blob: cf45fe86359ea8c610cd9f6ed3c4a940ead4572d [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/ADT/STLExtras.h"
63#include "llvm/ADT/SmallPtrSet.h"
64#include "llvm/ADT/Statistic.h"
Hal Finkel60db0582014-09-07 18:57:58 +000065#include "llvm/Analysis/AssumptionTracker.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000066#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000067#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000068#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000069#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000070#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000071#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000072#include "llvm/IR/Constants.h"
73#include "llvm/IR/DataLayout.h"
74#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000075#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000076#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000077#include "llvm/IR/GlobalAlias.h"
78#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000079#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000080#include "llvm/IR/Instructions.h"
81#include "llvm/IR/LLVMContext.h"
82#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000083#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000084#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000085#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000086#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000087#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000088#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000090using namespace llvm;
91
Chandler Carruthf1221bd2014-04-22 02:48:03 +000092#define DEBUG_TYPE "scalar-evolution"
93
Chris Lattner57ef9422006-12-19 22:30:33 +000094STATISTIC(NumArrayLenItCounts,
95 "Number of trip counts computed with array length");
96STATISTIC(NumTripCountsComputed,
97 "Number of loops with predictable loop counts");
98STATISTIC(NumTripCountsNotComputed,
99 "Number of loops without predictable loop counts");
100STATISTIC(NumBruteForceTripCountsComputed,
101 "Number of loops with trip counts computed by force");
102
Dan Gohmand78c4002008-05-13 00:00:25 +0000103static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000104MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
105 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000106 "symbolically execute a constant "
107 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000108 cl::init(100));
109
Benjamin Kramer214935e2012-10-26 17:31:32 +0000110// FIXME: Enable this with XDEBUG when the test suite is clean.
111static cl::opt<bool>
112VerifySCEV("verify-scev",
113 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
114
Owen Anderson8ac477f2010-10-12 19:48:12 +0000115INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
116 "Scalar Evolution Analysis", false, true)
Hal Finkel60db0582014-09-07 18:57:58 +0000117INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000118INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000119INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000120INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000121INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000122 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000123char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000124
125//===----------------------------------------------------------------------===//
126// SCEV class definitions
127//===----------------------------------------------------------------------===//
128
129//===----------------------------------------------------------------------===//
130// Implementation of the SCEV class.
131//
Dan Gohman3423e722009-06-30 20:13:32 +0000132
Manman Ren49d684e2012-09-12 05:06:18 +0000133#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000134void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000135 print(dbgs());
136 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000137}
Manman Renc3366cc2012-09-06 19:55:56 +0000138#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000139
Dan Gohman534749b2010-11-17 22:27:42 +0000140void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000141 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000142 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000143 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000144 return;
145 case scTruncate: {
146 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
147 const SCEV *Op = Trunc->getOperand();
148 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
149 << *Trunc->getType() << ")";
150 return;
151 }
152 case scZeroExtend: {
153 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
154 const SCEV *Op = ZExt->getOperand();
155 OS << "(zext " << *Op->getType() << " " << *Op << " to "
156 << *ZExt->getType() << ")";
157 return;
158 }
159 case scSignExtend: {
160 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
161 const SCEV *Op = SExt->getOperand();
162 OS << "(sext " << *Op->getType() << " " << *Op << " to "
163 << *SExt->getType() << ")";
164 return;
165 }
166 case scAddRecExpr: {
167 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
168 OS << "{" << *AR->getOperand(0);
169 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
170 OS << ",+," << *AR->getOperand(i);
171 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000172 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000173 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNW) &&
177 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
178 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000179 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000180 OS << ">";
181 return;
182 }
183 case scAddExpr:
184 case scMulExpr:
185 case scUMaxExpr:
186 case scSMaxExpr: {
187 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000188 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000189 switch (NAry->getSCEVType()) {
190 case scAddExpr: OpStr = " + "; break;
191 case scMulExpr: OpStr = " * "; break;
192 case scUMaxExpr: OpStr = " umax "; break;
193 case scSMaxExpr: OpStr = " smax "; break;
194 }
195 OS << "(";
196 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
197 I != E; ++I) {
198 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000199 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000200 OS << OpStr;
201 }
202 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000203 switch (NAry->getSCEVType()) {
204 case scAddExpr:
205 case scMulExpr:
206 if (NAry->getNoWrapFlags(FlagNUW))
207 OS << "<nuw>";
208 if (NAry->getNoWrapFlags(FlagNSW))
209 OS << "<nsw>";
210 }
Dan Gohman534749b2010-11-17 22:27:42 +0000211 return;
212 }
213 case scUDivExpr: {
214 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
215 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
216 return;
217 }
218 case scUnknown: {
219 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000220 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000221 if (U->isSizeOf(AllocTy)) {
222 OS << "sizeof(" << *AllocTy << ")";
223 return;
224 }
225 if (U->isAlignOf(AllocTy)) {
226 OS << "alignof(" << *AllocTy << ")";
227 return;
228 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000229
Chris Lattner229907c2011-07-18 04:54:35 +0000230 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000231 Constant *FieldNo;
232 if (U->isOffsetOf(CTy, FieldNo)) {
233 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000234 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000235 OS << ")";
236 return;
237 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000238
Dan Gohman534749b2010-11-17 22:27:42 +0000239 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000240 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000241 return;
242 }
243 case scCouldNotCompute:
244 OS << "***COULDNOTCOMPUTE***";
245 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000246 }
247 llvm_unreachable("Unknown SCEV kind!");
248}
249
Chris Lattner229907c2011-07-18 04:54:35 +0000250Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000251 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000252 case scConstant:
253 return cast<SCEVConstant>(this)->getType();
254 case scTruncate:
255 case scZeroExtend:
256 case scSignExtend:
257 return cast<SCEVCastExpr>(this)->getType();
258 case scAddRecExpr:
259 case scMulExpr:
260 case scUMaxExpr:
261 case scSMaxExpr:
262 return cast<SCEVNAryExpr>(this)->getType();
263 case scAddExpr:
264 return cast<SCEVAddExpr>(this)->getType();
265 case scUDivExpr:
266 return cast<SCEVUDivExpr>(this)->getType();
267 case scUnknown:
268 return cast<SCEVUnknown>(this)->getType();
269 case scCouldNotCompute:
270 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000271 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000272 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273}
274
Dan Gohmanbe928e32008-06-18 16:23:07 +0000275bool SCEV::isZero() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isZero();
278 return false;
279}
280
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000281bool SCEV::isOne() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isOne();
284 return false;
285}
Chris Lattnerd934c702004-04-02 20:23:17 +0000286
Dan Gohman18a96bb2009-06-24 00:30:26 +0000287bool SCEV::isAllOnesValue() const {
288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289 return SC->getValue()->isAllOnesValue();
290 return false;
291}
292
Andrew Trick881a7762012-01-07 00:27:31 +0000293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297 if (!Mul) return false;
298
299 // If there is a constant factor, it will be first.
300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301 if (!SC) return false;
302
303 // Return true if the value is negative, this matches things like (-42 * V).
304 return SC->getValue()->getValue().isNegative();
305}
306
Owen Anderson04052ec2009-06-22 21:57:23 +0000307SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000309
Chris Lattnerd934c702004-04-02 20:23:17 +0000310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311 return S->getSCEVType() == scCouldNotCompute;
312}
313
Dan Gohmanaf752342009-07-07 17:06:11 +0000314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000315 FoldingSetNodeID ID;
316 ID.AddInteger(scConstant);
317 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000318 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 UniqueSCEVs.InsertNode(S, IP);
322 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000323}
Chris Lattnerd934c702004-04-02 20:23:17 +0000324
Nick Lewycky31eaca52014-01-27 10:04:03 +0000325const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000326 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000327}
328
Dan Gohmanaf752342009-07-07 17:06:11 +0000329const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000332 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000333}
334
Dan Gohman24ceda82010-06-18 19:54:20 +0000335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000336 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000338
Dan Gohman24ceda82010-06-18 19:54:20 +0000339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000344 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345}
Chris Lattnerd934c702004-04-02 20:23:17 +0000346
Dan Gohman24ceda82010-06-18 19:54:20 +0000347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000352 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000353}
354
Dan Gohman24ceda82010-06-18 19:54:20 +0000355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000356 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000357 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000360 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000361}
362
Dan Gohman7cac9572010-08-02 23:49:30 +0000363void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000364 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000365 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000366
367 // Remove this SCEVUnknown from the uniquing map.
368 SE->UniqueSCEVs.RemoveNode(this);
369
370 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000371 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000375 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000376 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000377
378 // Remove this SCEVUnknown from the uniquing map.
379 SE->UniqueSCEVs.RemoveNode(this);
380
381 // Update this SCEVUnknown to point to the new value. This is needed
382 // because there may still be outstanding SCEVs which still point to
383 // this SCEVUnknown.
384 setValPtr(New);
385}
386
Chris Lattner229907c2011-07-18 04:54:35 +0000387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000389 if (VCE->getOpcode() == Instruction::PtrToInt)
390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000391 if (CE->getOpcode() == Instruction::GetElementPtr &&
392 CE->getOperand(0)->isNullValue() &&
393 CE->getNumOperands() == 2)
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395 if (CI->isOne()) {
396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397 ->getElementType();
398 return true;
399 }
Dan Gohmancf913832010-01-28 02:15:55 +0000400
401 return false;
402}
403
Chris Lattner229907c2011-07-18 04:54:35 +0000404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000406 if (VCE->getOpcode() == Instruction::PtrToInt)
407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000408 if (CE->getOpcode() == Instruction::GetElementPtr &&
409 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000410 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000412 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 if (!STy->isPacked() &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(1)->isNullValue()) {
416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417 if (CI->isOne() &&
418 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000419 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000420 AllocTy = STy->getElementType(1);
421 return true;
422 }
423 }
424 }
Dan Gohmancf913832010-01-28 02:15:55 +0000425
426 return false;
427}
428
Chris Lattner229907c2011-07-18 04:54:35 +0000429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getNumOperands() == 3 &&
435 CE->getOperand(0)->isNullValue() &&
436 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000437 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439 // Ignore vector types here so that ScalarEvolutionExpander doesn't
440 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000441 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000442 CTy = Ty;
443 FieldNo = CE->getOperand(2);
444 return true;
445 }
446 }
447
448 return false;
449}
450
Chris Lattnereb3e8402004-06-20 06:23:15 +0000451//===----------------------------------------------------------------------===//
452// SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457 /// than the complexity of the RHS. This comparator is used to canonicalize
458 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000459 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000460 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000461 public:
Dan Gohman992db002010-07-23 21:18:55 +0000462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463
Dan Gohman27065672010-08-27 15:26:01 +0000464 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000465 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000466 return compare(LHS, RHS) < 0;
467 }
468
469 // Return negative, zero, or positive, if LHS is less than, equal to, or
470 // greater than RHS, respectively. A three-way result allows recursive
471 // comparisons to be more efficient.
472 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000473 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000475 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000476
Dan Gohman9ba542c2009-05-07 14:39:04 +0000477 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000480 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000481
Dan Gohman24ceda82010-06-18 19:54:20 +0000482 // Aside from the getSCEVType() ordering, the particular ordering
483 // isn't very important except that it's beneficial to be consistent,
484 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000485 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000486 case scUnknown: {
487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000489
490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000492 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000493
494 // Order pointer values after integer values. This helps SCEVExpander
495 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000496 bool LIsPointer = LV->getType()->isPointerTy(),
497 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000498 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000499 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000500
501 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000502 unsigned LID = LV->getValueID(),
503 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000504 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000505 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000506
507 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000508 if (const Argument *LA = dyn_cast<Argument>(LV)) {
509 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000512 }
513
Dan Gohman27065672010-08-27 15:26:01 +0000514 // For instructions, compare their loop depth, and their operand
515 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000518
519 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 const BasicBlock *LParent = LInst->getParent(),
521 *RParent = RInst->getParent();
522 if (LParent != RParent) {
523 unsigned LDepth = LI->getLoopDepth(LParent),
524 RDepth = LI->getLoopDepth(RParent);
525 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000526 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000527 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000528
529 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000530 unsigned LNumOps = LInst->getNumOperands(),
531 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000532 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000533 }
534
Dan Gohman27065672010-08-27 15:26:01 +0000535 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000536 }
537
Dan Gohman27065672010-08-27 15:26:01 +0000538 case scConstant: {
539 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000540 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000541
542 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000543 const APInt &LA = LC->getValue()->getValue();
544 const APInt &RA = RC->getValue()->getValue();
545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000546 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000547 return (int)LBitWidth - (int)RBitWidth;
548 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000549 }
550
Dan Gohman27065672010-08-27 15:26:01 +0000551 case scAddRecExpr: {
552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000554
555 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557 if (LLoop != RLoop) {
558 unsigned LDepth = LLoop->getLoopDepth(),
559 RDepth = RLoop->getLoopDepth();
560 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000561 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000562 }
Dan Gohman27065672010-08-27 15:26:01 +0000563
564 // Addrec complexity grows with operand count.
565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566 if (LNumOps != RNumOps)
567 return (int)LNumOps - (int)RNumOps;
568
569 // Lexicographically compare.
570 for (unsigned i = 0; i != LNumOps; ++i) {
571 long X = compare(LA->getOperand(i), RA->getOperand(i));
572 if (X != 0)
573 return X;
574 }
575
576 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000577 }
578
Dan Gohman27065672010-08-27 15:26:01 +0000579 case scAddExpr:
580 case scMulExpr:
581 case scSMaxExpr:
582 case scUMaxExpr: {
583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000585
586 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000588 if (LNumOps != RNumOps)
589 return (int)LNumOps - (int)RNumOps;
590
Dan Gohman5ae31022010-07-23 21:20:52 +0000591 for (unsigned i = 0; i != LNumOps; ++i) {
592 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000593 return 1;
594 long X = compare(LC->getOperand(i), RC->getOperand(i));
595 if (X != 0)
596 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000597 }
Dan Gohman27065672010-08-27 15:26:01 +0000598 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
600
Dan Gohman27065672010-08-27 15:26:01 +0000601 case scUDivExpr: {
602 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000603 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000604
605 // Lexicographically compare udiv expressions.
606 long X = compare(LC->getLHS(), RC->getLHS());
607 if (X != 0)
608 return X;
609 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000610 }
611
Dan Gohman27065672010-08-27 15:26:01 +0000612 case scTruncate:
613 case scZeroExtend:
614 case scSignExtend: {
615 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000616 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000617
618 // Compare cast expressions by operand.
619 return compare(LC->getOperand(), RC->getOperand());
620 }
621
Benjamin Kramer987b8502014-02-11 19:02:55 +0000622 case scCouldNotCompute:
623 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000624 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000625 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000626 }
627 };
628}
629
630/// GroupByComplexity - Given a list of SCEV objects, order them by their
631/// complexity, and group objects of the same complexity together by value.
632/// When this routine is finished, we know that any duplicates in the vector are
633/// consecutive and that complexity is monotonically increasing.
634///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000635/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000636/// results from this routine. In other words, we don't want the results of
637/// this to depend on where the addresses of various SCEV objects happened to
638/// land in memory.
639///
Dan Gohmanaf752342009-07-07 17:06:11 +0000640static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000641 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000642 if (Ops.size() < 2) return; // Noop
643 if (Ops.size() == 2) {
644 // This is the common case, which also happens to be trivially simple.
645 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000646 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
647 if (SCEVComplexityCompare(LI)(RHS, LHS))
648 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000649 return;
650 }
651
Dan Gohman24ceda82010-06-18 19:54:20 +0000652 // Do the rough sort by complexity.
653 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
654
655 // Now that we are sorted by complexity, group elements of the same
656 // complexity. Note that this is, at worst, N^2, but the vector is likely to
657 // be extremely short in practice. Note that we take this approach because we
658 // do not want to depend on the addresses of the objects we are grouping.
659 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
660 const SCEV *S = Ops[i];
661 unsigned Complexity = S->getSCEVType();
662
663 // If there are any objects of the same complexity and same value as this
664 // one, group them.
665 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
666 if (Ops[j] == S) { // Found a duplicate.
667 // Move it to immediately after i'th element.
668 std::swap(Ops[i+1], Ops[j]);
669 ++i; // no need to rescan it.
670 if (i == e-2) return; // Done!
671 }
672 }
673 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000674}
675
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000676static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
677 APInt A = C1->getValue()->getValue();
678 APInt B = C2->getValue()->getValue();
679 uint32_t ABW = A.getBitWidth();
680 uint32_t BBW = B.getBitWidth();
681
682 if (ABW > BBW)
683 B = B.sext(ABW);
684 else if (ABW < BBW)
685 A = A.sext(BBW);
686
687 return APIntOps::srem(A, B);
688}
689
690static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
691 APInt A = C1->getValue()->getValue();
692 APInt B = C2->getValue()->getValue();
693 uint32_t ABW = A.getBitWidth();
694 uint32_t BBW = B.getBitWidth();
695
696 if (ABW > BBW)
697 B = B.sext(ABW);
698 else if (ABW < BBW)
699 A = A.sext(BBW);
700
701 return APIntOps::sdiv(A, B);
702}
703
704namespace {
705struct FindSCEVSize {
706 int Size;
707 FindSCEVSize() : Size(0) {}
708
709 bool follow(const SCEV *S) {
710 ++Size;
711 // Keep looking at all operands of S.
712 return true;
713 }
714 bool isDone() const {
715 return false;
716 }
717};
718}
719
720// Returns the size of the SCEV S.
721static inline int sizeOfSCEV(const SCEV *S) {
722 FindSCEVSize F;
723 SCEVTraversal<FindSCEVSize> ST(F);
724 ST.visitAll(S);
725 return F.Size;
726}
727
728namespace {
729
730struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
731public:
732 // Computes the Quotient and Remainder of the division of Numerator by
733 // Denominator.
734 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
735 const SCEV *Denominator, const SCEV **Quotient,
736 const SCEV **Remainder) {
737 assert(Numerator && Denominator && "Uninitialized SCEV");
738
739 SCEVDivision D(SE, Numerator, Denominator);
740
741 // Check for the trivial case here to avoid having to check for it in the
742 // rest of the code.
743 if (Numerator == Denominator) {
744 *Quotient = D.One;
745 *Remainder = D.Zero;
746 return;
747 }
748
749 if (Numerator->isZero()) {
750 *Quotient = D.Zero;
751 *Remainder = D.Zero;
752 return;
753 }
754
755 // Split the Denominator when it is a product.
756 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
757 const SCEV *Q, *R;
758 *Quotient = Numerator;
759 for (const SCEV *Op : T->operands()) {
760 divide(SE, *Quotient, Op, &Q, &R);
761 *Quotient = Q;
762
763 // Bail out when the Numerator is not divisible by one of the terms of
764 // the Denominator.
765 if (!R->isZero()) {
766 *Quotient = D.Zero;
767 *Remainder = Numerator;
768 return;
769 }
770 }
771 *Remainder = D.Zero;
772 return;
773 }
774
775 D.visit(Numerator);
776 *Quotient = D.Quotient;
777 *Remainder = D.Remainder;
778 }
779
780 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
781 : SE(S), Denominator(Denominator) {
782 Zero = SE.getConstant(Denominator->getType(), 0);
783 One = SE.getConstant(Denominator->getType(), 1);
784
785 // By default, we don't know how to divide Expr by Denominator.
786 // Providing the default here simplifies the rest of the code.
787 Quotient = Zero;
788 Remainder = Numerator;
789 }
790
791 // Except in the trivial case described above, we do not know how to divide
792 // Expr by Denominator for the following functions with empty implementation.
793 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
794 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
795 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
796 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
797 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
798 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
799 void visitUnknown(const SCEVUnknown *Numerator) {}
800 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
801
802 void visitConstant(const SCEVConstant *Numerator) {
803 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
804 Quotient = SE.getConstant(sdiv(Numerator, D));
805 Remainder = SE.getConstant(srem(Numerator, D));
806 return;
807 }
808 }
809
810 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
811 const SCEV *StartQ, *StartR, *StepQ, *StepR;
812 assert(Numerator->isAffine() && "Numerator should be affine");
813 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
814 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
815 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
816 Numerator->getNoWrapFlags());
817 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
818 Numerator->getNoWrapFlags());
819 }
820
821 void visitAddExpr(const SCEVAddExpr *Numerator) {
822 SmallVector<const SCEV *, 2> Qs, Rs;
823 Type *Ty = Denominator->getType();
824
825 for (const SCEV *Op : Numerator->operands()) {
826 const SCEV *Q, *R;
827 divide(SE, Op, Denominator, &Q, &R);
828
829 // Bail out if types do not match.
830 if (Ty != Q->getType() || Ty != R->getType()) {
831 Quotient = Zero;
832 Remainder = Numerator;
833 return;
834 }
835
836 Qs.push_back(Q);
837 Rs.push_back(R);
838 }
839
840 if (Qs.size() == 1) {
841 Quotient = Qs[0];
842 Remainder = Rs[0];
843 return;
844 }
845
846 Quotient = SE.getAddExpr(Qs);
847 Remainder = SE.getAddExpr(Rs);
848 }
849
850 void visitMulExpr(const SCEVMulExpr *Numerator) {
851 SmallVector<const SCEV *, 2> Qs;
852 Type *Ty = Denominator->getType();
853
854 bool FoundDenominatorTerm = false;
855 for (const SCEV *Op : Numerator->operands()) {
856 // Bail out if types do not match.
857 if (Ty != Op->getType()) {
858 Quotient = Zero;
859 Remainder = Numerator;
860 return;
861 }
862
863 if (FoundDenominatorTerm) {
864 Qs.push_back(Op);
865 continue;
866 }
867
868 // Check whether Denominator divides one of the product operands.
869 const SCEV *Q, *R;
870 divide(SE, Op, Denominator, &Q, &R);
871 if (!R->isZero()) {
872 Qs.push_back(Op);
873 continue;
874 }
875
876 // Bail out if types do not match.
877 if (Ty != Q->getType()) {
878 Quotient = Zero;
879 Remainder = Numerator;
880 return;
881 }
882
883 FoundDenominatorTerm = true;
884 Qs.push_back(Q);
885 }
886
887 if (FoundDenominatorTerm) {
888 Remainder = Zero;
889 if (Qs.size() == 1)
890 Quotient = Qs[0];
891 else
892 Quotient = SE.getMulExpr(Qs);
893 return;
894 }
895
896 if (!isa<SCEVUnknown>(Denominator)) {
897 Quotient = Zero;
898 Remainder = Numerator;
899 return;
900 }
901
902 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
903 ValueToValueMap RewriteMap;
904 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
905 cast<SCEVConstant>(Zero)->getValue();
906 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
907
908 if (Remainder->isZero()) {
909 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
910 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
911 cast<SCEVConstant>(One)->getValue();
912 Quotient =
913 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
914 return;
915 }
916
917 // Quotient is (Numerator - Remainder) divided by Denominator.
918 const SCEV *Q, *R;
919 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
920 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
921 // This SCEV does not seem to simplify: fail the division here.
922 Quotient = Zero;
923 Remainder = Numerator;
924 return;
925 }
926 divide(SE, Diff, Denominator, &Q, &R);
927 assert(R == Zero &&
928 "(Numerator - Remainder) should evenly divide Denominator");
929 Quotient = Q;
930 }
931
932private:
933 ScalarEvolution &SE;
934 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
935};
936}
937
Chris Lattnerd934c702004-04-02 20:23:17 +0000938
Chris Lattnerd934c702004-04-02 20:23:17 +0000939
940//===----------------------------------------------------------------------===//
941// Simple SCEV method implementations
942//===----------------------------------------------------------------------===//
943
Eli Friedman61f67622008-08-04 23:49:06 +0000944/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000945/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000946static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000947 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000948 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // Handle the simplest case efficiently.
950 if (K == 1)
951 return SE.getTruncateOrZeroExtend(It, ResultTy);
952
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 // We are using the following formula for BC(It, K):
954 //
955 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
956 //
Eli Friedman61f67622008-08-04 23:49:06 +0000957 // Suppose, W is the bitwidth of the return value. We must be prepared for
958 // overflow. Hence, we must assure that the result of our computation is
959 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
960 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000961 //
Eli Friedman61f67622008-08-04 23:49:06 +0000962 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000963 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000964 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
965 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000966 //
Eli Friedman61f67622008-08-04 23:49:06 +0000967 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000968 //
Eli Friedman61f67622008-08-04 23:49:06 +0000969 // This formula is trivially equivalent to the previous formula. However,
970 // this formula can be implemented much more efficiently. The trick is that
971 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
972 // arithmetic. To do exact division in modular arithmetic, all we have
973 // to do is multiply by the inverse. Therefore, this step can be done at
974 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000975 //
Eli Friedman61f67622008-08-04 23:49:06 +0000976 // The next issue is how to safely do the division by 2^T. The way this
977 // is done is by doing the multiplication step at a width of at least W + T
978 // bits. This way, the bottom W+T bits of the product are accurate. Then,
979 // when we perform the division by 2^T (which is equivalent to a right shift
980 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
981 // truncated out after the division by 2^T.
982 //
983 // In comparison to just directly using the first formula, this technique
984 // is much more efficient; using the first formula requires W * K bits,
985 // but this formula less than W + K bits. Also, the first formula requires
986 // a division step, whereas this formula only requires multiplies and shifts.
987 //
988 // It doesn't matter whether the subtraction step is done in the calculation
989 // width or the input iteration count's width; if the subtraction overflows,
990 // the result must be zero anyway. We prefer here to do it in the width of
991 // the induction variable because it helps a lot for certain cases; CodeGen
992 // isn't smart enough to ignore the overflow, which leads to much less
993 // efficient code if the width of the subtraction is wider than the native
994 // register width.
995 //
996 // (It's possible to not widen at all by pulling out factors of 2 before
997 // the multiplication; for example, K=2 can be calculated as
998 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
999 // extra arithmetic, so it's not an obvious win, and it gets
1000 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001001
Eli Friedman61f67622008-08-04 23:49:06 +00001002 // Protection from insane SCEVs; this bound is conservative,
1003 // but it probably doesn't matter.
1004 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +00001005 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001006
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001007 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001008
Eli Friedman61f67622008-08-04 23:49:06 +00001009 // Calculate K! / 2^T and T; we divide out the factors of two before
1010 // multiplying for calculating K! / 2^T to avoid overflow.
1011 // Other overflow doesn't matter because we only care about the bottom
1012 // W bits of the result.
1013 APInt OddFactorial(W, 1);
1014 unsigned T = 1;
1015 for (unsigned i = 3; i <= K; ++i) {
1016 APInt Mult(W, i);
1017 unsigned TwoFactors = Mult.countTrailingZeros();
1018 T += TwoFactors;
1019 Mult = Mult.lshr(TwoFactors);
1020 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001021 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001022
Eli Friedman61f67622008-08-04 23:49:06 +00001023 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001024 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001025
Dan Gohman8b0a4192010-03-01 17:49:51 +00001026 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001027 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001028
1029 // Calculate the multiplicative inverse of K! / 2^T;
1030 // this multiplication factor will perform the exact division by
1031 // K! / 2^T.
