blob: d702cfb02c3a68b2095bda4717c164d0c0c12511 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000153
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000156
157 ; Definition of main function
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000164 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
Michael Gottesman006039c2013-01-31 05:48:48 +0000468A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000472initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
Michael Gottesmane743a302013-02-04 03:22:00 +0000504By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000505variables defined within the module are not modified from their
506initial values before the start of the global initializer. This is
507true even for variables potentially accessible from outside the
508module, including those with external linkage or appearing in
Michael Gottesman8901bb62013-02-03 09:57:18 +0000509``@llvm.used``. This assumption may be suppressed by marking the
510variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000511
Sean Silvab084af42012-12-07 10:36:55 +0000512An explicit alignment may be specified for a global, which must be a
513power of 2. If not present, or if the alignment is set to zero, the
514alignment of the global is set by the target to whatever it feels
515convenient. If an explicit alignment is specified, the global is forced
516to have exactly that alignment. Targets and optimizers are not allowed
517to over-align the global if the global has an assigned section. In this
518case, the extra alignment could be observable: for example, code could
519assume that the globals are densely packed in their section and try to
520iterate over them as an array, alignment padding would break this
521iteration.
522
523For example, the following defines a global in a numbered address space
524with an initializer, section, and alignment:
525
526.. code-block:: llvm
527
528 @G = addrspace(5) constant float 1.0, section "foo", align 4
529
530The following example defines a thread-local global with the
531``initialexec`` TLS model:
532
533.. code-block:: llvm
534
535 @G = thread_local(initialexec) global i32 0, align 4
536
537.. _functionstructure:
538
539Functions
540---------
541
542LLVM function definitions consist of the "``define``" keyword, an
543optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
544style <visibility>`, an optional :ref:`calling convention <callingconv>`,
545an optional ``unnamed_addr`` attribute, a return type, an optional
546:ref:`parameter attribute <paramattrs>` for the return type, a function
547name, a (possibly empty) argument list (each with optional :ref:`parameter
548attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
549an optional section, an optional alignment, an optional :ref:`garbage
550collector name <gc>`, an opening curly brace, a list of basic blocks,
551and a closing curly brace.
552
553LLVM function declarations consist of the "``declare``" keyword, an
554optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
555style <visibility>`, an optional :ref:`calling convention <callingconv>`,
556an optional ``unnamed_addr`` attribute, a return type, an optional
557:ref:`parameter attribute <paramattrs>` for the return type, a function
558name, a possibly empty list of arguments, an optional alignment, and an
559optional :ref:`garbage collector name <gc>`.
560
561A function definition contains a list of basic blocks, forming the CFG
562(Control Flow Graph) for the function. Each basic block may optionally
563start with a label (giving the basic block a symbol table entry),
564contains a list of instructions, and ends with a
565:ref:`terminator <terminators>` instruction (such as a branch or function
566return).
567
568The first basic block in a function is special in two ways: it is
569immediately executed on entrance to the function, and it is not allowed
570to have predecessor basic blocks (i.e. there can not be any branches to
571the entry block of a function). Because the block can have no
572predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
573
574LLVM allows an explicit section to be specified for functions. If the
575target supports it, it will emit functions to the section specified.
576
577An explicit alignment may be specified for a function. If not present,
578or if the alignment is set to zero, the alignment of the function is set
579by the target to whatever it feels convenient. If an explicit alignment
580is specified, the function is forced to have at least that much
581alignment. All alignments must be a power of 2.
582
583If the ``unnamed_addr`` attribute is given, the address is know to not
584be significant and two identical functions can be merged.
585
586Syntax::
587
588 define [linkage] [visibility]
589 [cconv] [ret attrs]
590 <ResultType> @<FunctionName> ([argument list])
591 [fn Attrs] [section "name"] [align N]
592 [gc] { ... }
593
594Aliases
595-------
596
597Aliases act as "second name" for the aliasee value (which can be either
598function, global variable, another alias or bitcast of global value).
599Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
600:ref:`visibility style <visibility>`.
601
602Syntax::
603
604 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
605
606.. _namedmetadatastructure:
607
608Named Metadata
609--------------
610
611Named metadata is a collection of metadata. :ref:`Metadata
612nodes <metadata>` (but not metadata strings) are the only valid
613operands for a named metadata.
614
615Syntax::
616
617 ; Some unnamed metadata nodes, which are referenced by the named metadata.
618 !0 = metadata !{metadata !"zero"}
619 !1 = metadata !{metadata !"one"}
620 !2 = metadata !{metadata !"two"}
621 ; A named metadata.
622 !name = !{!0, !1, !2}
623
624.. _paramattrs:
625
626Parameter Attributes
627--------------------
628
629The return type and each parameter of a function type may have a set of
630*parameter attributes* associated with them. Parameter attributes are
631used to communicate additional information about the result or
632parameters of a function. Parameter attributes are considered to be part
633of the function, not of the function type, so functions with different
634parameter attributes can have the same function type.
635
636Parameter attributes are simple keywords that follow the type specified.
637If multiple parameter attributes are needed, they are space separated.
638For example:
639
640.. code-block:: llvm
641
642 declare i32 @printf(i8* noalias nocapture, ...)
643 declare i32 @atoi(i8 zeroext)
644 declare signext i8 @returns_signed_char()
645
646Note that any attributes for the function result (``nounwind``,
647``readonly``) come immediately after the argument list.
648
649Currently, only the following parameter attributes are defined:
650
651``zeroext``
652 This indicates to the code generator that the parameter or return
653 value should be zero-extended to the extent required by the target's
654 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
655 the caller (for a parameter) or the callee (for a return value).
656``signext``
657 This indicates to the code generator that the parameter or return
658 value should be sign-extended to the extent required by the target's
659 ABI (which is usually 32-bits) by the caller (for a parameter) or
660 the callee (for a return value).
661``inreg``
662 This indicates that this parameter or return value should be treated
663 in a special target-dependent fashion during while emitting code for
664 a function call or return (usually, by putting it in a register as
665 opposed to memory, though some targets use it to distinguish between
666 two different kinds of registers). Use of this attribute is
667 target-specific.
668``byval``
669 This indicates that the pointer parameter should really be passed by
670 value to the function. The attribute implies that a hidden copy of
671 the pointee is made between the caller and the callee, so the callee
672 is unable to modify the value in the caller. This attribute is only
673 valid on LLVM pointer arguments. It is generally used to pass
674 structs and arrays by value, but is also valid on pointers to
675 scalars. The copy is considered to belong to the caller not the
676 callee (for example, ``readonly`` functions should not write to
677 ``byval`` parameters). This is not a valid attribute for return
678 values.
679
680 The byval attribute also supports specifying an alignment with the
681 align attribute. It indicates the alignment of the stack slot to
682 form and the known alignment of the pointer specified to the call
683 site. If the alignment is not specified, then the code generator
684 makes a target-specific assumption.
685
686``sret``
687 This indicates that the pointer parameter specifies the address of a
688 structure that is the return value of the function in the source
689 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000690 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000691 not to trap and to be properly aligned. This may only be applied to
692 the first parameter. This is not a valid attribute for return
693 values.
694``noalias``
695 This indicates that pointer values `*based* <pointeraliasing>` on
696 the argument or return value do not alias pointer values which are
697 not *based* on it, ignoring certain "irrelevant" dependencies. For a
698 call to the parent function, dependencies between memory references
699 from before or after the call and from those during the call are
700 "irrelevant" to the ``noalias`` keyword for the arguments and return
701 value used in that call. The caller shares the responsibility with
702 the callee for ensuring that these requirements are met. For further
703 details, please see the discussion of the NoAlias response in `alias
704 analysis <AliasAnalysis.html#MustMayNo>`_.
705
706 Note that this definition of ``noalias`` is intentionally similar
707 to the definition of ``restrict`` in C99 for function arguments,
708 though it is slightly weaker.
709
710 For function return values, C99's ``restrict`` is not meaningful,
711 while LLVM's ``noalias`` is.
712``nocapture``
713 This indicates that the callee does not make any copies of the
714 pointer that outlive the callee itself. This is not a valid
715 attribute for return values.
716
717.. _nest:
718
719``nest``
720 This indicates that the pointer parameter can be excised using the
721 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
722 attribute for return values.
723
724.. _gc:
725
726Garbage Collector Names
727-----------------------
728
729Each function may specify a garbage collector name, which is simply a
730string:
731
732.. code-block:: llvm
733
734 define void @f() gc "name" { ... }
735
736The compiler declares the supported values of *name*. Specifying a
737collector which will cause the compiler to alter its output in order to
738support the named garbage collection algorithm.
739
Bill Wendling63b88192013-02-06 06:52:58 +0000740.. _attrgrp:
741
742Attribute Groups
743----------------
744
745Attribute groups are groups of attributes that are referenced by objects within
746the IR. They are important for keeping ``.ll`` files readable, because a lot of
747functions will use the same set of attributes. In the degenerative case of a
748``.ll`` file that corresponds to a single ``.c`` file, the single attribute
749group will capture the important command line flags used to build that file.
750
751An attribute group is a module-level object. To use an attribute group, an
752object references the attribute group's ID (e.g. ``#37``). An object may refer
753to more than one attribute group. In that situation, the attributes from the
754different groups are merged.
755
756Here is an example of attribute groups for a function that should always be
757inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
758
759.. code-block:: llvm
760
761 ; Target-independent attributes:
762 #0 = attributes { alwaysinline alignstack=4 }
763
764 ; Target-dependent attributes:
765 #1 = attributes { "no-sse" }
766
767 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
768 define void @f() #0 #1 { ... }
769
Sean Silvab084af42012-12-07 10:36:55 +0000770.. _fnattrs:
771
772Function Attributes
773-------------------
774
775Function attributes are set to communicate additional information about
776a function. Function attributes are considered to be part of the
777function, not of the function type, so functions with different function
778attributes can have the same function type.
779
780Function attributes are simple keywords that follow the type specified.
781If multiple attributes are needed, they are space separated. For
782example:
783
784.. code-block:: llvm
785
786 define void @f() noinline { ... }
787 define void @f() alwaysinline { ... }
788 define void @f() alwaysinline optsize { ... }
789 define void @f() optsize { ... }
790
791``address_safety``
792 This attribute indicates that the address safety analysis is enabled
793 for this function.
794``alignstack(<n>)``
795 This attribute indicates that, when emitting the prologue and
796 epilogue, the backend should forcibly align the stack pointer.
797 Specify the desired alignment, which must be a power of two, in
798 parentheses.
799``alwaysinline``
800 This attribute indicates that the inliner should attempt to inline
801 this function into callers whenever possible, ignoring any active
802 inlining size threshold for this caller.
803``nonlazybind``
804 This attribute suppresses lazy symbol binding for the function. This
805 may make calls to the function faster, at the cost of extra program
806 startup time if the function is not called during program startup.
807``inlinehint``
808 This attribute indicates that the source code contained a hint that
809 inlining this function is desirable (such as the "inline" keyword in
810 C/C++). It is just a hint; it imposes no requirements on the
811 inliner.
812``naked``
813 This attribute disables prologue / epilogue emission for the
814 function. This can have very system-specific consequences.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000815``noduplicate``
816 This attribute indicates that calls to the function cannot be
817 duplicated. A call to a ``noduplicate`` function may be moved
818 within its parent function, but may not be duplicated within
819 its parent function.
820
821 A function containing a ``noduplicate`` call may still
822 be an inlining candidate, provided that the call is not
823 duplicated by inlining. That implies that the function has
824 internal linkage and only has one call site, so the original
825 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000826``noimplicitfloat``
827 This attributes disables implicit floating point instructions.
828``noinline``
829 This attribute indicates that the inliner should never inline this
830 function in any situation. This attribute may not be used together
831 with the ``alwaysinline`` attribute.
832``noredzone``
833 This attribute indicates that the code generator should not use a
834 red zone, even if the target-specific ABI normally permits it.
835``noreturn``
836 This function attribute indicates that the function never returns
837 normally. This produces undefined behavior at runtime if the
838 function ever does dynamically return.
839``nounwind``
840 This function attribute indicates that the function never returns
841 with an unwind or exceptional control flow. If the function does
842 unwind, its runtime behavior is undefined.
843``optsize``
844 This attribute suggests that optimization passes and code generator
845 passes make choices that keep the code size of this function low,
846 and otherwise do optimizations specifically to reduce code size.
847``readnone``
848 This attribute indicates that the function computes its result (or
849 decides to unwind an exception) based strictly on its arguments,
850 without dereferencing any pointer arguments or otherwise accessing
851 any mutable state (e.g. memory, control registers, etc) visible to
852 caller functions. It does not write through any pointer arguments
853 (including ``byval`` arguments) and never changes any state visible
854 to callers. This means that it cannot unwind exceptions by calling
855 the ``C++`` exception throwing methods.
856``readonly``
857 This attribute indicates that the function does not write through
858 any pointer arguments (including ``byval`` arguments) or otherwise
859 modify any state (e.g. memory, control registers, etc) visible to
860 caller functions. It may dereference pointer arguments and read
861 state that may be set in the caller. A readonly function always
862 returns the same value (or unwinds an exception identically) when
863 called with the same set of arguments and global state. It cannot
864 unwind an exception by calling the ``C++`` exception throwing
865 methods.
866``returns_twice``
867 This attribute indicates that this function can return twice. The C
868 ``setjmp`` is an example of such a function. The compiler disables
869 some optimizations (like tail calls) in the caller of these
870 functions.
871``ssp``
872 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000873 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +0000874 placed on the stack before the local variables that's checked upon
875 return from the function to see if it has been overwritten. A
876 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000877 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000878
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000879 - Character arrays larger than ``ssp-buffer-size`` (default 8).
880 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
881 - Calls to alloca() with variable sizes or constant sizes greater than
882 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +0000883
884 If a function that has an ``ssp`` attribute is inlined into a
885 function that doesn't have an ``ssp`` attribute, then the resulting
886 function will have an ``ssp`` attribute.
887``sspreq``
888 This attribute indicates that the function should *always* emit a
889 stack smashing protector. This overrides the ``ssp`` function
890 attribute.
891
892 If a function that has an ``sspreq`` attribute is inlined into a
893 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +0000894 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
895 an ``sspreq`` attribute.
896``sspstrong``
897 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000898 protector. This attribute causes a strong heuristic to be used when
899 determining if a function needs stack protectors. The strong heuristic
900 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000901
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000902 - Arrays of any size and type
903 - Aggregates containing an array of any size and type.
904 - Calls to alloca().
905 - Local variables that have had their address taken.
906
907 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +0000908
909 If a function that has an ``sspstrong`` attribute is inlined into a
910 function that doesn't have an ``sspstrong`` attribute, then the
911 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +0000912``uwtable``
913 This attribute indicates that the ABI being targeted requires that
914 an unwind table entry be produce for this function even if we can
915 show that no exceptions passes by it. This is normally the case for
916 the ELF x86-64 abi, but it can be disabled for some compilation
917 units.
Sean Silvab084af42012-12-07 10:36:55 +0000918
919.. _moduleasm:
920
921Module-Level Inline Assembly
922----------------------------
923
924Modules may contain "module-level inline asm" blocks, which corresponds
925to the GCC "file scope inline asm" blocks. These blocks are internally
926concatenated by LLVM and treated as a single unit, but may be separated
927in the ``.ll`` file if desired. The syntax is very simple:
928
929.. code-block:: llvm
930
931 module asm "inline asm code goes here"
932 module asm "more can go here"
933
934The strings can contain any character by escaping non-printable
935characters. The escape sequence used is simply "\\xx" where "xx" is the
936two digit hex code for the number.
937
938The inline asm code is simply printed to the machine code .s file when
939assembly code is generated.
940
941Data Layout
942-----------
943
944A module may specify a target specific data layout string that specifies
945how data is to be laid out in memory. The syntax for the data layout is
946simply:
947
948.. code-block:: llvm
949
950 target datalayout = "layout specification"
951
952The *layout specification* consists of a list of specifications
953separated by the minus sign character ('-'). Each specification starts
954with a letter and may include other information after the letter to
955define some aspect of the data layout. The specifications accepted are
956as follows:
957
958``E``
959 Specifies that the target lays out data in big-endian form. That is,
960 the bits with the most significance have the lowest address
961 location.
962``e``
963 Specifies that the target lays out data in little-endian form. That
964 is, the bits with the least significance have the lowest address
965 location.
966``S<size>``
967 Specifies the natural alignment of the stack in bits. Alignment
968 promotion of stack variables is limited to the natural stack
969 alignment to avoid dynamic stack realignment. The stack alignment
970 must be a multiple of 8-bits. If omitted, the natural stack
971 alignment defaults to "unspecified", which does not prevent any
972 alignment promotions.
973``p[n]:<size>:<abi>:<pref>``
974 This specifies the *size* of a pointer and its ``<abi>`` and
975 ``<pref>``\erred alignments for address space ``n``. All sizes are in
976 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
977 preceding ``:`` should be omitted too. The address space, ``n`` is
978 optional, and if not specified, denotes the default address space 0.
979 The value of ``n`` must be in the range [1,2^23).
980``i<size>:<abi>:<pref>``
981 This specifies the alignment for an integer type of a given bit
982 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
983``v<size>:<abi>:<pref>``
984 This specifies the alignment for a vector type of a given bit
985 ``<size>``.
986``f<size>:<abi>:<pref>``
987 This specifies the alignment for a floating point type of a given bit
988 ``<size>``. Only values of ``<size>`` that are supported by the target
989 will work. 32 (float) and 64 (double) are supported on all targets; 80
990 or 128 (different flavors of long double) are also supported on some
991 targets.
992``a<size>:<abi>:<pref>``
993 This specifies the alignment for an aggregate type of a given bit
994 ``<size>``.
995``s<size>:<abi>:<pref>``
996 This specifies the alignment for a stack object of a given bit
997 ``<size>``.
998``n<size1>:<size2>:<size3>...``
999 This specifies a set of native integer widths for the target CPU in
1000 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1001 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1002 this set are considered to support most general arithmetic operations
1003 efficiently.
1004
1005When constructing the data layout for a given target, LLVM starts with a
1006default set of specifications which are then (possibly) overridden by
1007the specifications in the ``datalayout`` keyword. The default
1008specifications are given in this list:
1009
1010- ``E`` - big endian
1011- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001012- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001013- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1014- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1015- ``i16:16:16`` - i16 is 16-bit aligned
1016- ``i32:32:32`` - i32 is 32-bit aligned
1017- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1018 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001019- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001020- ``f32:32:32`` - float is 32-bit aligned
1021- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001022- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001023- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1024- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001025- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001026
1027When LLVM is determining the alignment for a given type, it uses the
1028following rules:
1029
1030#. If the type sought is an exact match for one of the specifications,
1031 that specification is used.
1032#. If no match is found, and the type sought is an integer type, then
1033 the smallest integer type that is larger than the bitwidth of the
1034 sought type is used. If none of the specifications are larger than
1035 the bitwidth then the largest integer type is used. For example,
1036 given the default specifications above, the i7 type will use the
1037 alignment of i8 (next largest) while both i65 and i256 will use the
1038 alignment of i64 (largest specified).
1039#. If no match is found, and the type sought is a vector type, then the
1040 largest vector type that is smaller than the sought vector type will
1041 be used as a fall back. This happens because <128 x double> can be
1042 implemented in terms of 64 <2 x double>, for example.
1043
1044The function of the data layout string may not be what you expect.
1045Notably, this is not a specification from the frontend of what alignment
1046the code generator should use.
1047
1048Instead, if specified, the target data layout is required to match what
1049the ultimate *code generator* expects. This string is used by the
1050mid-level optimizers to improve code, and this only works if it matches
1051what the ultimate code generator uses. If you would like to generate IR
1052that does not embed this target-specific detail into the IR, then you
1053don't have to specify the string. This will disable some optimizations
1054that require precise layout information, but this also prevents those
1055optimizations from introducing target specificity into the IR.
1056
1057.. _pointeraliasing:
1058
1059Pointer Aliasing Rules
1060----------------------
1061
1062Any memory access must be done through a pointer value associated with
1063an address range of the memory access, otherwise the behavior is
1064undefined. Pointer values are associated with address ranges according
1065to the following rules:
1066
1067- A pointer value is associated with the addresses associated with any
1068 value it is *based* on.
1069- An address of a global variable is associated with the address range
1070 of the variable's storage.
1071- The result value of an allocation instruction is associated with the
1072 address range of the allocated storage.
1073- A null pointer in the default address-space is associated with no
1074 address.
1075- An integer constant other than zero or a pointer value returned from
1076 a function not defined within LLVM may be associated with address
1077 ranges allocated through mechanisms other than those provided by
1078 LLVM. Such ranges shall not overlap with any ranges of addresses
1079 allocated by mechanisms provided by LLVM.
1080
1081A pointer value is *based* on another pointer value according to the
1082following rules:
1083
1084- A pointer value formed from a ``getelementptr`` operation is *based*
1085 on the first operand of the ``getelementptr``.
1086- The result value of a ``bitcast`` is *based* on the operand of the
1087 ``bitcast``.
1088- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1089 values that contribute (directly or indirectly) to the computation of
1090 the pointer's value.
1091- The "*based* on" relationship is transitive.
1092
1093Note that this definition of *"based"* is intentionally similar to the
1094definition of *"based"* in C99, though it is slightly weaker.
1095
1096LLVM IR does not associate types with memory. The result type of a
1097``load`` merely indicates the size and alignment of the memory from
1098which to load, as well as the interpretation of the value. The first
1099operand type of a ``store`` similarly only indicates the size and
1100alignment of the store.
1101
1102Consequently, type-based alias analysis, aka TBAA, aka
1103``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1104:ref:`Metadata <metadata>` may be used to encode additional information
1105which specialized optimization passes may use to implement type-based
1106alias analysis.
1107
1108.. _volatile:
1109
1110Volatile Memory Accesses
1111------------------------
1112
1113Certain memory accesses, such as :ref:`load <i_load>`'s,
1114:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1115marked ``volatile``. The optimizers must not change the number of
1116volatile operations or change their order of execution relative to other
1117volatile operations. The optimizers *may* change the order of volatile
1118operations relative to non-volatile operations. This is not Java's
1119"volatile" and has no cross-thread synchronization behavior.
1120
Andrew Trick89fc5a62013-01-30 21:19:35 +00001121IR-level volatile loads and stores cannot safely be optimized into
1122llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1123flagged volatile. Likewise, the backend should never split or merge
1124target-legal volatile load/store instructions.
1125
Andrew Trick7e6f9282013-01-31 00:49:39 +00001126.. admonition:: Rationale
1127
1128 Platforms may rely on volatile loads and stores of natively supported
1129 data width to be executed as single instruction. For example, in C
1130 this holds for an l-value of volatile primitive type with native
1131 hardware support, but not necessarily for aggregate types. The
1132 frontend upholds these expectations, which are intentionally
1133 unspecified in the IR. The rules above ensure that IR transformation
1134 do not violate the frontend's contract with the language.
1135
Sean Silvab084af42012-12-07 10:36:55 +00001136.. _memmodel:
1137
1138Memory Model for Concurrent Operations
1139--------------------------------------
1140
1141The LLVM IR does not define any way to start parallel threads of
1142execution or to register signal handlers. Nonetheless, there are
1143platform-specific ways to create them, and we define LLVM IR's behavior
1144in their presence. This model is inspired by the C++0x memory model.
1145
1146For a more informal introduction to this model, see the :doc:`Atomics`.
1147
1148We define a *happens-before* partial order as the least partial order
1149that
1150
1151- Is a superset of single-thread program order, and
1152- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1153 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1154 techniques, like pthread locks, thread creation, thread joining,
1155 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1156 Constraints <ordering>`).
1157
1158Note that program order does not introduce *happens-before* edges
1159between a thread and signals executing inside that thread.
1160
1161Every (defined) read operation (load instructions, memcpy, atomic
1162loads/read-modify-writes, etc.) R reads a series of bytes written by
1163(defined) write operations (store instructions, atomic
1164stores/read-modify-writes, memcpy, etc.). For the purposes of this
1165section, initialized globals are considered to have a write of the
1166initializer which is atomic and happens before any other read or write
1167of the memory in question. For each byte of a read R, R\ :sub:`byte`
1168may see any write to the same byte, except:
1169
1170- If write\ :sub:`1` happens before write\ :sub:`2`, and
1171 write\ :sub:`2` happens before R\ :sub:`byte`, then
1172 R\ :sub:`byte` does not see write\ :sub:`1`.
1173- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1174 R\ :sub:`byte` does not see write\ :sub:`3`.
1175
1176Given that definition, R\ :sub:`byte` is defined as follows:
1177
1178- If R is volatile, the result is target-dependent. (Volatile is
1179 supposed to give guarantees which can support ``sig_atomic_t`` in
1180 C/C++, and may be used for accesses to addresses which do not behave
1181 like normal memory. It does not generally provide cross-thread
1182 synchronization.)
1183- Otherwise, if there is no write to the same byte that happens before
1184 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1185- Otherwise, if R\ :sub:`byte` may see exactly one write,
1186 R\ :sub:`byte` returns the value written by that write.
1187- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1188 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1189 Memory Ordering Constraints <ordering>` section for additional
1190 constraints on how the choice is made.
1191- Otherwise R\ :sub:`byte` returns ``undef``.
1192
1193R returns the value composed of the series of bytes it read. This
1194implies that some bytes within the value may be ``undef`` **without**
1195the entire value being ``undef``. Note that this only defines the
1196semantics of the operation; it doesn't mean that targets will emit more
1197than one instruction to read the series of bytes.
1198
1199Note that in cases where none of the atomic intrinsics are used, this
1200model places only one restriction on IR transformations on top of what
1201is required for single-threaded execution: introducing a store to a byte
1202which might not otherwise be stored is not allowed in general.
