blob: 27f5b12b4ca4aea156d33ff8693ec639e90e8047 [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000017#include "llvm/Analysis/ScalarEvolutionExpander.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000018#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000019#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/DiagnosticInfo.h"
21#include "llvm/IR/Dominators.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000022#include "llvm/IR/IRBuilder.h"
Adam Nemet04563272015-02-01 16:56:15 +000023#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000024#include "llvm/Support/raw_ostream.h"
David Blaikieb447ac62015-06-26 18:02:52 +000025#include "llvm/Analysis/VectorUtils.h"
Adam Nemet04563272015-02-01 16:56:15 +000026using namespace llvm;
27
Adam Nemet339f42b2015-02-19 19:15:07 +000028#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000029
Adam Nemetf219c642015-02-19 19:14:52 +000030static cl::opt<unsigned, true>
31VectorizationFactor("force-vector-width", cl::Hidden,
32 cl::desc("Sets the SIMD width. Zero is autoselect."),
33 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000034unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000035
36static cl::opt<unsigned, true>
37VectorizationInterleave("force-vector-interleave", cl::Hidden,
38 cl::desc("Sets the vectorization interleave count. "
39 "Zero is autoselect."),
40 cl::location(
41 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000042unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000043
Adam Nemet1d862af2015-02-26 04:39:09 +000044static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45 "runtime-memory-check-threshold", cl::Hidden,
46 cl::desc("When performing memory disambiguation checks at runtime do not "
47 "generate more than this number of comparisons (default = 8)."),
48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000050
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000051/// \brief The maximum iterations used to merge memory checks
52static cl::opt<unsigned> MemoryCheckMergeThreshold(
53 "memory-check-merge-threshold", cl::Hidden,
54 cl::desc("Maximum number of comparisons done when trying to merge "
55 "runtime memory checks. (default = 100)"),
56 cl::init(100));
57
Adam Nemetf219c642015-02-19 19:14:52 +000058/// Maximum SIMD width.
59const unsigned VectorizerParams::MaxVectorWidth = 64;
60
Adam Nemeta2df7502015-11-03 21:39:52 +000061/// \brief We collect dependences up to this threshold.
62static cl::opt<unsigned>
63 MaxDependences("max-dependences", cl::Hidden,
64 cl::desc("Maximum number of dependences collected by "
65 "loop-access analysis (default = 100)"),
66 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +000067
Adam Nemeta9f09c62016-06-17 22:35:41 +000068/// This enables versioning on the strides of symbolically striding memory
69/// accesses in code like the following.
70/// for (i = 0; i < N; ++i)
71/// A[i * Stride1] += B[i * Stride2] ...
72///
73/// Will be roughly translated to
74/// if (Stride1 == 1 && Stride2 == 1) {
75/// for (i = 0; i < N; i+=4)
76/// A[i:i+3] += ...
77/// } else
78/// ...
79static cl::opt<bool> EnableMemAccessVersioning(
80 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
81 cl::desc("Enable symbolic stride memory access versioning"));
82
Matthew Simpson37ec5f92016-05-16 17:00:56 +000083/// \brief Enable store-to-load forwarding conflict detection. This option can
84/// be disabled for correctness testing.
85static cl::opt<bool> EnableForwardingConflictDetection(
86 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +000087 cl::desc("Enable conflict detection in loop-access analysis"),
88 cl::init(true));
89
Adam Nemetf219c642015-02-19 19:14:52 +000090bool VectorizerParams::isInterleaveForced() {
91 return ::VectorizationInterleave.getNumOccurrences() > 0;
92}
93
Adam Nemet2bd6e982015-02-19 19:15:15 +000094void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
95 const Function *TheFunction,
96 const Loop *TheLoop,
97 const char *PassName) {
Adam Nemet04563272015-02-01 16:56:15 +000098 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet3e876342015-02-19 19:15:13 +000099 if (const Instruction *I = Message.getInstr())
Adam Nemet04563272015-02-01 16:56:15 +0000100 DL = I->getDebugLoc();
Adam Nemet339f42b2015-02-19 19:15:07 +0000101 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
Adam Nemet04563272015-02-01 16:56:15 +0000102 *TheFunction, DL, Message.str());
103}
104
105Value *llvm::stripIntegerCast(Value *V) {
106 if (CastInst *CI = dyn_cast<CastInst>(V))
107 if (CI->getOperand(0)->getType()->isIntegerTy())
108 return CI->getOperand(0);
109 return V;
110}
111
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000112const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000113 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +0000114 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000115 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000116
117 // If there is an entry in the map return the SCEV of the pointer with the
118 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000119 ValueToValueMap::const_iterator SI =
120 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000121 if (SI != PtrToStride.end()) {
122 Value *StrideVal = SI->second;
123
124 // Strip casts.
125 StrideVal = stripIntegerCast(StrideVal);
126
127 // Replace symbolic stride by one.
128 Value *One = ConstantInt::get(StrideVal->getType(), 1);
129 ValueToValueMap RewriteMap;
130 RewriteMap[StrideVal] = One;
131
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000132 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000133 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
134 const auto *CT =
135 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
136
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000137 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
138 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000139
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000140 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
Adam Nemet04563272015-02-01 16:56:15 +0000141 << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000142 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000143 }
144
145 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000146 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000147}
148
Adam Nemet7cdebac2015-07-14 22:32:44 +0000149void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
150 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000151 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000152 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000153 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000154 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000155 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000156
Adam Nemet279784f2016-03-24 04:28:47 +0000157 const SCEV *ScStart;
158 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000159
Adam Nemet59a65502016-03-24 05:15:24 +0000160 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000161 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000162 else {
163 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
164 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000165 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000166
167 ScStart = AR->getStart();
168 ScEnd = AR->evaluateAtIteration(Ex, *SE);
169 const SCEV *Step = AR->getStepRecurrence(*SE);
170
171 // For expressions with negative step, the upper bound is ScStart and the
172 // lower bound is ScEnd.
173 if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
174 if (CStep->getValue()->isNegative())
175 std::swap(ScStart, ScEnd);
176 } else {
177 // Fallback case: the step is not constant, but the we can still
178 // get the upper and lower bounds of the interval by using min/max
179 // expressions.
180 ScStart = SE->getUMinExpr(ScStart, ScEnd);
181 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
182 }
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000183 }
184
185 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000186}
187
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000188SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000189RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000190 SmallVector<PointerCheck, 4> Checks;
191
Adam Nemet7c52e052015-07-27 19:38:50 +0000192 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
193 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
194 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
195 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000196
Adam Nemet38530882015-08-09 20:06:06 +0000197 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000198 Checks.push_back(std::make_pair(&CGI, &CGJ));
199 }
200 }
201 return Checks;
202}
203
Adam Nemet15840392015-08-07 22:44:15 +0000204void RuntimePointerChecking::generateChecks(
205 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
206 assert(Checks.empty() && "Checks is not empty");
207 groupChecks(DepCands, UseDependencies);
208 Checks = generateChecks();
209}
210
Adam Nemet651a5a22015-08-09 20:06:08 +0000211bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
212 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000213 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
214 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000215 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000216 return true;
217 return false;
218}
219
220/// Compare \p I and \p J and return the minimum.
221/// Return nullptr in case we couldn't find an answer.
222static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
223 ScalarEvolution *SE) {
224 const SCEV *Diff = SE->getMinusSCEV(J, I);
225 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
226
227 if (!C)
228 return nullptr;
229 if (C->getValue()->isNegative())
230 return J;
231 return I;
232}
233
Adam Nemet7cdebac2015-07-14 22:32:44 +0000234bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000235 const SCEV *Start = RtCheck.Pointers[Index].Start;
236 const SCEV *End = RtCheck.Pointers[Index].End;
237
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000238 // Compare the starts and ends with the known minimum and maximum
239 // of this set. We need to know how we compare against the min/max
240 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000241 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000242 if (!Min0)
243 return false;
244
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000245 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000246 if (!Min1)
247 return false;
248
249 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000250 if (Min0 == Start)
251 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000252
253 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000254 if (Min1 != End)
255 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000256
257 Members.push_back(Index);
258 return true;
259}
260
Adam Nemet7cdebac2015-07-14 22:32:44 +0000261void RuntimePointerChecking::groupChecks(
262 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000263 // We build the groups from dependency candidates equivalence classes
264 // because:
265 // - We know that pointers in the same equivalence class share
266 // the same underlying object and therefore there is a chance
267 // that we can compare pointers
268 // - We wouldn't be able to merge two pointers for which we need
269 // to emit a memcheck. The classes in DepCands are already
270 // conveniently built such that no two pointers in the same
271 // class need checking against each other.
