainder = SE.getConstant(urem(Numerator, D));
978 return;
979 }
980 }
981};
982
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000983}
984
Chris Lattnerd934c702004-04-02 20:23:17 +0000985//===----------------------------------------------------------------------===//
986// Simple SCEV method implementations
987//===----------------------------------------------------------------------===//
988
Eli Friedman61f67622008-08-04 23:49:06 +0000989/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000990/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000991static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000992 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000993 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000994 // Handle the simplest case efficiently.
995 if (K == 1)
996 return SE.getTruncateOrZeroExtend(It, ResultTy);
997
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000998 // We are using the following formula for BC(It, K):
999 //
1000 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1001 //
Eli Friedman61f67622008-08-04 23:49:06 +00001002 // Suppose, W is the bitwidth of the return value. We must be prepared for
1003 // overflow. Hence, we must assure that the result of our computation is
1004 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
1005 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001006 //
Eli Friedman61f67622008-08-04 23:49:06 +00001007 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +00001008 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +00001009 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1010 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001011 //
Eli Friedman61f67622008-08-04 23:49:06 +00001012 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001013 //
Eli Friedman61f67622008-08-04 23:49:06 +00001014 // This formula is trivially equivalent to the previous formula. However,
1015 // this formula can be implemented much more efficiently. The trick is that
1016 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1017 // arithmetic. To do exact division in modular arithmetic, all we have
1018 // to do is multiply by the inverse. Therefore, this step can be done at
1019 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +00001020 //
Eli Friedman61f67622008-08-04 23:49:06 +00001021 // The next issue is how to safely do the division by 2^T. The way this
1022 // is done is by doing the multiplication step at a width of at least W + T
1023 // bits. This way, the bottom W+T bits of the product are accurate. Then,
1024 // when we perform the division by 2^T (which is equivalent to a right shift
1025 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
1026 // truncated out after the division by 2^T.
1027 //
1028 // In comparison to just directly using the first formula, this technique
1029 // is much more efficient; using the first formula requires W * K bits,
1030 // but this formula less than W + K bits. Also, the first formula requires
1031 // a division step, whereas this formula only requires multiplies and shifts.
1032 //
1033 // It doesn't matter whether the subtraction step is done in the calculation
1034 // width or the input iteration count's width; if the subtraction overflows,
1035 // the result must be zero anyway. We prefer here to do it in the width of
1036 // the induction variable because it helps a lot for certain cases; CodeGen
1037 // isn't smart enough to ignore the overflow, which leads to much less
1038 // efficient code if the width of the subtraction is wider than the native
1039 // register width.
1040 //
1041 // (It's possible to not widen at all by pulling out factors of 2 before
1042 // the multiplication; for example, K=2 can be calculated as
1043 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1044 // extra arithmetic, so it's not an obvious win, and it gets
1045 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001046
Eli Friedman61f67622008-08-04 23:49:06 +00001047 // Protection from insane SCEVs; this bound is conservative,
1048 // but it probably doesn't matter.
1049 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +00001050 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001051
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001052 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001053
Eli Friedman61f67622008-08-04 23:49:06 +00001054 // Calculate K! / 2^T and T; we divide out the factors of two before
1055 // multiplying for calculating K! / 2^T to avoid overflow.
1056 // Other overflow doesn't matter because we only care about the bottom
1057 // W bits of the result.
1058 APInt OddFactorial(W, 1);
1059 unsigned T = 1;
1060 for (unsigned i = 3; i <= K; ++i) {
1061 APInt Mult(W, i);
1062 unsigned TwoFactors = Mult.countTrailingZeros();
1063 T += TwoFactors;
1064 Mult = Mult.lshr(TwoFactors);
1065 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001066 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001067
Eli Friedman61f67622008-08-04 23:49:06 +00001068 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001069 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001070
Dan Gohman8b0a4192010-03-01 17:49:51 +00001071 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001072 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001073
1074 // Calculate the multiplicative inverse of K! / 2^T;
1075 // this multiplication factor will perform the exact division by
1076 // K! / 2^T.
1077 APInt Mod = APInt::getSignedMinValue(W+1);
1078 APInt MultiplyFactor = OddFactorial.zext(W+1);
1079 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1080 MultiplyFactor = MultiplyFactor.trunc(W);
1081
1082 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001083 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001084 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001085 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001086 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001087 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001088 Dividend = SE.getMulExpr(Dividend,
1089 SE.getTruncateOrZeroExtend(S, CalculationTy));
1090 }
1091
1092 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001093 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001094
1095 // Truncate the result, and divide by K! / 2^T.
1096
1097 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1098 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001099}
1100
Chris Lattnerd934c702004-04-02 20:23:17 +00001101/// evaluateAtIteration - Return the value of this chain of recurrences at
1102/// the specified iteration number. We can evaluate this recurrence by
1103/// multiplying each element in the chain by the binomial coefficient
1104/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1105///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001106/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001107///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001108/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001109///
Dan Gohmanaf752342009-07-07 17:06:11 +00001110const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001111 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001112 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001113 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001114 // The computation is correct in the face of overflow provided that the
1115 // multiplication is performed _after_ the evaluation of the binomial
1116 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001117 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001118 if (isa<SCEVCouldNotCompute>(Coeff))
1119 return Coeff;
1120
1121 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001122 }
1123 return Result;
1124}
1125
Chris Lattnerd934c702004-04-02 20:23:17 +00001126//===----------------------------------------------------------------------===//
1127// SCEV Expression folder implementations
1128//===----------------------------------------------------------------------===//
1129
Dan Gohmanaf752342009-07-07 17:06:11 +00001130const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001131 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001132 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001133 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001134 assert(isSCEVable(Ty) &&
1135 "This is not a conversion to a SCEVable type!");
1136 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001137
Dan Gohman3a302cb2009-07-13 20:50:19 +00001138 FoldingSetNodeID ID;
1139 ID.AddInteger(scTruncate);
1140 ID.AddPointer(Op);
1141 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001142 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001143 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1144
Dan Gohman3423e722009-06-30 20:13:32 +00001145 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001146 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001147 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001148 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001149
Dan Gohman79af8542009-04-22 16:20:48 +00001150 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001151 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001152 return getTruncateExpr(ST->getOperand(), Ty);
1153
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001154 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001155 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001156 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1157
1158 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001159 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001160 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1161
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001162 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1163 // eliminate all the truncates.
1164 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1165 SmallVector<const SCEV *, 4> Operands;
1166 bool hasTrunc = false;
1167 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1168 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1169 hasTrunc = isa<SCEVTruncateExpr>(S);
1170 Operands.push_back(S);
1171 }
1172 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001173 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001174 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001175 }
1176
Nick Lewycky5c901f32011-01-19 18:56:00 +00001177 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1178 // eliminate all the truncates.
1179 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1180 SmallVector<const SCEV *, 4> Operands;
1181 bool hasTrunc = false;
1182 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1183 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1184 hasTrunc = isa<SCEVTruncateExpr>(S);
1185 Operands.push_back(S);
1186 }
1187 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001188 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001189 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001190 }
1191
Dan Gohman5a728c92009-06-18 16:24:47 +00001192 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001193 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001194 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001195 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001196 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001197 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001198 }
1199
Dan Gohman89dd42a2010-06-25 18:47:08 +00001200 // The cast wasn't folded; create an explicit cast node. We can reuse
1201 // the existing insert position since if we get here, we won't have
1202 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001203 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1204 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001205 UniqueSCEVs.InsertNode(S, IP);
1206 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001207}
1208
Dan Gohmanaf752342009-07-07 17:06:11 +00001209const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001210 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001211 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001212 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001213 assert(isSCEVable(Ty) &&
1214 "This is not a conversion to a SCEVable type!");
1215 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001216
Dan Gohman3423e722009-06-30 20:13:32 +00001217 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001218 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1219 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001220 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001221
Dan Gohman79af8542009-04-22 16:20:48 +00001222 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001223 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001224 return getZeroExtendExpr(SZ->getOperand(), Ty);
1225
Dan Gohman74a0ba12009-07-13 20:55:53 +00001226 // Before doing any expensive analysis, check to see if we've already
1227 // computed a SCEV for this Op and Ty.
1228 FoldingSetNodeID ID;
1229 ID.AddInteger(scZeroExtend);
1230 ID.AddPointer(Op);
1231 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001232 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001233 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1234
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001235 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1236 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1237 // It's possible the bits taken off by the truncate were all zero bits. If
1238 // so, we should be able to simplify this further.
1239 const SCEV *X = ST->getOperand();
1240 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001241 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1242 unsigned NewBits = getTypeSizeInBits(Ty);
1243 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001244 CR.zextOrTrunc(NewBits)))
1245 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001246 }
1247
Dan Gohman76466372009-04-27 20:16:15 +00001248 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001249 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001250 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001251 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001252 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001253 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001254 const SCEV *Start = AR->getStart();
1255 const SCEV *Step = AR->getStepRecurrence(*this);
1256 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1257 const Loop *L = AR->getLoop();
1258
Dan Gohman62ef6a72009-07-25 01:22:26 +00001259 // If we have special knowledge that this addrec won't overflow,
1260 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001261 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +00001262 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1263 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001264 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001265
Dan Gohman76466372009-04-27 20:16:15 +00001266 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1267 // Note that this serves two purposes: It filters out loops that are
1268 // simply not analyzable, and it covers the case where this code is
1269 // being called from within backedge-taken count analysis, such that
1270 // attempting to ask for the backedge-taken count would likely result
1271 // in infinite recursion. In the later case, the analysis code will
1272 // cope with a conservative value, and it will take care to purge
1273 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001274 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001275 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001276 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001277 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001278
1279 // Check whether the backedge-taken count can be losslessly casted to
1280 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001281 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001282 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001283 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001284 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1285 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001286 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001287 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001288 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001289 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1290 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1291 const SCEV *WideMaxBECount =
1292 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001293 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001294 getAddExpr(WideStart,
1295 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001296 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001297 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001298 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1299 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001300 // Return the expression with the addrec on the outside.
1301 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1302 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001303 L, AR->getNoWrapFlags());
1304 }
Dan Gohman76466372009-04-27 20:16:15 +00001305 // Similar to above, only this time treat the step value as signed.
1306 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001307 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001308 getAddExpr(WideStart,
1309 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001310 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001311 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001312 // Cache knowledge of AR NW, which is propagated to this AddRec.
1313 // Negative step causes unsigned wrap, but it still can't self-wrap.
1314 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001315 // Return the expression with the addrec on the outside.
1316 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1317 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001318 L, AR->getNoWrapFlags());
1319 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001320 }
1321
1322 // If the backedge is guarded by a comparison with the pre-inc value
1323 // the addrec is safe. Also, if the entry is guarded by a comparison
1324 // with the start value and the backedge is guarded by a comparison
1325 // with the post-inc value, the addrec is safe.
1326 if (isKnownPositive(Step)) {
1327 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1328 getUnsignedRange(Step).getUnsignedMax());
1329 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001330 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001331 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001332 AR->getPostIncExpr(*this), N))) {
1333 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1334 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001335 // Return the expression with the addrec on the outside.
1336 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1337 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001338 L, AR->getNoWrapFlags());
1339 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001340 } else if (isKnownNegative(Step)) {
1341 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1342 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001343 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1344 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001345 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001346 AR->getPostIncExpr(*this), N))) {
1347 // Cache knowledge of AR NW, which is propagated to this AddRec.
1348 // Negative step causes unsigned wrap, but it still can't self-wrap.
1349 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1350 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001351 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1352 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001353 L, AR->getNoWrapFlags());
1354 }
Dan Gohman76466372009-04-27 20:16:15 +00001355 }
1356 }
1357 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001358
Dan Gohman74a0ba12009-07-13 20:55:53 +00001359 // The cast wasn't folded; create an explicit cast node.
1360 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001361 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001362 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1363 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001364 UniqueSCEVs.InsertNode(S, IP);
1365 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001366}
1367
Andrew Trick812276e2011-05-31 21:17:47 +00001368// Get the limit of a recurrence such that incrementing by Step cannot cause
1369// signed overflow as long as the value of the recurrence within the loop does
1370// not exceed this limit before incrementing.
1371static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1372 ICmpInst::Predicate *Pred,
1373 ScalarEvolution *SE) {
1374 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1375 if (SE->isKnownPositive(Step)) {
1376 *Pred = ICmpInst::ICMP_SLT;
1377 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1378 SE->getSignedRange(Step).getSignedMax());
1379 }
1380 if (SE->isKnownNegative(Step)) {
1381 *Pred = ICmpInst::ICMP_SGT;
1382 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1383 SE->getSignedRange(Step).getSignedMin());
1384 }
Craig Topper9f008862014-04-15 04:59:12 +00001385 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001386}
1387
1388// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1389// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1390// or postincrement sibling. This allows normalizing a sign extended AddRec as
1391// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1392// result, the expression "Step + sext(PreIncAR)" is congruent with
1393// "sext(PostIncAR)"
1394static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001395 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001396 ScalarEvolution *SE) {
1397 const Loop *L = AR->getLoop();
1398 const SCEV *Start = AR->getStart();
1399 const SCEV *Step = AR->getStepRecurrence(*SE);
1400
1401 // Check for a simple looking step prior to loop entry.
1402 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001403 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001404 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001405
1406 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1407 // subtraction is expensive. For this purpose, perform a quick and dirty
1408 // difference, by checking for Step in the operand list.
1409 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001410 for (const SCEV *Op : SA->operands())
1411 if (Op != Step)
1412 DiffOps.push_back(Op);
1413
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001414 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001415 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001416
1417 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1418 // same three conditions that getSignExtendedExpr checks.
1419
1420 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001421 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001422 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1423 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1424
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001425 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001426 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001427
1428 // 2. Direct overflow check on the step operation's expression.
1429 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001430 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001431 const SCEV *OperandExtendedStart =
1432 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1433 SE->getSignExtendExpr(Step, WideTy));
1434 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1435 // Cache knowledge of PreAR NSW.
1436 if (PreAR)
1437 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1438 // FIXME: this optimization needs a unit test
1439 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1440 return PreStart;
1441 }
1442
1443 // 3. Loop precondition.
1444 ICmpInst::Predicate Pred;
1445 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1446
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001447 if (OverflowLimit &&
1448 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001449 return PreStart;
1450 }
Craig Topper9f008862014-04-15 04:59:12 +00001451 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001452}
1453
1454// Get the normalized sign-extended expression for this AddRec's Start.
1455static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001456 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001457 ScalarEvolution *SE) {
1458 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1459 if (!PreStart)
1460 return SE->getSignExtendExpr(AR->getStart(), Ty);
1461
1462 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1463 SE->getSignExtendExpr(PreStart, Ty));
1464}
1465
Dan Gohmanaf752342009-07-07 17:06:11 +00001466const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001467 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001468 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001469 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001470 assert(isSCEVable(Ty) &&
1471 "This is not a conversion to a SCEVable type!");
1472 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001473
Dan Gohman3423e722009-06-30 20:13:32 +00001474 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001475 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1476 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001477 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001478
Dan Gohman79af8542009-04-22 16:20:48 +00001479 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001480 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001481 return getSignExtendExpr(SS->getOperand(), Ty);
1482
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001483 // sext(zext(x)) --> zext(x)
1484 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1485 return getZeroExtendExpr(SZ->getOperand(), Ty);
1486
Dan Gohman74a0ba12009-07-13 20:55:53 +00001487 // Before doing any expensive analysis, check to see if we've already
1488 // computed a SCEV for this Op and Ty.
1489 FoldingSetNodeID ID;
1490 ID.AddInteger(scSignExtend);
1491 ID.AddPointer(Op);
1492 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001493 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001494 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1495
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001496 // If the input value is provably positive, build a zext instead.
1497 if (isKnownNonNegative(Op))
1498 return getZeroExtendExpr(Op, Ty);
1499
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001500 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1501 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1502 // It's possible the bits taken off by the truncate were all sign bits. If
1503 // so, we should be able to simplify this further.
1504 const SCEV *X = ST->getOperand();
1505 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001506 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1507 unsigned NewBits = getTypeSizeInBits(Ty);
1508 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001509 CR.sextOrTrunc(NewBits)))
1510 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001511 }
1512
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001513 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1514 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1515 if (SA->getNumOperands() == 2) {
1516 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1517 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1518 if (SMul && SC1) {
1519 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001520 const APInt &C1 = SC1->getValue()->getValue();
1521 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001522 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001523 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001524 return getAddExpr(getSignExtendExpr(SC1, Ty),
1525 getSignExtendExpr(SMul, Ty));
1526 }
1527 }
1528 }
1529 }
Dan Gohman76466372009-04-27 20:16:15 +00001530 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001531 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001532 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001533 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001534 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001535 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001536 const SCEV *Start = AR->getStart();
1537 const SCEV *Step = AR->getStepRecurrence(*this);
1538 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1539 const Loop *L = AR->getLoop();
1540
Dan Gohman62ef6a72009-07-25 01:22:26 +00001541 // If we have special knowledge that this addrec won't overflow,
1542 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001543 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001544 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001545 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001546 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001547
Dan Gohman76466372009-04-27 20:16:15 +00001548 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1549 // Note that this serves two purposes: It filters out loops that are
1550 // simply not analyzable, and it covers the case where this code is
1551 // being called from within backedge-taken count analysis, such that
1552 // attempting to ask for the backedge-taken count would likely result
1553 // in infinite recursion. In the later case, the analysis code will
1554 // cope with a conservative value, and it will take care to purge
1555 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001556 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001557 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001558 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001559 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001560
1561 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001562 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001563 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001564 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001565 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001566 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1567 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001568 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001569 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001570 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001571 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1572 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1573 const SCEV *WideMaxBECount =
1574 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001575 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001576 getAddExpr(WideStart,
1577 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001578 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001579 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001580 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1581 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001582 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001583 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001584 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001585 L, AR->getNoWrapFlags());
1586 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001587 // Similar to above, only this time treat the step value as unsigned.
1588 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001589 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001590 getAddExpr(WideStart,
1591 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001592 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001593 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001594 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1595 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001596 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001597 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001598 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001599 L, AR->getNoWrapFlags());
1600 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001601 }
1602
1603 // If the backedge is guarded by a comparison with the pre-inc value
1604 // the addrec is safe. Also, if the entry is guarded by a comparison
1605 // with the start value and the backedge is guarded by a comparison
1606 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001607 ICmpInst::Predicate Pred;
1608 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1609 if (OverflowLimit &&
1610 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1611 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1612 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1613 OverflowLimit)))) {
1614 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1615 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1616 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1617 getSignExtendExpr(Step, Ty),
1618 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001619 }
1620 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001621 // If Start and Step are constants, check if we can apply this
1622 // transformation:
1623 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1624 auto SC1 = dyn_cast<SCEVConstant>(Start);
1625 auto SC2 = dyn_cast<SCEVConstant>(Step);
1626 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001627 const APInt &C1 = SC1->getValue()->getValue();
1628 const APInt &C2 = SC2->getValue()->getValue();
1629 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1630 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001631 Start = getSignExtendExpr(Start, Ty);
1632 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1633 L, AR->getNoWrapFlags());
1634 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1635 }
1636 }
Dan Gohman76466372009-04-27 20:16:15 +00001637 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001638
Dan Gohman74a0ba12009-07-13 20:55:53 +00001639 // The cast wasn't folded; create an explicit cast node.
1640 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001641 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001642 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1643 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001644 UniqueSCEVs.InsertNode(S, IP);
1645 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001646}
1647
Dan Gohman8db2edc2009-06-13 15:56:47 +00001648/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1649/// unspecified bits out to the given type.
1650///
Dan Gohmanaf752342009-07-07 17:06:11 +00001651const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001652 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001653 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1654 "This is not an extending conversion!");
1655 assert(isSCEVable(Ty) &&
1656 "This is not a conversion to a SCEVable type!");
1657 Ty = getEffectiveSCEVType(Ty);
1658
1659 // Sign-extend negative constants.
1660 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1661 if (SC->getValue()->getValue().isNegative())
1662 return getSignExtendExpr(Op, Ty);
1663
1664 // Peel off a truncate cast.
1665 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001666 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001667 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1668 return getAnyExtendExpr(NewOp, Ty);
1669 return getTruncateOrNoop(NewOp, Ty);
1670 }
1671
1672 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001673 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001674 if (!isa<SCEVZeroExtendExpr>(ZExt))
1675 return ZExt;
1676
1677 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001678 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001679 if (!isa<SCEVSignExtendExpr>(SExt))
1680 return SExt;
1681
Dan Gohman51ad99d2010-01-21 02:09:26 +00001682 // Force the cast to be folded into the operands of an addrec.
1683 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1684 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001685 for (const SCEV *Op : AR->operands())
1686 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001687 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001688 }
1689
Dan Gohman8db2edc2009-06-13 15:56:47 +00001690 // If the expression is obviously signed, use the sext cast value.
1691 if (isa<SCEVSMaxExpr>(Op))
1692 return SExt;
1693
1694 // Absent any other information, use the zext cast value.
1695 return ZExt;
1696}
1697
Dan Gohman038d02e2009-06-14 22:58:51 +00001698/// CollectAddOperandsWithScales - Process the given Ops list, which is
1699/// a list of operands to be added under the given scale, update the given
1700/// map. This is a helper function for getAddRecExpr. As an example of
1701/// what it does, given a sequence of operands that would form an add
1702/// expression like this:
1703///
Tobias Grosserba49e422014-03-05 10:37:17 +00001704/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001705///
1706/// where A and B are constants, update the map with these values:
1707///
1708/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1709///
1710/// and add 13 + A*B*29 to AccumulatedConstant.
1711/// This will allow getAddRecExpr to produce this:
1712///
1713/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1714///
1715/// This form often exposes folding opportunities that are hidden in
1716/// the original operand list.
1717///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001718/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001719/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1720/// the common case where no interesting opportunities are present, and
1721/// is also used as a check to avoid infinite recursion.
1722///
1723static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001724CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001725 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001726 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001727 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001728 const APInt &Scale,
1729 ScalarEvolution &SE) {
1730 bool Interesting = false;
1731
Dan Gohman45073042010-06-18 19:12:32 +00001732 // Iterate over the add operands. They are sorted, with constants first.
1733 unsigned i = 0;
1734 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1735 ++i;
1736 // Pull a buried constant out to the outside.
1737 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1738 Interesting = true;
1739 AccumulatedConstant += Scale * C->getValue()->getValue();
1740 }
1741
1742 // Next comes everything else. We're especially interested in multiplies
1743 // here, but they're in the middle, so just visit the rest with one loop.
1744 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001745 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1746 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1747 APInt NewScale =
1748 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1749 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1750 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001751 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001752 Interesting |=
1753 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001754 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001755 NewScale, SE);
1756 } else {
1757 // A multiplication of a constant with some other value. Update
1758 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001759 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1760 const SCEV *Key = SE.getMulExpr(MulOps);
1761 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001762 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001763 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001764 NewOps.push_back(Pair.first->first);
1765 } else {
1766 Pair.first->second += NewScale;
1767 // The map already had an entry for this value, which may indicate
1768 // a folding opportunity.
1769 Interesting = true;
1770 }
1771 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001772 } else {
1773 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001774 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001775 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001776 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001777 NewOps.push_back(Pair.first->first);
1778 } else {
1779 Pair.first->second += Scale;
1780 // The map already had an entry for this value, which may indicate
1781 // a folding opportunity.
1782 Interesting = true;
1783 }
1784 }
1785 }
1786
1787 return Interesting;
1788}
1789
1790namespace {
1791 struct APIntCompare {
1792 bool operator()(const APInt &LHS, const APInt &RHS) const {
1793 return LHS.ult(RHS);
1794 }
1795 };
1796}
1797
Dan Gohman4d5435d2009-05-24 23:45:28 +00001798/// getAddExpr - Get a canonical add expression, or something simpler if
1799/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001800const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001801 SCEV::NoWrapFlags Flags) {
1802 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1803 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001804 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001805 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001806#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001807 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001808 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001809 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001810 "SCEVAddExpr operand types don't match!");
1811#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001812
Andrew Trick8b55b732011-03-14 16:50:06 +00001813 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001814 // And vice-versa.
1815 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1816 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1817 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001818 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001819 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1820 E = Ops.end(); I != E; ++I)
1821 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001822 All = false;
1823 break;
1824 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001825 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001826 }
1827
Chris Lattnerd934c702004-04-02 20:23:17 +00001828 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001829 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001830
1831 // If there are any constants, fold them together.
1832 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001833 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001834 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001835 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001836 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001837 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001838 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1839 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001840 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001841 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001842 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001843 }
1844
1845 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001846 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001847 Ops.erase(Ops.begin());
1848 --Idx;
1849 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001850
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001851 if (Ops.size() == 1) return Ops[0];
1852 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001853
Dan Gohman15871f22010-08-27 21:39:59 +00001854 // Okay, check to see if the same value occurs in the operand list more than
1855 // once. If so, merge them together into an multiply expression. Since we
1856 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001857 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001858 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001859 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001860 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001861 // Scan ahead to count how many equal operands there are.