1203(Specifically, in the case where another thread might write to and read
1204from an address, introducing a store can change a load that may see
1205exactly one write into a load that may see multiple writes.)
1206
1207.. _ordering:
1208
1209Atomic Memory Ordering Constraints
1210----------------------------------
1211
1212Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1213:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1214:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1215an ordering parameter that determines which other atomic instructions on
1216the same address they *synchronize with*. These semantics are borrowed
1217from Java and C++0x, but are somewhat more colloquial. If these
1218descriptions aren't precise enough, check those specs (see spec
1219references in the :doc:`atomics guide <Atomics>`).
1220:ref:`fence <i_fence>` instructions treat these orderings somewhat
1221differently since they don't take an address. See that instruction's
1222documentation for details.
1223
1224For a simpler introduction to the ordering constraints, see the
1225:doc:`Atomics`.
1226
1227``unordered``
1228 The set of values that can be read is governed by the happens-before
1229 partial order. A value cannot be read unless some operation wrote
1230 it. This is intended to provide a guarantee strong enough to model
1231 Java's non-volatile shared variables. This ordering cannot be
1232 specified for read-modify-write operations; it is not strong enough
1233 to make them atomic in any interesting way.
1234``monotonic``
1235 In addition to the guarantees of ``unordered``, there is a single
1236 total order for modifications by ``monotonic`` operations on each
1237 address. All modification orders must be compatible with the
1238 happens-before order. There is no guarantee that the modification
1239 orders can be combined to a global total order for the whole program
1240 (and this often will not be possible). The read in an atomic
1241 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1242 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1243 order immediately before the value it writes. If one atomic read
1244 happens before another atomic read of the same address, the later
1245 read must see the same value or a later value in the address's
1246 modification order. This disallows reordering of ``monotonic`` (or
1247 stronger) operations on the same address. If an address is written
1248 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1249 read that address repeatedly, the other threads must eventually see
1250 the write. This corresponds to the C++0x/C1x
1251 ``memory_order_relaxed``.
1252``acquire``
1253 In addition to the guarantees of ``monotonic``, a
1254 *synchronizes-with* edge may be formed with a ``release`` operation.
1255 This is intended to model C++'s ``memory_order_acquire``.
1256``release``
1257 In addition to the guarantees of ``monotonic``, if this operation
1258 writes a value which is subsequently read by an ``acquire``
1259 operation, it *synchronizes-with* that operation. (This isn't a
1260 complete description; see the C++0x definition of a release
1261 sequence.) This corresponds to the C++0x/C1x
1262 ``memory_order_release``.
1263``acq_rel`` (acquire+release)
1264 Acts as both an ``acquire`` and ``release`` operation on its
1265 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1266``seq_cst`` (sequentially consistent)
1267 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1268 operation which only reads, ``release`` for an operation which only
1269 writes), there is a global total order on all
1270 sequentially-consistent operations on all addresses, which is
1271 consistent with the *happens-before* partial order and with the
1272 modification orders of all the affected addresses. Each
1273 sequentially-consistent read sees the last preceding write to the
1274 same address in this global order. This corresponds to the C++0x/C1x
1275 ``memory_order_seq_cst`` and Java volatile.
1276
1277.. _singlethread:
1278
1279If an atomic operation is marked ``singlethread``, it only *synchronizes
1280with* or participates in modification and seq\_cst total orderings with
1281other operations running in the same thread (for example, in signal
1282handlers).
1283
1284.. _fastmath:
1285
1286Fast-Math Flags
1287---------------
1288
1289LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1290:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1291:ref:`frem <i_frem>`) have the following flags that can set to enable
1292otherwise unsafe floating point operations
1293
1294``nnan``
1295 No NaNs - Allow optimizations to assume the arguments and result are not
1296 NaN. Such optimizations are required to retain defined behavior over
1297 NaNs, but the value of the result is undefined.
1298
1299``ninf``
1300 No Infs - Allow optimizations to assume the arguments and result are not
1301 +/-Inf. Such optimizations are required to retain defined behavior over
1302 +/-Inf, but the value of the result is undefined.
1303
1304``nsz``
1305 No Signed Zeros - Allow optimizations to treat the sign of a zero
1306 argument or result as insignificant.
1307
1308``arcp``
1309 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1310 argument rather than perform division.
1311
1312``fast``
1313 Fast - Allow algebraically equivalent transformations that may
1314 dramatically change results in floating point (e.g. reassociate). This
1315 flag implies all the others.
1316
1317.. _typesystem:
1318
1319Type System
1320===========
1321
1322The LLVM type system is one of the most important features of the
1323intermediate representation. Being typed enables a number of
1324optimizations to be performed on the intermediate representation
1325directly, without having to do extra analyses on the side before the
1326transformation. A strong type system makes it easier to read the
1327generated code and enables novel analyses and transformations that are
1328not feasible to perform on normal three address code representations.
1329
1330Type Classifications
1331--------------------
1332
1333The types fall into a few useful classifications:
1334
1335
1336.. list-table::
1337 :header-rows: 1
1338
1339 * - Classification
1340 - Types
1341
1342 * - :ref:`integer <t_integer>`
1343 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1344 ``i64``, ...
1345
1346 * - :ref:`floating point <t_floating>`
1347 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1348 ``ppc_fp128``
1349
1350
1351 * - first class
1352
1353 .. _t_firstclass:
1354
1355 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1356 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1357 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1358 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1359
1360 * - :ref:`primitive <t_primitive>`
1361 - :ref:`label <t_label>`,
1362 :ref:`void <t_void>`,
1363 :ref:`integer <t_integer>`,
1364 :ref:`floating point <t_floating>`,
1365 :ref:`x86mmx <t_x86mmx>`,
1366 :ref:`metadata <t_metadata>`.
1367
1368 * - :ref:`derived <t_derived>`
1369 - :ref:`array <t_array>`,
1370 :ref:`function <t_function>`,
1371 :ref:`pointer <t_pointer>`,
1372 :ref:`structure <t_struct>`,
1373 :ref:`vector <t_vector>`,
1374 :ref:`opaque <t_opaque>`.
1375
1376The :ref:`first class <t_firstclass>` types are perhaps the most important.
1377Values of these types are the only ones which can be produced by
1378instructions.
1379
1380.. _t_primitive:
1381
1382Primitive Types
1383---------------
1384
1385The primitive types are the fundamental building blocks of the LLVM
1386system.
1387
1388.. _t_integer:
1389
1390Integer Type
1391^^^^^^^^^^^^
1392
1393Overview:
1394"""""""""
1395
1396The integer type is a very simple type that simply specifies an
1397arbitrary bit width for the integer type desired. Any bit width from 1
1398bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1399
1400Syntax:
1401"""""""
1402
1403::
1404
1405 iN
1406
1407The number of bits the integer will occupy is specified by the ``N``
1408value.
1409
1410Examples:
1411"""""""""
1412
1413+----------------+------------------------------------------------+
1414| ``i1`` | a single-bit integer. |
1415+----------------+------------------------------------------------+
1416| ``i32`` | a 32-bit integer. |
1417+----------------+------------------------------------------------+
1418| ``i1942652`` | a really big integer of over 1 million bits. |
1419+----------------+------------------------------------------------+
1420
1421.. _t_floating:
1422
1423Floating Point Types
1424^^^^^^^^^^^^^^^^^^^^
1425
1426.. list-table::
1427 :header-rows: 1
1428
1429 * - Type
1430 - Description
1431
1432 * - ``half``
1433 - 16-bit floating point value
1434
1435 * - ``float``
1436 - 32-bit floating point value
1437
1438 * - ``double``
1439 - 64-bit floating point value
1440
1441 * - ``fp128``
1442 - 128-bit floating point value (112-bit mantissa)
1443
1444 * - ``x86_fp80``
1445 - 80-bit floating point value (X87)
1446
1447 * - ``ppc_fp128``
1448 - 128-bit floating point value (two 64-bits)
1449
1450.. _t_x86mmx:
1451
1452X86mmx Type
1453^^^^^^^^^^^
1454
1455Overview:
1456"""""""""
1457
1458The x86mmx type represents a value held in an MMX register on an x86
1459machine. The operations allowed on it are quite limited: parameters and
1460return values, load and store, and bitcast. User-specified MMX
1461instructions are represented as intrinsic or asm calls with arguments
1462and/or results of this type. There are no arrays, vectors or constants
1463of this type.
1464
1465Syntax:
1466"""""""
1467
1468::
1469
1470 x86mmx
1471
1472.. _t_void:
1473
1474Void Type
1475^^^^^^^^^
1476
1477Overview:
1478"""""""""
1479
1480The void type does not represent any value and has no size.
1481
1482Syntax:
1483"""""""
1484
1485::
1486
1487 void
1488
1489.. _t_label:
1490
1491Label Type
1492^^^^^^^^^^
1493
1494Overview:
1495"""""""""
1496
1497The label type represents code labels.
1498
1499Syntax:
1500"""""""
1501
1502::
1503
1504 label
1505
1506.. _t_metadata:
1507
1508Metadata Type
1509^^^^^^^^^^^^^
1510
1511Overview:
1512"""""""""
1513
1514The metadata type represents embedded metadata. No derived types may be
1515created from metadata except for :ref:`function <t_function>` arguments.
1516
1517Syntax:
1518"""""""
1519
1520::
1521
1522 metadata
1523
1524.. _t_derived:
1525
1526Derived Types
1527-------------
1528
1529The real power in LLVM comes from the derived types in the system. This
1530is what allows a programmer to represent arrays, functions, pointers,
1531and other useful types. Each of these types contain one or more element
1532types which may be a primitive type, or another derived type. For
1533example, it is possible to have a two dimensional array, using an array
1534as the element type of another array.
1535
1536.. _t_aggregate:
1537
1538Aggregate Types
1539^^^^^^^^^^^^^^^
1540
1541Aggregate Types are a subset of derived types that can contain multiple
1542member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1543aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1544aggregate types.
1545
1546.. _t_array:
1547
1548Array Type
1549^^^^^^^^^^
1550
1551Overview:
1552"""""""""
1553
1554The array type is a very simple derived type that arranges elements
1555sequentially in memory. The array type requires a size (number of
1556elements) and an underlying data type.
1557
1558Syntax:
1559"""""""
1560
1561::
1562
1563 [<# elements> x <elementtype>]
1564
1565The number of elements is a constant integer value; ``elementtype`` may
1566be any type with a size.
1567
1568Examples:
1569"""""""""
1570
1571+------------------+--------------------------------------+
1572| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1573+------------------+--------------------------------------+
1574| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1575+------------------+--------------------------------------+
1576| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1577+------------------+--------------------------------------+
1578
1579Here are some examples of multidimensional arrays:
1580
1581+-----------------------------+----------------------------------------------------------+
1582| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1583+-----------------------------+----------------------------------------------------------+
1584| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1585+-----------------------------+----------------------------------------------------------+
1586| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1587+-----------------------------+----------------------------------------------------------+
1588
1589There is no restriction on indexing beyond the end of the array implied
1590by a static type (though there are restrictions on indexing beyond the
1591bounds of an allocated object in some cases). This means that
1592single-dimension 'variable sized array' addressing can be implemented in
1593LLVM with a zero length array type. An implementation of 'pascal style
1594arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1595example.
1596
1597.. _t_function:
1598
1599Function Type
1600^^^^^^^^^^^^^
1601
1602Overview:
1603"""""""""
1604
1605The function type can be thought of as a function signature. It consists
1606of a return type and a list of formal parameter types. The return type
1607of a function type is a first class type or a void type.
1608
1609Syntax:
1610"""""""
1611
1612::
1613
1614 <returntype> (<parameter list>)
1615
1616...where '``<parameter list>``' is a comma-separated list of type
1617specifiers. Optionally, the parameter list may include a type ``...``,
1618which indicates that the function takes a variable number of arguments.
1619Variable argument functions can access their arguments with the
1620:ref:`variable argument handling intrinsic <int_varargs>` functions.
1621'``<returntype>``' is any type except :ref:`label <t_label>`.
1622
1623Examples:
1624"""""""""
1625
1626+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1627| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1628+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001629| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvab084af42012-12-07 10:36:55 +00001630+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1631| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1632+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1633| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1634+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1635
1636.. _t_struct:
1637
1638Structure Type
1639^^^^^^^^^^^^^^
1640
1641Overview:
1642"""""""""
1643
1644The structure type is used to represent a collection of data members
1645together in memory. The elements of a structure may be any type that has
1646a size.
1647
1648Structures in memory are accessed using '``load``' and '``store``' by
1649getting a pointer to a field with the '``getelementptr``' instruction.
1650Structures in registers are accessed using the '``extractvalue``' and
1651'``insertvalue``' instructions.
1652
1653Structures may optionally be "packed" structures, which indicate that
1654the alignment of the struct is one byte, and that there is no padding
1655between the elements. In non-packed structs, padding between field types
1656is inserted as defined by the DataLayout string in the module, which is
1657required to match what the underlying code generator expects.
1658
1659Structures can either be "literal" or "identified". A literal structure
1660is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1661identified types are always defined at the top level with a name.
1662Literal types are uniqued by their contents and can never be recursive
1663or opaque since there is no way to write one. Identified types can be
1664recursive, can be opaqued, and are never uniqued.
1665
1666Syntax:
1667"""""""
1668
1669::
1670
1671 %T1 = type { <type list> } ; Identified normal struct type
1672 %T2 = type <{ <type list> }> ; Identified packed struct type
1673
1674Examples:
1675"""""""""
1676
1677+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1678| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1679+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001680| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001681+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1682| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1683+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1684
1685.. _t_opaque:
1686
1687Opaque Structure Types
1688^^^^^^^^^^^^^^^^^^^^^^
1689
1690Overview:
1691"""""""""
1692
1693Opaque structure types are used to represent named structure types that
1694do not have a body specified. This corresponds (for example) to the C
1695notion of a forward declared structure.
1696
1697Syntax:
1698"""""""
1699
1700::
1701
1702 %X = type opaque
1703 %52 = type opaque
1704
1705Examples:
1706"""""""""
1707
1708+--------------+-------------------+
1709| ``opaque`` | An opaque type. |
1710+--------------+-------------------+
1711
1712.. _t_pointer:
1713
1714Pointer Type
1715^^^^^^^^^^^^
1716
1717Overview:
1718"""""""""
1719
1720The pointer type is used to specify memory locations. Pointers are
1721commonly used to reference objects in memory.
1722
1723Pointer types may have an optional address space attribute defining the
1724numbered address space where the pointed-to object resides. The default
1725address space is number zero. The semantics of non-zero address spaces
1726are target-specific.
1727
1728Note that LLVM does not permit pointers to void (``void*``) nor does it
1729permit pointers to labels (``label*``). Use ``i8*`` instead.
1730
1731Syntax:
1732"""""""
1733
1734::
1735
1736 <type> *
1737
1738Examples:
1739"""""""""
1740
1741+-------------------------+--------------------------------------------------------------------------------------------------------------+
1742| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1743+-------------------------+--------------------------------------------------------------------------------------------------------------+
1744| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1745+-------------------------+--------------------------------------------------------------------------------------------------------------+
1746| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1747+-------------------------+--------------------------------------------------------------------------------------------------------------+
1748
1749.. _t_vector:
1750
1751Vector Type
1752^^^^^^^^^^^
1753
1754Overview:
1755"""""""""
1756
1757A vector type is a simple derived type that represents a vector of
1758elements. Vector types are used when multiple primitive data are
1759operated in parallel using a single instruction (SIMD). A vector type
1760requires a size (number of elements) and an underlying primitive data
1761type. Vector types are considered :ref:`first class <t_firstclass>`.
1762
1763Syntax:
1764"""""""
1765
1766::
1767
1768 < <# elements> x <elementtype> >
1769
1770The number of elements is a constant integer value larger than 0;
1771elementtype may be any integer or floating point type, or a pointer to
1772these types. Vectors of size zero are not allowed.
1773
1774Examples:
1775"""""""""
1776
1777+-------------------+--------------------------------------------------+
1778| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1779+-------------------+--------------------------------------------------+
1780| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1781+-------------------+--------------------------------------------------+
1782| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1783+-------------------+--------------------------------------------------+
1784| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1785+-------------------+--------------------------------------------------+
1786
1787Constants
1788=========
1789
1790LLVM has several different basic types of constants. This section
1791describes them all and their syntax.
1792
1793Simple Constants
1794----------------
1795
1796**Boolean constants**
1797 The two strings '``true``' and '``false``' are both valid constants
1798 of the ``i1`` type.
1799**Integer constants**
1800 Standard integers (such as '4') are constants of the
1801 :ref:`integer <t_integer>` type. Negative numbers may be used with
1802 integer types.
1803**Floating point constants**
1804 Floating point constants use standard decimal notation (e.g.
1805 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1806 hexadecimal notation (see below). The assembler requires the exact
1807 decimal value of a floating-point constant. For example, the
1808 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1809 decimal in binary. Floating point constants must have a :ref:`floating
1810 point <t_floating>` type.
1811**Null pointer constants**
1812 The identifier '``null``' is recognized as a null pointer constant
1813 and must be of :ref:`pointer type <t_pointer>`.
1814
1815The one non-intuitive notation for constants is the hexadecimal form of
1816floating point constants. For example, the form
1817'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1818than) '``double 4.5e+15``'. The only time hexadecimal floating point
1819constants are required (and the only time that they are generated by the
1820disassembler) is when a floating point constant must be emitted but it
1821cannot be represented as a decimal floating point number in a reasonable
1822number of digits. For example, NaN's, infinities, and other special
1823values are represented in their IEEE hexadecimal format so that assembly
1824and disassembly do not cause any bits to change in the constants.
1825
1826When using the hexadecimal form, constants of types half, float, and
1827double are represented using the 16-digit form shown above (which
1828matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001829must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001830precision, respectively. Hexadecimal format is always used for long
1831double, and there are three forms of long double. The 80-bit format used
1832by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1833128-bit format used by PowerPC (two adjacent doubles) is represented by
1834``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1835represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1836supported target uses this format. Long doubles will only work if they
1837match the long double format on your target. The IEEE 16-bit format
1838(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1839digits. All hexadecimal formats are big-endian (sign bit at the left).
1840
1841There are no constants of type x86mmx.
1842
1843Complex Constants
1844-----------------
1845
1846Complex constants are a (potentially recursive) combination of simple
1847constants and smaller complex constants.
1848
1849**Structure constants**
1850 Structure constants are represented with notation similar to
1851 structure type definitions (a comma separated list of elements,
1852 surrounded by braces (``{}``)). For example:
1853 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1854 "``@G = external global i32``". Structure constants must have
1855 :ref:`structure type <t_struct>`, and the number and types of elements
1856 must match those specified by the type.
1857**Array constants**
1858 Array constants are represented with notation similar to array type
1859 definitions (a comma separated list of elements, surrounded by
1860 square brackets (``[]``)). For example:
1861 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1862 :ref:`array type <t_array>`, and the number and types of elements must
1863 match those specified by the type.
1864**Vector constants**
1865 Vector constants are represented with notation similar to vector
1866 type definitions (a comma separated list of elements, surrounded by
1867 less-than/greater-than's (``<>``)). For example:
1868 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1869 must have :ref:`vector type <t_vector>`, and the number and types of
1870 elements must match those specified by the type.
1871**Zero initialization**
1872 The string '``zeroinitializer``' can be used to zero initialize a
1873 value to zero of *any* type, including scalar and
1874 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1875 having to print large zero initializers (e.g. for large arrays) and
1876 is always exactly equivalent to using explicit zero initializers.
1877**Metadata node**
1878 A metadata node is a structure-like constant with :ref:`metadata
1879 type <t_metadata>`. For example:
1880 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1881 constants that are meant to be interpreted as part of the
1882 instruction stream, metadata is a place to attach additional
1883 information such as debug info.
1884
1885Global Variable and Function Addresses
1886--------------------------------------
1887
1888The addresses of :ref:`global variables <globalvars>` and
1889:ref:`functions <functionstructure>` are always implicitly valid
1890(link-time) constants. These constants are explicitly referenced when
1891the :ref:`identifier for the global <identifiers>` is used and always have
1892:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1893file:
1894
1895.. code-block:: llvm
1896
1897 @X = global i32 17
1898 @Y = global i32 42
1899 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1900
1901.. _undefvalues:
1902
1903Undefined Values
1904----------------
1905
1906The string '``undef``' can be used anywhere a constant is expected, and
1907indicates that the user of the value may receive an unspecified
1908bit-pattern. Undefined values may be of any type (other than '``label``'
1909or '``void``') and be used anywhere a constant is permitted.
1910
1911Undefined values are useful because they indicate to the compiler that
1912the program is well defined no matter what value is used. This gives the
1913compiler more freedom to optimize. Here are some examples of
1914(potentially surprising) transformations that are valid (in pseudo IR):
1915
1916.. code-block:: llvm
1917
1918 %A = add %X, undef
1919 %B = sub %X, undef
1920 %C = xor %X, undef
1921 Safe:
1922 %A = undef
1923 %B = undef
1924 %C = undef
1925
1926This is safe because all of the output bits are affected by the undef
1927bits. Any output bit can have a zero or one depending on the input bits.
1928
1929.. code-block:: llvm
1930
1931 %A = or %X, undef
1932 %B = and %X, undef
1933 Safe:
1934 %A = -1
1935 %B = 0
1936 Unsafe:
1937 %A = undef
1938 %B = undef
1939
1940These logical operations have bits that are not always affected by the
1941input. For example, if ``%X`` has a zero bit, then the output of the
1942'``and``' operation will always be a zero for that bit, no matter what
1943the corresponding bit from the '``undef``' is. As such, it is unsafe to
1944optimize or assume that the result of the '``and``' is '``undef``'.
1945However, it is safe to assume that all bits of the '``undef``' could be
19460, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1947all the bits of the '``undef``' operand to the '``or``' could be set,
1948allowing the '``or``' to be folded to -1.
1949
1950.. code-block:: llvm
1951
1952 %A = select undef, %X, %Y
1953 %B = select undef, 42, %Y
1954 %C = select %X, %Y, undef
1955 Safe:
1956 %A = %X (or %Y)
1957 %B = 42 (or %Y)
1958 %C = %Y
1959 Unsafe:
1960 %A = undef
1961 %B = undef
1962 %C = undef
1963
1964This set of examples shows that undefined '``select``' (and conditional
1965branch) conditions can go *either way*, but they have to come from one
1966of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1967both known to have a clear low bit, then ``%A`` would have to have a
1968cleared low bit. However, in the ``%C`` example, the optimizer is
1969allowed to assume that the '``undef``' operand could be the same as
1970``%Y``, allowing the whole '``select``' to be eliminated.
1971
1972.. code-block:: llvm
1973
1974 %A = xor undef, undef
1975
1976 %B = undef
1977 %C = xor %B, %B
1978
1979 %D = undef
1980 %E = icmp lt %D, 4
1981 %F = icmp gte %D, 4
1982
1983 Safe:
1984 %A = undef
1985 %B = undef
1986 %C = undef
1987 %D = undef
1988 %E = undef
1989 %F = undef
1990
1991This example points out that two '``undef``' operands are not
1992necessarily the same. This can be surprising to people (and also matches
1993C semantics) where they assume that "``X^X``" is always zero, even if
1994``X`` is undefined. This isn't true for a number of reasons, but the
1995short answer is that an '``undef``' "variable" can arbitrarily change
1996its value over its "live range". This is true because the variable
1997doesn't actually *have a live range*. Instead, the value is logically
1998read from arbitrary registers that happen to be around when needed, so
1999the value is not necessarily consistent over time. In fact, ``%A`` and
2000``%C`` need to have the same semantics or the core LLVM "replace all
2001uses with" concept would not hold.
2002
2003.. code-block:: llvm
2004
2005 %A = fdiv undef, %X
2006 %B = fdiv %X, undef
2007 Safe:
2008 %A = undef
2009 b: unreachable
2010
2011These examples show the crucial difference between an *undefined value*
2012and *undefined behavior*. An undefined value (like '``undef``') is
2013allowed to have an arbitrary bit-pattern. This means that the ``%A``
2014operation can be constant folded to '``undef``', because the '``undef``'
2015could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2016However, in the second example, we can make a more aggressive
2017assumption: because the ``undef`` is allowed to be an arbitrary value,
2018we are allowed to assume that it could be zero. Since a divide by zero
2019has *undefined behavior*, we are allowed to assume that the operation
2020does not execute at all. This allows us to delete the divide and all
2021code after it. Because the undefined operation "can't happen", the
2022optimizer can assume that it occurs in dead code.
2023
2024.. code-block:: llvm
2025
2026 a: store undef -> %X
2027 b: store %X -> undef
2028 Safe:
2029 a: <deleted>
2030 b: unreachable
2031
2032These examples reiterate the ``fdiv`` example: a store *of* an undefined
2033value can be assumed to not have any effect; we can assume that the
2034value is overwritten with bits that happen to match what was already
2035there. However, a store *to* an undefined location could clobber
2036arbitrary memory, therefore, it has undefined behavior.
2037
2038.. _poisonvalues:
2039
2040Poison Values
2041-------------
2042
2043Poison values are similar to :ref:`undef values <undefvalues>`, however
2044they also represent the fact that an instruction or constant expression
2045which cannot evoke side effects has nevertheless detected a condition
2046which results in undefined behavior.
2047
2048There is currently no way of representing a poison value in the IR; they
2049only exist when produced by operations such as :ref:`add <i_add>` with
2050the ``nsw`` flag.
2051
2052Poison value behavior is defined in terms of value *dependence*:
2053
2054- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2055- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2056 their dynamic predecessor basic block.