272
273 // We use the following (greedy) algorithm to construct the groups
274 // For every pointer in the equivalence class:
275 // For each existing group:
276 // - if the difference between this pointer and the min/max bounds
277 // of the group is a constant, then make the pointer part of the
278 // group and update the min/max bounds of that group as required.
279
280 CheckingGroups.clear();
281
Silviu Baranga48250602015-07-28 13:44:08 +0000282 // If we need to check two pointers to the same underlying object
283 // with a non-constant difference, we shouldn't perform any pointer
284 // grouping with those pointers. This is because we can easily get
285 // into cases where the resulting check would return false, even when
286 // the accesses are safe.
287 //
288 // The following example shows this:
289 // for (i = 0; i < 1000; ++i)
290 // a[5000 + i * m] = a[i] + a[i + 9000]
291 //
292 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
293 // (0, 10000) which is always false. However, if m is 1, there is no
294 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
295 // us to perform an accurate check in this case.
296 //
297 // The above case requires that we have an UnknownDependence between
298 // accesses to the same underlying object. This cannot happen unless
299 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
300 // is also false. In this case we will use the fallback path and create
301 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000302
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000303 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000304 // checking pointer group for each pointer. This is also required
305 // for correctness, because in this case we can have checking between
306 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000307 if (!UseDependencies) {
308 for (unsigned I = 0; I < Pointers.size(); ++I)
309 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
310 return;
311 }
312
313 unsigned TotalComparisons = 0;
314
315 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000316 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
317 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000318
Silviu Barangace3877f2015-07-09 15:18:25 +0000319 // We need to keep track of what pointers we've already seen so we
320 // don't process them twice.
321 SmallSet<unsigned, 2> Seen;
322
Sanjay Patele4b9f502015-12-07 19:21:39 +0000323 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000324 // and add them to the overall solution. We use the order in which accesses
325 // appear in 'Pointers' to enforce determinism.
326 for (unsigned I = 0; I < Pointers.size(); ++I) {
327 // We've seen this pointer before, and therefore already processed
328 // its equivalence class.
329 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000330 continue;
331
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000332 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
333 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000334
Silviu Barangace3877f2015-07-09 15:18:25 +0000335 SmallVector<CheckingPtrGroup, 2> Groups;
336 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
337
Silviu Barangaa647c302015-07-13 14:48:24 +0000338 // Because DepCands is constructed by visiting accesses in the order in
339 // which they appear in alias sets (which is deterministic) and the
340 // iteration order within an equivalence class member is only dependent on
341 // the order in which unions and insertions are performed on the
342 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000343 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000344 MI != ME; ++MI) {
345 unsigned Pointer = PositionMap[MI->getPointer()];
346 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000347 // Mark this pointer as seen.
348 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000349
350 // Go through all the existing sets and see if we can find one
351 // which can include this pointer.
352 for (CheckingPtrGroup &Group : Groups) {
353 // Don't perform more than a certain amount of comparisons.
354 // This should limit the cost of grouping the pointers to something
355 // reasonable. If we do end up hitting this threshold, the algorithm
356 // will create separate groups for all remaining pointers.
357 if (TotalComparisons > MemoryCheckMergeThreshold)
358 break;
359
360 TotalComparisons++;
361
362 if (Group.addPointer(Pointer)) {
363 Merged = true;
364 break;
365 }
366 }
367
368 if (!Merged)
369 // We couldn't add this pointer to any existing set or the threshold
370 // for the number of comparisons has been reached. Create a new group
371 // to hold the current pointer.
372 Groups.push_back(CheckingPtrGroup(Pointer, *this));
373 }
374
375 // We've computed the grouped checks for this partition.
376 // Save the results and continue with the next one.
377 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
378 }
Adam Nemet04563272015-02-01 16:56:15 +0000379}
380
Adam Nemet041e6de2015-07-16 02:48:05 +0000381bool RuntimePointerChecking::arePointersInSamePartition(
382 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
383 unsigned PtrIdx2) {
384 return (PtrToPartition[PtrIdx1] != -1 &&
385 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
386}
387
Adam Nemet651a5a22015-08-09 20:06:08 +0000388bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000389 const PointerInfo &PointerI = Pointers[I];
390 const PointerInfo &PointerJ = Pointers[J];
391
Adam Nemeta8945b72015-02-18 03:43:58 +0000392 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000393 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000394 return false;
395
396 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000397 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000398 return false;
399
400 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000401 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000402 return false;
403
404 return true;
405}
406
Adam Nemet54f0b832015-07-27 23:54:41 +0000407void RuntimePointerChecking::printChecks(
408 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
409 unsigned Depth) const {
410 unsigned N = 0;
411 for (const auto &Check : Checks) {
412 const auto &First = Check.first->Members, &Second = Check.second->Members;
413
414 OS.indent(Depth) << "Check " << N++ << ":\n";
415
416 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
417 for (unsigned K = 0; K < First.size(); ++K)
418 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
419
420 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
421 for (unsigned K = 0; K < Second.size(); ++K)
422 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
423 }
424}
425
Adam Nemet3a91e942015-08-07 19:44:48 +0000426void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000427
428 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000429 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000430
431 OS.indent(Depth) << "Grouped accesses:\n";
432 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000433 const auto &CG = CheckingGroups[I];
434
435 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
436 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
437 << ")\n";
438 for (unsigned J = 0; J < CG.Members.size(); ++J) {
439 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000440 << "\n";
441 }
442 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000443}
444
Adam Nemet04563272015-02-01 16:56:15 +0000445namespace {
446/// \brief Analyses memory accesses in a loop.
447///
448/// Checks whether run time pointer checks are needed and builds sets for data
449/// dependence checking.
450class AccessAnalysis {
451public:
452 /// \brief Read or write access location.
453 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
454 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
455
Adam Nemete2b885c2015-04-23 20:09:20 +0000456 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000457 MemoryDepChecker::DepCandidates &DA,
458 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000459 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000460 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000461
462 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000463 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000464 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000465 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000466 Accesses.insert(MemAccessInfo(Ptr, false));
467 if (IsReadOnly)
468 ReadOnlyPtr.insert(Ptr);
469 }
470
471 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000472 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000473 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000474 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000475 Accesses.insert(MemAccessInfo(Ptr, true));
476 }
477
478 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000479 /// non-intersection.
480 ///
481 /// Returns true if we need no check or if we do and we can generate them
482 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000483 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
484 Loop *TheLoop, const ValueToValueMap &Strides,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000485 bool ShouldCheckWrap = false);
Adam Nemet04563272015-02-01 16:56:15 +0000486
487 /// \brief Goes over all memory accesses, checks whether a RT check is needed
488 /// and builds sets of dependent accesses.
489 void buildDependenceSets() {
490 processMemAccesses();
491 }
492
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000493 /// \brief Initial processing of memory accesses determined that we need to
494 /// perform dependency checking.
495 ///
496 /// Note that this can later be cleared if we retry memcheck analysis without
497 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000498 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000499
500 /// We decided that no dependence analysis would be used. Reset the state.
501 void resetDepChecks(MemoryDepChecker &DepChecker) {
502 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000503 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000504 }
Adam Nemet04563272015-02-01 16:56:15 +0000505
506 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
507
508private:
509 typedef SetVector<MemAccessInfo> PtrAccessSet;
510
511 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000512 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000513 void processMemAccesses();
514
515 /// Set of all accesses.
516 PtrAccessSet Accesses;
517
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000518 const DataLayout &DL;
519
Adam Nemet04563272015-02-01 16:56:15 +0000520 /// Set of accesses that need a further dependence check.
521 MemAccessInfoSet CheckDeps;
522
523 /// Set of pointers that are read only.
524 SmallPtrSet<Value*, 16> ReadOnlyPtr;
525
Adam Nemet04563272015-02-01 16:56:15 +0000526 /// An alias set tracker to partition the access set by underlying object and
527 //intrinsic property (such as TBAA metadata).
528 AliasSetTracker AST;
529
Adam Nemete2b885c2015-04-23 20:09:20 +0000530 LoopInfo *LI;
531
Adam Nemet04563272015-02-01 16:56:15 +0000532 /// Sets of potentially dependent accesses - members of one set share an
533 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
534 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000535 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000536
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000537 /// \brief Initial processing of memory accesses determined that we may need
538 /// to add memchecks. Perform the analysis to determine the necessary checks.