1862 unsigned Count = 2;
1863 while (i+Count != e && Ops[i+Count] == Ops[i])
1864 ++Count;
1865 // Merge the values into a multiply.
1866 const SCEV *Scale = getConstant(Ty, Count);
1867 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1868 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001869 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001870 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001871 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001872 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001873 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001874 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001875 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001876 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001877
Dan Gohman2e55cc52009-05-08 21:03:19 +00001878 // Check for truncates. If all the operands are truncated from the same
1879 // type, see if factoring out the truncate would permit the result to be
1880 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1881 // if the contents of the resulting outer trunc fold to something simple.
1882 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1883 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001884 Type *DstType = Trunc->getType();
1885 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001886 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001887 bool Ok = true;
1888 // Check all the operands to see if they can be represented in the
1889 // source type of the truncate.
1890 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1891 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1892 if (T->getOperand()->getType() != SrcType) {
1893 Ok = false;
1894 break;
1895 }
1896 LargeOps.push_back(T->getOperand());
1897 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001898 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001899 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001900 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001901 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1902 if (const SCEVTruncateExpr *T =
1903 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1904 if (T->getOperand()->getType() != SrcType) {
1905 Ok = false;
1906 break;
1907 }
1908 LargeMulOps.push_back(T->getOperand());
1909 } else if (const SCEVConstant *C =
1910 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001911 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001912 } else {
1913 Ok = false;
1914 break;
1915 }
1916 }
1917 if (Ok)
1918 LargeOps.push_back(getMulExpr(LargeMulOps));
1919 } else {
1920 Ok = false;
1921 break;
1922 }
1923 }
1924 if (Ok) {
1925 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001926 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001927 // If it folds to something simple, use it. Otherwise, don't.
1928 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1929 return getTruncateExpr(Fold, DstType);
1930 }
1931 }
1932
1933 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001934 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1935 ++Idx;
1936
1937 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001938 if (Idx < Ops.size()) {
1939 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001940 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001941 // If we have an add, expand the add operands onto the end of the operands
1942 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001943 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001944 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001945 DeletedAdd = true;
1946 }
1947
1948 // If we deleted at least one add, we added operands to the end of the list,
1949 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001950 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001951 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001952 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001953 }
1954
1955 // Skip over the add expression until we get to a multiply.
1956 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1957 ++Idx;
1958
Dan Gohman038d02e2009-06-14 22:58:51 +00001959 // Check to see if there are any folding opportunities present with
1960 // operands multiplied by constant values.
1961 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1962 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001963 DenseMap<const SCEV *, APInt> M;
1964 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001965 APInt AccumulatedConstant(BitWidth, 0);
1966 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001967 Ops.data(), Ops.size(),
1968 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001969 // Some interesting folding opportunity is present, so its worthwhile to
1970 // re-generate the operands list. Group the operands by constant scale,
1971 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001972 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001973 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001974 E = NewOps.end(); I != E; ++I)
1975 MulOpLists[M.find(*I)->second].push_back(*I);
1976 // Re-generate the operands list.
1977 Ops.clear();
1978 if (AccumulatedConstant != 0)
1979 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001980 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1981 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001982 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001983 Ops.push_back(getMulExpr(getConstant(I->first),
1984 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001985 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001986 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001987 if (Ops.size() == 1)
1988 return Ops[0];
1989 return getAddExpr(Ops);
1990 }
1991 }
1992
Chris Lattnerd934c702004-04-02 20:23:17 +00001993 // If we are adding something to a multiply expression, make sure the
1994 // something is not already an operand of the multiply. If so, merge it into
1995 // the multiply.
1996 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001997 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001998 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001999 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002000 if (isa<SCEVConstant>(MulOpSCEV))
2001 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002002 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002003 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002004 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002005 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002006 if (Mul->getNumOperands() != 2) {
2007 // If the multiply has more than two operands, we must get the
2008 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002009 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2010 Mul->op_begin()+MulOp);
2011 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002012 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002013 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00002014 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002015 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002016 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002017 if (Ops.size() == 2) return OuterMul;
2018 if (AddOp < Idx) {
2019 Ops.erase(Ops.begin()+AddOp);
2020 Ops.erase(Ops.begin()+Idx-1);
2021 } else {
2022 Ops.erase(Ops.begin()+Idx);
2023 Ops.erase(Ops.begin()+AddOp-1);
2024 }
2025 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002026 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002027 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002028
Chris Lattnerd934c702004-04-02 20:23:17 +00002029 // Check this multiply against other multiplies being added together.
2030 for (unsigned OtherMulIdx = Idx+1;
2031 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2032 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002033 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002034 // If MulOp occurs in OtherMul, we can fold the two multiplies
2035 // together.
2036 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2037 OMulOp != e; ++OMulOp)
2038 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2039 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002040 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002041 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002042 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002043 Mul->op_begin()+MulOp);
2044 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002045 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002046 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002047 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002048 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002049 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002050 OtherMul->op_begin()+OMulOp);
2051 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002052 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002053 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002054 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2055 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002056 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002057 Ops.erase(Ops.begin()+Idx);
2058 Ops.erase(Ops.begin()+OtherMulIdx-1);
2059 Ops.push_back(OuterMul);
2060 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002061 }
2062 }
2063 }
2064 }
2065
2066 // If there are any add recurrences in the operands list, see if any other
2067 // added values are loop invariant. If so, we can fold them into the
2068 // recurrence.
2069 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2070 ++Idx;
2071
2072 // Scan over all recurrences, trying to fold loop invariants into them.
2073 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2074 // Scan all of the other operands to this add and add them to the vector if
2075 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002076 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002077 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002078 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002079 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002080 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002081 LIOps.push_back(Ops[i]);
2082 Ops.erase(Ops.begin()+i);
2083 --i; --e;
2084 }
2085
2086 // If we found some loop invariants, fold them into the recurrence.
2087 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002088 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002089 LIOps.push_back(AddRec->getStart());
2090
Dan Gohmanaf752342009-07-07 17:06:11 +00002091 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002092 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002093 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002094
Dan Gohman16206132010-06-30 07:16:37 +00002095 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002096 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002097 // Always propagate NW.
2098 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002099 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002100
Chris Lattnerd934c702004-04-02 20:23:17 +00002101 // If all of the other operands were loop invariant, we are done.
2102 if (Ops.size() == 1) return NewRec;
2103
Nick Lewyckydb66b822011-09-06 05:08:09 +00002104 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002105 for (unsigned i = 0;; ++i)
2106 if (Ops[i] == AddRec) {
2107 Ops[i] = NewRec;
2108 break;
2109 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002110 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002111 }
2112
2113 // Okay, if there weren't any loop invariants to be folded, check to see if
2114 // there are multiple AddRec's with the same loop induction variable being
2115 // added together. If so, we can fold them.
2116 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002117 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2118 ++OtherIdx)
2119 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2120 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2121 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2122 AddRec->op_end());
2123 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2124 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002125 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002126 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002127 if (OtherAddRec->getLoop() == AddRecLoop) {
2128 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2129 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002130 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002131 AddRecOps.append(OtherAddRec->op_begin()+i,
2132 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002133 break;
2134 }
Dan Gohman028c1812010-08-29 14:53:34 +00002135 AddRecOps[i] = getAddExpr(AddRecOps[i],
2136 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002137 }
2138 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002139 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002140 // Step size has changed, so we cannot guarantee no self-wraparound.
2141 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002142 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002143 }
2144
2145 // Otherwise couldn't fold anything into this recurrence. Move onto the
2146 // next one.
2147 }
2148
2149 // Okay, it looks like we really DO need an add expr. Check to see if we
2150 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002151 FoldingSetNodeID ID;
2152 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002153 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2154 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002155 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002156 SCEVAddExpr *S =
2157 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2158 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002159 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2160 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002161 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2162 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002163 UniqueSCEVs.InsertNode(S, IP);
2164 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002165 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002166 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002167}
2168
Nick Lewycky287682e2011-10-04 06:51:26 +00002169static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2170 uint64_t k = i*j;
2171 if (j > 1 && k / j != i) Overflow = true;
2172 return k;
2173}
2174
2175/// Compute the result of "n choose k", the binomial coefficient. If an
2176/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002177/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002178static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2179 // We use the multiplicative formula:
2180 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2181 // At each iteration, we take the n-th term of the numeral and divide by the
2182 // (k-n)th term of the denominator. This division will always produce an
2183 // integral result, and helps reduce the chance of overflow in the
2184 // intermediate computations. However, we can still overflow even when the
2185 // final result would fit.
2186
2187 if (n == 0 || n == k) return 1;
2188 if (k > n) return 0;
2189
2190 if (k > n/2)
2191 k = n-k;
2192
2193 uint64_t r = 1;
2194 for (uint64_t i = 1; i <= k; ++i) {
2195 r = umul_ov(r, n-(i-1), Overflow);
2196 r /= i;
2197 }
2198 return r;
2199}
2200
Dan Gohman4d5435d2009-05-24 23:45:28 +00002201/// getMulExpr - Get a canonical multiply expression, or something simpler if
2202/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002203const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002204 SCEV::NoWrapFlags Flags) {
2205 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2206 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002207 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002208 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002209#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002210 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002211 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002212 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002213 "SCEVMulExpr operand types don't match!");
2214#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002215
Andrew Trick8b55b732011-03-14 16:50:06 +00002216 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002217 // And vice-versa.
2218 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2219 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2220 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002221 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002222 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
2223 E = Ops.end(); I != E; ++I)
2224 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002225 All = false;
2226 break;
2227 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002228 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002229 }
2230
Chris Lattnerd934c702004-04-02 20:23:17 +00002231 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002232 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002233
2234 // If there are any constants, fold them together.
2235 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002236 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002237
2238 // C1*(C2+V) -> C1*C2 + C1*V
2239 if (Ops.size() == 2)
Dan Gohmana30370b2009-05-04 22:02:23 +00002240 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattnerd934c702004-04-02 20:23:17 +00002241 if (Add->getNumOperands() == 2 &&
2242 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohmana37eaf22007-10-22 18:31:58 +00002243 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2244 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002245
Chris Lattnerd934c702004-04-02 20:23:17 +00002246 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002247 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002248 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002249 ConstantInt *Fold = ConstantInt::get(getContext(),
2250 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002251 RHSC->getValue()->getValue());
2252 Ops[0] = getConstant(Fold);
2253 Ops.erase(Ops.begin()+1); // Erase the folded element
2254 if (Ops.size() == 1) return Ops[0];
2255 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002256 }
2257
2258 // If we are left with a constant one being multiplied, strip it off.
2259 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2260 Ops.erase(Ops.begin());
2261 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002262 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002263 // If we have a multiply of zero, it will always be zero.
2264 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002265 } else if (Ops[0]->isAllOnesValue()) {
2266 // If we have a mul by -1 of an add, try distributing the -1 among the
2267 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002268 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002269 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2270 SmallVector<const SCEV *, 4> NewOps;
2271 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002272 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2273 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002274 const SCEV *Mul = getMulExpr(Ops[0], *I);
2275 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2276 NewOps.push_back(Mul);
2277 }
2278 if (AnyFolded)
2279 return getAddExpr(NewOps);
2280 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002281 else if (const SCEVAddRecExpr *
2282 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2283 // Negation preserves a recurrence's no self-wrap property.
2284 SmallVector<const SCEV *, 4> Operands;
2285 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2286 E = AddRec->op_end(); I != E; ++I) {
2287 Operands.push_back(getMulExpr(Ops[0], *I));
2288 }
2289 return getAddRecExpr(Operands, AddRec->getLoop(),
2290 AddRec->getNoWrapFlags(SCEV::FlagNW));
2291 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002292 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002293 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002294
2295 if (Ops.size() == 1)
2296 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002297 }
2298
2299 // Skip over the add expression until we get to a multiply.
2300 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2301 ++Idx;
2302
Chris Lattnerd934c702004-04-02 20:23:17 +00002303 // If there are mul operands inline them all into this expression.
2304 if (Idx < Ops.size()) {
2305 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002306 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002307 // If we have an mul, expand the mul operands onto the end of the operands
2308 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002309 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002310 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002311 DeletedMul = true;
2312 }
2313
2314 // If we deleted at least one mul, we added operands to the end of the list,
2315 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002316 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002317 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002318 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002319 }
2320
2321 // If there are any add recurrences in the operands list, see if any other
2322 // added values are loop invariant. If so, we can fold them into the
2323 // recurrence.
2324 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2325 ++Idx;
2326
2327 // Scan over all recurrences, trying to fold loop invariants into them.
2328 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2329 // Scan all of the other operands to this mul and add them to the vector if
2330 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002331 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002332 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002333 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002334 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002335 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002336 LIOps.push_back(Ops[i]);
2337 Ops.erase(Ops.begin()+i);
2338 --i; --e;
2339 }
2340
2341 // If we found some loop invariants, fold them into the recurrence.
2342 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002343 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002344 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002345 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002346 const SCEV *Scale = getMulExpr(LIOps);
2347 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2348 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002349
Dan Gohman16206132010-06-30 07:16:37 +00002350 // Build the new addrec. Propagate the NUW and NSW flags if both the
2351 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002352 //
2353 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002354 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002355 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2356 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002357
2358 // If all of the other operands were loop invariant, we are done.
2359 if (Ops.size() == 1) return NewRec;
2360
Nick Lewyckydb66b822011-09-06 05:08:09 +00002361 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002362 for (unsigned i = 0;; ++i)
2363 if (Ops[i] == AddRec) {
2364 Ops[i] = NewRec;
2365 break;
2366 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002367 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002368 }
2369
2370 // Okay, if there weren't any loop invariants to be folded, check to see if
2371 // there are multiple AddRec's with the same loop induction variable being
2372 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002373
2374 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2375 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2376 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2377 // ]]],+,...up to x=2n}.
2378 // Note that the arguments to choose() are always integers with values
2379 // known at compile time, never SCEV objects.
2380 //
2381 // The implementation avoids pointless extra computations when the two
2382 // addrec's are of different length (mathematically, it's equivalent to
2383 // an infinite stream of zeros on the right).
2384 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002385 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002386 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002387 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002388 const SCEVAddRecExpr *OtherAddRec =
2389 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2390 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002391 continue;
2392
Nick Lewycky97756402014-09-01 05:17:15 +00002393 bool Overflow = false;
2394 Type *Ty = AddRec->getType();
2395 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2396 SmallVector<const SCEV*, 7> AddRecOps;
2397 for (int x = 0, xe = AddRec->getNumOperands() +
2398 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2399 const SCEV *Term = getConstant(Ty, 0);
2400 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2401 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2402 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2403 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2404 z < ze && !Overflow; ++z) {
2405 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2406 uint64_t Coeff;
2407 if (LargerThan64Bits)
2408 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2409 else
2410 Coeff = Coeff1*Coeff2;
2411 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2412 const SCEV *Term1 = AddRec->getOperand(y-z);
2413 const SCEV *Term2 = OtherAddRec->getOperand(z);
2414 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002415 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002416 }
Nick Lewycky97756402014-09-01 05:17:15 +00002417 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002418 }
Nick Lewycky97756402014-09-01 05:17:15 +00002419 if (!Overflow) {
2420 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2421 SCEV::FlagAnyWrap);
2422 if (Ops.size() == 2) return NewAddRec;
2423 Ops[Idx] = NewAddRec;
2424 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2425 OpsModified = true;
2426 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2427 if (!AddRec)
2428 break;
2429 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002430 }
Nick Lewycky97756402014-09-01 05:17:15 +00002431 if (OpsModified)
2432 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002433
2434 // Otherwise couldn't fold anything into this recurrence. Move onto the
2435 // next one.
2436 }
2437
2438 // Okay, it looks like we really DO need an mul expr. Check to see if we
2439 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002440 FoldingSetNodeID ID;
2441 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002442 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2443 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002444 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002445 SCEVMulExpr *S =
2446 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2447 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002448 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2449 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002450 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2451 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002452 UniqueSCEVs.InsertNode(S, IP);
2453 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002454 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002455 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002456}
2457
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002458/// getUDivExpr - Get a canonical unsigned division expression, or something
2459/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002460const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2461 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002462 assert(getEffectiveSCEVType(LHS->getType()) ==
2463 getEffectiveSCEVType(RHS->getType()) &&
2464 "SCEVUDivExpr operand types don't match!");
2465
Dan Gohmana30370b2009-05-04 22:02:23 +00002466 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002467 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002468 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002469 // If the denominator is zero, the result of the udiv is undefined. Don't
2470 // try to analyze it, because the resolution chosen here may differ from
2471 // the resolution chosen in other parts of the compiler.
2472 if (!RHSC->getValue()->isZero()) {
2473 // Determine if the division can be folded into the operands of
2474 // its operands.
2475 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002476 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002477 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002478 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002479 // For non-power-of-two values, effectively round the value up to the
2480 // nearest power of two.
2481 if (!RHSC->getValue()->getValue().isPowerOf2())
2482 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002483 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002484 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002485 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2486 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002487 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2488 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2489 const APInt &StepInt = Step->getValue()->getValue();
2490 const APInt &DivInt = RHSC->getValue()->getValue();
2491 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002492 getZeroExtendExpr(AR, ExtTy) ==
2493 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2494 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002495 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002496 SmallVector<const SCEV *, 4> Operands;
2497 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2498 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002499 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002500 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002501 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002502 /// Get a canonical UDivExpr for a recurrence.
2503 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2504 // We can currently only fold X%N if X is constant.
2505 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2506 if (StartC && !DivInt.urem(StepInt) &&
2507 getZeroExtendExpr(AR, ExtTy) ==
2508 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2509 getZeroExtendExpr(Step, ExtTy),
2510 AR->getLoop(), SCEV::FlagAnyWrap)) {
2511 const APInt &StartInt = StartC->getValue()->getValue();
2512 const APInt &StartRem = StartInt.urem(StepInt);
2513 if (StartRem != 0)
2514 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2515 AR->getLoop(), SCEV::FlagNW);
2516 }
2517 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002518 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2519 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2520 SmallVector<const SCEV *, 4> Operands;
2521 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2522 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2523 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2524 // Find an operand that's safely divisible.
2525 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2526 const SCEV *Op = M->getOperand(i);
2527 const SCEV *Div = getUDivExpr(Op, RHSC);
2528 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2529 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2530 M->op_end());
2531 Operands[i] = Div;
2532 return getMulExpr(Operands);
2533 }
2534 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002535 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002536 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002537 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002538 SmallVector<const SCEV *, 4> Operands;
2539 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2540 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2541 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2542 Operands.clear();
2543 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2544 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2545 if (isa<SCEVUDivExpr>(Op) ||
2546 getMulExpr(Op, RHS) != A->getOperand(i))
2547 break;
2548 Operands.push_back(Op);
2549 }
2550 if (Operands.size() == A->getNumOperands())
2551 return getAddExpr(Operands);
2552 }
2553 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002554
Dan Gohmanacd700a2010-04-22 01:35:11 +00002555 // Fold if both operands are constant.
2556 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2557 Constant *LHSCV = LHSC->getValue();
2558 Constant *RHSCV = RHSC->getValue();
2559 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2560 RHSCV)));
2561 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002562 }
2563 }
2564
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002565 FoldingSetNodeID ID;
2566 ID.AddInteger(scUDivExpr);
2567 ID.AddPointer(LHS);
2568 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002569 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002570 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002571 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2572 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002573 UniqueSCEVs.InsertNode(S, IP);
2574 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002575}
2576
Nick Lewycky31eaca52014-01-27 10:04:03 +00002577static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2578 APInt A = C1->getValue()->getValue().abs();
2579 APInt B = C2->getValue()->getValue().abs();
2580 uint32_t ABW = A.getBitWidth();
2581 uint32_t BBW = B.getBitWidth();
2582
2583 if (ABW > BBW)
2584 B = B.zext(ABW);
2585 else if (ABW < BBW)
2586 A = A.zext(BBW);
2587
2588 return APIntOps::GreatestCommonDivisor(A, B);
2589}
2590
2591/// getUDivExactExpr - Get a canonical unsigned division expression, or
2592/// something simpler if possible. There is no representation for an exact udiv
2593/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2594/// We can't do this when it's not exact because the udiv may be clearing bits.
2595const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2596 const SCEV *RHS) {
2597 // TODO: we could try to find factors in all sorts of things, but for now we
2598 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2599 // end of this file for inspiration.
2600
2601 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2602 if (!Mul)
2603 return getUDivExpr(LHS, RHS);
2604
2605 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2606 // If the mulexpr multiplies by a constant, then that constant must be the
2607 // first element of the mulexpr.
2608 if (const SCEVConstant *LHSCst =
2609 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2610 if (LHSCst == RHSCst) {
2611 SmallVector<const SCEV *, 2> Operands;
2612 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2613 return getMulExpr(Operands);
2614 }
2615
2616 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2617 // that there's a factor provided by one of the other terms. We need to
2618 // check.
2619 APInt Factor = gcd(LHSCst, RHSCst);
2620 if (!Factor.isIntN(1)) {
2621 LHSCst = cast<SCEVConstant>(
2622 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2623 RHSCst = cast<SCEVConstant>(
2624 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2625 SmallVector<const SCEV *, 2> Operands;
2626 Operands.push_back(LHSCst);
2627 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2628 LHS = getMulExpr(Operands);
2629 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002630 Mul = dyn_cast<SCEVMulExpr>(LHS);
2631 if (!Mul)
2632 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002633 }
2634 }
2635 }
2636
2637 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2638 if (Mul->getOperand(i) == RHS) {
2639 SmallVector<const SCEV *, 2> Operands;
2640 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2641 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2642 return getMulExpr(Operands);
2643 }
2644 }
2645
2646 return getUDivExpr(LHS, RHS);
2647}
Chris Lattnerd934c702004-04-02 20:23:17 +00002648
Dan Gohman4d5435d2009-05-24 23:45:28 +00002649/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2650/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002651const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2652 const Loop *L,
2653 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002654 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002655 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002656 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002657 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002658 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002659 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002660 }
2661
2662 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002663 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002664}
2665
Dan Gohman4d5435d2009-05-24 23:45:28 +00002666/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2667/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002668const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002669ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002670 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002671 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002672#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002673 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002674 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002675 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002676 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002677 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002678 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002679 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002680#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002681
Dan Gohmanbe928e32008-06-18 16:23:07 +00002682 if (Operands.back()->isZero()) {
2683 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002684 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002685 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002686
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002687 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2688 // use that information to infer NUW and NSW flags. However, computing a
2689 // BE count requires calling getAddRecExpr, so we may not yet have a
2690 // meaningful BE count at this point (and if we don't, we'd be stuck
2691 // with a SCEVCouldNotCompute as the cached BE count).
2692
Andrew Trick8b55b732011-03-14 16:50:06 +00002693 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002694 // And vice-versa.
2695 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2696 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2697 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002698 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002699 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2700 E = Operands.end(); I != E; ++I)
2701 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002702 All = false;
2703 break;
2704 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002705 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002706 }
2707
Dan Gohman223a5d22008-08-08 18:33:12 +00002708 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002709 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002710 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002711 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002712 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002713 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002714 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002715 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002716 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002717 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002718 // AddRecs require their operands be loop-invariant with respect to their
2719 // loops. Don't perform this transformation if it would break this
2720 // requirement.
2721 bool AllInvariant = true;
2722 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002723 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002724 AllInvariant = false;
2725 break;
2726 }
2727 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002728 // Create a recurrence for the outer loop with the same step size.
2729 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002730 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2731 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002732 SCEV::NoWrapFlags OuterFlags =
2733 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002734
2735 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002736 AllInvariant = true;
2737 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002738 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002739 AllInvariant = false;
2740 break;
2741 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002742 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002743 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002744 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002745 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2746 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002747 SCEV::NoWrapFlags InnerFlags =
2748 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002749 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2750 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002751 }
2752 // Reset Operands to its original state.
2753 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002754 }
2755 }
2756
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002757 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2758 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002759 FoldingSetNodeID ID;
2760 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002761 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2762 ID.AddPointer(Operands[i]);
2763 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002764 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002765 SCEVAddRecExpr *S =
2766 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2767 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002768 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2769 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002770 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2771 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002772 UniqueSCEVs.InsertNode(S, IP);
2773 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002774 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002775 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002776}
2777
Dan Gohmanabd17092009-06-24 14:49:00 +00002778const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2779 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002780 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002781 Ops.push_back(LHS);
2782 Ops.push_back(RHS);
2783 return getSMaxExpr(Ops);
2784}
2785
Dan Gohmanaf752342009-07-07 17:06:11 +00002786const SCEV *
2787ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002788 assert(!Ops.empty() && "Cannot get empty smax!");
2789 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002790#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002791 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002792 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002793 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002794 "SCEVSMaxExpr operand types don't match!");
2795#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002796
2797 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002798 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002799
2800 // If there are any constants, fold them together.