1032 APInt Mod = APInt::getSignedMinValue(W+1);
1033 APInt MultiplyFactor = OddFactorial.zext(W+1);
1034 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1035 MultiplyFactor = MultiplyFactor.trunc(W);
1036
1037 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001038 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001039 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001040 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001041 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001042 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001043 Dividend = SE.getMulExpr(Dividend,
1044 SE.getTruncateOrZeroExtend(S, CalculationTy));
1045 }
1046
1047 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001048 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001049
1050 // Truncate the result, and divide by K! / 2^T.
1051
1052 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1053 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001054}
1055
Chris Lattnerd934c702004-04-02 20:23:17 +00001056/// evaluateAtIteration - Return the value of this chain of recurrences at
1057/// the specified iteration number. We can evaluate this recurrence by
1058/// multiplying each element in the chain by the binomial coefficient
1059/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1060///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001061/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001062///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001063/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001064///
Dan Gohmanaf752342009-07-07 17:06:11 +00001065const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001066 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001067 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001068 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001069 // The computation is correct in the face of overflow provided that the
1070 // multiplication is performed _after_ the evaluation of the binomial
1071 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001072 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001073 if (isa<SCEVCouldNotCompute>(Coeff))
1074 return Coeff;
1075
1076 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001077 }
1078 return Result;
1079}
1080
Chris Lattnerd934c702004-04-02 20:23:17 +00001081//===----------------------------------------------------------------------===//
1082// SCEV Expression folder implementations
1083//===----------------------------------------------------------------------===//
1084
Dan Gohmanaf752342009-07-07 17:06:11 +00001085const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001086 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001087 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001088 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001089 assert(isSCEVable(Ty) &&
1090 "This is not a conversion to a SCEVable type!");
1091 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001092
Dan Gohman3a302cb2009-07-13 20:50:19 +00001093 FoldingSetNodeID ID;
1094 ID.AddInteger(scTruncate);
1095 ID.AddPointer(Op);
1096 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001097 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001098 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1099
Dan Gohman3423e722009-06-30 20:13:32 +00001100 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001101 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001102 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001103 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001104
Dan Gohman79af8542009-04-22 16:20:48 +00001105 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001106 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001107 return getTruncateExpr(ST->getOperand(), Ty);
1108
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001109 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001110 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001111 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1112
1113 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001114 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001115 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1116
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001117 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1118 // eliminate all the truncates.
1119 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1120 SmallVector<const SCEV *, 4> Operands;
1121 bool hasTrunc = false;
1122 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1123 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1124 hasTrunc = isa<SCEVTruncateExpr>(S);
1125 Operands.push_back(S);
1126 }
1127 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001128 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001130 }
1131
Nick Lewycky5c901f32011-01-19 18:56:00 +00001132 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1133 // eliminate all the truncates.
1134 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1135 SmallVector<const SCEV *, 4> Operands;
1136 bool hasTrunc = false;
1137 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1138 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1139 hasTrunc = isa<SCEVTruncateExpr>(S);
1140 Operands.push_back(S);
1141 }
1142 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001143 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001144 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001145 }
1146
Dan Gohman5a728c92009-06-18 16:24:47 +00001147 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001148 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001149 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001150 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001151 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001152 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001153 }
1154
Dan Gohman89dd42a2010-06-25 18:47:08 +00001155 // The cast wasn't folded; create an explicit cast node. We can reuse
1156 // the existing insert position since if we get here, we won't have
1157 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001158 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1159 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001160 UniqueSCEVs.InsertNode(S, IP);
1161 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001162}
1163
Dan Gohmanaf752342009-07-07 17:06:11 +00001164const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001165 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001166 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001167 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001168 assert(isSCEVable(Ty) &&
1169 "This is not a conversion to a SCEVable type!");
1170 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001171
Dan Gohman3423e722009-06-30 20:13:32 +00001172 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001173 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1174 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001175 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001176
Dan Gohman79af8542009-04-22 16:20:48 +00001177 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001178 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001179 return getZeroExtendExpr(SZ->getOperand(), Ty);
1180
Dan Gohman74a0ba12009-07-13 20:55:53 +00001181 // Before doing any expensive analysis, check to see if we've already
1182 // computed a SCEV for this Op and Ty.
1183 FoldingSetNodeID ID;
1184 ID.AddInteger(scZeroExtend);
1185 ID.AddPointer(Op);
1186 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001187 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001188 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1189
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001190 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1191 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1192 // It's possible the bits taken off by the truncate were all zero bits. If
1193 // so, we should be able to simplify this further.
1194 const SCEV *X = ST->getOperand();
1195 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001196 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1197 unsigned NewBits = getTypeSizeInBits(Ty);
1198 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001199 CR.zextOrTrunc(NewBits)))
1200 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001201 }
1202
Dan Gohman76466372009-04-27 20:16:15 +00001203 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001204 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001205 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001206 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001207 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001208 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001209 const SCEV *Start = AR->getStart();
1210 const SCEV *Step = AR->getStepRecurrence(*this);
1211 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1212 const Loop *L = AR->getLoop();
1213
Dan Gohman62ef6a72009-07-25 01:22:26 +00001214 // If we have special knowledge that this addrec won't overflow,
1215 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001216 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +00001217 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1218 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001219 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001220
Dan Gohman76466372009-04-27 20:16:15 +00001221 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1222 // Note that this serves two purposes: It filters out loops that are
1223 // simply not analyzable, and it covers the case where this code is
1224 // being called from within backedge-taken count analysis, such that
1225 // attempting to ask for the backedge-taken count would likely result
1226 // in infinite recursion. In the later case, the analysis code will
1227 // cope with a conservative value, and it will take care to purge
1228 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001229 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001230 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001231 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001232 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001233
1234 // Check whether the backedge-taken count can be losslessly casted to
1235 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001236 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001237 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001238 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001239 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1240 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001241 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001242 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001243 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001244 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1245 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1246 const SCEV *WideMaxBECount =
1247 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001248 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001249 getAddExpr(WideStart,
1250 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001251 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001252 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001253 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1254 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001255 // Return the expression with the addrec on the outside.
1256 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1257 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001258 L, AR->getNoWrapFlags());
1259 }
Dan Gohman76466372009-04-27 20:16:15 +00001260 // Similar to above, only this time treat the step value as signed.
1261 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001262 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001263 getAddExpr(WideStart,
1264 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001265 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001266 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001267 // Cache knowledge of AR NW, which is propagated to this AddRec.
1268 // Negative step causes unsigned wrap, but it still can't self-wrap.
1269 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001270 // Return the expression with the addrec on the outside.
1271 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1272 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001273 L, AR->getNoWrapFlags());
1274 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001275 }
1276
1277 // If the backedge is guarded by a comparison with the pre-inc value
1278 // the addrec is safe. Also, if the entry is guarded by a comparison
1279 // with the start value and the backedge is guarded by a comparison
1280 // with the post-inc value, the addrec is safe.
1281 if (isKnownPositive(Step)) {
1282 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1283 getUnsignedRange(Step).getUnsignedMax());
1284 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001285 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001286 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001287 AR->getPostIncExpr(*this), N))) {
1288 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1289 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001290 // Return the expression with the addrec on the outside.
1291 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1292 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001293 L, AR->getNoWrapFlags());
1294 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001295 } else if (isKnownNegative(Step)) {
1296 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1297 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001298 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1299 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001300 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001301 AR->getPostIncExpr(*this), N))) {
1302 // Cache knowledge of AR NW, which is propagated to this AddRec.
1303 // Negative step causes unsigned wrap, but it still can't self-wrap.
1304 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1305 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001306 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1307 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001308 L, AR->getNoWrapFlags());
1309 }
Dan Gohman76466372009-04-27 20:16:15 +00001310 }
1311 }
1312 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001313
Dan Gohman74a0ba12009-07-13 20:55:53 +00001314 // The cast wasn't folded; create an explicit cast node.
1315 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001317 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1318 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001319 UniqueSCEVs.InsertNode(S, IP);
1320 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001321}
1322
Andrew Trick812276e2011-05-31 21:17:47 +00001323// Get the limit of a recurrence such that incrementing by Step cannot cause
1324// signed overflow as long as the value of the recurrence within the loop does
1325// not exceed this limit before incrementing.
1326static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1327 ICmpInst::Predicate *Pred,
1328 ScalarEvolution *SE) {
1329 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1330 if (SE->isKnownPositive(Step)) {
1331 *Pred = ICmpInst::ICMP_SLT;
1332 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1333 SE->getSignedRange(Step).getSignedMax());
1334 }
1335 if (SE->isKnownNegative(Step)) {
1336 *Pred = ICmpInst::ICMP_SGT;
1337 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1338 SE->getSignedRange(Step).getSignedMin());
1339 }
Craig Topper9f008862014-04-15 04:59:12 +00001340 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001341}
1342
1343// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1344// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1345// or postincrement sibling. This allows normalizing a sign extended AddRec as
1346// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1347// result, the expression "Step + sext(PreIncAR)" is congruent with
1348// "sext(PostIncAR)"
1349static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001350 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001351 ScalarEvolution *SE) {
1352 const Loop *L = AR->getLoop();
1353 const SCEV *Start = AR->getStart();
1354 const SCEV *Step = AR->getStepRecurrence(*SE);
1355
1356 // Check for a simple looking step prior to loop entry.
1357 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001358 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001359 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001360
1361 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1362 // subtraction is expensive. For this purpose, perform a quick and dirty
1363 // difference, by checking for Step in the operand list.
1364 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001365 for (const SCEV *Op : SA->operands())
1366 if (Op != Step)
1367 DiffOps.push_back(Op);
1368
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001369 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001370 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001371
1372 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1373 // same three conditions that getSignExtendedExpr checks.
1374
1375 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001376 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001377 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1378 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1379
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001380 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001381 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001382
1383 // 2. Direct overflow check on the step operation's expression.
1384 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001385 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001386 const SCEV *OperandExtendedStart =
1387 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1388 SE->getSignExtendExpr(Step, WideTy));
1389 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1390 // Cache knowledge of PreAR NSW.
1391 if (PreAR)
1392 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1393 // FIXME: this optimization needs a unit test
1394 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1395 return PreStart;
1396 }
1397
1398 // 3. Loop precondition.
1399 ICmpInst::Predicate Pred;
1400 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1401
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001402 if (OverflowLimit &&
1403 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001404 return PreStart;
1405 }
Craig Topper9f008862014-04-15 04:59:12 +00001406 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001407}
1408
1409// Get the normalized sign-extended expression for this AddRec's Start.
1410static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001411 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001412 ScalarEvolution *SE) {
1413 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1414 if (!PreStart)
1415 return SE->getSignExtendExpr(AR->getStart(), Ty);
1416
1417 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1418 SE->getSignExtendExpr(PreStart, Ty));
1419}
1420
Dan Gohmanaf752342009-07-07 17:06:11 +00001421const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001422 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001423 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001424 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001425 assert(isSCEVable(Ty) &&
1426 "This is not a conversion to a SCEVable type!");
1427 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001428
Dan Gohman3423e722009-06-30 20:13:32 +00001429 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001430 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1431 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001432 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001433
Dan Gohman79af8542009-04-22 16:20:48 +00001434 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001435 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001436 return getSignExtendExpr(SS->getOperand(), Ty);
1437
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001438 // sext(zext(x)) --> zext(x)
1439 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1440 return getZeroExtendExpr(SZ->getOperand(), Ty);
1441
Dan Gohman74a0ba12009-07-13 20:55:53 +00001442 // Before doing any expensive analysis, check to see if we've already
1443 // computed a SCEV for this Op and Ty.
1444 FoldingSetNodeID ID;
1445 ID.AddInteger(scSignExtend);
1446 ID.AddPointer(Op);
1447 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001448 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001449 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1450
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001451 // If the input value is provably positive, build a zext instead.
1452 if (isKnownNonNegative(Op))
1453 return getZeroExtendExpr(Op, Ty);
1454
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001455 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1456 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1457 // It's possible the bits taken off by the truncate were all sign bits. If
1458 // so, we should be able to simplify this further.
1459 const SCEV *X = ST->getOperand();
1460 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001461 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1462 unsigned NewBits = getTypeSizeInBits(Ty);
1463 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001464 CR.sextOrTrunc(NewBits)))
1465 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001466 }
1467
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001468 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1469 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1470 if (SA->getNumOperands() == 2) {
1471 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1472 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1473 if (SMul && SC1) {
1474 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001475 const APInt &C1 = SC1->getValue()->getValue();
1476 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001477 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001478 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001479 return getAddExpr(getSignExtendExpr(SC1, Ty),
1480 getSignExtendExpr(SMul, Ty));
1481 }
1482 }
1483 }
1484 }
Dan Gohman76466372009-04-27 20:16:15 +00001485 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001486 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001487 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001488 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001489 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001490 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001491 const SCEV *Start = AR->getStart();
1492 const SCEV *Step = AR->getStepRecurrence(*this);
1493 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1494 const Loop *L = AR->getLoop();
1495
Dan Gohman62ef6a72009-07-25 01:22:26 +00001496 // If we have special knowledge that this addrec won't overflow,
1497 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001498 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001499 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001500 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001501 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001502
Dan Gohman76466372009-04-27 20:16:15 +00001503 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1504 // Note that this serves two purposes: It filters out loops that are
1505 // simply not analyzable, and it covers the case where this code is
1506 // being called from within backedge-taken count analysis, such that
1507 // attempting to ask for the backedge-taken count would likely result
1508 // in infinite recursion. In the later case, the analysis code will
1509 // cope with a conservative value, and it will take care to purge
1510 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001511 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001512 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001513 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001514 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001515
1516 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001517 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001518 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001519 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001520 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001521 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1522 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001523 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001524 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001525 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001526 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1527 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1528 const SCEV *WideMaxBECount =
1529 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001530 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001531 getAddExpr(WideStart,
1532 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001533 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001534 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001535 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1536 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001537 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001538 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001539 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001540 L, AR->getNoWrapFlags());
1541 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001542 // Similar to above, only this time treat the step value as unsigned.
1543 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001544 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001545 getAddExpr(WideStart,
1546 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001547 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001548 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001549 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1550 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001551 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001552 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001553 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001554 L, AR->getNoWrapFlags());
1555 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001556 }
1557
1558 // If the backedge is guarded by a comparison with the pre-inc value
1559 // the addrec is safe. Also, if the entry is guarded by a comparison
1560 // with the start value and the backedge is guarded by a comparison
1561 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001562 ICmpInst::Predicate Pred;
1563 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1564 if (OverflowLimit &&
1565 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1566 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1567 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1568 OverflowLimit)))) {
1569 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1570 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1571 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1572 getSignExtendExpr(Step, Ty),
1573 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001574 }
1575 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001576 // If Start and Step are constants, check if we can apply this
1577 // transformation:
1578 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1579 auto SC1 = dyn_cast<SCEVConstant>(Start);
1580 auto SC2 = dyn_cast<SCEVConstant>(Step);
1581 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001582 const APInt &C1 = SC1->getValue()->getValue();
1583 const APInt &C2 = SC2->getValue()->getValue();
1584 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1585 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001586 Start = getSignExtendExpr(Start, Ty);
1587 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1588 L, AR->getNoWrapFlags());
1589 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1590 }
1591 }
Dan Gohman76466372009-04-27 20:16:15 +00001592 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001593
Dan Gohman74a0ba12009-07-13 20:55:53 +00001594 // The cast wasn't folded; create an explicit cast node.
1595 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001596 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001597 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1598 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001599 UniqueSCEVs.InsertNode(S, IP);
1600 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001601}
1602
Dan Gohman8db2edc2009-06-13 15:56:47 +00001603/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1604/// unspecified bits out to the given type.
1605///
Dan Gohmanaf752342009-07-07 17:06:11 +00001606const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001607 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001608 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1609 "This is not an extending conversion!");
1610 assert(isSCEVable(Ty) &&
1611 "This is not a conversion to a SCEVable type!");
1612 Ty = getEffectiveSCEVType(Ty);
1613
1614 // Sign-extend negative constants.
1615 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1616 if (SC->getValue()->getValue().isNegative())
1617 return getSignExtendExpr(Op, Ty);
1618
1619 // Peel off a truncate cast.
1620 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001621 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001622 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1623 return getAnyExtendExpr(NewOp, Ty);
1624 return getTruncateOrNoop(NewOp, Ty);
1625 }
1626
1627 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001628 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001629 if (!isa<SCEVZeroExtendExpr>(ZExt))
1630 return ZExt;
1631
1632 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001633 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001634 if (!isa<SCEVSignExtendExpr>(SExt))
1635 return SExt;
1636
Dan Gohman51ad99d2010-01-21 02:09:26 +00001637 // Force the cast to be folded into the operands of an addrec.
1638 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1639 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001640 for (const SCEV *Op : AR->operands())
1641 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001642 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001643 }
1644
Dan Gohman8db2edc2009-06-13 15:56:47 +00001645 // If the expression is obviously signed, use the sext cast value.
1646 if (isa<SCEVSMaxExpr>(Op))
1647 return SExt;
1648
1649 // Absent any other information, use the zext cast value.
1650 return ZExt;
1651}
1652
Dan Gohman038d02e2009-06-14 22:58:51 +00001653/// CollectAddOperandsWithScales - Process the given Ops list, which is
1654/// a list of operands to be added under the given scale, update the given
1655/// map. This is a helper function for getAddRecExpr. As an example of
1656/// what it does, given a sequence of operands that would form an add
1657/// expression like this:
1658///
Tobias Grosserba49e422014-03-05 10:37:17 +00001659/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001660///
1661/// where A and B are constants, update the map with these values:
1662///
1663/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1664///
1665/// and add 13 + A*B*29 to AccumulatedConstant.
1666/// This will allow getAddRecExpr to produce this:
1667///
1668/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1669///
1670/// This form often exposes folding opportunities that are hidden in
1671/// the original operand list.
1672///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001673/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001674/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1675/// the common case where no interesting opportunities are present, and
1676/// is also used as a check to avoid infinite recursion.
1677///
1678static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001679CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001680 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001681 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001682 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001683 const APInt &Scale,
1684 ScalarEvolution &SE) {
1685 bool Interesting = false;
1686
Dan Gohman45073042010-06-18 19:12:32 +00001687 // Iterate over the add operands. They are sorted, with constants first.
1688 unsigned i = 0;
1689 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1690 ++i;
1691 // Pull a buried constant out to the outside.
1692 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1693 Interesting = true;
1694 AccumulatedConstant += Scale * C->getValue()->getValue();
1695 }
1696
1697 // Next comes everything else. We're especially interested in multiplies
1698 // here, but they're in the middle, so just visit the rest with one loop.
1699 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001700 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1701 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1702 APInt NewScale =
1703 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1704 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1705 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001706 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001707 Interesting |=
1708 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001709 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001710 NewScale, SE);
1711 } else {
1712 // A multiplication of a constant with some other value. Update
1713 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001714 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1715 const SCEV *Key = SE.getMulExpr(MulOps);
1716 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001717 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001718 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001719 NewOps.push_back(Pair.first->first);
1720 } else {
1721 Pair.first->second += NewScale;
1722 // The map already had an entry for this value, which may indicate
1723 // a folding opportunity.
1724 Interesting = true;
1725 }
1726 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001727 } else {
1728 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001729 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001730 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001731 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001732 NewOps.push_back(Pair.first->first);
1733 } else {
1734 Pair.first->second += Scale;
1735 // The map already had an entry for this value, which may indicate
1736 // a folding opportunity.
1737 Interesting = true;
1738 }
1739 }
1740 }
1741
1742 return Interesting;
1743}
1744
1745namespace {
1746 struct APIntCompare {
1747 bool operator()(const APInt &LHS, const APInt &RHS) const {
1748 return LHS.ult(RHS);
1749 }
1750 };
1751}
1752
Dan Gohman4d5435d2009-05-24 23:45:28 +00001753/// getAddExpr - Get a canonical add expression, or something simpler if
1754/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001755const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001756 SCEV::NoWrapFlags Flags) {
1757 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1758 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001759 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001760 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001761#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001762 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001763 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001764 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001765 "SCEVAddExpr operand types don't match!");
1766#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001767
Andrew Trick8b55b732011-03-14 16:50:06 +00001768 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001769 // And vice-versa.
1770 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1771 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1772 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001773 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001774 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1775 E = Ops.end(); I != E; ++I)
1776 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001777 All = false;
1778 break;
1779 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001780 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001781 }
1782
Chris Lattnerd934c702004-04-02 20:23:17 +00001783 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001784 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001785
1786 // If there are any constants, fold them together.
1787 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001788 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001789 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001790 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001791 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001792 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001793 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1794 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001795 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001796 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001797 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001798 }
1799
1800 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001801 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001802 Ops.erase(Ops.begin());
1803 --Idx;
1804 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001805
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001806 if (Ops.size() == 1) return Ops[0];
1807 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001808
Dan Gohman15871f22010-08-27 21:39:59 +00001809 // Okay, check to see if the same value occurs in the operand list more than
1810 // once. If so, merge them together into an multiply expression. Since we
1811 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001812 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001813 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001814 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001815 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001816 // Scan ahead to count how many equal operands there are.
1817 unsigned Count = 2;
1818 while (i+Count != e && Ops[i+Count] == Ops[i])
1819 ++Count;
1820 // Merge the values into a multiply.
1821 const SCEV *Scale = getConstant(Ty, Count);
1822 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1823 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001824 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001825 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001826 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001827 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001828 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001829 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001830 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001831 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001832
Dan Gohman2e55cc52009-05-08 21:03:19 +00001833 // Check for truncates. If all the operands are truncated from the same
1834 // type, see if factoring out the truncate would permit the result to be
1835 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1836 // if the contents of the resulting outer trunc fold to something simple.
1837 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1838 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001839 Type *DstType = Trunc->getType();
1840 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001841 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001842 bool Ok = true;
1843 // Check all the operands to see if they can be represented in the
1844 // source type of the truncate.
1845 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1846 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1847 if (T->getOperand()->getType() != SrcType) {
1848 Ok = false;
1849 break;
1850 }
1851 LargeOps.push_back(T->getOperand());
1852 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001853 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001854 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001855 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001856 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1857 if (const SCEVTruncateExpr *T =
1858 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1859 if (T->getOperand()->getType() != SrcType) {
1860 Ok = false;
1861 break;
1862 }
1863 LargeMulOps.push_back(T->getOperand());
1864 } else if (const SCEVConstant *C =
1865 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001866 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001867 } else {
1868 Ok = false;
1869 break;
1870 }
1871 }
1872 if (Ok)
1873 LargeOps.push_back(getMulExpr(LargeMulOps));
1874 } else {
1875 Ok = false;
1876 break;
1877 }
1878 }
1879 if (Ok) {
1880 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001881 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001882 // If it folds to something simple, use it. Otherwise, don't.
1883 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1884 return getTruncateExpr(Fold, DstType);
1885 }
1886 }
1887
1888 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001889 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1890 ++Idx;
1891
1892 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001893 if (Idx < Ops.size()) {
1894 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001895 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001896 // If we have an add, expand the add operands onto the end of the operands
1897 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001898 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001899 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001900 DeletedAdd = true;
1901 }
1902
1903 // If we deleted at least one add, we added operands to the end of the list,
1904 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001905 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001906 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001907 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001908 }
1909
1910 // Skip over the add expression until we get to a multiply.
1911 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1912 ++Idx;
1913
Dan Gohman038d02e2009-06-14 22:58:51 +00001914 // Check to see if there are any folding opportunities present with
1915 // operands multiplied by constant values.
1916 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1917 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001918 DenseMap<const SCEV *, APInt> M;
1919 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001920 APInt AccumulatedConstant(BitWidth, 0);
1921 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001922 Ops.data(), Ops.size(),
1923 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001924 // Some interesting folding opportunity is present, so its worthwhile to
1925 // re-generate the operands list. Group the operands by constant scale,
1926 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001927 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001928 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001929 E = NewOps.end(); I != E; ++I)
1930 MulOpLists[M.find(*I)->second].push_back(*I);
1931 // Re-generate the operands list.
1932 Ops.clear();
1933 if (AccumulatedConstant != 0)
1934 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001935 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1936 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001937 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001938 Ops.push_back(getMulExpr(getConstant(I->first),
1939 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001940 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001941 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001942 if (Ops.size() == 1)
1943 return Ops[0];
1944 return getAddExpr(Ops);
1945 }
1946 }
1947
Chris Lattnerd934c702004-04-02 20:23:17 +00001948 // If we are adding something to a multiply expression, make sure the
1949 // something is not already an operand of the multiply. If so, merge it into
1950 // the multiply.
1951 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001952 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001953 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001954 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001955 if (isa<SCEVConstant>(MulOpSCEV))
1956 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001957 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001958 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001959 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001960 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001961 if (Mul->getNumOperands() != 2) {
1962 // If the multiply has more than two operands, we must get the
1963 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001964 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1965 Mul->op_begin()+MulOp);
1966 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001967 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001968 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001969 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001970 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00001971 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00001972 if (Ops.size() == 2) return OuterMul;
1973 if (AddOp < Idx) {
1974 Ops.erase(Ops.begin()+AddOp);
1975 Ops.erase(Ops.begin()+Idx-1);
1976 } else {
1977 Ops.erase(Ops.begin()+Idx);
1978 Ops.erase(Ops.begin()+AddOp-1);
1979 }
1980 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00001981 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001982 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001983
Chris Lattnerd934c702004-04-02 20:23:17 +00001984 // Check this multiply against other multiplies being added together.
1985 for (unsigned OtherMulIdx = Idx+1;
1986 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1987 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001988 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001989 // If MulOp occurs in OtherMul, we can fold the two multiplies
1990 // together.
1991 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1992 OMulOp != e; ++OMulOp)
1993 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1994 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00001995 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001996 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001997 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001998 Mul->op_begin()+MulOp);
1999 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002000 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002001 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002002 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002003 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002004 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002005 OtherMul->op_begin()+OMulOp);
2006 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002007 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002008 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002009 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2010 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002011 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002012 Ops.erase(Ops.begin()+Idx);
2013 Ops.erase(Ops.begin()+OtherMulIdx-1);
2014 Ops.push_back(OuterMul);
2015 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002016 }
2017 }
2018 }
2019 }
2020
2021 // If there are any add recurrences in the operands list, see if any other
2022 // added values are loop invariant. If so, we can fold them into the
2023 // recurrence.
2024 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2025 ++Idx;
2026
2027 // Scan over all recurrences, trying to fold loop invariants into them.
2028 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2029 // Scan all of the other operands to this add and add them to the vector if
2030 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002031 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002032 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002033 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002034 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002035 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002036 LIOps.push_back(Ops[i]);
2037 Ops.erase(Ops.begin()+i);
2038 --i; --e;
2039 }
2040
2041 // If we found some loop invariants, fold them into the recurrence.
2042 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002043 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002044 LIOps.push_back(AddRec->getStart());
2045
Dan Gohmanaf752342009-07-07 17:06:11 +00002046 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002047 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002048 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002049
Dan Gohman16206132010-06-30 07:16:37 +00002050 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002051 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002052 // Always propagate NW.
2053 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002054 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002055
Chris Lattnerd934c702004-04-02 20:23:17 +00002056 // If all of the other operands were loop invariant, we are done.
2057 if (Ops.size() == 1) return NewRec;
2058
Nick Lewyckydb66b822011-09-06 05:08:09 +00002059 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002060 for (unsigned i = 0;; ++i)
2061 if (Ops[i] == AddRec) {
2062 Ops[i] = NewRec;
2063 break;
2064 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002065 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002066 }
2067
2068 // Okay, if there weren't any loop invariants to be folded, check to see if
2069 // there are multiple AddRec's with the same loop induction variable being
2070 // added together. If so, we can fold them.