2057- Function arguments depend on the corresponding actual argument values
2058 in the dynamic callers of their functions.
2059- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2060 instructions that dynamically transfer control back to them.
2061- :ref:`Invoke <i_invoke>` instructions depend on the
2062 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2063 call instructions that dynamically transfer control back to them.
2064- Non-volatile loads and stores depend on the most recent stores to all
2065 of the referenced memory addresses, following the order in the IR
2066 (including loads and stores implied by intrinsics such as
2067 :ref:`@llvm.memcpy <int_memcpy>`.)
2068- An instruction with externally visible side effects depends on the
2069 most recent preceding instruction with externally visible side
2070 effects, following the order in the IR. (This includes :ref:`volatile
2071 operations <volatile>`.)
2072- An instruction *control-depends* on a :ref:`terminator
2073 instruction <terminators>` if the terminator instruction has
2074 multiple successors and the instruction is always executed when
2075 control transfers to one of the successors, and may not be executed
2076 when control is transferred to another.
2077- Additionally, an instruction also *control-depends* on a terminator
2078 instruction if the set of instructions it otherwise depends on would
2079 be different if the terminator had transferred control to a different
2080 successor.
2081- Dependence is transitive.
2082
2083Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2084with the additional affect that any instruction which has a *dependence*
2085on a poison value has undefined behavior.
2086
2087Here are some examples:
2088
2089.. code-block:: llvm
2090
2091 entry:
2092 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2093 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2094 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2095 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2096
2097 store i32 %poison, i32* @g ; Poison value stored to memory.
2098 %poison2 = load i32* @g ; Poison value loaded back from memory.
2099
2100 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2101
2102 %narrowaddr = bitcast i32* @g to i16*
2103 %wideaddr = bitcast i32* @g to i64*
2104 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2105 %poison4 = load i64* %wideaddr ; Returns a poison value.
2106
2107 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2108 br i1 %cmp, label %true, label %end ; Branch to either destination.
2109
2110 true:
2111 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2112 ; it has undefined behavior.
2113 br label %end
2114
2115 end:
2116 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2117 ; Both edges into this PHI are
2118 ; control-dependent on %cmp, so this
2119 ; always results in a poison value.
2120
2121 store volatile i32 0, i32* @g ; This would depend on the store in %true
2122 ; if %cmp is true, or the store in %entry
2123 ; otherwise, so this is undefined behavior.
2124
2125 br i1 %cmp, label %second_true, label %second_end
2126 ; The same branch again, but this time the
2127 ; true block doesn't have side effects.
2128
2129 second_true:
2130 ; No side effects!
2131 ret void
2132
2133 second_end:
2134 store volatile i32 0, i32* @g ; This time, the instruction always depends
2135 ; on the store in %end. Also, it is
2136 ; control-equivalent to %end, so this is
2137 ; well-defined (ignoring earlier undefined
2138 ; behavior in this example).
2139
2140.. _blockaddress:
2141
2142Addresses of Basic Blocks
2143-------------------------
2144
2145``blockaddress(@function, %block)``
2146
2147The '``blockaddress``' constant computes the address of the specified
2148basic block in the specified function, and always has an ``i8*`` type.
2149Taking the address of the entry block is illegal.
2150
2151This value only has defined behavior when used as an operand to the
2152':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2153against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002154undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002155no label is equal to the null pointer. This may be passed around as an
2156opaque pointer sized value as long as the bits are not inspected. This
2157allows ``ptrtoint`` and arithmetic to be performed on these values so
2158long as the original value is reconstituted before the ``indirectbr``
2159instruction.
2160
2161Finally, some targets may provide defined semantics when using the value
2162as the operand to an inline assembly, but that is target specific.
2163
2164Constant Expressions
2165--------------------
2166
2167Constant expressions are used to allow expressions involving other
2168constants to be used as constants. Constant expressions may be of any
2169:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2170that does not have side effects (e.g. load and call are not supported).
2171The following is the syntax for constant expressions:
2172
2173``trunc (CST to TYPE)``
2174 Truncate a constant to another type. The bit size of CST must be
2175 larger than the bit size of TYPE. Both types must be integers.
2176``zext (CST to TYPE)``
2177 Zero extend a constant to another type. The bit size of CST must be
2178 smaller than the bit size of TYPE. Both types must be integers.
2179``sext (CST to TYPE)``
2180 Sign extend a constant to another type. The bit size of CST must be
2181 smaller than the bit size of TYPE. Both types must be integers.
2182``fptrunc (CST to TYPE)``
2183 Truncate a floating point constant to another floating point type.
2184 The size of CST must be larger than the size of TYPE. Both types
2185 must be floating point.
2186``fpext (CST to TYPE)``
2187 Floating point extend a constant to another type. The size of CST
2188 must be smaller or equal to the size of TYPE. Both types must be
2189 floating point.
2190``fptoui (CST to TYPE)``
2191 Convert a floating point constant to the corresponding unsigned
2192 integer constant. TYPE must be a scalar or vector integer type. CST
2193 must be of scalar or vector floating point type. Both CST and TYPE
2194 must be scalars, or vectors of the same number of elements. If the
2195 value won't fit in the integer type, the results are undefined.
2196``fptosi (CST to TYPE)``
2197 Convert a floating point constant to the corresponding signed
2198 integer constant. TYPE must be a scalar or vector integer type. CST
2199 must be of scalar or vector floating point type. Both CST and TYPE
2200 must be scalars, or vectors of the same number of elements. If the
2201 value won't fit in the integer type, the results are undefined.
2202``uitofp (CST to TYPE)``
2203 Convert an unsigned integer constant to the corresponding floating
2204 point constant. TYPE must be a scalar or vector floating point type.
2205 CST must be of scalar or vector integer type. Both CST and TYPE must
2206 be scalars, or vectors of the same number of elements. If the value
2207 won't fit in the floating point type, the results are undefined.
2208``sitofp (CST to TYPE)``
2209 Convert a signed integer constant to the corresponding floating
2210 point constant. TYPE must be a scalar or vector floating point type.
2211 CST must be of scalar or vector integer type. Both CST and TYPE must
2212 be scalars, or vectors of the same number of elements. If the value
2213 won't fit in the floating point type, the results are undefined.
2214``ptrtoint (CST to TYPE)``
2215 Convert a pointer typed constant to the corresponding integer
2216 constant ``TYPE`` must be an integer type. ``CST`` must be of
2217 pointer type. The ``CST`` value is zero extended, truncated, or
2218 unchanged to make it fit in ``TYPE``.
2219``inttoptr (CST to TYPE)``
2220 Convert an integer constant to a pointer constant. TYPE must be a
2221 pointer type. CST must be of integer type. The CST value is zero
2222 extended, truncated, or unchanged to make it fit in a pointer size.
2223 This one is *really* dangerous!
2224``bitcast (CST to TYPE)``
2225 Convert a constant, CST, to another TYPE. The constraints of the
2226 operands are the same as those for the :ref:`bitcast
2227 instruction <i_bitcast>`.
2228``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2229 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2230 constants. As with the :ref:`getelementptr <i_getelementptr>`
2231 instruction, the index list may have zero or more indexes, which are
2232 required to make sense for the type of "CSTPTR".
2233``select (COND, VAL1, VAL2)``
2234 Perform the :ref:`select operation <i_select>` on constants.
2235``icmp COND (VAL1, VAL2)``
2236 Performs the :ref:`icmp operation <i_icmp>` on constants.
2237``fcmp COND (VAL1, VAL2)``
2238 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2239``extractelement (VAL, IDX)``
2240 Perform the :ref:`extractelement operation <i_extractelement>` on
2241 constants.
2242``insertelement (VAL, ELT, IDX)``
2243 Perform the :ref:`insertelement operation <i_insertelement>` on
2244 constants.
2245``shufflevector (VEC1, VEC2, IDXMASK)``
2246 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2247 constants.
2248``extractvalue (VAL, IDX0, IDX1, ...)``
2249 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2250 constants. The index list is interpreted in a similar manner as
2251 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2252 least one index value must be specified.
2253``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2254 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2255 The index list is interpreted in a similar manner as indices in a
2256 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2257 value must be specified.
2258``OPCODE (LHS, RHS)``
2259 Perform the specified operation of the LHS and RHS constants. OPCODE
2260 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2261 binary <bitwiseops>` operations. The constraints on operands are
2262 the same as those for the corresponding instruction (e.g. no bitwise
2263 operations on floating point values are allowed).
2264
2265Other Values
2266============
2267
2268Inline Assembler Expressions
2269----------------------------
2270
2271LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2272Inline Assembly <moduleasm>`) through the use of a special value. This
2273value represents the inline assembler as a string (containing the
2274instructions to emit), a list of operand constraints (stored as a
2275string), a flag that indicates whether or not the inline asm expression
2276has side effects, and a flag indicating whether the function containing
2277the asm needs to align its stack conservatively. An example inline
2278assembler expression is:
2279
2280.. code-block:: llvm
2281
2282 i32 (i32) asm "bswap $0", "=r,r"
2283
2284Inline assembler expressions may **only** be used as the callee operand
2285of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2286Thus, typically we have:
2287
2288.. code-block:: llvm
2289
2290 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2291
2292Inline asms with side effects not visible in the constraint list must be
2293marked as having side effects. This is done through the use of the
2294'``sideeffect``' keyword, like so:
2295
2296.. code-block:: llvm
2297
2298 call void asm sideeffect "eieio", ""()
2299
2300In some cases inline asms will contain code that will not work unless
2301the stack is aligned in some way, such as calls or SSE instructions on
2302x86, yet will not contain code that does that alignment within the asm.
2303The compiler should make conservative assumptions about what the asm
2304might contain and should generate its usual stack alignment code in the
2305prologue if the '``alignstack``' keyword is present:
2306
2307.. code-block:: llvm
2308
2309 call void asm alignstack "eieio", ""()
2310
2311Inline asms also support using non-standard assembly dialects. The
2312assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2313the inline asm is using the Intel dialect. Currently, ATT and Intel are
2314the only supported dialects. An example is:
2315
2316.. code-block:: llvm
2317
2318 call void asm inteldialect "eieio", ""()
2319
2320If multiple keywords appear the '``sideeffect``' keyword must come
2321first, the '``alignstack``' keyword second and the '``inteldialect``'
2322keyword last.
2323
2324Inline Asm Metadata
2325^^^^^^^^^^^^^^^^^^^
2326
2327The call instructions that wrap inline asm nodes may have a
2328"``!srcloc``" MDNode attached to it that contains a list of constant
2329integers. If present, the code generator will use the integer as the
2330location cookie value when report errors through the ``LLVMContext``
2331error reporting mechanisms. This allows a front-end to correlate backend
2332errors that occur with inline asm back to the source code that produced
2333it. For example:
2334
2335.. code-block:: llvm
2336
2337 call void asm sideeffect "something bad", ""(), !srcloc !42
2338 ...
2339 !42 = !{ i32 1234567 }
2340
2341It is up to the front-end to make sense of the magic numbers it places
2342in the IR. If the MDNode contains multiple constants, the code generator
2343will use the one that corresponds to the line of the asm that the error
2344occurs on.
2345
2346.. _metadata:
2347
2348Metadata Nodes and Metadata Strings
2349-----------------------------------
2350
2351LLVM IR allows metadata to be attached to instructions in the program
2352that can convey extra information about the code to the optimizers and
2353code generator. One example application of metadata is source-level
2354debug information. There are two metadata primitives: strings and nodes.
2355All metadata has the ``metadata`` type and is identified in syntax by a
2356preceding exclamation point ('``!``').
2357
2358A metadata string is a string surrounded by double quotes. It can
2359contain any character by escaping non-printable characters with
2360"``\xx``" where "``xx``" is the two digit hex code. For example:
2361"``!"test\00"``".
2362
2363Metadata nodes are represented with notation similar to structure
2364constants (a comma separated list of elements, surrounded by braces and
2365preceded by an exclamation point). Metadata nodes can have any values as
2366their operand. For example:
2367
2368.. code-block:: llvm
2369
2370 !{ metadata !"test\00", i32 10}
2371
2372A :ref:`named metadata <namedmetadatastructure>` is a collection of
2373metadata nodes, which can be looked up in the module symbol table. For
2374example:
2375
2376.. code-block:: llvm
2377
2378 !foo = metadata !{!4, !3}
2379
2380Metadata can be used as function arguments. Here ``llvm.dbg.value``
2381function is using two metadata arguments:
2382
2383.. code-block:: llvm
2384
2385 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2386
2387Metadata can be attached with an instruction. Here metadata ``!21`` is
2388attached to the ``add`` instruction using the ``!dbg`` identifier:
2389
2390.. code-block:: llvm
2391
2392 %indvar.next = add i64 %indvar, 1, !dbg !21
2393
2394More information about specific metadata nodes recognized by the
2395optimizers and code generator is found below.
2396
2397'``tbaa``' Metadata
2398^^^^^^^^^^^^^^^^^^^
2399
2400In LLVM IR, memory does not have types, so LLVM's own type system is not
2401suitable for doing TBAA. Instead, metadata is added to the IR to
2402describe a type system of a higher level language. This can be used to
2403implement typical C/C++ TBAA, but it can also be used to implement
2404custom alias analysis behavior for other languages.
2405
2406The current metadata format is very simple. TBAA metadata nodes have up
2407to three fields, e.g.:
2408
2409.. code-block:: llvm
2410
2411 !0 = metadata !{ metadata !"an example type tree" }
2412 !1 = metadata !{ metadata !"int", metadata !0 }
2413 !2 = metadata !{ metadata !"float", metadata !0 }
2414 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2415
2416The first field is an identity field. It can be any value, usually a
2417metadata string, which uniquely identifies the type. The most important
2418name in the tree is the name of the root node. Two trees with different
2419root node names are entirely disjoint, even if they have leaves with
2420common names.
2421
2422The second field identifies the type's parent node in the tree, or is
2423null or omitted for a root node. A type is considered to alias all of
2424its descendants and all of its ancestors in the tree. Also, a type is
2425considered to alias all types in other trees, so that bitcode produced
2426from multiple front-ends is handled conservatively.
2427
2428If the third field is present, it's an integer which if equal to 1
2429indicates that the type is "constant" (meaning
2430``pointsToConstantMemory`` should return true; see `other useful
2431AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2432
2433'``tbaa.struct``' Metadata
2434^^^^^^^^^^^^^^^^^^^^^^^^^^
2435
2436The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2437aggregate assignment operations in C and similar languages, however it
2438is defined to copy a contiguous region of memory, which is more than
2439strictly necessary for aggregate types which contain holes due to
2440padding. Also, it doesn't contain any TBAA information about the fields
2441of the aggregate.
2442
2443``!tbaa.struct`` metadata can describe which memory subregions in a
2444memcpy are padding and what the TBAA tags of the struct are.
2445
2446The current metadata format is very simple. ``!tbaa.struct`` metadata
2447nodes are a list of operands which are in conceptual groups of three.
2448For each group of three, the first operand gives the byte offset of a
2449field in bytes, the second gives its size in bytes, and the third gives
2450its tbaa tag. e.g.:
2451
2452.. code-block:: llvm
2453
2454 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2455
2456This describes a struct with two fields. The first is at offset 0 bytes
2457with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2458and has size 4 bytes and has tbaa tag !2.
2459
2460Note that the fields need not be contiguous. In this example, there is a
24614 byte gap between the two fields. This gap represents padding which
2462does not carry useful data and need not be preserved.
2463
2464'``fpmath``' Metadata
2465^^^^^^^^^^^^^^^^^^^^^
2466
2467``fpmath`` metadata may be attached to any instruction of floating point
2468type. It can be used to express the maximum acceptable error in the
2469result of that instruction, in ULPs, thus potentially allowing the
2470compiler to use a more efficient but less accurate method of computing
2471it. ULP is defined as follows:
2472
2473 If ``x`` is a real number that lies between two finite consecutive
2474 floating-point numbers ``a`` and ``b``, without being equal to one
2475 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2476 distance between the two non-equal finite floating-point numbers
2477 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2478
2479The metadata node shall consist of a single positive floating point
2480number representing the maximum relative error, for example:
2481
2482.. code-block:: llvm
2483
2484 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2485
2486'``range``' Metadata
2487^^^^^^^^^^^^^^^^^^^^
2488
2489``range`` metadata may be attached only to loads of integer types. It
2490expresses the possible ranges the loaded value is in. The ranges are
2491represented with a flattened list of integers. The loaded value is known
2492to be in the union of the ranges defined by each consecutive pair. Each
2493pair has the following properties:
2494
2495- The type must match the type loaded by the instruction.
2496- The pair ``a,b`` represents the range ``[a,b)``.
2497- Both ``a`` and ``b`` are constants.
2498- The range is allowed to wrap.
2499- The range should not represent the full or empty set. That is,
2500 ``a!=b``.
2501
2502In addition, the pairs must be in signed order of the lower bound and
2503they must be non-contiguous.
2504
2505Examples:
2506
2507.. code-block:: llvm
2508
2509 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2510 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2511 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2512 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2513 ...
2514 !0 = metadata !{ i8 0, i8 2 }
2515 !1 = metadata !{ i8 255, i8 2 }
2516 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2517 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2518
2519Module Flags Metadata
2520=====================
2521
2522Information about the module as a whole is difficult to convey to LLVM's
2523subsystems. The LLVM IR isn't sufficient to transmit this information.
2524The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002525this. These flags are in the form of key / value pairs --- much like a
2526dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002527look it up.
2528
2529The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2530Each triplet has the following form:
2531
2532- The first element is a *behavior* flag, which specifies the behavior
2533 when two (or more) modules are merged together, and it encounters two
2534 (or more) metadata with the same ID. The supported behaviors are
2535 described below.
2536- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002537 metadata. Each module may only have one flag entry for each unique ID (not
2538 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002539- The third element is the value of the flag.
2540
2541When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002542``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2543each unique metadata ID string, there will be exactly one entry in the merged
2544modules ``llvm.module.flags`` metadata table, and the value for that entry will
2545be determined by the merge behavior flag, as described below. The only exception
2546is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002547
2548The following behaviors are supported:
2549
2550.. list-table::
2551 :header-rows: 1
2552 :widths: 10 90
2553
2554 * - Value
2555 - Behavior
2556
2557 * - 1
2558 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002559 Emits an error if two values disagree, otherwise the resulting value
2560 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002561
2562 * - 2
2563 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002564 Emits a warning if two values disagree. The result value will be the
2565 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002566
2567 * - 3
2568 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002569 Adds a requirement that another module flag be present and have a
2570 specified value after linking is performed. The value must be a
2571 metadata pair, where the first element of the pair is the ID of the
2572 module flag to be restricted, and the second element of the pair is
2573 the value the module flag should be restricted to. This behavior can
2574 be used to restrict the allowable results (via triggering of an
2575 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002576
2577 * - 4
2578 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002579 Uses the specified value, regardless of the behavior or value of the
2580 other module. If both modules specify **Override**, but the values
2581 differ, an error will be emitted.
2582
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002583 * - 5
2584 - **Append**
2585 Appends the two values, which are required to be metadata nodes.
2586
2587 * - 6
2588 - **AppendUnique**
2589 Appends the two values, which are required to be metadata
2590 nodes. However, duplicate entries in the second list are dropped
2591 during the append operation.
2592
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002593It is an error for a particular unique flag ID to have multiple behaviors,
2594except in the case of **Require** (which adds restrictions on another metadata
2595value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002596
2597An example of module flags:
2598
2599.. code-block:: llvm
2600
2601 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2602 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2603 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2604 !3 = metadata !{ i32 3, metadata !"qux",
2605 metadata !{
2606 metadata !"foo", i32 1
2607 }
2608 }
2609 !llvm.module.flags = !{ !0, !1, !2, !3 }
2610
2611- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2612 if two or more ``!"foo"`` flags are seen is to emit an error if their
2613 values are not equal.
2614
2615- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2616 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002617 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002618
2619- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2620 behavior if two or more ``!"qux"`` flags are seen is to emit a
2621 warning if their values are not equal.
2622
2623- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2624
2625 ::
2626
2627 metadata !{ metadata !"foo", i32 1 }
2628
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002629 The behavior is to emit an error if the ``llvm.module.flags`` does not
2630 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2631 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002632
2633Objective-C Garbage Collection Module Flags Metadata
2634----------------------------------------------------
2635
2636On the Mach-O platform, Objective-C stores metadata about garbage
2637collection in a special section called "image info". The metadata
2638consists of a version number and a bitmask specifying what types of
2639garbage collection are supported (if any) by the file. If two or more
2640modules are linked together their garbage collection metadata needs to
2641be merged rather than appended together.
2642
2643The Objective-C garbage collection module flags metadata consists of the
2644following key-value pairs:
2645
2646.. list-table::
2647 :header-rows: 1
2648 :widths: 30 70
2649
2650 * - Key
2651 - Value
2652
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002653 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002654 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002655
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002656 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002657 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002658 always 0.
2659
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002660 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002661 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002662 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2663 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2664 Objective-C ABI version 2.
2665
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002666 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002667 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002668 not. Valid values are 0, for no garbage collection, and 2, for garbage
2669 collection supported.
2670
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002671 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002672 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002673 If present, its value must be 6. This flag requires that the
2674 ``Objective-C Garbage Collection`` flag have the value 2.
2675
2676Some important flag interactions:
2677
2678- If a module with ``Objective-C Garbage Collection`` set to 0 is
2679 merged with a module with ``Objective-C Garbage Collection`` set to
2680 2, then the resulting module has the
2681 ``Objective-C Garbage Collection`` flag set to 0.
2682- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2683 merged with a module with ``Objective-C GC Only`` set to 6.
2684
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002685Automatic Linker Flags Module Flags Metadata
2686--------------------------------------------
2687
2688Some targets support embedding flags to the linker inside individual object
2689files. Typically this is used in conjunction with language extensions which
2690allow source files to explicitly declare the libraries they depend on, and have
2691these automatically be transmitted to the linker via object files.
2692
2693These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002694using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002695to be ``AppendUnique``, and the value for the key is expected to be a metadata
2696node which should be a list of other metadata nodes, each of which should be a
2697list of metadata strings defining linker options.
2698
2699For example, the following metadata section specifies two separate sets of
2700linker options, presumably to link against ``libz`` and the ``Cocoa``
2701framework::
2702
Daniel Dunbar95856122013-01-18 19:37:00 +00002703 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002704 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00002705 metadata !{ metadata !"-lz" },
2706 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002707 !llvm.module.flags = !{ !0 }
2708
2709The metadata encoding as lists of lists of options, as opposed to a collapsed
2710list of options, is chosen so that the IR encoding can use multiple option
2711strings to specify e.g., a single library, while still having that specifier be
2712preserved as an atomic element that can be recognized by a target specific
2713assembly writer or object file emitter.
2714
2715Each individual option is required to be either a valid option for the target's
2716linker, or an option that is reserved by the target specific assembly writer or
2717object file emitter. No other aspect of these options is defined by the IR.
2718
Sean Silvab084af42012-12-07 10:36:55 +00002719Intrinsic Global Variables
2720==========================
2721
2722LLVM has a number of "magic" global variables that contain data that
2723affect code generation or other IR semantics. These are documented here.
2724All globals of this sort should have a section specified as
2725"``llvm.metadata``". This section and all globals that start with
2726"``llvm.``" are reserved for use by LLVM.
2727
2728The '``llvm.used``' Global Variable
2729-----------------------------------
2730
2731The ``@llvm.used`` global is an array with i8\* element type which has
2732:ref:`appending linkage <linkage_appending>`. This array contains a list of
2733pointers to global variables and functions which may optionally have a
2734pointer cast formed of bitcast or getelementptr. For example, a legal
2735use of it is:
2736
2737.. code-block:: llvm
2738
2739 @X = global i8 4
2740 @Y = global i32 123
2741
2742 @llvm.used = appending global [2 x i8*] [
2743 i8* @X,
2744 i8* bitcast (i32* @Y to i8*)
2745 ], section "llvm.metadata"
2746
2747If a global variable appears in the ``@llvm.used`` list, then the
2748compiler, assembler, and linker are required to treat the symbol as if
2749there is a reference to the global that it cannot see. For example, if a
2750variable has internal linkage and no references other than that from the
2751``@llvm.used`` list, it cannot be deleted. This is commonly used to
2752represent references from inline asms and other things the compiler
2753cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2754
2755On some targets, the code generator must emit a directive to the
2756assembler or object file to prevent the assembler and linker from
2757molesting the symbol.
2758
2759The '``llvm.compiler.used``' Global Variable
2760--------------------------------------------
2761
2762The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2763directive, except that it only prevents the compiler from touching the
2764symbol. On targets that support it, this allows an intelligent linker to
2765optimize references to the symbol without being impeded as it would be
2766by ``@llvm.used``.
2767
2768This is a rare construct that should only be used in rare circumstances,
2769and should not be exposed to source languages.
2770
2771The '``llvm.global_ctors``' Global Variable
2772-------------------------------------------
2773
2774.. code-block:: llvm
2775
2776 %0 = type { i32, void ()* }
2777 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2778
2779The ``@llvm.global_ctors`` array contains a list of constructor
2780functions and associated priorities. The functions referenced by this
2781array will be called in ascending order of priority (i.e. lowest first)
2782when the module is loaded. The order of functions with the same priority
2783is not defined.
2784
2785The '``llvm.global_dtors``' Global Variable
2786-------------------------------------------
2787
2788.. code-block:: llvm
2789
2790 %0 = type { i32, void ()* }
2791 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2792
2793The ``@llvm.global_dtors`` array contains a list of destructor functions
2794and associated priorities. The functions referenced by this array will
2795be called in descending order of priority (i.e. highest first) when the
2796module is loaded. The order of functions with the same priority is not
2797defined.