2801 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002802 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002803 ++Idx;
2804 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002805 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002806 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002807 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002808 APIntOps::smax(LHSC->getValue()->getValue(),
2809 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002810 Ops[0] = getConstant(Fold);
2811 Ops.erase(Ops.begin()+1); // Erase the folded element
2812 if (Ops.size() == 1) return Ops[0];
2813 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002814 }
2815
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002816 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002817 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2818 Ops.erase(Ops.begin());
2819 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002820 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2821 // If we have an smax with a constant maximum-int, it will always be
2822 // maximum-int.
2823 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002824 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002825
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002826 if (Ops.size() == 1) return Ops[0];
2827 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002828
2829 // Find the first SMax
2830 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2831 ++Idx;
2832
2833 // Check to see if one of the operands is an SMax. If so, expand its operands
2834 // onto our operand list, and recurse to simplify.
2835 if (Idx < Ops.size()) {
2836 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002837 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002838 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002839 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002840 DeletedSMax = true;
2841 }
2842
2843 if (DeletedSMax)
2844 return getSMaxExpr(Ops);
2845 }
2846
2847 // Okay, check to see if the same value occurs in the operand list twice. If
2848 // so, delete one. Since we sorted the list, these values are required to
2849 // be adjacent.
2850 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002851 // X smax Y smax Y --> X smax Y
2852 // X smax Y --> X, if X is always greater than Y
2853 if (Ops[i] == Ops[i+1] ||
2854 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2855 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2856 --i; --e;
2857 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002858 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2859 --i; --e;
2860 }
2861
2862 if (Ops.size() == 1) return Ops[0];
2863
2864 assert(!Ops.empty() && "Reduced smax down to nothing!");
2865
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002866 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002867 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002868 FoldingSetNodeID ID;
2869 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002870 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2871 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002872 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002873 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002874 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2875 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002876 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2877 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002878 UniqueSCEVs.InsertNode(S, IP);
2879 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002880}
2881
Dan Gohmanabd17092009-06-24 14:49:00 +00002882const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2883 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002884 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002885 Ops.push_back(LHS);
2886 Ops.push_back(RHS);
2887 return getUMaxExpr(Ops);
2888}
2889
Dan Gohmanaf752342009-07-07 17:06:11 +00002890const SCEV *
2891ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002892 assert(!Ops.empty() && "Cannot get empty umax!");
2893 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002894#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002895 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002896 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002897 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002898 "SCEVUMaxExpr operand types don't match!");
2899#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002900
2901 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002902 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002903
2904 // If there are any constants, fold them together.
2905 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002906 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002907 ++Idx;
2908 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002909 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002910 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002911 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002912 APIntOps::umax(LHSC->getValue()->getValue(),
2913 RHSC->getValue()->getValue()));
2914 Ops[0] = getConstant(Fold);
2915 Ops.erase(Ops.begin()+1); // Erase the folded element
2916 if (Ops.size() == 1) return Ops[0];
2917 LHSC = cast<SCEVConstant>(Ops[0]);
2918 }
2919
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002920 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002921 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2922 Ops.erase(Ops.begin());
2923 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002924 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2925 // If we have an umax with a constant maximum-int, it will always be
2926 // maximum-int.
2927 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002928 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002929
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002930 if (Ops.size() == 1) return Ops[0];
2931 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002932
2933 // Find the first UMax
2934 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2935 ++Idx;
2936
2937 // Check to see if one of the operands is a UMax. If so, expand its operands
2938 // onto our operand list, and recurse to simplify.
2939 if (Idx < Ops.size()) {
2940 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002941 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002942 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002943 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002944 DeletedUMax = true;
2945 }
2946
2947 if (DeletedUMax)
2948 return getUMaxExpr(Ops);
2949 }
2950
2951 // Okay, check to see if the same value occurs in the operand list twice. If
2952 // so, delete one. Since we sorted the list, these values are required to
2953 // be adjacent.
2954 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002955 // X umax Y umax Y --> X umax Y
2956 // X umax Y --> X, if X is always greater than Y
2957 if (Ops[i] == Ops[i+1] ||
2958 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2959 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2960 --i; --e;
2961 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002962 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2963 --i; --e;
2964 }
2965
2966 if (Ops.size() == 1) return Ops[0];
2967
2968 assert(!Ops.empty() && "Reduced umax down to nothing!");
2969
2970 // Okay, it looks like we really DO need a umax expr. Check to see if we
2971 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002972 FoldingSetNodeID ID;
2973 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002974 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2975 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002976 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002977 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002978 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2979 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002980 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2981 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002982 UniqueSCEVs.InsertNode(S, IP);
2983 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002984}
2985
Dan Gohmanabd17092009-06-24 14:49:00 +00002986const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2987 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002988 // ~smax(~x, ~y) == smin(x, y).
2989 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2990}
2991
Dan Gohmanabd17092009-06-24 14:49:00 +00002992const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2993 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002994 // ~umax(~x, ~y) == umin(x, y)
2995 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2996}
2997
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002998const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002999 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003000 // constant expression and then folding it back into a ConstantInt.
3001 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003002 if (DL)
3003 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00003004
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003005 Constant *C = ConstantExpr::getSizeOf(AllocTy);
3006 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003007 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00003008 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00003009 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003010 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003011 return getTruncateOrZeroExtend(getSCEV(C), Ty);
3012}
3013
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003014const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3015 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003016 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003017 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003018 // constant expression and then folding it back into a ConstantInt.
3019 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003020 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003021 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003022 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003023 }
Dan Gohman11862a62010-04-12 23:03:26 +00003024
Dan Gohmancf913832010-01-28 02:15:55 +00003025 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
3026 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003027 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00003028 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003029
Matt Arsenault4ed49b52013-10-21 18:08:09 +00003030 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00003031 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003032}
3033
Dan Gohmanaf752342009-07-07 17:06:11 +00003034const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003035 // Don't attempt to do anything other than create a SCEVUnknown object
3036 // here. createSCEV only calls getUnknown after checking for all other
3037 // interesting possibilities, and any other code that calls getUnknown
3038 // is doing so in order to hide a value from SCEV canonicalization.
3039
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003040 FoldingSetNodeID ID;
3041 ID.AddInteger(scUnknown);
3042 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003043 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003044 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3045 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3046 "Stale SCEVUnknown in uniquing map!");
3047 return S;
3048 }
3049 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3050 FirstUnknown);
3051 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003052 UniqueSCEVs.InsertNode(S, IP);
3053 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003054}
3055
Chris Lattnerd934c702004-04-02 20:23:17 +00003056//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003057// Basic SCEV Analysis and PHI Idiom Recognition Code
3058//
3059
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003060/// isSCEVable - Test if values of the given type are analyzable within
3061/// the SCEV framework. This primarily includes integer types, and it
3062/// can optionally include pointer types if the ScalarEvolution class
3063/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003064bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003065 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003066 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003067}
3068
3069/// getTypeSizeInBits - Return the size in bits of the specified type,
3070/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003071uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003072 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3073
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003074 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003075 if (DL)
3076 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003077
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003078 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00003079 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003080 return Ty->getPrimitiveSizeInBits();
3081
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003082 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003083 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00003084 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003085 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003086}
3087
3088/// getEffectiveSCEVType - Return a type with the same bitwidth as
3089/// the given type and which represents how SCEV will treat the given
3090/// type, for which isSCEVable must return true. For pointer types,
3091/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003092Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003093 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3094
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003095 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003096 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003097 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003098
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003099 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003100 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003101
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003102 if (DL)
3103 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003104
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003105 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003106 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00003107}
Chris Lattnerd934c702004-04-02 20:23:17 +00003108
Dan Gohmanaf752342009-07-07 17:06:11 +00003109const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003110 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003111}
3112
Shuxin Yangefc4c012013-07-08 17:33:13 +00003113namespace {
3114 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3115 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3116 // is set iff if find such SCEVUnknown.
3117 //
3118 struct FindInvalidSCEVUnknown {
3119 bool FindOne;
3120 FindInvalidSCEVUnknown() { FindOne = false; }
3121 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003122 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003123 case scConstant:
3124 return false;
3125 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003126 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003127 FindOne = true;
3128 return false;
3129 default:
3130 return true;
3131 }
3132 }
3133 bool isDone() const { return FindOne; }
3134 };
3135}
3136
3137bool ScalarEvolution::checkValidity(const SCEV *S) const {
3138 FindInvalidSCEVUnknown F;
3139 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3140 ST.visitAll(S);
3141
3142 return !F.FindOne;
3143}
3144
Chris Lattnerd934c702004-04-02 20:23:17 +00003145/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3146/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003147const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003148 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003149
Shuxin Yangefc4c012013-07-08 17:33:13 +00003150 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3151 if (I != ValueExprMap.end()) {
3152 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003153 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003154 return S;
3155 else
3156 ValueExprMap.erase(I);
3157 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003158 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003159
3160 // The process of creating a SCEV for V may have caused other SCEVs
3161 // to have been created, so it's necessary to insert the new entry
3162 // from scratch, rather than trying to remember the insert position
3163 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003164 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003165 return S;
3166}
3167
Dan Gohman0a40ad92009-04-16 03:18:22 +00003168/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3169///
Dan Gohmanaf752342009-07-07 17:06:11 +00003170const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003171 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003172 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003173 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003174
Chris Lattner229907c2011-07-18 04:54:35 +00003175 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003176 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003177 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003178 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003179}
3180
3181/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003182const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003183 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003184 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003185 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003186
Chris Lattner229907c2011-07-18 04:54:35 +00003187 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003188 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003189 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003190 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003191 return getMinusSCEV(AllOnes, V);
3192}
3193
Andrew Trick8b55b732011-03-14 16:50:06 +00003194/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003195const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003196 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003197 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3198
Dan Gohman46f00a22010-07-20 16:53:00 +00003199 // Fast path: X - X --> 0.
3200 if (LHS == RHS)
3201 return getConstant(LHS->getType(), 0);
3202
Dan Gohman0a40ad92009-04-16 03:18:22 +00003203 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00003204 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003205}
3206
3207/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3208/// input value to the specified type. If the type must be extended, it is zero
3209/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003210const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003211ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3212 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003213 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3214 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003215 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003216 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003217 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003218 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003219 return getTruncateExpr(V, Ty);
3220 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003221}
3222
3223/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3224/// input value to the specified type. If the type must be extended, it is sign
3225/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003226const SCEV *
3227ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003228 Type *Ty) {
3229 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003230 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3231 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003232 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003233 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003234 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003235 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003236 return getTruncateExpr(V, Ty);
3237 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003238}
3239
Dan Gohmane712a2f2009-05-13 03:46:30 +00003240/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3241/// input value to the specified type. If the type must be extended, it is zero
3242/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003243const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003244ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3245 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003246 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3247 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003248 "Cannot noop or zero extend with non-integer arguments!");
3249 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3250 "getNoopOrZeroExtend cannot truncate!");
3251 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3252 return V; // No conversion
3253 return getZeroExtendExpr(V, Ty);
3254}
3255
3256/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3257/// input value to the specified type. If the type must be extended, it is sign
3258/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003259const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003260ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3261 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003262 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3263 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003264 "Cannot noop or sign extend with non-integer arguments!");
3265 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3266 "getNoopOrSignExtend cannot truncate!");
3267 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3268 return V; // No conversion
3269 return getSignExtendExpr(V, Ty);
3270}
3271
Dan Gohman8db2edc2009-06-13 15:56:47 +00003272/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3273/// the input value to the specified type. If the type must be extended,
3274/// it is extended with unspecified bits. The conversion must not be
3275/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003276const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003277ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3278 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003279 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3280 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003281 "Cannot noop or any extend with non-integer arguments!");
3282 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3283 "getNoopOrAnyExtend cannot truncate!");
3284 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3285 return V; // No conversion
3286 return getAnyExtendExpr(V, Ty);
3287}
3288
Dan Gohmane712a2f2009-05-13 03:46:30 +00003289/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3290/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003291const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003292ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3293 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003294 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3295 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003296 "Cannot truncate or noop with non-integer arguments!");
3297 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3298 "getTruncateOrNoop cannot extend!");
3299 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3300 return V; // No conversion
3301 return getTruncateExpr(V, Ty);
3302}
3303
Dan Gohman96212b62009-06-22 00:31:57 +00003304/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3305/// the types using zero-extension, and then perform a umax operation
3306/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003307const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3308 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003309 const SCEV *PromotedLHS = LHS;
3310 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003311
3312 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3313 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3314 else
3315 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3316
3317 return getUMaxExpr(PromotedLHS, PromotedRHS);
3318}
3319
Dan Gohman2bc22302009-06-22 15:03:27 +00003320/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3321/// the types using zero-extension, and then perform a umin operation
3322/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003323const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3324 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003325 const SCEV *PromotedLHS = LHS;
3326 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003327
3328 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3329 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3330 else
3331 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3332
3333 return getUMinExpr(PromotedLHS, PromotedRHS);
3334}
3335
Andrew Trick87716c92011-03-17 23:51:11 +00003336/// getPointerBase - Transitively follow the chain of pointer-type operands
3337/// until reaching a SCEV that does not have a single pointer operand. This
3338/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3339/// but corner cases do exist.
3340const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3341 // A pointer operand may evaluate to a nonpointer expression, such as null.
3342 if (!V->getType()->isPointerTy())
3343 return V;
3344
3345 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3346 return getPointerBase(Cast->getOperand());
3347 }
3348 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003349 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003350 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3351 I != E; ++I) {
3352 if ((*I)->getType()->isPointerTy()) {
3353 // Cannot find the base of an expression with multiple pointer operands.
3354 if (PtrOp)
3355 return V;
3356 PtrOp = *I;
3357 }
3358 }
3359 if (!PtrOp)
3360 return V;
3361 return getPointerBase(PtrOp);
3362 }
3363 return V;
3364}
3365
Dan Gohman0b89dff2009-07-25 01:13:03 +00003366/// PushDefUseChildren - Push users of the given Instruction
3367/// onto the given Worklist.
3368static void
3369PushDefUseChildren(Instruction *I,
3370 SmallVectorImpl<Instruction *> &Worklist) {
3371 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003372 for (User *U : I->users())
3373 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003374}
3375
3376/// ForgetSymbolicValue - This looks up computed SCEV values for all
3377/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003378/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003379/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003380void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003381ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003382 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003383 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003384
Dan Gohman0b89dff2009-07-25 01:13:03 +00003385 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003386 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003387 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003388 Instruction *I = Worklist.pop_back_val();
Dan Gohman0b89dff2009-07-25 01:13:03 +00003389 if (!Visited.insert(I)) continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003390
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003391 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003392 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003393 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003394 const SCEV *Old = It->second;
3395
Dan Gohman0b89dff2009-07-25 01:13:03 +00003396 // Short-circuit the def-use traversal if the symbolic name
3397 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003398 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003399 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003400
Dan Gohman0b89dff2009-07-25 01:13:03 +00003401 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003402 // structure, it's a PHI that's in the progress of being computed
3403 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3404 // additional loop trip count information isn't going to change anything.
3405 // In the second case, createNodeForPHI will perform the necessary
3406 // updates on its own when it gets to that point. In the third, we do
3407 // want to forget the SCEVUnknown.
3408 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003409 !isa<SCEVUnknown>(Old) ||
3410 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003411 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003412 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003413 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003414 }
3415
3416 PushDefUseChildren(I, Worklist);
3417 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003418}
Chris Lattnerd934c702004-04-02 20:23:17 +00003419
3420/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3421/// a loop header, making it a potential recurrence, or it doesn't.
3422///
Dan Gohmanaf752342009-07-07 17:06:11 +00003423const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003424 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3425 if (L->getHeader() == PN->getParent()) {
3426 // The loop may have multiple entrances or multiple exits; we can analyze
3427 // this phi as an addrec if it has a unique entry value and a unique
3428 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003429 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003430 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3431 Value *V = PN->getIncomingValue(i);
3432 if (L->contains(PN->getIncomingBlock(i))) {
3433 if (!BEValueV) {
3434 BEValueV = V;
3435 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003436 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003437 break;
3438 }
3439 } else if (!StartValueV) {
3440 StartValueV = V;
3441 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003442 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003443 break;
3444 }
3445 }
3446 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003447 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003448 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003449 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003450 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003451 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003452
3453 // Using this symbolic name for the PHI, analyze the value coming around
3454 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003455 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003456
3457 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3458 // has a special value for the first iteration of the loop.
3459
3460 // If the value coming around the backedge is an add with the symbolic
3461 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003462 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003463 // If there is a single occurrence of the symbolic value, replace it
3464 // with a recurrence.
3465 unsigned FoundIndex = Add->getNumOperands();
3466 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3467 if (Add->getOperand(i) == SymbolicName)
3468 if (FoundIndex == e) {
3469 FoundIndex = i;
3470 break;
3471 }
3472
3473 if (FoundIndex != Add->getNumOperands()) {
3474 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003475 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003476 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3477 if (i != FoundIndex)
3478 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003479 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003480
3481 // This is not a valid addrec if the step amount is varying each
3482 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003483 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003484 (isa<SCEVAddRecExpr>(Accum) &&
3485 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003486 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003487
3488 // If the increment doesn't overflow, then neither the addrec nor
3489 // the post-increment will overflow.
3490 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3491 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003492 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003493 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003494 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003495 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003496 // If the increment is an inbounds GEP, then we know the address
3497 // space cannot be wrapped around. We cannot make any guarantee
3498 // about signed or unsigned overflow because pointers are
3499 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003500 // pointer. We can guarantee that no unsigned wrap occurs if the
3501 // indices form a positive value.
3502 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003503 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003504
3505 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3506 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3507 Flags = setFlags(Flags, SCEV::FlagNUW);
3508 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003509 } else if (const SubOperator *OBO =
3510 dyn_cast<SubOperator>(BEValueV)) {
3511 if (OBO->hasNoUnsignedWrap())
3512 Flags = setFlags(Flags, SCEV::FlagNUW);
3513 if (OBO->hasNoSignedWrap())
3514 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003515 }
3516
Dan Gohman6635bb22010-04-12 07:49:36 +00003517 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003518 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003519
Dan Gohman51ad99d2010-01-21 02:09:26 +00003520 // Since the no-wrap flags are on the increment, they apply to the
3521 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003522 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003523 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003524 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003525
3526 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003527 // to be symbolic. We now need to go back and purge all of the
3528 // entries for the scalars that use the symbolic expression.
3529 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003530 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003531 return PHISCEV;
3532 }
3533 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003534 } else if (const SCEVAddRecExpr *AddRec =
3535 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003536 // Otherwise, this could be a loop like this:
3537 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3538 // In this case, j = {1,+,1} and BEValue is j.
3539 // Because the other in-value of i (0) fits the evolution of BEValue
3540 // i really is an addrec evolution.
3541 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003542 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003543
3544 // If StartVal = j.start - j.stride, we can use StartVal as the
3545 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003546 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003547 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003548 // FIXME: For constant StartVal, we should be able to infer
3549 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003550 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003551 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3552 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003553
3554 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003555 // to be symbolic. We now need to go back and purge all of the
3556 // entries for the scalars that use the symbolic expression.
3557 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003558 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003559 return PHISCEV;
3560 }
3561 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003562 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003563 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003564 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003565
Dan Gohmana9c205c2010-02-25 06:57:05 +00003566 // If the PHI has a single incoming value, follow that value, unless the
3567 // PHI's incoming blocks are in a different loop, in which case doing so
3568 // risks breaking LCSSA form. Instcombine would normally zap these, but
3569 // it doesn't have DominatorTree information, so it may miss cases.
Hal Finkel60db0582014-09-07 18:57:58 +00003570 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003571 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003572 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003573
Chris Lattnerd934c702004-04-02 20:23:17 +00003574 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003575 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003576}
3577
Dan Gohmanee750d12009-05-08 20:26:55 +00003578/// createNodeForGEP - Expand GEP instructions into add and multiply
3579/// operations. This allows them to be analyzed by regular SCEV code.
3580///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003581const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003582 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003583 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003584 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003585 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003586 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003587
3588 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3589 // Add expression, because the Instruction may be guarded by control flow
3590 // and the no-overflow bits may not be valid for the expression in any
3591 // context.
3592 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3593
Dan Gohman1d2ded72010-05-03 22:09:21 +00003594 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003595 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003596 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003597 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003598 I != E; ++I) {
3599 Value *Index = *I;
3600 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003601 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003602 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003603 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003604 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003605
Dan Gohman16206132010-06-30 07:16:37 +00003606 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003607 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003608 } else {
3609 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003610 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003611 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003612 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003613 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3614
Dan Gohman16206132010-06-30 07:16:37 +00003615 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003616 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003617
3618 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003619 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003620 }
3621 }
Dan Gohman16206132010-06-30 07:16:37 +00003622
3623 // Get the SCEV for the GEP base.
3624 const SCEV *BaseS = getSCEV(Base);
3625
Dan Gohman16206132010-06-30 07:16:37 +00003626 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003627 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003628}
3629
Nick Lewycky3783b462007-11-22 07:59:40 +00003630/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3631/// guaranteed to end in (at every loop iteration). It is, at the same time,
3632/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3633/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003634uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003635ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003636 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003637 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003638
Dan Gohmana30370b2009-05-04 22:02:23 +00003639 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003640 return std::min(GetMinTrailingZeros(T->getOperand()),
3641 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003642
Dan Gohmana30370b2009-05-04 22:02:23 +00003643 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003644 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3645 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3646 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003647 }
3648
Dan Gohmana30370b2009-05-04 22:02:23 +00003649 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003650 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3651 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3652 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003653 }
3654
Dan Gohmana30370b2009-05-04 22:02:23 +00003655 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003656 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003657 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003658 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003659 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003660 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003661 }
3662
Dan Gohmana30370b2009-05-04 22:02:23 +00003663 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003664 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003665 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3666 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003667 for (unsigned i = 1, e = M->getNumOperands();
3668 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003669 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003670 BitWidth);
3671 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003672 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003673
Dan Gohmana30370b2009-05-04 22:02:23 +00003674 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003675 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003676 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003677 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003678 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003679 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003680 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003681
Dan Gohmana30370b2009-05-04 22:02:23 +00003682 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003683 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003684 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003685 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003686 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003687 return MinOpRes;
3688 }
3689
Dan Gohmana30370b2009-05-04 22:02:23 +00003690 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003691 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003692 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003693 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003694 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003695 return MinOpRes;
3696 }
3697
Dan Gohmanc702fc02009-06-19 23:29:04 +00003698 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3699 // For a SCEVUnknown, ask ValueTracking.
3700 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003701 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003702 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003703 return Zeros.countTrailingOnes();
3704 }
3705
3706 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003707 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003708}
Chris Lattnerd934c702004-04-02 20:23:17 +00003709
Sanjoy Das1f05c512014-10-10 21:22:34 +00003710/// GetRangeFromMetadata - Helper method to assign a range to V from
3711/// metadata present in the IR.
3712static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3713 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003714 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003715 ConstantRange TotalRange(
3716 cast<IntegerType>(I->getType())->getBitWidth(), false);
3717
3718 unsigned NumRanges = MD->getNumOperands() / 2;
3719 assert(NumRanges >= 1);
3720
3721 for (unsigned i = 0; i < NumRanges; ++i) {
3722 ConstantInt *Lower = cast<ConstantInt>(MD->getOperand(2*i + 0));
3723 ConstantInt *Upper = cast<ConstantInt>(MD->getOperand(2*i + 1));
3724 ConstantRange Range(Lower->getValue(), Upper->getValue());
3725 TotalRange = TotalRange.unionWith(Range);
3726 }
3727
3728 return TotalRange;
3729 }
3730 }
3731
3732 return None;
3733}
3734
Dan Gohmane65c9172009-07-13 21:35:55 +00003735/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3736///
3737ConstantRange
3738ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003739 // See if we've computed this range already.
3740 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3741 if (I != UnsignedRanges.end())
3742 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003743
3744 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003745 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003746
Dan Gohman85be4332010-01-26 19:19:05 +00003747 unsigned BitWidth = getTypeSizeInBits(S->getType());
3748 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3749
3750 // If the value has known zeros, the maximum unsigned value will have those
3751 // known zeros as well.
3752 uint32_t TZ = GetMinTrailingZeros(S);
3753 if (TZ != 0)
3754 ConservativeResult =
3755 ConstantRange(APInt::getMinValue(BitWidth),
3756 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3757
Dan Gohmane65c9172009-07-13 21:35:55 +00003758 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3759 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3760 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3761 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003762 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003763 }
3764
3765 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3766 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3767 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3768 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003769 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003770 }
3771
3772 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3773 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3774 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3775 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003776 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003777 }
3778
3779 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3780 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3781 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3782 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003783 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003784 }
3785
3786 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3787 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3788 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003789 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003790 }
3791
3792 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3793 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003794 return setUnsignedRange(ZExt,
3795 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003796 }
3797
3798 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3799 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003800 return setUnsignedRange(SExt,
3801 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003802 }
3803
3804 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3805 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003806 return setUnsignedRange(Trunc,
3807 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003808 }
3809
Dan Gohmane65c9172009-07-13 21:35:55 +00003810 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003811 // If there's no unsigned wrap, the value will never be less than its
3812 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003813 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003814 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003815 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003816 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003817 ConservativeResult.intersectWith(
3818 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003819
3820 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003821 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003822 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003823 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003824 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3825 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003826 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3827
3828 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003829 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003830
3831 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003832 ConstantRange StepRange = getSignedRange(Step);
3833 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3834 ConstantRange EndRange =
3835 StartRange.add(MaxBECountRange.multiply(StepRange));
3836
3837 // Check for overflow. This must be done with ConstantRange arithmetic
3838 // because we could be called from within the ScalarEvolution overflow
3839 // checking code.