2071 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002072 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2073 ++OtherIdx)
2074 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2075 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2076 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2077 AddRec->op_end());
2078 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2079 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002080 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002081 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002082 if (OtherAddRec->getLoop() == AddRecLoop) {
2083 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2084 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002085 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002086 AddRecOps.append(OtherAddRec->op_begin()+i,
2087 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002088 break;
2089 }
Dan Gohman028c1812010-08-29 14:53:34 +00002090 AddRecOps[i] = getAddExpr(AddRecOps[i],
2091 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002092 }
2093 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002094 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002095 // Step size has changed, so we cannot guarantee no self-wraparound.
2096 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002097 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002098 }
2099
2100 // Otherwise couldn't fold anything into this recurrence. Move onto the
2101 // next one.
2102 }
2103
2104 // Okay, it looks like we really DO need an add expr. Check to see if we
2105 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002106 FoldingSetNodeID ID;
2107 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002108 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2109 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002110 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002111 SCEVAddExpr *S =
2112 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2113 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002114 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2115 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002116 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2117 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002118 UniqueSCEVs.InsertNode(S, IP);
2119 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002120 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002121 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002122}
2123
Nick Lewycky287682e2011-10-04 06:51:26 +00002124static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2125 uint64_t k = i*j;
2126 if (j > 1 && k / j != i) Overflow = true;
2127 return k;
2128}
2129
2130/// Compute the result of "n choose k", the binomial coefficient. If an
2131/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002132/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002133static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2134 // We use the multiplicative formula:
2135 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2136 // At each iteration, we take the n-th term of the numeral and divide by the
2137 // (k-n)th term of the denominator. This division will always produce an
2138 // integral result, and helps reduce the chance of overflow in the
2139 // intermediate computations. However, we can still overflow even when the
2140 // final result would fit.
2141
2142 if (n == 0 || n == k) return 1;
2143 if (k > n) return 0;
2144
2145 if (k > n/2)
2146 k = n-k;
2147
2148 uint64_t r = 1;
2149 for (uint64_t i = 1; i <= k; ++i) {
2150 r = umul_ov(r, n-(i-1), Overflow);
2151 r /= i;
2152 }
2153 return r;
2154}
2155
Dan Gohman4d5435d2009-05-24 23:45:28 +00002156/// getMulExpr - Get a canonical multiply expression, or something simpler if
2157/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002158const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002159 SCEV::NoWrapFlags Flags) {
2160 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2161 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002162 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002163 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002164#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002165 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002166 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002167 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002168 "SCEVMulExpr operand types don't match!");
2169#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002170
Andrew Trick8b55b732011-03-14 16:50:06 +00002171 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002172 // And vice-versa.
2173 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2174 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2175 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002176 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002177 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
2178 E = Ops.end(); I != E; ++I)
2179 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002180 All = false;
2181 break;
2182 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002183 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002184 }
2185
Chris Lattnerd934c702004-04-02 20:23:17 +00002186 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002187 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002188
2189 // If there are any constants, fold them together.
2190 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002191 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002192
2193 // C1*(C2+V) -> C1*C2 + C1*V
2194 if (Ops.size() == 2)
Dan Gohmana30370b2009-05-04 22:02:23 +00002195 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattnerd934c702004-04-02 20:23:17 +00002196 if (Add->getNumOperands() == 2 &&
2197 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohmana37eaf22007-10-22 18:31:58 +00002198 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2199 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002200
Chris Lattnerd934c702004-04-02 20:23:17 +00002201 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002202 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002203 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002204 ConstantInt *Fold = ConstantInt::get(getContext(),
2205 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002206 RHSC->getValue()->getValue());
2207 Ops[0] = getConstant(Fold);
2208 Ops.erase(Ops.begin()+1); // Erase the folded element
2209 if (Ops.size() == 1) return Ops[0];
2210 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002211 }
2212
2213 // If we are left with a constant one being multiplied, strip it off.
2214 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2215 Ops.erase(Ops.begin());
2216 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002217 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002218 // If we have a multiply of zero, it will always be zero.
2219 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002220 } else if (Ops[0]->isAllOnesValue()) {
2221 // If we have a mul by -1 of an add, try distributing the -1 among the
2222 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002223 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002224 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2225 SmallVector<const SCEV *, 4> NewOps;
2226 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002227 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2228 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002229 const SCEV *Mul = getMulExpr(Ops[0], *I);
2230 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2231 NewOps.push_back(Mul);
2232 }
2233 if (AnyFolded)
2234 return getAddExpr(NewOps);
2235 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002236 else if (const SCEVAddRecExpr *
2237 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2238 // Negation preserves a recurrence's no self-wrap property.
2239 SmallVector<const SCEV *, 4> Operands;
2240 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2241 E = AddRec->op_end(); I != E; ++I) {
2242 Operands.push_back(getMulExpr(Ops[0], *I));
2243 }
2244 return getAddRecExpr(Operands, AddRec->getLoop(),
2245 AddRec->getNoWrapFlags(SCEV::FlagNW));
2246 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002247 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002248 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002249
2250 if (Ops.size() == 1)
2251 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002252 }
2253
2254 // Skip over the add expression until we get to a multiply.
2255 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2256 ++Idx;
2257
Chris Lattnerd934c702004-04-02 20:23:17 +00002258 // If there are mul operands inline them all into this expression.
2259 if (Idx < Ops.size()) {
2260 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002261 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002262 // If we have an mul, expand the mul operands onto the end of the operands
2263 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002264 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002265 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002266 DeletedMul = true;
2267 }
2268
2269 // If we deleted at least one mul, we added operands to the end of the list,
2270 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002271 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002272 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002273 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002274 }
2275
2276 // If there are any add recurrences in the operands list, see if any other
2277 // added values are loop invariant. If so, we can fold them into the
2278 // recurrence.
2279 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2280 ++Idx;
2281
2282 // Scan over all recurrences, trying to fold loop invariants into them.
2283 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2284 // Scan all of the other operands to this mul and add them to the vector if
2285 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002286 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002287 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002288 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002289 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002290 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002291 LIOps.push_back(Ops[i]);
2292 Ops.erase(Ops.begin()+i);
2293 --i; --e;
2294 }
2295
2296 // If we found some loop invariants, fold them into the recurrence.
2297 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002298 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002299 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002300 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002301 const SCEV *Scale = getMulExpr(LIOps);
2302 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2303 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002304
Dan Gohman16206132010-06-30 07:16:37 +00002305 // Build the new addrec. Propagate the NUW and NSW flags if both the
2306 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002307 //
2308 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002309 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002310 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2311 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002312
2313 // If all of the other operands were loop invariant, we are done.
2314 if (Ops.size() == 1) return NewRec;
2315
Nick Lewyckydb66b822011-09-06 05:08:09 +00002316 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002317 for (unsigned i = 0;; ++i)
2318 if (Ops[i] == AddRec) {
2319 Ops[i] = NewRec;
2320 break;
2321 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002322 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002323 }
2324
2325 // Okay, if there weren't any loop invariants to be folded, check to see if
2326 // there are multiple AddRec's with the same loop induction variable being
2327 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002328
2329 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2330 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2331 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2332 // ]]],+,...up to x=2n}.
2333 // Note that the arguments to choose() are always integers with values
2334 // known at compile time, never SCEV objects.
2335 //
2336 // The implementation avoids pointless extra computations when the two
2337 // addrec's are of different length (mathematically, it's equivalent to
2338 // an infinite stream of zeros on the right).
2339 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002340 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002341 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002342 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002343 const SCEVAddRecExpr *OtherAddRec =
2344 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2345 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002346 continue;
2347
Nick Lewycky97756402014-09-01 05:17:15 +00002348 bool Overflow = false;
2349 Type *Ty = AddRec->getType();
2350 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2351 SmallVector<const SCEV*, 7> AddRecOps;
2352 for (int x = 0, xe = AddRec->getNumOperands() +
2353 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2354 const SCEV *Term = getConstant(Ty, 0);
2355 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2356 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2357 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2358 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2359 z < ze && !Overflow; ++z) {
2360 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2361 uint64_t Coeff;
2362 if (LargerThan64Bits)
2363 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2364 else
2365 Coeff = Coeff1*Coeff2;
2366 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2367 const SCEV *Term1 = AddRec->getOperand(y-z);
2368 const SCEV *Term2 = OtherAddRec->getOperand(z);
2369 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002370 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002371 }
Nick Lewycky97756402014-09-01 05:17:15 +00002372 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002373 }
Nick Lewycky97756402014-09-01 05:17:15 +00002374 if (!Overflow) {
2375 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2376 SCEV::FlagAnyWrap);
2377 if (Ops.size() == 2) return NewAddRec;
2378 Ops[Idx] = NewAddRec;
2379 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2380 OpsModified = true;
2381 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2382 if (!AddRec)
2383 break;
2384 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002385 }
Nick Lewycky97756402014-09-01 05:17:15 +00002386 if (OpsModified)
2387 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002388
2389 // Otherwise couldn't fold anything into this recurrence. Move onto the
2390 // next one.
2391 }
2392
2393 // Okay, it looks like we really DO need an mul expr. Check to see if we
2394 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002395 FoldingSetNodeID ID;
2396 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002397 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2398 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002399 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002400 SCEVMulExpr *S =
2401 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2402 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002403 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2404 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002405 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2406 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002407 UniqueSCEVs.InsertNode(S, IP);
2408 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002409 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002410 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002411}
2412
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002413/// getUDivExpr - Get a canonical unsigned division expression, or something
2414/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002415const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2416 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002417 assert(getEffectiveSCEVType(LHS->getType()) ==
2418 getEffectiveSCEVType(RHS->getType()) &&
2419 "SCEVUDivExpr operand types don't match!");
2420
Dan Gohmana30370b2009-05-04 22:02:23 +00002421 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002422 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002423 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002424 // If the denominator is zero, the result of the udiv is undefined. Don't
2425 // try to analyze it, because the resolution chosen here may differ from
2426 // the resolution chosen in other parts of the compiler.
2427 if (!RHSC->getValue()->isZero()) {
2428 // Determine if the division can be folded into the operands of
2429 // its operands.
2430 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002431 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002432 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002433 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002434 // For non-power-of-two values, effectively round the value up to the
2435 // nearest power of two.
2436 if (!RHSC->getValue()->getValue().isPowerOf2())
2437 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002438 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002439 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002440 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2441 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002442 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2443 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2444 const APInt &StepInt = Step->getValue()->getValue();
2445 const APInt &DivInt = RHSC->getValue()->getValue();
2446 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002447 getZeroExtendExpr(AR, ExtTy) ==
2448 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2449 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002450 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002451 SmallVector<const SCEV *, 4> Operands;
2452 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2453 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002454 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002455 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002456 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002457 /// Get a canonical UDivExpr for a recurrence.
2458 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2459 // We can currently only fold X%N if X is constant.
2460 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2461 if (StartC && !DivInt.urem(StepInt) &&
2462 getZeroExtendExpr(AR, ExtTy) ==
2463 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2464 getZeroExtendExpr(Step, ExtTy),
2465 AR->getLoop(), SCEV::FlagAnyWrap)) {
2466 const APInt &StartInt = StartC->getValue()->getValue();
2467 const APInt &StartRem = StartInt.urem(StepInt);
2468 if (StartRem != 0)
2469 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2470 AR->getLoop(), SCEV::FlagNW);
2471 }
2472 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002473 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2474 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2475 SmallVector<const SCEV *, 4> Operands;
2476 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2477 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2478 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2479 // Find an operand that's safely divisible.
2480 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2481 const SCEV *Op = M->getOperand(i);
2482 const SCEV *Div = getUDivExpr(Op, RHSC);
2483 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2484 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2485 M->op_end());
2486 Operands[i] = Div;
2487 return getMulExpr(Operands);
2488 }
2489 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002490 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002491 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002492 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002493 SmallVector<const SCEV *, 4> Operands;
2494 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2495 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2496 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2497 Operands.clear();
2498 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2499 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2500 if (isa<SCEVUDivExpr>(Op) ||
2501 getMulExpr(Op, RHS) != A->getOperand(i))
2502 break;
2503 Operands.push_back(Op);
2504 }
2505 if (Operands.size() == A->getNumOperands())
2506 return getAddExpr(Operands);
2507 }
2508 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002509
Dan Gohmanacd700a2010-04-22 01:35:11 +00002510 // Fold if both operands are constant.
2511 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2512 Constant *LHSCV = LHSC->getValue();
2513 Constant *RHSCV = RHSC->getValue();
2514 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2515 RHSCV)));
2516 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002517 }
2518 }
2519
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002520 FoldingSetNodeID ID;
2521 ID.AddInteger(scUDivExpr);
2522 ID.AddPointer(LHS);
2523 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002524 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002525 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002526 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2527 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002528 UniqueSCEVs.InsertNode(S, IP);
2529 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002530}
2531
Nick Lewycky31eaca52014-01-27 10:04:03 +00002532static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2533 APInt A = C1->getValue()->getValue().abs();
2534 APInt B = C2->getValue()->getValue().abs();
2535 uint32_t ABW = A.getBitWidth();
2536 uint32_t BBW = B.getBitWidth();
2537
2538 if (ABW > BBW)
2539 B = B.zext(ABW);
2540 else if (ABW < BBW)
2541 A = A.zext(BBW);
2542
2543 return APIntOps::GreatestCommonDivisor(A, B);
2544}
2545
2546/// getUDivExactExpr - Get a canonical unsigned division expression, or
2547/// something simpler if possible. There is no representation for an exact udiv
2548/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2549/// We can't do this when it's not exact because the udiv may be clearing bits.
2550const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2551 const SCEV *RHS) {
2552 // TODO: we could try to find factors in all sorts of things, but for now we
2553 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2554 // end of this file for inspiration.
2555
2556 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2557 if (!Mul)
2558 return getUDivExpr(LHS, RHS);
2559
2560 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2561 // If the mulexpr multiplies by a constant, then that constant must be the
2562 // first element of the mulexpr.
2563 if (const SCEVConstant *LHSCst =
2564 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2565 if (LHSCst == RHSCst) {
2566 SmallVector<const SCEV *, 2> Operands;
2567 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2568 return getMulExpr(Operands);
2569 }
2570
2571 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2572 // that there's a factor provided by one of the other terms. We need to
2573 // check.
2574 APInt Factor = gcd(LHSCst, RHSCst);
2575 if (!Factor.isIntN(1)) {
2576 LHSCst = cast<SCEVConstant>(
2577 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2578 RHSCst = cast<SCEVConstant>(
2579 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2580 SmallVector<const SCEV *, 2> Operands;
2581 Operands.push_back(LHSCst);
2582 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2583 LHS = getMulExpr(Operands);
2584 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002585 Mul = dyn_cast<SCEVMulExpr>(LHS);
2586 if (!Mul)
2587 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002588 }
2589 }
2590 }
2591
2592 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2593 if (Mul->getOperand(i) == RHS) {
2594 SmallVector<const SCEV *, 2> Operands;
2595 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2596 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2597 return getMulExpr(Operands);
2598 }
2599 }
2600
2601 return getUDivExpr(LHS, RHS);
2602}
Chris Lattnerd934c702004-04-02 20:23:17 +00002603
Dan Gohman4d5435d2009-05-24 23:45:28 +00002604/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2605/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002606const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2607 const Loop *L,
2608 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002609 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002610 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002611 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002612 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002613 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002614 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002615 }
2616
2617 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002618 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002619}
2620
Dan Gohman4d5435d2009-05-24 23:45:28 +00002621/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2622/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002623const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002624ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002625 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002626 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002627#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002628 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002629 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002630 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002631 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002632 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002633 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002634 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002635#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002636
Dan Gohmanbe928e32008-06-18 16:23:07 +00002637 if (Operands.back()->isZero()) {
2638 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002639 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002640 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002641
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002642 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2643 // use that information to infer NUW and NSW flags. However, computing a
2644 // BE count requires calling getAddRecExpr, so we may not yet have a
2645 // meaningful BE count at this point (and if we don't, we'd be stuck
2646 // with a SCEVCouldNotCompute as the cached BE count).
2647
Andrew Trick8b55b732011-03-14 16:50:06 +00002648 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002649 // And vice-versa.
2650 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2651 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2652 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002653 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002654 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2655 E = Operands.end(); I != E; ++I)
2656 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002657 All = false;
2658 break;
2659 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002660 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002661 }
2662
Dan Gohman223a5d22008-08-08 18:33:12 +00002663 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002664 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002665 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002666 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002667 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002668 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002669 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002670 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002671 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002672 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002673 // AddRecs require their operands be loop-invariant with respect to their
2674 // loops. Don't perform this transformation if it would break this
2675 // requirement.
2676 bool AllInvariant = true;
2677 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002678 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002679 AllInvariant = false;
2680 break;
2681 }
2682 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002683 // Create a recurrence for the outer loop with the same step size.
2684 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002685 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2686 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002687 SCEV::NoWrapFlags OuterFlags =
2688 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002689
2690 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002691 AllInvariant = true;
2692 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002693 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002694 AllInvariant = false;
2695 break;
2696 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002697 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002698 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002699 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002700 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2701 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002702 SCEV::NoWrapFlags InnerFlags =
2703 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002704 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2705 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002706 }
2707 // Reset Operands to its original state.
2708 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002709 }
2710 }
2711
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002712 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2713 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002714 FoldingSetNodeID ID;
2715 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002716 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2717 ID.AddPointer(Operands[i]);
2718 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002719 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002720 SCEVAddRecExpr *S =
2721 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2722 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002723 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2724 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002725 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2726 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002727 UniqueSCEVs.InsertNode(S, IP);
2728 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002729 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002730 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002731}
2732
Dan Gohmanabd17092009-06-24 14:49:00 +00002733const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2734 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002735 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002736 Ops.push_back(LHS);
2737 Ops.push_back(RHS);
2738 return getSMaxExpr(Ops);
2739}
2740
Dan Gohmanaf752342009-07-07 17:06:11 +00002741const SCEV *
2742ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002743 assert(!Ops.empty() && "Cannot get empty smax!");
2744 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002745#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002746 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002747 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002748 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002749 "SCEVSMaxExpr operand types don't match!");
2750#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002751
2752 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002753 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002754
2755 // If there are any constants, fold them together.
2756 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002757 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002758 ++Idx;
2759 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002760 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002761 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002762 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002763 APIntOps::smax(LHSC->getValue()->getValue(),
2764 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002765 Ops[0] = getConstant(Fold);
2766 Ops.erase(Ops.begin()+1); // Erase the folded element
2767 if (Ops.size() == 1) return Ops[0];
2768 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002769 }
2770
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002771 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002772 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2773 Ops.erase(Ops.begin());
2774 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002775 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2776 // If we have an smax with a constant maximum-int, it will always be
2777 // maximum-int.
2778 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002779 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002780
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002781 if (Ops.size() == 1) return Ops[0];
2782 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002783
2784 // Find the first SMax
2785 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2786 ++Idx;
2787
2788 // Check to see if one of the operands is an SMax. If so, expand its operands
2789 // onto our operand list, and recurse to simplify.
2790 if (Idx < Ops.size()) {
2791 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002792 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002793 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002794 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002795 DeletedSMax = true;
2796 }
2797
2798 if (DeletedSMax)
2799 return getSMaxExpr(Ops);
2800 }
2801
2802 // Okay, check to see if the same value occurs in the operand list twice. If
2803 // so, delete one. Since we sorted the list, these values are required to
2804 // be adjacent.
2805 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002806 // X smax Y smax Y --> X smax Y
2807 // X smax Y --> X, if X is always greater than Y
2808 if (Ops[i] == Ops[i+1] ||
2809 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2810 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2811 --i; --e;
2812 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002813 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2814 --i; --e;
2815 }
2816
2817 if (Ops.size() == 1) return Ops[0];
2818
2819 assert(!Ops.empty() && "Reduced smax down to nothing!");
2820
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002821 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002822 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002823 FoldingSetNodeID ID;
2824 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002825 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2826 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002827 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002828 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002829 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2830 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002831 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2832 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002833 UniqueSCEVs.InsertNode(S, IP);
2834 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002835}
2836
Dan Gohmanabd17092009-06-24 14:49:00 +00002837const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2838 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002839 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002840 Ops.push_back(LHS);
2841 Ops.push_back(RHS);
2842 return getUMaxExpr(Ops);
2843}
2844
Dan Gohmanaf752342009-07-07 17:06:11 +00002845const SCEV *
2846ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002847 assert(!Ops.empty() && "Cannot get empty umax!");
2848 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002849#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002850 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002851 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002852 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002853 "SCEVUMaxExpr operand types don't match!");
2854#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002855
2856 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002857 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002858
2859 // If there are any constants, fold them together.
2860 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002861 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002862 ++Idx;
2863 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002864 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002865 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002866 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002867 APIntOps::umax(LHSC->getValue()->getValue(),
2868 RHSC->getValue()->getValue()));
2869 Ops[0] = getConstant(Fold);
2870 Ops.erase(Ops.begin()+1); // Erase the folded element
2871 if (Ops.size() == 1) return Ops[0];
2872 LHSC = cast<SCEVConstant>(Ops[0]);
2873 }
2874
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002875 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002876 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2877 Ops.erase(Ops.begin());
2878 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002879 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2880 // If we have an umax with a constant maximum-int, it will always be
2881 // maximum-int.
2882 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002883 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002884
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002885 if (Ops.size() == 1) return Ops[0];
2886 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002887
2888 // Find the first UMax
2889 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2890 ++Idx;
2891
2892 // Check to see if one of the operands is a UMax. If so, expand its operands
2893 // onto our operand list, and recurse to simplify.
2894 if (Idx < Ops.size()) {
2895 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002896 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002897 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002898 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002899 DeletedUMax = true;
2900 }
2901
2902 if (DeletedUMax)
2903 return getUMaxExpr(Ops);
2904 }
2905
2906 // Okay, check to see if the same value occurs in the operand list twice. If
2907 // so, delete one. Since we sorted the list, these values are required to
2908 // be adjacent.
2909 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002910 // X umax Y umax Y --> X umax Y
2911 // X umax Y --> X, if X is always greater than Y
2912 if (Ops[i] == Ops[i+1] ||
2913 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2914 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2915 --i; --e;
2916 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002917 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2918 --i; --e;
2919 }
2920
2921 if (Ops.size() == 1) return Ops[0];
2922
2923 assert(!Ops.empty() && "Reduced umax down to nothing!");
2924
2925 // Okay, it looks like we really DO need a umax expr. Check to see if we
2926 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002927 FoldingSetNodeID ID;
2928 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002929 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2930 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002931 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002932 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002933 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2934 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002935 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2936 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002937 UniqueSCEVs.InsertNode(S, IP);
2938 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002939}
2940
Dan Gohmanabd17092009-06-24 14:49:00 +00002941const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2942 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002943 // ~smax(~x, ~y) == smin(x, y).
2944 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2945}
2946
Dan Gohmanabd17092009-06-24 14:49:00 +00002947const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2948 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002949 // ~umax(~x, ~y) == umin(x, y)
2950 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2951}
2952
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002953const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002954 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002955 // constant expression and then folding it back into a ConstantInt.
2956 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002957 if (DL)
2958 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002959
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002960 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2961 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002962 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002963 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002964 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002965 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002966 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2967}
2968
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002969const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2970 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002971 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002972 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002973 // constant expression and then folding it back into a ConstantInt.
2974 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002975 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002976 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002977 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002978 }
Dan Gohman11862a62010-04-12 23:03:26 +00002979
Dan Gohmancf913832010-01-28 02:15:55 +00002980 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2981 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002982 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002983 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002984
Matt Arsenault4ed49b52013-10-21 18:08:09 +00002985 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00002986 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002987}
2988
Dan Gohmanaf752342009-07-07 17:06:11 +00002989const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00002990 // Don't attempt to do anything other than create a SCEVUnknown object
2991 // here. createSCEV only calls getUnknown after checking for all other
2992 // interesting possibilities, and any other code that calls getUnknown
2993 // is doing so in order to hide a value from SCEV canonicalization.
2994
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002995 FoldingSetNodeID ID;
2996 ID.AddInteger(scUnknown);
2997 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00002998 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00002999 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3000 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3001 "Stale SCEVUnknown in uniquing map!");
3002 return S;
3003 }
3004 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3005 FirstUnknown);
3006 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003007 UniqueSCEVs.InsertNode(S, IP);
3008 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003009}
3010
Chris Lattnerd934c702004-04-02 20:23:17 +00003011//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003012// Basic SCEV Analysis and PHI Idiom Recognition Code
3013//
3014
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003015/// isSCEVable - Test if values of the given type are analyzable within
3016/// the SCEV framework. This primarily includes integer types, and it
3017/// can optionally include pointer types if the ScalarEvolution class
3018/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003019bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003020 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003021 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003022}
3023
3024/// getTypeSizeInBits - Return the size in bits of the specified type,
3025/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003026uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003027 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3028
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003029 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003030 if (DL)
3031 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003032
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003033 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00003034 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003035 return Ty->getPrimitiveSizeInBits();
3036
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003037 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003038 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00003039 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003040 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003041}
3042
3043/// getEffectiveSCEVType - Return a type with the same bitwidth as
3044/// the given type and which represents how SCEV will treat the given
3045/// type, for which isSCEVable must return true. For pointer types,
3046/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003047Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003048 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3049
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003050 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003051 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003052 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003053
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003054 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003055 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003056
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003057 if (DL)
3058 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003059
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003060 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003061 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00003062}
Chris Lattnerd934c702004-04-02 20:23:17 +00003063
Dan Gohmanaf752342009-07-07 17:06:11 +00003064const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003065 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003066}
3067
Shuxin Yangefc4c012013-07-08 17:33:13 +00003068namespace {
3069 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3070 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3071 // is set iff if find such SCEVUnknown.
3072 //
3073 struct FindInvalidSCEVUnknown {
3074 bool FindOne;
3075 FindInvalidSCEVUnknown() { FindOne = false; }
3076 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003077 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003078 case scConstant:
3079 return false;
3080 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003081 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003082 FindOne = true;
3083 return false;
3084 default:
3085 return true;
3086 }
3087 }
3088 bool isDone() const { return FindOne; }
3089 };
3090}
3091
3092bool ScalarEvolution::checkValidity(const SCEV *S) const {
3093 FindInvalidSCEVUnknown F;
3094 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3095 ST.visitAll(S);
3096
3097 return !F.FindOne;
3098}
3099
Chris Lattnerd934c702004-04-02 20:23:17 +00003100/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3101/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003102const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003103 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003104
Shuxin Yangefc4c012013-07-08 17:33:13 +00003105 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3106 if (I != ValueExprMap.end()) {
3107 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003108 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003109 return S;
3110 else
3111 ValueExprMap.erase(I);
3112 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003113 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003114
3115 // The process of creating a SCEV for V may have caused other SCEVs
3116 // to have been created, so it's necessary to insert the new entry
3117 // from scratch, rather than trying to remember the insert position
3118 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003119 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003120 return S;
3121}
3122
Dan Gohman0a40ad92009-04-16 03:18:22 +00003123/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3124///
Dan Gohmanaf752342009-07-07 17:06:11 +00003125const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003126 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003127 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003128 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003129
Chris Lattner229907c2011-07-18 04:54:35 +00003130 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003131 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003132 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003133 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003134}
3135
3136/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003137const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003138 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003139 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003140 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003141
Chris Lattner229907c2011-07-18 04:54:35 +00003142 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003143 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003144 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003145 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003146 return getMinusSCEV(AllOnes, V);
3147}
3148
Andrew Trick8b55b732011-03-14 16:50:06 +00003149/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003150const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003151 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003152 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3153
Dan Gohman46f00a22010-07-20 16:53:00 +00003154 // Fast path: X - X --> 0.