539 ///
540 /// Note that, this is different from isDependencyCheckNeeded. When we retry
541 /// memcheck analysis without dependency checking
542 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
543 /// while this remains set if we have potentially dependent accesses.
544 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000545
546 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000547 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000548};
549
550} // end anonymous namespace
551
552/// \brief Check whether a pointer can participate in a runtime bounds check.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000553static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000554 const ValueToValueMap &Strides, Value *Ptr,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000555 Loop *L) {
556 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000557
558 // The bounds for loop-invariant pointer is trivial.
559 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
560 return true;
561
Adam Nemet04563272015-02-01 16:56:15 +0000562 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
563 if (!AR)
564 return false;
565
566 return AR->isAffine();
567}
568
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000569/// \brief Check whether a pointer address cannot wrap.
570static bool isNoWrap(PredicatedScalarEvolution &PSE,
571 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
572 const SCEV *PtrScev = PSE.getSCEV(Ptr);
573 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
574 return true;
575
576 int Stride = getPtrStride(PSE, Ptr, L, Strides);
577 return Stride == 1;
578}
579
Adam Nemet7cdebac2015-07-14 22:32:44 +0000580bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
581 ScalarEvolution *SE, Loop *TheLoop,
582 const ValueToValueMap &StridesMap,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000583 bool ShouldCheckWrap) {
Adam Nemet04563272015-02-01 16:56:15 +0000584 // Find pointers with computable bounds. We are going to use this information
585 // to place a runtime bound check.
586 bool CanDoRT = true;
587
Adam Nemetee614742015-07-09 22:17:38 +0000588 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000589 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000590
Adam Nemet04563272015-02-01 16:56:15 +0000591 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000592
593 // We assign a consecutive id to access from different alias sets.
594 // Accesses between different groups doesn't need to be checked.
595 unsigned ASId = 1;
596 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000597 int NumReadPtrChecks = 0;
598 int NumWritePtrChecks = 0;
599
Adam Nemet04563272015-02-01 16:56:15 +0000600 // We assign consecutive id to access from different dependence sets.
601 // Accesses within the same set don't need a runtime check.
602 unsigned RunningDepId = 1;
603 DenseMap<Value *, unsigned> DepSetId;
604
605 for (auto A : AS) {
606 Value *Ptr = A.getValue();
607 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
608 MemAccessInfo Access(Ptr, IsWrite);
609
Adam Nemet424edc62015-07-08 22:58:48 +0000610 if (IsWrite)
611 ++NumWritePtrChecks;
612 else
613 ++NumReadPtrChecks;
614
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000615 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000616 // When we run after a failing dependency check we have to make sure
617 // we don't have wrapping pointers.
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000618 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
Adam Nemet04563272015-02-01 16:56:15 +0000619 // The id of the dependence set.
620 unsigned DepId;
621
622 if (IsDepCheckNeeded) {
623 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
624 unsigned &LeaderId = DepSetId[Leader];
625 if (!LeaderId)
626 LeaderId = RunningDepId++;
627 DepId = LeaderId;
628 } else
629 // Each access has its own dependence set.
630 DepId = RunningDepId++;
631
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000632 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Adam Nemet04563272015-02-01 16:56:15 +0000633
Adam Nemet339f42b2015-02-19 19:15:07 +0000634 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000635 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000636 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000637 CanDoRT = false;
638 }
639 }
640
Adam Nemet424edc62015-07-08 22:58:48 +0000641 // If we have at least two writes or one write and a read then we need to
642 // check them. But there is no need to checks if there is only one
643 // dependence set for this alias set.
644 //
645 // Note that this function computes CanDoRT and NeedRTCheck independently.
646 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
647 // for which we couldn't find the bounds but we don't actually need to emit
648 // any checks so it does not matter.
649 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
650 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
651 NumWritePtrChecks >= 1));
652
Adam Nemet04563272015-02-01 16:56:15 +0000653 ++ASId;
654 }
655
656 // If the pointers that we would use for the bounds comparison have different
657 // address spaces, assume the values aren't directly comparable, so we can't
658 // use them for the runtime check. We also have to assume they could
659 // overlap. In the future there should be metadata for whether address spaces
660 // are disjoint.
661 unsigned NumPointers = RtCheck.Pointers.size();
662 for (unsigned i = 0; i < NumPointers; ++i) {
663 for (unsigned j = i + 1; j < NumPointers; ++j) {
664 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000665 if (RtCheck.Pointers[i].DependencySetId ==
666 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000667 continue;
668 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000669 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000670 continue;
671
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000672 Value *PtrI = RtCheck.Pointers[i].PointerValue;
673 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000674
675 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
676 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
677 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000678 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000679 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000680 return false;
681 }
682 }
683 }
684
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000685 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000686 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000687
Adam Nemet155e8742015-08-07 22:44:21 +0000688 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
Adam Nemetee614742015-07-09 22:17:38 +0000689 << " pointer comparisons.\n");
690
691 RtCheck.Need = NeedRTCheck;
692
693 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
694 if (!CanDoRTIfNeeded)
695 RtCheck.reset();
696 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000697}
698
699void AccessAnalysis::processMemAccesses() {
700 // We process the set twice: first we process read-write pointers, last we
701 // process read-only pointers. This allows us to skip dependence tests for
702 // read-only pointers.
703
Adam Nemet339f42b2015-02-19 19:15:07 +0000704 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000705 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000706 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000707 DEBUG({
708 for (auto A : Accesses)
709 dbgs() << "\t" << *A.getPointer() << " (" <<
710 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
711 "read-only" : "read")) << ")\n";
712 });
713
714 // The AliasSetTracker has nicely partitioned our pointers by metadata
715 // compatibility and potential for underlying-object overlap. As a result, we
716 // only need to check for potential pointer dependencies within each alias
717 // set.
718 for (auto &AS : AST) {
719 // Note that both the alias-set tracker and the alias sets themselves used
720 // linked lists internally and so the iteration order here is deterministic
721 // (matching the original instruction order within each set).
722
723 bool SetHasWrite = false;
724
725 // Map of pointers to last access encountered.
726 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
727 UnderlyingObjToAccessMap ObjToLastAccess;
728
729 // Set of access to check after all writes have been processed.
730 PtrAccessSet DeferredAccesses;
731
732 // Iterate over each alias set twice, once to process read/write pointers,
733 // and then to process read-only pointers.
734 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
735 bool UseDeferred = SetIteration > 0;
736 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
737
738 for (auto AV : AS) {
739 Value *Ptr = AV.getValue();
740
741 // For a single memory access in AliasSetTracker, Accesses may contain
742 // both read and write, and they both need to be handled for CheckDeps.
743 for (auto AC : S) {
744 if (AC.getPointer() != Ptr)
745 continue;
746
747 bool IsWrite = AC.getInt();
748
749 // If we're using the deferred access set, then it contains only
750 // reads.
751 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
752 if (UseDeferred && !IsReadOnlyPtr)
753 continue;
754 // Otherwise, the pointer must be in the PtrAccessSet, either as a
755 // read or a write.
756 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
757 S.count(MemAccessInfo(Ptr, false))) &&
758 "Alias-set pointer not in the access set?");
759
760 MemAccessInfo Access(Ptr, IsWrite);
761 DepCands.insert(Access);
762
763 // Memorize read-only pointers for later processing and skip them in
764 // the first round (they need to be checked after we have seen all
765 // write pointers). Note: we also mark pointer that are not
766 // consecutive as "read-only" pointers (so that we check
767 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
768 if (!UseDeferred && IsReadOnlyPtr) {
769 DeferredAccesses.insert(Access);
770 continue;
771 }
772
773 // If this is a write - check other reads and writes for conflicts. If
774 // this is a read only check other writes for conflicts (but only if
775 // there is no other write to the ptr - this is an optimization to
776 // catch "a[i] = a[i] + " without having to do a dependence check).
777 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
778 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000779 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000780 }
781
782 if (IsWrite)
783 SetHasWrite = true;
784
785 // Create sets of pointers connected by a shared alias set and
786 // underlying object.
787 typedef SmallVector<Value *, 16> ValueVector;
788 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000789
790 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
791 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000792 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000793 // nullptr never alias, don't join sets for pointer that have "null"
794 // in their UnderlyingObjects list.