3840 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3841 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3842 ConstantRange ExtMaxBECountRange =
3843 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3844 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3845 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3846 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003847 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003848
Dan Gohmane65c9172009-07-13 21:35:55 +00003849 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3850 EndRange.getUnsignedMin());
3851 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3852 EndRange.getUnsignedMax());
3853 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003854 return setUnsignedRange(AddRec, ConservativeResult);
3855 return setUnsignedRange(AddRec,
3856 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003857 }
3858 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003859
Dan Gohmaned756312010-11-17 20:23:08 +00003860 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003861 }
3862
3863 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003864 // Check if the IR explicitly contains !range metadata.
3865 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3866 if (MDRange.hasValue())
3867 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3868
Dan Gohmanc702fc02009-06-19 23:29:04 +00003869 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003870 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003871 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003872 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003873 return setUnsignedRange(U, ConservativeResult);
3874 return setUnsignedRange(U,
3875 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003876 }
3877
Dan Gohmaned756312010-11-17 20:23:08 +00003878 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003879}
3880
Dan Gohmane65c9172009-07-13 21:35:55 +00003881/// getSignedRange - Determine the signed range for a particular SCEV.
3882///
3883ConstantRange
3884ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003885 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003886 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3887 if (I != SignedRanges.end())
3888 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003889
Dan Gohmane65c9172009-07-13 21:35:55 +00003890 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003891 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003892
Dan Gohman51aaf022010-01-26 04:40:18 +00003893 unsigned BitWidth = getTypeSizeInBits(S->getType());
3894 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3895
3896 // If the value has known zeros, the maximum signed value will have those
3897 // known zeros as well.
3898 uint32_t TZ = GetMinTrailingZeros(S);
3899 if (TZ != 0)
3900 ConservativeResult =
3901 ConstantRange(APInt::getSignedMinValue(BitWidth),
3902 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3903
Dan Gohmane65c9172009-07-13 21:35:55 +00003904 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3905 ConstantRange X = getSignedRange(Add->getOperand(0));
3906 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3907 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003908 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003909 }
3910
Dan Gohmane65c9172009-07-13 21:35:55 +00003911 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3912 ConstantRange X = getSignedRange(Mul->getOperand(0));
3913 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3914 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003915 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003916 }
3917
Dan Gohmane65c9172009-07-13 21:35:55 +00003918 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3919 ConstantRange X = getSignedRange(SMax->getOperand(0));
3920 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3921 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003922 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003923 }
Dan Gohmand261d272009-06-24 01:05:09 +00003924
Dan Gohmane65c9172009-07-13 21:35:55 +00003925 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3926 ConstantRange X = getSignedRange(UMax->getOperand(0));
3927 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3928 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003929 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003930 }
Dan Gohmand261d272009-06-24 01:05:09 +00003931
Dan Gohmane65c9172009-07-13 21:35:55 +00003932 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3933 ConstantRange X = getSignedRange(UDiv->getLHS());
3934 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003935 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003936 }
Dan Gohmand261d272009-06-24 01:05:09 +00003937
Dan Gohmane65c9172009-07-13 21:35:55 +00003938 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3939 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003940 return setSignedRange(ZExt,
3941 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003942 }
3943
3944 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3945 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003946 return setSignedRange(SExt,
3947 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003948 }
3949
3950 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3951 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003952 return setSignedRange(Trunc,
3953 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003954 }
3955
Dan Gohmane65c9172009-07-13 21:35:55 +00003956 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003957 // If there's no signed wrap, and all the operands have the same sign or
3958 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003959 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003960 bool AllNonNeg = true;
3961 bool AllNonPos = true;
3962 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3963 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3964 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3965 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003966 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003967 ConservativeResult = ConservativeResult.intersectWith(
3968 ConstantRange(APInt(BitWidth, 0),
3969 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003970 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003971 ConservativeResult = ConservativeResult.intersectWith(
3972 ConstantRange(APInt::getSignedMinValue(BitWidth),
3973 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003974 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003975
3976 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003977 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003978 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003979 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003980 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3981 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003982 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3983
3984 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003985 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003986
3987 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003988 ConstantRange StepRange = getSignedRange(Step);
3989 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3990 ConstantRange EndRange =
3991 StartRange.add(MaxBECountRange.multiply(StepRange));
3992
3993 // Check for overflow. This must be done with ConstantRange arithmetic
3994 // because we could be called from within the ScalarEvolution overflow
3995 // checking code.
3996 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3997 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3998 ConstantRange ExtMaxBECountRange =
3999 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
4000 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
4001 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
4002 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00004003 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00004004
Dan Gohmane65c9172009-07-13 21:35:55 +00004005 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
4006 EndRange.getSignedMin());
4007 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
4008 EndRange.getSignedMax());
4009 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00004010 return setSignedRange(AddRec, ConservativeResult);
4011 return setSignedRange(AddRec,
4012 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00004013 }
Dan Gohmand261d272009-06-24 01:05:09 +00004014 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004015
Dan Gohmaned756312010-11-17 20:23:08 +00004016 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004017 }
4018
Dan Gohmanc702fc02009-06-19 23:29:04 +00004019 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004020 // Check if the IR explicitly contains !range metadata.
4021 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4022 if (MDRange.hasValue())
4023 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4024
Dan Gohmanc702fc02009-06-19 23:29:04 +00004025 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004026 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00004027 return setSignedRange(U, ConservativeResult);
Hal Finkel60db0582014-09-07 18:57:58 +00004028 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AT, nullptr, DT);
Hal Finkelff666bd2013-07-09 18:16:16 +00004029 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00004030 return setSignedRange(U, ConservativeResult);
4031 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00004032 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00004033 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004034 }
4035
Dan Gohmaned756312010-11-17 20:23:08 +00004036 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004037}
4038
Chris Lattnerd934c702004-04-02 20:23:17 +00004039/// createSCEV - We know that there is no SCEV for the specified value.
4040/// Analyze the expression.
4041///
Dan Gohmanaf752342009-07-07 17:06:11 +00004042const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004043 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004044 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004045
Dan Gohman05e89732008-06-22 19:56:46 +00004046 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004047 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004048 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004049
4050 // Don't attempt to analyze instructions in blocks that aren't
4051 // reachable. Such instructions don't matter, and they aren't required
4052 // to obey basic rules for definitions dominating uses which this
4053 // analysis depends on.
4054 if (!DT->isReachableFromEntry(I->getParent()))
4055 return getUnknown(V);
4056 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004057 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004058 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4059 return getConstant(CI);
4060 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004061 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004062 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4063 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004064 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004065 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004066
Dan Gohman80ca01c2009-07-17 20:47:02 +00004067 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004068 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004069 case Instruction::Add: {
4070 // The simple thing to do would be to just call getSCEV on both operands
4071 // and call getAddExpr with the result. However if we're looking at a
4072 // bunch of things all added together, this can be quite inefficient,
4073 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4074 // Instead, gather up all the operands and make a single getAddExpr call.
4075 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004076 //
4077 // Don't apply this instruction's NSW or NUW flags to the new
4078 // expression. The instruction may be guarded by control flow that the
4079 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4080 // mapped to the same SCEV expression, and it would be incorrect to transfer
4081 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004082 SmallVector<const SCEV *, 4> AddOps;
4083 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004084 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4085 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4086 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4087 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004088 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004089 const SCEV *Op1 = getSCEV(U->getOperand(1));
4090 if (Opcode == Instruction::Sub)
4091 AddOps.push_back(getNegativeSCEV(Op1));
4092 else
4093 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004094 }
4095 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004096 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004097 }
4098 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004099 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004100 SmallVector<const SCEV *, 4> MulOps;
4101 MulOps.push_back(getSCEV(U->getOperand(1)));
4102 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004103 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004104 Op = U->getOperand(0)) {
4105 U = cast<Operator>(Op);
4106 MulOps.push_back(getSCEV(U->getOperand(1)));
4107 }
4108 MulOps.push_back(getSCEV(U->getOperand(0)));
4109 return getMulExpr(MulOps);
4110 }
Dan Gohman05e89732008-06-22 19:56:46 +00004111 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004112 return getUDivExpr(getSCEV(U->getOperand(0)),
4113 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004114 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004115 return getMinusSCEV(getSCEV(U->getOperand(0)),
4116 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004117 case Instruction::And:
4118 // For an expression like x&255 that merely masks off the high bits,
4119 // use zext(trunc(x)) as the SCEV expression.
4120 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004121 if (CI->isNullValue())
4122 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004123 if (CI->isAllOnesValue())
4124 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004125 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004126
4127 // Instcombine's ShrinkDemandedConstant may strip bits out of
4128 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004129 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004130 // knew about to reconstruct a low-bits mask value.
4131 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004132 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004133 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004134 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00004135 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL,
4136 0, AT, nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004137
Nick Lewycky31eaca52014-01-27 10:04:03 +00004138 APInt EffectiveMask =
4139 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4140 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4141 const SCEV *MulCount = getConstant(
4142 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4143 return getMulExpr(
4144 getZeroExtendExpr(
4145 getTruncateExpr(
4146 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4147 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4148 U->getType()),
4149 MulCount);
4150 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004151 }
4152 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004153
Dan Gohman05e89732008-06-22 19:56:46 +00004154 case Instruction::Or:
4155 // If the RHS of the Or is a constant, we may have something like:
4156 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4157 // optimizations will transparently handle this case.
4158 //
4159 // In order for this transformation to be safe, the LHS must be of the
4160 // form X*(2^n) and the Or constant must be less than 2^n.
4161 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004162 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004163 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004164 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004165 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4166 // Build a plain add SCEV.
4167 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4168 // If the LHS of the add was an addrec and it has no-wrap flags,
4169 // transfer the no-wrap flags, since an or won't introduce a wrap.
4170 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4171 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004172 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4173 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004174 }
4175 return S;
4176 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004177 }
Dan Gohman05e89732008-06-22 19:56:46 +00004178 break;
4179 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004180 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004181 // If the RHS of the xor is a signbit, then this is just an add.
4182 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004183 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004184 return getAddExpr(getSCEV(U->getOperand(0)),
4185 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004186
4187 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004188 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004189 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004190
4191 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4192 // This is a variant of the check for xor with -1, and it handles
4193 // the case where instcombine has trimmed non-demanded bits out
4194 // of an xor with -1.
4195 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4196 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4197 if (BO->getOpcode() == Instruction::And &&
4198 LCI->getValue() == CI->getValue())
4199 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004200 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004201 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004202 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004203 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004204 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4205
Dan Gohman8b0a4192010-03-01 17:49:51 +00004206 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004207 // mask off the high bits. Complement the operand and
4208 // re-apply the zext.
4209 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4210 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4211
4212 // If C is a single bit, it may be in the sign-bit position
4213 // before the zero-extend. In this case, represent the xor
4214 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004215 APInt Trunc = CI->getValue().trunc(Z0TySize);
4216 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004217 Trunc.isSignBit())
4218 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4219 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004220 }
Dan Gohman05e89732008-06-22 19:56:46 +00004221 }
4222 break;
4223
4224 case Instruction::Shl:
4225 // Turn shift left of a constant amount into a multiply.
4226 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004227 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004228
4229 // If the shift count is not less than the bitwidth, the result of
4230 // the shift is undefined. Don't try to analyze it, because the
4231 // resolution chosen here may differ from the resolution chosen in
4232 // other parts of the compiler.
4233 if (SA->getValue().uge(BitWidth))
4234 break;
4235
Owen Andersonedb4a702009-07-24 23:12:02 +00004236 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004237 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004238 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004239 }
4240 break;
4241
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004242 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004243 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004244 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004245 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004246
4247 // If the shift count is not less than the bitwidth, the result of
4248 // the shift is undefined. Don't try to analyze it, because the
4249 // resolution chosen here may differ from the resolution chosen in
4250 // other parts of the compiler.
4251 if (SA->getValue().uge(BitWidth))
4252 break;
4253
Owen Andersonedb4a702009-07-24 23:12:02 +00004254 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004255 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004256 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004257 }
4258 break;
4259
Dan Gohman0ec05372009-04-21 02:26:00 +00004260 case Instruction::AShr:
4261 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4262 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004263 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004264 if (L->getOpcode() == Instruction::Shl &&
4265 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004266 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4267
4268 // If the shift count is not less than the bitwidth, the result of
4269 // the shift is undefined. Don't try to analyze it, because the
4270 // resolution chosen here may differ from the resolution chosen in
4271 // other parts of the compiler.
4272 if (CI->getValue().uge(BitWidth))
4273 break;
4274
Dan Gohmandf199482009-04-25 17:05:40 +00004275 uint64_t Amt = BitWidth - CI->getZExtValue();
4276 if (Amt == BitWidth)
4277 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004278 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004279 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004280 IntegerType::get(getContext(),
4281 Amt)),
4282 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004283 }
4284 break;
4285
Dan Gohman05e89732008-06-22 19:56:46 +00004286 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004287 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004288
4289 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004290 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004291
4292 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004293 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004294
4295 case Instruction::BitCast:
4296 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004297 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004298 return getSCEV(U->getOperand(0));
4299 break;
4300
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004301 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4302 // lead to pointer expressions which cannot safely be expanded to GEPs,
4303 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4304 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004305
Dan Gohmanee750d12009-05-08 20:26:55 +00004306 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004307 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004308
Dan Gohman05e89732008-06-22 19:56:46 +00004309 case Instruction::PHI:
4310 return createNodeForPHI(cast<PHINode>(U));
4311
4312 case Instruction::Select:
4313 // This could be a smax or umax that was lowered earlier.
4314 // Try to recover it.
4315 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4316 Value *LHS = ICI->getOperand(0);
4317 Value *RHS = ICI->getOperand(1);
4318 switch (ICI->getPredicate()) {
4319 case ICmpInst::ICMP_SLT:
4320 case ICmpInst::ICMP_SLE:
4321 std::swap(LHS, RHS);
4322 // fall through
4323 case ICmpInst::ICMP_SGT:
4324 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004325 // a >s b ? a+x : b+x -> smax(a, b)+x
4326 // a >s b ? b+x : a+x -> smin(a, b)+x
4327 if (LHS->getType() == U->getType()) {
4328 const SCEV *LS = getSCEV(LHS);
4329 const SCEV *RS = getSCEV(RHS);
4330 const SCEV *LA = getSCEV(U->getOperand(1));
4331 const SCEV *RA = getSCEV(U->getOperand(2));
4332 const SCEV *LDiff = getMinusSCEV(LA, LS);
4333 const SCEV *RDiff = getMinusSCEV(RA, RS);
4334 if (LDiff == RDiff)
4335 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4336 LDiff = getMinusSCEV(LA, RS);
4337 RDiff = getMinusSCEV(RA, LS);
4338 if (LDiff == RDiff)
4339 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4340 }
Dan Gohman05e89732008-06-22 19:56:46 +00004341 break;
4342 case ICmpInst::ICMP_ULT:
4343 case ICmpInst::ICMP_ULE:
4344 std::swap(LHS, RHS);
4345 // fall through
4346 case ICmpInst::ICMP_UGT:
4347 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004348 // a >u b ? a+x : b+x -> umax(a, b)+x
4349 // a >u b ? b+x : a+x -> umin(a, b)+x
4350 if (LHS->getType() == U->getType()) {
4351 const SCEV *LS = getSCEV(LHS);
4352 const SCEV *RS = getSCEV(RHS);
4353 const SCEV *LA = getSCEV(U->getOperand(1));
4354 const SCEV *RA = getSCEV(U->getOperand(2));
4355 const SCEV *LDiff = getMinusSCEV(LA, LS);
4356 const SCEV *RDiff = getMinusSCEV(RA, RS);
4357 if (LDiff == RDiff)
4358 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4359 LDiff = getMinusSCEV(LA, RS);
4360 RDiff = getMinusSCEV(RA, LS);
4361 if (LDiff == RDiff)
4362 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4363 }
Dan Gohman05e89732008-06-22 19:56:46 +00004364 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004365 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004366 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4367 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004368 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004369 cast<ConstantInt>(RHS)->isZero()) {
4370 const SCEV *One = getConstant(LHS->getType(), 1);
4371 const SCEV *LS = getSCEV(LHS);
4372 const SCEV *LA = getSCEV(U->getOperand(1));
4373 const SCEV *RA = getSCEV(U->getOperand(2));
4374 const SCEV *LDiff = getMinusSCEV(LA, LS);
4375 const SCEV *RDiff = getMinusSCEV(RA, One);
4376 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004377 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004378 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004379 break;
4380 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004381 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4382 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004383 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004384 cast<ConstantInt>(RHS)->isZero()) {
4385 const SCEV *One = getConstant(LHS->getType(), 1);
4386 const SCEV *LS = getSCEV(LHS);
4387 const SCEV *LA = getSCEV(U->getOperand(1));
4388 const SCEV *RA = getSCEV(U->getOperand(2));
4389 const SCEV *LDiff = getMinusSCEV(LA, One);
4390 const SCEV *RDiff = getMinusSCEV(RA, LS);
4391 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004392 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004393 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004394 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004395 default:
4396 break;
4397 }
4398 }
4399
4400 default: // We cannot analyze this expression.
4401 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004402 }
4403
Dan Gohmanc8e23622009-04-21 23:15:49 +00004404 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004405}
4406
4407
4408
4409//===----------------------------------------------------------------------===//
4410// Iteration Count Computation Code
4411//
4412
Chandler Carruth6666c272014-10-11 00:12:11 +00004413unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4414 if (BasicBlock *ExitingBB = L->getExitingBlock())
4415 return getSmallConstantTripCount(L, ExitingBB);
4416
4417 // No trip count information for multiple exits.
4418 return 0;
4419}
4420
Andrew Trick2b6860f2011-08-11 23:36:16 +00004421/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004422/// normal unsigned value. Returns 0 if the trip count is unknown or not
4423/// constant. Will also return 0 if the maximum trip count is very large (>=
4424/// 2^32).
4425///
4426/// This "trip count" assumes that control exits via ExitingBlock. More
4427/// precisely, it is the number of times that control may reach ExitingBlock
4428/// before taking the branch. For loops with multiple exits, it may not be the
4429/// number times that the loop header executes because the loop may exit
4430/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004431unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4432 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004433 assert(ExitingBlock && "Must pass a non-null exiting block!");
4434 assert(L->isLoopExiting(ExitingBlock) &&
4435 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004436 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004437 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004438 if (!ExitCount)
4439 return 0;
4440
4441 ConstantInt *ExitConst = ExitCount->getValue();
4442
4443 // Guard against huge trip counts.
4444 if (ExitConst->getValue().getActiveBits() > 32)
4445 return 0;
4446
4447 // In case of integer overflow, this returns 0, which is correct.
4448 return ((unsigned)ExitConst->getZExtValue()) + 1;
4449}
4450
Chandler Carruth6666c272014-10-11 00:12:11 +00004451unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4452 if (BasicBlock *ExitingBB = L->getExitingBlock())
4453 return getSmallConstantTripMultiple(L, ExitingBB);
4454
4455 // No trip multiple information for multiple exits.
4456 return 0;
4457}
4458
Andrew Trick2b6860f2011-08-11 23:36:16 +00004459/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4460/// trip count of this loop as a normal unsigned value, if possible. This
4461/// means that the actual trip count is always a multiple of the returned
4462/// value (don't forget the trip count could very well be zero as well!).
4463///
4464/// Returns 1 if the trip count is unknown or not guaranteed to be the
4465/// multiple of a constant (which is also the case if the trip count is simply
4466/// constant, use getSmallConstantTripCount for that case), Will also return 1
4467/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004468///
4469/// As explained in the comments for getSmallConstantTripCount, this assumes
4470/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004471unsigned
4472ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4473 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004474 assert(ExitingBlock && "Must pass a non-null exiting block!");
4475 assert(L->isLoopExiting(ExitingBlock) &&
4476 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004477 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004478 if (ExitCount == getCouldNotCompute())
4479 return 1;
4480
4481 // Get the trip count from the BE count by adding 1.
4482 const SCEV *TCMul = getAddExpr(ExitCount,
4483 getConstant(ExitCount->getType(), 1));
4484 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4485 // to factor simple cases.
4486 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4487 TCMul = Mul->getOperand(0);
4488
4489 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4490 if (!MulC)
4491 return 1;
4492
4493 ConstantInt *Result = MulC->getValue();
4494
Hal Finkel30bd9342012-10-24 19:46:44 +00004495 // Guard against huge trip counts (this requires checking
4496 // for zero to handle the case where the trip count == -1 and the
4497 // addition wraps).
4498 if (!Result || Result->getValue().getActiveBits() > 32 ||
4499 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004500 return 1;
4501
4502 return (unsigned)Result->getZExtValue();
4503}
4504
Andrew Trick3ca3f982011-07-26 17:19:55 +00004505// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004506// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004507// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004508const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4509 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004510}
4511
Dan Gohman0bddac12009-02-24 18:55:53 +00004512/// getBackedgeTakenCount - If the specified loop has a predictable
4513/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4514/// object. The backedge-taken count is the number of times the loop header
4515/// will be branched to from within the loop. This is one less than the
4516/// trip count of the loop, since it doesn't count the first iteration,
4517/// when the header is branched to from outside the loop.
4518///
4519/// Note that it is not valid to call this method on a loop without a
4520/// loop-invariant backedge-taken count (see
4521/// hasLoopInvariantBackedgeTakenCount).
4522///
Dan Gohmanaf752342009-07-07 17:06:11 +00004523const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004524 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004525}
4526
4527/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4528/// return the least SCEV value that is known never to be less than the
4529/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004530const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004531 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004532}
4533
Dan Gohmandc191042009-07-08 19:23:34 +00004534/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4535/// onto the given Worklist.
4536static void
4537PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4538 BasicBlock *Header = L->getHeader();
4539
4540 // Push all Loop-header PHIs onto the Worklist stack.
4541 for (BasicBlock::iterator I = Header->begin();
4542 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4543 Worklist.push_back(PN);
4544}
4545
Dan Gohman2b8da352009-04-30 20:47:05 +00004546const ScalarEvolution::BackedgeTakenInfo &
4547ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004548 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004549 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004550 // update the value. The temporary CouldNotCompute value tells SCEV
4551 // code elsewhere that it shouldn't attempt to request a new
4552 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004553 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004554 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004555 if (!Pair.second)
4556 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004557
Andrew Trick3ca3f982011-07-26 17:19:55 +00004558 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4559 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4560 // must be cleared in this scope.
4561 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4562
4563 if (Result.getExact(this) != getCouldNotCompute()) {
4564 assert(isLoopInvariant(Result.getExact(this), L) &&
4565 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004566 "Computed backedge-taken count isn't loop invariant for loop!");
4567 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004568 }
4569 else if (Result.getMax(this) == getCouldNotCompute() &&
4570 isa<PHINode>(L->getHeader()->begin())) {
4571 // Only count loops that have phi nodes as not being computable.
4572 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004573 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004574
Chris Lattnera337f5e2011-01-09 02:16:18 +00004575 // Now that we know more about the trip count for this loop, forget any
4576 // existing SCEV values for PHI nodes in this loop since they are only
4577 // conservative estimates made without the benefit of trip count
4578 // information. This is similar to the code in forgetLoop, except that
4579 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004580 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004581 SmallVector<Instruction *, 16> Worklist;
4582 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004583
Chris Lattnera337f5e2011-01-09 02:16:18 +00004584 SmallPtrSet<Instruction *, 8> Visited;
4585 while (!Worklist.empty()) {
4586 Instruction *I = Worklist.pop_back_val();
4587 if (!Visited.insert(I)) continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004588
Chris Lattnera337f5e2011-01-09 02:16:18 +00004589 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004590 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004591 if (It != ValueExprMap.end()) {
4592 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004593
Chris Lattnera337f5e2011-01-09 02:16:18 +00004594 // SCEVUnknown for a PHI either means that it has an unrecognized
4595 // structure, or it's a PHI that's in the progress of being computed
4596 // by createNodeForPHI. In the former case, additional loop trip
4597 // count information isn't going to change anything. In the later
4598 // case, createNodeForPHI will perform the necessary updates on its
4599 // own when it gets to that point.
4600 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4601 forgetMemoizedResults(Old);
4602 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004603 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004604 if (PHINode *PN = dyn_cast<PHINode>(I))
4605 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004606 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004607
4608 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004609 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004610 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004611
4612 // Re-lookup the insert position, since the call to
4613 // ComputeBackedgeTakenCount above could result in a
4614 // recusive call to getBackedgeTakenInfo (on a different
4615 // loop), which would invalidate the iterator computed
4616 // earlier.