2798
2799Instruction Reference
2800=====================
2801
2802The LLVM instruction set consists of several different classifications
2803of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2804instructions <binaryops>`, :ref:`bitwise binary
2805instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2806:ref:`other instructions <otherops>`.
2807
2808.. _terminators:
2809
2810Terminator Instructions
2811-----------------------
2812
2813As mentioned :ref:`previously <functionstructure>`, every basic block in a
2814program ends with a "Terminator" instruction, which indicates which
2815block should be executed after the current block is finished. These
2816terminator instructions typically yield a '``void``' value: they produce
2817control flow, not values (the one exception being the
2818':ref:`invoke <i_invoke>`' instruction).
2819
2820The terminator instructions are: ':ref:`ret <i_ret>`',
2821':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2822':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2823':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2824
2825.. _i_ret:
2826
2827'``ret``' Instruction
2828^^^^^^^^^^^^^^^^^^^^^
2829
2830Syntax:
2831"""""""
2832
2833::
2834
2835 ret <type> <value> ; Return a value from a non-void function
2836 ret void ; Return from void function
2837
2838Overview:
2839"""""""""
2840
2841The '``ret``' instruction is used to return control flow (and optionally
2842a value) from a function back to the caller.
2843
2844There are two forms of the '``ret``' instruction: one that returns a
2845value and then causes control flow, and one that just causes control
2846flow to occur.
2847
2848Arguments:
2849""""""""""
2850
2851The '``ret``' instruction optionally accepts a single argument, the
2852return value. The type of the return value must be a ':ref:`first
2853class <t_firstclass>`' type.
2854
2855A function is not :ref:`well formed <wellformed>` if it it has a non-void
2856return type and contains a '``ret``' instruction with no return value or
2857a return value with a type that does not match its type, or if it has a
2858void return type and contains a '``ret``' instruction with a return
2859value.
2860
2861Semantics:
2862""""""""""
2863
2864When the '``ret``' instruction is executed, control flow returns back to
2865the calling function's context. If the caller is a
2866":ref:`call <i_call>`" instruction, execution continues at the
2867instruction after the call. If the caller was an
2868":ref:`invoke <i_invoke>`" instruction, execution continues at the
2869beginning of the "normal" destination block. If the instruction returns
2870a value, that value shall set the call or invoke instruction's return
2871value.
2872
2873Example:
2874""""""""
2875
2876.. code-block:: llvm
2877
2878 ret i32 5 ; Return an integer value of 5
2879 ret void ; Return from a void function
2880 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2881
2882.. _i_br:
2883
2884'``br``' Instruction
2885^^^^^^^^^^^^^^^^^^^^
2886
2887Syntax:
2888"""""""
2889
2890::
2891
2892 br i1 <cond>, label <iftrue>, label <iffalse>
2893 br label <dest> ; Unconditional branch
2894
2895Overview:
2896"""""""""
2897
2898The '``br``' instruction is used to cause control flow to transfer to a
2899different basic block in the current function. There are two forms of
2900this instruction, corresponding to a conditional branch and an
2901unconditional branch.
2902
2903Arguments:
2904""""""""""
2905
2906The conditional branch form of the '``br``' instruction takes a single
2907'``i1``' value and two '``label``' values. The unconditional form of the
2908'``br``' instruction takes a single '``label``' value as a target.
2909
2910Semantics:
2911""""""""""
2912
2913Upon execution of a conditional '``br``' instruction, the '``i1``'
2914argument is evaluated. If the value is ``true``, control flows to the
2915'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2916to the '``iffalse``' ``label`` argument.
2917
2918Example:
2919""""""""
2920
2921.. code-block:: llvm
2922
2923 Test:
2924 %cond = icmp eq i32 %a, %b
2925 br i1 %cond, label %IfEqual, label %IfUnequal
2926 IfEqual:
2927 ret i32 1
2928 IfUnequal:
2929 ret i32 0
2930
2931.. _i_switch:
2932
2933'``switch``' Instruction
2934^^^^^^^^^^^^^^^^^^^^^^^^
2935
2936Syntax:
2937"""""""
2938
2939::
2940
2941 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2942
2943Overview:
2944"""""""""
2945
2946The '``switch``' instruction is used to transfer control flow to one of
2947several different places. It is a generalization of the '``br``'
2948instruction, allowing a branch to occur to one of many possible
2949destinations.
2950
2951Arguments:
2952""""""""""
2953
2954The '``switch``' instruction uses three parameters: an integer
2955comparison value '``value``', a default '``label``' destination, and an
2956array of pairs of comparison value constants and '``label``'s. The table
2957is not allowed to contain duplicate constant entries.
2958
2959Semantics:
2960""""""""""
2961
2962The ``switch`` instruction specifies a table of values and destinations.
2963When the '``switch``' instruction is executed, this table is searched
2964for the given value. If the value is found, control flow is transferred
2965to the corresponding destination; otherwise, control flow is transferred
2966to the default destination.
2967
2968Implementation:
2969"""""""""""""""
2970
2971Depending on properties of the target machine and the particular
2972``switch`` instruction, this instruction may be code generated in
2973different ways. For example, it could be generated as a series of
2974chained conditional branches or with a lookup table.
2975
2976Example:
2977""""""""
2978
2979.. code-block:: llvm
2980
2981 ; Emulate a conditional br instruction
2982 %Val = zext i1 %value to i32
2983 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2984
2985 ; Emulate an unconditional br instruction
2986 switch i32 0, label %dest [ ]
2987
2988 ; Implement a jump table:
2989 switch i32 %val, label %otherwise [ i32 0, label %onzero
2990 i32 1, label %onone
2991 i32 2, label %ontwo ]
2992
2993.. _i_indirectbr:
2994
2995'``indirectbr``' Instruction
2996^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2997
2998Syntax:
2999"""""""
3000
3001::
3002
3003 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3004
3005Overview:
3006"""""""""
3007
3008The '``indirectbr``' instruction implements an indirect branch to a
3009label within the current function, whose address is specified by
3010"``address``". Address must be derived from a
3011:ref:`blockaddress <blockaddress>` constant.
3012
3013Arguments:
3014""""""""""
3015
3016The '``address``' argument is the address of the label to jump to. The
3017rest of the arguments indicate the full set of possible destinations
3018that the address may point to. Blocks are allowed to occur multiple
3019times in the destination list, though this isn't particularly useful.
3020
3021This destination list is required so that dataflow analysis has an
3022accurate understanding of the CFG.
3023
3024Semantics:
3025""""""""""
3026
3027Control transfers to the block specified in the address argument. All
3028possible destination blocks must be listed in the label list, otherwise
3029this instruction has undefined behavior. This implies that jumps to
3030labels defined in other functions have undefined behavior as well.
3031
3032Implementation:
3033"""""""""""""""
3034
3035This is typically implemented with a jump through a register.
3036
3037Example:
3038""""""""
3039
3040.. code-block:: llvm
3041
3042 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3043
3044.. _i_invoke:
3045
3046'``invoke``' Instruction
3047^^^^^^^^^^^^^^^^^^^^^^^^
3048
3049Syntax:
3050"""""""
3051
3052::
3053
3054 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3055 to label <normal label> unwind label <exception label>
3056
3057Overview:
3058"""""""""
3059
3060The '``invoke``' instruction causes control to transfer to a specified
3061function, with the possibility of control flow transfer to either the
3062'``normal``' label or the '``exception``' label. If the callee function
3063returns with the "``ret``" instruction, control flow will return to the
3064"normal" label. If the callee (or any indirect callees) returns via the
3065":ref:`resume <i_resume>`" instruction or other exception handling
3066mechanism, control is interrupted and continued at the dynamically
3067nearest "exception" label.
3068
3069The '``exception``' label is a `landing
3070pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3071'``exception``' label is required to have the
3072":ref:`landingpad <i_landingpad>`" instruction, which contains the
3073information about the behavior of the program after unwinding happens,
3074as its first non-PHI instruction. The restrictions on the
3075"``landingpad``" instruction's tightly couples it to the "``invoke``"
3076instruction, so that the important information contained within the
3077"``landingpad``" instruction can't be lost through normal code motion.
3078
3079Arguments:
3080""""""""""
3081
3082This instruction requires several arguments:
3083
3084#. The optional "cconv" marker indicates which :ref:`calling
3085 convention <callingconv>` the call should use. If none is
3086 specified, the call defaults to using C calling conventions.
3087#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3088 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3089 are valid here.
3090#. '``ptr to function ty``': shall be the signature of the pointer to
3091 function value being invoked. In most cases, this is a direct
3092 function invocation, but indirect ``invoke``'s are just as possible,
3093 branching off an arbitrary pointer to function value.
3094#. '``function ptr val``': An LLVM value containing a pointer to a
3095 function to be invoked.
3096#. '``function args``': argument list whose types match the function
3097 signature argument types and parameter attributes. All arguments must
3098 be of :ref:`first class <t_firstclass>` type. If the function signature
3099 indicates the function accepts a variable number of arguments, the
3100 extra arguments can be specified.
3101#. '``normal label``': the label reached when the called function
3102 executes a '``ret``' instruction.
3103#. '``exception label``': the label reached when a callee returns via
3104 the :ref:`resume <i_resume>` instruction or other exception handling
3105 mechanism.
3106#. The optional :ref:`function attributes <fnattrs>` list. Only
3107 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3108 attributes are valid here.
3109
3110Semantics:
3111""""""""""
3112
3113This instruction is designed to operate as a standard '``call``'
3114instruction in most regards. The primary difference is that it
3115establishes an association with a label, which is used by the runtime
3116library to unwind the stack.
3117
3118This instruction is used in languages with destructors to ensure that
3119proper cleanup is performed in the case of either a ``longjmp`` or a
3120thrown exception. Additionally, this is important for implementation of
3121'``catch``' clauses in high-level languages that support them.
3122
3123For the purposes of the SSA form, the definition of the value returned
3124by the '``invoke``' instruction is deemed to occur on the edge from the
3125current block to the "normal" label. If the callee unwinds then no
3126return value is available.
3127
3128Example:
3129""""""""
3130
3131.. code-block:: llvm
3132
3133 %retval = invoke i32 @Test(i32 15) to label %Continue
3134 unwind label %TestCleanup ; {i32}:retval set
3135 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3136 unwind label %TestCleanup ; {i32}:retval set
3137
3138.. _i_resume:
3139
3140'``resume``' Instruction
3141^^^^^^^^^^^^^^^^^^^^^^^^
3142
3143Syntax:
3144"""""""
3145
3146::
3147
3148 resume <type> <value>
3149
3150Overview:
3151"""""""""
3152
3153The '``resume``' instruction is a terminator instruction that has no
3154successors.
3155
3156Arguments:
3157""""""""""
3158
3159The '``resume``' instruction requires one argument, which must have the
3160same type as the result of any '``landingpad``' instruction in the same
3161function.
3162
3163Semantics:
3164""""""""""
3165
3166The '``resume``' instruction resumes propagation of an existing
3167(in-flight) exception whose unwinding was interrupted with a
3168:ref:`landingpad <i_landingpad>` instruction.
3169
3170Example:
3171""""""""
3172
3173.. code-block:: llvm
3174
3175 resume { i8*, i32 } %exn
3176
3177.. _i_unreachable:
3178
3179'``unreachable``' Instruction
3180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3181
3182Syntax:
3183"""""""
3184
3185::
3186
3187 unreachable
3188
3189Overview:
3190"""""""""
3191
3192The '``unreachable``' instruction has no defined semantics. This
3193instruction is used to inform the optimizer that a particular portion of
3194the code is not reachable. This can be used to indicate that the code
3195after a no-return function cannot be reached, and other facts.
3196
3197Semantics:
3198""""""""""
3199
3200The '``unreachable``' instruction has no defined semantics.
3201
3202.. _binaryops:
3203
3204Binary Operations
3205-----------------
3206
3207Binary operators are used to do most of the computation in a program.
3208They require two operands of the same type, execute an operation on
3209them, and produce a single value. The operands might represent multiple
3210data, as is the case with the :ref:`vector <t_vector>` data type. The
3211result value has the same type as its operands.
3212
3213There are several different binary operators:
3214
3215.. _i_add:
3216
3217'``add``' Instruction
3218^^^^^^^^^^^^^^^^^^^^^
3219
3220Syntax:
3221"""""""
3222
3223::
3224
3225 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3226 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3227 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3228 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3229
3230Overview:
3231"""""""""
3232
3233The '``add``' instruction returns the sum of its two operands.
3234
3235Arguments:
3236""""""""""
3237
3238The two arguments to the '``add``' instruction must be
3239:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3240arguments must have identical types.
3241
3242Semantics:
3243""""""""""
3244
3245The value produced is the integer sum of the two operands.
3246
3247If the sum has unsigned overflow, the result returned is the
3248mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3249the result.
3250
3251Because LLVM integers use a two's complement representation, this
3252instruction is appropriate for both signed and unsigned integers.
3253
3254``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3255respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3256result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3257unsigned and/or signed overflow, respectively, occurs.
3258
3259Example:
3260""""""""
3261
3262.. code-block:: llvm
3263
3264 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3265
3266.. _i_fadd:
3267
3268'``fadd``' Instruction
3269^^^^^^^^^^^^^^^^^^^^^^
3270
3271Syntax:
3272"""""""
3273
3274::
3275
3276 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3277
3278Overview:
3279"""""""""
3280
3281The '``fadd``' instruction returns the sum of its two operands.
3282
3283Arguments:
3284""""""""""
3285
3286The two arguments to the '``fadd``' instruction must be :ref:`floating
3287point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3288Both arguments must have identical types.
3289
3290Semantics:
3291""""""""""
3292
3293The value produced is the floating point sum of the two operands. This
3294instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3295which are optimization hints to enable otherwise unsafe floating point
3296optimizations:
3297
3298Example:
3299""""""""
3300
3301.. code-block:: llvm
3302
3303 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3304
3305'``sub``' Instruction
3306^^^^^^^^^^^^^^^^^^^^^
3307
3308Syntax:
3309"""""""
3310
3311::
3312
3313 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3314 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3315 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3316 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3317
3318Overview:
3319"""""""""
3320
3321The '``sub``' instruction returns the difference of its two operands.
3322
3323Note that the '``sub``' instruction is used to represent the '``neg``'
3324instruction present in most other intermediate representations.
3325
3326Arguments:
3327""""""""""
3328
3329The two arguments to the '``sub``' instruction must be
3330:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3331arguments must have identical types.
3332
3333Semantics:
3334""""""""""
3335
3336The value produced is the integer difference of the two operands.
3337
3338If the difference has unsigned overflow, the result returned is the
3339mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3340the result.
3341
3342Because LLVM integers use a two's complement representation, this
3343instruction is appropriate for both signed and unsigned integers.
3344
3345``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3346respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3347result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3348unsigned and/or signed overflow, respectively, occurs.
3349
3350Example:
3351""""""""
3352
3353.. code-block:: llvm
3354
3355 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3356 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3357
3358.. _i_fsub:
3359
3360'``fsub``' Instruction
3361^^^^^^^^^^^^^^^^^^^^^^
3362
3363Syntax:
3364"""""""
3365
3366::
3367
3368 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3369
3370Overview:
3371"""""""""
3372
3373The '``fsub``' instruction returns the difference of its two operands.
3374
3375Note that the '``fsub``' instruction is used to represent the '``fneg``'
3376instruction present in most other intermediate representations.
3377
3378Arguments:
3379""""""""""
3380
3381The two arguments to the '``fsub``' instruction must be :ref:`floating
3382point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3383Both arguments must have identical types.
3384
3385Semantics:
3386""""""""""
3387
3388The value produced is the floating point difference of the two operands.
3389This instruction can also take any number of :ref:`fast-math
3390flags <fastmath>`, which are optimization hints to enable otherwise
3391unsafe floating point optimizations:
3392
3393Example:
3394""""""""
3395
3396.. code-block:: llvm
3397
3398 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3399 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3400
3401'``mul``' Instruction
3402^^^^^^^^^^^^^^^^^^^^^
3403
3404Syntax:
3405"""""""
3406
3407::
3408
3409 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3410 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3411 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3412 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3413
3414Overview:
3415"""""""""
3416
3417The '``mul``' instruction returns the product of its two operands.
3418
3419Arguments:
3420""""""""""
3421
3422The two arguments to the '``mul``' instruction must be
3423:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3424arguments must have identical types.
3425
3426Semantics:
3427""""""""""
3428
3429The value produced is the integer product of the two operands.
3430
3431If the result of the multiplication has unsigned overflow, the result
3432returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3433bit width of the result.
3434
3435Because LLVM integers use a two's complement representation, and the
3436result is the same width as the operands, this instruction returns the
3437correct result for both signed and unsigned integers. If a full product
3438(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3439sign-extended or zero-extended as appropriate to the width of the full
3440product.
3441
3442``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3443respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3444result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3445unsigned and/or signed overflow, respectively, occurs.
3446
3447Example:
3448""""""""
3449
3450.. code-block:: llvm
3451
3452 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3453
3454.. _i_fmul:
3455
3456'``fmul``' Instruction
3457^^^^^^^^^^^^^^^^^^^^^^
3458
3459Syntax:
3460"""""""
3461
3462::
3463
3464 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3465
3466Overview:
3467"""""""""
3468
3469The '``fmul``' instruction returns the product of its two operands.
3470
3471Arguments:
3472""""""""""
3473
3474The two arguments to the '``fmul``' instruction must be :ref:`floating
3475point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3476Both arguments must have identical types.
3477
3478Semantics:
3479""""""""""
3480
3481The value produced is the floating point product of the two operands.
3482This instruction can also take any number of :ref:`fast-math
3483flags <fastmath>`, which are optimization hints to enable otherwise
3484unsafe floating point optimizations:
3485
3486Example:
3487""""""""
3488
3489.. code-block:: llvm
3490
3491 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3492
3493'``udiv``' Instruction
3494^^^^^^^^^^^^^^^^^^^^^^
3495
3496Syntax:
3497"""""""
3498
3499::
3500
3501 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3502 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3503
3504Overview:
3505"""""""""
3506
3507The '``udiv``' instruction returns the quotient of its two operands.
3508
3509Arguments:
3510""""""""""
3511
3512The two arguments to the '``udiv``' instruction must be
3513:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3514arguments must have identical types.
3515
3516Semantics:
3517""""""""""
3518
3519The value produced is the unsigned integer quotient of the two operands.
3520
3521Note that unsigned integer division and signed integer division are
3522distinct operations; for signed integer division, use '``sdiv``'.
3523
3524Division by zero leads to undefined behavior.
3525
3526If the ``exact`` keyword is present, the result value of the ``udiv`` is
3527a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3528such, "((a udiv exact b) mul b) == a").
3529
3530Example:
3531""""""""
3532
3533.. code-block:: llvm
3534
3535 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3536
3537'``sdiv``' Instruction
3538^^^^^^^^^^^^^^^^^^^^^^
3539
3540Syntax:
3541"""""""
3542
3543::
3544
3545 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3546 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3547
3548Overview:
3549"""""""""
3550
3551The '``sdiv``' instruction returns the quotient of its two operands.
3552
3553Arguments:
3554""""""""""
3555
3556The two arguments to the '``sdiv``' instruction must be
3557:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3558arguments must have identical types.
3559
3560Semantics:
3561""""""""""
3562
3563The value produced is the signed integer quotient of the two operands
3564rounded towards zero.
3565
3566Note that signed integer division and unsigned integer division are
3567distinct operations; for unsigned integer division, use '``udiv``'.
3568
3569Division by zero leads to undefined behavior. Overflow also leads to
3570undefined behavior; this is a rare case, but can occur, for example, by
3571doing a 32-bit division of -2147483648 by -1.
3572
3573If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3574a :ref:`poison value <poisonvalues>` if the result would be rounded.
3575
3576Example:
3577""""""""
3578
3579.. code-block:: llvm
3580
3581 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3582
3583.. _i_fdiv:
3584
3585'``fdiv``' Instruction
3586^^^^^^^^^^^^^^^^^^^^^^
3587
3588Syntax:
3589"""""""
3590
3591::
3592
3593 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3594
3595Overview:
3596"""""""""
3597
3598The '``fdiv``' instruction returns the quotient of its two operands.
3599
3600Arguments:
3601""""""""""
3602
3603The two arguments to the '``fdiv``' instruction must be :ref:`floating
3604point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3605Both arguments must have identical types.
3606
3607Semantics:
3608""""""""""
3609
3610The value produced is the floating point quotient of the two operands.
3611This instruction can also take any number of :ref:`fast-math
3612flags <fastmath>`, which are optimization hints to enable otherwise
3613unsafe floating point optimizations:
3614
3615Example:
3616""""""""
3617
3618.. code-block:: llvm
3619
3620 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3621
3622'``urem``' Instruction
3623^^^^^^^^^^^^^^^^^^^^^^
3624
3625Syntax:
3626"""""""
3627
3628::
3629
3630 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3631
3632Overview:
3633"""""""""
3634
3635The '``urem``' instruction returns the remainder from the unsigned
3636division of its two arguments.
3637
3638Arguments:
3639""""""""""
3640
3641The two arguments to the '``urem``' instruction must be
3642:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3643arguments must have identical types.
3644
3645Semantics:
3646""""""""""
3647
3648This instruction returns the unsigned integer *remainder* of a division.
3649This instruction always performs an unsigned division to get the
3650remainder.
3651
3652Note that unsigned integer remainder and signed integer remainder are
3653distinct operations; for signed integer remainder, use '``srem``'.
3654
3655Taking the remainder of a division by zero leads to undefined behavior.
3656
3657Example:
3658""""""""
3659
3660.. code-block:: llvm
3661
3662 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3663
3664'``srem``' Instruction
3665^^^^^^^^^^^^^^^^^^^^^^
3666
3667Syntax:
3668"""""""
3669
3670::
3671
3672 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3673
3674Overview:
3675"""""""""
3676
3677The '``srem``' instruction returns the remainder from the signed
3678division of its two operands. This instruction can also take
3679:ref:`vector <t_vector>` versions of the values in which case the elements
3680must be integers.
3681
3682Arguments:
3683""""""""""
3684
3685The two arguments to the '``srem``' instruction must be
3686:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3687arguments must have identical types.
3688
3689Semantics:
3690""""""""""
3691
3692This instruction returns the *remainder* of a division (where the result
3693is either zero or has the same sign as the dividend, ``op1``), not the
3694*modulo* operator (where the result is either zero or has the same sign
3695as the divisor, ``op2``) of a value. For more information about the
3696difference, see `The Math
3697Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3698table of how this is implemented in various languages, please see
3699`Wikipedia: modulo
3700operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3701
3702Note that signed integer remainder and unsigned integer remainder are
3703distinct operations; for unsigned integer remainder, use '``urem``'.
3704
3705Taking the remainder of a division by zero leads to undefined behavior.
3706Overflow also leads to undefined behavior; this is a rare case, but can
3707occur, for example, by taking the remainder of a 32-bit division of
3708-2147483648 by -1. (The remainder doesn't actually overflow, but this
3709rule lets srem be implemented using instructions that return both the
3710result of the division and the remainder.)
3711
3712Example:
3713""""""""
3714
3715.. code-block:: llvm
3716
3717 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3718
3719.. _i_frem:
3720
3721'``frem``' Instruction
3722^^^^^^^^^^^^^^^^^^^^^^
3723
3724Syntax:
3725"""""""
3726
3727::
3728
3729 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3730
3731Overview:
3732"""""""""
3733
3734The '``frem``' instruction returns the remainder from the division of
3735its two operands.
3736
3737Arguments:
3738""""""""""
3739
3740The two arguments to the '``frem``' instruction must be :ref:`floating
3741point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3742Both arguments must have identical types.
3743
3744Semantics:
3745""""""""""
3746
3747This instruction returns the *remainder* of a division. The remainder
3748has the same sign as the dividend. This instruction can also take any
3749number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3750to enable otherwise unsafe floating point optimizations:
3751
3752Example:
3753""""""""
3754
3755.. code-block:: llvm
3756
3757 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3758
3759.. _bitwiseops:
3760
3761Bitwise Binary Operations
3762-------------------------
3763
3764Bitwise binary operators are used to do various forms of bit-twiddling
3765in a program. They are generally very efficient instructions and can
3766commonly be strength reduced from other instructions. They require two
3767operands of the same type, execute an operation on them, and produce a
3768single value. The resulting value is the same type as its operands.
3769
3770'``shl``' Instruction
3771^^^^^^^^^^^^^^^^^^^^^
3772
3773Syntax:
3774"""""""
3775
3776::
3777
3778 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3779 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3780 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3781 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3782
3783Overview:
3784"""""""""
3785
3786The '``shl``' instruction returns the first operand shifted to the left
3787a specified number of bits.
3788
3789Arguments:
3790""""""""""
3791
3792Both arguments to the '``shl``' instruction must be the same
3793:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3794'``op2``' is treated as an unsigned value.
3795
3796Semantics:
3797""""""""""
3798
3799The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3800where ``n`` is the width of the result. If ``op2`` is (statically or
3801dynamically) negative or equal to or larger than the number of bits in
3802``op1``, the result is undefined. If the arguments are vectors, each
3803vector element of ``op1`` is shifted by the corresponding shift amount
3804in ``op2``.