795 if (isa<ConstantPointerNull>(UnderlyingObj))
796 continue;
797
Adam Nemet04563272015-02-01 16:56:15 +0000798 UnderlyingObjToAccessMap::iterator Prev =
799 ObjToLastAccess.find(UnderlyingObj);
800 if (Prev != ObjToLastAccess.end())
801 DepCands.unionSets(Access, Prev->second);
802
803 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000804 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000805 }
806 }
807 }
808 }
809 }
810}
811
Adam Nemet04563272015-02-01 16:56:15 +0000812static bool isInBoundsGep(Value *Ptr) {
813 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
814 return GEP->isInBounds();
815 return false;
816}
817
Adam Nemetc4866d22015-06-26 17:25:43 +0000818/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
819/// i.e. monotonically increasing/decreasing.
820static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000821 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000822 // FIXME: This should probably only return true for NUW.
823 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
824 return true;
825
826 // Scalar evolution does not propagate the non-wrapping flags to values that
827 // are derived from a non-wrapping induction variable because non-wrapping
828 // could be flow-sensitive.
829 //
830 // Look through the potentially overflowing instruction to try to prove
831 // non-wrapping for the *specific* value of Ptr.
832
833 // The arithmetic implied by an inbounds GEP can't overflow.
834 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
835 if (!GEP || !GEP->isInBounds())
836 return false;
837
838 // Make sure there is only one non-const index and analyze that.
839 Value *NonConstIndex = nullptr;
840 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
841 if (!isa<ConstantInt>(*Index)) {
842 if (NonConstIndex)
843 return false;
844 NonConstIndex = *Index;
845 }
846 if (!NonConstIndex)
847 // The recurrence is on the pointer, ignore for now.
848 return false;
849
850 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
851 // AddRec using a NSW operation.
852 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
853 if (OBO->hasNoSignedWrap() &&
854 // Assume constant for other the operand so that the AddRec can be
855 // easily found.
856 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000857 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000858
859 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
860 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
861 }
862
863 return false;
864}
865
Adam Nemet04563272015-02-01 16:56:15 +0000866/// \brief Check whether the access through \p Ptr has a constant stride.
Denis Zobnin15d1e642016-05-10 05:55:16 +0000867int llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000868 const Loop *Lp, const ValueToValueMap &StridesMap,
Elena Demikhovsky5e21c942016-06-29 10:01:06 +0000869 bool Assume) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000870 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000871 assert(Ty->isPointerTy() && "Unexpected non-ptr");
872
873 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000874 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000875 if (PtrTy->getElementType()->isAggregateType()) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000876 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
877 << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000878 return 0;
879 }
880
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000881 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000882
883 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000884 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +0000885 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000886
Adam Nemet04563272015-02-01 16:56:15 +0000887 if (!AR) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000888 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
889 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000890 return 0;
891 }
892
893 // The accesss function must stride over the innermost loop.
894 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000895 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000896 *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +0000897 return 0;
Adam Nemet04563272015-02-01 16:56:15 +0000898 }
899
900 // The address calculation must not wrap. Otherwise, a dependence could be
901 // inverted.
902 // An inbounds getelementptr that is a AddRec with a unit stride
903 // cannot wrap per definition. The unit stride requirement is checked later.
904 // An getelementptr without an inbounds attribute and unit stride would have
905 // to access the pointer value "0" which is undefined behavior in address
906 // space 0, therefore we can also vectorize this case.
907 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Elena Demikhovsky5e21c942016-06-29 10:01:06 +0000908 bool IsNoWrapAddRec =
909 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
910 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000911 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
912 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000913 if (Assume) {
914 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
915 IsNoWrapAddRec = true;
916 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
917 << "LAA: Pointer: " << *Ptr << "\n"
918 << "LAA: SCEV: " << *AR << "\n"
919 << "LAA: Added an overflow assumption\n");
920 } else {
921 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
922 << *Ptr << " SCEV: " << *AR << "\n");
923 return 0;
924 }
Adam Nemet04563272015-02-01 16:56:15 +0000925 }
926
927 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000928 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +0000929
Adam Nemet943befe2015-07-09 00:03:22 +0000930 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000931 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
932 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000933 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000934 " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000935 return 0;
936 }
937
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000938 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
939 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000940 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +0000941
942 // Huge step value - give up.
943 if (APStepVal.getBitWidth() > 64)
944 return 0;
945
946 int64_t StepVal = APStepVal.getSExtValue();
947
948 // Strided access.
949 int64_t Stride = StepVal / Size;
950 int64_t Rem = StepVal % Size;
951 if (Rem)
952 return 0;
953
954 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
955 // know we can't "wrap around the address space". In case of address space
956 // zero we know that this won't happen without triggering undefined behavior.
957 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000958 Stride != 1 && Stride != -1) {
959 if (Assume) {
960 // We can avoid this case by adding a run-time check.
961 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
962 << "inbouds or in address space 0 may wrap:\n"
963 << "LAA: Pointer: " << *Ptr << "\n"
964 << "LAA: SCEV: " << *AR << "\n"
965 << "LAA: Added an overflow assumption\n");
966 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
967 } else
968 return 0;
969 }
Adam Nemet04563272015-02-01 16:56:15 +0000970
971 return Stride;
972}
973
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000974/// Take the pointer operand from the Load/Store instruction.
975/// Returns NULL if this is not a valid Load/Store instruction.
976static Value *getPointerOperand(Value *I) {
977 if (LoadInst *LI = dyn_cast<LoadInst>(I))
978 return LI->getPointerOperand();
979 if (StoreInst *SI = dyn_cast<StoreInst>(I))
980 return SI->getPointerOperand();
981 return nullptr;
982}
983
984/// Take the address space operand from the Load/Store instruction.
985/// Returns -1 if this is not a valid Load/Store instruction.
986static unsigned getAddressSpaceOperand(Value *I) {
987 if (LoadInst *L = dyn_cast<LoadInst>(I))
988 return L->getPointerAddressSpace();
989 if (StoreInst *S = dyn_cast<StoreInst>(I))
990 return S->getPointerAddressSpace();
991 return -1;
992}
993
994/// Returns true if the memory operations \p A and \p B are consecutive.
995bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
996 ScalarEvolution &SE, bool CheckType) {
997 Value *PtrA = getPointerOperand(A);
998 Value *PtrB = getPointerOperand(B);
999 unsigned ASA = getAddressSpaceOperand(A);
1000 unsigned ASB = getAddressSpaceOperand(B);
1001
1002 // Check that the address spaces match and that the pointers are valid.
1003 if (!PtrA || !PtrB || (ASA != ASB))
1004 return false;
1005
1006 // Make sure that A and B are different pointers.
1007 if (PtrA == PtrB)
1008 return false;
1009
1010 // Make sure that A and B have the same type if required.
1011 if(CheckType && PtrA->getType() != PtrB->getType())
1012 return false;
1013
1014 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1015 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1016 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1017
1018 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1019 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1020 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1021
1022 // OffsetDelta = OffsetB - OffsetA;
1023 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1024 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1025 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1026 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1027 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1028 // Check if they are based on the same pointer. That makes the offsets
1029 // sufficient.
1030 if (PtrA == PtrB)
1031 return OffsetDelta == Size;
1032
1033 // Compute the necessary base pointer delta to have the necessary final delta
1034 // equal to the size.
1035 // BaseDelta = Size - OffsetDelta;
1036 const SCEV *SizeSCEV = SE.getConstant(Size);
1037 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1038
1039 // Otherwise compute the distance with SCEV between the base pointers.
1040 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1041 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1042 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1043 return X == PtrSCEVB;
1044}
1045
Adam Nemet9c926572015-03-10 17:40:37 +00001046bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1047 switch (Type) {
1048 case NoDep:
1049 case Forward:
1050 case BackwardVectorizable:
1051 return true;
1052
1053 case Unknown:
1054 case ForwardButPreventsForwarding:
1055 case Backward:
1056 case BackwardVectorizableButPreventsForwarding:
1057 return false;
1058 }
David Majnemerd388e932015-03-10 20:23:29 +00001059 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001060}
1061
Adam Nemet397f5822015-11-03 23:50:03 +00001062bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001063 switch (Type) {
1064 case NoDep:
1065 case Forward:
1066 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001067 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001068 return false;
1069
Adam Nemet9c926572015-03-10 17:40:37 +00001070 case BackwardVectorizable:
1071 case Backward:
1072 case BackwardVectorizableButPreventsForwarding:
1073 return true;
1074 }
David Majnemerd388e932015-03-10 20:23:29 +00001075 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001076}
1077
Adam Nemet397f5822015-11-03 23:50:03 +00001078bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1079 return isBackward() || Type == Unknown;
1080}
1081
1082bool MemoryDepChecker::Dependence::isForward() const {
1083 switch (Type) {
1084 case Forward:
1085 case ForwardButPreventsForwarding:
1086 return true;
1087
1088 case NoDep:
1089 case Unknown:
1090 case BackwardVectorizable:
1091 case Backward:
1092 case BackwardVectorizableButPreventsForwarding:
1093 return false;
1094 }
1095 llvm_unreachable("unexpected DepType!");
1096}
1097
Adam Nemet04563272015-02-01 16:56:15 +00001098bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
1099 unsigned TypeByteSize) {
1100 // If loads occur at a distance that is not a multiple of a feasible vector
1101 // factor store-load forwarding does not take place.