4617 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004618}
4619
Dan Gohman880c92a2009-10-31 15:04:55 +00004620/// forgetLoop - This method should be called by the client when it has
4621/// changed a loop in a way that may effect ScalarEvolution's ability to
4622/// compute a trip count, or if the loop is deleted.
4623void ScalarEvolution::forgetLoop(const Loop *L) {
4624 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004625 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4626 BackedgeTakenCounts.find(L);
4627 if (BTCPos != BackedgeTakenCounts.end()) {
4628 BTCPos->second.clear();
4629 BackedgeTakenCounts.erase(BTCPos);
4630 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004631
Dan Gohman880c92a2009-10-31 15:04:55 +00004632 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004633 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004634 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004635
Dan Gohmandc191042009-07-08 19:23:34 +00004636 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004637 while (!Worklist.empty()) {
4638 Instruction *I = Worklist.pop_back_val();
Dan Gohmandc191042009-07-08 19:23:34 +00004639 if (!Visited.insert(I)) continue;
4640
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004641 ValueExprMapType::iterator It =
4642 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004643 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004644 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004645 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004646 if (PHINode *PN = dyn_cast<PHINode>(I))
4647 ConstantEvolutionLoopExitValue.erase(PN);
4648 }
4649
4650 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004651 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004652
4653 // Forget all contained loops too, to avoid dangling entries in the
4654 // ValuesAtScopes map.
4655 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4656 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004657}
4658
Eric Christopheref6d5932010-07-29 01:25:38 +00004659/// forgetValue - This method should be called by the client when it has
4660/// changed a value in a way that may effect its value, or which may
4661/// disconnect it from a def-use chain linking it to a loop.
4662void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004663 Instruction *I = dyn_cast<Instruction>(V);
4664 if (!I) return;
4665
4666 // Drop information about expressions based on loop-header PHIs.
4667 SmallVector<Instruction *, 16> Worklist;
4668 Worklist.push_back(I);
4669
4670 SmallPtrSet<Instruction *, 8> Visited;
4671 while (!Worklist.empty()) {
4672 I = Worklist.pop_back_val();
4673 if (!Visited.insert(I)) continue;
4674
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004675 ValueExprMapType::iterator It =
4676 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004677 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004678 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004679 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004680 if (PHINode *PN = dyn_cast<PHINode>(I))
4681 ConstantEvolutionLoopExitValue.erase(PN);
4682 }
4683
4684 PushDefUseChildren(I, Worklist);
4685 }
4686}
4687
Andrew Trick3ca3f982011-07-26 17:19:55 +00004688/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004689/// exits. A computable result can only be return for loops with a single exit.
4690/// Returning the minimum taken count among all exits is incorrect because one
4691/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4692/// the limit of each loop test is never skipped. This is a valid assumption as
4693/// long as the loop exits via that test. For precise results, it is the
4694/// caller's responsibility to specify the relevant loop exit using
4695/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004696const SCEV *
4697ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4698 // If any exits were not computable, the loop is not computable.
4699 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4700
Andrew Trick90c7a102011-11-16 00:52:40 +00004701 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004702 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004703 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4704
Craig Topper9f008862014-04-15 04:59:12 +00004705 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004706 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004707 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004708
4709 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4710
4711 if (!BECount)
4712 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004713 else if (BECount != ENT->ExactNotTaken)
4714 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004715 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004716 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004717 return BECount;
4718}
4719
4720/// getExact - Get the exact not taken count for this loop exit.
4721const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004722ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004723 ScalarEvolution *SE) const {
4724 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004725 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004726
Andrew Trick77c55422011-08-02 04:23:35 +00004727 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004728 return ENT->ExactNotTaken;
4729 }
4730 return SE->getCouldNotCompute();
4731}
4732
4733/// getMax - Get the max backedge taken count for the loop.
4734const SCEV *
4735ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4736 return Max ? Max : SE->getCouldNotCompute();
4737}
4738
Andrew Trick9093e152013-03-26 03:14:53 +00004739bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4740 ScalarEvolution *SE) const {
4741 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4742 return true;
4743
4744 if (!ExitNotTaken.ExitingBlock)
4745 return false;
4746
4747 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004748 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004749
4750 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4751 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4752 return true;
4753 }
4754 }
4755 return false;
4756}
4757
Andrew Trick3ca3f982011-07-26 17:19:55 +00004758/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4759/// computable exit into a persistent ExitNotTakenInfo array.
4760ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4761 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4762 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4763
4764 if (!Complete)
4765 ExitNotTaken.setIncomplete();
4766
4767 unsigned NumExits = ExitCounts.size();
4768 if (NumExits == 0) return;
4769
Andrew Trick77c55422011-08-02 04:23:35 +00004770 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004771 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4772 if (NumExits == 1) return;
4773
4774 // Handle the rare case of multiple computable exits.
4775 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4776
4777 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4778 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4779 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004780 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004781 ENT->ExactNotTaken = ExitCounts[i].second;
4782 }
4783}
4784
4785/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4786void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004787 ExitNotTaken.ExitingBlock = nullptr;
4788 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004789 delete[] ExitNotTaken.getNextExit();
4790}
4791
Dan Gohman0bddac12009-02-24 18:55:53 +00004792/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4793/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004794ScalarEvolution::BackedgeTakenInfo
4795ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004796 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004797 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004798
Andrew Trick839e30b2014-05-23 19:47:13 +00004799 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004800 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004801 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004802 const SCEV *MustExitMaxBECount = nullptr;
4803 const SCEV *MayExitMaxBECount = nullptr;
4804
4805 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4806 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004807 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004808 BasicBlock *ExitBB = ExitingBlocks[i];
4809 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4810
4811 // 1. For each exit that can be computed, add an entry to ExitCounts.
4812 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004813 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004814 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004815 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004816 CouldComputeBECount = false;
4817 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004818 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004819
Andrew Trick839e30b2014-05-23 19:47:13 +00004820 // 2. Derive the loop's MaxBECount from each exit's max number of
4821 // non-exiting iterations. Partition the loop exits into two kinds:
4822 // LoopMustExits and LoopMayExits.
4823 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004824 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4825 // is a LoopMayExit. If any computable LoopMustExit is found, then
4826 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4827 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4828 // considered greater than any computable EL.Max.
4829 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004830 DT->dominates(ExitBB, Latch)) {
4831 if (!MustExitMaxBECount)
4832 MustExitMaxBECount = EL.Max;
4833 else {
4834 MustExitMaxBECount =
4835 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004836 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004837 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4838 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4839 MayExitMaxBECount = EL.Max;
4840 else {
4841 MayExitMaxBECount =
4842 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4843 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004844 }
Dan Gohman96212b62009-06-22 00:31:57 +00004845 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004846 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4847 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004848 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004849}
4850
Andrew Trick3ca3f982011-07-26 17:19:55 +00004851/// ComputeExitLimit - Compute the number of times the backedge of the specified
4852/// loop will execute if it exits via the specified block.
4853ScalarEvolution::ExitLimit
4854ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004855
4856 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004857 // exit at this block and remember the exit block and whether all other targets
4858 // lead to the loop header.
4859 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004860 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004861 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4862 SI != SE; ++SI)
4863 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004864 if (Exit) // Multiple exit successors.
4865 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004866 Exit = *SI;
4867 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004868 MustExecuteLoopHeader = false;
4869 }
Dan Gohmance973df2009-06-24 04:48:43 +00004870
Chris Lattner18954852007-01-07 02:24:26 +00004871 // At this point, we know we have a conditional branch that determines whether
4872 // the loop is exited. However, we don't know if the branch is executed each
4873 // time through the loop. If not, then the execution count of the branch will
4874 // not be equal to the trip count of the loop.
4875 //
4876 // Currently we check for this by checking to see if the Exit branch goes to
4877 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004878 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004879 // loop header. This is common for un-rotated loops.
4880 //
4881 // If both of those tests fail, walk up the unique predecessor chain to the
4882 // header, stopping if there is an edge that doesn't exit the loop. If the
4883 // header is reached, the execution count of the branch will be equal to the
4884 // trip count of the loop.
4885 //
4886 // More extensive analysis could be done to handle more cases here.
4887 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004888 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004889 // The simple checks failed, try climbing the unique predecessor chain
4890 // up to the header.
4891 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004892 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004893 BasicBlock *Pred = BB->getUniquePredecessor();
4894 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004895 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004896 TerminatorInst *PredTerm = Pred->getTerminator();
4897 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4898 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4899 if (PredSucc == BB)
4900 continue;
4901 // If the predecessor has a successor that isn't BB and isn't
4902 // outside the loop, assume the worst.
4903 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004904 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004905 }
4906 if (Pred == L->getHeader()) {
4907 Ok = true;
4908 break;
4909 }
4910 BB = Pred;
4911 }
4912 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004913 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004914 }
4915
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004916 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004917 TerminatorInst *Term = ExitingBlock->getTerminator();
4918 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4919 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4920 // Proceed to the next level to examine the exit condition expression.
4921 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4922 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004923 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004924 }
4925
4926 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4927 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004928 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004929
4930 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004931}
4932
Andrew Trick3ca3f982011-07-26 17:19:55 +00004933/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004934/// backedge of the specified loop will execute if its exit condition
4935/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004936///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004937/// @param ControlsExit is true if ExitCond directly controls the exit
4938/// branch. In this case, we can assume that the loop exits only if the
4939/// condition is true and can infer that failing to meet the condition prior to
4940/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004941ScalarEvolution::ExitLimit
4942ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4943 Value *ExitCond,
4944 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004945 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004946 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004947 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004948 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4949 if (BO->getOpcode() == Instruction::And) {
4950 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004951 bool EitherMayExit = L->contains(TBB);
4952 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004953 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004954 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004955 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004956 const SCEV *BECount = getCouldNotCompute();
4957 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004958 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004959 // Both conditions must be true for the loop to continue executing.
4960 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004961 if (EL0.Exact == getCouldNotCompute() ||
4962 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004963 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004964 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004965 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4966 if (EL0.Max == getCouldNotCompute())
4967 MaxBECount = EL1.Max;
4968 else if (EL1.Max == getCouldNotCompute())
4969 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004970 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004971 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004972 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004973 // Both conditions must be true at the same time for the loop to exit.
4974 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004975 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004976 if (EL0.Max == EL1.Max)
4977 MaxBECount = EL0.Max;
4978 if (EL0.Exact == EL1.Exact)
4979 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004980 }
4981
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004982 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004983 }
4984 if (BO->getOpcode() == Instruction::Or) {
4985 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004986 bool EitherMayExit = L->contains(FBB);
4987 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004988 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004989 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004990 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004991 const SCEV *BECount = getCouldNotCompute();
4992 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004993 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004994 // Both conditions must be false for the loop to continue executing.
4995 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004996 if (EL0.Exact == getCouldNotCompute() ||
4997 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004998 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004999 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005000 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5001 if (EL0.Max == getCouldNotCompute())
5002 MaxBECount = EL1.Max;
5003 else if (EL1.Max == getCouldNotCompute())
5004 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005005 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005006 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005007 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005008 // Both conditions must be false at the same time for the loop to exit.
5009 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005010 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005011 if (EL0.Max == EL1.Max)
5012 MaxBECount = EL0.Max;
5013 if (EL0.Exact == EL1.Exact)
5014 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005015 }
5016
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005017 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005018 }
5019 }
5020
5021 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005022 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005023 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005024 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005025
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005026 // Check for a constant condition. These are normally stripped out by
5027 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5028 // preserve the CFG and is temporarily leaving constant conditions
5029 // in place.
5030 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5031 if (L->contains(FBB) == !CI->getZExtValue())
5032 // The backedge is always taken.
5033 return getCouldNotCompute();
5034 else
5035 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005036 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005037 }
5038
Eli Friedmanebf98b02009-05-09 12:32:42 +00005039 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005040 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005041}
5042
Andrew Trick3ca3f982011-07-26 17:19:55 +00005043/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005044/// backedge of the specified loop will execute if its exit condition
5045/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005046ScalarEvolution::ExitLimit
5047ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5048 ICmpInst *ExitCond,
5049 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005050 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005051 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005052
Reid Spencer266e42b2006-12-23 06:05:41 +00005053 // If the condition was exit on true, convert the condition to exit on false
5054 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005055 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005056 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005057 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005058 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005059
5060 // Handle common loops like: for (X = "string"; *X; ++X)
5061 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5062 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005063 ExitLimit ItCnt =
5064 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005065 if (ItCnt.hasAnyInfo())
5066 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005067 }
5068
Dan Gohmanaf752342009-07-07 17:06:11 +00005069 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5070 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005071
5072 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005073 LHS = getSCEVAtScope(LHS, L);
5074 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005075
Dan Gohmance973df2009-06-24 04:48:43 +00005076 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005077 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005078 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005079 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005080 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005081 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005082 }
5083
Dan Gohman81585c12010-05-03 16:35:17 +00005084 // Simplify the operands before analyzing them.
5085 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5086
Chris Lattnerd934c702004-04-02 20:23:17 +00005087 // If we have a comparison of a chrec against a constant, try to use value
5088 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005089 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5090 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005091 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005092 // Form the constant range.
5093 ConstantRange CompRange(
5094 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005095
Dan Gohmanaf752342009-07-07 17:06:11 +00005096 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005097 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005098 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005099
Chris Lattnerd934c702004-04-02 20:23:17 +00005100 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005101 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005102 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005103 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005104 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005105 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005106 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005107 case ICmpInst::ICMP_EQ: { // while (X == Y)
5108 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005109 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5110 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005111 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005112 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005113 case ICmpInst::ICMP_SLT:
5114 case ICmpInst::ICMP_ULT: { // while (X < Y)
5115 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005116 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005117 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005118 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005119 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005120 case ICmpInst::ICMP_SGT:
5121 case ICmpInst::ICMP_UGT: { // while (X > Y)
5122 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005123 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005124 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005125 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005126 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005127 default:
Chris Lattner09169212004-04-02 20:26:46 +00005128#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005129 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005130 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005131 dbgs() << "[unsigned] ";
5132 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005133 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005134 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005135#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005136 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005137 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005138 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005139}
5140
Benjamin Kramer5a188542014-02-11 15:44:32 +00005141ScalarEvolution::ExitLimit
5142ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5143 SwitchInst *Switch,
5144 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005145 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005146 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5147
5148 // Give up if the exit is the default dest of a switch.
5149 if (Switch->getDefaultDest() == ExitingBlock)
5150 return getCouldNotCompute();
5151
5152 assert(L->contains(Switch->getDefaultDest()) &&
5153 "Default case must not exit the loop!");
5154 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5155 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5156
5157 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005158 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005159 if (EL.hasAnyInfo())
5160 return EL;
5161
5162 return getCouldNotCompute();
5163}
5164
Chris Lattnerec901cc2004-10-12 01:49:27 +00005165static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005166EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5167 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005168 const SCEV *InVal = SE.getConstant(C);
5169 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005170 assert(isa<SCEVConstant>(Val) &&
5171 "Evaluation of SCEV at constant didn't fold correctly?");
5172 return cast<SCEVConstant>(Val)->getValue();
5173}
5174
Andrew Trick3ca3f982011-07-26 17:19:55 +00005175/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005176/// 'icmp op load X, cst', try to see if we can compute the backedge
5177/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005178ScalarEvolution::ExitLimit
5179ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5180 LoadInst *LI,
5181 Constant *RHS,
5182 const Loop *L,
5183 ICmpInst::Predicate predicate) {
5184
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005185 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005186
5187 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005188 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005189 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005190 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005191
5192 // Make sure that it is really a constant global we are gepping, with an
5193 // initializer, and make sure the first IDX is really 0.
5194 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005195 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005196 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5197 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005198 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005199
5200 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005201 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005202 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005203 unsigned VarIdxNum = 0;
5204 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5205 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5206 Indexes.push_back(CI);
5207 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005208 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005209 VarIdx = GEP->getOperand(i);
5210 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005211 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005212 }
5213
Andrew Trick7004e4b2012-03-26 22:33:59 +00005214 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5215 if (!VarIdx)
5216 return getCouldNotCompute();
5217
Chris Lattnerec901cc2004-10-12 01:49:27 +00005218 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5219 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005220 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005221 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005222
5223 // We can only recognize very limited forms of loop index expressions, in
5224 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005225 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005226 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005227 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5228 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005229 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005230
5231 unsigned MaxSteps = MaxBruteForceIterations;
5232 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005233 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005234 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005235 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005236
5237 // Form the GEP offset.
5238 Indexes[VarIdxNum] = Val;
5239
Chris Lattnere166a852012-01-24 05:49:24 +00005240 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5241 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005242 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005243
5244 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005245 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005246 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005247 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005248#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005249 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005250 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5251 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005252#endif
5253 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005254 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005255 }
5256 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005257 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005258}
5259
5260
Chris Lattnerdd730472004-04-17 22:58:41 +00005261/// CanConstantFold - Return true if we can constant fold an instruction of the
5262/// specified type, assuming that all operands were constants.
5263static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005264 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005265 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5266 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005267 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005268
Chris Lattnerdd730472004-04-17 22:58:41 +00005269 if (const CallInst *CI = dyn_cast<CallInst>(I))
5270 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005271 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005272 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005273}
5274
Andrew Trick3a86ba72011-10-05 03:25:31 +00005275/// Determine whether this instruction can constant evolve within this loop
5276/// assuming its operands can all constant evolve.
5277static bool canConstantEvolve(Instruction *I, const Loop *L) {
5278 // An instruction outside of the loop can't be derived from a loop PHI.
5279 if (!L->contains(I)) return false;
5280
5281 if (isa<PHINode>(I)) {
5282 if (L->getHeader() == I->getParent())
5283 return true;
5284 else
5285 // We don't currently keep track of the control flow needed to evaluate
5286 // PHIs, so we cannot handle PHIs inside of loops.
5287 return false;
5288 }
5289
5290 // If we won't be able to constant fold this expression even if the operands
5291 // are constants, bail early.
5292 return CanConstantFold(I);
5293}
5294
5295/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5296/// recursing through each instruction operand until reaching a loop header phi.
5297static PHINode *
5298getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005299 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005300
5301 // Otherwise, we can evaluate this instruction if all of its operands are
5302 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005303 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005304 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5305 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5306
5307 if (isa<Constant>(*OpI)) continue;
5308
5309 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005310 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005311
5312 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005313 if (!P)
5314 // If this operand is already visited, reuse the prior result.
5315 // We may have P != PHI if this is the deepest point at which the
5316 // inconsistent paths meet.
5317 P = PHIMap.lookup(OpInst);
5318 if (!P) {
5319 // Recurse and memoize the results, whether a phi is found or not.
5320 // This recursive call invalidates pointers into PHIMap.
5321 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5322 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005323 }
Craig Topper9f008862014-04-15 04:59:12 +00005324 if (!P)
5325 return nullptr; // Not evolving from PHI
5326 if (PHI && PHI != P)
5327 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005328 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005329 }
5330 // This is a expression evolving from a constant PHI!
5331 return PHI;
5332}
5333
Chris Lattnerdd730472004-04-17 22:58:41 +00005334/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5335/// in the loop that V is derived from. We allow arbitrary operations along the
5336/// way, but the operands of an operation must either be constants or a value
5337/// derived from a constant PHI. If this expression does not fit with these
5338/// constraints, return null.
5339static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005340 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005341 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005342
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005343 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005344 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005345 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005346
Andrew Trick3a86ba72011-10-05 03:25:31 +00005347 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005348 DenseMap<Instruction *, PHINode *> PHIMap;
5349 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005350}
5351
5352/// EvaluateExpression - Given an expression that passes the
5353/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5354/// in the loop has the value PHIVal. If we can't fold this expression for some
5355/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005356static Constant *EvaluateExpression(Value *V, const Loop *L,
5357 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005358 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005359 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005360 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005361 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005362 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005363 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005364
Andrew Trick3a86ba72011-10-05 03:25:31 +00005365 if (Constant *C = Vals.lookup(I)) return C;
5366
Nick Lewyckya6674c72011-10-22 19:58:20 +00005367 // An instruction inside the loop depends on a value outside the loop that we
5368 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005369 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005370
5371 // An unmapped PHI can be due to a branch or another loop inside this loop,
5372 // or due to this not being the initial iteration through a loop where we
5373 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005374 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005375
Dan Gohmanf820bd32010-06-22 13:15:46 +00005376 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005377
5378 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005379 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5380 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005381 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005382 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005383 continue;
5384 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005385 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005386 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005387 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005388 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005389 }
5390
Nick Lewyckya6674c72011-10-22 19:58:20 +00005391 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005392 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005393 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005394 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5395 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005396 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005397 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005398 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005399 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005400}
5401
5402/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5403/// in the header of its containing loop, we know the loop executes a
5404/// constant number of times, and the PHI node is just a recurrence
5405/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005406Constant *
5407ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005408 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005409 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005410 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005411 ConstantEvolutionLoopExitValue.find(PN);
5412 if (I != ConstantEvolutionLoopExitValue.end())
5413 return I->second;
5414
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005415 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005416 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005417
5418 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5419
Andrew Trick3a86ba72011-10-05 03:25:31 +00005420 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005421 BasicBlock *Header = L->getHeader();
5422 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005423
Chris Lattnerdd730472004-04-17 22:58:41 +00005424 // Since the loop is canonicalized, the PHI node must have two entries. One
5425 // entry must be a constant (coming in from outside of the loop), and the
5426 // second must be derived from the same PHI.
5427 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005428 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005429 for (BasicBlock::iterator I = Header->begin();
5430 (PHI = dyn_cast<PHINode>(I)); ++I) {
5431 Constant *StartCST =
5432 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005433 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005434 CurrentIterVals[PHI] = StartCST;
5435 }
5436 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005437 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005438
5439 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005440
5441 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005442 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005443 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005444
Dan Gohman0bddac12009-02-24 18:55:53 +00005445 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005446 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005447 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005448 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005449 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005450
Nick Lewyckya6674c72011-10-22 19:58:20 +00005451 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005452 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005453 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005454 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005455 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005456 if (!NextPHI)
5457 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005458 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005459
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005460 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5461
Nick Lewyckya6674c72011-10-22 19:58:20 +00005462 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5463 // cease to be able to evaluate one of them or if they stop evolving,
5464 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005465 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005466 for (DenseMap<Instruction *, Constant *>::const_iterator
5467 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5468 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005469 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005470 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5471 }
5472 // We use two distinct loops because EvaluateExpression may invalidate any
5473 // iterators into CurrentIterVals.
5474 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5475 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5476 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005477 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005478 if (!NextPHI) { // Not already computed.
5479 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005480 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005481 }
5482 if (NextPHI != I->second)
5483 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005484 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005485
5486 // If all entries in CurrentIterVals == NextIterVals then we can stop
5487 // iterating, the loop can't continue to change.
5488 if (StoppedEvolving)
5489 return RetVal = CurrentIterVals[PN];
5490
Andrew Trick3a86ba72011-10-05 03:25:31 +00005491 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005492 }
5493}
5494
Andrew Trick3ca3f982011-07-26 17:19:55 +00005495/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005496/// constant number of times (the condition evolves only from constants),
5497/// try to evaluate a few iterations of the loop until we get the exit
5498/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005499/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005500const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5501 Value *Cond,
5502 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005503 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005504 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005505
Dan Gohman866971e2010-06-19 14:17:24 +00005506 // If the loop is canonicalized, the PHI will have exactly two entries.
5507 // That's the only form we support here.
5508 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5509
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005510 DenseMap<Instruction *, Constant *> CurrentIterVals;
5511 BasicBlock *Header = L->getHeader();
5512 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5513
Dan Gohman866971e2010-06-19 14:17:24 +00005514 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005515 // second must be derived from the same PHI.
5516 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005517 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005518 for (BasicBlock::iterator I = Header->begin();
5519 (PHI = dyn_cast<PHINode>(I)); ++I) {
5520 Constant *StartCST =
5521 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005522 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005523 CurrentIterVals[PHI] = StartCST;
5524 }
5525 if (!CurrentIterVals.count(PN))
5526 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005527
5528 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5529 // the loop symbolically to determine when the condition gets a value of
5530 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005531
Andrew Trick90c7a102011-11-16 00:52:40 +00005532 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005533 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005534 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005535 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005536 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005537
Zhou Sheng75b871f2007-01-11 12:24:14 +00005538 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005539 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005540
Reid Spencer983e3b32007-03-01 07:25:48 +00005541 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005542 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005543 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005544 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005545
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005546 // Update all the PHI nodes for the next iteration.
5547 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005548
5549 // Create a list of which PHIs we need to compute. We want to do this before
5550 // calling EvaluateExpression on them because that may invalidate iterators
5551 // into CurrentIterVals.
5552 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005553 for (DenseMap<Instruction *, Constant *>::const_iterator
5554 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5555 PHINode *PHI = dyn_cast<PHINode>(I->first);
5556 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005557 PHIsToCompute.push_back(PHI);
5558 }
5559 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5560 E = PHIsToCompute.end(); I != E; ++I) {
5561 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005562 Constant *&NextPHI = NextIterVals[PHI];
5563 if (NextPHI) continue; // Already computed!