3155 if (LHS == RHS)
3156 return getConstant(LHS->getType(), 0);
3157
Dan Gohman0a40ad92009-04-16 03:18:22 +00003158 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00003159 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003160}
3161
3162/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3163/// input value to the specified type. If the type must be extended, it is zero
3164/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003165const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003166ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3167 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003168 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3169 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003170 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003171 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003172 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003173 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003174 return getTruncateExpr(V, Ty);
3175 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003176}
3177
3178/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3179/// input value to the specified type. If the type must be extended, it is sign
3180/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003181const SCEV *
3182ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003183 Type *Ty) {
3184 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003185 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3186 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003187 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003188 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003189 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003190 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003191 return getTruncateExpr(V, Ty);
3192 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003193}
3194
Dan Gohmane712a2f2009-05-13 03:46:30 +00003195/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3196/// input value to the specified type. If the type must be extended, it is zero
3197/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003198const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003199ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3200 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003201 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3202 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003203 "Cannot noop or zero extend with non-integer arguments!");
3204 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3205 "getNoopOrZeroExtend cannot truncate!");
3206 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3207 return V; // No conversion
3208 return getZeroExtendExpr(V, Ty);
3209}
3210
3211/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3212/// input value to the specified type. If the type must be extended, it is sign
3213/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003214const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003215ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3216 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003217 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3218 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003219 "Cannot noop or sign extend with non-integer arguments!");
3220 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3221 "getNoopOrSignExtend cannot truncate!");
3222 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3223 return V; // No conversion
3224 return getSignExtendExpr(V, Ty);
3225}
3226
Dan Gohman8db2edc2009-06-13 15:56:47 +00003227/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3228/// the input value to the specified type. If the type must be extended,
3229/// it is extended with unspecified bits. The conversion must not be
3230/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003231const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003232ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3233 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003234 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3235 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003236 "Cannot noop or any extend with non-integer arguments!");
3237 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3238 "getNoopOrAnyExtend cannot truncate!");
3239 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3240 return V; // No conversion
3241 return getAnyExtendExpr(V, Ty);
3242}
3243
Dan Gohmane712a2f2009-05-13 03:46:30 +00003244/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3245/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003246const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003247ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3248 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003249 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3250 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003251 "Cannot truncate or noop with non-integer arguments!");
3252 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3253 "getTruncateOrNoop cannot extend!");
3254 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3255 return V; // No conversion
3256 return getTruncateExpr(V, Ty);
3257}
3258
Dan Gohman96212b62009-06-22 00:31:57 +00003259/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3260/// the types using zero-extension, and then perform a umax operation
3261/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003262const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3263 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003264 const SCEV *PromotedLHS = LHS;
3265 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003266
3267 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3268 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3269 else
3270 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3271
3272 return getUMaxExpr(PromotedLHS, PromotedRHS);
3273}
3274
Dan Gohman2bc22302009-06-22 15:03:27 +00003275/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3276/// the types using zero-extension, and then perform a umin operation
3277/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003278const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3279 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003280 const SCEV *PromotedLHS = LHS;
3281 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003282
3283 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3284 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3285 else
3286 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3287
3288 return getUMinExpr(PromotedLHS, PromotedRHS);
3289}
3290
Andrew Trick87716c92011-03-17 23:51:11 +00003291/// getPointerBase - Transitively follow the chain of pointer-type operands
3292/// until reaching a SCEV that does not have a single pointer operand. This
3293/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3294/// but corner cases do exist.
3295const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3296 // A pointer operand may evaluate to a nonpointer expression, such as null.
3297 if (!V->getType()->isPointerTy())
3298 return V;
3299
3300 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3301 return getPointerBase(Cast->getOperand());
3302 }
3303 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003304 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003305 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3306 I != E; ++I) {
3307 if ((*I)->getType()->isPointerTy()) {
3308 // Cannot find the base of an expression with multiple pointer operands.
3309 if (PtrOp)
3310 return V;
3311 PtrOp = *I;
3312 }
3313 }
3314 if (!PtrOp)
3315 return V;
3316 return getPointerBase(PtrOp);
3317 }
3318 return V;
3319}
3320
Dan Gohman0b89dff2009-07-25 01:13:03 +00003321/// PushDefUseChildren - Push users of the given Instruction
3322/// onto the given Worklist.
3323static void
3324PushDefUseChildren(Instruction *I,
3325 SmallVectorImpl<Instruction *> &Worklist) {
3326 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003327 for (User *U : I->users())
3328 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003329}
3330
3331/// ForgetSymbolicValue - This looks up computed SCEV values for all
3332/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003333/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003334/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003335void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003336ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003337 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003338 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003339
Dan Gohman0b89dff2009-07-25 01:13:03 +00003340 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003341 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003342 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003343 Instruction *I = Worklist.pop_back_val();
Dan Gohman0b89dff2009-07-25 01:13:03 +00003344 if (!Visited.insert(I)) continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003345
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003346 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003347 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003348 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003349 const SCEV *Old = It->second;
3350
Dan Gohman0b89dff2009-07-25 01:13:03 +00003351 // Short-circuit the def-use traversal if the symbolic name
3352 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003353 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003354 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003355
Dan Gohman0b89dff2009-07-25 01:13:03 +00003356 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003357 // structure, it's a PHI that's in the progress of being computed
3358 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3359 // additional loop trip count information isn't going to change anything.
3360 // In the second case, createNodeForPHI will perform the necessary
3361 // updates on its own when it gets to that point. In the third, we do
3362 // want to forget the SCEVUnknown.
3363 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003364 !isa<SCEVUnknown>(Old) ||
3365 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003366 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003367 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003368 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003369 }
3370
3371 PushDefUseChildren(I, Worklist);
3372 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003373}
Chris Lattnerd934c702004-04-02 20:23:17 +00003374
3375/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3376/// a loop header, making it a potential recurrence, or it doesn't.
3377///
Dan Gohmanaf752342009-07-07 17:06:11 +00003378const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003379 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3380 if (L->getHeader() == PN->getParent()) {
3381 // The loop may have multiple entrances or multiple exits; we can analyze
3382 // this phi as an addrec if it has a unique entry value and a unique
3383 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003384 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003385 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3386 Value *V = PN->getIncomingValue(i);
3387 if (L->contains(PN->getIncomingBlock(i))) {
3388 if (!BEValueV) {
3389 BEValueV = V;
3390 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003391 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003392 break;
3393 }
3394 } else if (!StartValueV) {
3395 StartValueV = V;
3396 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003397 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003398 break;
3399 }
3400 }
3401 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003402 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003403 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003404 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003405 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003406 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003407
3408 // Using this symbolic name for the PHI, analyze the value coming around
3409 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003410 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003411
3412 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3413 // has a special value for the first iteration of the loop.
3414
3415 // If the value coming around the backedge is an add with the symbolic
3416 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003417 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003418 // If there is a single occurrence of the symbolic value, replace it
3419 // with a recurrence.
3420 unsigned FoundIndex = Add->getNumOperands();
3421 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3422 if (Add->getOperand(i) == SymbolicName)
3423 if (FoundIndex == e) {
3424 FoundIndex = i;
3425 break;
3426 }
3427
3428 if (FoundIndex != Add->getNumOperands()) {
3429 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003430 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003431 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3432 if (i != FoundIndex)
3433 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003434 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003435
3436 // This is not a valid addrec if the step amount is varying each
3437 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003438 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003439 (isa<SCEVAddRecExpr>(Accum) &&
3440 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003441 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003442
3443 // If the increment doesn't overflow, then neither the addrec nor
3444 // the post-increment will overflow.
3445 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3446 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003447 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003448 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003449 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003450 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003451 // If the increment is an inbounds GEP, then we know the address
3452 // space cannot be wrapped around. We cannot make any guarantee
3453 // about signed or unsigned overflow because pointers are
3454 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003455 // pointer. We can guarantee that no unsigned wrap occurs if the
3456 // indices form a positive value.
3457 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003458 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003459
3460 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3461 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3462 Flags = setFlags(Flags, SCEV::FlagNUW);
3463 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003464 } else if (const SubOperator *OBO =
3465 dyn_cast<SubOperator>(BEValueV)) {
3466 if (OBO->hasNoUnsignedWrap())
3467 Flags = setFlags(Flags, SCEV::FlagNUW);
3468 if (OBO->hasNoSignedWrap())
3469 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003470 }
3471
Dan Gohman6635bb22010-04-12 07:49:36 +00003472 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003473 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003474
Dan Gohman51ad99d2010-01-21 02:09:26 +00003475 // Since the no-wrap flags are on the increment, they apply to the
3476 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003477 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003478 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003479 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003480
3481 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003482 // to be symbolic. We now need to go back and purge all of the
3483 // entries for the scalars that use the symbolic expression.
3484 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003485 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003486 return PHISCEV;
3487 }
3488 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003489 } else if (const SCEVAddRecExpr *AddRec =
3490 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003491 // Otherwise, this could be a loop like this:
3492 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3493 // In this case, j = {1,+,1} and BEValue is j.
3494 // Because the other in-value of i (0) fits the evolution of BEValue
3495 // i really is an addrec evolution.
3496 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003497 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003498
3499 // If StartVal = j.start - j.stride, we can use StartVal as the
3500 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003501 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003502 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003503 // FIXME: For constant StartVal, we should be able to infer
3504 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003505 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003506 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3507 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003508
3509 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003510 // to be symbolic. We now need to go back and purge all of the
3511 // entries for the scalars that use the symbolic expression.
3512 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003513 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003514 return PHISCEV;
3515 }
3516 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003517 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003518 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003519 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003520
Dan Gohmana9c205c2010-02-25 06:57:05 +00003521 // If the PHI has a single incoming value, follow that value, unless the
3522 // PHI's incoming blocks are in a different loop, in which case doing so
3523 // risks breaking LCSSA form. Instcombine would normally zap these, but
3524 // it doesn't have DominatorTree information, so it may miss cases.
Hal Finkel60db0582014-09-07 18:57:58 +00003525 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003526 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003527 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003528
Chris Lattnerd934c702004-04-02 20:23:17 +00003529 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003530 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003531}
3532
Dan Gohmanee750d12009-05-08 20:26:55 +00003533/// createNodeForGEP - Expand GEP instructions into add and multiply
3534/// operations. This allows them to be analyzed by regular SCEV code.
3535///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003536const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003537 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003538 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003539 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003540 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003541 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003542
3543 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3544 // Add expression, because the Instruction may be guarded by control flow
3545 // and the no-overflow bits may not be valid for the expression in any
3546 // context.
3547 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3548
Dan Gohman1d2ded72010-05-03 22:09:21 +00003549 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003550 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003551 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003552 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003553 I != E; ++I) {
3554 Value *Index = *I;
3555 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003556 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003557 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003558 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003559 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003560
Dan Gohman16206132010-06-30 07:16:37 +00003561 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003562 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003563 } else {
3564 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003565 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003566 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003567 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003568 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3569
Dan Gohman16206132010-06-30 07:16:37 +00003570 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003571 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003572
3573 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003574 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003575 }
3576 }
Dan Gohman16206132010-06-30 07:16:37 +00003577
3578 // Get the SCEV for the GEP base.
3579 const SCEV *BaseS = getSCEV(Base);
3580
Dan Gohman16206132010-06-30 07:16:37 +00003581 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003582 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003583}
3584
Nick Lewycky3783b462007-11-22 07:59:40 +00003585/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3586/// guaranteed to end in (at every loop iteration). It is, at the same time,
3587/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3588/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003589uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003590ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003591 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003592 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003593
Dan Gohmana30370b2009-05-04 22:02:23 +00003594 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003595 return std::min(GetMinTrailingZeros(T->getOperand()),
3596 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003597
Dan Gohmana30370b2009-05-04 22:02:23 +00003598 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003599 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3600 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3601 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003602 }
3603
Dan Gohmana30370b2009-05-04 22:02:23 +00003604 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003605 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3606 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3607 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003608 }
3609
Dan Gohmana30370b2009-05-04 22:02:23 +00003610 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003611 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003612 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003613 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003614 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003615 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003616 }
3617
Dan Gohmana30370b2009-05-04 22:02:23 +00003618 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003619 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003620 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3621 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003622 for (unsigned i = 1, e = M->getNumOperands();
3623 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003624 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003625 BitWidth);
3626 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003627 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003628
Dan Gohmana30370b2009-05-04 22:02:23 +00003629 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003630 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003631 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003632 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003633 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003634 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003635 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003636
Dan Gohmana30370b2009-05-04 22:02:23 +00003637 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003638 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003639 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003640 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003641 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003642 return MinOpRes;
3643 }
3644
Dan Gohmana30370b2009-05-04 22:02:23 +00003645 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003646 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003647 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003648 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003649 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003650 return MinOpRes;
3651 }
3652
Dan Gohmanc702fc02009-06-19 23:29:04 +00003653 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3654 // For a SCEVUnknown, ask ValueTracking.
3655 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003656 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003657 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003658 return Zeros.countTrailingOnes();
3659 }
3660
3661 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003662 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003663}
Chris Lattnerd934c702004-04-02 20:23:17 +00003664
Dan Gohmane65c9172009-07-13 21:35:55 +00003665/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3666///
3667ConstantRange
3668ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003669 // See if we've computed this range already.
3670 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3671 if (I != UnsignedRanges.end())
3672 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003673
3674 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003675 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003676
Dan Gohman85be4332010-01-26 19:19:05 +00003677 unsigned BitWidth = getTypeSizeInBits(S->getType());
3678 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3679
3680 // If the value has known zeros, the maximum unsigned value will have those
3681 // known zeros as well.
3682 uint32_t TZ = GetMinTrailingZeros(S);
3683 if (TZ != 0)
3684 ConservativeResult =
3685 ConstantRange(APInt::getMinValue(BitWidth),
3686 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3687
Dan Gohmane65c9172009-07-13 21:35:55 +00003688 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3689 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3690 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3691 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003692 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003693 }
3694
3695 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3696 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3697 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3698 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003699 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003700 }
3701
3702 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3703 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3704 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3705 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003706 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003707 }
3708
3709 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3710 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3711 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3712 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003713 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003714 }
3715
3716 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3717 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3718 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003719 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003720 }
3721
3722 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3723 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003724 return setUnsignedRange(ZExt,
3725 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003726 }
3727
3728 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3729 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003730 return setUnsignedRange(SExt,
3731 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003732 }
3733
3734 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3735 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003736 return setUnsignedRange(Trunc,
3737 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003738 }
3739
Dan Gohmane65c9172009-07-13 21:35:55 +00003740 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003741 // If there's no unsigned wrap, the value will never be less than its
3742 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003743 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003744 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003745 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003746 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003747 ConservativeResult.intersectWith(
3748 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003749
3750 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003751 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003752 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003753 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003754 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3755 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003756 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3757
3758 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003759 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003760
3761 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003762 ConstantRange StepRange = getSignedRange(Step);
3763 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3764 ConstantRange EndRange =
3765 StartRange.add(MaxBECountRange.multiply(StepRange));
3766
3767 // Check for overflow. This must be done with ConstantRange arithmetic
3768 // because we could be called from within the ScalarEvolution overflow
3769 // checking code.
3770 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3771 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3772 ConstantRange ExtMaxBECountRange =
3773 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3774 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3775 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3776 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003777 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003778
Dan Gohmane65c9172009-07-13 21:35:55 +00003779 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3780 EndRange.getUnsignedMin());
3781 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3782 EndRange.getUnsignedMax());
3783 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003784 return setUnsignedRange(AddRec, ConservativeResult);
3785 return setUnsignedRange(AddRec,
3786 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003787 }
3788 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003789
Dan Gohmaned756312010-11-17 20:23:08 +00003790 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003791 }
3792
3793 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3794 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003795 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003796 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003797 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003798 return setUnsignedRange(U, ConservativeResult);
3799 return setUnsignedRange(U,
3800 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003801 }
3802
Dan Gohmaned756312010-11-17 20:23:08 +00003803 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003804}
3805
Dan Gohmane65c9172009-07-13 21:35:55 +00003806/// getSignedRange - Determine the signed range for a particular SCEV.
3807///
3808ConstantRange
3809ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003810 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003811 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3812 if (I != SignedRanges.end())
3813 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003814
Dan Gohmane65c9172009-07-13 21:35:55 +00003815 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003816 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003817
Dan Gohman51aaf022010-01-26 04:40:18 +00003818 unsigned BitWidth = getTypeSizeInBits(S->getType());
3819 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3820
3821 // If the value has known zeros, the maximum signed value will have those
3822 // known zeros as well.
3823 uint32_t TZ = GetMinTrailingZeros(S);
3824 if (TZ != 0)
3825 ConservativeResult =
3826 ConstantRange(APInt::getSignedMinValue(BitWidth),
3827 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3828
Dan Gohmane65c9172009-07-13 21:35:55 +00003829 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3830 ConstantRange X = getSignedRange(Add->getOperand(0));
3831 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3832 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003833 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003834 }
3835
Dan Gohmane65c9172009-07-13 21:35:55 +00003836 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3837 ConstantRange X = getSignedRange(Mul->getOperand(0));
3838 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3839 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003840 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003841 }
3842
Dan Gohmane65c9172009-07-13 21:35:55 +00003843 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3844 ConstantRange X = getSignedRange(SMax->getOperand(0));
3845 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3846 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003847 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003848 }
Dan Gohmand261d272009-06-24 01:05:09 +00003849
Dan Gohmane65c9172009-07-13 21:35:55 +00003850 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3851 ConstantRange X = getSignedRange(UMax->getOperand(0));
3852 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3853 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003854 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003855 }
Dan Gohmand261d272009-06-24 01:05:09 +00003856
Dan Gohmane65c9172009-07-13 21:35:55 +00003857 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3858 ConstantRange X = getSignedRange(UDiv->getLHS());
3859 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003860 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003861 }
Dan Gohmand261d272009-06-24 01:05:09 +00003862
Dan Gohmane65c9172009-07-13 21:35:55 +00003863 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3864 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003865 return setSignedRange(ZExt,
3866 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003867 }
3868
3869 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3870 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003871 return setSignedRange(SExt,
3872 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003873 }
3874
3875 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3876 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003877 return setSignedRange(Trunc,
3878 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003879 }
3880
Dan Gohmane65c9172009-07-13 21:35:55 +00003881 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003882 // If there's no signed wrap, and all the operands have the same sign or
3883 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003884 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003885 bool AllNonNeg = true;
3886 bool AllNonPos = true;
3887 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3888 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3889 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3890 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003891 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003892 ConservativeResult = ConservativeResult.intersectWith(
3893 ConstantRange(APInt(BitWidth, 0),
3894 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003895 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003896 ConservativeResult = ConservativeResult.intersectWith(
3897 ConstantRange(APInt::getSignedMinValue(BitWidth),
3898 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003899 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003900
3901 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003902 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003903 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003904 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003905 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3906 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003907 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3908
3909 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003910 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003911
3912 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003913 ConstantRange StepRange = getSignedRange(Step);
3914 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3915 ConstantRange EndRange =
3916 StartRange.add(MaxBECountRange.multiply(StepRange));
3917
3918 // Check for overflow. This must be done with ConstantRange arithmetic
3919 // because we could be called from within the ScalarEvolution overflow
3920 // checking code.
3921 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3922 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3923 ConstantRange ExtMaxBECountRange =
3924 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3925 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3926 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3927 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003928 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003929
Dan Gohmane65c9172009-07-13 21:35:55 +00003930 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3931 EndRange.getSignedMin());
3932 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3933 EndRange.getSignedMax());
3934 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003935 return setSignedRange(AddRec, ConservativeResult);
3936 return setSignedRange(AddRec,
3937 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003938 }
Dan Gohmand261d272009-06-24 01:05:09 +00003939 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003940
Dan Gohmaned756312010-11-17 20:23:08 +00003941 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003942 }
3943
Dan Gohmanc702fc02009-06-19 23:29:04 +00003944 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3945 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003946 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00003947 return setSignedRange(U, ConservativeResult);
Hal Finkel60db0582014-09-07 18:57:58 +00003948 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AT, nullptr, DT);
Hal Finkelff666bd2013-07-09 18:16:16 +00003949 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003950 return setSignedRange(U, ConservativeResult);
3951 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00003952 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00003953 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003954 }
3955
Dan Gohmaned756312010-11-17 20:23:08 +00003956 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003957}
3958
Chris Lattnerd934c702004-04-02 20:23:17 +00003959/// createSCEV - We know that there is no SCEV for the specified value.
3960/// Analyze the expression.
3961///
Dan Gohmanaf752342009-07-07 17:06:11 +00003962const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003963 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003964 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003965
Dan Gohman05e89732008-06-22 19:56:46 +00003966 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00003967 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00003968 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00003969
3970 // Don't attempt to analyze instructions in blocks that aren't
3971 // reachable. Such instructions don't matter, and they aren't required
3972 // to obey basic rules for definitions dominating uses which this
3973 // analysis depends on.
3974 if (!DT->isReachableFromEntry(I->getParent()))
3975 return getUnknown(V);
3976 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00003977 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00003978 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3979 return getConstant(CI);
3980 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00003981 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00003982 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3983 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00003984 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00003985 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00003986
Dan Gohman80ca01c2009-07-17 20:47:02 +00003987 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00003988 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00003989 case Instruction::Add: {
3990 // The simple thing to do would be to just call getSCEV on both operands
3991 // and call getAddExpr with the result. However if we're looking at a
3992 // bunch of things all added together, this can be quite inefficient,
3993 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3994 // Instead, gather up all the operands and make a single getAddExpr call.
3995 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00003996 //
3997 // Don't apply this instruction's NSW or NUW flags to the new
3998 // expression. The instruction may be guarded by control flow that the
3999 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4000 // mapped to the same SCEV expression, and it would be incorrect to transfer
4001 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004002 SmallVector<const SCEV *, 4> AddOps;
4003 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004004 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4005 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4006 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4007 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004008 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004009 const SCEV *Op1 = getSCEV(U->getOperand(1));
4010 if (Opcode == Instruction::Sub)
4011 AddOps.push_back(getNegativeSCEV(Op1));
4012 else
4013 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004014 }
4015 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004016 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004017 }
4018 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004019 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004020 SmallVector<const SCEV *, 4> MulOps;
4021 MulOps.push_back(getSCEV(U->getOperand(1)));
4022 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004023 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004024 Op = U->getOperand(0)) {
4025 U = cast<Operator>(Op);
4026 MulOps.push_back(getSCEV(U->getOperand(1)));
4027 }
4028 MulOps.push_back(getSCEV(U->getOperand(0)));
4029 return getMulExpr(MulOps);
4030 }
Dan Gohman05e89732008-06-22 19:56:46 +00004031 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004032 return getUDivExpr(getSCEV(U->getOperand(0)),
4033 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004034 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004035 return getMinusSCEV(getSCEV(U->getOperand(0)),
4036 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004037 case Instruction::And:
4038 // For an expression like x&255 that merely masks off the high bits,
4039 // use zext(trunc(x)) as the SCEV expression.
4040 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004041 if (CI->isNullValue())
4042 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004043 if (CI->isAllOnesValue())
4044 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004045 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004046
4047 // Instcombine's ShrinkDemandedConstant may strip bits out of
4048 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004049 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004050 // knew about to reconstruct a low-bits mask value.
4051 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004052 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004053 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004054 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00004055 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL,
4056 0, AT, nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004057
Nick Lewycky31eaca52014-01-27 10:04:03 +00004058 APInt EffectiveMask =
4059 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4060 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4061 const SCEV *MulCount = getConstant(
4062 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4063 return getMulExpr(
4064 getZeroExtendExpr(
4065 getTruncateExpr(
4066 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4067 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4068 U->getType()),
4069 MulCount);
4070 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004071 }
4072 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004073
Dan Gohman05e89732008-06-22 19:56:46 +00004074 case Instruction::Or:
4075 // If the RHS of the Or is a constant, we may have something like:
4076 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4077 // optimizations will transparently handle this case.
4078 //
4079 // In order for this transformation to be safe, the LHS must be of the
4080 // form X*(2^n) and the Or constant must be less than 2^n.
4081 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004082 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004083 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004084 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004085 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4086 // Build a plain add SCEV.
4087 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4088 // If the LHS of the add was an addrec and it has no-wrap flags,
4089 // transfer the no-wrap flags, since an or won't introduce a wrap.
4090 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4091 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004092 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4093 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004094 }
4095 return S;
4096 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004097 }
Dan Gohman05e89732008-06-22 19:56:46 +00004098 break;
4099 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004100 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004101 // If the RHS of the xor is a signbit, then this is just an add.
4102 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004103 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004104 return getAddExpr(getSCEV(U->getOperand(0)),
4105 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004106
4107 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004108 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004109 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004110
4111 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4112 // This is a variant of the check for xor with -1, and it handles
4113 // the case where instcombine has trimmed non-demanded bits out
4114 // of an xor with -1.
4115 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4116 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4117 if (BO->getOpcode() == Instruction::And &&
4118 LCI->getValue() == CI->getValue())
4119 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004120 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004121 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004122 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004123 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004124 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4125
Dan Gohman8b0a4192010-03-01 17:49:51 +00004126 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004127 // mask off the high bits. Complement the operand and
4128 // re-apply the zext.
4129 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4130 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4131
4132 // If C is a single bit, it may be in the sign-bit position
4133 // before the zero-extend. In this case, represent the xor
4134 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004135 APInt Trunc = CI->getValue().trunc(Z0TySize);
4136 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004137 Trunc.isSignBit())
4138 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4139 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004140 }
Dan Gohman05e89732008-06-22 19:56:46 +00004141 }
4142 break;
4143
4144 case Instruction::Shl:
4145 // Turn shift left of a constant amount into a multiply.
4146 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004147 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004148
4149 // If the shift count is not less than the bitwidth, the result of
4150 // the shift is undefined. Don't try to analyze it, because the
4151 // resolution chosen here may differ from the resolution chosen in
4152 // other parts of the compiler.
4153 if (SA->getValue().uge(BitWidth))
4154 break;
4155
Owen Andersonedb4a702009-07-24 23:12:02 +00004156 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004157 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004158 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004159 }
4160 break;
4161
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004162 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004163 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004164 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004165 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004166
4167 // If the shift count is not less than the bitwidth, the result of
4168 // the shift is undefined. Don't try to analyze it, because the
4169 // resolution chosen here may differ from the resolution chosen in
4170 // other parts of the compiler.
4171 if (SA->getValue().uge(BitWidth))
4172 break;
4173
Owen Andersonedb4a702009-07-24 23:12:02 +00004174 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004175 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004176 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004177 }
4178 break;
4179
Dan Gohman0ec05372009-04-21 02:26:00 +00004180 case Instruction::AShr:
4181 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4182 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004183 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004184 if (L->getOpcode() == Instruction::Shl &&
4185 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004186 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4187
4188 // If the shift count is not less than the bitwidth, the result of
4189 // the shift is undefined. Don't try to analyze it, because the
4190 // resolution chosen here may differ from the resolution chosen in
4191 // other parts of the compiler.