1102 // Positive dependences might cause troubles because vectorizing them might
1103 // prevent store-load forwarding making vectorized code run a lot slower.
1104 // a[i] = a[i-3] ^ a[i-8];
1105 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1106 // hence on your typical architecture store-load forwarding does not take
1107 // place. Vectorizing in such cases does not make sense.
1108 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001109
1110 // After this many iterations store-to-load forwarding conflicts should not
1111 // cause any slowdowns.
1112 const unsigned NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001113 // Maximum vector factor.
Adam Nemet2c34ab52016-05-12 21:41:53 +00001114 unsigned MaxVFWithoutSLForwardIssues = std::min(
1115 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001116
Adam Nemet884d3132016-05-16 16:57:47 +00001117 // Compute the smallest VF at which the store and load would be misaligned.
Adam Nemet9b5852a2016-05-16 16:57:42 +00001118 for (unsigned VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1119 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001120 // If the number of vector iteration between the store and the load are
1121 // small we could incur conflicts.
1122 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001123 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001124 break;
1125 }
1126 }
1127
Adam Nemet9b5852a2016-05-16 16:57:42 +00001128 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1129 DEBUG(dbgs() << "LAA: Distance " << Distance
1130 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001131 return true;
1132 }
1133
1134 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001135 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001136 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001137 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1138 return false;
1139}
1140
Hao Liu751004a2015-06-08 04:48:37 +00001141/// \brief Check the dependence for two accesses with the same stride \p Stride.
1142/// \p Distance is the positive distance and \p TypeByteSize is type size in
1143/// bytes.
1144///
1145/// \returns true if they are independent.
1146static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1147 unsigned TypeByteSize) {
1148 assert(Stride > 1 && "The stride must be greater than 1");
1149 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1150 assert(Distance > 0 && "The distance must be non-zero");
1151
1152 // Skip if the distance is not multiple of type byte size.
1153 if (Distance % TypeByteSize)
1154 return false;
1155
1156 unsigned ScaledDist = Distance / TypeByteSize;
1157
1158 // No dependence if the scaled distance is not multiple of the stride.
1159 // E.g.
1160 // for (i = 0; i < 1024 ; i += 4)
1161 // A[i+2] = A[i] + 1;
1162 //
1163 // Two accesses in memory (scaled distance is 2, stride is 4):
1164 // | A[0] | | | | A[4] | | | |
1165 // | | | A[2] | | | | A[6] | |
1166 //
1167 // E.g.
1168 // for (i = 0; i < 1024 ; i += 3)
1169 // A[i+4] = A[i] + 1;
1170 //
1171 // Two accesses in memory (scaled distance is 4, stride is 3):
1172 // | A[0] | | | A[3] | | | A[6] | | |
1173 // | | | | | A[4] | | | A[7] | |
1174 return ScaledDist % Stride;
1175}
1176
Adam Nemet9c926572015-03-10 17:40:37 +00001177MemoryDepChecker::Dependence::DepType
1178MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1179 const MemAccessInfo &B, unsigned BIdx,
1180 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001181 assert (AIdx < BIdx && "Must pass arguments in program order");
1182
1183 Value *APtr = A.getPointer();
1184 Value *BPtr = B.getPointer();
1185 bool AIsWrite = A.getInt();
1186 bool BIsWrite = B.getInt();
1187
1188 // Two reads are independent.
1189 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001190 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001191
1192 // We cannot check pointers in different address spaces.
1193 if (APtr->getType()->getPointerAddressSpace() !=
1194 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001195 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001196
Denis Zobnin15d1e642016-05-10 05:55:16 +00001197 int StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1198 int StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001199
Silviu Barangaadf4b732016-05-10 12:28:49 +00001200 const SCEV *Src = PSE.getSCEV(APtr);
1201 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001202
1203 // If the induction step is negative we have to invert source and sink of the
1204 // dependence.
1205 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001206 std::swap(APtr, BPtr);
1207 std::swap(Src, Sink);
1208 std::swap(AIsWrite, BIsWrite);
1209 std::swap(AIdx, BIdx);
1210 std::swap(StrideAPtr, StrideBPtr);
1211 }
1212
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001213 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001214
Adam Nemet339f42b2015-02-19 19:15:07 +00001215 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001216 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001217 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001218 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001219
Adam Nemet943befe2015-07-09 00:03:22 +00001220 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001221 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1222 // the address space.
1223 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001224 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001225 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001226 }
1227
1228 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1229 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001230 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001231 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001232 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001233 }
1234
1235 Type *ATy = APtr->getType()->getPointerElementType();
1236 Type *BTy = BPtr->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001237 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1238 unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
Adam Nemet04563272015-02-01 16:56:15 +00001239
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001240 const APInt &Val = C->getAPInt();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001241 int64_t Distance = Val.getSExtValue();
1242 unsigned Stride = std::abs(StrideAPtr);
1243
1244 // Attempt to prove strided accesses independent.
1245 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1246 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1247 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1248 return Dependence::NoDep;
1249 }
1250
1251 // Negative distances are not plausible dependencies.
Adam Nemet04563272015-02-01 16:56:15 +00001252 if (Val.isNegative()) {
1253 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001254 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001255 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001256 ATy != BTy)) {
1257 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001258 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001259 }
Adam Nemet04563272015-02-01 16:56:15 +00001260
Adam Nemet724ab222016-05-05 23:41:28 +00001261 DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001262 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001263 }
1264
1265 // Write to the same location with the same size.
1266 // Could be improved to assert type sizes are the same (i32 == float, etc).
1267 if (Val == 0) {
1268 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001269 return Dependence::Forward;
Adam Nemet339f42b2015-02-19 19:15:07 +00001270 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001271 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001272 }
1273
1274 assert(Val.isStrictlyPositive() && "Expect a positive value");
1275
Adam Nemet04563272015-02-01 16:56:15 +00001276 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001277 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001278 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001279 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001280 }
1281
Adam Nemet04563272015-02-01 16:56:15 +00001282 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001283 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1284 VectorizerParams::VectorizationFactor : 1);
1285 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1286 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001287 // The minimum number of iterations for a vectorized/unrolled version.
1288 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001289
Hao Liu751004a2015-06-08 04:48:37 +00001290 // It's not vectorizable if the distance is smaller than the minimum distance
1291 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1292 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1293 // TypeByteSize (No need to plus the last gap distance).
1294 //
1295 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1296 // foo(int *A) {
1297 // int *B = (int *)((char *)A + 14);
1298 // for (i = 0 ; i < 1024 ; i += 2)
1299 // B[i] = A[i] + 1;
1300 // }
1301 //
1302 // Two accesses in memory (stride is 2):
1303 // | A[0] | | A[2] | | A[4] | | A[6] | |
1304 // | B[0] | | B[2] | | B[4] |
1305 //
1306 // Distance needs for vectorizing iterations except the last iteration:
1307 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1308 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1309 //
1310 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1311 // 12, which is less than distance.
1312 //
1313 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1314 // the minimum distance needed is 28, which is greater than distance. It is
1315 // not safe to do vectorization.
1316 unsigned MinDistanceNeeded =
1317 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1318 if (MinDistanceNeeded > Distance) {
1319 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1320 << '\n');
1321 return Dependence::Backward;
1322 }
1323
1324 // Unsafe if the minimum distance needed is greater than max safe distance.
1325 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1326 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1327 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001328 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001329 }
1330
Adam Nemet9cc0c392015-02-26 17:58:48 +00001331 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001332 // FIXME: Should use max factor instead of max distance in bytes, which could
1333 // not handle different types.