5564
5565 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005566 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005567 }
5568 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005569 }
5570
5571 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005572 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005573}
5574
Dan Gohman237d9e52009-09-03 15:00:26 +00005575/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005576/// at the specified scope in the program. The L value specifies a loop
5577/// nest to evaluate the expression at, where null is the top-level or a
5578/// specified loop is immediately inside of the loop.
5579///
5580/// This method can be used to compute the exit value for a variable defined
5581/// in a loop by querying what the value will hold in the parent loop.
5582///
Dan Gohman8ca08852009-05-24 23:25:42 +00005583/// In the case that a relevant loop exit value cannot be computed, the
5584/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005585const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005586 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005587 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5588 for (unsigned u = 0; u < Values.size(); u++) {
5589 if (Values[u].first == L)
5590 return Values[u].second ? Values[u].second : V;
5591 }
Craig Topper9f008862014-04-15 04:59:12 +00005592 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005593 // Otherwise compute it.
5594 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005595 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5596 for (unsigned u = Values2.size(); u > 0; u--) {
5597 if (Values2[u - 1].first == L) {
5598 Values2[u - 1].second = C;
5599 break;
5600 }
5601 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005602 return C;
5603}
5604
Nick Lewyckya6674c72011-10-22 19:58:20 +00005605/// This builds up a Constant using the ConstantExpr interface. That way, we
5606/// will return Constants for objects which aren't represented by a
5607/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5608/// Returns NULL if the SCEV isn't representable as a Constant.
5609static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005610 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005611 case scCouldNotCompute:
5612 case scAddRecExpr:
5613 break;
5614 case scConstant:
5615 return cast<SCEVConstant>(V)->getValue();
5616 case scUnknown:
5617 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5618 case scSignExtend: {
5619 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5620 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5621 return ConstantExpr::getSExt(CastOp, SS->getType());
5622 break;
5623 }
5624 case scZeroExtend: {
5625 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5626 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5627 return ConstantExpr::getZExt(CastOp, SZ->getType());
5628 break;
5629 }
5630 case scTruncate: {
5631 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5632 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5633 return ConstantExpr::getTrunc(CastOp, ST->getType());
5634 break;
5635 }
5636 case scAddExpr: {
5637 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5638 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005639 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5640 unsigned AS = PTy->getAddressSpace();
5641 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5642 C = ConstantExpr::getBitCast(C, DestPtrTy);
5643 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005644 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5645 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005646 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005647
5648 // First pointer!
5649 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005650 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005651 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005652 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005653 // The offsets have been converted to bytes. We can add bytes to an
5654 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005655 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005656 }
5657
5658 // Don't bother trying to sum two pointers. We probably can't
5659 // statically compute a load that results from it anyway.
5660 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005661 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005662
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005663 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5664 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005665 C2 = ConstantExpr::getIntegerCast(
5666 C2, Type::getInt32Ty(C->getContext()), true);
5667 C = ConstantExpr::getGetElementPtr(C, C2);
5668 } else
5669 C = ConstantExpr::getAdd(C, C2);
5670 }
5671 return C;
5672 }
5673 break;
5674 }
5675 case scMulExpr: {
5676 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5677 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5678 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005679 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005680 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5681 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005682 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005683 C = ConstantExpr::getMul(C, C2);
5684 }
5685 return C;
5686 }
5687 break;
5688 }
5689 case scUDivExpr: {
5690 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5691 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5692 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5693 if (LHS->getType() == RHS->getType())
5694 return ConstantExpr::getUDiv(LHS, RHS);
5695 break;
5696 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005697 case scSMaxExpr:
5698 case scUMaxExpr:
5699 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005700 }
Craig Topper9f008862014-04-15 04:59:12 +00005701 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005702}
5703
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005704const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005705 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005706
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005707 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005708 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005709 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005710 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005711 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005712 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5713 if (PHINode *PN = dyn_cast<PHINode>(I))
5714 if (PN->getParent() == LI->getHeader()) {
5715 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005716 // to see if the loop that contains it has a known backedge-taken
5717 // count. If so, we may be able to force computation of the exit
5718 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005719 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005720 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005721 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005722 // Okay, we know how many times the containing loop executes. If
5723 // this is a constant evolving PHI node, get the final value at
5724 // the specified iteration number.
5725 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005726 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005727 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005728 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005729 }
5730 }
5731
Reid Spencere6328ca2006-12-04 21:33:23 +00005732 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005733 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005734 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005735 // result. This is particularly useful for computing loop exit values.
5736 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005737 SmallVector<Constant *, 4> Operands;
5738 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005739 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5740 Value *Op = I->getOperand(i);
5741 if (Constant *C = dyn_cast<Constant>(Op)) {
5742 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005743 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005744 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005745
5746 // If any of the operands is non-constant and if they are
5747 // non-integer and non-pointer, don't even try to analyze them
5748 // with scev techniques.
5749 if (!isSCEVable(Op->getType()))
5750 return V;
5751
5752 const SCEV *OrigV = getSCEV(Op);
5753 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5754 MadeImprovement |= OrigV != OpV;
5755
Nick Lewyckya6674c72011-10-22 19:58:20 +00005756 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005757 if (!C) return V;
5758 if (C->getType() != Op->getType())
5759 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5760 Op->getType(),
5761 false),
5762 C, Op->getType());
5763 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005764 }
Dan Gohmance973df2009-06-24 04:48:43 +00005765
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005766 // Check to see if getSCEVAtScope actually made an improvement.
5767 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005768 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005769 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5770 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005771 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005772 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005773 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5774 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005775 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005776 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005777 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005778 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005779 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005780 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005781 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005782 }
5783 }
5784
5785 // This is some other type of SCEVUnknown, just return it.
5786 return V;
5787 }
5788
Dan Gohmana30370b2009-05-04 22:02:23 +00005789 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005790 // Avoid performing the look-up in the common case where the specified
5791 // expression has no loop-variant portions.
5792 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005793 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005794 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005795 // Okay, at least one of these operands is loop variant but might be
5796 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005797 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5798 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005799 NewOps.push_back(OpAtScope);
5800
5801 for (++i; i != e; ++i) {
5802 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005803 NewOps.push_back(OpAtScope);
5804 }
5805 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005806 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005807 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005808 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005809 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005810 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005811 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005812 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005813 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005814 }
5815 }
5816 // If we got here, all operands are loop invariant.
5817 return Comm;
5818 }
5819
Dan Gohmana30370b2009-05-04 22:02:23 +00005820 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005821 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5822 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005823 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5824 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005825 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005826 }
5827
5828 // If this is a loop recurrence for a loop that does not contain L, then we
5829 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005830 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005831 // First, attempt to evaluate each operand.
5832 // Avoid performing the look-up in the common case where the specified
5833 // expression has no loop-variant portions.
5834 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5835 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5836 if (OpAtScope == AddRec->getOperand(i))
5837 continue;
5838
5839 // Okay, at least one of these operands is loop variant but might be
5840 // foldable. Build a new instance of the folded commutative expression.
5841 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5842 AddRec->op_begin()+i);
5843 NewOps.push_back(OpAtScope);
5844 for (++i; i != e; ++i)
5845 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5846
Andrew Trick759ba082011-04-27 01:21:25 +00005847 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005848 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005849 AddRec->getNoWrapFlags(SCEV::FlagNW));
5850 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005851 // The addrec may be folded to a nonrecurrence, for example, if the
5852 // induction variable is multiplied by zero after constant folding. Go
5853 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005854 if (!AddRec)
5855 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005856 break;
5857 }
5858
5859 // If the scope is outside the addrec's loop, evaluate it by using the
5860 // loop exit value of the addrec.
5861 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005862 // To evaluate this recurrence, we need to know how many times the AddRec
5863 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005864 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005865 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005866
Eli Friedman61f67622008-08-04 23:49:06 +00005867 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005868 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005869 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005870
Dan Gohman8ca08852009-05-24 23:25:42 +00005871 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005872 }
5873
Dan Gohmana30370b2009-05-04 22:02:23 +00005874 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005875 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005876 if (Op == Cast->getOperand())
5877 return Cast; // must be loop invariant
5878 return getZeroExtendExpr(Op, Cast->getType());
5879 }
5880
Dan Gohmana30370b2009-05-04 22:02:23 +00005881 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005882 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005883 if (Op == Cast->getOperand())
5884 return Cast; // must be loop invariant
5885 return getSignExtendExpr(Op, Cast->getType());
5886 }
5887
Dan Gohmana30370b2009-05-04 22:02:23 +00005888 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005889 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005890 if (Op == Cast->getOperand())
5891 return Cast; // must be loop invariant
5892 return getTruncateExpr(Op, Cast->getType());
5893 }
5894
Torok Edwinfbcc6632009-07-14 16:55:14 +00005895 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005896}
5897
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005898/// getSCEVAtScope - This is a convenience function which does
5899/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005900const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005901 return getSCEVAtScope(getSCEV(V), L);
5902}
5903
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005904/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5905/// following equation:
5906///
5907/// A * X = B (mod N)
5908///
5909/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5910/// A and B isn't important.
5911///
5912/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005913static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005914 ScalarEvolution &SE) {
5915 uint32_t BW = A.getBitWidth();
5916 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5917 assert(A != 0 && "A must be non-zero.");
5918
5919 // 1. D = gcd(A, N)
5920 //
5921 // The gcd of A and N may have only one prime factor: 2. The number of
5922 // trailing zeros in A is its multiplicity
5923 uint32_t Mult2 = A.countTrailingZeros();
5924 // D = 2^Mult2
5925
5926 // 2. Check if B is divisible by D.
5927 //
5928 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5929 // is not less than multiplicity of this prime factor for D.
5930 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005931 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005932
5933 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5934 // modulo (N / D).
5935 //
5936 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5937 // bit width during computations.
5938 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5939 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005940 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005941 APInt I = AD.multiplicativeInverse(Mod);
5942
5943 // 4. Compute the minimum unsigned root of the equation:
5944 // I * (B / D) mod (N / D)
5945 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5946
5947 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5948 // bits.
5949 return SE.getConstant(Result.trunc(BW));
5950}
Chris Lattnerd934c702004-04-02 20:23:17 +00005951
5952/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5953/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5954/// might be the same) or two SCEVCouldNotCompute objects.
5955///
Dan Gohmanaf752342009-07-07 17:06:11 +00005956static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005957SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005958 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005959 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5960 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5961 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005962
Chris Lattnerd934c702004-04-02 20:23:17 +00005963 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005964 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005965 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005966 return std::make_pair(CNC, CNC);
5967 }
5968
Reid Spencer983e3b32007-03-01 07:25:48 +00005969 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005970 const APInt &L = LC->getValue()->getValue();
5971 const APInt &M = MC->getValue()->getValue();
5972 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005973 APInt Two(BitWidth, 2);
5974 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005975
Dan Gohmance973df2009-06-24 04:48:43 +00005976 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005977 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005978 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005979 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5980 // The B coefficient is M-N/2
5981 APInt B(M);
5982 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005983
Reid Spencer983e3b32007-03-01 07:25:48 +00005984 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005985 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005986
Reid Spencer983e3b32007-03-01 07:25:48 +00005987 // Compute the B^2-4ac term.
5988 APInt SqrtTerm(B);
5989 SqrtTerm *= B;
5990 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005991
Nick Lewyckyfb780832012-08-01 09:14:36 +00005992 if (SqrtTerm.isNegative()) {
5993 // The loop is provably infinite.
5994 const SCEV *CNC = SE.getCouldNotCompute();
5995 return std::make_pair(CNC, CNC);
5996 }
5997
Reid Spencer983e3b32007-03-01 07:25:48 +00005998 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5999 // integer value or else APInt::sqrt() will assert.
6000 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006001
Dan Gohmance973df2009-06-24 04:48:43 +00006002 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006003 // The divisions must be performed as signed divisions.
6004 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006005 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006006 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006007 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006008 return std::make_pair(CNC, CNC);
6009 }
6010
Owen Anderson47db9412009-07-22 00:24:57 +00006011 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006012
6013 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006014 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006015 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006016 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006017
Dan Gohmance973df2009-06-24 04:48:43 +00006018 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006019 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006020 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006021}
6022
6023/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006024/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006025///
6026/// This is only used for loops with a "x != y" exit test. The exit condition is
6027/// now expressed as a single expression, V = x-y. So the exit test is
6028/// effectively V != 0. We know and take advantage of the fact that this
6029/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006030ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006031ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006032 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006033 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006034 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006035 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006036 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006037 }
6038
Dan Gohman48f82222009-05-04 22:30:44 +00006039 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006040 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006041 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006042
Chris Lattnerdff679f2011-01-09 22:39:48 +00006043 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6044 // the quadratic equation to solve it.
6045 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6046 std::pair<const SCEV *,const SCEV *> Roots =
6047 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006048 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6049 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006050 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006051#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006052 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006053 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006054#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006055 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006056 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006057 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6058 R1->getValue(),
6059 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006060 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006061 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006062
Chris Lattnerd934c702004-04-02 20:23:17 +00006063 // We can only use this value if the chrec ends up with an exact zero
6064 // value at this index. When solving for "X*X != 5", for example, we
6065 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006066 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006067 if (Val->isZero())
6068 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006069 }
6070 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006071 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006072 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006073
Chris Lattnerdff679f2011-01-09 22:39:48 +00006074 // Otherwise we can only handle this if it is affine.
6075 if (!AddRec->isAffine())
6076 return getCouldNotCompute();
6077
6078 // If this is an affine expression, the execution count of this branch is
6079 // the minimum unsigned root of the following equation:
6080 //
6081 // Start + Step*N = 0 (mod 2^BW)
6082 //
6083 // equivalent to:
6084 //
6085 // Step*N = -Start (mod 2^BW)
6086 //
6087 // where BW is the common bit width of Start and Step.
6088
6089 // Get the initial value for the loop.
6090 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6091 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6092
6093 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006094 //
6095 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6096 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6097 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6098 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006099 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006100 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006101 return getCouldNotCompute();
6102
Andrew Trick8b55b732011-03-14 16:50:06 +00006103 // For positive steps (counting up until unsigned overflow):
6104 // N = -Start/Step (as unsigned)
6105 // For negative steps (counting down to zero):
6106 // N = Start/-Step
6107 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006108 bool CountDown = StepC->getValue()->getValue().isNegative();
6109 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006110
6111 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006112 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6113 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006114 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6115 ConstantRange CR = getUnsignedRange(Start);
6116 const SCEV *MaxBECount;
6117 if (!CountDown && CR.getUnsignedMin().isMinValue())
6118 // When counting up, the worst starting value is 1, not 0.
6119 MaxBECount = CR.getUnsignedMax().isMinValue()
6120 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6121 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6122 else
6123 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6124 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006125 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006126 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006127
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006128 // If the step exactly divides the distance then unsigned divide computes the
6129 // backedge count.
6130 const SCEV *Q, *R;
6131 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
David Majnemer32b8ccf2014-11-16 20:35:19 +00006132 SCEVUDivision::divide(SE, Distance, Step, &Q, &R);
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006133 if (R->isZero()) {
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006134 const SCEV *Exact =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006135 getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6136 return ExitLimit(Exact, Exact);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006137 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006138
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006139 // If the condition controls loop exit (the loop exits only if the expression
6140 // is true) and the addition is no-wrap we can use unsigned divide to
6141 // compute the backedge count. In this case, the step may not divide the
6142 // distance, but we don't care because if the condition is "missed" the loop
6143 // will have undefined behavior due to wrapping.
6144 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6145 const SCEV *Exact =
6146 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6147 return ExitLimit(Exact, Exact);
6148 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006149
Chris Lattnerdff679f2011-01-09 22:39:48 +00006150 // Then, try to solve the above equation provided that Start is constant.
6151 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6152 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6153 -StartC->getValue()->getValue(),
6154 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006155 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006156}
6157
6158/// HowFarToNonZero - Return the number of times a backedge checking the
6159/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006160/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006161ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006162ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006163 // Loops that look like: while (X == 0) are very strange indeed. We don't
6164 // handle them yet except for the trivial case. This could be expanded in the
6165 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006166
Chris Lattnerd934c702004-04-02 20:23:17 +00006167 // If the value is a constant, check to see if it is known to be non-zero
6168 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006169 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006170 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006171 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006172 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006173 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006174
Chris Lattnerd934c702004-04-02 20:23:17 +00006175 // We could implement others, but I really doubt anyone writes loops like
6176 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006177 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006178}
6179
Dan Gohmanf9081a22008-09-15 22:18:04 +00006180/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6181/// (which may not be an immediate predecessor) which has exactly one
6182/// successor from which BB is reachable, or null if no such block is
6183/// found.
6184///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006185std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006186ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006187 // If the block has a unique predecessor, then there is no path from the
6188 // predecessor to the block that does not go through the direct edge
6189 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006190 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006191 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006192
6193 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006194 // If the header has a unique predecessor outside the loop, it must be
6195 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006196 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006197 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006198
Dan Gohman4e3c1132010-04-15 16:19:08 +00006199 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006200}
6201
Dan Gohman450f4e02009-06-20 00:35:32 +00006202/// HasSameValue - SCEV structural equivalence is usually sufficient for
6203/// testing whether two expressions are equal, however for the purposes of
6204/// looking for a condition guarding a loop, it can be useful to be a little
6205/// more general, since a front-end may have replicated the controlling
6206/// expression.
6207///
Dan Gohmanaf752342009-07-07 17:06:11 +00006208static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006209 // Quick check to see if they are the same SCEV.
6210 if (A == B) return true;
6211
6212 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6213 // two different instructions with the same value. Check for this case.
6214 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6215 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6216 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6217 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006218 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006219 return true;
6220
6221 // Otherwise assume they may have a different value.
6222 return false;
6223}
6224
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006225/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006226/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006227///
6228bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006229 const SCEV *&LHS, const SCEV *&RHS,
6230 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006231 bool Changed = false;
6232
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006233 // If we hit the max recursion limit bail out.
6234 if (Depth >= 3)
6235 return false;
6236
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006237 // Canonicalize a constant to the right side.
6238 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6239 // Check for both operands constant.
6240 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6241 if (ConstantExpr::getICmp(Pred,
6242 LHSC->getValue(),
6243 RHSC->getValue())->isNullValue())
6244 goto trivially_false;
6245 else
6246 goto trivially_true;
6247 }
6248 // Otherwise swap the operands to put the constant on the right.
6249 std::swap(LHS, RHS);
6250 Pred = ICmpInst::getSwappedPredicate(Pred);
6251 Changed = true;
6252 }
6253
6254 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006255 // addrec's loop, put the addrec on the left. Also make a dominance check,
6256 // as both operands could be addrecs loop-invariant in each other's loop.
6257 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6258 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006259 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006260 std::swap(LHS, RHS);
6261 Pred = ICmpInst::getSwappedPredicate(Pred);
6262 Changed = true;
6263 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006264 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006265
6266 // If there's a constant operand, canonicalize comparisons with boundary
6267 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6268 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6269 const APInt &RA = RC->getValue()->getValue();
6270 switch (Pred) {
6271 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6272 case ICmpInst::ICMP_EQ:
6273 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006274 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6275 if (!RA)
6276 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6277 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006278 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6279 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006280 RHS = AE->getOperand(1);
6281 LHS = ME->getOperand(1);
6282 Changed = true;
6283 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006284 break;
6285 case ICmpInst::ICMP_UGE:
6286 if ((RA - 1).isMinValue()) {
6287 Pred = ICmpInst::ICMP_NE;
6288 RHS = getConstant(RA - 1);
6289 Changed = true;
6290 break;
6291 }
6292 if (RA.isMaxValue()) {
6293 Pred = ICmpInst::ICMP_EQ;
6294 Changed = true;
6295 break;
6296 }
6297 if (RA.isMinValue()) goto trivially_true;
6298
6299 Pred = ICmpInst::ICMP_UGT;
6300 RHS = getConstant(RA - 1);
6301 Changed = true;
6302 break;
6303 case ICmpInst::ICMP_ULE:
6304 if ((RA + 1).isMaxValue()) {
6305 Pred = ICmpInst::ICMP_NE;
6306 RHS = getConstant(RA + 1);
6307 Changed = true;
6308 break;
6309 }
6310 if (RA.isMinValue()) {
6311 Pred = ICmpInst::ICMP_EQ;
6312 Changed = true;
6313 break;
6314 }
6315 if (RA.isMaxValue()) goto trivially_true;
6316
6317 Pred = ICmpInst::ICMP_ULT;
6318 RHS = getConstant(RA + 1);
6319 Changed = true;
6320 break;
6321 case ICmpInst::ICMP_SGE:
6322 if ((RA - 1).isMinSignedValue()) {
6323 Pred = ICmpInst::ICMP_NE;
6324 RHS = getConstant(RA - 1);
6325 Changed = true;
6326 break;
6327 }
6328 if (RA.isMaxSignedValue()) {
6329 Pred = ICmpInst::ICMP_EQ;
6330 Changed = true;
6331 break;
6332 }
6333 if (RA.isMinSignedValue()) goto trivially_true;
6334
6335 Pred = ICmpInst::ICMP_SGT;
6336 RHS = getConstant(RA - 1);
6337 Changed = true;
6338 break;
6339 case ICmpInst::ICMP_SLE:
6340 if ((RA + 1).isMaxSignedValue()) {
6341 Pred = ICmpInst::ICMP_NE;
6342 RHS = getConstant(RA + 1);
6343 Changed = true;
6344 break;
6345 }
6346 if (RA.isMinSignedValue()) {
6347 Pred = ICmpInst::ICMP_EQ;
6348 Changed = true;
6349 break;
6350 }
6351 if (RA.isMaxSignedValue()) goto trivially_true;
6352
6353 Pred = ICmpInst::ICMP_SLT;
6354 RHS = getConstant(RA + 1);
6355 Changed = true;
6356 break;
6357 case ICmpInst::ICMP_UGT:
6358 if (RA.isMinValue()) {
6359 Pred = ICmpInst::ICMP_NE;
6360 Changed = true;
6361 break;
6362 }
6363 if ((RA + 1).isMaxValue()) {
6364 Pred = ICmpInst::ICMP_EQ;
6365 RHS = getConstant(RA + 1);
6366 Changed = true;
6367 break;
6368 }
6369 if (RA.isMaxValue()) goto trivially_false;
6370 break;
6371 case ICmpInst::ICMP_ULT:
6372 if (RA.isMaxValue()) {
6373 Pred = ICmpInst::ICMP_NE;
6374 Changed = true;
6375 break;
6376 }
6377 if ((RA - 1).isMinValue()) {
6378 Pred = ICmpInst::ICMP_EQ;
6379 RHS = getConstant(RA - 1);
6380 Changed = true;
6381 break;
6382 }
6383 if (RA.isMinValue()) goto trivially_false;
6384 break;
6385 case ICmpInst::ICMP_SGT:
6386 if (RA.isMinSignedValue()) {
6387 Pred = ICmpInst::ICMP_NE;
6388 Changed = true;
6389 break;
6390 }
6391 if ((RA + 1).isMaxSignedValue()) {
6392 Pred = ICmpInst::ICMP_EQ;
6393 RHS = getConstant(RA + 1);
6394 Changed = true;
6395 break;
6396 }
6397 if (RA.isMaxSignedValue()) goto trivially_false;
6398 break;
6399 case ICmpInst::ICMP_SLT:
6400 if (RA.isMaxSignedValue()) {
6401 Pred = ICmpInst::ICMP_NE;
6402 Changed = true;
6403 break;
6404 }
6405 if ((RA - 1).isMinSignedValue()) {
6406 Pred = ICmpInst::ICMP_EQ;
6407 RHS = getConstant(RA - 1);
6408 Changed = true;
6409 break;
6410 }
6411 if (RA.isMinSignedValue()) goto trivially_false;
6412 break;
6413 }
6414 }
6415
6416 // Check for obvious equality.
6417 if (HasSameValue(LHS, RHS)) {
6418 if (ICmpInst::isTrueWhenEqual(Pred))
6419 goto trivially_true;
6420 if (ICmpInst::isFalseWhenEqual(Pred))
6421 goto trivially_false;
6422 }
6423
Dan Gohman81585c12010-05-03 16:35:17 +00006424 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6425 // adding or subtracting 1 from one of the operands.
6426 switch (Pred) {
6427 case ICmpInst::ICMP_SLE:
6428 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6429 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006430 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006431 Pred = ICmpInst::ICMP_SLT;
6432 Changed = true;
6433 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006434 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006435 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006436 Pred = ICmpInst::ICMP_SLT;
6437 Changed = true;
6438 }
6439 break;
6440 case ICmpInst::ICMP_SGE:
6441 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006442 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006443 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006444 Pred = ICmpInst::ICMP_SGT;
6445 Changed = true;
6446 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6447 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006448 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006449 Pred = ICmpInst::ICMP_SGT;
6450 Changed = true;
6451 }
6452 break;
6453 case ICmpInst::ICMP_ULE:
6454 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006455 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006456 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006457 Pred = ICmpInst::ICMP_ULT;
6458 Changed = true;
6459 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006460 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006461 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006462 Pred = ICmpInst::ICMP_ULT;
6463 Changed = true;
6464 }
6465 break;
6466 case ICmpInst::ICMP_UGE:
6467 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006468 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006469 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006470 Pred = ICmpInst::ICMP_UGT;
6471 Changed = true;
6472 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006473 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006474 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006475 Pred = ICmpInst::ICMP_UGT;
6476 Changed = true;
6477 }
6478 break;
6479 default:
6480 break;
6481 }
6482
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006483 // TODO: More simplifications are possible here.