3805
3806If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3807value <poisonvalues>` if it shifts out any non-zero bits. If the
3808``nsw`` keyword is present, then the shift produces a :ref:`poison
3809value <poisonvalues>` if it shifts out any bits that disagree with the
3810resultant sign bit. As such, NUW/NSW have the same semantics as they
3811would if the shift were expressed as a mul instruction with the same
3812nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3813
3814Example:
3815""""""""
3816
3817.. code-block:: llvm
3818
3819 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3820 <result> = shl i32 4, 2 ; yields {i32}: 16
3821 <result> = shl i32 1, 10 ; yields {i32}: 1024
3822 <result> = shl i32 1, 32 ; undefined
3823 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3824
3825'``lshr``' Instruction
3826^^^^^^^^^^^^^^^^^^^^^^
3827
3828Syntax:
3829"""""""
3830
3831::
3832
3833 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3834 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3835
3836Overview:
3837"""""""""
3838
3839The '``lshr``' instruction (logical shift right) returns the first
3840operand shifted to the right a specified number of bits with zero fill.
3841
3842Arguments:
3843""""""""""
3844
3845Both arguments to the '``lshr``' instruction must be the same
3846:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3847'``op2``' is treated as an unsigned value.
3848
3849Semantics:
3850""""""""""
3851
3852This instruction always performs a logical shift right operation. The
3853most significant bits of the result will be filled with zero bits after
3854the shift. If ``op2`` is (statically or dynamically) equal to or larger
3855than the number of bits in ``op1``, the result is undefined. If the
3856arguments are vectors, each vector element of ``op1`` is shifted by the
3857corresponding shift amount in ``op2``.
3858
3859If the ``exact`` keyword is present, the result value of the ``lshr`` is
3860a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3861non-zero.
3862
3863Example:
3864""""""""
3865
3866.. code-block:: llvm
3867
3868 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3869 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3870 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3871 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3872 <result> = lshr i32 1, 32 ; undefined
3873 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3874
3875'``ashr``' Instruction
3876^^^^^^^^^^^^^^^^^^^^^^
3877
3878Syntax:
3879"""""""
3880
3881::
3882
3883 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3884 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3885
3886Overview:
3887"""""""""
3888
3889The '``ashr``' instruction (arithmetic shift right) returns the first
3890operand shifted to the right a specified number of bits with sign
3891extension.
3892
3893Arguments:
3894""""""""""
3895
3896Both arguments to the '``ashr``' instruction must be the same
3897:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3898'``op2``' is treated as an unsigned value.
3899
3900Semantics:
3901""""""""""
3902
3903This instruction always performs an arithmetic shift right operation,
3904The most significant bits of the result will be filled with the sign bit
3905of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3906than the number of bits in ``op1``, the result is undefined. If the
3907arguments are vectors, each vector element of ``op1`` is shifted by the
3908corresponding shift amount in ``op2``.
3909
3910If the ``exact`` keyword is present, the result value of the ``ashr`` is
3911a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3912non-zero.
3913
3914Example:
3915""""""""
3916
3917.. code-block:: llvm
3918
3919 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3920 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3921 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3922 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3923 <result> = ashr i32 1, 32 ; undefined
3924 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3925
3926'``and``' Instruction
3927^^^^^^^^^^^^^^^^^^^^^
3928
3929Syntax:
3930"""""""
3931
3932::
3933
3934 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3935
3936Overview:
3937"""""""""
3938
3939The '``and``' instruction returns the bitwise logical and of its two
3940operands.
3941
3942Arguments:
3943""""""""""
3944
3945The two arguments to the '``and``' instruction must be
3946:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3947arguments must have identical types.
3948
3949Semantics:
3950""""""""""
3951
3952The truth table used for the '``and``' instruction is:
3953
3954+-----+-----+-----+
3955| In0 | In1 | Out |
3956+-----+-----+-----+
3957| 0 | 0 | 0 |
3958+-----+-----+-----+
3959| 0 | 1 | 0 |
3960+-----+-----+-----+
3961| 1 | 0 | 0 |
3962+-----+-----+-----+
3963| 1 | 1 | 1 |
3964+-----+-----+-----+
3965
3966Example:
3967""""""""
3968
3969.. code-block:: llvm
3970
3971 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3972 <result> = and i32 15, 40 ; yields {i32}:result = 8
3973 <result> = and i32 4, 8 ; yields {i32}:result = 0
3974
3975'``or``' Instruction
3976^^^^^^^^^^^^^^^^^^^^
3977
3978Syntax:
3979"""""""
3980
3981::
3982
3983 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3984
3985Overview:
3986"""""""""
3987
3988The '``or``' instruction returns the bitwise logical inclusive or of its
3989two operands.
3990
3991Arguments:
3992""""""""""
3993
3994The two arguments to the '``or``' instruction must be
3995:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3996arguments must have identical types.
3997
3998Semantics:
3999""""""""""
4000
4001The truth table used for the '``or``' instruction is:
4002
4003+-----+-----+-----+
4004| In0 | In1 | Out |
4005+-----+-----+-----+
4006| 0 | 0 | 0 |
4007+-----+-----+-----+
4008| 0 | 1 | 1 |
4009+-----+-----+-----+
4010| 1 | 0 | 1 |
4011+-----+-----+-----+
4012| 1 | 1 | 1 |
4013+-----+-----+-----+
4014
4015Example:
4016""""""""
4017
4018::
4019
4020 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4021 <result> = or i32 15, 40 ; yields {i32}:result = 47
4022 <result> = or i32 4, 8 ; yields {i32}:result = 12
4023
4024'``xor``' Instruction
4025^^^^^^^^^^^^^^^^^^^^^
4026
4027Syntax:
4028"""""""
4029
4030::
4031
4032 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4033
4034Overview:
4035"""""""""
4036
4037The '``xor``' instruction returns the bitwise logical exclusive or of
4038its two operands. The ``xor`` is used to implement the "one's
4039complement" operation, which is the "~" operator in C.
4040
4041Arguments:
4042""""""""""
4043
4044The two arguments to the '``xor``' instruction must be
4045:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4046arguments must have identical types.
4047
4048Semantics:
4049""""""""""
4050
4051The truth table used for the '``xor``' instruction is:
4052
4053+-----+-----+-----+
4054| In0 | In1 | Out |
4055+-----+-----+-----+
4056| 0 | 0 | 0 |
4057+-----+-----+-----+
4058| 0 | 1 | 1 |
4059+-----+-----+-----+
4060| 1 | 0 | 1 |
4061+-----+-----+-----+
4062| 1 | 1 | 0 |
4063+-----+-----+-----+
4064
4065Example:
4066""""""""
4067
4068.. code-block:: llvm
4069
4070 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4071 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4072 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4073 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4074
4075Vector Operations
4076-----------------
4077
4078LLVM supports several instructions to represent vector operations in a
4079target-independent manner. These instructions cover the element-access
4080and vector-specific operations needed to process vectors effectively.
4081While LLVM does directly support these vector operations, many
4082sophisticated algorithms will want to use target-specific intrinsics to
4083take full advantage of a specific target.
4084
4085.. _i_extractelement:
4086
4087'``extractelement``' Instruction
4088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4089
4090Syntax:
4091"""""""
4092
4093::
4094
4095 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4096
4097Overview:
4098"""""""""
4099
4100The '``extractelement``' instruction extracts a single scalar element
4101from a vector at a specified index.
4102
4103Arguments:
4104""""""""""
4105
4106The first operand of an '``extractelement``' instruction is a value of
4107:ref:`vector <t_vector>` type. The second operand is an index indicating
4108the position from which to extract the element. The index may be a
4109variable.
4110
4111Semantics:
4112""""""""""
4113
4114The result is a scalar of the same type as the element type of ``val``.
4115Its value is the value at position ``idx`` of ``val``. If ``idx``
4116exceeds the length of ``val``, the results are undefined.
4117
4118Example:
4119""""""""
4120
4121.. code-block:: llvm
4122
4123 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4124
4125.. _i_insertelement:
4126
4127'``insertelement``' Instruction
4128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4129
4130Syntax:
4131"""""""
4132
4133::
4134
4135 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4136
4137Overview:
4138"""""""""
4139
4140The '``insertelement``' instruction inserts a scalar element into a
4141vector at a specified index.
4142
4143Arguments:
4144""""""""""
4145
4146The first operand of an '``insertelement``' instruction is a value of
4147:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4148type must equal the element type of the first operand. The third operand
4149is an index indicating the position at which to insert the value. The
4150index may be a variable.
4151
4152Semantics:
4153""""""""""
4154
4155The result is a vector of the same type as ``val``. Its element values
4156are those of ``val`` except at position ``idx``, where it gets the value
4157``elt``. If ``idx`` exceeds the length of ``val``, the results are
4158undefined.
4159
4160Example:
4161""""""""
4162
4163.. code-block:: llvm
4164
4165 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4166
4167.. _i_shufflevector:
4168
4169'``shufflevector``' Instruction
4170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4171
4172Syntax:
4173"""""""
4174
4175::
4176
4177 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4178
4179Overview:
4180"""""""""
4181
4182The '``shufflevector``' instruction constructs a permutation of elements
4183from two input vectors, returning a vector with the same element type as
4184the input and length that is the same as the shuffle mask.
4185
4186Arguments:
4187""""""""""
4188
4189The first two operands of a '``shufflevector``' instruction are vectors
4190with the same type. The third argument is a shuffle mask whose element
4191type is always 'i32'. The result of the instruction is a vector whose
4192length is the same as the shuffle mask and whose element type is the
4193same as the element type of the first two operands.
4194
4195The shuffle mask operand is required to be a constant vector with either
4196constant integer or undef values.
4197
4198Semantics:
4199""""""""""
4200
4201The elements of the two input vectors are numbered from left to right
4202across both of the vectors. The shuffle mask operand specifies, for each
4203element of the result vector, which element of the two input vectors the
4204result element gets. The element selector may be undef (meaning "don't
4205care") and the second operand may be undef if performing a shuffle from
4206only one vector.
4207
4208Example:
4209""""""""
4210
4211.. code-block:: llvm
4212
4213 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4214 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4215 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4216 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4217 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4218 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4219 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4220 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4221
4222Aggregate Operations
4223--------------------
4224
4225LLVM supports several instructions for working with
4226:ref:`aggregate <t_aggregate>` values.
4227
4228.. _i_extractvalue:
4229
4230'``extractvalue``' Instruction
4231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4232
4233Syntax:
4234"""""""
4235
4236::
4237
4238 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4239
4240Overview:
4241"""""""""
4242
4243The '``extractvalue``' instruction extracts the value of a member field
4244from an :ref:`aggregate <t_aggregate>` value.
4245
4246Arguments:
4247""""""""""
4248
4249The first operand of an '``extractvalue``' instruction is a value of
4250:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4251constant indices to specify which value to extract in a similar manner
4252as indices in a '``getelementptr``' instruction.
4253
4254The major differences to ``getelementptr`` indexing are:
4255
4256- Since the value being indexed is not a pointer, the first index is
4257 omitted and assumed to be zero.
4258- At least one index must be specified.
4259- Not only struct indices but also array indices must be in bounds.
4260
4261Semantics:
4262""""""""""
4263
4264The result is the value at the position in the aggregate specified by
4265the index operands.
4266
4267Example:
4268""""""""
4269
4270.. code-block:: llvm
4271
4272 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4273
4274.. _i_insertvalue:
4275
4276'``insertvalue``' Instruction
4277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4278
4279Syntax:
4280"""""""
4281
4282::
4283
4284 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4285
4286Overview:
4287"""""""""
4288
4289The '``insertvalue``' instruction inserts a value into a member field in
4290an :ref:`aggregate <t_aggregate>` value.
4291
4292Arguments:
4293""""""""""
4294
4295The first operand of an '``insertvalue``' instruction is a value of
4296:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4297a first-class value to insert. The following operands are constant
4298indices indicating the position at which to insert the value in a
4299similar manner as indices in a '``extractvalue``' instruction. The value
4300to insert must have the same type as the value identified by the
4301indices.
4302
4303Semantics:
4304""""""""""
4305
4306The result is an aggregate of the same type as ``val``. Its value is
4307that of ``val`` except that the value at the position specified by the
4308indices is that of ``elt``.
4309
4310Example:
4311""""""""
4312
4313.. code-block:: llvm
4314
4315 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4316 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4317 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4318
4319.. _memoryops:
4320
4321Memory Access and Addressing Operations
4322---------------------------------------
4323
4324A key design point of an SSA-based representation is how it represents
4325memory. In LLVM, no memory locations are in SSA form, which makes things
4326very simple. This section describes how to read, write, and allocate
4327memory in LLVM.
4328
4329.. _i_alloca:
4330
4331'``alloca``' Instruction
4332^^^^^^^^^^^^^^^^^^^^^^^^
4333
4334Syntax:
4335"""""""
4336
4337::
4338
4339 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4340
4341Overview:
4342"""""""""
4343
4344The '``alloca``' instruction allocates memory on the stack frame of the
4345currently executing function, to be automatically released when this
4346function returns to its caller. The object is always allocated in the
4347generic address space (address space zero).
4348
4349Arguments:
4350""""""""""
4351
4352The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4353bytes of memory on the runtime stack, returning a pointer of the
4354appropriate type to the program. If "NumElements" is specified, it is
4355the number of elements allocated, otherwise "NumElements" is defaulted
4356to be one. If a constant alignment is specified, the value result of the
4357allocation is guaranteed to be aligned to at least that boundary. If not
4358specified, or if zero, the target can choose to align the allocation on
4359any convenient boundary compatible with the type.
4360
4361'``type``' may be any sized type.
4362
4363Semantics:
4364""""""""""
4365
4366Memory is allocated; a pointer is returned. The operation is undefined
4367if there is insufficient stack space for the allocation. '``alloca``'d
4368memory is automatically released when the function returns. The
4369'``alloca``' instruction is commonly used to represent automatic
4370variables that must have an address available. When the function returns
4371(either with the ``ret`` or ``resume`` instructions), the memory is
4372reclaimed. Allocating zero bytes is legal, but the result is undefined.
4373The order in which memory is allocated (ie., which way the stack grows)
4374is not specified.
4375
4376Example:
4377""""""""
4378
4379.. code-block:: llvm
4380
4381 %ptr = alloca i32 ; yields {i32*}:ptr
4382 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4383 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4384 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4385
4386.. _i_load:
4387
4388'``load``' Instruction
4389^^^^^^^^^^^^^^^^^^^^^^
4390
4391Syntax:
4392"""""""
4393
4394::
4395
4396 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4397 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4398 !<index> = !{ i32 1 }
4399
4400Overview:
4401"""""""""
4402
4403The '``load``' instruction is used to read from memory.
4404
4405Arguments:
4406""""""""""
4407
4408The argument to the '``load``' instruction specifies the memory address
4409from which to load. The pointer must point to a :ref:`first
4410class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4411then the optimizer is not allowed to modify the number or order of
4412execution of this ``load`` with other :ref:`volatile
4413operations <volatile>`.
4414
4415If the ``load`` is marked as ``atomic``, it takes an extra
4416:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4417``release`` and ``acq_rel`` orderings are not valid on ``load``
4418instructions. Atomic loads produce :ref:`defined <memmodel>` results
4419when they may see multiple atomic stores. The type of the pointee must
4420be an integer type whose bit width is a power of two greater than or
4421equal to eight and less than or equal to a target-specific size limit.
4422``align`` must be explicitly specified on atomic loads, and the load has
4423undefined behavior if the alignment is not set to a value which is at
4424least the size in bytes of the pointee. ``!nontemporal`` does not have
4425any defined semantics for atomic loads.
4426
4427The optional constant ``align`` argument specifies the alignment of the
4428operation (that is, the alignment of the memory address). A value of 0
4429or an omitted ``align`` argument means that the operation has the abi
4430alignment for the target. It is the responsibility of the code emitter
4431to ensure that the alignment information is correct. Overestimating the
4432alignment results in undefined behavior. Underestimating the alignment
4433may produce less efficient code. An alignment of 1 is always safe.
4434
4435The optional ``!nontemporal`` metadata must reference a single
4436metatadata name <index> corresponding to a metadata node with one
4437``i32`` entry of value 1. The existence of the ``!nontemporal``
4438metatadata on the instruction tells the optimizer and code generator
4439that this load is not expected to be reused in the cache. The code
4440generator may select special instructions to save cache bandwidth, such
4441as the ``MOVNT`` instruction on x86.
4442
4443The optional ``!invariant.load`` metadata must reference a single
4444metatadata name <index> corresponding to a metadata node with no
4445entries. The existence of the ``!invariant.load`` metatadata on the
4446instruction tells the optimizer and code generator that this load
4447address points to memory which does not change value during program
4448execution. The optimizer may then move this load around, for example, by
4449hoisting it out of loops using loop invariant code motion.
4450
4451Semantics:
4452""""""""""
4453
4454The location of memory pointed to is loaded. If the value being loaded
4455is of scalar type then the number of bytes read does not exceed the
4456minimum number of bytes needed to hold all bits of the type. For
4457example, loading an ``i24`` reads at most three bytes. When loading a
4458value of a type like ``i20`` with a size that is not an integral number
4459of bytes, the result is undefined if the value was not originally
4460written using a store of the same type.
4461
4462Examples:
4463"""""""""
4464
4465.. code-block:: llvm
4466
4467 %ptr = alloca i32 ; yields {i32*}:ptr
4468 store i32 3, i32* %ptr ; yields {void}
4469 %val = load i32* %ptr ; yields {i32}:val = i32 3
4470
4471.. _i_store:
4472
4473'``store``' Instruction
4474^^^^^^^^^^^^^^^^^^^^^^^
4475
4476Syntax:
4477"""""""
4478
4479::
4480
4481 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4482 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4483
4484Overview:
4485"""""""""
4486
4487The '``store``' instruction is used to write to memory.
4488
4489Arguments:
4490""""""""""
4491
4492There are two arguments to the '``store``' instruction: a value to store
4493and an address at which to store it. The type of the '``<pointer>``'
4494operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4495the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4496then the optimizer is not allowed to modify the number or order of
4497execution of this ``store`` with other :ref:`volatile
4498operations <volatile>`.
4499
4500If the ``store`` is marked as ``atomic``, it takes an extra
4501:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4502``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4503instructions. Atomic loads produce :ref:`defined <memmodel>` results
4504when they may see multiple atomic stores. The type of the pointee must
4505be an integer type whose bit width is a power of two greater than or
4506equal to eight and less than or equal to a target-specific size limit.
4507``align`` must be explicitly specified on atomic stores, and the store
4508has undefined behavior if the alignment is not set to a value which is
4509at least the size in bytes of the pointee. ``!nontemporal`` does not
4510have any defined semantics for atomic stores.
4511
4512The optional constant "align" argument specifies the alignment of the
4513operation (that is, the alignment of the memory address). A value of 0
4514or an omitted "align" argument means that the operation has the abi
4515alignment for the target. It is the responsibility of the code emitter
4516to ensure that the alignment information is correct. Overestimating the
4517alignment results in an undefined behavior. Underestimating the
4518alignment may produce less efficient code. An alignment of 1 is always
4519safe.
4520
4521The optional !nontemporal metadata must reference a single metatadata
4522name <index> corresponding to a metadata node with one i32 entry of
4523value 1. The existence of the !nontemporal metatadata on the instruction
4524tells the optimizer and code generator that this load is not expected to
4525be reused in the cache. The code generator may select special
4526instructions to save cache bandwidth, such as the MOVNT instruction on
4527x86.
4528
4529Semantics:
4530""""""""""
4531
4532The contents of memory are updated to contain '``<value>``' at the
4533location specified by the '``<pointer>``' operand. If '``<value>``' is
4534of scalar type then the number of bytes written does not exceed the
4535minimum number of bytes needed to hold all bits of the type. For
4536example, storing an ``i24`` writes at most three bytes. When writing a
4537value of a type like ``i20`` with a size that is not an integral number
4538of bytes, it is unspecified what happens to the extra bits that do not
4539belong to the type, but they will typically be overwritten.
4540
4541Example:
4542""""""""
4543
4544.. code-block:: llvm
4545
4546 %ptr = alloca i32 ; yields {i32*}:ptr
4547 store i32 3, i32* %ptr ; yields {void}
4548 %val = load i32* %ptr ; yields {i32}:val = i32 3
4549
4550.. _i_fence:
4551
4552'``fence``' Instruction
4553^^^^^^^^^^^^^^^^^^^^^^^
4554
4555Syntax:
4556"""""""
4557
4558::
4559
4560 fence [singlethread] <ordering> ; yields {void}
4561
4562Overview:
4563"""""""""
4564
4565The '``fence``' instruction is used to introduce happens-before edges
4566between operations.
4567
4568Arguments:
4569""""""""""
4570
4571'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4572defines what *synchronizes-with* edges they add. They can only be given
4573``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4574
4575Semantics:
4576""""""""""
4577
4578A fence A which has (at least) ``release`` ordering semantics
4579*synchronizes with* a fence B with (at least) ``acquire`` ordering
4580semantics if and only if there exist atomic operations X and Y, both
4581operating on some atomic object M, such that A is sequenced before X, X
4582modifies M (either directly or through some side effect of a sequence
4583headed by X), Y is sequenced before B, and Y observes M. This provides a
4584*happens-before* dependency between A and B. Rather than an explicit
4585``fence``, one (but not both) of the atomic operations X or Y might
4586provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4587still *synchronize-with* the explicit ``fence`` and establish the
4588*happens-before* edge.
4589
4590A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4591``acquire`` and ``release`` semantics specified above, participates in
4592the global program order of other ``seq_cst`` operations and/or fences.
4593
4594The optional ":ref:`singlethread <singlethread>`" argument specifies
4595that the fence only synchronizes with other fences in the same thread.
4596(This is useful for interacting with signal handlers.)
4597
4598Example:
4599""""""""
4600
4601.. code-block:: llvm
4602
4603 fence acquire ; yields {void}
4604 fence singlethread seq_cst ; yields {void}
4605
4606.. _i_cmpxchg:
4607
4608'``cmpxchg``' Instruction
4609^^^^^^^^^^^^^^^^^^^^^^^^^
4610
4611Syntax:
4612"""""""
4613
4614::
4615
4616 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4617
4618Overview:
4619"""""""""
4620
4621The '``cmpxchg``' instruction is used to atomically modify memory. It
4622loads a value in memory and compares it to a given value. If they are
4623equal, it stores a new value into the memory.
4624
4625Arguments:
4626""""""""""
4627
4628There are three arguments to the '``cmpxchg``' instruction: an address
4629to operate on, a value to compare to the value currently be at that
4630address, and a new value to place at that address if the compared values
4631are equal. The type of '<cmp>' must be an integer type whose bit width
4632is a power of two greater than or equal to eight and less than or equal
4633to a target-specific size limit. '<cmp>' and '<new>' must have the same
4634type, and the type of '<pointer>' must be a pointer to that type. If the
4635``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4636to modify the number or order of execution of this ``cmpxchg`` with
4637other :ref:`volatile operations <volatile>`.
4638
4639The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4640synchronizes with other atomic operations.
4641
4642The optional "``singlethread``" argument declares that the ``cmpxchg``
4643is only atomic with respect to code (usually signal handlers) running in
4644the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4645respect to all other code in the system.
4646
4647The pointer passed into cmpxchg must have alignment greater than or
4648equal to the size in memory of the operand.
4649
4650Semantics:
4651""""""""""
4652
4653The contents of memory at the location specified by the '``<pointer>``'
4654operand is read and compared to '``<cmp>``'; if the read value is the
4655equal, '``<new>``' is written. The original value at the location is
4656returned.
4657
4658A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4659of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4660atomic load with an ordering parameter determined by dropping any
4661``release`` part of the ``cmpxchg``'s ordering.
4662
4663Example:
4664""""""""
4665
4666.. code-block:: llvm
4667
4668 entry:
4669 %orig = atomic load i32* %ptr unordered ; yields {i32}
4670 br label %loop
4671
4672 loop:
4673 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4674 %squared = mul i32 %cmp, %cmp
4675 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4676 %success = icmp eq i32 %cmp, %old
4677 br i1 %success, label %done, label %loop
4678
4679 done:
4680 ...
4681
4682.. _i_atomicrmw:
4683
4684'``atomicrmw``' Instruction
4685^^^^^^^^^^^^^^^^^^^^^^^^^^^
4686
4687Syntax:
4688"""""""
4689
4690::
4691
4692 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4693
4694Overview:
4695"""""""""
4696
4697The '``atomicrmw``' instruction is used to atomically modify memory.
4698
4699Arguments:
4700""""""""""
4701
4702There are three arguments to the '``atomicrmw``' instruction: an
4703operation to apply, an address whose value to modify, an argument to the
4704operation. The operation must be one of the following keywords:
4705
4706- xchg
4707- add
4708- sub
4709- and
4710- nand
4711- or
4712- xor
4713- max
4714- min
4715- umax
4716- umin
4717
4718The type of '<value>' must be an integer type whose bit width is a power
4719of two greater than or equal to eight and less than or equal to a
4720target-specific size limit. The type of the '``<pointer>``' operand must
4721be a pointer to that type. If the ``atomicrmw`` is marked as
4722``volatile``, then the optimizer is not allowed to modify the number or
4723order of execution of this ``atomicrmw`` with other :ref:`volatile
4724operations <volatile>`.
4725
4726Semantics:
4727""""""""""
4728
4729The contents of memory at the location specified by the '``<pointer>``'
4730operand are atomically read, modified, and written back. The original
4731value at the location is returned. The modification is specified by the
4732operation argument:
4733
4734- xchg: ``*ptr = val``
4735- add: ``*ptr = *ptr + val``
4736- sub: ``*ptr = *ptr - val``
4737- and: ``*ptr = *ptr & val``
4738- nand: ``*ptr = ~(*ptr & val)``
4739- or: ``*ptr = *ptr | val``
4740- xor: ``*ptr = *ptr ^ val``
4741- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4742- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4743- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4744 comparison)
4745- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4746 comparison)
4747
4748Example:
4749""""""""
4750
4751.. code-block:: llvm
4752
4753 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4754
4755.. _i_getelementptr:
4756
4757'``getelementptr``' Instruction
4758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4759
4760Syntax:
4761"""""""
4762
4763::
4764
4765 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4766 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4767 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4768
4769Overview:
4770"""""""""
4771
4772The '``getelementptr``' instruction is used to get the address of a
4773subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4774address calculation only and does not access memory.