4192 if (CI->getValue().uge(BitWidth))
4193 break;
4194
Dan Gohmandf199482009-04-25 17:05:40 +00004195 uint64_t Amt = BitWidth - CI->getZExtValue();
4196 if (Amt == BitWidth)
4197 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004198 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004199 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004200 IntegerType::get(getContext(),
4201 Amt)),
4202 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004203 }
4204 break;
4205
Dan Gohman05e89732008-06-22 19:56:46 +00004206 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004207 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004208
4209 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004210 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004211
4212 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004213 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004214
4215 case Instruction::BitCast:
4216 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004217 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004218 return getSCEV(U->getOperand(0));
4219 break;
4220
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004221 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4222 // lead to pointer expressions which cannot safely be expanded to GEPs,
4223 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4224 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004225
Dan Gohmanee750d12009-05-08 20:26:55 +00004226 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004227 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004228
Dan Gohman05e89732008-06-22 19:56:46 +00004229 case Instruction::PHI:
4230 return createNodeForPHI(cast<PHINode>(U));
4231
4232 case Instruction::Select:
4233 // This could be a smax or umax that was lowered earlier.
4234 // Try to recover it.
4235 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4236 Value *LHS = ICI->getOperand(0);
4237 Value *RHS = ICI->getOperand(1);
4238 switch (ICI->getPredicate()) {
4239 case ICmpInst::ICMP_SLT:
4240 case ICmpInst::ICMP_SLE:
4241 std::swap(LHS, RHS);
4242 // fall through
4243 case ICmpInst::ICMP_SGT:
4244 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004245 // a >s b ? a+x : b+x -> smax(a, b)+x
4246 // a >s b ? b+x : a+x -> smin(a, b)+x
4247 if (LHS->getType() == U->getType()) {
4248 const SCEV *LS = getSCEV(LHS);
4249 const SCEV *RS = getSCEV(RHS);
4250 const SCEV *LA = getSCEV(U->getOperand(1));
4251 const SCEV *RA = getSCEV(U->getOperand(2));
4252 const SCEV *LDiff = getMinusSCEV(LA, LS);
4253 const SCEV *RDiff = getMinusSCEV(RA, RS);
4254 if (LDiff == RDiff)
4255 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4256 LDiff = getMinusSCEV(LA, RS);
4257 RDiff = getMinusSCEV(RA, LS);
4258 if (LDiff == RDiff)
4259 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4260 }
Dan Gohman05e89732008-06-22 19:56:46 +00004261 break;
4262 case ICmpInst::ICMP_ULT:
4263 case ICmpInst::ICMP_ULE:
4264 std::swap(LHS, RHS);
4265 // fall through
4266 case ICmpInst::ICMP_UGT:
4267 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004268 // a >u b ? a+x : b+x -> umax(a, b)+x
4269 // a >u b ? b+x : a+x -> umin(a, b)+x
4270 if (LHS->getType() == U->getType()) {
4271 const SCEV *LS = getSCEV(LHS);
4272 const SCEV *RS = getSCEV(RHS);
4273 const SCEV *LA = getSCEV(U->getOperand(1));
4274 const SCEV *RA = getSCEV(U->getOperand(2));
4275 const SCEV *LDiff = getMinusSCEV(LA, LS);
4276 const SCEV *RDiff = getMinusSCEV(RA, RS);
4277 if (LDiff == RDiff)
4278 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4279 LDiff = getMinusSCEV(LA, RS);
4280 RDiff = getMinusSCEV(RA, LS);
4281 if (LDiff == RDiff)
4282 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4283 }
Dan Gohman05e89732008-06-22 19:56:46 +00004284 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004285 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004286 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4287 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004288 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004289 cast<ConstantInt>(RHS)->isZero()) {
4290 const SCEV *One = getConstant(LHS->getType(), 1);
4291 const SCEV *LS = getSCEV(LHS);
4292 const SCEV *LA = getSCEV(U->getOperand(1));
4293 const SCEV *RA = getSCEV(U->getOperand(2));
4294 const SCEV *LDiff = getMinusSCEV(LA, LS);
4295 const SCEV *RDiff = getMinusSCEV(RA, One);
4296 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004297 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004298 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004299 break;
4300 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004301 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4302 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004303 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004304 cast<ConstantInt>(RHS)->isZero()) {
4305 const SCEV *One = getConstant(LHS->getType(), 1);
4306 const SCEV *LS = getSCEV(LHS);
4307 const SCEV *LA = getSCEV(U->getOperand(1));
4308 const SCEV *RA = getSCEV(U->getOperand(2));
4309 const SCEV *LDiff = getMinusSCEV(LA, One);
4310 const SCEV *RDiff = getMinusSCEV(RA, LS);
4311 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004312 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004313 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004314 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004315 default:
4316 break;
4317 }
4318 }
4319
4320 default: // We cannot analyze this expression.
4321 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004322 }
4323
Dan Gohmanc8e23622009-04-21 23:15:49 +00004324 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004325}
4326
4327
4328
4329//===----------------------------------------------------------------------===//
4330// Iteration Count Computation Code
4331//
4332
Andrew Trick2b6860f2011-08-11 23:36:16 +00004333/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004334/// normal unsigned value. Returns 0 if the trip count is unknown or not
4335/// constant. Will also return 0 if the maximum trip count is very large (>=
4336/// 2^32).
4337///
4338/// This "trip count" assumes that control exits via ExitingBlock. More
4339/// precisely, it is the number of times that control may reach ExitingBlock
4340/// before taking the branch. For loops with multiple exits, it may not be the
4341/// number times that the loop header executes because the loop may exit
4342/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004343unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4344 BasicBlock *ExitingBlock) {
Andrew Trick2b6860f2011-08-11 23:36:16 +00004345 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004346 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004347 if (!ExitCount)
4348 return 0;
4349
4350 ConstantInt *ExitConst = ExitCount->getValue();
4351
4352 // Guard against huge trip counts.
4353 if (ExitConst->getValue().getActiveBits() > 32)
4354 return 0;
4355
4356 // In case of integer overflow, this returns 0, which is correct.
4357 return ((unsigned)ExitConst->getZExtValue()) + 1;
4358}
4359
4360/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4361/// trip count of this loop as a normal unsigned value, if possible. This
4362/// means that the actual trip count is always a multiple of the returned
4363/// value (don't forget the trip count could very well be zero as well!).
4364///
4365/// Returns 1 if the trip count is unknown or not guaranteed to be the
4366/// multiple of a constant (which is also the case if the trip count is simply
4367/// constant, use getSmallConstantTripCount for that case), Will also return 1
4368/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004369///
4370/// As explained in the comments for getSmallConstantTripCount, this assumes
4371/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004372unsigned
4373ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4374 BasicBlock *ExitingBlock) {
4375 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004376 if (ExitCount == getCouldNotCompute())
4377 return 1;
4378
4379 // Get the trip count from the BE count by adding 1.
4380 const SCEV *TCMul = getAddExpr(ExitCount,
4381 getConstant(ExitCount->getType(), 1));
4382 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4383 // to factor simple cases.
4384 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4385 TCMul = Mul->getOperand(0);
4386
4387 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4388 if (!MulC)
4389 return 1;
4390
4391 ConstantInt *Result = MulC->getValue();
4392
Hal Finkel30bd9342012-10-24 19:46:44 +00004393 // Guard against huge trip counts (this requires checking
4394 // for zero to handle the case where the trip count == -1 and the
4395 // addition wraps).
4396 if (!Result || Result->getValue().getActiveBits() > 32 ||
4397 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004398 return 1;
4399
4400 return (unsigned)Result->getZExtValue();
4401}
4402
Andrew Trick3ca3f982011-07-26 17:19:55 +00004403// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004404// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004405// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004406const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4407 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004408}
4409
Dan Gohman0bddac12009-02-24 18:55:53 +00004410/// getBackedgeTakenCount - If the specified loop has a predictable
4411/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4412/// object. The backedge-taken count is the number of times the loop header
4413/// will be branched to from within the loop. This is one less than the
4414/// trip count of the loop, since it doesn't count the first iteration,
4415/// when the header is branched to from outside the loop.
4416///
4417/// Note that it is not valid to call this method on a loop without a
4418/// loop-invariant backedge-taken count (see
4419/// hasLoopInvariantBackedgeTakenCount).
4420///
Dan Gohmanaf752342009-07-07 17:06:11 +00004421const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004422 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004423}
4424
4425/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4426/// return the least SCEV value that is known never to be less than the
4427/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004428const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004429 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004430}
4431
Dan Gohmandc191042009-07-08 19:23:34 +00004432/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4433/// onto the given Worklist.
4434static void
4435PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4436 BasicBlock *Header = L->getHeader();
4437
4438 // Push all Loop-header PHIs onto the Worklist stack.
4439 for (BasicBlock::iterator I = Header->begin();
4440 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4441 Worklist.push_back(PN);
4442}
4443
Dan Gohman2b8da352009-04-30 20:47:05 +00004444const ScalarEvolution::BackedgeTakenInfo &
4445ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004446 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004447 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004448 // update the value. The temporary CouldNotCompute value tells SCEV
4449 // code elsewhere that it shouldn't attempt to request a new
4450 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004451 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004452 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004453 if (!Pair.second)
4454 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004455
Andrew Trick3ca3f982011-07-26 17:19:55 +00004456 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4457 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4458 // must be cleared in this scope.
4459 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4460
4461 if (Result.getExact(this) != getCouldNotCompute()) {
4462 assert(isLoopInvariant(Result.getExact(this), L) &&
4463 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004464 "Computed backedge-taken count isn't loop invariant for loop!");
4465 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004466 }
4467 else if (Result.getMax(this) == getCouldNotCompute() &&
4468 isa<PHINode>(L->getHeader()->begin())) {
4469 // Only count loops that have phi nodes as not being computable.
4470 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004471 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004472
Chris Lattnera337f5e2011-01-09 02:16:18 +00004473 // Now that we know more about the trip count for this loop, forget any
4474 // existing SCEV values for PHI nodes in this loop since they are only
4475 // conservative estimates made without the benefit of trip count
4476 // information. This is similar to the code in forgetLoop, except that
4477 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004478 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004479 SmallVector<Instruction *, 16> Worklist;
4480 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004481
Chris Lattnera337f5e2011-01-09 02:16:18 +00004482 SmallPtrSet<Instruction *, 8> Visited;
4483 while (!Worklist.empty()) {
4484 Instruction *I = Worklist.pop_back_val();
4485 if (!Visited.insert(I)) continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004486
Chris Lattnera337f5e2011-01-09 02:16:18 +00004487 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004488 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004489 if (It != ValueExprMap.end()) {
4490 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004491
Chris Lattnera337f5e2011-01-09 02:16:18 +00004492 // SCEVUnknown for a PHI either means that it has an unrecognized
4493 // structure, or it's a PHI that's in the progress of being computed
4494 // by createNodeForPHI. In the former case, additional loop trip
4495 // count information isn't going to change anything. In the later
4496 // case, createNodeForPHI will perform the necessary updates on its
4497 // own when it gets to that point.
4498 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4499 forgetMemoizedResults(Old);
4500 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004501 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004502 if (PHINode *PN = dyn_cast<PHINode>(I))
4503 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004504 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004505
4506 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004507 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004508 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004509
4510 // Re-lookup the insert position, since the call to
4511 // ComputeBackedgeTakenCount above could result in a
4512 // recusive call to getBackedgeTakenInfo (on a different
4513 // loop), which would invalidate the iterator computed
4514 // earlier.
4515 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004516}
4517
Dan Gohman880c92a2009-10-31 15:04:55 +00004518/// forgetLoop - This method should be called by the client when it has
4519/// changed a loop in a way that may effect ScalarEvolution's ability to
4520/// compute a trip count, or if the loop is deleted.
4521void ScalarEvolution::forgetLoop(const Loop *L) {
4522 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004523 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4524 BackedgeTakenCounts.find(L);
4525 if (BTCPos != BackedgeTakenCounts.end()) {
4526 BTCPos->second.clear();
4527 BackedgeTakenCounts.erase(BTCPos);
4528 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004529
Dan Gohman880c92a2009-10-31 15:04:55 +00004530 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004531 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004532 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004533
Dan Gohmandc191042009-07-08 19:23:34 +00004534 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004535 while (!Worklist.empty()) {
4536 Instruction *I = Worklist.pop_back_val();
Dan Gohmandc191042009-07-08 19:23:34 +00004537 if (!Visited.insert(I)) continue;
4538
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004539 ValueExprMapType::iterator It =
4540 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004541 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004542 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004543 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004544 if (PHINode *PN = dyn_cast<PHINode>(I))
4545 ConstantEvolutionLoopExitValue.erase(PN);
4546 }
4547
4548 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004549 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004550
4551 // Forget all contained loops too, to avoid dangling entries in the
4552 // ValuesAtScopes map.
4553 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4554 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004555}
4556
Eric Christopheref6d5932010-07-29 01:25:38 +00004557/// forgetValue - This method should be called by the client when it has
4558/// changed a value in a way that may effect its value, or which may
4559/// disconnect it from a def-use chain linking it to a loop.
4560void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004561 Instruction *I = dyn_cast<Instruction>(V);
4562 if (!I) return;
4563
4564 // Drop information about expressions based on loop-header PHIs.
4565 SmallVector<Instruction *, 16> Worklist;
4566 Worklist.push_back(I);
4567
4568 SmallPtrSet<Instruction *, 8> Visited;
4569 while (!Worklist.empty()) {
4570 I = Worklist.pop_back_val();
4571 if (!Visited.insert(I)) continue;
4572
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004573 ValueExprMapType::iterator It =
4574 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004575 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004576 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004577 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004578 if (PHINode *PN = dyn_cast<PHINode>(I))
4579 ConstantEvolutionLoopExitValue.erase(PN);
4580 }
4581
4582 PushDefUseChildren(I, Worklist);
4583 }
4584}
4585
Andrew Trick3ca3f982011-07-26 17:19:55 +00004586/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004587/// exits. A computable result can only be return for loops with a single exit.
4588/// Returning the minimum taken count among all exits is incorrect because one
4589/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4590/// the limit of each loop test is never skipped. This is a valid assumption as
4591/// long as the loop exits via that test. For precise results, it is the
4592/// caller's responsibility to specify the relevant loop exit using
4593/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004594const SCEV *
4595ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4596 // If any exits were not computable, the loop is not computable.
4597 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4598
Andrew Trick90c7a102011-11-16 00:52:40 +00004599 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004600 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004601 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4602
Craig Topper9f008862014-04-15 04:59:12 +00004603 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004604 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004605 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004606
4607 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4608
4609 if (!BECount)
4610 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004611 else if (BECount != ENT->ExactNotTaken)
4612 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004613 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004614 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004615 return BECount;
4616}
4617
4618/// getExact - Get the exact not taken count for this loop exit.
4619const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004620ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004621 ScalarEvolution *SE) const {
4622 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004623 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004624
Andrew Trick77c55422011-08-02 04:23:35 +00004625 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004626 return ENT->ExactNotTaken;
4627 }
4628 return SE->getCouldNotCompute();
4629}
4630
4631/// getMax - Get the max backedge taken count for the loop.
4632const SCEV *
4633ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4634 return Max ? Max : SE->getCouldNotCompute();
4635}
4636
Andrew Trick9093e152013-03-26 03:14:53 +00004637bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4638 ScalarEvolution *SE) const {
4639 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4640 return true;
4641
4642 if (!ExitNotTaken.ExitingBlock)
4643 return false;
4644
4645 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004646 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004647
4648 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4649 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4650 return true;
4651 }
4652 }
4653 return false;
4654}
4655
Andrew Trick3ca3f982011-07-26 17:19:55 +00004656/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4657/// computable exit into a persistent ExitNotTakenInfo array.
4658ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4659 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4660 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4661
4662 if (!Complete)
4663 ExitNotTaken.setIncomplete();
4664
4665 unsigned NumExits = ExitCounts.size();
4666 if (NumExits == 0) return;
4667
Andrew Trick77c55422011-08-02 04:23:35 +00004668 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004669 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4670 if (NumExits == 1) return;
4671
4672 // Handle the rare case of multiple computable exits.
4673 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4674
4675 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4676 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4677 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004678 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004679 ENT->ExactNotTaken = ExitCounts[i].second;
4680 }
4681}
4682
4683/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4684void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004685 ExitNotTaken.ExitingBlock = nullptr;
4686 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004687 delete[] ExitNotTaken.getNextExit();
4688}
4689
Dan Gohman0bddac12009-02-24 18:55:53 +00004690/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4691/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004692ScalarEvolution::BackedgeTakenInfo
4693ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004694 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004695 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004696
Andrew Trick839e30b2014-05-23 19:47:13 +00004697 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004698 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004699 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004700 const SCEV *MustExitMaxBECount = nullptr;
4701 const SCEV *MayExitMaxBECount = nullptr;
4702
4703 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4704 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004705 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004706 BasicBlock *ExitBB = ExitingBlocks[i];
4707 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4708
4709 // 1. For each exit that can be computed, add an entry to ExitCounts.
4710 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004711 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004712 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004713 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004714 CouldComputeBECount = false;
4715 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004716 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004717
Andrew Trick839e30b2014-05-23 19:47:13 +00004718 // 2. Derive the loop's MaxBECount from each exit's max number of
4719 // non-exiting iterations. Partition the loop exits into two kinds:
4720 // LoopMustExits and LoopMayExits.
4721 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004722 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4723 // is a LoopMayExit. If any computable LoopMustExit is found, then
4724 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4725 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4726 // considered greater than any computable EL.Max.
4727 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004728 DT->dominates(ExitBB, Latch)) {
4729 if (!MustExitMaxBECount)
4730 MustExitMaxBECount = EL.Max;
4731 else {
4732 MustExitMaxBECount =
4733 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004734 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004735 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4736 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4737 MayExitMaxBECount = EL.Max;
4738 else {
4739 MayExitMaxBECount =
4740 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4741 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004742 }
Dan Gohman96212b62009-06-22 00:31:57 +00004743 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004744 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4745 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004746 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004747}
4748
Andrew Trick3ca3f982011-07-26 17:19:55 +00004749/// ComputeExitLimit - Compute the number of times the backedge of the specified
4750/// loop will execute if it exits via the specified block.
4751ScalarEvolution::ExitLimit
4752ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004753
4754 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004755 // exit at this block and remember the exit block and whether all other targets
4756 // lead to the loop header.
4757 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004758 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004759 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4760 SI != SE; ++SI)
4761 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004762 if (Exit) // Multiple exit successors.
4763 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004764 Exit = *SI;
4765 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004766 MustExecuteLoopHeader = false;
4767 }
Dan Gohmance973df2009-06-24 04:48:43 +00004768
Chris Lattner18954852007-01-07 02:24:26 +00004769 // At this point, we know we have a conditional branch that determines whether
4770 // the loop is exited. However, we don't know if the branch is executed each
4771 // time through the loop. If not, then the execution count of the branch will
4772 // not be equal to the trip count of the loop.
4773 //
4774 // Currently we check for this by checking to see if the Exit branch goes to
4775 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004776 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004777 // loop header. This is common for un-rotated loops.
4778 //
4779 // If both of those tests fail, walk up the unique predecessor chain to the
4780 // header, stopping if there is an edge that doesn't exit the loop. If the
4781 // header is reached, the execution count of the branch will be equal to the
4782 // trip count of the loop.
4783 //
4784 // More extensive analysis could be done to handle more cases here.
4785 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004786 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004787 // The simple checks failed, try climbing the unique predecessor chain
4788 // up to the header.
4789 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004790 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004791 BasicBlock *Pred = BB->getUniquePredecessor();
4792 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004793 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004794 TerminatorInst *PredTerm = Pred->getTerminator();
4795 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4796 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4797 if (PredSucc == BB)
4798 continue;
4799 // If the predecessor has a successor that isn't BB and isn't
4800 // outside the loop, assume the worst.
4801 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004802 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004803 }
4804 if (Pred == L->getHeader()) {
4805 Ok = true;
4806 break;
4807 }
4808 BB = Pred;
4809 }
4810 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004811 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004812 }
4813
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004814 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004815 TerminatorInst *Term = ExitingBlock->getTerminator();
4816 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4817 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4818 // Proceed to the next level to examine the exit condition expression.
4819 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4820 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004821 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004822 }
4823
4824 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4825 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004826 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004827
4828 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004829}
4830
Andrew Trick3ca3f982011-07-26 17:19:55 +00004831/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004832/// backedge of the specified loop will execute if its exit condition
4833/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004834///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004835/// @param ControlsExit is true if ExitCond directly controls the exit
4836/// branch. In this case, we can assume that the loop exits only if the
4837/// condition is true and can infer that failing to meet the condition prior to
4838/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004839ScalarEvolution::ExitLimit
4840ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4841 Value *ExitCond,
4842 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004843 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004844 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004845 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004846 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4847 if (BO->getOpcode() == Instruction::And) {
4848 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004849 bool EitherMayExit = L->contains(TBB);
4850 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004851 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004852 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004853 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004854 const SCEV *BECount = getCouldNotCompute();
4855 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004856 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004857 // Both conditions must be true for the loop to continue executing.
4858 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004859 if (EL0.Exact == getCouldNotCompute() ||
4860 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004861 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004862 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004863 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4864 if (EL0.Max == getCouldNotCompute())
4865 MaxBECount = EL1.Max;
4866 else if (EL1.Max == getCouldNotCompute())
4867 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004868 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004869 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004870 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004871 // Both conditions must be true at the same time for the loop to exit.
4872 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004873 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004874 if (EL0.Max == EL1.Max)
4875 MaxBECount = EL0.Max;
4876 if (EL0.Exact == EL1.Exact)
4877 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004878 }
4879
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004880 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004881 }
4882 if (BO->getOpcode() == Instruction::Or) {
4883 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004884 bool EitherMayExit = L->contains(FBB);
4885 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004886 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004887 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004888 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004889 const SCEV *BECount = getCouldNotCompute();
4890 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004891 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004892 // Both conditions must be false for the loop to continue executing.
4893 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004894 if (EL0.Exact == getCouldNotCompute() ||
4895 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004896 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004897 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004898 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4899 if (EL0.Max == getCouldNotCompute())
4900 MaxBECount = EL1.Max;
4901 else if (EL1.Max == getCouldNotCompute())
4902 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004903 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004904 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004905 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004906 // Both conditions must be false at the same time for the loop to exit.
4907 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004908 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004909 if (EL0.Max == EL1.Max)
4910 MaxBECount = EL0.Max;
4911 if (EL0.Exact == EL1.Exact)
4912 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004913 }
4914
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004915 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004916 }
4917 }
4918
4919 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00004920 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00004921 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004922 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00004923
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004924 // Check for a constant condition. These are normally stripped out by
4925 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4926 // preserve the CFG and is temporarily leaving constant conditions
4927 // in place.
4928 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4929 if (L->contains(FBB) == !CI->getZExtValue())
4930 // The backedge is always taken.
4931 return getCouldNotCompute();
4932 else
4933 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00004934 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004935 }
4936
Eli Friedmanebf98b02009-05-09 12:32:42 +00004937 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004938 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00004939}
4940
Andrew Trick3ca3f982011-07-26 17:19:55 +00004941/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004942/// backedge of the specified loop will execute if its exit condition
4943/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004944ScalarEvolution::ExitLimit
4945ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4946 ICmpInst *ExitCond,
4947 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004948 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004949 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00004950
Reid Spencer266e42b2006-12-23 06:05:41 +00004951 // If the condition was exit on true, convert the condition to exit on false
4952 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00004953 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00004954 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004955 else
Reid Spencer266e42b2006-12-23 06:05:41 +00004956 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004957
4958 // Handle common loops like: for (X = "string"; *X; ++X)
4959 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4960 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004961 ExitLimit ItCnt =
4962 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00004963 if (ItCnt.hasAnyInfo())
4964 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004965 }
4966
Dan Gohmanaf752342009-07-07 17:06:11 +00004967 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4968 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00004969
4970 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00004971 LHS = getSCEVAtScope(LHS, L);
4972 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00004973
Dan Gohmance973df2009-06-24 04:48:43 +00004974 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00004975 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00004976 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00004977 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00004978 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004979 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00004980 }
4981
Dan Gohman81585c12010-05-03 16:35:17 +00004982 // Simplify the operands before analyzing them.
4983 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4984
Chris Lattnerd934c702004-04-02 20:23:17 +00004985 // If we have a comparison of a chrec against a constant, try to use value
4986 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00004987 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4988 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00004989 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00004990 // Form the constant range.
4991 ConstantRange CompRange(
4992 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00004993
Dan Gohmanaf752342009-07-07 17:06:11 +00004994 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00004995 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00004996 }
Misha Brukman01808ca2005-04-21 21:13:18 +00004997
Chris Lattnerd934c702004-04-02 20:23:17 +00004998 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004999 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005000 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005001 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005002 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005003 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005004 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005005 case ICmpInst::ICMP_EQ: { // while (X == Y)
5006 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005007 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5008 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005009 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005010 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005011 case ICmpInst::ICMP_SLT:
5012 case ICmpInst::ICMP_ULT: { // while (X < Y)
5013 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005014 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005015 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005016 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005017 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005018 case ICmpInst::ICMP_SGT:
5019 case ICmpInst::ICMP_UGT: { // while (X > Y)
5020 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005021 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005022 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005023 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005024 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005025 default:
Chris Lattner09169212004-04-02 20:26:46 +00005026#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005027 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005028 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005029 dbgs() << "[unsigned] ";
5030 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005031 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005032 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005033#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005034 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005035 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005036 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005037}
5038
Benjamin Kramer5a188542014-02-11 15:44:32 +00005039ScalarEvolution::ExitLimit
5040ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5041 SwitchInst *Switch,
5042 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005043 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005044 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5045
5046 // Give up if the exit is the default dest of a switch.
5047 if (Switch->getDefaultDest() == ExitingBlock)
5048 return getCouldNotCompute();
5049
5050 assert(L->contains(Switch->getDefaultDest()) &&
5051 "Default case must not exit the loop!");
5052 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5053 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5054
5055 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005056 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005057 if (EL.hasAnyInfo())
5058 return EL;
5059
5060 return getCouldNotCompute();
5061}
5062
Chris Lattnerec901cc2004-10-12 01:49:27 +00005063static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005064EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5065 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005066 const SCEV *InVal = SE.getConstant(C);
5067 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005068 assert(isa<SCEVConstant>(Val) &&
5069 "Evaluation of SCEV at constant didn't fold correctly?");
5070 return cast<SCEVConstant>(Val)->getValue();
5071}
5072
Andrew Trick3ca3f982011-07-26 17:19:55 +00005073/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005074/// 'icmp op load X, cst', try to see if we can compute the backedge
5075/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005076ScalarEvolution::ExitLimit
5077ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5078 LoadInst *LI,
5079 Constant *RHS,
5080 const Loop *L,
5081 ICmpInst::Predicate predicate) {
5082
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005083 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005084
5085 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005086 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005087 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005088 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005089
5090 // Make sure that it is really a constant global we are gepping, with an
5091 // initializer, and make sure the first IDX is really 0.