6484
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006485 // Recursively simplify until we either hit a recursion limit or nothing
6486 // changes.
6487 if (Changed)
6488 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6489
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006490 return Changed;
6491
6492trivially_true:
6493 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006494 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006495 Pred = ICmpInst::ICMP_EQ;
6496 return true;
6497
6498trivially_false:
6499 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006500 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006501 Pred = ICmpInst::ICMP_NE;
6502 return true;
6503}
6504
Dan Gohmane65c9172009-07-13 21:35:55 +00006505bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6506 return getSignedRange(S).getSignedMax().isNegative();
6507}
6508
6509bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6510 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6511}
6512
6513bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6514 return !getSignedRange(S).getSignedMin().isNegative();
6515}
6516
6517bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6518 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6519}
6520
6521bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6522 return isKnownNegative(S) || isKnownPositive(S);
6523}
6524
6525bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6526 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006527 // Canonicalize the inputs first.
6528 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6529
Dan Gohman07591692010-04-11 22:16:48 +00006530 // If LHS or RHS is an addrec, check to see if the condition is true in
6531 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006532 // If LHS and RHS are both addrec, both conditions must be true in
6533 // every iteration of the loop.
6534 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6535 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6536 bool LeftGuarded = false;
6537 bool RightGuarded = false;
6538 if (LAR) {
6539 const Loop *L = LAR->getLoop();
6540 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6541 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6542 if (!RAR) return true;
6543 LeftGuarded = true;
6544 }
6545 }
6546 if (RAR) {
6547 const Loop *L = RAR->getLoop();
6548 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6549 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6550 if (!LAR) return true;
6551 RightGuarded = true;
6552 }
6553 }
6554 if (LeftGuarded && RightGuarded)
6555 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006556
Dan Gohman07591692010-04-11 22:16:48 +00006557 // Otherwise see what can be done with known constant ranges.
6558 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6559}
6560
6561bool
6562ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6563 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006564 if (HasSameValue(LHS, RHS))
6565 return ICmpInst::isTrueWhenEqual(Pred);
6566
Dan Gohman07591692010-04-11 22:16:48 +00006567 // This code is split out from isKnownPredicate because it is called from
6568 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006569 switch (Pred) {
6570 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006571 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006572 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006573 std::swap(LHS, RHS);
6574 case ICmpInst::ICMP_SLT: {
6575 ConstantRange LHSRange = getSignedRange(LHS);
6576 ConstantRange RHSRange = getSignedRange(RHS);
6577 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6578 return true;
6579 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6580 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006581 break;
6582 }
6583 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006584 std::swap(LHS, RHS);
6585 case ICmpInst::ICMP_SLE: {
6586 ConstantRange LHSRange = getSignedRange(LHS);
6587 ConstantRange RHSRange = getSignedRange(RHS);
6588 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6589 return true;
6590 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6591 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006592 break;
6593 }
6594 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006595 std::swap(LHS, RHS);
6596 case ICmpInst::ICMP_ULT: {
6597 ConstantRange LHSRange = getUnsignedRange(LHS);
6598 ConstantRange RHSRange = getUnsignedRange(RHS);
6599 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6600 return true;
6601 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6602 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006603 break;
6604 }
6605 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006606 std::swap(LHS, RHS);
6607 case ICmpInst::ICMP_ULE: {
6608 ConstantRange LHSRange = getUnsignedRange(LHS);
6609 ConstantRange RHSRange = getUnsignedRange(RHS);
6610 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6611 return true;
6612 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6613 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006614 break;
6615 }
6616 case ICmpInst::ICMP_NE: {
6617 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6618 return true;
6619 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6620 return true;
6621
6622 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6623 if (isKnownNonZero(Diff))
6624 return true;
6625 break;
6626 }
6627 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006628 // The check at the top of the function catches the case where
6629 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006630 break;
6631 }
6632 return false;
6633}
6634
6635/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6636/// protected by a conditional between LHS and RHS. This is used to
6637/// to eliminate casts.
6638bool
6639ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6640 ICmpInst::Predicate Pred,
6641 const SCEV *LHS, const SCEV *RHS) {
6642 // Interpret a null as meaning no loop, where there is obviously no guard
6643 // (interprocedural conditions notwithstanding).
6644 if (!L) return true;
6645
Sanjoy Das1f05c512014-10-10 21:22:34 +00006646 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6647
Dan Gohmane65c9172009-07-13 21:35:55 +00006648 BasicBlock *Latch = L->getLoopLatch();
6649 if (!Latch)
6650 return false;
6651
6652 BranchInst *LoopContinuePredicate =
6653 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006654 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6655 isImpliedCond(Pred, LHS, RHS,
6656 LoopContinuePredicate->getCondition(),
6657 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6658 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006659
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006660 // Check conditions due to any @llvm.assume intrinsics.
6661 for (auto &CI : AT->assumptions(F)) {
6662 if (!DT->dominates(CI, Latch->getTerminator()))
6663 continue;
6664
6665 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6666 return true;
6667 }
6668
6669 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006670}
6671
Dan Gohmanb50349a2010-04-11 19:27:13 +00006672/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006673/// by a conditional between LHS and RHS. This is used to help avoid max
6674/// expressions in loop trip counts, and to eliminate casts.
6675bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006676ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6677 ICmpInst::Predicate Pred,
6678 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006679 // Interpret a null as meaning no loop, where there is obviously no guard
6680 // (interprocedural conditions notwithstanding).
6681 if (!L) return false;
6682
Sanjoy Das1f05c512014-10-10 21:22:34 +00006683 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6684
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006685 // Starting at the loop predecessor, climb up the predecessor chain, as long
6686 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006687 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006688 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006689 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006690 Pair.first;
6691 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006692
6693 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006694 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006695 if (!LoopEntryPredicate ||
6696 LoopEntryPredicate->isUnconditional())
6697 continue;
6698
Dan Gohmane18c2d62010-08-10 23:46:30 +00006699 if (isImpliedCond(Pred, LHS, RHS,
6700 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006701 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006702 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006703 }
6704
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006705 // Check conditions due to any @llvm.assume intrinsics.
6706 for (auto &CI : AT->assumptions(F)) {
6707 if (!DT->dominates(CI, L->getHeader()))
6708 continue;
6709
6710 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6711 return true;
6712 }
6713
Dan Gohman2a62fd92008-08-12 20:17:31 +00006714 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006715}
6716
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006717/// RAII wrapper to prevent recursive application of isImpliedCond.
6718/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6719/// currently evaluating isImpliedCond.
6720struct MarkPendingLoopPredicate {
6721 Value *Cond;
6722 DenseSet<Value*> &LoopPreds;
6723 bool Pending;
6724
6725 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6726 : Cond(C), LoopPreds(LP) {
6727 Pending = !LoopPreds.insert(Cond).second;
6728 }
6729 ~MarkPendingLoopPredicate() {
6730 if (!Pending)
6731 LoopPreds.erase(Cond);
6732 }
6733};
6734
Dan Gohman430f0cc2009-07-21 23:03:19 +00006735/// isImpliedCond - Test whether the condition described by Pred, LHS,
6736/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006737bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006738 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006739 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006740 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006741 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6742 if (Mark.Pending)
6743 return false;
6744
Dan Gohman8b0a4192010-03-01 17:49:51 +00006745 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006746 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006747 if (BO->getOpcode() == Instruction::And) {
6748 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006749 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6750 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006751 } else if (BO->getOpcode() == Instruction::Or) {
6752 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006753 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6754 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006755 }
6756 }
6757
Dan Gohmane18c2d62010-08-10 23:46:30 +00006758 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006759 if (!ICI) return false;
6760
Dan Gohmane65c9172009-07-13 21:35:55 +00006761 // Bail if the ICmp's operands' types are wider than the needed type
6762 // before attempting to call getSCEV on them. This avoids infinite
6763 // recursion, since the analysis of widening casts can require loop
6764 // exit condition information for overflow checking, which would
6765 // lead back here.
6766 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006767 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006768 return false;
6769
Andrew Trickfa594032012-11-29 18:35:13 +00006770 // Now that we found a conditional branch that dominates the loop or controls
6771 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006772 ICmpInst::Predicate FoundPred;
6773 if (Inverse)
6774 FoundPred = ICI->getInversePredicate();
6775 else
6776 FoundPred = ICI->getPredicate();
6777
6778 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6779 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006780
6781 // Balance the types. The case where FoundLHS' type is wider than
6782 // LHS' type is checked for above.
6783 if (getTypeSizeInBits(LHS->getType()) >
6784 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006785 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006786 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6787 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6788 } else {
6789 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6790 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6791 }
6792 }
6793
Dan Gohman430f0cc2009-07-21 23:03:19 +00006794 // Canonicalize the query to match the way instcombine will have
6795 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006796 if (SimplifyICmpOperands(Pred, LHS, RHS))
6797 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006798 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006799 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6800 if (FoundLHS == FoundRHS)
6801 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006802
6803 // Check to see if we can make the LHS or RHS match.
6804 if (LHS == FoundRHS || RHS == FoundLHS) {
6805 if (isa<SCEVConstant>(RHS)) {
6806 std::swap(FoundLHS, FoundRHS);
6807 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6808 } else {
6809 std::swap(LHS, RHS);
6810 Pred = ICmpInst::getSwappedPredicate(Pred);
6811 }
6812 }
6813
6814 // Check whether the found predicate is the same as the desired predicate.
6815 if (FoundPred == Pred)
6816 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6817
6818 // Check whether swapping the found predicate makes it the same as the
6819 // desired predicate.
6820 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6821 if (isa<SCEVConstant>(RHS))
6822 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6823 else
6824 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6825 RHS, LHS, FoundLHS, FoundRHS);
6826 }
6827
Sanjoy Dasc5676df2014-11-13 00:00:58 +00006828 // Check if we can make progress by sharpening ranges.
6829 if (FoundPred == ICmpInst::ICMP_NE &&
6830 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6831
6832 const SCEVConstant *C = nullptr;
6833 const SCEV *V = nullptr;
6834
6835 if (isa<SCEVConstant>(FoundLHS)) {
6836 C = cast<SCEVConstant>(FoundLHS);
6837 V = FoundRHS;
6838 } else {
6839 C = cast<SCEVConstant>(FoundRHS);
6840 V = FoundLHS;
6841 }
6842
6843 // The guarding predicate tells us that C != V. If the known range
6844 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6845 // range we consider has to correspond to same signedness as the
6846 // predicate we're interested in folding.
6847
6848 APInt Min = ICmpInst::isSigned(Pred) ?
6849 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6850
6851 if (Min == C->getValue()->getValue()) {
6852 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6853 // This is true even if (Min + 1) wraps around -- in case of
6854 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6855
6856 APInt SharperMin = Min + 1;
6857
6858 switch (Pred) {
6859 case ICmpInst::ICMP_SGE:
6860 case ICmpInst::ICMP_UGE:
6861 // We know V `Pred` SharperMin. If this implies LHS `Pred`
6862 // RHS, we're done.
6863 if (isImpliedCondOperands(Pred, LHS, RHS, V,
6864 getConstant(SharperMin)))
6865 return true;
6866
6867 case ICmpInst::ICMP_SGT:
6868 case ICmpInst::ICMP_UGT:
6869 // We know from the range information that (V `Pred` Min ||
6870 // V == Min). We know from the guarding condition that !(V
6871 // == Min). This gives us
6872 //
6873 // V `Pred` Min || V == Min && !(V == Min)
6874 // => V `Pred` Min
6875 //
6876 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6877
6878 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6879 return true;
6880
6881 default:
6882 // No change
6883 break;
6884 }
6885 }
6886 }
6887
Dan Gohman430f0cc2009-07-21 23:03:19 +00006888 // Check whether the actual condition is beyond sufficient.
6889 if (FoundPred == ICmpInst::ICMP_EQ)
6890 if (ICmpInst::isTrueWhenEqual(Pred))
6891 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6892 return true;
6893 if (Pred == ICmpInst::ICMP_NE)
6894 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6895 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6896 return true;
6897
6898 // Otherwise assume the worst.
6899 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006900}
6901
Dan Gohman430f0cc2009-07-21 23:03:19 +00006902/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006903/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006904/// and FoundRHS is true.
6905bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6906 const SCEV *LHS, const SCEV *RHS,
6907 const SCEV *FoundLHS,
6908 const SCEV *FoundRHS) {
6909 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6910 FoundLHS, FoundRHS) ||
6911 // ~x < ~y --> x > y
6912 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6913 getNotSCEV(FoundRHS),
6914 getNotSCEV(FoundLHS));
6915}
6916
6917/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006918/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006919/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006920bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006921ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6922 const SCEV *LHS, const SCEV *RHS,
6923 const SCEV *FoundLHS,
6924 const SCEV *FoundRHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006925 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006926 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6927 case ICmpInst::ICMP_EQ:
6928 case ICmpInst::ICMP_NE:
6929 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6930 return true;
6931 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006932 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006933 case ICmpInst::ICMP_SLE:
Dan Gohman07591692010-04-11 22:16:48 +00006934 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6935 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006936 return true;
6937 break;
6938 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006939 case ICmpInst::ICMP_SGE:
Dan Gohman07591692010-04-11 22:16:48 +00006940 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6941 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006942 return true;
6943 break;
6944 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006945 case ICmpInst::ICMP_ULE:
Dan Gohman07591692010-04-11 22:16:48 +00006946 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6947 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006948 return true;
6949 break;
6950 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006951 case ICmpInst::ICMP_UGE:
Dan Gohman07591692010-04-11 22:16:48 +00006952 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6953 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006954 return true;
6955 break;
6956 }
6957
6958 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006959}
6960
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006961// Verify if an linear IV with positive stride can overflow when in a
6962// less-than comparison, knowing the invariant term of the comparison, the
6963// stride and the knowledge of NSW/NUW flags on the recurrence.
6964bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6965 bool IsSigned, bool NoWrap) {
6966 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00006967
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006968 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6969 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00006970
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006971 if (IsSigned) {
6972 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6973 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6974 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6975 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00006976
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006977 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6978 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00006979 }
Dan Gohman01048422009-06-21 23:46:38 +00006980
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006981 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6982 APInt MaxValue = APInt::getMaxValue(BitWidth);
6983 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6984 .getUnsignedMax();
6985
6986 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6987 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6988}
6989
6990// Verify if an linear IV with negative stride can overflow when in a
6991// greater-than comparison, knowing the invariant term of the comparison,
6992// the stride and the knowledge of NSW/NUW flags on the recurrence.
6993bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6994 bool IsSigned, bool NoWrap) {
6995 if (NoWrap) return false;
6996
6997 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6998 const SCEV *One = getConstant(Stride->getType(), 1);
6999
7000 if (IsSigned) {
7001 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7002 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7003 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7004 .getSignedMax();
7005
7006 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7007 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7008 }
7009
7010 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7011 APInt MinValue = APInt::getMinValue(BitWidth);
7012 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7013 .getUnsignedMax();
7014
7015 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7016 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7017}
7018
7019// Compute the backedge taken count knowing the interval difference, the
7020// stride and presence of the equality in the comparison.
7021const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
7022 bool Equality) {
7023 const SCEV *One = getConstant(Step->getType(), 1);
7024 Delta = Equality ? getAddExpr(Delta, Step)
7025 : getAddExpr(Delta, getMinusSCEV(Step, One));
7026 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007027}
7028
Chris Lattner587a75b2005-08-15 23:33:51 +00007029/// HowManyLessThans - Return the number of times a backedge containing the
7030/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007031/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007032///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007033/// @param ControlsExit is true when the LHS < RHS condition directly controls
7034/// the branch (loops exits only if condition is true). In this case, we can use
7035/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007036ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007037ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007038 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007039 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007040 // We handle only IV < Invariant
7041 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007042 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007043
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007044 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007045
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007046 // Avoid weird loops
7047 if (!IV || IV->getLoop() != L || !IV->isAffine())
7048 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007049
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007050 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007051 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007052
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007053 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007054
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007055 // Avoid negative or zero stride values
7056 if (!isKnownPositive(Stride))
7057 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007058
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007059 // Avoid proven overflow cases: this will ensure that the backedge taken count
7060 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7061 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7062 // behaviors like the case of C language.
7063 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7064 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007065
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007066 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7067 : ICmpInst::ICMP_ULT;
7068 const SCEV *Start = IV->getStart();
7069 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007070 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7071 const SCEV *Diff = getMinusSCEV(RHS, Start);
7072 // If we have NoWrap set, then we can assume that the increment won't
7073 // overflow, in which case if RHS - Start is a constant, we don't need to
7074 // do a max operation since we can just figure it out statically
7075 if (NoWrap && isa<SCEVConstant>(Diff)) {
7076 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7077 if (D.isNegative())
7078 End = Start;
7079 } else
7080 End = IsSigned ? getSMaxExpr(RHS, Start)
7081 : getUMaxExpr(RHS, Start);
7082 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007083
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007084 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007085
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007086 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7087 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007088
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007089 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7090 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007091
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007092 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7093 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7094 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007095
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007096 // Although End can be a MAX expression we estimate MaxEnd considering only
7097 // the case End = RHS. This is safe because in the other case (End - Start)
7098 // is zero, leading to a zero maximum backedge taken count.
7099 APInt MaxEnd =
7100 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7101 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7102
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007103 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007104 if (isa<SCEVConstant>(BECount))
7105 MaxBECount = BECount;
7106 else
7107 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7108 getConstant(MinStride), false);
7109
7110 if (isa<SCEVCouldNotCompute>(MaxBECount))
7111 MaxBECount = BECount;
7112
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007113 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007114}
7115
7116ScalarEvolution::ExitLimit
7117ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7118 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007119 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007120 // We handle only IV > Invariant
7121 if (!isLoopInvariant(RHS, L))
7122 return getCouldNotCompute();
7123
7124 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7125
7126 // Avoid weird loops
7127 if (!IV || IV->getLoop() != L || !IV->isAffine())
7128 return getCouldNotCompute();
7129
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007130 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007131 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7132
7133 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7134
7135 // Avoid negative or zero stride values
7136 if (!isKnownPositive(Stride))
7137 return getCouldNotCompute();
7138
7139 // Avoid proven overflow cases: this will ensure that the backedge taken count
7140 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7141 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7142 // behaviors like the case of C language.
7143 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7144 return getCouldNotCompute();
7145
7146 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7147 : ICmpInst::ICMP_UGT;
7148
7149 const SCEV *Start = IV->getStart();
7150 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007151 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7152 const SCEV *Diff = getMinusSCEV(RHS, Start);
7153 // If we have NoWrap set, then we can assume that the increment won't
7154 // overflow, in which case if RHS - Start is a constant, we don't need to
7155 // do a max operation since we can just figure it out statically
7156 if (NoWrap && isa<SCEVConstant>(Diff)) {
7157 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7158 if (!D.isNegative())
7159 End = Start;
7160 } else
7161 End = IsSigned ? getSMinExpr(RHS, Start)
7162 : getUMinExpr(RHS, Start);
7163 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007164
7165 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7166
7167 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7168 : getUnsignedRange(Start).getUnsignedMax();
7169
7170 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7171 : getUnsignedRange(Stride).getUnsignedMin();
7172
7173 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7174 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7175 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7176
7177 // Although End can be a MIN expression we estimate MinEnd considering only
7178 // the case End = RHS. This is safe because in the other case (Start - End)
7179 // is zero, leading to a zero maximum backedge taken count.
7180 APInt MinEnd =
7181 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7182 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7183
7184
7185 const SCEV *MaxBECount = getCouldNotCompute();
7186 if (isa<SCEVConstant>(BECount))
7187 MaxBECount = BECount;
7188 else
7189 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7190 getConstant(MinStride), false);
7191
7192 if (isa<SCEVCouldNotCompute>(MaxBECount))
7193 MaxBECount = BECount;
7194
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007195 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007196}
7197
Chris Lattnerd934c702004-04-02 20:23:17 +00007198/// getNumIterationsInRange - Return the number of iterations of this loop that
7199/// produce values in the specified constant range. Another way of looking at
7200/// this is that it returns the first iteration number where the value is not in
7201/// the condition, thus computing the exit count. If the iteration count can't
7202/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007203const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007204 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007205 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007206 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007207
7208 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007209 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007210 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007211 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007212 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007213 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007214 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007215 if (const SCEVAddRecExpr *ShiftedAddRec =
7216 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007217 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007218 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007219 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007220 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007221 }
7222
7223 // The only time we can solve this is when we have all constant indices.
7224 // Otherwise, we cannot determine the overflow conditions.
7225 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7226 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007227 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007228
7229
7230 // Okay at this point we know that all elements of the chrec are constants and
7231 // that the start element is zero.
7232
7233 // First check to see if the range contains zero. If not, the first
7234 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007235 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007236 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007237 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007238
Chris Lattnerd934c702004-04-02 20:23:17 +00007239 if (isAffine()) {
7240 // If this is an affine expression then we have this situation:
7241 // Solve {0,+,A} in Range === Ax in Range
7242
Nick Lewycky52460262007-07-16 02:08:00 +00007243 // We know that zero is in the range. If A is positive then we know that
7244 // the upper value of the range must be the first possible exit value.
7245 // If A is negative then the lower of the range is the last possible loop
7246 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007247 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007248 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7249 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007250
Nick Lewycky52460262007-07-16 02:08:00 +00007251 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007252 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007253 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007254
7255 // Evaluate at the exit value. If we really did fall out of the valid
7256 // range, then we computed our trip count, otherwise wrap around or other
7257 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007258 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007259 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007260 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007261
7262 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007263 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007264 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007265 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007266 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007267 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007268 } else if (isQuadratic()) {
7269 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7270 // quadratic equation to solve it. To do this, we must frame our problem in
7271 // terms of figuring out when zero is crossed, instead of when
7272 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007273 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007274 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007275 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7276 // getNoWrapFlags(FlagNW)
7277 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007278
7279 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007280 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007281 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007282 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7283 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007284 if (R1) {
7285 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007286 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007287 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007288 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007289 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00007290 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007291
Chris Lattnerd934c702004-04-02 20:23:17 +00007292 // Make sure the root is not off by one. The returned iteration should
7293 // not be in the range, but the previous one should be. When solving
7294 // for "X*X < 5", for example, we should not return a root of 2.
7295 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007296 R1->getValue(),
7297 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007298 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007299 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007300 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007301 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007302
Dan Gohmana37eaf22007-10-22 18:31:58 +00007303 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007304 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007305 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007306 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007307 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007308
Chris Lattnerd934c702004-04-02 20:23:17 +00007309 // If R1 was not in the range, then it is a good return value. Make
7310 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007311 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007312 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007313 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007314 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007315 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007316 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007317 }
7318 }
7319 }
7320
Dan Gohman31efa302009-04-18 17:58:19 +00007321 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007322}
7323
Sebastian Pop448712b2014-05-07 18:01:20 +00007324namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007325struct FindUndefs {
7326 bool Found;
7327 FindUndefs() : Found(false) {}
7328
7329 bool follow(const SCEV *S) {
7330 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7331 if (isa<UndefValue>(C->getValue()))
7332 Found = true;
7333 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7334 if (isa<UndefValue>(C->getValue()))
7335 Found = true;
7336 }
7337
7338 // Keep looking if we haven't found it yet.
7339 return !Found;
7340 }
7341 bool isDone() const {
7342 // Stop recursion if we have found an undef.
7343 return Found;
7344 }
7345};
7346}
7347
7348// Return true when S contains at least an undef value.
7349static inline bool
7350containsUndefs(const SCEV *S) {
7351 FindUndefs F;
7352 SCEVTraversal<FindUndefs> ST(F);
7353 ST.visitAll(S);
7354
7355 return F.Found;
7356}
7357
7358namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007359// Collect all steps of SCEV expressions.
7360struct SCEVCollectStrides {
7361 ScalarEvolution &SE;
7362 SmallVectorImpl<const SCEV *> &Strides;
7363
7364 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7365 : SE(SE), Strides(S) {}
7366
7367 bool follow(const SCEV *S) {
7368 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7369 Strides.push_back(AR->getStepRecurrence(SE));
7370 return true;
7371 }
7372 bool isDone() const { return false; }
7373};
7374
7375// Collect all SCEVUnknown and SCEVMulExpr expressions.
7376struct SCEVCollectTerms {
7377 SmallVectorImpl<const SCEV *> &Terms;
7378
7379 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7380 : Terms(T) {}
7381
7382 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007383 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007384 if (!containsUndefs(S))
7385 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007386
7387 // Stop recursion: once we collected a term, do not walk its operands.
7388 return false;
7389 }
7390
7391 // Keep looking.
7392 return true;
7393 }
7394 bool isDone() const { return false; }
7395};
7396}
7397
7398/// Find parametric terms in this SCEVAddRecExpr.