4775
4776Arguments:
4777""""""""""
4778
4779The first argument is always a pointer or a vector of pointers, and
4780forms the basis of the calculation. The remaining arguments are indices
4781that indicate which of the elements of the aggregate object are indexed.
4782The interpretation of each index is dependent on the type being indexed
4783into. The first index always indexes the pointer value given as the
4784first argument, the second index indexes a value of the type pointed to
4785(not necessarily the value directly pointed to, since the first index
4786can be non-zero), etc. The first type indexed into must be a pointer
4787value, subsequent types can be arrays, vectors, and structs. Note that
4788subsequent types being indexed into can never be pointers, since that
4789would require loading the pointer before continuing calculation.
4790
4791The type of each index argument depends on the type it is indexing into.
4792When indexing into a (optionally packed) structure, only ``i32`` integer
4793**constants** are allowed (when using a vector of indices they must all
4794be the **same** ``i32`` integer constant). When indexing into an array,
4795pointer or vector, integers of any width are allowed, and they are not
4796required to be constant. These integers are treated as signed values
4797where relevant.
4798
4799For example, let's consider a C code fragment and how it gets compiled
4800to LLVM:
4801
4802.. code-block:: c
4803
4804 struct RT {
4805 char A;
4806 int B[10][20];
4807 char C;
4808 };
4809 struct ST {
4810 int X;
4811 double Y;
4812 struct RT Z;
4813 };
4814
4815 int *foo(struct ST *s) {
4816 return &s[1].Z.B[5][13];
4817 }
4818
4819The LLVM code generated by Clang is:
4820
4821.. code-block:: llvm
4822
4823 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4824 %struct.ST = type { i32, double, %struct.RT }
4825
4826 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4827 entry:
4828 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4829 ret i32* %arrayidx
4830 }
4831
4832Semantics:
4833""""""""""
4834
4835In the example above, the first index is indexing into the
4836'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4837= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4838indexes into the third element of the structure, yielding a
4839'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4840structure. The third index indexes into the second element of the
4841structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4842dimensions of the array are subscripted into, yielding an '``i32``'
4843type. The '``getelementptr``' instruction returns a pointer to this
4844element, thus computing a value of '``i32*``' type.
4845
4846Note that it is perfectly legal to index partially through a structure,
4847returning a pointer to an inner element. Because of this, the LLVM code
4848for the given testcase is equivalent to:
4849
4850.. code-block:: llvm
4851
4852 define i32* @foo(%struct.ST* %s) {
4853 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4854 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4855 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4856 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4857 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4858 ret i32* %t5
4859 }
4860
4861If the ``inbounds`` keyword is present, the result value of the
4862``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4863pointer is not an *in bounds* address of an allocated object, or if any
4864of the addresses that would be formed by successive addition of the
4865offsets implied by the indices to the base address with infinitely
4866precise signed arithmetic are not an *in bounds* address of that
4867allocated object. The *in bounds* addresses for an allocated object are
4868all the addresses that point into the object, plus the address one byte
4869past the end. In cases where the base is a vector of pointers the
4870``inbounds`` keyword applies to each of the computations element-wise.
4871
4872If the ``inbounds`` keyword is not present, the offsets are added to the
4873base address with silently-wrapping two's complement arithmetic. If the
4874offsets have a different width from the pointer, they are sign-extended
4875or truncated to the width of the pointer. The result value of the
4876``getelementptr`` may be outside the object pointed to by the base
4877pointer. The result value may not necessarily be used to access memory
4878though, even if it happens to point into allocated storage. See the
4879:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4880information.
4881
4882The getelementptr instruction is often confusing. For some more insight
4883into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4884
4885Example:
4886""""""""
4887
4888.. code-block:: llvm
4889
4890 ; yields [12 x i8]*:aptr
4891 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4892 ; yields i8*:vptr
4893 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4894 ; yields i8*:eptr
4895 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4896 ; yields i32*:iptr
4897 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4898
4899In cases where the pointer argument is a vector of pointers, each index
4900must be a vector with the same number of elements. For example:
4901
4902.. code-block:: llvm
4903
4904 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4905
4906Conversion Operations
4907---------------------
4908
4909The instructions in this category are the conversion instructions
4910(casting) which all take a single operand and a type. They perform
4911various bit conversions on the operand.
4912
4913'``trunc .. to``' Instruction
4914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4915
4916Syntax:
4917"""""""
4918
4919::
4920
4921 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4922
4923Overview:
4924"""""""""
4925
4926The '``trunc``' instruction truncates its operand to the type ``ty2``.
4927
4928Arguments:
4929""""""""""
4930
4931The '``trunc``' instruction takes a value to trunc, and a type to trunc
4932it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4933of the same number of integers. The bit size of the ``value`` must be
4934larger than the bit size of the destination type, ``ty2``. Equal sized
4935types are not allowed.
4936
4937Semantics:
4938""""""""""
4939
4940The '``trunc``' instruction truncates the high order bits in ``value``
4941and converts the remaining bits to ``ty2``. Since the source size must
4942be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4943It will always truncate bits.
4944
4945Example:
4946""""""""
4947
4948.. code-block:: llvm
4949
4950 %X = trunc i32 257 to i8 ; yields i8:1
4951 %Y = trunc i32 123 to i1 ; yields i1:true
4952 %Z = trunc i32 122 to i1 ; yields i1:false
4953 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4954
4955'``zext .. to``' Instruction
4956^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4957
4958Syntax:
4959"""""""
4960
4961::
4962
4963 <result> = zext <ty> <value> to <ty2> ; yields ty2
4964
4965Overview:
4966"""""""""
4967
4968The '``zext``' instruction zero extends its operand to type ``ty2``.
4969
4970Arguments:
4971""""""""""
4972
4973The '``zext``' instruction takes a value to cast, and a type to cast it
4974to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4975the same number of integers. The bit size of the ``value`` must be
4976smaller than the bit size of the destination type, ``ty2``.
4977
4978Semantics:
4979""""""""""
4980
4981The ``zext`` fills the high order bits of the ``value`` with zero bits
4982until it reaches the size of the destination type, ``ty2``.
4983
4984When zero extending from i1, the result will always be either 0 or 1.
4985
4986Example:
4987""""""""
4988
4989.. code-block:: llvm
4990
4991 %X = zext i32 257 to i64 ; yields i64:257
4992 %Y = zext i1 true to i32 ; yields i32:1
4993 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4994
4995'``sext .. to``' Instruction
4996^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4997
4998Syntax:
4999"""""""
5000
5001::
5002
5003 <result> = sext <ty> <value> to <ty2> ; yields ty2
5004
5005Overview:
5006"""""""""
5007
5008The '``sext``' sign extends ``value`` to the type ``ty2``.
5009
5010Arguments:
5011""""""""""
5012
5013The '``sext``' instruction takes a value to cast, and a type to cast it
5014to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5015the same number of integers. The bit size of the ``value`` must be
5016smaller than the bit size of the destination type, ``ty2``.
5017
5018Semantics:
5019""""""""""
5020
5021The '``sext``' instruction performs a sign extension by copying the sign
5022bit (highest order bit) of the ``value`` until it reaches the bit size
5023of the type ``ty2``.
5024
5025When sign extending from i1, the extension always results in -1 or 0.
5026
5027Example:
5028""""""""
5029
5030.. code-block:: llvm
5031
5032 %X = sext i8 -1 to i16 ; yields i16 :65535
5033 %Y = sext i1 true to i32 ; yields i32:-1
5034 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5035
5036'``fptrunc .. to``' Instruction
5037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5038
5039Syntax:
5040"""""""
5041
5042::
5043
5044 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5045
5046Overview:
5047"""""""""
5048
5049The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5050
5051Arguments:
5052""""""""""
5053
5054The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5055value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5056The size of ``value`` must be larger than the size of ``ty2``. This
5057implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5058
5059Semantics:
5060""""""""""
5061
5062The '``fptrunc``' instruction truncates a ``value`` from a larger
5063:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5064point <t_floating>` type. If the value cannot fit within the
5065destination type, ``ty2``, then the results are undefined.
5066
5067Example:
5068""""""""
5069
5070.. code-block:: llvm
5071
5072 %X = fptrunc double 123.0 to float ; yields float:123.0
5073 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5074
5075'``fpext .. to``' Instruction
5076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5077
5078Syntax:
5079"""""""
5080
5081::
5082
5083 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5084
5085Overview:
5086"""""""""
5087
5088The '``fpext``' extends a floating point ``value`` to a larger floating
5089point value.
5090
5091Arguments:
5092""""""""""
5093
5094The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5095``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5096to. The source type must be smaller than the destination type.
5097
5098Semantics:
5099""""""""""
5100
5101The '``fpext``' instruction extends the ``value`` from a smaller
5102:ref:`floating point <t_floating>` type to a larger :ref:`floating
5103point <t_floating>` type. The ``fpext`` cannot be used to make a
5104*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5105*no-op cast* for a floating point cast.
5106
5107Example:
5108""""""""
5109
5110.. code-block:: llvm
5111
5112 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5113 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5114
5115'``fptoui .. to``' Instruction
5116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5117
5118Syntax:
5119"""""""
5120
5121::
5122
5123 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5124
5125Overview:
5126"""""""""
5127
5128The '``fptoui``' converts a floating point ``value`` to its unsigned
5129integer equivalent of type ``ty2``.
5130
5131Arguments:
5132""""""""""
5133
5134The '``fptoui``' instruction takes a value to cast, which must be a
5135scalar or vector :ref:`floating point <t_floating>` value, and a type to
5136cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5137``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5138type with the same number of elements as ``ty``
5139
5140Semantics:
5141""""""""""
5142
5143The '``fptoui``' instruction converts its :ref:`floating
5144point <t_floating>` operand into the nearest (rounding towards zero)
5145unsigned integer value. If the value cannot fit in ``ty2``, the results
5146are undefined.
5147
5148Example:
5149""""""""
5150
5151.. code-block:: llvm
5152
5153 %X = fptoui double 123.0 to i32 ; yields i32:123
5154 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5155 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5156
5157'``fptosi .. to``' Instruction
5158^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5159
5160Syntax:
5161"""""""
5162
5163::
5164
5165 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5166
5167Overview:
5168"""""""""
5169
5170The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5171``value`` to type ``ty2``.
5172
5173Arguments:
5174""""""""""
5175
5176The '``fptosi``' instruction takes a value to cast, which must be a
5177scalar or vector :ref:`floating point <t_floating>` value, and a type to
5178cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5179``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5180type with the same number of elements as ``ty``
5181
5182Semantics:
5183""""""""""
5184
5185The '``fptosi``' instruction converts its :ref:`floating
5186point <t_floating>` operand into the nearest (rounding towards zero)
5187signed integer value. If the value cannot fit in ``ty2``, the results
5188are undefined.
5189
5190Example:
5191""""""""
5192
5193.. code-block:: llvm
5194
5195 %X = fptosi double -123.0 to i32 ; yields i32:-123
5196 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5197 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5198
5199'``uitofp .. to``' Instruction
5200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5201
5202Syntax:
5203"""""""
5204
5205::
5206
5207 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5208
5209Overview:
5210"""""""""
5211
5212The '``uitofp``' instruction regards ``value`` as an unsigned integer
5213and converts that value to the ``ty2`` type.
5214
5215Arguments:
5216""""""""""
5217
5218The '``uitofp``' instruction takes a value to cast, which must be a
5219scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5220``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5221``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5222type with the same number of elements as ``ty``
5223
5224Semantics:
5225""""""""""
5226
5227The '``uitofp``' instruction interprets its operand as an unsigned
5228integer quantity and converts it to the corresponding floating point
5229value. If the value cannot fit in the floating point value, the results
5230are undefined.
5231
5232Example:
5233""""""""
5234
5235.. code-block:: llvm
5236
5237 %X = uitofp i32 257 to float ; yields float:257.0
5238 %Y = uitofp i8 -1 to double ; yields double:255.0
5239
5240'``sitofp .. to``' Instruction
5241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5242
5243Syntax:
5244"""""""
5245
5246::
5247
5248 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5249
5250Overview:
5251"""""""""
5252
5253The '``sitofp``' instruction regards ``value`` as a signed integer and
5254converts that value to the ``ty2`` type.
5255
5256Arguments:
5257""""""""""
5258
5259The '``sitofp``' instruction takes a value to cast, which must be a
5260scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5261``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5262``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5263type with the same number of elements as ``ty``
5264
5265Semantics:
5266""""""""""
5267
5268The '``sitofp``' instruction interprets its operand as a signed integer
5269quantity and converts it to the corresponding floating point value. If
5270the value cannot fit in the floating point value, the results are
5271undefined.
5272
5273Example:
5274""""""""
5275
5276.. code-block:: llvm
5277
5278 %X = sitofp i32 257 to float ; yields float:257.0
5279 %Y = sitofp i8 -1 to double ; yields double:-1.0
5280
5281.. _i_ptrtoint:
5282
5283'``ptrtoint .. to``' Instruction
5284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5285
5286Syntax:
5287"""""""
5288
5289::
5290
5291 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5292
5293Overview:
5294"""""""""
5295
5296The '``ptrtoint``' instruction converts the pointer or a vector of
5297pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5298
5299Arguments:
5300""""""""""
5301
5302The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5303a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5304type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5305a vector of integers type.
5306
5307Semantics:
5308""""""""""
5309
5310The '``ptrtoint``' instruction converts ``value`` to integer type
5311``ty2`` by interpreting the pointer value as an integer and either
5312truncating or zero extending that value to the size of the integer type.
5313If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5314``value`` is larger than ``ty2`` then a truncation is done. If they are
5315the same size, then nothing is done (*no-op cast*) other than a type
5316change.
5317
5318Example:
5319""""""""
5320
5321.. code-block:: llvm
5322
5323 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5324 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5325 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5326
5327.. _i_inttoptr:
5328
5329'``inttoptr .. to``' Instruction
5330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5331
5332Syntax:
5333"""""""
5334
5335::
5336
5337 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5338
5339Overview:
5340"""""""""
5341
5342The '``inttoptr``' instruction converts an integer ``value`` to a
5343pointer type, ``ty2``.
5344
5345Arguments:
5346""""""""""
5347
5348The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5349cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5350type.
5351
5352Semantics:
5353""""""""""
5354
5355The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5356applying either a zero extension or a truncation depending on the size
5357of the integer ``value``. If ``value`` is larger than the size of a
5358pointer then a truncation is done. If ``value`` is smaller than the size
5359of a pointer then a zero extension is done. If they are the same size,
5360nothing is done (*no-op cast*).
5361
5362Example:
5363""""""""
5364
5365.. code-block:: llvm
5366
5367 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5368 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5369 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5370 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5371
5372.. _i_bitcast:
5373
5374'``bitcast .. to``' Instruction
5375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5376
5377Syntax:
5378"""""""
5379
5380::
5381
5382 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5383
5384Overview:
5385"""""""""
5386
5387The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5388changing any bits.
5389
5390Arguments:
5391""""""""""
5392
5393The '``bitcast``' instruction takes a value to cast, which must be a
5394non-aggregate first class value, and a type to cast it to, which must
5395also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5396sizes of ``value`` and the destination type, ``ty2``, must be identical.
5397If the source type is a pointer, the destination type must also be a
5398pointer. This instruction supports bitwise conversion of vectors to
5399integers and to vectors of other types (as long as they have the same
5400size).
5401
5402Semantics:
5403""""""""""
5404
5405The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5406always a *no-op cast* because no bits change with this conversion. The
5407conversion is done as if the ``value`` had been stored to memory and
5408read back as type ``ty2``. Pointer (or vector of pointers) types may
5409only be converted to other pointer (or vector of pointers) types with
5410this instruction. To convert pointers to other types, use the
5411:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5412first.
5413
5414Example:
5415""""""""
5416
5417.. code-block:: llvm
5418
5419 %X = bitcast i8 255 to i8 ; yields i8 :-1
5420 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5421 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5422 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5423
5424.. _otherops:
5425
5426Other Operations
5427----------------
5428
5429The instructions in this category are the "miscellaneous" instructions,
5430which defy better classification.
5431
5432.. _i_icmp:
5433
5434'``icmp``' Instruction
5435^^^^^^^^^^^^^^^^^^^^^^
5436
5437Syntax:
5438"""""""
5439
5440::
5441
5442 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5443
5444Overview:
5445"""""""""
5446
5447The '``icmp``' instruction returns a boolean value or a vector of
5448boolean values based on comparison of its two integer, integer vector,
5449pointer, or pointer vector operands.
5450
5451Arguments:
5452""""""""""
5453
5454The '``icmp``' instruction takes three operands. The first operand is
5455the condition code indicating the kind of comparison to perform. It is
5456not a value, just a keyword. The possible condition code are:
5457
5458#. ``eq``: equal
5459#. ``ne``: not equal
5460#. ``ugt``: unsigned greater than
5461#. ``uge``: unsigned greater or equal
5462#. ``ult``: unsigned less than
5463#. ``ule``: unsigned less or equal
5464#. ``sgt``: signed greater than
5465#. ``sge``: signed greater or equal
5466#. ``slt``: signed less than
5467#. ``sle``: signed less or equal
5468
5469The remaining two arguments must be :ref:`integer <t_integer>` or
5470:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5471must also be identical types.
5472
5473Semantics:
5474""""""""""
5475
5476The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5477code given as ``cond``. The comparison performed always yields either an
5478:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5479
5480#. ``eq``: yields ``true`` if the operands are equal, ``false``
5481 otherwise. No sign interpretation is necessary or performed.
5482#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5483 otherwise. No sign interpretation is necessary or performed.
5484#. ``ugt``: interprets the operands as unsigned values and yields
5485 ``true`` if ``op1`` is greater than ``op2``.
5486#. ``uge``: interprets the operands as unsigned values and yields
5487 ``true`` if ``op1`` is greater than or equal to ``op2``.
5488#. ``ult``: interprets the operands as unsigned values and yields
5489 ``true`` if ``op1`` is less than ``op2``.
5490#. ``ule``: interprets the operands as unsigned values and yields
5491 ``true`` if ``op1`` is less than or equal to ``op2``.
5492#. ``sgt``: interprets the operands as signed values and yields ``true``
5493 if ``op1`` is greater than ``op2``.
5494#. ``sge``: interprets the operands as signed values and yields ``true``
5495 if ``op1`` is greater than or equal to ``op2``.
5496#. ``slt``: interprets the operands as signed values and yields ``true``
5497 if ``op1`` is less than ``op2``.
5498#. ``sle``: interprets the operands as signed values and yields ``true``
5499 if ``op1`` is less than or equal to ``op2``.
5500
5501If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5502are compared as if they were integers.
5503
5504If the operands are integer vectors, then they are compared element by
5505element. The result is an ``i1`` vector with the same number of elements
5506as the values being compared. Otherwise, the result is an ``i1``.
5507
5508Example:
5509""""""""
5510
5511.. code-block:: llvm
5512
5513 <result> = icmp eq i32 4, 5 ; yields: result=false
5514 <result> = icmp ne float* %X, %X ; yields: result=false
5515 <result> = icmp ult i16 4, 5 ; yields: result=true
5516 <result> = icmp sgt i16 4, 5 ; yields: result=false
5517 <result> = icmp ule i16 -4, 5 ; yields: result=false
5518 <result> = icmp sge i16 4, 5 ; yields: result=false
5519
5520Note that the code generator does not yet support vector types with the
5521``icmp`` instruction.
5522
5523.. _i_fcmp:
5524
5525'``fcmp``' Instruction
5526^^^^^^^^^^^^^^^^^^^^^^
5527
5528Syntax:
5529"""""""
5530
5531::
5532
5533 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5534
5535Overview:
5536"""""""""
5537
5538The '``fcmp``' instruction returns a boolean value or vector of boolean
5539values based on comparison of its operands.
5540
5541If the operands are floating point scalars, then the result type is a
5542boolean (:ref:`i1 <t_integer>`).
5543
5544If the operands are floating point vectors, then the result type is a
5545vector of boolean with the same number of elements as the operands being
5546compared.
5547
5548Arguments:
5549""""""""""
5550
5551The '``fcmp``' instruction takes three operands. The first operand is
5552the condition code indicating the kind of comparison to perform. It is
5553not a value, just a keyword. The possible condition code are:
5554
5555#. ``false``: no comparison, always returns false
5556#. ``oeq``: ordered and equal
5557#. ``ogt``: ordered and greater than
5558#. ``oge``: ordered and greater than or equal
5559#. ``olt``: ordered and less than
5560#. ``ole``: ordered and less than or equal
5561#. ``one``: ordered and not equal
5562#. ``ord``: ordered (no nans)
5563#. ``ueq``: unordered or equal
5564#. ``ugt``: unordered or greater than
5565#. ``uge``: unordered or greater than or equal
5566#. ``ult``: unordered or less than
5567#. ``ule``: unordered or less than or equal
5568#. ``une``: unordered or not equal
5569#. ``uno``: unordered (either nans)
5570#. ``true``: no comparison, always returns true
5571
5572*Ordered* means that neither operand is a QNAN while *unordered* means
5573that either operand may be a QNAN.
5574
5575Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5576point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5577type. They must have identical types.
5578
5579Semantics:
5580""""""""""
5581
5582The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5583condition code given as ``cond``. If the operands are vectors, then the
5584vectors are compared element by element. Each comparison performed
5585always yields an :ref:`i1 <t_integer>` result, as follows:
5586
5587#. ``false``: always yields ``false``, regardless of operands.
5588#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5589 is equal to ``op2``.
5590#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5591 is greater than ``op2``.
5592#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5593 is greater than or equal to ``op2``.
5594#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5595 is less than ``op2``.
5596#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5597 is less than or equal to ``op2``.
5598#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5599 is not equal to ``op2``.
5600#. ``ord``: yields ``true`` if both operands are not a QNAN.
5601#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5602 equal to ``op2``.
5603#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5604 greater than ``op2``.
5605#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5606 greater than or equal to ``op2``.
5607#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5608 less than ``op2``.
5609#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5610 less than or equal to ``op2``.
5611#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5612 not equal to ``op2``.
5613#. ``uno``: yields ``true`` if either operand is a QNAN.
5614#. ``true``: always yields ``true``, regardless of operands.
5615
5616Example:
5617""""""""
5618
5619.. code-block:: llvm
5620
5621 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5622 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5623 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5624 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5625
5626Note that the code generator does not yet support vector types with the
5627``fcmp`` instruction.
5628
5629.. _i_phi:
5630
5631'``phi``' Instruction
5632^^^^^^^^^^^^^^^^^^^^^
5633
5634Syntax:
5635"""""""
5636
5637::
5638
5639 <result> = phi <ty> [ <val0>, <label0>], ...
5640
5641Overview:
5642"""""""""
5643
5644The '``phi``' instruction is used to implement the φ node in the SSA
5645graph representing the function.
5646
5647Arguments:
5648""""""""""
5649
5650The type of the incoming values is specified with the first type field.
5651After this, the '``phi``' instruction takes a list of pairs as
5652arguments, with one pair for each predecessor basic block of the current
5653block. Only values of :ref:`first class <t_firstclass>` type may be used as
5654the value arguments to the PHI node. Only labels may be used as the
5655label arguments.
5656
5657There must be no non-phi instructions between the start of a basic block
5658and the PHI instructions: i.e. PHI instructions must be first in a basic
5659block.
5660
5661For the purposes of the SSA form, the use of each incoming value is
5662deemed to occur on the edge from the corresponding predecessor block to
5663the current block (but after any definition of an '``invoke``'
5664instruction's return value on the same edge).
5665
5666Semantics:
5667""""""""""
5668
5669At runtime, the '``phi``' instruction logically takes on the value
5670specified by the pair corresponding to the predecessor basic block that
5671executed just prior to the current block.
5672
5673Example:
5674""""""""
5675
5676.. code-block:: llvm
5677
5678 Loop: ; Infinite loop that counts from 0 on up...
5679 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5680 %nextindvar = add i32 %indvar, 1
5681 br label %Loop
5682
5683.. _i_select:
5684
5685'``select``' Instruction
5686^^^^^^^^^^^^^^^^^^^^^^^^
5687
5688Syntax:
5689"""""""
5690
5691::
5692
5693 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5694
5695 selty is either i1 or {<N x i1>}
5696
5697Overview:
5698"""""""""
5699
5700The '``select``' instruction is used to choose one value based on a
5701condition, without branching.
5702
5703Arguments:
5704""""""""""
5705
5706The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5707values indicating the condition, and two values of the same :ref:`first
5708class <t_firstclass>` type. If the val1/val2 are vectors and the
5709condition is a scalar, then entire vectors are selected, not individual
5710elements.
5711
5712Semantics:
5713""""""""""
5714
5715If the condition is an i1 and it evaluates to 1, the instruction returns
5716the first value argument; otherwise, it returns the second value
5717argument.
5718
5719If the condition is a vector of i1, then the value arguments must be
5720vectors of the same size, and the selection is done element by element.
5721
5722Example:
5723""""""""
5724
5725.. code-block:: llvm
5726
5727 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5728
5729.. _i_call:
5730
5731'``call``' Instruction
5732^^^^^^^^^^^^^^^^^^^^^^
5733
5734Syntax:
5735"""""""
5736
5737::
5738
5739 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5740
5741Overview:
5742"""""""""
5743
5744The '``call``' instruction represents a simple function call.