1334 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1335 // void foo (int *A, char *B) {
1336 // for (unsigned i = 0; i < 1024; i++) {
1337 // A[i+2] = A[i] + 1;
1338 // B[i+2] = B[i] + 1;
1339 // }
1340 // }
1341 //
1342 // This case is currently unsafe according to the max safe distance. If we
1343 // analyze the two accesses on array B, the max safe dependence distance
1344 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1345 // is 8, which is less than 2 and forbidden vectorization, But actually
1346 // both A and B could be vectorized by 2 iterations.
1347 MaxSafeDepDistBytes =
1348 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
Adam Nemet04563272015-02-01 16:56:15 +00001349
1350 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001351 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001352 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001353 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001354
Hao Liu751004a2015-06-08 04:48:37 +00001355 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1356 << " with max VF = "
1357 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001358
Adam Nemet9c926572015-03-10 17:40:37 +00001359 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001360}
1361
Adam Nemetdee666b2015-03-10 17:40:34 +00001362bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001363 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001364 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001365
1366 MaxSafeDepDistBytes = -1U;
1367 while (!CheckDeps.empty()) {
1368 MemAccessInfo CurAccess = *CheckDeps.begin();
1369
1370 // Get the relevant memory access set.
1371 EquivalenceClasses<MemAccessInfo>::iterator I =
1372 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1373
1374 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001375 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1376 AccessSets.member_begin(I);
1377 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1378 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001379
1380 // Check every access pair.
1381 while (AI != AE) {
1382 CheckDeps.erase(*AI);
1383 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1384 while (OI != AE) {
1385 // Check every accessing instruction pair in program order.
1386 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1387 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1388 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1389 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001390 auto A = std::make_pair(&*AI, *I1);
1391 auto B = std::make_pair(&*OI, *I2);
1392
1393 assert(*I1 != *I2);
1394 if (*I1 > *I2)
1395 std::swap(A, B);
1396
1397 Dependence::DepType Type =
1398 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1399 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1400
Adam Nemeta2df7502015-11-03 21:39:52 +00001401 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001402 // dependences. In that case return as soon as we find the first
1403 // unsafe dependence. This puts a limit on this quadratic
1404 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001405 if (RecordDependences) {
1406 if (Type != Dependence::NoDep)
1407 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001408
Adam Nemeta2df7502015-11-03 21:39:52 +00001409 if (Dependences.size() >= MaxDependences) {
1410 RecordDependences = false;
1411 Dependences.clear();
Adam Nemet9c926572015-03-10 17:40:37 +00001412 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1413 }
1414 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001415 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001416 return false;
1417 }
1418 ++OI;
1419 }
1420 AI++;
1421 }
1422 }
Adam Nemet9c926572015-03-10 17:40:37 +00001423
Adam Nemeta2df7502015-11-03 21:39:52 +00001424 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001425 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001426}
1427
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001428SmallVector<Instruction *, 4>
1429MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1430 MemAccessInfo Access(Ptr, isWrite);
1431 auto &IndexVector = Accesses.find(Access)->second;
1432
1433 SmallVector<Instruction *, 4> Insts;
1434 std::transform(IndexVector.begin(), IndexVector.end(),
1435 std::back_inserter(Insts),
1436 [&](unsigned Idx) { return this->InstMap[Idx]; });
1437 return Insts;
1438}
1439
Adam Nemet58913d62015-03-10 17:40:43 +00001440const char *MemoryDepChecker::Dependence::DepName[] = {
1441 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1442 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1443
1444void MemoryDepChecker::Dependence::print(
1445 raw_ostream &OS, unsigned Depth,
1446 const SmallVectorImpl<Instruction *> &Instrs) const {
1447 OS.indent(Depth) << DepName[Type] << ":\n";
1448 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1449 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1450}
1451
Adam Nemet929c38e2015-02-19 19:15:10 +00001452bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001453 // We need to have a loop header.
Adam Nemetd8968f02016-01-18 21:16:33 +00001454 DEBUG(dbgs() << "LAA: Found a loop in "
1455 << TheLoop->getHeader()->getParent()->getName() << ": "
1456 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001457
Adam Nemetd8968f02016-01-18 21:16:33 +00001458 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001459 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001460 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet2bd6e982015-02-19 19:15:15 +00001461 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
Adam Nemet929c38e2015-02-19 19:15:10 +00001462 return false;
1463 }
1464
1465 // We must have a single backedge.
1466 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001467 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001468 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001469 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001470 "loop control flow is not understood by analyzer");
1471 return false;
1472 }
1473
1474 // We must have a single exiting block.
1475 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001476 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001477 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001478 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001479 "loop control flow is not understood by analyzer");
1480 return false;
1481 }
1482
1483 // We only handle bottom-tested loops, i.e. loop in which the condition is
1484 // checked at the end of each iteration. With that we can assume that all
1485 // instructions in the loop are executed the same number of times.
1486 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001487 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001488 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001489 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001490 "loop control flow is not understood by analyzer");
1491 return false;
1492 }
1493
Adam Nemet929c38e2015-02-19 19:15:10 +00001494 // ScalarEvolution needs to be able to find the exit count.
Silviu Baranga6f444df2016-04-08 14:29:09 +00001495 const SCEV *ExitCount = PSE.getBackedgeTakenCount();
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001496 if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1497 emitAnalysis(LoopAccessReport()
1498 << "could not determine number of loop iterations");
Adam Nemet929c38e2015-02-19 19:15:10 +00001499 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1500 return false;
1501 }
1502
1503 return true;
1504}
1505
Adam Nemetc953bb92016-06-16 22:57:55 +00001506void LoopAccessInfo::analyzeLoop() {
Adam Nemet04563272015-02-01 16:56:15 +00001507 typedef SmallPtrSet<Value*, 16> ValueSet;
1508
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001509 // Holds the Load and Store instructions.
1510 SmallVector<LoadInst *, 16> Loads;
1511 SmallVector<StoreInst *, 16> Stores;
Adam Nemet04563272015-02-01 16:56:15 +00001512
1513 // Holds all the different accesses in the loop.
1514 unsigned NumReads = 0;
1515 unsigned NumReadWrites = 0;
1516
Xinliang David Lice030ac2016-06-22 23:20:59 +00001517 PtrRtChecking->Pointers.clear();
1518 PtrRtChecking->Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001519
1520 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001521
1522 // For each block.
1523 for (Loop::block_iterator bb = TheLoop->block_begin(),
1524 be = TheLoop->block_end(); bb != be; ++bb) {
1525
1526 // Scan the BB and collect legal loads and stores.
1527 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1528 ++it) {
1529
1530 // If this is a load, save it. If this instruction can read from memory
1531 // but is not a load, then we quit. Notice that we don't handle function
1532 // calls that read or write.
1533 if (it->mayReadFromMemory()) {
1534 // Many math library functions read the rounding mode. We will only
1535 // vectorize a loop if it contains known function calls that don't set
1536 // the flag. Therefore, it is safe to ignore this read from memory.
1537 CallInst *Call = dyn_cast<CallInst>(it);
David Majnemerb4b27232016-04-19 19:10:21 +00001538 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001539 continue;
1540
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001541 // If the function has an explicit vectorized counterpart, we can safely
1542 // assume that it can be vectorized.
1543 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1544 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1545 continue;
1546
Adam Nemet04563272015-02-01 16:56:15 +00001547 LoadInst *Ld = dyn_cast<LoadInst>(it);
1548 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001549 emitAnalysis(LoopAccessReport(Ld)
Adam Nemet04563272015-02-01 16:56:15 +00001550 << "read with atomic ordering or volatile read");
Adam Nemet339f42b2015-02-19 19:15:07 +00001551 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001552 CanVecMem = false;
1553 return;
Adam Nemet04563272015-02-01 16:56:15 +00001554 }
1555 NumLoads++;
1556 Loads.push_back(Ld);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001557 DepChecker->addAccess(Ld);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001558 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001559 collectStridedAccess(Ld);
Adam Nemet04563272015-02-01 16:56:15 +00001560 continue;
1561 }
1562
1563 // Save 'store' instructions. Abort if other instructions write to memory.
1564 if (it->mayWriteToMemory()) {
1565 StoreInst *St = dyn_cast<StoreInst>(it);
1566 if (!St) {
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00001567 emitAnalysis(LoopAccessReport(&*it) <<
Adam Nemet04d41632015-02-19 19:14:34 +00001568 "instruction cannot be vectorized");
Adam Nemet436018c2015-02-19 19:15:00 +00001569 CanVecMem = false;
1570 return;
Adam Nemet04563272015-02-01 16:56:15 +00001571 }
1572 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001573 emitAnalysis(LoopAccessReport(St)
Adam Nemet04563272015-02-01 16:56:15 +00001574 << "write with atomic ordering or volatile write");
Adam Nemet339f42b2015-02-19 19:15:07 +00001575 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001576 CanVecMem = false;
1577 return;
Adam Nemet04563272015-02-01 16:56:15 +00001578 }
1579 NumStores++;
1580 Stores.push_back(St);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001581 DepChecker->addAccess(St);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001582 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001583 collectStridedAccess(St);
Adam Nemet04563272015-02-01 16:56:15 +00001584 }
1585 } // Next instr.