7399void SCEVAddRecExpr::collectParametricTerms(
7400 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7401 SmallVector<const SCEV *, 4> Strides;
7402 SCEVCollectStrides StrideCollector(SE, Strides);
7403 visitAll(this, StrideCollector);
7404
7405 DEBUG({
7406 dbgs() << "Strides:\n";
7407 for (const SCEV *S : Strides)
7408 dbgs() << *S << "\n";
7409 });
7410
7411 for (const SCEV *S : Strides) {
7412 SCEVCollectTerms TermCollector(Terms);
7413 visitAll(S, TermCollector);
7414 }
7415
7416 DEBUG({
7417 dbgs() << "Terms:\n";
7418 for (const SCEV *T : Terms)
7419 dbgs() << *T << "\n";
7420 });
7421}
7422
Sebastian Popb1a548f2014-05-12 19:01:53 +00007423static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007424 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007425 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007426 int Last = Terms.size() - 1;
7427 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007428
Sebastian Pop448712b2014-05-07 18:01:20 +00007429 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007430 if (Last == 0) {
7431 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007432 SmallVector<const SCEV *, 2> Qs;
7433 for (const SCEV *Op : M->operands())
7434 if (!isa<SCEVConstant>(Op))
7435 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007436
Sebastian Pope30bd352014-05-27 22:41:56 +00007437 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007438 }
7439
Sebastian Pope30bd352014-05-27 22:41:56 +00007440 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007441 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007442 }
7443
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007444 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007445 // Normalize the terms before the next call to findArrayDimensionsRec.
7446 const SCEV *Q, *R;
David Majnemer32b8ccf2014-11-16 20:35:19 +00007447 SCEVSDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007448
7449 // Bail out when GCD does not evenly divide one of the terms.
7450 if (!R->isZero())
7451 return false;
7452
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007453 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007454 }
7455
Tobias Grosser3080cf12014-05-08 07:55:34 +00007456 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007457 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7458 return isa<SCEVConstant>(E);
7459 }),
7460 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007461
Sebastian Pop448712b2014-05-07 18:01:20 +00007462 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007463 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7464 return false;
7465
Sebastian Pope30bd352014-05-27 22:41:56 +00007466 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007467 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007468}
Sebastian Popc62c6792013-11-12 22:47:20 +00007469
Sebastian Pop448712b2014-05-07 18:01:20 +00007470namespace {
7471struct FindParameter {
7472 bool FoundParameter;
7473 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007474
Sebastian Pop448712b2014-05-07 18:01:20 +00007475 bool follow(const SCEV *S) {
7476 if (isa<SCEVUnknown>(S)) {
7477 FoundParameter = true;
7478 // Stop recursion: we found a parameter.
7479 return false;
7480 }
7481 // Keep looking.
7482 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007483 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007484 bool isDone() const {
7485 // Stop recursion if we have found a parameter.
7486 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007487 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007488};
7489}
7490
Sebastian Pop448712b2014-05-07 18:01:20 +00007491// Returns true when S contains at least a SCEVUnknown parameter.
7492static inline bool
7493containsParameters(const SCEV *S) {
7494 FindParameter F;
7495 SCEVTraversal<FindParameter> ST(F);
7496 ST.visitAll(S);
7497
7498 return F.FoundParameter;
7499}
7500
7501// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7502static inline bool
7503containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7504 for (const SCEV *T : Terms)
7505 if (containsParameters(T))
7506 return true;
7507 return false;
7508}
7509
7510// Return the number of product terms in S.
7511static inline int numberOfTerms(const SCEV *S) {
7512 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7513 return Expr->getNumOperands();
7514 return 1;
7515}
7516
Sebastian Popa6e58602014-05-27 22:41:45 +00007517static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7518 if (isa<SCEVConstant>(T))
7519 return nullptr;
7520
7521 if (isa<SCEVUnknown>(T))
7522 return T;
7523
7524 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7525 SmallVector<const SCEV *, 2> Factors;
7526 for (const SCEV *Op : M->operands())
7527 if (!isa<SCEVConstant>(Op))
7528 Factors.push_back(Op);
7529
7530 return SE.getMulExpr(Factors);
7531 }
7532
7533 return T;
7534}
7535
7536/// Return the size of an element read or written by Inst.
7537const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7538 Type *Ty;
7539 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7540 Ty = Store->getValueOperand()->getType();
7541 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007542 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007543 else
7544 return nullptr;
7545
7546 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7547 return getSizeOfExpr(ETy, Ty);
7548}
7549
Sebastian Pop448712b2014-05-07 18:01:20 +00007550/// Second step of delinearization: compute the array dimensions Sizes from the
7551/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007552void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7553 SmallVectorImpl<const SCEV *> &Sizes,
7554 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007555
Sebastian Pop53524082014-05-29 19:44:05 +00007556 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007557 return;
7558
7559 // Early return when Terms do not contain parameters: we do not delinearize
7560 // non parametric SCEVs.
7561 if (!containsParameters(Terms))
7562 return;
7563
7564 DEBUG({
7565 dbgs() << "Terms:\n";
7566 for (const SCEV *T : Terms)
7567 dbgs() << *T << "\n";
7568 });
7569
7570 // Remove duplicates.
7571 std::sort(Terms.begin(), Terms.end());
7572 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7573
7574 // Put larger terms first.
7575 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7576 return numberOfTerms(LHS) > numberOfTerms(RHS);
7577 });
7578
Sebastian Popa6e58602014-05-27 22:41:45 +00007579 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7580
7581 // Divide all terms by the element size.
7582 for (const SCEV *&Term : Terms) {
7583 const SCEV *Q, *R;
David Majnemer32b8ccf2014-11-16 20:35:19 +00007584 SCEVSDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00007585 Term = Q;
7586 }
7587
7588 SmallVector<const SCEV *, 4> NewTerms;
7589
7590 // Remove constant factors.
7591 for (const SCEV *T : Terms)
7592 if (const SCEV *NewT = removeConstantFactors(SE, T))
7593 NewTerms.push_back(NewT);
7594
Sebastian Pop448712b2014-05-07 18:01:20 +00007595 DEBUG({
7596 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007597 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007598 dbgs() << *T << "\n";
7599 });
7600
Sebastian Popa6e58602014-05-27 22:41:45 +00007601 if (NewTerms.empty() ||
7602 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007603 Sizes.clear();
7604 return;
7605 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007606
Sebastian Popa6e58602014-05-27 22:41:45 +00007607 // The last element to be pushed into Sizes is the size of an element.
7608 Sizes.push_back(ElementSize);
7609
Sebastian Pop448712b2014-05-07 18:01:20 +00007610 DEBUG({
7611 dbgs() << "Sizes:\n";
7612 for (const SCEV *S : Sizes)
7613 dbgs() << *S << "\n";
7614 });
7615}
7616
7617/// Third step of delinearization: compute the access functions for the
7618/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007619void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007620 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7621 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007622
Sebastian Popb1a548f2014-05-12 19:01:53 +00007623 // Early exit in case this SCEV is not an affine multivariate function.
7624 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007625 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007626
Sebastian Pop28e6b972014-05-27 22:41:51 +00007627 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007628 int Last = Sizes.size() - 1;
7629 for (int i = Last; i >= 0; i--) {
7630 const SCEV *Q, *R;
David Majnemer32b8ccf2014-11-16 20:35:19 +00007631 SCEVSDivision::divide(SE, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00007632
7633 DEBUG({
7634 dbgs() << "Res: " << *Res << "\n";
7635 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7636 dbgs() << "Res divided by Sizes[i]:\n";
7637 dbgs() << "Quotient: " << *Q << "\n";
7638 dbgs() << "Remainder: " << *R << "\n";
7639 });
7640
7641 Res = Q;
7642
Sebastian Popa6e58602014-05-27 22:41:45 +00007643 // Do not record the last subscript corresponding to the size of elements in
7644 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007645 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007646
7647 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007648 if (isa<SCEVAddRecExpr>(R)) {
7649 Subscripts.clear();
7650 Sizes.clear();
7651 return;
7652 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007653
Sebastian Pop448712b2014-05-07 18:01:20 +00007654 continue;
7655 }
7656
7657 // Record the access function for the current subscript.
7658 Subscripts.push_back(R);
7659 }
7660
7661 // Also push in last position the remainder of the last division: it will be
7662 // the access function of the innermost dimension.
7663 Subscripts.push_back(Res);
7664
7665 std::reverse(Subscripts.begin(), Subscripts.end());
7666
7667 DEBUG({
7668 dbgs() << "Subscripts:\n";
7669 for (const SCEV *S : Subscripts)
7670 dbgs() << *S << "\n";
7671 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007672}
7673
Sebastian Popc62c6792013-11-12 22:47:20 +00007674/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7675/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007676/// is the offset start of the array. The SCEV->delinearize algorithm computes
7677/// the multiples of SCEV coefficients: that is a pattern matching of sub
7678/// expressions in the stride and base of a SCEV corresponding to the
7679/// computation of a GCD (greatest common divisor) of base and stride. When
7680/// SCEV->delinearize fails, it returns the SCEV unchanged.
7681///
7682/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7683///
7684/// void foo(long n, long m, long o, double A[n][m][o]) {
7685///
7686/// for (long i = 0; i < n; i++)
7687/// for (long j = 0; j < m; j++)
7688/// for (long k = 0; k < o; k++)
7689/// A[i][j][k] = 1.0;
7690/// }
7691///
7692/// the delinearization input is the following AddRec SCEV:
7693///
7694/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7695///
7696/// From this SCEV, we are able to say that the base offset of the access is %A
7697/// because it appears as an offset that does not divide any of the strides in
7698/// the loops:
7699///
7700/// CHECK: Base offset: %A
7701///
7702/// and then SCEV->delinearize determines the size of some of the dimensions of
7703/// the array as these are the multiples by which the strides are happening:
7704///
7705/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7706///
7707/// Note that the outermost dimension remains of UnknownSize because there are
7708/// no strides that would help identifying the size of the last dimension: when
7709/// the array has been statically allocated, one could compute the size of that
7710/// dimension by dividing the overall size of the array by the size of the known
7711/// dimensions: %m * %o * 8.
7712///
7713/// Finally delinearize provides the access functions for the array reference
7714/// that does correspond to A[i][j][k] of the above C testcase:
7715///
7716/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7717///
7718/// The testcases are checking the output of a function pass:
7719/// DelinearizationPass that walks through all loads and stores of a function
7720/// asking for the SCEV of the memory access with respect to all enclosing
7721/// loops, calling SCEV->delinearize on that and printing the results.
7722
Sebastian Pop28e6b972014-05-27 22:41:51 +00007723void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7724 SmallVectorImpl<const SCEV *> &Subscripts,
7725 SmallVectorImpl<const SCEV *> &Sizes,
7726 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007727 // First step: collect parametric terms.
7728 SmallVector<const SCEV *, 4> Terms;
7729 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007730
Sebastian Popb1a548f2014-05-12 19:01:53 +00007731 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007732 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007733
Sebastian Pop448712b2014-05-07 18:01:20 +00007734 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007735 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007736
Sebastian Popb1a548f2014-05-12 19:01:53 +00007737 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007738 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007739
Sebastian Pop448712b2014-05-07 18:01:20 +00007740 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007741 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007742
Sebastian Pop28e6b972014-05-27 22:41:51 +00007743 if (Subscripts.empty())
7744 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007745
Sebastian Pop448712b2014-05-07 18:01:20 +00007746 DEBUG({
7747 dbgs() << "succeeded to delinearize " << *this << "\n";
7748 dbgs() << "ArrayDecl[UnknownSize]";
7749 for (const SCEV *S : Sizes)
7750 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007751
Sebastian Pop444621a2014-05-09 22:45:02 +00007752 dbgs() << "\nArrayRef";
7753 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007754 dbgs() << "[" << *S << "]";
7755 dbgs() << "\n";
7756 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007757}
Chris Lattnerd934c702004-04-02 20:23:17 +00007758
7759//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007760// SCEVCallbackVH Class Implementation
7761//===----------------------------------------------------------------------===//
7762
Dan Gohmand33a0902009-05-19 19:22:47 +00007763void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007764 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007765 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7766 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007767 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007768 // this now dangles!
7769}
7770
Dan Gohman7a066722010-07-28 01:09:07 +00007771void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007772 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007773
Dan Gohman48f82222009-05-04 22:30:44 +00007774 // Forget all the expressions associated with users of the old value,
7775 // so that future queries will recompute the expressions using the new
7776 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007777 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007778 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007779 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007780 while (!Worklist.empty()) {
7781 User *U = Worklist.pop_back_val();
7782 // Deleting the Old value will cause this to dangle. Postpone
7783 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007784 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007785 continue;
Dan Gohmanf34f8632009-07-14 14:34:04 +00007786 if (!Visited.insert(U))
7787 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007788 if (PHINode *PN = dyn_cast<PHINode>(U))
7789 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007790 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007791 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007792 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007793 // Delete the Old value.
7794 if (PHINode *PN = dyn_cast<PHINode>(Old))
7795 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007796 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007797 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007798}
7799
Dan Gohmand33a0902009-05-19 19:22:47 +00007800ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007801 : CallbackVH(V), SE(se) {}
7802
7803//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007804// ScalarEvolution Class Implementation
7805//===----------------------------------------------------------------------===//
7806
Dan Gohmanc8e23622009-04-21 23:15:49 +00007807ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007808 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7809 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007810 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007811}
7812
Chris Lattnerd934c702004-04-02 20:23:17 +00007813bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007814 this->F = &F;
Hal Finkel60db0582014-09-07 18:57:58 +00007815 AT = &getAnalysis<AssumptionTracker>();
Dan Gohmanc8e23622009-04-21 23:15:49 +00007816 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007817 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007818 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007819 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007820 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007821 return false;
7822}
7823
7824void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007825 // Iterate through all the SCEVUnknown instances and call their
7826 // destructors, so that they release their references to their values.
7827 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7828 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007829 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007830
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007831 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007832
7833 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7834 // that a loop had multiple computable exits.
7835 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7836 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7837 I != E; ++I) {
7838 I->second.clear();
7839 }
7840
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007841 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7842
Dan Gohmanc8e23622009-04-21 23:15:49 +00007843 BackedgeTakenCounts.clear();
7844 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007845 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007846 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007847 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007848 UnsignedRanges.clear();
7849 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007850 UniqueSCEVs.clear();
7851 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007852}
7853
7854void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7855 AU.setPreservesAll();
Hal Finkel60db0582014-09-07 18:57:58 +00007856 AU.addRequired<AssumptionTracker>();
Chris Lattnerd934c702004-04-02 20:23:17 +00007857 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007858 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007859 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007860}
7861
Dan Gohmanc8e23622009-04-21 23:15:49 +00007862bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007863 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007864}
7865
Dan Gohmanc8e23622009-04-21 23:15:49 +00007866static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007867 const Loop *L) {
7868 // Print all inner loops first
7869 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7870 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007871
Dan Gohmanbc694912010-01-09 18:17:45 +00007872 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007873 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007874 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007875
Dan Gohmancb0efec2009-12-18 01:14:11 +00007876 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007877 L->getExitBlocks(ExitBlocks);
7878 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007879 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007880
Dan Gohman0bddac12009-02-24 18:55:53 +00007881 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7882 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007883 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007884 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007885 }
7886
Dan Gohmanbc694912010-01-09 18:17:45 +00007887 OS << "\n"
7888 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007889 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007890 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007891
7892 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7893 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7894 } else {
7895 OS << "Unpredictable max backedge-taken count. ";
7896 }
7897
7898 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007899}
7900
Dan Gohmancb0efec2009-12-18 01:14:11 +00007901void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007902 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007903 // out SCEV values of all instructions that are interesting. Doing
7904 // this potentially causes it to create new SCEV objects though,
7905 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007906 // observable from outside the class though, so casting away the
7907 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007908 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007909
Dan Gohmanbc694912010-01-09 18:17:45 +00007910 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007911 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007912 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007913 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007914 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007915 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007916 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007917 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007918 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007919
Dan Gohmanb9063a82009-06-19 17:49:54 +00007920 const Loop *L = LI->getLoopFor((*I).getParent());
7921
Dan Gohmanaf752342009-07-07 17:06:11 +00007922 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007923 if (AtUse != SV) {
7924 OS << " --> ";
7925 AtUse->print(OS);
7926 }
7927
7928 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007929 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007930 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007931 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007932 OS << "<<Unknown>>";
7933 } else {
7934 OS << *ExitValue;
7935 }
7936 }
7937
Chris Lattnerd934c702004-04-02 20:23:17 +00007938 OS << "\n";
7939 }
7940
Dan Gohmanbc694912010-01-09 18:17:45 +00007941 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007942 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007943 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007944 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7945 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007946}
Dan Gohmane20f8242009-04-21 00:47:46 +00007947
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007948ScalarEvolution::LoopDisposition
7949ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007950 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7951 for (unsigned u = 0; u < Values.size(); u++) {
7952 if (Values[u].first == L)
7953 return Values[u].second;
7954 }
7955 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007956 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007957 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7958 for (unsigned u = Values2.size(); u > 0; u--) {
7959 if (Values2[u - 1].first == L) {
7960 Values2[u - 1].second = D;
7961 break;
7962 }
7963 }
7964 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007965}
7966
7967ScalarEvolution::LoopDisposition
7968ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007969 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00007970 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007971 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007972 case scTruncate:
7973 case scZeroExtend:
7974 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007975 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007976 case scAddRecExpr: {
7977 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7978
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007979 // If L is the addrec's loop, it's computable.
7980 if (AR->getLoop() == L)
7981 return LoopComputable;
7982
Dan Gohmanafd6db92010-11-17 21:23:15 +00007983 // Add recurrences are never invariant in the function-body (null loop).
7984 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007985 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007986
7987 // This recurrence is variant w.r.t. L if L contains AR's loop.
7988 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007989 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007990
7991 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7992 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007993 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007994
7995 // This recurrence is variant w.r.t. L if any of its operands
7996 // are variant.
7997 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7998 I != E; ++I)
7999 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008000 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008001
8002 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008003 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008004 }
8005 case scAddExpr:
8006 case scMulExpr:
8007 case scUMaxExpr:
8008 case scSMaxExpr: {
8009 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008010 bool HasVarying = false;
8011 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8012 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008013 LoopDisposition D = getLoopDisposition(*I, L);
8014 if (D == LoopVariant)
8015 return LoopVariant;
8016 if (D == LoopComputable)
8017 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008018 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008019 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008020 }
8021 case scUDivExpr: {
8022 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008023 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8024 if (LD == LoopVariant)
8025 return LoopVariant;
8026 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8027 if (RD == LoopVariant)
8028 return LoopVariant;
8029 return (LD == LoopInvariant && RD == LoopInvariant) ?
8030 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008031 }
8032 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008033 // All non-instruction values are loop invariant. All instructions are loop
8034 // invariant if they are not contained in the specified loop.
8035 // Instructions are never considered invariant in the function body
8036 // (null loop) because they are defined within the "loop".
8037 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8038 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8039 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008040 case scCouldNotCompute:
8041 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008042 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008043 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008044}
8045
8046bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8047 return getLoopDisposition(S, L) == LoopInvariant;
8048}
8049
8050bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8051 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008052}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008053
Dan Gohman8ea83d82010-11-18 00:34:22 +00008054ScalarEvolution::BlockDisposition
8055ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008056 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
8057 for (unsigned u = 0; u < Values.size(); u++) {
8058 if (Values[u].first == BB)
8059 return Values[u].second;
8060 }
8061 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00008062 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008063 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
8064 for (unsigned u = Values2.size(); u > 0; u--) {
8065 if (Values2[u - 1].first == BB) {
8066 Values2[u - 1].second = D;
8067 break;
8068 }
8069 }
8070 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008071}
8072
Dan Gohman8ea83d82010-11-18 00:34:22 +00008073ScalarEvolution::BlockDisposition
8074ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008075 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008076 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008077 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008078 case scTruncate:
8079 case scZeroExtend:
8080 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008081 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008082 case scAddRecExpr: {
8083 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008084 // to test for proper dominance too, because the instruction which
8085 // produces the addrec's value is a PHI, and a PHI effectively properly
8086 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008087 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8088 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008089 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008090 }
8091 // FALL THROUGH into SCEVNAryExpr handling.
8092 case scAddExpr:
8093 case scMulExpr:
8094 case scUMaxExpr:
8095 case scSMaxExpr: {
8096 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008097 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008098 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008099 I != E; ++I) {
8100 BlockDisposition D = getBlockDisposition(*I, BB);
8101 if (D == DoesNotDominateBlock)
8102 return DoesNotDominateBlock;
8103 if (D == DominatesBlock)
8104 Proper = false;
8105 }
8106 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008107 }
8108 case scUDivExpr: {
8109 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008110 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8111 BlockDisposition LD = getBlockDisposition(LHS, BB);
8112 if (LD == DoesNotDominateBlock)
8113 return DoesNotDominateBlock;
8114 BlockDisposition RD = getBlockDisposition(RHS, BB);
8115 if (RD == DoesNotDominateBlock)
8116 return DoesNotDominateBlock;
8117 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8118 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008119 }
8120 case scUnknown:
8121 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008122 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8123 if (I->getParent() == BB)
8124 return DominatesBlock;
8125 if (DT->properlyDominates(I->getParent(), BB))
8126 return ProperlyDominatesBlock;
8127 return DoesNotDominateBlock;
8128 }
8129 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008130 case scCouldNotCompute:
8131 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008132 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008133 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008134}
8135
8136bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8137 return getBlockDisposition(S, BB) >= DominatesBlock;
8138}
8139
8140bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8141 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008142}
Dan Gohman534749b2010-11-17 22:27:42 +00008143
Andrew Trick365e31c2012-07-13 23:33:03 +00008144namespace {
8145// Search for a SCEV expression node within an expression tree.
8146// Implements SCEVTraversal::Visitor.
8147struct SCEVSearch {
8148 const SCEV *Node;
8149 bool IsFound;
8150
8151 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8152
8153 bool follow(const SCEV *S) {
8154 IsFound |= (S == Node);
8155 return !IsFound;
8156 }
8157 bool isDone() const { return IsFound; }
8158};
8159}
8160
Dan Gohman534749b2010-11-17 22:27:42 +00008161bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008162 SCEVSearch Search(Op);
8163 visitAll(S, Search);
8164 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008165}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008166
8167void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8168 ValuesAtScopes.erase(S);
8169 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008170 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008171 UnsignedRanges.erase(S);
8172 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008173
8174 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8175 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8176 BackedgeTakenInfo &BEInfo = I->second;
8177 if (BEInfo.hasOperand(S, this)) {
8178 BEInfo.clear();
8179 BackedgeTakenCounts.erase(I++);
8180 }
8181 else
8182 ++I;
8183 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008184}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008185
8186typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008187
Alp Tokercb402912014-01-24 17:20:08 +00008188/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008189static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8190 size_t Pos = 0;
8191 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8192 Str.replace(Pos, From.size(), To.data(), To.size());
8193 Pos += To.size();
8194 }
8195}
8196
Benjamin Kramer214935e2012-10-26 17:31:32 +00008197/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8198static void
8199getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8200 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8201 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8202
8203 std::string &S = Map[L];
8204 if (S.empty()) {
8205 raw_string_ostream OS(S);
8206 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008207
8208 // false and 0 are semantically equivalent. This can happen in dead loops.
8209 replaceSubString(OS.str(), "false", "0");
8210 // Remove wrap flags, their use in SCEV is highly fragile.
8211 // FIXME: Remove this when SCEV gets smarter about them.
8212 replaceSubString(OS.str(), "<nw>", "");
8213 replaceSubString(OS.str(), "<nsw>", "");
8214 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008215 }
8216 }
8217}
8218
8219void ScalarEvolution::verifyAnalysis() const {
8220 if (!VerifySCEV)
8221 return;
8222
8223 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8224
8225 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8226 // FIXME: It would be much better to store actual values instead of strings,
8227 // but SCEV pointers will change if we drop the caches.
8228 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8229 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8230 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8231
8232 // Gather stringified backedge taken counts for all loops without using
8233 // SCEV's caches.
8234 SE.releaseMemory();
8235 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8236 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8237
8238 // Now compare whether they're the same with and without caches. This allows
8239 // verifying that no pass changed the cache.
8240 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8241 "New loops suddenly appeared!");
8242
8243 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8244 OldE = BackedgeDumpsOld.end(),
8245 NewI = BackedgeDumpsNew.begin();
8246 OldI != OldE; ++OldI, ++NewI) {
8247 assert(OldI->first == NewI->first && "Loop order changed!");
8248
8249 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8250 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008251 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008252 // means that a pass is buggy or SCEV has to learn a new pattern but is
8253 // usually not harmful.
8254 if (OldI->second != NewI->second &&
8255 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008256 NewI->second.find("undef") == std::string::npos &&
8257 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008258 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008259 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008260 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008261 << "' changed from '" << OldI->second
8262 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008263 std::abort();
8264 }
8265 }
8266
8267 // TODO: Verify more things.
8268}