5092 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005093 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005094 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5095 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005096 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005097
5098 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005099 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005100 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005101 unsigned VarIdxNum = 0;
5102 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5103 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5104 Indexes.push_back(CI);
5105 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005106 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005107 VarIdx = GEP->getOperand(i);
5108 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005109 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005110 }
5111
Andrew Trick7004e4b2012-03-26 22:33:59 +00005112 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5113 if (!VarIdx)
5114 return getCouldNotCompute();
5115
Chris Lattnerec901cc2004-10-12 01:49:27 +00005116 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5117 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005118 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005119 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005120
5121 // We can only recognize very limited forms of loop index expressions, in
5122 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005123 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005124 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005125 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5126 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005127 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005128
5129 unsigned MaxSteps = MaxBruteForceIterations;
5130 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005131 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005132 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005133 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005134
5135 // Form the GEP offset.
5136 Indexes[VarIdxNum] = Val;
5137
Chris Lattnere166a852012-01-24 05:49:24 +00005138 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5139 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005140 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005141
5142 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005143 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005144 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005145 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005146#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005147 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005148 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5149 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005150#endif
5151 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005152 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005153 }
5154 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005155 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005156}
5157
5158
Chris Lattnerdd730472004-04-17 22:58:41 +00005159/// CanConstantFold - Return true if we can constant fold an instruction of the
5160/// specified type, assuming that all operands were constants.
5161static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005162 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005163 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5164 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005165 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005166
Chris Lattnerdd730472004-04-17 22:58:41 +00005167 if (const CallInst *CI = dyn_cast<CallInst>(I))
5168 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005169 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005170 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005171}
5172
Andrew Trick3a86ba72011-10-05 03:25:31 +00005173/// Determine whether this instruction can constant evolve within this loop
5174/// assuming its operands can all constant evolve.
5175static bool canConstantEvolve(Instruction *I, const Loop *L) {
5176 // An instruction outside of the loop can't be derived from a loop PHI.
5177 if (!L->contains(I)) return false;
5178
5179 if (isa<PHINode>(I)) {
5180 if (L->getHeader() == I->getParent())
5181 return true;
5182 else
5183 // We don't currently keep track of the control flow needed to evaluate
5184 // PHIs, so we cannot handle PHIs inside of loops.
5185 return false;
5186 }
5187
5188 // If we won't be able to constant fold this expression even if the operands
5189 // are constants, bail early.
5190 return CanConstantFold(I);
5191}
5192
5193/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5194/// recursing through each instruction operand until reaching a loop header phi.
5195static PHINode *
5196getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005197 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005198
5199 // Otherwise, we can evaluate this instruction if all of its operands are
5200 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005201 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005202 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5203 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5204
5205 if (isa<Constant>(*OpI)) continue;
5206
5207 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005208 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005209
5210 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005211 if (!P)
5212 // If this operand is already visited, reuse the prior result.
5213 // We may have P != PHI if this is the deepest point at which the
5214 // inconsistent paths meet.
5215 P = PHIMap.lookup(OpInst);
5216 if (!P) {
5217 // Recurse and memoize the results, whether a phi is found or not.
5218 // This recursive call invalidates pointers into PHIMap.
5219 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5220 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005221 }
Craig Topper9f008862014-04-15 04:59:12 +00005222 if (!P)
5223 return nullptr; // Not evolving from PHI
5224 if (PHI && PHI != P)
5225 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005226 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005227 }
5228 // This is a expression evolving from a constant PHI!
5229 return PHI;
5230}
5231
Chris Lattnerdd730472004-04-17 22:58:41 +00005232/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5233/// in the loop that V is derived from. We allow arbitrary operations along the
5234/// way, but the operands of an operation must either be constants or a value
5235/// derived from a constant PHI. If this expression does not fit with these
5236/// constraints, return null.
5237static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005238 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005239 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005240
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005241 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005242 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005243 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005244
Andrew Trick3a86ba72011-10-05 03:25:31 +00005245 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005246 DenseMap<Instruction *, PHINode *> PHIMap;
5247 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005248}
5249
5250/// EvaluateExpression - Given an expression that passes the
5251/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5252/// in the loop has the value PHIVal. If we can't fold this expression for some
5253/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005254static Constant *EvaluateExpression(Value *V, const Loop *L,
5255 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005256 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005257 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005258 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005259 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005260 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005261 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005262
Andrew Trick3a86ba72011-10-05 03:25:31 +00005263 if (Constant *C = Vals.lookup(I)) return C;
5264
Nick Lewyckya6674c72011-10-22 19:58:20 +00005265 // An instruction inside the loop depends on a value outside the loop that we
5266 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005267 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005268
5269 // An unmapped PHI can be due to a branch or another loop inside this loop,
5270 // or due to this not being the initial iteration through a loop where we
5271 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005272 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005273
Dan Gohmanf820bd32010-06-22 13:15:46 +00005274 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005275
5276 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005277 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5278 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005279 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005280 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005281 continue;
5282 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005283 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005284 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005285 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005286 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005287 }
5288
Nick Lewyckya6674c72011-10-22 19:58:20 +00005289 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005290 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005291 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005292 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5293 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005294 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005295 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005296 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005297 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005298}
5299
5300/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5301/// in the header of its containing loop, we know the loop executes a
5302/// constant number of times, and the PHI node is just a recurrence
5303/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005304Constant *
5305ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005306 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005307 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005308 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005309 ConstantEvolutionLoopExitValue.find(PN);
5310 if (I != ConstantEvolutionLoopExitValue.end())
5311 return I->second;
5312
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005313 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005314 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005315
5316 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5317
Andrew Trick3a86ba72011-10-05 03:25:31 +00005318 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005319 BasicBlock *Header = L->getHeader();
5320 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005321
Chris Lattnerdd730472004-04-17 22:58:41 +00005322 // Since the loop is canonicalized, the PHI node must have two entries. One
5323 // entry must be a constant (coming in from outside of the loop), and the
5324 // second must be derived from the same PHI.
5325 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005326 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005327 for (BasicBlock::iterator I = Header->begin();
5328 (PHI = dyn_cast<PHINode>(I)); ++I) {
5329 Constant *StartCST =
5330 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005331 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005332 CurrentIterVals[PHI] = StartCST;
5333 }
5334 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005335 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005336
5337 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005338
5339 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005340 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005341 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005342
Dan Gohman0bddac12009-02-24 18:55:53 +00005343 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005344 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005345 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005346 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005347 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005348
Nick Lewyckya6674c72011-10-22 19:58:20 +00005349 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005350 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005351 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005352 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005353 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005354 if (!NextPHI)
5355 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005356 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005357
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005358 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5359
Nick Lewyckya6674c72011-10-22 19:58:20 +00005360 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5361 // cease to be able to evaluate one of them or if they stop evolving,
5362 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005363 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005364 for (DenseMap<Instruction *, Constant *>::const_iterator
5365 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5366 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005367 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005368 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5369 }
5370 // We use two distinct loops because EvaluateExpression may invalidate any
5371 // iterators into CurrentIterVals.
5372 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5373 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5374 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005375 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005376 if (!NextPHI) { // Not already computed.
5377 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005378 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005379 }
5380 if (NextPHI != I->second)
5381 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005382 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005383
5384 // If all entries in CurrentIterVals == NextIterVals then we can stop
5385 // iterating, the loop can't continue to change.
5386 if (StoppedEvolving)
5387 return RetVal = CurrentIterVals[PN];
5388
Andrew Trick3a86ba72011-10-05 03:25:31 +00005389 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005390 }
5391}
5392
Andrew Trick3ca3f982011-07-26 17:19:55 +00005393/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005394/// constant number of times (the condition evolves only from constants),
5395/// try to evaluate a few iterations of the loop until we get the exit
5396/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005397/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005398const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5399 Value *Cond,
5400 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005401 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005402 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005403
Dan Gohman866971e2010-06-19 14:17:24 +00005404 // If the loop is canonicalized, the PHI will have exactly two entries.
5405 // That's the only form we support here.
5406 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5407
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005408 DenseMap<Instruction *, Constant *> CurrentIterVals;
5409 BasicBlock *Header = L->getHeader();
5410 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5411
Dan Gohman866971e2010-06-19 14:17:24 +00005412 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005413 // second must be derived from the same PHI.
5414 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005415 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005416 for (BasicBlock::iterator I = Header->begin();
5417 (PHI = dyn_cast<PHINode>(I)); ++I) {
5418 Constant *StartCST =
5419 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005420 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005421 CurrentIterVals[PHI] = StartCST;
5422 }
5423 if (!CurrentIterVals.count(PN))
5424 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005425
5426 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5427 // the loop symbolically to determine when the condition gets a value of
5428 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005429
Andrew Trick90c7a102011-11-16 00:52:40 +00005430 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005431 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005432 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005433 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005434 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005435
Zhou Sheng75b871f2007-01-11 12:24:14 +00005436 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005437 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005438
Reid Spencer983e3b32007-03-01 07:25:48 +00005439 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005440 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005441 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005442 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005443
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005444 // Update all the PHI nodes for the next iteration.
5445 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005446
5447 // Create a list of which PHIs we need to compute. We want to do this before
5448 // calling EvaluateExpression on them because that may invalidate iterators
5449 // into CurrentIterVals.
5450 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005451 for (DenseMap<Instruction *, Constant *>::const_iterator
5452 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5453 PHINode *PHI = dyn_cast<PHINode>(I->first);
5454 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005455 PHIsToCompute.push_back(PHI);
5456 }
5457 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5458 E = PHIsToCompute.end(); I != E; ++I) {
5459 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005460 Constant *&NextPHI = NextIterVals[PHI];
5461 if (NextPHI) continue; // Already computed!
5462
5463 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005464 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005465 }
5466 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005467 }
5468
5469 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005470 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005471}
5472
Dan Gohman237d9e52009-09-03 15:00:26 +00005473/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005474/// at the specified scope in the program. The L value specifies a loop
5475/// nest to evaluate the expression at, where null is the top-level or a
5476/// specified loop is immediately inside of the loop.
5477///
5478/// This method can be used to compute the exit value for a variable defined
5479/// in a loop by querying what the value will hold in the parent loop.
5480///
Dan Gohman8ca08852009-05-24 23:25:42 +00005481/// In the case that a relevant loop exit value cannot be computed, the
5482/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005483const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005484 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005485 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5486 for (unsigned u = 0; u < Values.size(); u++) {
5487 if (Values[u].first == L)
5488 return Values[u].second ? Values[u].second : V;
5489 }
Craig Topper9f008862014-04-15 04:59:12 +00005490 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005491 // Otherwise compute it.
5492 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005493 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5494 for (unsigned u = Values2.size(); u > 0; u--) {
5495 if (Values2[u - 1].first == L) {
5496 Values2[u - 1].second = C;
5497 break;
5498 }
5499 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005500 return C;
5501}
5502
Nick Lewyckya6674c72011-10-22 19:58:20 +00005503/// This builds up a Constant using the ConstantExpr interface. That way, we
5504/// will return Constants for objects which aren't represented by a
5505/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5506/// Returns NULL if the SCEV isn't representable as a Constant.
5507static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005508 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005509 case scCouldNotCompute:
5510 case scAddRecExpr:
5511 break;
5512 case scConstant:
5513 return cast<SCEVConstant>(V)->getValue();
5514 case scUnknown:
5515 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5516 case scSignExtend: {
5517 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5518 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5519 return ConstantExpr::getSExt(CastOp, SS->getType());
5520 break;
5521 }
5522 case scZeroExtend: {
5523 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5524 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5525 return ConstantExpr::getZExt(CastOp, SZ->getType());
5526 break;
5527 }
5528 case scTruncate: {
5529 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5530 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5531 return ConstantExpr::getTrunc(CastOp, ST->getType());
5532 break;
5533 }
5534 case scAddExpr: {
5535 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5536 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005537 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5538 unsigned AS = PTy->getAddressSpace();
5539 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5540 C = ConstantExpr::getBitCast(C, DestPtrTy);
5541 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005542 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5543 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005544 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005545
5546 // First pointer!
5547 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005548 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005549 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005550 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005551 // The offsets have been converted to bytes. We can add bytes to an
5552 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005553 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005554 }
5555
5556 // Don't bother trying to sum two pointers. We probably can't
5557 // statically compute a load that results from it anyway.
5558 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005559 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005560
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005561 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5562 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005563 C2 = ConstantExpr::getIntegerCast(
5564 C2, Type::getInt32Ty(C->getContext()), true);
5565 C = ConstantExpr::getGetElementPtr(C, C2);
5566 } else
5567 C = ConstantExpr::getAdd(C, C2);
5568 }
5569 return C;
5570 }
5571 break;
5572 }
5573 case scMulExpr: {
5574 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5575 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5576 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005577 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005578 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5579 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005580 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005581 C = ConstantExpr::getMul(C, C2);
5582 }
5583 return C;
5584 }
5585 break;
5586 }
5587 case scUDivExpr: {
5588 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5589 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5590 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5591 if (LHS->getType() == RHS->getType())
5592 return ConstantExpr::getUDiv(LHS, RHS);
5593 break;
5594 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005595 case scSMaxExpr:
5596 case scUMaxExpr:
5597 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005598 }
Craig Topper9f008862014-04-15 04:59:12 +00005599 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005600}
5601
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005602const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005603 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005604
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005605 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005606 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005607 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005608 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005609 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005610 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5611 if (PHINode *PN = dyn_cast<PHINode>(I))
5612 if (PN->getParent() == LI->getHeader()) {
5613 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005614 // to see if the loop that contains it has a known backedge-taken
5615 // count. If so, we may be able to force computation of the exit
5616 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005617 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005618 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005619 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005620 // Okay, we know how many times the containing loop executes. If
5621 // this is a constant evolving PHI node, get the final value at
5622 // the specified iteration number.
5623 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005624 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005625 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005626 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005627 }
5628 }
5629
Reid Spencere6328ca2006-12-04 21:33:23 +00005630 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005631 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005632 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005633 // result. This is particularly useful for computing loop exit values.
5634 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005635 SmallVector<Constant *, 4> Operands;
5636 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005637 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5638 Value *Op = I->getOperand(i);
5639 if (Constant *C = dyn_cast<Constant>(Op)) {
5640 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005641 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005642 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005643
5644 // If any of the operands is non-constant and if they are
5645 // non-integer and non-pointer, don't even try to analyze them
5646 // with scev techniques.
5647 if (!isSCEVable(Op->getType()))
5648 return V;
5649
5650 const SCEV *OrigV = getSCEV(Op);
5651 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5652 MadeImprovement |= OrigV != OpV;
5653
Nick Lewyckya6674c72011-10-22 19:58:20 +00005654 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005655 if (!C) return V;
5656 if (C->getType() != Op->getType())
5657 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5658 Op->getType(),
5659 false),
5660 C, Op->getType());
5661 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005662 }
Dan Gohmance973df2009-06-24 04:48:43 +00005663
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005664 // Check to see if getSCEVAtScope actually made an improvement.
5665 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005666 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005667 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5668 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005669 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005670 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005671 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5672 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005673 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005674 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005675 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005676 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005677 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005678 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005679 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005680 }
5681 }
5682
5683 // This is some other type of SCEVUnknown, just return it.
5684 return V;
5685 }
5686
Dan Gohmana30370b2009-05-04 22:02:23 +00005687 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005688 // Avoid performing the look-up in the common case where the specified
5689 // expression has no loop-variant portions.
5690 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005691 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005692 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005693 // Okay, at least one of these operands is loop variant but might be
5694 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005695 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5696 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005697 NewOps.push_back(OpAtScope);
5698
5699 for (++i; i != e; ++i) {
5700 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005701 NewOps.push_back(OpAtScope);
5702 }
5703 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005704 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005705 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005706 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005707 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005708 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005709 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005710 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005711 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005712 }
5713 }
5714 // If we got here, all operands are loop invariant.
5715 return Comm;
5716 }
5717
Dan Gohmana30370b2009-05-04 22:02:23 +00005718 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005719 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5720 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005721 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5722 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005723 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005724 }
5725
5726 // If this is a loop recurrence for a loop that does not contain L, then we
5727 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005728 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005729 // First, attempt to evaluate each operand.
5730 // Avoid performing the look-up in the common case where the specified
5731 // expression has no loop-variant portions.
5732 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5733 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5734 if (OpAtScope == AddRec->getOperand(i))
5735 continue;
5736
5737 // Okay, at least one of these operands is loop variant but might be
5738 // foldable. Build a new instance of the folded commutative expression.
5739 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5740 AddRec->op_begin()+i);
5741 NewOps.push_back(OpAtScope);
5742 for (++i; i != e; ++i)
5743 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5744
Andrew Trick759ba082011-04-27 01:21:25 +00005745 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005746 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005747 AddRec->getNoWrapFlags(SCEV::FlagNW));
5748 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005749 // The addrec may be folded to a nonrecurrence, for example, if the
5750 // induction variable is multiplied by zero after constant folding. Go
5751 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005752 if (!AddRec)
5753 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005754 break;
5755 }
5756
5757 // If the scope is outside the addrec's loop, evaluate it by using the
5758 // loop exit value of the addrec.
5759 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005760 // To evaluate this recurrence, we need to know how many times the AddRec
5761 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005762 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005763 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005764
Eli Friedman61f67622008-08-04 23:49:06 +00005765 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005766 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005767 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005768
Dan Gohman8ca08852009-05-24 23:25:42 +00005769 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005770 }
5771
Dan Gohmana30370b2009-05-04 22:02:23 +00005772 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005773 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005774 if (Op == Cast->getOperand())
5775 return Cast; // must be loop invariant
5776 return getZeroExtendExpr(Op, Cast->getType());
5777 }
5778
Dan Gohmana30370b2009-05-04 22:02:23 +00005779 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005780 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005781 if (Op == Cast->getOperand())
5782 return Cast; // must be loop invariant
5783 return getSignExtendExpr(Op, Cast->getType());
5784 }
5785
Dan Gohmana30370b2009-05-04 22:02:23 +00005786 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005787 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005788 if (Op == Cast->getOperand())
5789 return Cast; // must be loop invariant
5790 return getTruncateExpr(Op, Cast->getType());
5791 }
5792
Torok Edwinfbcc6632009-07-14 16:55:14 +00005793 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005794}
5795
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005796/// getSCEVAtScope - This is a convenience function which does
5797/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005798const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005799 return getSCEVAtScope(getSCEV(V), L);
5800}
5801
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005802/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5803/// following equation:
5804///
5805/// A * X = B (mod N)
5806///
5807/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5808/// A and B isn't important.
5809///
5810/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005811static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005812 ScalarEvolution &SE) {
5813 uint32_t BW = A.getBitWidth();
5814 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5815 assert(A != 0 && "A must be non-zero.");
5816
5817 // 1. D = gcd(A, N)
5818 //
5819 // The gcd of A and N may have only one prime factor: 2. The number of
5820 // trailing zeros in A is its multiplicity
5821 uint32_t Mult2 = A.countTrailingZeros();
5822 // D = 2^Mult2
5823
5824 // 2. Check if B is divisible by D.
5825 //
5826 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5827 // is not less than multiplicity of this prime factor for D.
5828 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005829 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005830
5831 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5832 // modulo (N / D).
5833 //
5834 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5835 // bit width during computations.
5836 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5837 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005838 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005839 APInt I = AD.multiplicativeInverse(Mod);
5840
5841 // 4. Compute the minimum unsigned root of the equation:
5842 // I * (B / D) mod (N / D)
5843 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5844
5845 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5846 // bits.
5847 return SE.getConstant(Result.trunc(BW));
5848}
Chris Lattnerd934c702004-04-02 20:23:17 +00005849
5850/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5851/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5852/// might be the same) or two SCEVCouldNotCompute objects.
5853///
Dan Gohmanaf752342009-07-07 17:06:11 +00005854static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005855SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005856 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005857 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5858 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5859 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005860
Chris Lattnerd934c702004-04-02 20:23:17 +00005861 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005862 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005863 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005864 return std::make_pair(CNC, CNC);
5865 }
5866
Reid Spencer983e3b32007-03-01 07:25:48 +00005867 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005868 const APInt &L = LC->getValue()->getValue();
5869 const APInt &M = MC->getValue()->getValue();
5870 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005871 APInt Two(BitWidth, 2);
5872 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005873
Dan Gohmance973df2009-06-24 04:48:43 +00005874 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005875 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005876 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005877 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5878 // The B coefficient is M-N/2
5879 APInt B(M);
5880 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005881
Reid Spencer983e3b32007-03-01 07:25:48 +00005882 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005883 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005884
Reid Spencer983e3b32007-03-01 07:25:48 +00005885 // Compute the B^2-4ac term.
5886 APInt SqrtTerm(B);
5887 SqrtTerm *= B;
5888 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005889
Nick Lewyckyfb780832012-08-01 09:14:36 +00005890 if (SqrtTerm.isNegative()) {
5891 // The loop is provably infinite.
5892 const SCEV *CNC = SE.getCouldNotCompute();
5893 return std::make_pair(CNC, CNC);
5894 }
5895
Reid Spencer983e3b32007-03-01 07:25:48 +00005896 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5897 // integer value or else APInt::sqrt() will assert.
5898 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005899
Dan Gohmance973df2009-06-24 04:48:43 +00005900 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005901 // The divisions must be performed as signed divisions.
5902 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005903 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005904 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005905 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005906 return std::make_pair(CNC, CNC);
5907 }
5908
Owen Anderson47db9412009-07-22 00:24:57 +00005909 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005910
5911 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005912 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00005913 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005914 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00005915
Dan Gohmance973df2009-06-24 04:48:43 +00005916 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00005917 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00005918 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00005919}
5920
5921/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00005922/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00005923///
5924/// This is only used for loops with a "x != y" exit test. The exit condition is
5925/// now expressed as a single expression, V = x-y. So the exit test is
5926/// effectively V != 0. We know and take advantage of the fact that this
5927/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005928ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005929ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005930 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00005931 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005932 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00005933 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005934 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005935 }
5936
Dan Gohman48f82222009-05-04 22:30:44 +00005937 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005938 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005939 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005940
Chris Lattnerdff679f2011-01-09 22:39:48 +00005941 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5942 // the quadratic equation to solve it.
5943 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5944 std::pair<const SCEV *,const SCEV *> Roots =
5945 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00005946 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5947 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00005948 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00005949#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005950 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00005951 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005952#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00005953 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00005954 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00005955 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5956 R1->getValue(),
5957 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00005958 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00005959 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00005960
Chris Lattnerd934c702004-04-02 20:23:17 +00005961 // We can only use this value if the chrec ends up with an exact zero
5962 // value at this index. When solving for "X*X != 5", for example, we
5963 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00005964 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00005965 if (Val->isZero())
5966 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00005967 }
5968 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00005969 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005970 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005971
Chris Lattnerdff679f2011-01-09 22:39:48 +00005972 // Otherwise we can only handle this if it is affine.
5973 if (!AddRec->isAffine())
5974 return getCouldNotCompute();
5975
5976 // If this is an affine expression, the execution count of this branch is
5977 // the minimum unsigned root of the following equation:
5978 //
5979 // Start + Step*N = 0 (mod 2^BW)
5980 //
5981 // equivalent to:
5982 //
5983 // Step*N = -Start (mod 2^BW)
5984 //
5985 // where BW is the common bit width of Start and Step.
5986
5987 // Get the initial value for the loop.
5988 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5989 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5990
5991 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00005992 //
5993 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5994 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5995 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5996 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00005997 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00005998 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00005999 return getCouldNotCompute();
6000
Andrew Trick8b55b732011-03-14 16:50:06 +00006001 // For positive steps (counting up until unsigned overflow):
6002 // N = -Start/Step (as unsigned)
6003 // For negative steps (counting down to zero):
6004 // N = Start/-Step
6005 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006006 bool CountDown = StepC->getValue()->getValue().isNegative();
6007 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006008
6009 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006010 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6011 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006012 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6013 ConstantRange CR = getUnsignedRange(Start);
6014 const SCEV *MaxBECount;
6015 if (!CountDown && CR.getUnsignedMin().isMinValue())
6016 // When counting up, the worst starting value is 1, not 0.
6017 MaxBECount = CR.getUnsignedMax().isMinValue()
6018 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6019 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6020 else
6021 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6022 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006023 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006024 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006025
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006026 // If the step exactly divides the distance then unsigned divide computes the
6027 // backedge count.
6028 const SCEV *Q, *R;
6029 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6030 SCEVDivision::divide(SE, Distance, Step, &Q, &R);
6031 if (R->isZero()) {
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006032 const SCEV *Exact =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006033 getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6034 return ExitLimit(Exact, Exact);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006035 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006036
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006037 // If the condition controls loop exit (the loop exits only if the expression
6038 // is true) and the addition is no-wrap we can use unsigned divide to
6039 // compute the backedge count. In this case, the step may not divide the
6040 // distance, but we don't care because if the condition is "missed" the loop
6041 // will have undefined behavior due to wrapping.
6042 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6043 const SCEV *Exact =
6044 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6045 return ExitLimit(Exact, Exact);
6046 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006047
Chris Lattnerdff679f2011-01-09 22:39:48 +00006048 // Then, try to solve the above equation provided that Start is constant.
6049 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6050 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6051 -StartC->getValue()->getValue(),
6052 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006053 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006054}
6055
6056/// HowFarToNonZero - Return the number of times a backedge checking the
6057/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006058/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006059ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006060ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006061 // Loops that look like: while (X == 0) are very strange indeed. We don't
6062 // handle them yet except for the trivial case. This could be expanded in the
6063 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006064
Chris Lattnerd934c702004-04-02 20:23:17 +00006065 // If the value is a constant, check to see if it is known to be non-zero
6066 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006067 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006068 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006069 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006070 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006071 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006072
Chris Lattnerd934c702004-04-02 20:23:17 +00006073 // We could implement others, but I really doubt anyone writes loops like
6074 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006075 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006076}
6077
Dan Gohmanf9081a22008-09-15 22:18:04 +00006078/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6079/// (which may not be an immediate predecessor) which has exactly one
6080/// successor from which BB is reachable, or null if no such block is
6081/// found.
6082///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006083std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006084ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006085 // If the block has a unique predecessor, then there is no path from the
6086 // predecessor to the block that does not go through the direct edge
6087 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006088 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006089 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006090
6091 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006092 // If the header has a unique predecessor outside the loop, it must be
6093 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006094 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006095 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006096
Dan Gohman4e3c1132010-04-15 16:19:08 +00006097 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006098}
6099
Dan Gohman450f4e02009-06-20 00:35:32 +00006100/// HasSameValue - SCEV structural equivalence is usually sufficient for
6101/// testing whether two expressions are equal, however for the purposes of
6102/// looking for a condition guarding a loop, it can be useful to be a little
6103/// more general, since a front-end may have replicated the controlling
6104/// expression.
6105///
Dan Gohmanaf752342009-07-07 17:06:11 +00006106static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006107 // Quick check to see if they are the same SCEV.
6108 if (A == B) return true;
6109
6110 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6111 // two different instructions with the same value. Check for this case.
6112 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6113 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6114 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6115 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006116 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006117 return true;
6118
6119 // Otherwise assume they may have a different value.
6120 return false;
6121}
6122
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006123/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006124/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006125///
6126bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006127 const SCEV *&LHS, const SCEV *&RHS,
6128 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006129 bool Changed = false;
6130
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006131 // If we hit the max recursion limit bail out.