1586 } // Next block.
1587
1588 // Now we have two lists that hold the loads and the stores.
1589 // Next, we find the pointers that they use.
1590
1591 // Check if we see any stores. If there are no stores, then we don't
1592 // care if the pointers are *restrict*.
1593 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001594 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001595 CanVecMem = true;
1596 return;
Adam Nemet04563272015-02-01 16:56:15 +00001597 }
1598
Adam Nemetdee666b2015-03-10 17:40:34 +00001599 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001600 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001601 AA, LI, DependentAccesses, PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001602
1603 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1604 // multiple times on the same object. If the ptr is accessed twice, once
1605 // for read and once for write, it will only appear once (on the write
1606 // list). This is okay, since we are going to check for conflicts between
1607 // writes and between reads and writes, but not between reads and reads.
1608 ValueSet Seen;
1609
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001610 for (StoreInst *ST : Stores) {
1611 Value *Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001612 // Check for store to loop invariant address.
1613 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001614 // If we did *not* see this pointer before, insert it to the read-write
1615 // list. At this phase it is only a 'write' list.
1616 if (Seen.insert(Ptr).second) {
1617 ++NumReadWrites;
1618
Chandler Carruthac80dc72015-06-17 07:18:54 +00001619 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001620 // The TBAA metadata could have a control dependency on the predication
1621 // condition, so we cannot rely on it when determining whether or not we
1622 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001623 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001624 Loc.AATags.TBAA = nullptr;
1625
1626 Accesses.addStore(Loc);
1627 }
1628 }
1629
1630 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001631 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001632 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001633 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001634 CanVecMem = true;
1635 return;
Adam Nemet04563272015-02-01 16:56:15 +00001636 }
1637
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001638 for (LoadInst *LD : Loads) {
1639 Value *Ptr = LD->getPointerOperand();
Adam Nemet04563272015-02-01 16:56:15 +00001640 // If we did *not* see this pointer before, insert it to the
1641 // read list. If we *did* see it before, then it is already in
1642 // the read-write list. This allows us to vectorize expressions
1643 // such as A[i] += x; Because the address of A[i] is a read-write
1644 // pointer. This only works if the index of A[i] is consecutive.
1645 // If the address of i is unknown (for example A[B[i]]) then we may
1646 // read a few words, modify, and write a few words, and some of the
1647 // words may be written to the same address.
1648 bool IsReadOnlyPtr = false;
Adam Nemet139ffba2016-06-16 08:27:03 +00001649 if (Seen.insert(Ptr).second ||
1650 !getPtrStride(PSE, Ptr, TheLoop, SymbolicStrides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001651 ++NumReads;
1652 IsReadOnlyPtr = true;
1653 }
1654
Chandler Carruthac80dc72015-06-17 07:18:54 +00001655 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001656 // The TBAA metadata could have a control dependency on the predication
1657 // condition, so we cannot rely on it when determining whether or not we
1658 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001659 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001660 Loc.AATags.TBAA = nullptr;
1661
1662 Accesses.addLoad(Loc, IsReadOnlyPtr);
1663 }
1664
1665 // If we write (or read-write) to a single destination and there are no
1666 // other reads in this loop then is it safe to vectorize.
1667 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001668 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001669 CanVecMem = true;
1670 return;
Adam Nemet04563272015-02-01 16:56:15 +00001671 }
1672
1673 // Build dependence sets and check whether we need a runtime pointer bounds
1674 // check.
1675 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001676
1677 // Find pointers with computable bounds. We are going to use this information
1678 // to place a runtime bound check.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001679 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE.getSE(),
Adam Nemet139ffba2016-06-16 08:27:03 +00001680 TheLoop, SymbolicStrides);
Adam Nemetee614742015-07-09 22:17:38 +00001681 if (!CanDoRTIfNeeded) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001682 emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
Adam Nemetee614742015-07-09 22:17:38 +00001683 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1684 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001685 CanVecMem = false;
1686 return;
Adam Nemet04563272015-02-01 16:56:15 +00001687 }
1688
Adam Nemetee614742015-07-09 22:17:38 +00001689 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001690
Adam Nemet436018c2015-02-19 19:15:00 +00001691 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001692 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001693 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Xinliang David Lice030ac2016-06-22 23:20:59 +00001694 CanVecMem = DepChecker->areDepsSafe(
Adam Nemet139ffba2016-06-16 08:27:03 +00001695 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001696 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
Adam Nemet04563272015-02-01 16:56:15 +00001697
Xinliang David Lice030ac2016-06-22 23:20:59 +00001698 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001699 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001700
1701 // Clear the dependency checks. We assume they are not needed.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001702 Accesses.resetDepChecks(*DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001703
Xinliang David Lice030ac2016-06-22 23:20:59 +00001704 PtrRtChecking->reset();
1705 PtrRtChecking->Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001706
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001707 auto *SE = PSE.getSE();
Xinliang David Lice030ac2016-06-22 23:20:59 +00001708 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
Adam Nemet139ffba2016-06-16 08:27:03 +00001709 SymbolicStrides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001710
Adam Nemet949e91a2015-03-10 19:12:41 +00001711 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001712 if (!CanDoRTIfNeeded) {
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001713 emitAnalysis(LoopAccessReport()
1714 << "cannot check memory dependencies at runtime");
1715 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001716 CanVecMem = false;
1717 return;
1718 }
1719
Adam Nemet04563272015-02-01 16:56:15 +00001720 CanVecMem = true;
1721 }
1722 }
1723
Adam Nemet4bb90a72015-03-10 21:47:39 +00001724 if (CanVecMem)
1725 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Xinliang David Lice030ac2016-06-22 23:20:59 +00001726 << (PtrRtChecking->Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001727 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001728 else {
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001729 emitAnalysis(
1730 LoopAccessReport()
1731 << "unsafe dependent memory operations in loop. Use "
1732 "#pragma loop distribute(enable) to allow loop distribution "
1733 "to attempt to isolate the offending operations into a separate "
1734 "loop");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001735 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1736 }
Adam Nemet04563272015-02-01 16:56:15 +00001737}
1738
Adam Nemet01abb2c2015-02-18 03:43:19 +00001739bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1740 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001741 assert(TheLoop->contains(BB) && "Unknown block used");
1742
1743 // Blocks that do not dominate the latch need predication.
1744 BasicBlock* Latch = TheLoop->getLoopLatch();
1745 return !DT->dominates(BB, Latch);
1746}
1747
Adam Nemet2bd6e982015-02-19 19:15:15 +00001748void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
Adam Nemetc9228532015-02-19 19:14:56 +00001749 assert(!Report && "Multiple reports generated");
1750 Report = Message;
Adam Nemet04563272015-02-01 16:56:15 +00001751}
1752
Adam Nemet57ac7662015-02-19 19:15:21 +00001753bool LoopAccessInfo::isUniform(Value *V) const {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001754 return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00001755}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001756
1757// FIXME: this function is currently a duplicate of the one in
1758// LoopVectorize.cpp.
1759static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1760 Instruction *Loc) {
1761 if (FirstInst)
1762 return FirstInst;
1763 if (Instruction *I = dyn_cast<Instruction>(V))
1764 return I->getParent() == Loc->getParent() ? I : nullptr;
1765 return nullptr;
1766}
1767
Benjamin Kramer039b1042015-10-28 13:54:36 +00001768namespace {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001769/// \brief IR Values for the lower and upper bounds of a pointer evolution. We
1770/// need to use value-handles because SCEV expansion can invalidate previously
1771/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1772/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00001773struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001774 TrackingVH<Value> Start;
1775 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00001776};
Benjamin Kramer039b1042015-10-28 13:54:36 +00001777} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00001778
Adam Nemet1da7df32015-07-26 05:32:14 +00001779/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1780/// in \p TheLoop. \return the values for the bounds.