5745
5746Arguments:
5747""""""""""
5748
5749This instruction requires several arguments:
5750
5751#. The optional "tail" marker indicates that the callee function does
5752 not access any allocas or varargs in the caller. Note that calls may
5753 be marked "tail" even if they do not occur before a
5754 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5755 function call is eligible for tail call optimization, but `might not
5756 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5757 The code generator may optimize calls marked "tail" with either 1)
5758 automatic `sibling call
5759 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5760 callee have matching signatures, or 2) forced tail call optimization
5761 when the following extra requirements are met:
5762
5763 - Caller and callee both have the calling convention ``fastcc``.
5764 - The call is in tail position (ret immediately follows call and ret
5765 uses value of call or is void).
5766 - Option ``-tailcallopt`` is enabled, or
5767 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5768 - `Platform specific constraints are
5769 met. <CodeGenerator.html#tailcallopt>`_
5770
5771#. The optional "cconv" marker indicates which :ref:`calling
5772 convention <callingconv>` the call should use. If none is
5773 specified, the call defaults to using C calling conventions. The
5774 calling convention of the call must match the calling convention of
5775 the target function, or else the behavior is undefined.
5776#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5777 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5778 are valid here.
5779#. '``ty``': the type of the call instruction itself which is also the
5780 type of the return value. Functions that return no value are marked
5781 ``void``.
5782#. '``fnty``': shall be the signature of the pointer to function value
5783 being invoked. The argument types must match the types implied by
5784 this signature. This type can be omitted if the function is not
5785 varargs and if the function type does not return a pointer to a
5786 function.
5787#. '``fnptrval``': An LLVM value containing a pointer to a function to
5788 be invoked. In most cases, this is a direct function invocation, but
5789 indirect ``call``'s are just as possible, calling an arbitrary pointer
5790 to function value.
5791#. '``function args``': argument list whose types match the function
5792 signature argument types and parameter attributes. All arguments must
5793 be of :ref:`first class <t_firstclass>` type. If the function signature
5794 indicates the function accepts a variable number of arguments, the
5795 extra arguments can be specified.
5796#. The optional :ref:`function attributes <fnattrs>` list. Only
5797 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5798 attributes are valid here.
5799
5800Semantics:
5801""""""""""
5802
5803The '``call``' instruction is used to cause control flow to transfer to
5804a specified function, with its incoming arguments bound to the specified
5805values. Upon a '``ret``' instruction in the called function, control
5806flow continues with the instruction after the function call, and the
5807return value of the function is bound to the result argument.
5808
5809Example:
5810""""""""
5811
5812.. code-block:: llvm
5813
5814 %retval = call i32 @test(i32 %argc)
5815 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5816 %X = tail call i32 @foo() ; yields i32
5817 %Y = tail call fastcc i32 @foo() ; yields i32
5818 call void %foo(i8 97 signext)
5819
5820 %struct.A = type { i32, i8 }
5821 %r = call %struct.A @foo() ; yields { 32, i8 }
5822 %gr = extractvalue %struct.A %r, 0 ; yields i32
5823 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5824 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5825 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5826
5827llvm treats calls to some functions with names and arguments that match
5828the standard C99 library as being the C99 library functions, and may
5829perform optimizations or generate code for them under that assumption.
5830This is something we'd like to change in the future to provide better
5831support for freestanding environments and non-C-based languages.
5832
5833.. _i_va_arg:
5834
5835'``va_arg``' Instruction
5836^^^^^^^^^^^^^^^^^^^^^^^^
5837
5838Syntax:
5839"""""""
5840
5841::
5842
5843 <resultval> = va_arg <va_list*> <arglist>, <argty>
5844
5845Overview:
5846"""""""""
5847
5848The '``va_arg``' instruction is used to access arguments passed through
5849the "variable argument" area of a function call. It is used to implement
5850the ``va_arg`` macro in C.
5851
5852Arguments:
5853""""""""""
5854
5855This instruction takes a ``va_list*`` value and the type of the
5856argument. It returns a value of the specified argument type and
5857increments the ``va_list`` to point to the next argument. The actual
5858type of ``va_list`` is target specific.
5859
5860Semantics:
5861""""""""""
5862
5863The '``va_arg``' instruction loads an argument of the specified type
5864from the specified ``va_list`` and causes the ``va_list`` to point to
5865the next argument. For more information, see the variable argument
5866handling :ref:`Intrinsic Functions <int_varargs>`.
5867
5868It is legal for this instruction to be called in a function which does
5869not take a variable number of arguments, for example, the ``vfprintf``
5870function.
5871
5872``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5873function <intrinsics>` because it takes a type as an argument.
5874
5875Example:
5876""""""""
5877
5878See the :ref:`variable argument processing <int_varargs>` section.
5879
5880Note that the code generator does not yet fully support va\_arg on many
5881targets. Also, it does not currently support va\_arg with aggregate
5882types on any target.
5883
5884.. _i_landingpad:
5885
5886'``landingpad``' Instruction
5887^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5888
5889Syntax:
5890"""""""
5891
5892::
5893
5894 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5895 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5896
5897 <clause> := catch <type> <value>
5898 <clause> := filter <array constant type> <array constant>
5899
5900Overview:
5901"""""""""
5902
5903The '``landingpad``' instruction is used by `LLVM's exception handling
5904system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005905is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00005906code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5907defines values supplied by the personality function (``pers_fn``) upon
5908re-entry to the function. The ``resultval`` has the type ``resultty``.
5909
5910Arguments:
5911""""""""""
5912
5913This instruction takes a ``pers_fn`` value. This is the personality
5914function associated with the unwinding mechanism. The optional
5915``cleanup`` flag indicates that the landing pad block is a cleanup.
5916
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005917A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00005918contains the global variable representing the "type" that may be caught
5919or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5920clause takes an array constant as its argument. Use
5921"``[0 x i8**] undef``" for a filter which cannot throw. The
5922'``landingpad``' instruction must contain *at least* one ``clause`` or
5923the ``cleanup`` flag.
5924
5925Semantics:
5926""""""""""
5927
5928The '``landingpad``' instruction defines the values which are set by the
5929personality function (``pers_fn``) upon re-entry to the function, and
5930therefore the "result type" of the ``landingpad`` instruction. As with
5931calling conventions, how the personality function results are
5932represented in LLVM IR is target specific.
5933
5934The clauses are applied in order from top to bottom. If two
5935``landingpad`` instructions are merged together through inlining, the
5936clauses from the calling function are appended to the list of clauses.
5937When the call stack is being unwound due to an exception being thrown,
5938the exception is compared against each ``clause`` in turn. If it doesn't
5939match any of the clauses, and the ``cleanup`` flag is not set, then
5940unwinding continues further up the call stack.
5941
5942The ``landingpad`` instruction has several restrictions:
5943
5944- A landing pad block is a basic block which is the unwind destination
5945 of an '``invoke``' instruction.
5946- A landing pad block must have a '``landingpad``' instruction as its
5947 first non-PHI instruction.
5948- There can be only one '``landingpad``' instruction within the landing
5949 pad block.
5950- A basic block that is not a landing pad block may not include a
5951 '``landingpad``' instruction.
5952- All '``landingpad``' instructions in a function must have the same
5953 personality function.
5954
5955Example:
5956""""""""
5957
5958.. code-block:: llvm
5959
5960 ;; A landing pad which can catch an integer.
5961 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5962 catch i8** @_ZTIi
5963 ;; A landing pad that is a cleanup.
5964 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5965 cleanup
5966 ;; A landing pad which can catch an integer and can only throw a double.
5967 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5968 catch i8** @_ZTIi
5969 filter [1 x i8**] [@_ZTId]
5970
5971.. _intrinsics:
5972
5973Intrinsic Functions
5974===================
5975
5976LLVM supports the notion of an "intrinsic function". These functions
5977have well known names and semantics and are required to follow certain
5978restrictions. Overall, these intrinsics represent an extension mechanism
5979for the LLVM language that does not require changing all of the
5980transformations in LLVM when adding to the language (or the bitcode
5981reader/writer, the parser, etc...).
5982
5983Intrinsic function names must all start with an "``llvm.``" prefix. This
5984prefix is reserved in LLVM for intrinsic names; thus, function names may
5985not begin with this prefix. Intrinsic functions must always be external
5986functions: you cannot define the body of intrinsic functions. Intrinsic
5987functions may only be used in call or invoke instructions: it is illegal
5988to take the address of an intrinsic function. Additionally, because
5989intrinsic functions are part of the LLVM language, it is required if any
5990are added that they be documented here.
5991
5992Some intrinsic functions can be overloaded, i.e., the intrinsic
5993represents a family of functions that perform the same operation but on
5994different data types. Because LLVM can represent over 8 million
5995different integer types, overloading is used commonly to allow an
5996intrinsic function to operate on any integer type. One or more of the
5997argument types or the result type can be overloaded to accept any
5998integer type. Argument types may also be defined as exactly matching a
5999previous argument's type or the result type. This allows an intrinsic
6000function which accepts multiple arguments, but needs all of them to be
6001of the same type, to only be overloaded with respect to a single
6002argument or the result.
6003
6004Overloaded intrinsics will have the names of its overloaded argument
6005types encoded into its function name, each preceded by a period. Only
6006those types which are overloaded result in a name suffix. Arguments
6007whose type is matched against another type do not. For example, the
6008``llvm.ctpop`` function can take an integer of any width and returns an
6009integer of exactly the same integer width. This leads to a family of
6010functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6011``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6012overloaded, and only one type suffix is required. Because the argument's
6013type is matched against the return type, it does not require its own
6014name suffix.
6015
6016To learn how to add an intrinsic function, please see the `Extending
6017LLVM Guide <ExtendingLLVM.html>`_.
6018
6019.. _int_varargs:
6020
6021Variable Argument Handling Intrinsics
6022-------------------------------------
6023
6024Variable argument support is defined in LLVM with the
6025:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6026functions. These functions are related to the similarly named macros
6027defined in the ``<stdarg.h>`` header file.
6028
6029All of these functions operate on arguments that use a target-specific
6030value type "``va_list``". The LLVM assembly language reference manual
6031does not define what this type is, so all transformations should be
6032prepared to handle these functions regardless of the type used.
6033
6034This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6035variable argument handling intrinsic functions are used.
6036
6037.. code-block:: llvm
6038
6039 define i32 @test(i32 %X, ...) {
6040 ; Initialize variable argument processing
6041 %ap = alloca i8*
6042 %ap2 = bitcast i8** %ap to i8*
6043 call void @llvm.va_start(i8* %ap2)
6044
6045 ; Read a single integer argument
6046 %tmp = va_arg i8** %ap, i32
6047
6048 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6049 %aq = alloca i8*
6050 %aq2 = bitcast i8** %aq to i8*
6051 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6052 call void @llvm.va_end(i8* %aq2)
6053
6054 ; Stop processing of arguments.
6055 call void @llvm.va_end(i8* %ap2)
6056 ret i32 %tmp
6057 }
6058
6059 declare void @llvm.va_start(i8*)
6060 declare void @llvm.va_copy(i8*, i8*)
6061 declare void @llvm.va_end(i8*)
6062
6063.. _int_va_start:
6064
6065'``llvm.va_start``' Intrinsic
6066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6067
6068Syntax:
6069"""""""
6070
6071::
6072
6073 declare void %llvm.va_start(i8* <arglist>)
6074
6075Overview:
6076"""""""""
6077
6078The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6079subsequent use by ``va_arg``.
6080
6081Arguments:
6082""""""""""
6083
6084The argument is a pointer to a ``va_list`` element to initialize.
6085
6086Semantics:
6087""""""""""
6088
6089The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6090available in C. In a target-dependent way, it initializes the
6091``va_list`` element to which the argument points, so that the next call
6092to ``va_arg`` will produce the first variable argument passed to the
6093function. Unlike the C ``va_start`` macro, this intrinsic does not need
6094to know the last argument of the function as the compiler can figure
6095that out.
6096
6097'``llvm.va_end``' Intrinsic
6098^^^^^^^^^^^^^^^^^^^^^^^^^^^
6099
6100Syntax:
6101"""""""
6102
6103::
6104
6105 declare void @llvm.va_end(i8* <arglist>)
6106
6107Overview:
6108"""""""""
6109
6110The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6111initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6112
6113Arguments:
6114""""""""""
6115
6116The argument is a pointer to a ``va_list`` to destroy.
6117
6118Semantics:
6119""""""""""
6120
6121The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6122available in C. In a target-dependent way, it destroys the ``va_list``
6123element to which the argument points. Calls to
6124:ref:`llvm.va_start <int_va_start>` and
6125:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6126``llvm.va_end``.
6127
6128.. _int_va_copy:
6129
6130'``llvm.va_copy``' Intrinsic
6131^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6132
6133Syntax:
6134"""""""
6135
6136::
6137
6138 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6139
6140Overview:
6141"""""""""
6142
6143The '``llvm.va_copy``' intrinsic copies the current argument position
6144from the source argument list to the destination argument list.
6145
6146Arguments:
6147""""""""""
6148
6149The first argument is a pointer to a ``va_list`` element to initialize.
6150The second argument is a pointer to a ``va_list`` element to copy from.
6151
6152Semantics:
6153""""""""""
6154
6155The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6156available in C. In a target-dependent way, it copies the source
6157``va_list`` element into the destination ``va_list`` element. This
6158intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6159arbitrarily complex and require, for example, memory allocation.
6160
6161Accurate Garbage Collection Intrinsics
6162--------------------------------------
6163
6164LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6165(GC) requires the implementation and generation of these intrinsics.
6166These intrinsics allow identification of :ref:`GC roots on the
6167stack <int_gcroot>`, as well as garbage collector implementations that
6168require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6169Front-ends for type-safe garbage collected languages should generate
6170these intrinsics to make use of the LLVM garbage collectors. For more
6171details, see `Accurate Garbage Collection with
6172LLVM <GarbageCollection.html>`_.
6173
6174The garbage collection intrinsics only operate on objects in the generic
6175address space (address space zero).
6176
6177.. _int_gcroot:
6178
6179'``llvm.gcroot``' Intrinsic
6180^^^^^^^^^^^^^^^^^^^^^^^^^^^
6181
6182Syntax:
6183"""""""
6184
6185::
6186
6187 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6188
6189Overview:
6190"""""""""
6191
6192The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6193the code generator, and allows some metadata to be associated with it.
6194
6195Arguments:
6196""""""""""
6197
6198The first argument specifies the address of a stack object that contains
6199the root pointer. The second pointer (which must be either a constant or
6200a global value address) contains the meta-data to be associated with the
6201root.
6202
6203Semantics:
6204""""""""""
6205
6206At runtime, a call to this intrinsic stores a null pointer into the
6207"ptrloc" location. At compile-time, the code generator generates
6208information to allow the runtime to find the pointer at GC safe points.
6209The '``llvm.gcroot``' intrinsic may only be used in a function which
6210:ref:`specifies a GC algorithm <gc>`.
6211
6212.. _int_gcread:
6213
6214'``llvm.gcread``' Intrinsic
6215^^^^^^^^^^^^^^^^^^^^^^^^^^^
6216
6217Syntax:
6218"""""""
6219
6220::
6221
6222 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6223
6224Overview:
6225"""""""""
6226
6227The '``llvm.gcread``' intrinsic identifies reads of references from heap
6228locations, allowing garbage collector implementations that require read
6229barriers.
6230
6231Arguments:
6232""""""""""
6233
6234The second argument is the address to read from, which should be an
6235address allocated from the garbage collector. The first object is a
6236pointer to the start of the referenced object, if needed by the language
6237runtime (otherwise null).
6238
6239Semantics:
6240""""""""""
6241
6242The '``llvm.gcread``' intrinsic has the same semantics as a load
6243instruction, but may be replaced with substantially more complex code by
6244the garbage collector runtime, as needed. The '``llvm.gcread``'
6245intrinsic may only be used in a function which :ref:`specifies a GC
6246algorithm <gc>`.
6247
6248.. _int_gcwrite:
6249
6250'``llvm.gcwrite``' Intrinsic
6251^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6252
6253Syntax:
6254"""""""
6255
6256::
6257
6258 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6259
6260Overview:
6261"""""""""
6262
6263The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6264locations, allowing garbage collector implementations that require write
6265barriers (such as generational or reference counting collectors).
6266
6267Arguments:
6268""""""""""
6269
6270The first argument is the reference to store, the second is the start of
6271the object to store it to, and the third is the address of the field of
6272Obj to store to. If the runtime does not require a pointer to the
6273object, Obj may be null.
6274
6275Semantics:
6276""""""""""
6277
6278The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6279instruction, but may be replaced with substantially more complex code by
6280the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6281intrinsic may only be used in a function which :ref:`specifies a GC
6282algorithm <gc>`.
6283
6284Code Generator Intrinsics
6285-------------------------
6286
6287These intrinsics are provided by LLVM to expose special features that
6288may only be implemented with code generator support.
6289
6290'``llvm.returnaddress``' Intrinsic
6291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6292
6293Syntax:
6294"""""""
6295
6296::
6297
6298 declare i8 *@llvm.returnaddress(i32 <level>)
6299
6300Overview:
6301"""""""""
6302
6303The '``llvm.returnaddress``' intrinsic attempts to compute a
6304target-specific value indicating the return address of the current
6305function or one of its callers.
6306
6307Arguments:
6308""""""""""
6309
6310The argument to this intrinsic indicates which function to return the
6311address for. Zero indicates the calling function, one indicates its
6312caller, etc. The argument is **required** to be a constant integer
6313value.
6314
6315Semantics:
6316""""""""""
6317
6318The '``llvm.returnaddress``' intrinsic either returns a pointer
6319indicating the return address of the specified call frame, or zero if it
6320cannot be identified. The value returned by this intrinsic is likely to
6321be incorrect or 0 for arguments other than zero, so it should only be
6322used for debugging purposes.
6323
6324Note that calling this intrinsic does not prevent function inlining or
6325other aggressive transformations, so the value returned may not be that
6326of the obvious source-language caller.
6327
6328'``llvm.frameaddress``' Intrinsic
6329^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6330
6331Syntax:
6332"""""""
6333
6334::
6335
6336 declare i8* @llvm.frameaddress(i32 <level>)
6337
6338Overview:
6339"""""""""
6340
6341The '``llvm.frameaddress``' intrinsic attempts to return the
6342target-specific frame pointer value for the specified stack frame.
6343
6344Arguments:
6345""""""""""
6346
6347The argument to this intrinsic indicates which function to return the
6348frame pointer for. Zero indicates the calling function, one indicates
6349its caller, etc. The argument is **required** to be a constant integer
6350value.
6351
6352Semantics:
6353""""""""""
6354
6355The '``llvm.frameaddress``' intrinsic either returns a pointer
6356indicating the frame address of the specified call frame, or zero if it
6357cannot be identified. The value returned by this intrinsic is likely to
6358be incorrect or 0 for arguments other than zero, so it should only be
6359used for debugging purposes.
6360
6361Note that calling this intrinsic does not prevent function inlining or
6362other aggressive transformations, so the value returned may not be that
6363of the obvious source-language caller.
6364
6365.. _int_stacksave:
6366
6367'``llvm.stacksave``' Intrinsic
6368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6369
6370Syntax:
6371"""""""
6372
6373::
6374
6375 declare i8* @llvm.stacksave()
6376
6377Overview:
6378"""""""""
6379
6380The '``llvm.stacksave``' intrinsic is used to remember the current state
6381of the function stack, for use with
6382:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6383implementing language features like scoped automatic variable sized
6384arrays in C99.
6385
6386Semantics:
6387""""""""""
6388
6389This intrinsic returns a opaque pointer value that can be passed to
6390:ref:`llvm.stackrestore <int_stackrestore>`. When an
6391``llvm.stackrestore`` intrinsic is executed with a value saved from
6392``llvm.stacksave``, it effectively restores the state of the stack to
6393the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6394practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6395were allocated after the ``llvm.stacksave`` was executed.
6396
6397.. _int_stackrestore:
6398
6399'``llvm.stackrestore``' Intrinsic
6400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6401
6402Syntax:
6403"""""""
6404
6405::
6406
6407 declare void @llvm.stackrestore(i8* %ptr)
6408
6409Overview:
6410"""""""""
6411
6412The '``llvm.stackrestore``' intrinsic is used to restore the state of
6413the function stack to the state it was in when the corresponding
6414:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6415useful for implementing language features like scoped automatic variable
6416sized arrays in C99.
6417
6418Semantics:
6419""""""""""
6420
6421See the description for :ref:`llvm.stacksave <int_stacksave>`.
6422
6423'``llvm.prefetch``' Intrinsic
6424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6425
6426Syntax:
6427"""""""
6428
6429::
6430
6431 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6432
6433Overview:
6434"""""""""
6435
6436The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6437insert a prefetch instruction if supported; otherwise, it is a noop.
6438Prefetches have no effect on the behavior of the program but can change
6439its performance characteristics.
6440
6441Arguments:
6442""""""""""
6443
6444``address`` is the address to be prefetched, ``rw`` is the specifier
6445determining if the fetch should be for a read (0) or write (1), and
6446``locality`` is a temporal locality specifier ranging from (0) - no
6447locality, to (3) - extremely local keep in cache. The ``cache type``
6448specifies whether the prefetch is performed on the data (1) or
6449instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6450arguments must be constant integers.
6451
6452Semantics:
6453""""""""""
6454
6455This intrinsic does not modify the behavior of the program. In
6456particular, prefetches cannot trap and do not produce a value. On
6457targets that support this intrinsic, the prefetch can provide hints to
6458the processor cache for better performance.
6459
6460'``llvm.pcmarker``' Intrinsic
6461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6462
6463Syntax:
6464"""""""
6465
6466::
6467
6468 declare void @llvm.pcmarker(i32 <id>)
6469
6470Overview:
6471"""""""""
6472
6473The '``llvm.pcmarker``' intrinsic is a method to export a Program
6474Counter (PC) in a region of code to simulators and other tools. The
6475method is target specific, but it is expected that the marker will use
6476exported symbols to transmit the PC of the marker. The marker makes no
6477guarantees that it will remain with any specific instruction after
6478optimizations. It is possible that the presence of a marker will inhibit
6479optimizations. The intended use is to be inserted after optimizations to
6480allow correlations of simulation runs.
6481
6482Arguments:
6483""""""""""
6484
6485``id`` is a numerical id identifying the marker.
6486
6487Semantics:
6488""""""""""
6489
6490This intrinsic does not modify the behavior of the program. Backends
6491that do not support this intrinsic may ignore it.
6492
6493'``llvm.readcyclecounter``' Intrinsic
6494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6495
6496Syntax:
6497"""""""
6498
6499::
6500
6501 declare i64 @llvm.readcyclecounter()
6502
6503Overview:
6504"""""""""
6505
6506The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6507counter register (or similar low latency, high accuracy clocks) on those
6508targets that support it. On X86, it should map to RDTSC. On Alpha, it
6509should map to RPCC. As the backing counters overflow quickly (on the
6510order of 9 seconds on alpha), this should only be used for small
6511timings.
6512
6513Semantics:
6514""""""""""
6515
6516When directly supported, reading the cycle counter should not modify any
6517memory. Implementations are allowed to either return a application
6518specific value or a system wide value. On backends without support, this
6519is lowered to a constant 0.
6520
6521Standard C Library Intrinsics
6522-----------------------------
6523
6524LLVM provides intrinsics for a few important standard C library
6525functions. These intrinsics allow source-language front-ends to pass
6526information about the alignment of the pointer arguments to the code
6527generator, providing opportunity for more efficient code generation.
6528
6529.. _int_memcpy:
6530
6531'``llvm.memcpy``' Intrinsic
6532^^^^^^^^^^^^^^^^^^^^^^^^^^^
6533
6534Syntax:
6535"""""""
6536
6537This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6538integer bit width and for different address spaces. Not all targets
6539support all bit widths however.
6540
6541::
6542
6543 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6544 i32 <len>, i32 <align>, i1 <isvolatile>)
6545 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6546 i64 <len>, i32 <align>, i1 <isvolatile>)
6547
6548Overview:
6549"""""""""
6550
6551The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6552source location to the destination location.
6553
6554Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6555intrinsics do not return a value, takes extra alignment/isvolatile
6556arguments and the pointers can be in specified address spaces.
6557
6558Arguments:
6559""""""""""
6560
6561The first argument is a pointer to the destination, the second is a
6562pointer to the source. The third argument is an integer argument
6563specifying the number of bytes to copy, the fourth argument is the
6564alignment of the source and destination locations, and the fifth is a
6565boolean indicating a volatile access.
6566
6567If the call to this intrinsic has an alignment value that is not 0 or 1,
6568then the caller guarantees that both the source and destination pointers
6569are aligned to that boundary.
6570
6571If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6572a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6573very cleanly specified and it is unwise to depend on it.
6574
6575Semantics:
6576""""""""""
6577
6578The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6579source location to the destination location, which are not allowed to
6580overlap. It copies "len" bytes of memory over. If the argument is known
6581to be aligned to some boundary, this can be specified as the fourth
6582argument, otherwise it should be set to 0 or 1.
6583
6584'``llvm.memmove``' Intrinsic
6585^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6586
6587Syntax:
6588"""""""
6589
6590This is an overloaded intrinsic. You can use llvm.memmove on any integer
6591bit width and for different address space. Not all targets support all
6592bit widths however.
6593
6594::
6595
6596 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6597 i32 <len>, i32 <align>, i1 <isvolatile>)
6598 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6599 i64 <len>, i32 <align>, i1 <isvolatile>)
6600
6601Overview:
6602"""""""""
6603
6604The '``llvm.memmove.*``' intrinsics move a block of memory from the
6605source location to the destination location. It is similar to the
6606'``llvm.memcpy``' intrinsic but allows the two memory locations to
6607overlap.