6132 if (Depth >= 3)
6133 return false;
6134
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006135 // Canonicalize a constant to the right side.
6136 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6137 // Check for both operands constant.
6138 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6139 if (ConstantExpr::getICmp(Pred,
6140 LHSC->getValue(),
6141 RHSC->getValue())->isNullValue())
6142 goto trivially_false;
6143 else
6144 goto trivially_true;
6145 }
6146 // Otherwise swap the operands to put the constant on the right.
6147 std::swap(LHS, RHS);
6148 Pred = ICmpInst::getSwappedPredicate(Pred);
6149 Changed = true;
6150 }
6151
6152 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006153 // addrec's loop, put the addrec on the left. Also make a dominance check,
6154 // as both operands could be addrecs loop-invariant in each other's loop.
6155 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6156 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006157 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006158 std::swap(LHS, RHS);
6159 Pred = ICmpInst::getSwappedPredicate(Pred);
6160 Changed = true;
6161 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006162 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006163
6164 // If there's a constant operand, canonicalize comparisons with boundary
6165 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6166 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6167 const APInt &RA = RC->getValue()->getValue();
6168 switch (Pred) {
6169 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6170 case ICmpInst::ICMP_EQ:
6171 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006172 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6173 if (!RA)
6174 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6175 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006176 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6177 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006178 RHS = AE->getOperand(1);
6179 LHS = ME->getOperand(1);
6180 Changed = true;
6181 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006182 break;
6183 case ICmpInst::ICMP_UGE:
6184 if ((RA - 1).isMinValue()) {
6185 Pred = ICmpInst::ICMP_NE;
6186 RHS = getConstant(RA - 1);
6187 Changed = true;
6188 break;
6189 }
6190 if (RA.isMaxValue()) {
6191 Pred = ICmpInst::ICMP_EQ;
6192 Changed = true;
6193 break;
6194 }
6195 if (RA.isMinValue()) goto trivially_true;
6196
6197 Pred = ICmpInst::ICMP_UGT;
6198 RHS = getConstant(RA - 1);
6199 Changed = true;
6200 break;
6201 case ICmpInst::ICMP_ULE:
6202 if ((RA + 1).isMaxValue()) {
6203 Pred = ICmpInst::ICMP_NE;
6204 RHS = getConstant(RA + 1);
6205 Changed = true;
6206 break;
6207 }
6208 if (RA.isMinValue()) {
6209 Pred = ICmpInst::ICMP_EQ;
6210 Changed = true;
6211 break;
6212 }
6213 if (RA.isMaxValue()) goto trivially_true;
6214
6215 Pred = ICmpInst::ICMP_ULT;
6216 RHS = getConstant(RA + 1);
6217 Changed = true;
6218 break;
6219 case ICmpInst::ICMP_SGE:
6220 if ((RA - 1).isMinSignedValue()) {
6221 Pred = ICmpInst::ICMP_NE;
6222 RHS = getConstant(RA - 1);
6223 Changed = true;
6224 break;
6225 }
6226 if (RA.isMaxSignedValue()) {
6227 Pred = ICmpInst::ICMP_EQ;
6228 Changed = true;
6229 break;
6230 }
6231 if (RA.isMinSignedValue()) goto trivially_true;
6232
6233 Pred = ICmpInst::ICMP_SGT;
6234 RHS = getConstant(RA - 1);
6235 Changed = true;
6236 break;
6237 case ICmpInst::ICMP_SLE:
6238 if ((RA + 1).isMaxSignedValue()) {
6239 Pred = ICmpInst::ICMP_NE;
6240 RHS = getConstant(RA + 1);
6241 Changed = true;
6242 break;
6243 }
6244 if (RA.isMinSignedValue()) {
6245 Pred = ICmpInst::ICMP_EQ;
6246 Changed = true;
6247 break;
6248 }
6249 if (RA.isMaxSignedValue()) goto trivially_true;
6250
6251 Pred = ICmpInst::ICMP_SLT;
6252 RHS = getConstant(RA + 1);
6253 Changed = true;
6254 break;
6255 case ICmpInst::ICMP_UGT:
6256 if (RA.isMinValue()) {
6257 Pred = ICmpInst::ICMP_NE;
6258 Changed = true;
6259 break;
6260 }
6261 if ((RA + 1).isMaxValue()) {
6262 Pred = ICmpInst::ICMP_EQ;
6263 RHS = getConstant(RA + 1);
6264 Changed = true;
6265 break;
6266 }
6267 if (RA.isMaxValue()) goto trivially_false;
6268 break;
6269 case ICmpInst::ICMP_ULT:
6270 if (RA.isMaxValue()) {
6271 Pred = ICmpInst::ICMP_NE;
6272 Changed = true;
6273 break;
6274 }
6275 if ((RA - 1).isMinValue()) {
6276 Pred = ICmpInst::ICMP_EQ;
6277 RHS = getConstant(RA - 1);
6278 Changed = true;
6279 break;
6280 }
6281 if (RA.isMinValue()) goto trivially_false;
6282 break;
6283 case ICmpInst::ICMP_SGT:
6284 if (RA.isMinSignedValue()) {
6285 Pred = ICmpInst::ICMP_NE;
6286 Changed = true;
6287 break;
6288 }
6289 if ((RA + 1).isMaxSignedValue()) {
6290 Pred = ICmpInst::ICMP_EQ;
6291 RHS = getConstant(RA + 1);
6292 Changed = true;
6293 break;
6294 }
6295 if (RA.isMaxSignedValue()) goto trivially_false;
6296 break;
6297 case ICmpInst::ICMP_SLT:
6298 if (RA.isMaxSignedValue()) {
6299 Pred = ICmpInst::ICMP_NE;
6300 Changed = true;
6301 break;
6302 }
6303 if ((RA - 1).isMinSignedValue()) {
6304 Pred = ICmpInst::ICMP_EQ;
6305 RHS = getConstant(RA - 1);
6306 Changed = true;
6307 break;
6308 }
6309 if (RA.isMinSignedValue()) goto trivially_false;
6310 break;
6311 }
6312 }
6313
6314 // Check for obvious equality.
6315 if (HasSameValue(LHS, RHS)) {
6316 if (ICmpInst::isTrueWhenEqual(Pred))
6317 goto trivially_true;
6318 if (ICmpInst::isFalseWhenEqual(Pred))
6319 goto trivially_false;
6320 }
6321
Dan Gohman81585c12010-05-03 16:35:17 +00006322 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6323 // adding or subtracting 1 from one of the operands.
6324 switch (Pred) {
6325 case ICmpInst::ICMP_SLE:
6326 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6327 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006328 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006329 Pred = ICmpInst::ICMP_SLT;
6330 Changed = true;
6331 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006332 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006333 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006334 Pred = ICmpInst::ICMP_SLT;
6335 Changed = true;
6336 }
6337 break;
6338 case ICmpInst::ICMP_SGE:
6339 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006340 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006341 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006342 Pred = ICmpInst::ICMP_SGT;
6343 Changed = true;
6344 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6345 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006346 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006347 Pred = ICmpInst::ICMP_SGT;
6348 Changed = true;
6349 }
6350 break;
6351 case ICmpInst::ICMP_ULE:
6352 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006353 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006354 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006355 Pred = ICmpInst::ICMP_ULT;
6356 Changed = true;
6357 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006358 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006359 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006360 Pred = ICmpInst::ICMP_ULT;
6361 Changed = true;
6362 }
6363 break;
6364 case ICmpInst::ICMP_UGE:
6365 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006366 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006367 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006368 Pred = ICmpInst::ICMP_UGT;
6369 Changed = true;
6370 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006371 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006372 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006373 Pred = ICmpInst::ICMP_UGT;
6374 Changed = true;
6375 }
6376 break;
6377 default:
6378 break;
6379 }
6380
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006381 // TODO: More simplifications are possible here.
6382
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006383 // Recursively simplify until we either hit a recursion limit or nothing
6384 // changes.
6385 if (Changed)
6386 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6387
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006388 return Changed;
6389
6390trivially_true:
6391 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006392 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006393 Pred = ICmpInst::ICMP_EQ;
6394 return true;
6395
6396trivially_false:
6397 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006398 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006399 Pred = ICmpInst::ICMP_NE;
6400 return true;
6401}
6402
Dan Gohmane65c9172009-07-13 21:35:55 +00006403bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6404 return getSignedRange(S).getSignedMax().isNegative();
6405}
6406
6407bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6408 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6409}
6410
6411bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6412 return !getSignedRange(S).getSignedMin().isNegative();
6413}
6414
6415bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6416 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6417}
6418
6419bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6420 return isKnownNegative(S) || isKnownPositive(S);
6421}
6422
6423bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6424 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006425 // Canonicalize the inputs first.
6426 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6427
Dan Gohman07591692010-04-11 22:16:48 +00006428 // If LHS or RHS is an addrec, check to see if the condition is true in
6429 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006430 // If LHS and RHS are both addrec, both conditions must be true in
6431 // every iteration of the loop.
6432 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6433 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6434 bool LeftGuarded = false;
6435 bool RightGuarded = false;
6436 if (LAR) {
6437 const Loop *L = LAR->getLoop();
6438 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6439 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6440 if (!RAR) return true;
6441 LeftGuarded = true;
6442 }
6443 }
6444 if (RAR) {
6445 const Loop *L = RAR->getLoop();
6446 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6447 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6448 if (!LAR) return true;
6449 RightGuarded = true;
6450 }
6451 }
6452 if (LeftGuarded && RightGuarded)
6453 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006454
Dan Gohman07591692010-04-11 22:16:48 +00006455 // Otherwise see what can be done with known constant ranges.
6456 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6457}
6458
6459bool
6460ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6461 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006462 if (HasSameValue(LHS, RHS))
6463 return ICmpInst::isTrueWhenEqual(Pred);
6464
Dan Gohman07591692010-04-11 22:16:48 +00006465 // This code is split out from isKnownPredicate because it is called from
6466 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006467 switch (Pred) {
6468 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006469 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006470 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006471 std::swap(LHS, RHS);
6472 case ICmpInst::ICMP_SLT: {
6473 ConstantRange LHSRange = getSignedRange(LHS);
6474 ConstantRange RHSRange = getSignedRange(RHS);
6475 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6476 return true;
6477 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6478 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006479 break;
6480 }
6481 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006482 std::swap(LHS, RHS);
6483 case ICmpInst::ICMP_SLE: {
6484 ConstantRange LHSRange = getSignedRange(LHS);
6485 ConstantRange RHSRange = getSignedRange(RHS);
6486 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6487 return true;
6488 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6489 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006490 break;
6491 }
6492 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006493 std::swap(LHS, RHS);
6494 case ICmpInst::ICMP_ULT: {
6495 ConstantRange LHSRange = getUnsignedRange(LHS);
6496 ConstantRange RHSRange = getUnsignedRange(RHS);
6497 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6498 return true;
6499 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6500 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006501 break;
6502 }
6503 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006504 std::swap(LHS, RHS);
6505 case ICmpInst::ICMP_ULE: {
6506 ConstantRange LHSRange = getUnsignedRange(LHS);
6507 ConstantRange RHSRange = getUnsignedRange(RHS);
6508 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6509 return true;
6510 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6511 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006512 break;
6513 }
6514 case ICmpInst::ICMP_NE: {
6515 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6516 return true;
6517 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6518 return true;
6519
6520 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6521 if (isKnownNonZero(Diff))
6522 return true;
6523 break;
6524 }
6525 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006526 // The check at the top of the function catches the case where
6527 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006528 break;
6529 }
6530 return false;
6531}
6532
6533/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6534/// protected by a conditional between LHS and RHS. This is used to
6535/// to eliminate casts.
6536bool
6537ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6538 ICmpInst::Predicate Pred,
6539 const SCEV *LHS, const SCEV *RHS) {
6540 // Interpret a null as meaning no loop, where there is obviously no guard
6541 // (interprocedural conditions notwithstanding).
6542 if (!L) return true;
6543
6544 BasicBlock *Latch = L->getLoopLatch();
6545 if (!Latch)
6546 return false;
6547
6548 BranchInst *LoopContinuePredicate =
6549 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006550 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6551 isImpliedCond(Pred, LHS, RHS,
6552 LoopContinuePredicate->getCondition(),
6553 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6554 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006555
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006556 // Check conditions due to any @llvm.assume intrinsics.
6557 for (auto &CI : AT->assumptions(F)) {
6558 if (!DT->dominates(CI, Latch->getTerminator()))
6559 continue;
6560
6561 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6562 return true;
6563 }
6564
6565 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006566}
6567
Dan Gohmanb50349a2010-04-11 19:27:13 +00006568/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006569/// by a conditional between LHS and RHS. This is used to help avoid max
6570/// expressions in loop trip counts, and to eliminate casts.
6571bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006572ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6573 ICmpInst::Predicate Pred,
6574 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006575 // Interpret a null as meaning no loop, where there is obviously no guard
6576 // (interprocedural conditions notwithstanding).
6577 if (!L) return false;
6578
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006579 // Starting at the loop predecessor, climb up the predecessor chain, as long
6580 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006581 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006582 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006583 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006584 Pair.first;
6585 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006586
6587 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006588 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006589 if (!LoopEntryPredicate ||
6590 LoopEntryPredicate->isUnconditional())
6591 continue;
6592
Dan Gohmane18c2d62010-08-10 23:46:30 +00006593 if (isImpliedCond(Pred, LHS, RHS,
6594 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006595 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006596 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006597 }
6598
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006599 // Check conditions due to any @llvm.assume intrinsics.
6600 for (auto &CI : AT->assumptions(F)) {
6601 if (!DT->dominates(CI, L->getHeader()))
6602 continue;
6603
6604 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6605 return true;
6606 }
6607
Dan Gohman2a62fd92008-08-12 20:17:31 +00006608 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006609}
6610
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006611/// RAII wrapper to prevent recursive application of isImpliedCond.
6612/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6613/// currently evaluating isImpliedCond.
6614struct MarkPendingLoopPredicate {
6615 Value *Cond;
6616 DenseSet<Value*> &LoopPreds;
6617 bool Pending;
6618
6619 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6620 : Cond(C), LoopPreds(LP) {
6621 Pending = !LoopPreds.insert(Cond).second;
6622 }
6623 ~MarkPendingLoopPredicate() {
6624 if (!Pending)
6625 LoopPreds.erase(Cond);
6626 }
6627};
6628
Dan Gohman430f0cc2009-07-21 23:03:19 +00006629/// isImpliedCond - Test whether the condition described by Pred, LHS,
6630/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006631bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006632 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006633 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006634 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006635 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6636 if (Mark.Pending)
6637 return false;
6638
Dan Gohman8b0a4192010-03-01 17:49:51 +00006639 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006640 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006641 if (BO->getOpcode() == Instruction::And) {
6642 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006643 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6644 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006645 } else if (BO->getOpcode() == Instruction::Or) {
6646 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006647 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6648 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006649 }
6650 }
6651
Dan Gohmane18c2d62010-08-10 23:46:30 +00006652 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006653 if (!ICI) return false;
6654
Dan Gohmane65c9172009-07-13 21:35:55 +00006655 // Bail if the ICmp's operands' types are wider than the needed type
6656 // before attempting to call getSCEV on them. This avoids infinite
6657 // recursion, since the analysis of widening casts can require loop
6658 // exit condition information for overflow checking, which would
6659 // lead back here.
6660 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006661 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006662 return false;
6663
Andrew Trickfa594032012-11-29 18:35:13 +00006664 // Now that we found a conditional branch that dominates the loop or controls
6665 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006666 ICmpInst::Predicate FoundPred;
6667 if (Inverse)
6668 FoundPred = ICI->getInversePredicate();
6669 else
6670 FoundPred = ICI->getPredicate();
6671
6672 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6673 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006674
6675 // Balance the types. The case where FoundLHS' type is wider than
6676 // LHS' type is checked for above.
6677 if (getTypeSizeInBits(LHS->getType()) >
6678 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006679 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006680 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6681 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6682 } else {
6683 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6684 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6685 }
6686 }
6687
Dan Gohman430f0cc2009-07-21 23:03:19 +00006688 // Canonicalize the query to match the way instcombine will have
6689 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006690 if (SimplifyICmpOperands(Pred, LHS, RHS))
6691 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006692 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006693 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6694 if (FoundLHS == FoundRHS)
6695 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006696
6697 // Check to see if we can make the LHS or RHS match.
6698 if (LHS == FoundRHS || RHS == FoundLHS) {
6699 if (isa<SCEVConstant>(RHS)) {
6700 std::swap(FoundLHS, FoundRHS);
6701 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6702 } else {
6703 std::swap(LHS, RHS);
6704 Pred = ICmpInst::getSwappedPredicate(Pred);
6705 }
6706 }
6707
6708 // Check whether the found predicate is the same as the desired predicate.
6709 if (FoundPred == Pred)
6710 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6711
6712 // Check whether swapping the found predicate makes it the same as the
6713 // desired predicate.
6714 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6715 if (isa<SCEVConstant>(RHS))
6716 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6717 else
6718 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6719 RHS, LHS, FoundLHS, FoundRHS);
6720 }
6721
6722 // Check whether the actual condition is beyond sufficient.
6723 if (FoundPred == ICmpInst::ICMP_EQ)
6724 if (ICmpInst::isTrueWhenEqual(Pred))
6725 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6726 return true;
6727 if (Pred == ICmpInst::ICMP_NE)
6728 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6729 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6730 return true;
6731
6732 // Otherwise assume the worst.
6733 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006734}
6735
Dan Gohman430f0cc2009-07-21 23:03:19 +00006736/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006737/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006738/// and FoundRHS is true.
6739bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6740 const SCEV *LHS, const SCEV *RHS,
6741 const SCEV *FoundLHS,
6742 const SCEV *FoundRHS) {
6743 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6744 FoundLHS, FoundRHS) ||
6745 // ~x < ~y --> x > y
6746 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6747 getNotSCEV(FoundRHS),
6748 getNotSCEV(FoundLHS));
6749}
6750
6751/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006752/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006753/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006754bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006755ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6756 const SCEV *LHS, const SCEV *RHS,
6757 const SCEV *FoundLHS,
6758 const SCEV *FoundRHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006759 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006760 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6761 case ICmpInst::ICMP_EQ:
6762 case ICmpInst::ICMP_NE:
6763 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6764 return true;
6765 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006766 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006767 case ICmpInst::ICMP_SLE:
Dan Gohman07591692010-04-11 22:16:48 +00006768 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6769 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006770 return true;
6771 break;
6772 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006773 case ICmpInst::ICMP_SGE:
Dan Gohman07591692010-04-11 22:16:48 +00006774 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6775 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006776 return true;
6777 break;
6778 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006779 case ICmpInst::ICMP_ULE:
Dan Gohman07591692010-04-11 22:16:48 +00006780 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6781 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006782 return true;
6783 break;
6784 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006785 case ICmpInst::ICMP_UGE:
Dan Gohman07591692010-04-11 22:16:48 +00006786 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6787 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006788 return true;
6789 break;
6790 }
6791
6792 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006793}
6794
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006795// Verify if an linear IV with positive stride can overflow when in a
6796// less-than comparison, knowing the invariant term of the comparison, the
6797// stride and the knowledge of NSW/NUW flags on the recurrence.
6798bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6799 bool IsSigned, bool NoWrap) {
6800 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00006801
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006802 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6803 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00006804
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006805 if (IsSigned) {
6806 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6807 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6808 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6809 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00006810
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006811 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6812 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00006813 }
Dan Gohman01048422009-06-21 23:46:38 +00006814
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006815 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6816 APInt MaxValue = APInt::getMaxValue(BitWidth);
6817 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6818 .getUnsignedMax();
6819
6820 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6821 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6822}
6823
6824// Verify if an linear IV with negative stride can overflow when in a
6825// greater-than comparison, knowing the invariant term of the comparison,
6826// the stride and the knowledge of NSW/NUW flags on the recurrence.
6827bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6828 bool IsSigned, bool NoWrap) {
6829 if (NoWrap) return false;
6830
6831 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6832 const SCEV *One = getConstant(Stride->getType(), 1);
6833
6834 if (IsSigned) {
6835 APInt MinRHS = getSignedRange(RHS).getSignedMin();
6836 APInt MinValue = APInt::getSignedMinValue(BitWidth);
6837 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6838 .getSignedMax();
6839
6840 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6841 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6842 }
6843
6844 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6845 APInt MinValue = APInt::getMinValue(BitWidth);
6846 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6847 .getUnsignedMax();
6848
6849 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6850 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6851}
6852
6853// Compute the backedge taken count knowing the interval difference, the
6854// stride and presence of the equality in the comparison.
6855const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6856 bool Equality) {
6857 const SCEV *One = getConstant(Step->getType(), 1);
6858 Delta = Equality ? getAddExpr(Delta, Step)
6859 : getAddExpr(Delta, getMinusSCEV(Step, One));
6860 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00006861}
6862
Chris Lattner587a75b2005-08-15 23:33:51 +00006863/// HowManyLessThans - Return the number of times a backedge containing the
6864/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006865/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00006866///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006867/// @param ControlsExit is true when the LHS < RHS condition directly controls
6868/// the branch (loops exits only if condition is true). In this case, we can use
6869/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006870ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00006871ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006872 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006873 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006874 // We handle only IV < Invariant
6875 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006876 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006877
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006878 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00006879
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006880 // Avoid weird loops
6881 if (!IV || IV->getLoop() != L || !IV->isAffine())
6882 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006883
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006884 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006885 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006886
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006887 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006888
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006889 // Avoid negative or zero stride values
6890 if (!isKnownPositive(Stride))
6891 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006892
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006893 // Avoid proven overflow cases: this will ensure that the backedge taken count
6894 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6895 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6896 // behaviors like the case of C language.
6897 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6898 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006899
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006900 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6901 : ICmpInst::ICMP_ULT;
6902 const SCEV *Start = IV->getStart();
6903 const SCEV *End = RHS;
6904 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6905 End = IsSigned ? getSMaxExpr(RHS, Start)
6906 : getUMaxExpr(RHS, Start);
Dan Gohman51aaf022010-01-26 04:40:18 +00006907
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006908 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00006909
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006910 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6911 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00006912
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006913 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6914 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00006915
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006916 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6917 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6918 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00006919
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006920 // Although End can be a MAX expression we estimate MaxEnd considering only
6921 // the case End = RHS. This is safe because in the other case (End - Start)
6922 // is zero, leading to a zero maximum backedge taken count.
6923 APInt MaxEnd =
6924 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6925 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6926
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00006927 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006928 if (isa<SCEVConstant>(BECount))
6929 MaxBECount = BECount;
6930 else
6931 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6932 getConstant(MinStride), false);
6933
6934 if (isa<SCEVCouldNotCompute>(MaxBECount))
6935 MaxBECount = BECount;
6936
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006937 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006938}
6939
6940ScalarEvolution::ExitLimit
6941ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6942 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006943 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006944 // We handle only IV > Invariant
6945 if (!isLoopInvariant(RHS, L))
6946 return getCouldNotCompute();
6947
6948 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6949
6950 // Avoid weird loops
6951 if (!IV || IV->getLoop() != L || !IV->isAffine())
6952 return getCouldNotCompute();
6953
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006954 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006955 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6956
6957 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6958
6959 // Avoid negative or zero stride values
6960 if (!isKnownPositive(Stride))
6961 return getCouldNotCompute();
6962
6963 // Avoid proven overflow cases: this will ensure that the backedge taken count
6964 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6965 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6966 // behaviors like the case of C language.
6967 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6968 return getCouldNotCompute();
6969
6970 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6971 : ICmpInst::ICMP_UGT;
6972
6973 const SCEV *Start = IV->getStart();
6974 const SCEV *End = RHS;
6975 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6976 End = IsSigned ? getSMinExpr(RHS, Start)
6977 : getUMinExpr(RHS, Start);
6978
6979 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6980
6981 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6982 : getUnsignedRange(Start).getUnsignedMax();
6983
6984 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6985 : getUnsignedRange(Stride).getUnsignedMin();
6986
6987 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6988 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6989 : APInt::getMinValue(BitWidth) + (MinStride - 1);
6990
6991 // Although End can be a MIN expression we estimate MinEnd considering only
6992 // the case End = RHS. This is safe because in the other case (Start - End)
6993 // is zero, leading to a zero maximum backedge taken count.
6994 APInt MinEnd =
6995 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6996 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6997
6998
6999 const SCEV *MaxBECount = getCouldNotCompute();
7000 if (isa<SCEVConstant>(BECount))
7001 MaxBECount = BECount;
7002 else
7003 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7004 getConstant(MinStride), false);
7005
7006 if (isa<SCEVCouldNotCompute>(MaxBECount))
7007 MaxBECount = BECount;
7008
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007009 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007010}
7011
Chris Lattnerd934c702004-04-02 20:23:17 +00007012/// getNumIterationsInRange - Return the number of iterations of this loop that
7013/// produce values in the specified constant range. Another way of looking at
7014/// this is that it returns the first iteration number where the value is not in
7015/// the condition, thus computing the exit count. If the iteration count can't
7016/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007017const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007018 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007019 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007020 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007021
7022 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007023 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007024 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007025 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007026 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007027 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007028 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007029 if (const SCEVAddRecExpr *ShiftedAddRec =
7030 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007031 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007032 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007033 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007034 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007035 }
7036
7037 // The only time we can solve this is when we have all constant indices.
7038 // Otherwise, we cannot determine the overflow conditions.
7039 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7040 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007041 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007042
7043
7044 // Okay at this point we know that all elements of the chrec are constants and
7045 // that the start element is zero.
7046
7047 // First check to see if the range contains zero. If not, the first
7048 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007049 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007050 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007051 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007052
Chris Lattnerd934c702004-04-02 20:23:17 +00007053 if (isAffine()) {
7054 // If this is an affine expression then we have this situation:
7055 // Solve {0,+,A} in Range === Ax in Range
7056
Nick Lewycky52460262007-07-16 02:08:00 +00007057 // We know that zero is in the range. If A is positive then we know that
7058 // the upper value of the range must be the first possible exit value.
7059 // If A is negative then the lower of the range is the last possible loop
7060 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007061 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007062 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7063 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007064
Nick Lewycky52460262007-07-16 02:08:00 +00007065 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007066 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007067 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007068
7069 // Evaluate at the exit value. If we really did fall out of the valid
7070 // range, then we computed our trip count, otherwise wrap around or other
7071 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007072 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007073 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007074 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007075
7076 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007077 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007078 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007079 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007080 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007081 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007082 } else if (isQuadratic()) {
7083 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7084 // quadratic equation to solve it. To do this, we must frame our problem in
7085 // terms of figuring out when zero is crossed, instead of when
7086 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007087 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007088 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007089 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7090 // getNoWrapFlags(FlagNW)
7091 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007092
7093 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007094 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007095 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007096 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7097 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007098 if (R1) {
7099 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007100 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007101 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007102 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007103 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00007104 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007105
Chris Lattnerd934c702004-04-02 20:23:17 +00007106 // Make sure the root is not off by one. The returned iteration should
7107 // not be in the range, but the previous one should be. When solving
7108 // for "X*X < 5", for example, we should not return a root of 2.