1781static PointerBounds
1782expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1783 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1784 const RuntimePointerChecking &PtrRtChecking) {
1785 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1786 const SCEV *Sc = SE->getSCEV(Ptr);
1787
1788 if (SE->isLoopInvariant(Sc, TheLoop)) {
1789 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1790 << "\n");
1791 return {Ptr, Ptr};
1792 } else {
1793 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1794 LLVMContext &Ctx = Loc->getContext();
1795
1796 // Use this type for pointer arithmetic.
1797 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1798 Value *Start = nullptr, *End = nullptr;
1799
1800 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1801 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1802 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1803 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1804 return {Start, End};
1805 }
1806}
1807
1808/// \brief Turns a collection of checks into a collection of expanded upper and
1809/// lower bounds for both pointers in the check.
1810static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1811 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1812 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1813 const RuntimePointerChecking &PtrRtChecking) {
1814 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1815
1816 // Here we're relying on the SCEV Expander's cache to only emit code for the
1817 // same bounds once.
1818 std::transform(
1819 PointerChecks.begin(), PointerChecks.end(),
1820 std::back_inserter(ChecksWithBounds),
1821 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00001822 PointerBounds
1823 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1824 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1825 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00001826 });
1827
1828 return ChecksWithBounds;
1829}
1830
Adam Nemet5b0a4792015-08-11 00:09:37 +00001831std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00001832 Instruction *Loc,
1833 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1834 const {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001835 auto *SE = PSE.getSE();
Adam Nemet1da7df32015-07-26 05:32:14 +00001836 SCEVExpander Exp(*SE, DL, "induction");
1837 auto ExpandedChecks =
Xinliang David Lice030ac2016-06-22 23:20:59 +00001838 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001839
1840 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001841 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001842 IRBuilder<> ChkBuilder(Loc);
1843 // Our instructions might fold to a constant.
1844 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001845
Adam Nemet1da7df32015-07-26 05:32:14 +00001846 for (const auto &Check : ExpandedChecks) {
1847 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00001848 // Check if two pointers (A and B) conflict where conflict is computed as:
1849 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00001850 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1851 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001852
Adam Nemet1da7df32015-07-26 05:32:14 +00001853 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1854 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1855 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001856
Adam Nemet1da7df32015-07-26 05:32:14 +00001857 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1858 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001859
Adam Nemet1da7df32015-07-26 05:32:14 +00001860 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1861 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1862 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1863 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001864
Adam Nemet1da7df32015-07-26 05:32:14 +00001865 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1866 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1867 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1868 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1869 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1870 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1871 if (MemoryRuntimeCheck) {
1872 IsConflict =
1873 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001874 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001875 }
Adam Nemet1da7df32015-07-26 05:32:14 +00001876 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001877 }
1878
Adam Nemet90fec842015-04-02 17:51:57 +00001879 if (!MemoryRuntimeCheck)
1880 return std::make_pair(nullptr, nullptr);
1881
Adam Nemet7206d7a2015-02-06 18:31:04 +00001882 // We have to do this trickery because the IRBuilder might fold the check to a
1883 // constant expression in which case there is no Instruction anchored in a
1884 // the block.
1885 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1886 ConstantInt::getTrue(Ctx));
1887 ChkBuilder.Insert(Check, "memcheck.conflict");
1888 FirstInst = getFirstInst(FirstInst, Check, Loc);
1889 return std::make_pair(FirstInst, Check);
1890}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001891
Adam Nemet5b0a4792015-08-11 00:09:37 +00001892std::pair<Instruction *, Instruction *>
1893LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Xinliang David Lice030ac2016-06-22 23:20:59 +00001894 if (!PtrRtChecking->Need)
Adam Nemet1da7df32015-07-26 05:32:14 +00001895 return std::make_pair(nullptr, nullptr);
1896
Xinliang David Lice030ac2016-06-22 23:20:59 +00001897 return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00001898}
1899
Adam Nemetc953bb92016-06-16 22:57:55 +00001900void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
1901 Value *Ptr = nullptr;
1902 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
1903 Ptr = LI->getPointerOperand();
1904 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
1905 Ptr = SI->getPointerOperand();
1906 else
1907 return;
1908
1909 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop);
1910 if (!Stride)
1911 return;
1912
1913 DEBUG(dbgs() << "LAA: Found a strided access that we can version");
1914 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
1915 SymbolicStrides[Ptr] = Stride;
1916 StrideSet.insert(Stride);
1917}
1918
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001919LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001920 const DataLayout &DL,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001921 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemeta9f09c62016-06-17 22:35:41 +00001922 DominatorTree *DT, LoopInfo *LI)
Xinliang David Lice030ac2016-06-22 23:20:59 +00001923 : PSE(*SE, *L),
1924 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
1925 DepChecker(llvm::make_unique<MemoryDepChecker>(PSE, L)), TheLoop(L),
1926 DL(DL), TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
Adam Nemetce482502015-04-08 17:48:40 +00001927 MaxSafeDepDistBytes(-1U), CanVecMem(false),
1928 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00001929 if (canAnalyzeLoop())
Adam Nemetc953bb92016-06-16 22:57:55 +00001930 analyzeLoop();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001931}
1932
Adam Nemete91cc6e2015-02-19 19:15:19 +00001933void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1934 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00001935 OS.indent(Depth) << "Memory dependences are safe";
Adam Nemetc62e5542016-05-13 22:49:13 +00001936 if (MaxSafeDepDistBytes != -1U)
1937 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
1938 << " bytes";
Xinliang David Lice030ac2016-06-22 23:20:59 +00001939 if (PtrRtChecking->Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00001940 OS << " with run-time checks";
1941 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001942 }
1943
1944 if (Report)
1945 OS.indent(Depth) << "Report: " << Report->str() << "\n";
1946
Xinliang David Lice030ac2016-06-22 23:20:59 +00001947 if (auto *Dependences = DepChecker->getDependences()) {
Adam Nemeta2df7502015-11-03 21:39:52 +00001948 OS.indent(Depth) << "Dependences:\n";
1949 for (auto &Dep : *Dependences) {
Xinliang David Lice030ac2016-06-22 23:20:59 +00001950 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
Adam Nemet58913d62015-03-10 17:40:43 +00001951 OS << "\n";
1952 }
1953 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00001954 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001955
1956 // List the pair of accesses need run-time checks to prove independence.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001957 PtrRtChecking->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001958 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00001959
1960 OS.indent(Depth) << "Store to invariant address was "
1961 << (StoreToLoopInvariantAddress ? "" : "not ")
1962 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00001963
1964 OS.indent(Depth) << "SCEV assumptions:\n";
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001965 PSE.getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00001966
1967 OS << "\n";
1968
1969 OS.indent(Depth) << "Expressions re-written:\n";
1970 PSE.print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001971}
1972
Adam Nemeta9f09c62016-06-17 22:35:41 +00001973const LoopAccessInfo &LoopAccessAnalysis::getInfo(Loop *L) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001974 auto &LAI = LoopAccessInfoMap[L];
1975
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001976 if (!LAI) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001977 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
Adam Nemeta9f09c62016-06-17 22:35:41 +00001978 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001979 }
1980 return *LAI.get();
1981}
1982
Xinliang David Liecde1c72016-06-09 03:22:39 +00001983void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1984 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1985
Adam Nemete91cc6e2015-02-19 19:15:19 +00001986 for (Loop *TopLevelLoop : *LI)
1987 for (Loop *L : depth_first(TopLevelLoop)) {
1988 OS.indent(2) << L->getHeader()->getName() << ":\n";
Adam Nemetbdbc5222016-06-16 08:26:56 +00001989 auto &LAI = LAA.getInfo(L);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001990 LAI.print(OS, 4);
1991 }
1992}
1993
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001994bool LoopAccessAnalysis::runOnFunction(Function &F) {
Xinliang David Liecde1c72016-06-09 03:22:39 +00001995 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001996 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
Xinliang David Liecde1c72016-06-09 03:22:39 +00001997 TLI = TLIP ? &TLIP->getTLI() : nullptr;
1998 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1999 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2000 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002001
2002 return false;
2003}
2004
2005void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002006 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00002007 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002008 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00002009 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002010
2011 AU.setPreservesAll();
2012}
2013
2014char LoopAccessAnalysis::ID = 0;
2015static const char laa_name[] = "Loop Access Analysis";
2016#define LAA_NAME "loop-accesses"
2017
2018INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00002019INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002020INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002021INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00002022INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002023INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
2024
2025namespace llvm {
2026 Pass *createLAAPass() {
2027 return new LoopAccessAnalysis();
2028 }
2029}