7109 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007110 R1->getValue(),
7111 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007112 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007113 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007114 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007115 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007116
Dan Gohmana37eaf22007-10-22 18:31:58 +00007117 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007118 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007119 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007120 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007121 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007122
Chris Lattnerd934c702004-04-02 20:23:17 +00007123 // If R1 was not in the range, then it is a good return value. Make
7124 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007125 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007126 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007127 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007128 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007129 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007130 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007131 }
7132 }
7133 }
7134
Dan Gohman31efa302009-04-18 17:58:19 +00007135 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007136}
7137
Sebastian Pop448712b2014-05-07 18:01:20 +00007138namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007139struct FindUndefs {
7140 bool Found;
7141 FindUndefs() : Found(false) {}
7142
7143 bool follow(const SCEV *S) {
7144 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7145 if (isa<UndefValue>(C->getValue()))
7146 Found = true;
7147 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7148 if (isa<UndefValue>(C->getValue()))
7149 Found = true;
7150 }
7151
7152 // Keep looking if we haven't found it yet.
7153 return !Found;
7154 }
7155 bool isDone() const {
7156 // Stop recursion if we have found an undef.
7157 return Found;
7158 }
7159};
7160}
7161
7162// Return true when S contains at least an undef value.
7163static inline bool
7164containsUndefs(const SCEV *S) {
7165 FindUndefs F;
7166 SCEVTraversal<FindUndefs> ST(F);
7167 ST.visitAll(S);
7168
7169 return F.Found;
7170}
7171
7172namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007173// Collect all steps of SCEV expressions.
7174struct SCEVCollectStrides {
7175 ScalarEvolution &SE;
7176 SmallVectorImpl<const SCEV *> &Strides;
7177
7178 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7179 : SE(SE), Strides(S) {}
7180
7181 bool follow(const SCEV *S) {
7182 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7183 Strides.push_back(AR->getStepRecurrence(SE));
7184 return true;
7185 }
7186 bool isDone() const { return false; }
7187};
7188
7189// Collect all SCEVUnknown and SCEVMulExpr expressions.
7190struct SCEVCollectTerms {
7191 SmallVectorImpl<const SCEV *> &Terms;
7192
7193 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7194 : Terms(T) {}
7195
7196 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007197 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007198 if (!containsUndefs(S))
7199 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007200
7201 // Stop recursion: once we collected a term, do not walk its operands.
7202 return false;
7203 }
7204
7205 // Keep looking.
7206 return true;
7207 }
7208 bool isDone() const { return false; }
7209};
7210}
7211
7212/// Find parametric terms in this SCEVAddRecExpr.
7213void SCEVAddRecExpr::collectParametricTerms(
7214 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7215 SmallVector<const SCEV *, 4> Strides;
7216 SCEVCollectStrides StrideCollector(SE, Strides);
7217 visitAll(this, StrideCollector);
7218
7219 DEBUG({
7220 dbgs() << "Strides:\n";
7221 for (const SCEV *S : Strides)
7222 dbgs() << *S << "\n";
7223 });
7224
7225 for (const SCEV *S : Strides) {
7226 SCEVCollectTerms TermCollector(Terms);
7227 visitAll(S, TermCollector);
7228 }
7229
7230 DEBUG({
7231 dbgs() << "Terms:\n";
7232 for (const SCEV *T : Terms)
7233 dbgs() << *T << "\n";
7234 });
7235}
7236
Sebastian Popb1a548f2014-05-12 19:01:53 +00007237static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007238 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007239 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007240 int Last = Terms.size() - 1;
7241 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007242
Sebastian Pop448712b2014-05-07 18:01:20 +00007243 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007244 if (Last == 0) {
7245 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007246 SmallVector<const SCEV *, 2> Qs;
7247 for (const SCEV *Op : M->operands())
7248 if (!isa<SCEVConstant>(Op))
7249 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007250
Sebastian Pope30bd352014-05-27 22:41:56 +00007251 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007252 }
7253
Sebastian Pope30bd352014-05-27 22:41:56 +00007254 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007255 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007256 }
7257
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007258 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007259 // Normalize the terms before the next call to findArrayDimensionsRec.
7260 const SCEV *Q, *R;
Sebastian Pope30bd352014-05-27 22:41:56 +00007261 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007262
7263 // Bail out when GCD does not evenly divide one of the terms.
7264 if (!R->isZero())
7265 return false;
7266
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007267 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007268 }
7269
Tobias Grosser3080cf12014-05-08 07:55:34 +00007270 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007271 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7272 return isa<SCEVConstant>(E);
7273 }),
7274 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007275
Sebastian Pop448712b2014-05-07 18:01:20 +00007276 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007277 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7278 return false;
7279
Sebastian Pope30bd352014-05-27 22:41:56 +00007280 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007281 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007282}
Sebastian Popc62c6792013-11-12 22:47:20 +00007283
Sebastian Pop448712b2014-05-07 18:01:20 +00007284namespace {
7285struct FindParameter {
7286 bool FoundParameter;
7287 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007288
Sebastian Pop448712b2014-05-07 18:01:20 +00007289 bool follow(const SCEV *S) {
7290 if (isa<SCEVUnknown>(S)) {
7291 FoundParameter = true;
7292 // Stop recursion: we found a parameter.
7293 return false;
7294 }
7295 // Keep looking.
7296 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007297 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007298 bool isDone() const {
7299 // Stop recursion if we have found a parameter.
7300 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007301 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007302};
7303}
7304
Sebastian Pop448712b2014-05-07 18:01:20 +00007305// Returns true when S contains at least a SCEVUnknown parameter.
7306static inline bool
7307containsParameters(const SCEV *S) {
7308 FindParameter F;
7309 SCEVTraversal<FindParameter> ST(F);
7310 ST.visitAll(S);
7311
7312 return F.FoundParameter;
7313}
7314
7315// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7316static inline bool
7317containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7318 for (const SCEV *T : Terms)
7319 if (containsParameters(T))
7320 return true;
7321 return false;
7322}
7323
7324// Return the number of product terms in S.
7325static inline int numberOfTerms(const SCEV *S) {
7326 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7327 return Expr->getNumOperands();
7328 return 1;
7329}
7330
Sebastian Popa6e58602014-05-27 22:41:45 +00007331static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7332 if (isa<SCEVConstant>(T))
7333 return nullptr;
7334
7335 if (isa<SCEVUnknown>(T))
7336 return T;
7337
7338 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7339 SmallVector<const SCEV *, 2> Factors;
7340 for (const SCEV *Op : M->operands())
7341 if (!isa<SCEVConstant>(Op))
7342 Factors.push_back(Op);
7343
7344 return SE.getMulExpr(Factors);
7345 }
7346
7347 return T;
7348}
7349
7350/// Return the size of an element read or written by Inst.
7351const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7352 Type *Ty;
7353 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7354 Ty = Store->getValueOperand()->getType();
7355 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007356 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007357 else
7358 return nullptr;
7359
7360 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7361 return getSizeOfExpr(ETy, Ty);
7362}
7363
Sebastian Pop448712b2014-05-07 18:01:20 +00007364/// Second step of delinearization: compute the array dimensions Sizes from the
7365/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007366void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7367 SmallVectorImpl<const SCEV *> &Sizes,
7368 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007369
Sebastian Pop53524082014-05-29 19:44:05 +00007370 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007371 return;
7372
7373 // Early return when Terms do not contain parameters: we do not delinearize
7374 // non parametric SCEVs.
7375 if (!containsParameters(Terms))
7376 return;
7377
7378 DEBUG({
7379 dbgs() << "Terms:\n";
7380 for (const SCEV *T : Terms)
7381 dbgs() << *T << "\n";
7382 });
7383
7384 // Remove duplicates.
7385 std::sort(Terms.begin(), Terms.end());
7386 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7387
7388 // Put larger terms first.
7389 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7390 return numberOfTerms(LHS) > numberOfTerms(RHS);
7391 });
7392
Sebastian Popa6e58602014-05-27 22:41:45 +00007393 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7394
7395 // Divide all terms by the element size.
7396 for (const SCEV *&Term : Terms) {
7397 const SCEV *Q, *R;
7398 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
7399 Term = Q;
7400 }
7401
7402 SmallVector<const SCEV *, 4> NewTerms;
7403
7404 // Remove constant factors.
7405 for (const SCEV *T : Terms)
7406 if (const SCEV *NewT = removeConstantFactors(SE, T))
7407 NewTerms.push_back(NewT);
7408
Sebastian Pop448712b2014-05-07 18:01:20 +00007409 DEBUG({
7410 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007411 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007412 dbgs() << *T << "\n";
7413 });
7414
Sebastian Popa6e58602014-05-27 22:41:45 +00007415 if (NewTerms.empty() ||
7416 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007417 Sizes.clear();
7418 return;
7419 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007420
Sebastian Popa6e58602014-05-27 22:41:45 +00007421 // The last element to be pushed into Sizes is the size of an element.
7422 Sizes.push_back(ElementSize);
7423
Sebastian Pop448712b2014-05-07 18:01:20 +00007424 DEBUG({
7425 dbgs() << "Sizes:\n";
7426 for (const SCEV *S : Sizes)
7427 dbgs() << *S << "\n";
7428 });
7429}
7430
7431/// Third step of delinearization: compute the access functions for the
7432/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007433void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007434 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7435 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007436
Sebastian Popb1a548f2014-05-12 19:01:53 +00007437 // Early exit in case this SCEV is not an affine multivariate function.
7438 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007439 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007440
Sebastian Pop28e6b972014-05-27 22:41:51 +00007441 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007442 int Last = Sizes.size() - 1;
7443 for (int i = Last; i >= 0; i--) {
7444 const SCEV *Q, *R;
7445 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7446
7447 DEBUG({
7448 dbgs() << "Res: " << *Res << "\n";
7449 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7450 dbgs() << "Res divided by Sizes[i]:\n";
7451 dbgs() << "Quotient: " << *Q << "\n";
7452 dbgs() << "Remainder: " << *R << "\n";
7453 });
7454
7455 Res = Q;
7456
Sebastian Popa6e58602014-05-27 22:41:45 +00007457 // Do not record the last subscript corresponding to the size of elements in
7458 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007459 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007460
7461 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007462 if (isa<SCEVAddRecExpr>(R)) {
7463 Subscripts.clear();
7464 Sizes.clear();
7465 return;
7466 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007467
Sebastian Pop448712b2014-05-07 18:01:20 +00007468 continue;
7469 }
7470
7471 // Record the access function for the current subscript.
7472 Subscripts.push_back(R);
7473 }
7474
7475 // Also push in last position the remainder of the last division: it will be
7476 // the access function of the innermost dimension.
7477 Subscripts.push_back(Res);
7478
7479 std::reverse(Subscripts.begin(), Subscripts.end());
7480
7481 DEBUG({
7482 dbgs() << "Subscripts:\n";
7483 for (const SCEV *S : Subscripts)
7484 dbgs() << *S << "\n";
7485 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007486}
7487
Sebastian Popc62c6792013-11-12 22:47:20 +00007488/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7489/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007490/// is the offset start of the array. The SCEV->delinearize algorithm computes
7491/// the multiples of SCEV coefficients: that is a pattern matching of sub
7492/// expressions in the stride and base of a SCEV corresponding to the
7493/// computation of a GCD (greatest common divisor) of base and stride. When
7494/// SCEV->delinearize fails, it returns the SCEV unchanged.
7495///
7496/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7497///
7498/// void foo(long n, long m, long o, double A[n][m][o]) {
7499///
7500/// for (long i = 0; i < n; i++)
7501/// for (long j = 0; j < m; j++)
7502/// for (long k = 0; k < o; k++)
7503/// A[i][j][k] = 1.0;
7504/// }
7505///
7506/// the delinearization input is the following AddRec SCEV:
7507///
7508/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7509///
7510/// From this SCEV, we are able to say that the base offset of the access is %A
7511/// because it appears as an offset that does not divide any of the strides in
7512/// the loops:
7513///
7514/// CHECK: Base offset: %A
7515///
7516/// and then SCEV->delinearize determines the size of some of the dimensions of
7517/// the array as these are the multiples by which the strides are happening:
7518///
7519/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7520///
7521/// Note that the outermost dimension remains of UnknownSize because there are
7522/// no strides that would help identifying the size of the last dimension: when
7523/// the array has been statically allocated, one could compute the size of that
7524/// dimension by dividing the overall size of the array by the size of the known
7525/// dimensions: %m * %o * 8.
7526///
7527/// Finally delinearize provides the access functions for the array reference
7528/// that does correspond to A[i][j][k] of the above C testcase:
7529///
7530/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7531///
7532/// The testcases are checking the output of a function pass:
7533/// DelinearizationPass that walks through all loads and stores of a function
7534/// asking for the SCEV of the memory access with respect to all enclosing
7535/// loops, calling SCEV->delinearize on that and printing the results.
7536
Sebastian Pop28e6b972014-05-27 22:41:51 +00007537void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7538 SmallVectorImpl<const SCEV *> &Subscripts,
7539 SmallVectorImpl<const SCEV *> &Sizes,
7540 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007541 // First step: collect parametric terms.
7542 SmallVector<const SCEV *, 4> Terms;
7543 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007544
Sebastian Popb1a548f2014-05-12 19:01:53 +00007545 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007546 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007547
Sebastian Pop448712b2014-05-07 18:01:20 +00007548 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007549 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007550
Sebastian Popb1a548f2014-05-12 19:01:53 +00007551 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007552 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007553
Sebastian Pop448712b2014-05-07 18:01:20 +00007554 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007555 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007556
Sebastian Pop28e6b972014-05-27 22:41:51 +00007557 if (Subscripts.empty())
7558 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007559
Sebastian Pop448712b2014-05-07 18:01:20 +00007560 DEBUG({
7561 dbgs() << "succeeded to delinearize " << *this << "\n";
7562 dbgs() << "ArrayDecl[UnknownSize]";
7563 for (const SCEV *S : Sizes)
7564 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007565
Sebastian Pop444621a2014-05-09 22:45:02 +00007566 dbgs() << "\nArrayRef";
7567 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007568 dbgs() << "[" << *S << "]";
7569 dbgs() << "\n";
7570 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007571}
Chris Lattnerd934c702004-04-02 20:23:17 +00007572
7573//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007574// SCEVCallbackVH Class Implementation
7575//===----------------------------------------------------------------------===//
7576
Dan Gohmand33a0902009-05-19 19:22:47 +00007577void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007578 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007579 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7580 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007581 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007582 // this now dangles!
7583}
7584
Dan Gohman7a066722010-07-28 01:09:07 +00007585void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007586 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007587
Dan Gohman48f82222009-05-04 22:30:44 +00007588 // Forget all the expressions associated with users of the old value,
7589 // so that future queries will recompute the expressions using the new
7590 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007591 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007592 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007593 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007594 while (!Worklist.empty()) {
7595 User *U = Worklist.pop_back_val();
7596 // Deleting the Old value will cause this to dangle. Postpone
7597 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007598 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007599 continue;
Dan Gohmanf34f8632009-07-14 14:34:04 +00007600 if (!Visited.insert(U))
7601 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007602 if (PHINode *PN = dyn_cast<PHINode>(U))
7603 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007604 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007605 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007606 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007607 // Delete the Old value.
7608 if (PHINode *PN = dyn_cast<PHINode>(Old))
7609 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007610 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007611 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007612}
7613
Dan Gohmand33a0902009-05-19 19:22:47 +00007614ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007615 : CallbackVH(V), SE(se) {}
7616
7617//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007618// ScalarEvolution Class Implementation
7619//===----------------------------------------------------------------------===//
7620
Dan Gohmanc8e23622009-04-21 23:15:49 +00007621ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007622 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7623 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007624 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007625}
7626
Chris Lattnerd934c702004-04-02 20:23:17 +00007627bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007628 this->F = &F;
Hal Finkel60db0582014-09-07 18:57:58 +00007629 AT = &getAnalysis<AssumptionTracker>();
Dan Gohmanc8e23622009-04-21 23:15:49 +00007630 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007631 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007632 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007633 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007634 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007635 return false;
7636}
7637
7638void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007639 // Iterate through all the SCEVUnknown instances and call their
7640 // destructors, so that they release their references to their values.
7641 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7642 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007643 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007644
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007645 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007646
7647 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7648 // that a loop had multiple computable exits.
7649 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7650 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7651 I != E; ++I) {
7652 I->second.clear();
7653 }
7654
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007655 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7656
Dan Gohmanc8e23622009-04-21 23:15:49 +00007657 BackedgeTakenCounts.clear();
7658 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007659 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007660 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007661 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007662 UnsignedRanges.clear();
7663 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007664 UniqueSCEVs.clear();
7665 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007666}
7667
7668void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7669 AU.setPreservesAll();
Hal Finkel60db0582014-09-07 18:57:58 +00007670 AU.addRequired<AssumptionTracker>();
Chris Lattnerd934c702004-04-02 20:23:17 +00007671 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007672 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007673 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007674}
7675
Dan Gohmanc8e23622009-04-21 23:15:49 +00007676bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007677 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007678}
7679
Dan Gohmanc8e23622009-04-21 23:15:49 +00007680static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007681 const Loop *L) {
7682 // Print all inner loops first
7683 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7684 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007685
Dan Gohmanbc694912010-01-09 18:17:45 +00007686 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007687 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007688 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007689
Dan Gohmancb0efec2009-12-18 01:14:11 +00007690 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007691 L->getExitBlocks(ExitBlocks);
7692 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007693 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007694
Dan Gohman0bddac12009-02-24 18:55:53 +00007695 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7696 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007697 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007698 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007699 }
7700
Dan Gohmanbc694912010-01-09 18:17:45 +00007701 OS << "\n"
7702 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007703 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007704 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007705
7706 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7707 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7708 } else {
7709 OS << "Unpredictable max backedge-taken count. ";
7710 }
7711
7712 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007713}
7714
Dan Gohmancb0efec2009-12-18 01:14:11 +00007715void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007716 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007717 // out SCEV values of all instructions that are interesting. Doing
7718 // this potentially causes it to create new SCEV objects though,
7719 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007720 // observable from outside the class though, so casting away the
7721 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007722 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007723
Dan Gohmanbc694912010-01-09 18:17:45 +00007724 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007725 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007726 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007727 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007728 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007729 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007730 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007731 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007732 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007733
Dan Gohmanb9063a82009-06-19 17:49:54 +00007734 const Loop *L = LI->getLoopFor((*I).getParent());
7735
Dan Gohmanaf752342009-07-07 17:06:11 +00007736 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007737 if (AtUse != SV) {
7738 OS << " --> ";
7739 AtUse->print(OS);
7740 }
7741
7742 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007743 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007744 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007745 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007746 OS << "<<Unknown>>";
7747 } else {
7748 OS << *ExitValue;
7749 }
7750 }
7751
Chris Lattnerd934c702004-04-02 20:23:17 +00007752 OS << "\n";
7753 }
7754
Dan Gohmanbc694912010-01-09 18:17:45 +00007755 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007756 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007757 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007758 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7759 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007760}
Dan Gohmane20f8242009-04-21 00:47:46 +00007761
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007762ScalarEvolution::LoopDisposition
7763ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007764 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7765 for (unsigned u = 0; u < Values.size(); u++) {
7766 if (Values[u].first == L)
7767 return Values[u].second;
7768 }
7769 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007770 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007771 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7772 for (unsigned u = Values2.size(); u > 0; u--) {
7773 if (Values2[u - 1].first == L) {
7774 Values2[u - 1].second = D;
7775 break;
7776 }
7777 }
7778 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007779}
7780
7781ScalarEvolution::LoopDisposition
7782ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007783 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00007784 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007785 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007786 case scTruncate:
7787 case scZeroExtend:
7788 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007789 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007790 case scAddRecExpr: {
7791 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7792
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007793 // If L is the addrec's loop, it's computable.
7794 if (AR->getLoop() == L)
7795 return LoopComputable;
7796
Dan Gohmanafd6db92010-11-17 21:23:15 +00007797 // Add recurrences are never invariant in the function-body (null loop).
7798 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007799 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007800
7801 // This recurrence is variant w.r.t. L if L contains AR's loop.
7802 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007803 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007804
7805 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7806 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007807 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007808
7809 // This recurrence is variant w.r.t. L if any of its operands
7810 // are variant.
7811 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7812 I != E; ++I)
7813 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007814 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007815
7816 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007817 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007818 }
7819 case scAddExpr:
7820 case scMulExpr:
7821 case scUMaxExpr:
7822 case scSMaxExpr: {
7823 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007824 bool HasVarying = false;
7825 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7826 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007827 LoopDisposition D = getLoopDisposition(*I, L);
7828 if (D == LoopVariant)
7829 return LoopVariant;
7830 if (D == LoopComputable)
7831 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007832 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007833 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007834 }
7835 case scUDivExpr: {
7836 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007837 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7838 if (LD == LoopVariant)
7839 return LoopVariant;
7840 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7841 if (RD == LoopVariant)
7842 return LoopVariant;
7843 return (LD == LoopInvariant && RD == LoopInvariant) ?
7844 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007845 }
7846 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007847 // All non-instruction values are loop invariant. All instructions are loop
7848 // invariant if they are not contained in the specified loop.
7849 // Instructions are never considered invariant in the function body
7850 // (null loop) because they are defined within the "loop".
7851 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7852 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7853 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007854 case scCouldNotCompute:
7855 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00007856 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007857 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007858}
7859
7860bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7861 return getLoopDisposition(S, L) == LoopInvariant;
7862}
7863
7864bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7865 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007866}
Dan Gohman20d9ce22010-11-17 21:41:58 +00007867
Dan Gohman8ea83d82010-11-18 00:34:22 +00007868ScalarEvolution::BlockDisposition
7869ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007870 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7871 for (unsigned u = 0; u < Values.size(); u++) {
7872 if (Values[u].first == BB)
7873 return Values[u].second;
7874 }
7875 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00007876 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007877 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7878 for (unsigned u = Values2.size(); u > 0; u--) {
7879 if (Values2[u - 1].first == BB) {
7880 Values2[u - 1].second = D;
7881 break;
7882 }
7883 }
7884 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007885}
7886
Dan Gohman8ea83d82010-11-18 00:34:22 +00007887ScalarEvolution::BlockDisposition
7888ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007889 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00007890 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007891 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007892 case scTruncate:
7893 case scZeroExtend:
7894 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007895 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00007896 case scAddRecExpr: {
7897 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00007898 // to test for proper dominance too, because the instruction which
7899 // produces the addrec's value is a PHI, and a PHI effectively properly
7900 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00007901 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7902 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00007903 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007904 }
7905 // FALL THROUGH into SCEVNAryExpr handling.
7906 case scAddExpr:
7907 case scMulExpr:
7908 case scUMaxExpr:
7909 case scSMaxExpr: {
7910 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007911 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007912 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007913 I != E; ++I) {
7914 BlockDisposition D = getBlockDisposition(*I, BB);
7915 if (D == DoesNotDominateBlock)
7916 return DoesNotDominateBlock;
7917 if (D == DominatesBlock)
7918 Proper = false;
7919 }
7920 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007921 }
7922 case scUDivExpr: {
7923 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007924 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7925 BlockDisposition LD = getBlockDisposition(LHS, BB);
7926 if (LD == DoesNotDominateBlock)
7927 return DoesNotDominateBlock;
7928 BlockDisposition RD = getBlockDisposition(RHS, BB);
7929 if (RD == DoesNotDominateBlock)
7930 return DoesNotDominateBlock;
7931 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7932 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007933 }
7934 case scUnknown:
7935 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00007936 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7937 if (I->getParent() == BB)
7938 return DominatesBlock;
7939 if (DT->properlyDominates(I->getParent(), BB))
7940 return ProperlyDominatesBlock;
7941 return DoesNotDominateBlock;
7942 }
7943 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007944 case scCouldNotCompute:
7945 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00007946 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007947 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00007948}
7949
7950bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7951 return getBlockDisposition(S, BB) >= DominatesBlock;
7952}
7953
7954bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7955 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007956}
Dan Gohman534749b2010-11-17 22:27:42 +00007957
Andrew Trick365e31c2012-07-13 23:33:03 +00007958namespace {
7959// Search for a SCEV expression node within an expression tree.
7960// Implements SCEVTraversal::Visitor.
7961struct SCEVSearch {
7962 const SCEV *Node;
7963 bool IsFound;
7964
7965 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7966
7967 bool follow(const SCEV *S) {
7968 IsFound |= (S == Node);
7969 return !IsFound;
7970 }
7971 bool isDone() const { return IsFound; }
7972};
7973}
7974
Dan Gohman534749b2010-11-17 22:27:42 +00007975bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00007976 SCEVSearch Search(Op);
7977 visitAll(S, Search);
7978 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00007979}
Dan Gohman7e6b3932010-11-17 23:28:48 +00007980
7981void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7982 ValuesAtScopes.erase(S);
7983 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007984 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00007985 UnsignedRanges.erase(S);
7986 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00007987
7988 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7989 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7990 BackedgeTakenInfo &BEInfo = I->second;
7991 if (BEInfo.hasOperand(S, this)) {
7992 BEInfo.clear();
7993 BackedgeTakenCounts.erase(I++);
7994 }
7995 else
7996 ++I;
7997 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00007998}
Benjamin Kramer214935e2012-10-26 17:31:32 +00007999
8000typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008001
Alp Tokercb402912014-01-24 17:20:08 +00008002/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008003static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8004 size_t Pos = 0;
8005 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8006 Str.replace(Pos, From.size(), To.data(), To.size());
8007 Pos += To.size();
8008 }
8009}
8010
Benjamin Kramer214935e2012-10-26 17:31:32 +00008011/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8012static void
8013getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8014 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8015 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8016
8017 std::string &S = Map[L];
8018 if (S.empty()) {
8019 raw_string_ostream OS(S);
8020 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008021
8022 // false and 0 are semantically equivalent. This can happen in dead loops.
8023 replaceSubString(OS.str(), "false", "0");
8024 // Remove wrap flags, their use in SCEV is highly fragile.
8025 // FIXME: Remove this when SCEV gets smarter about them.
8026 replaceSubString(OS.str(), "<nw>", "");
8027 replaceSubString(OS.str(), "<nsw>", "");
8028 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008029 }
8030 }
8031}
8032
8033void ScalarEvolution::verifyAnalysis() const {
8034 if (!VerifySCEV)
8035 return;
8036
8037 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8038
8039 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8040 // FIXME: It would be much better to store actual values instead of strings,
8041 // but SCEV pointers will change if we drop the caches.
8042 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8043 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8044 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8045
8046 // Gather stringified backedge taken counts for all loops without using
8047 // SCEV's caches.
8048 SE.releaseMemory();
8049 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8050 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8051
8052 // Now compare whether they're the same with and without caches. This allows
8053 // verifying that no pass changed the cache.
8054 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8055 "New loops suddenly appeared!");
8056
8057 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8058 OldE = BackedgeDumpsOld.end(),
8059 NewI = BackedgeDumpsNew.begin();
8060 OldI != OldE; ++OldI, ++NewI) {
8061 assert(OldI->first == NewI->first && "Loop order changed!");
8062
8063 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8064 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008065 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008066 // means that a pass is buggy or SCEV has to learn a new pattern but is
8067 // usually not harmful.
8068 if (OldI->second != NewI->second &&
8069 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008070 NewI->second.find("undef") == std::string::npos &&
8071 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008072 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008073 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008074 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008075 << "' changed from '" << OldI->second
8076 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008077 std::abort();
8078 }
8079 }
8080
8081 // TODO: Verify more things.
8082}