6608
6609Note that, unlike the standard libc function, the ``llvm.memmove.*``
6610intrinsics do not return a value, takes extra alignment/isvolatile
6611arguments and the pointers can be in specified address spaces.
6612
6613Arguments:
6614""""""""""
6615
6616The first argument is a pointer to the destination, the second is a
6617pointer to the source. The third argument is an integer argument
6618specifying the number of bytes to copy, the fourth argument is the
6619alignment of the source and destination locations, and the fifth is a
6620boolean indicating a volatile access.
6621
6622If the call to this intrinsic has an alignment value that is not 0 or 1,
6623then the caller guarantees that the source and destination pointers are
6624aligned to that boundary.
6625
6626If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6627is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6628not very cleanly specified and it is unwise to depend on it.
6629
6630Semantics:
6631""""""""""
6632
6633The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6634source location to the destination location, which may overlap. It
6635copies "len" bytes of memory over. If the argument is known to be
6636aligned to some boundary, this can be specified as the fourth argument,
6637otherwise it should be set to 0 or 1.
6638
6639'``llvm.memset.*``' Intrinsics
6640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6641
6642Syntax:
6643"""""""
6644
6645This is an overloaded intrinsic. You can use llvm.memset on any integer
6646bit width and for different address spaces. However, not all targets
6647support all bit widths.
6648
6649::
6650
6651 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6652 i32 <len>, i32 <align>, i1 <isvolatile>)
6653 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6654 i64 <len>, i32 <align>, i1 <isvolatile>)
6655
6656Overview:
6657"""""""""
6658
6659The '``llvm.memset.*``' intrinsics fill a block of memory with a
6660particular byte value.
6661
6662Note that, unlike the standard libc function, the ``llvm.memset``
6663intrinsic does not return a value and takes extra alignment/volatile
6664arguments. Also, the destination can be in an arbitrary address space.
6665
6666Arguments:
6667""""""""""
6668
6669The first argument is a pointer to the destination to fill, the second
6670is the byte value with which to fill it, the third argument is an
6671integer argument specifying the number of bytes to fill, and the fourth
6672argument is the known alignment of the destination location.
6673
6674If the call to this intrinsic has an alignment value that is not 0 or 1,
6675then the caller guarantees that the destination pointer is aligned to
6676that boundary.
6677
6678If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6679a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6680very cleanly specified and it is unwise to depend on it.
6681
6682Semantics:
6683""""""""""
6684
6685The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6686at the destination location. If the argument is known to be aligned to
6687some boundary, this can be specified as the fourth argument, otherwise
6688it should be set to 0 or 1.
6689
6690'``llvm.sqrt.*``' Intrinsic
6691^^^^^^^^^^^^^^^^^^^^^^^^^^^
6692
6693Syntax:
6694"""""""
6695
6696This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6697floating point or vector of floating point type. Not all targets support
6698all types however.
6699
6700::
6701
6702 declare float @llvm.sqrt.f32(float %Val)
6703 declare double @llvm.sqrt.f64(double %Val)
6704 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6705 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6706 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6707
6708Overview:
6709"""""""""
6710
6711The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6712returning the same value as the libm '``sqrt``' functions would. Unlike
6713``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6714negative numbers other than -0.0 (which allows for better optimization,
6715because there is no need to worry about errno being set).
6716``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6717
6718Arguments:
6719""""""""""
6720
6721The argument and return value are floating point numbers of the same
6722type.
6723
6724Semantics:
6725""""""""""
6726
6727This function returns the sqrt of the specified operand if it is a
6728nonnegative floating point number.
6729
6730'``llvm.powi.*``' Intrinsic
6731^^^^^^^^^^^^^^^^^^^^^^^^^^^
6732
6733Syntax:
6734"""""""
6735
6736This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6737floating point or vector of floating point type. Not all targets support
6738all types however.
6739
6740::
6741
6742 declare float @llvm.powi.f32(float %Val, i32 %power)
6743 declare double @llvm.powi.f64(double %Val, i32 %power)
6744 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6745 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6746 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6747
6748Overview:
6749"""""""""
6750
6751The '``llvm.powi.*``' intrinsics return the first operand raised to the
6752specified (positive or negative) power. The order of evaluation of
6753multiplications is not defined. When a vector of floating point type is
6754used, the second argument remains a scalar integer value.
6755
6756Arguments:
6757""""""""""
6758
6759The second argument is an integer power, and the first is a value to
6760raise to that power.
6761
6762Semantics:
6763""""""""""
6764
6765This function returns the first value raised to the second power with an
6766unspecified sequence of rounding operations.
6767
6768'``llvm.sin.*``' Intrinsic
6769^^^^^^^^^^^^^^^^^^^^^^^^^^
6770
6771Syntax:
6772"""""""
6773
6774This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6775floating point or vector of floating point type. Not all targets support
6776all types however.
6777
6778::
6779
6780 declare float @llvm.sin.f32(float %Val)
6781 declare double @llvm.sin.f64(double %Val)
6782 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6783 declare fp128 @llvm.sin.f128(fp128 %Val)
6784 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6785
6786Overview:
6787"""""""""
6788
6789The '``llvm.sin.*``' intrinsics return the sine of the operand.
6790
6791Arguments:
6792""""""""""
6793
6794The argument and return value are floating point numbers of the same
6795type.
6796
6797Semantics:
6798""""""""""
6799
6800This function returns the sine of the specified operand, returning the
6801same values as the libm ``sin`` functions would, and handles error
6802conditions in the same way.
6803
6804'``llvm.cos.*``' Intrinsic
6805^^^^^^^^^^^^^^^^^^^^^^^^^^
6806
6807Syntax:
6808"""""""
6809
6810This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6811floating point or vector of floating point type. Not all targets support
6812all types however.
6813
6814::
6815
6816 declare float @llvm.cos.f32(float %Val)
6817 declare double @llvm.cos.f64(double %Val)
6818 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6819 declare fp128 @llvm.cos.f128(fp128 %Val)
6820 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6821
6822Overview:
6823"""""""""
6824
6825The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6826
6827Arguments:
6828""""""""""
6829
6830The argument and return value are floating point numbers of the same
6831type.
6832
6833Semantics:
6834""""""""""
6835
6836This function returns the cosine of the specified operand, returning the
6837same values as the libm ``cos`` functions would, and handles error
6838conditions in the same way.
6839
6840'``llvm.pow.*``' Intrinsic
6841^^^^^^^^^^^^^^^^^^^^^^^^^^
6842
6843Syntax:
6844"""""""
6845
6846This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6847floating point or vector of floating point type. Not all targets support
6848all types however.
6849
6850::
6851
6852 declare float @llvm.pow.f32(float %Val, float %Power)
6853 declare double @llvm.pow.f64(double %Val, double %Power)
6854 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6855 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6856 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6857
6858Overview:
6859"""""""""
6860
6861The '``llvm.pow.*``' intrinsics return the first operand raised to the
6862specified (positive or negative) power.
6863
6864Arguments:
6865""""""""""
6866
6867The second argument is a floating point power, and the first is a value
6868to raise to that power.
6869
6870Semantics:
6871""""""""""
6872
6873This function returns the first value raised to the second power,
6874returning the same values as the libm ``pow`` functions would, and
6875handles error conditions in the same way.
6876
6877'``llvm.exp.*``' Intrinsic
6878^^^^^^^^^^^^^^^^^^^^^^^^^^
6879
6880Syntax:
6881"""""""
6882
6883This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6884floating point or vector of floating point type. Not all targets support
6885all types however.
6886
6887::
6888
6889 declare float @llvm.exp.f32(float %Val)
6890 declare double @llvm.exp.f64(double %Val)
6891 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6892 declare fp128 @llvm.exp.f128(fp128 %Val)
6893 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6894
6895Overview:
6896"""""""""
6897
6898The '``llvm.exp.*``' intrinsics perform the exp function.
6899
6900Arguments:
6901""""""""""
6902
6903The argument and return value are floating point numbers of the same
6904type.
6905
6906Semantics:
6907""""""""""
6908
6909This function returns the same values as the libm ``exp`` functions
6910would, and handles error conditions in the same way.
6911
6912'``llvm.exp2.*``' Intrinsic
6913^^^^^^^^^^^^^^^^^^^^^^^^^^^
6914
6915Syntax:
6916"""""""
6917
6918This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6919floating point or vector of floating point type. Not all targets support
6920all types however.
6921
6922::
6923
6924 declare float @llvm.exp2.f32(float %Val)
6925 declare double @llvm.exp2.f64(double %Val)
6926 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6927 declare fp128 @llvm.exp2.f128(fp128 %Val)
6928 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6929
6930Overview:
6931"""""""""
6932
6933The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6934
6935Arguments:
6936""""""""""
6937
6938The argument and return value are floating point numbers of the same
6939type.
6940
6941Semantics:
6942""""""""""
6943
6944This function returns the same values as the libm ``exp2`` functions
6945would, and handles error conditions in the same way.
6946
6947'``llvm.log.*``' Intrinsic
6948^^^^^^^^^^^^^^^^^^^^^^^^^^
6949
6950Syntax:
6951"""""""
6952
6953This is an overloaded intrinsic. You can use ``llvm.log`` on any
6954floating point or vector of floating point type. Not all targets support
6955all types however.
6956
6957::
6958
6959 declare float @llvm.log.f32(float %Val)
6960 declare double @llvm.log.f64(double %Val)
6961 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6962 declare fp128 @llvm.log.f128(fp128 %Val)
6963 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6964
6965Overview:
6966"""""""""
6967
6968The '``llvm.log.*``' intrinsics perform the log function.
6969
6970Arguments:
6971""""""""""
6972
6973The argument and return value are floating point numbers of the same
6974type.
6975
6976Semantics:
6977""""""""""
6978
6979This function returns the same values as the libm ``log`` functions
6980would, and handles error conditions in the same way.
6981
6982'``llvm.log10.*``' Intrinsic
6983^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6984
6985Syntax:
6986"""""""
6987
6988This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6989floating point or vector of floating point type. Not all targets support
6990all types however.
6991
6992::
6993
6994 declare float @llvm.log10.f32(float %Val)
6995 declare double @llvm.log10.f64(double %Val)
6996 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
6997 declare fp128 @llvm.log10.f128(fp128 %Val)
6998 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
6999
7000Overview:
7001"""""""""
7002
7003The '``llvm.log10.*``' intrinsics perform the log10 function.
7004
7005Arguments:
7006""""""""""
7007
7008The argument and return value are floating point numbers of the same
7009type.
7010
7011Semantics:
7012""""""""""
7013
7014This function returns the same values as the libm ``log10`` functions
7015would, and handles error conditions in the same way.
7016
7017'``llvm.log2.*``' Intrinsic
7018^^^^^^^^^^^^^^^^^^^^^^^^^^^
7019
7020Syntax:
7021"""""""
7022
7023This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7024floating point or vector of floating point type. Not all targets support
7025all types however.
7026
7027::
7028
7029 declare float @llvm.log2.f32(float %Val)
7030 declare double @llvm.log2.f64(double %Val)
7031 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7032 declare fp128 @llvm.log2.f128(fp128 %Val)
7033 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7034
7035Overview:
7036"""""""""
7037
7038The '``llvm.log2.*``' intrinsics perform the log2 function.
7039
7040Arguments:
7041""""""""""
7042
7043The argument and return value are floating point numbers of the same
7044type.
7045
7046Semantics:
7047""""""""""
7048
7049This function returns the same values as the libm ``log2`` functions
7050would, and handles error conditions in the same way.
7051
7052'``llvm.fma.*``' Intrinsic
7053^^^^^^^^^^^^^^^^^^^^^^^^^^
7054
7055Syntax:
7056"""""""
7057
7058This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7059floating point or vector of floating point type. Not all targets support
7060all types however.
7061
7062::
7063
7064 declare float @llvm.fma.f32(float %a, float %b, float %c)
7065 declare double @llvm.fma.f64(double %a, double %b, double %c)
7066 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7067 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7068 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7069
7070Overview:
7071"""""""""
7072
7073The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7074operation.
7075
7076Arguments:
7077""""""""""
7078
7079The argument and return value are floating point numbers of the same
7080type.
7081
7082Semantics:
7083""""""""""
7084
7085This function returns the same values as the libm ``fma`` functions
7086would.
7087
7088'``llvm.fabs.*``' Intrinsic
7089^^^^^^^^^^^^^^^^^^^^^^^^^^^
7090
7091Syntax:
7092"""""""
7093
7094This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7095floating point or vector of floating point type. Not all targets support
7096all types however.
7097
7098::
7099
7100 declare float @llvm.fabs.f32(float %Val)
7101 declare double @llvm.fabs.f64(double %Val)
7102 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7103 declare fp128 @llvm.fabs.f128(fp128 %Val)
7104 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7105
7106Overview:
7107"""""""""
7108
7109The '``llvm.fabs.*``' intrinsics return the absolute value of the
7110operand.
7111
7112Arguments:
7113""""""""""
7114
7115The argument and return value are floating point numbers of the same
7116type.
7117
7118Semantics:
7119""""""""""
7120
7121This function returns the same values as the libm ``fabs`` functions
7122would, and handles error conditions in the same way.
7123
7124'``llvm.floor.*``' Intrinsic
7125^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7126
7127Syntax:
7128"""""""
7129
7130This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7131floating point or vector of floating point type. Not all targets support
7132all types however.
7133
7134::
7135
7136 declare float @llvm.floor.f32(float %Val)
7137 declare double @llvm.floor.f64(double %Val)
7138 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7139 declare fp128 @llvm.floor.f128(fp128 %Val)
7140 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7141
7142Overview:
7143"""""""""
7144
7145The '``llvm.floor.*``' intrinsics return the floor of the operand.
7146
7147Arguments:
7148""""""""""
7149
7150The argument and return value are floating point numbers of the same
7151type.
7152
7153Semantics:
7154""""""""""
7155
7156This function returns the same values as the libm ``floor`` functions
7157would, and handles error conditions in the same way.
7158
7159'``llvm.ceil.*``' Intrinsic
7160^^^^^^^^^^^^^^^^^^^^^^^^^^^
7161
7162Syntax:
7163"""""""
7164
7165This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7166floating point or vector of floating point type. Not all targets support
7167all types however.
7168
7169::
7170
7171 declare float @llvm.ceil.f32(float %Val)
7172 declare double @llvm.ceil.f64(double %Val)
7173 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7174 declare fp128 @llvm.ceil.f128(fp128 %Val)
7175 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7176
7177Overview:
7178"""""""""
7179
7180The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7181
7182Arguments:
7183""""""""""
7184
7185The argument and return value are floating point numbers of the same
7186type.
7187
7188Semantics:
7189""""""""""
7190
7191This function returns the same values as the libm ``ceil`` functions
7192would, and handles error conditions in the same way.
7193
7194'``llvm.trunc.*``' Intrinsic
7195^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7196
7197Syntax:
7198"""""""
7199
7200This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7201floating point or vector of floating point type. Not all targets support
7202all types however.
7203
7204::
7205
7206 declare float @llvm.trunc.f32(float %Val)
7207 declare double @llvm.trunc.f64(double %Val)
7208 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7209 declare fp128 @llvm.trunc.f128(fp128 %Val)
7210 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7211
7212Overview:
7213"""""""""
7214
7215The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7216nearest integer not larger in magnitude than the operand.
7217
7218Arguments:
7219""""""""""
7220
7221The argument and return value are floating point numbers of the same
7222type.
7223
7224Semantics:
7225""""""""""
7226
7227This function returns the same values as the libm ``trunc`` functions
7228would, and handles error conditions in the same way.
7229
7230'``llvm.rint.*``' Intrinsic
7231^^^^^^^^^^^^^^^^^^^^^^^^^^^
7232
7233Syntax:
7234"""""""
7235
7236This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7237floating point or vector of floating point type. Not all targets support
7238all types however.
7239
7240::
7241
7242 declare float @llvm.rint.f32(float %Val)
7243 declare double @llvm.rint.f64(double %Val)
7244 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7245 declare fp128 @llvm.rint.f128(fp128 %Val)
7246 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7247
7248Overview:
7249"""""""""
7250
7251The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7252nearest integer. It may raise an inexact floating-point exception if the
7253operand isn't an integer.
7254
7255Arguments:
7256""""""""""
7257
7258The argument and return value are floating point numbers of the same
7259type.
7260
7261Semantics:
7262""""""""""
7263
7264This function returns the same values as the libm ``rint`` functions
7265would, and handles error conditions in the same way.
7266
7267'``llvm.nearbyint.*``' Intrinsic
7268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7269
7270Syntax:
7271"""""""
7272
7273This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7274floating point or vector of floating point type. Not all targets support
7275all types however.
7276
7277::
7278
7279 declare float @llvm.nearbyint.f32(float %Val)
7280 declare double @llvm.nearbyint.f64(double %Val)
7281 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7282 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7283 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7284
7285Overview:
7286"""""""""
7287
7288The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7289nearest integer.
7290
7291Arguments:
7292""""""""""
7293
7294The argument and return value are floating point numbers of the same
7295type.
7296
7297Semantics:
7298""""""""""
7299
7300This function returns the same values as the libm ``nearbyint``
7301functions would, and handles error conditions in the same way.
7302
7303Bit Manipulation Intrinsics
7304---------------------------
7305
7306LLVM provides intrinsics for a few important bit manipulation
7307operations. These allow efficient code generation for some algorithms.
7308
7309'``llvm.bswap.*``' Intrinsics
7310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7311
7312Syntax:
7313"""""""
7314
7315This is an overloaded intrinsic function. You can use bswap on any
7316integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7317
7318::
7319
7320 declare i16 @llvm.bswap.i16(i16 <id>)
7321 declare i32 @llvm.bswap.i32(i32 <id>)
7322 declare i64 @llvm.bswap.i64(i64 <id>)
7323
7324Overview:
7325"""""""""
7326
7327The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7328values with an even number of bytes (positive multiple of 16 bits).
7329These are useful for performing operations on data that is not in the
7330target's native byte order.
7331
7332Semantics:
7333""""""""""
7334
7335The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7336and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7337intrinsic returns an i32 value that has the four bytes of the input i32
7338swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7339returned i32 will have its bytes in 3, 2, 1, 0 order. The
7340``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7341concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7342respectively).
7343
7344'``llvm.ctpop.*``' Intrinsic
7345^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7346
7347Syntax:
7348"""""""
7349
7350This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7351bit width, or on any vector with integer elements. Not all targets
7352support all bit widths or vector types, however.
7353
7354::
7355
7356 declare i8 @llvm.ctpop.i8(i8 <src>)
7357 declare i16 @llvm.ctpop.i16(i16 <src>)
7358 declare i32 @llvm.ctpop.i32(i32 <src>)
7359 declare i64 @llvm.ctpop.i64(i64 <src>)
7360 declare i256 @llvm.ctpop.i256(i256 <src>)
7361 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7362
7363Overview:
7364"""""""""
7365
7366The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7367in a value.
7368
7369Arguments:
7370""""""""""
7371
7372The only argument is the value to be counted. The argument may be of any
7373integer type, or a vector with integer elements. The return type must
7374match the argument type.
7375
7376Semantics:
7377""""""""""
7378
7379The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7380each element of a vector.
7381
7382'``llvm.ctlz.*``' Intrinsic
7383^^^^^^^^^^^^^^^^^^^^^^^^^^^
7384
7385Syntax:
7386"""""""
7387
7388This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7389integer bit width, or any vector whose elements are integers. Not all
7390targets support all bit widths or vector types, however.
7391
7392::
7393
7394 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7395 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7396 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7397 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7398 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7399 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7400
7401Overview:
7402"""""""""
7403
7404The '``llvm.ctlz``' family of intrinsic functions counts the number of
7405leading zeros in a variable.
7406
7407Arguments:
7408""""""""""
7409
7410The first argument is the value to be counted. This argument may be of
7411any integer type, or a vectory with integer element type. The return
7412type must match the first argument type.
7413
7414The second argument must be a constant and is a flag to indicate whether
7415the intrinsic should ensure that a zero as the first argument produces a
7416defined result. Historically some architectures did not provide a
7417defined result for zero values as efficiently, and many algorithms are
7418now predicated on avoiding zero-value inputs.
7419
7420Semantics:
7421""""""""""
7422
7423The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7424zeros in a variable, or within each element of the vector. If
7425``src == 0`` then the result is the size in bits of the type of ``src``
7426if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7427``llvm.ctlz(i32 2) = 30``.
7428
7429'``llvm.cttz.*``' Intrinsic
7430^^^^^^^^^^^^^^^^^^^^^^^^^^^
7431
7432Syntax:
7433"""""""
7434
7435This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7436integer bit width, or any vector of integer elements. Not all targets
7437support all bit widths or vector types, however.
7438
7439::
7440
7441 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7442 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7443 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7444 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7445 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7446 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7447
7448Overview:
7449"""""""""
7450
7451The '``llvm.cttz``' family of intrinsic functions counts the number of
7452trailing zeros.
7453
7454Arguments:
7455""""""""""
7456
7457The first argument is the value to be counted. This argument may be of
7458any integer type, or a vectory with integer element type. The return
7459type must match the first argument type.
7460
7461The second argument must be a constant and is a flag to indicate whether
7462the intrinsic should ensure that a zero as the first argument produces a
7463defined result. Historically some architectures did not provide a
7464defined result for zero values as efficiently, and many algorithms are
7465now predicated on avoiding zero-value inputs.
7466
7467Semantics:
7468""""""""""
7469
7470The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7471zeros in a variable, or within each element of a vector. If ``src == 0``
7472then the result is the size in bits of the type of ``src`` if
7473``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7474``llvm.cttz(2) = 1``.
7475
7476Arithmetic with Overflow Intrinsics
7477-----------------------------------
7478
7479LLVM provides intrinsics for some arithmetic with overflow operations.
7480
7481'``llvm.sadd.with.overflow.*``' Intrinsics
7482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7483
7484Syntax:
7485"""""""
7486
7487This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7488on any integer bit width.
7489
7490::
7491
7492 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7493 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7494 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7495
7496Overview:
7497"""""""""
7498
7499The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7500a signed addition of the two arguments, and indicate whether an overflow
7501occurred during the signed summation.
7502
7503Arguments:
7504""""""""""
7505
7506The arguments (%a and %b) and the first element of the result structure
7507may be of integer types of any bit width, but they must have the same
7508bit width. The second element of the result structure must be of type
7509``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7510addition.
7511
7512Semantics:
7513""""""""""
7514
7515The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007516a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007517first element of which is the signed summation, and the second element
7518of which is a bit specifying if the signed summation resulted in an
7519overflow.
7520
7521Examples:
7522"""""""""
7523
7524.. code-block:: llvm
7525
7526 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7527 %sum = extractvalue {i32, i1} %res, 0
7528 %obit = extractvalue {i32, i1} %res, 1
7529 br i1 %obit, label %overflow, label %normal
7530
7531'``llvm.uadd.with.overflow.*``' Intrinsics
7532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7533
7534Syntax:
7535"""""""
7536
7537This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7538on any integer bit width.
7539
7540::
7541
7542 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7543 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7544 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7545
7546Overview:
7547"""""""""
7548
7549The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7550an unsigned addition of the two arguments, and indicate whether a carry
7551occurred during the unsigned summation.
7552
7553Arguments:
7554""""""""""
7555
7556The arguments (%a and %b) and the first element of the result structure
7557may be of integer types of any bit width, but they must have the same
7558bit width. The second element of the result structure must be of type
7559``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7560addition.
7561
7562Semantics:
7563""""""""""
7564
7565The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007566an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007567first element of which is the sum, and the second element of which is a
7568bit specifying if the unsigned summation resulted in a carry.
7569
7570Examples:
7571"""""""""
7572
7573.. code-block:: llvm
7574
7575 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7576 %sum = extractvalue {i32, i1} %res, 0
7577 %obit = extractvalue {i32, i1} %res, 1
7578 br i1 %obit, label %carry, label %normal
7579
7580'``llvm.ssub.with.overflow.*``' Intrinsics
7581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7582
7583Syntax:
7584"""""""
7585
7586This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7587on any integer bit width.
7588
7589::
7590
7591 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7592 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7593 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7594
7595Overview:
7596"""""""""
7597
7598The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7599a signed subtraction of the two arguments, and indicate whether an
7600overflow occurred during the signed subtraction.
7601
7602Arguments:
7603""""""""""
7604
7605The arguments (%a and %b) and the first element of the result structure
7606may be of integer types of any bit width, but they must have the same
7607bit width. The second element of the result structure must be of type
7608``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7609subtraction.
7610
7611Semantics:
7612""""""""""
7613
7614The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007615a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007616first element of which is the subtraction, and the second element of
7617which is a bit specifying if the signed subtraction resulted in an
7618overflow.
7619
7620Examples:
7621"""""""""
7622
7623.. code-block:: llvm
7624
7625 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7626 %sum = extractvalue {i32, i1} %res, 0
7627 %obit = extractvalue {i32, i1} %res, 1
7628 br i1 %obit, label %overflow, label %normal
7629
7630'``llvm.usub.with.overflow.*``' Intrinsics
7631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7632
7633Syntax:
7634"""""""
7635
7636This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7637on any integer bit width.
7638
7639::
7640
7641 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7642 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7643 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7644
7645Overview:
7646"""""""""
7647
7648The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7649an unsigned subtraction of the two arguments, and indicate whether an
7650overflow occurred during the unsigned subtraction.
7651
7652Arguments:
7653""""""""""
7654
7655The arguments (%a and %b) and the first element of the result structure
7656may be of integer types of any bit width, but they must have the same
7657bit width. The second element of the result structure must be of type
7658``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7659subtraction.
7660
7661Semantics:
7662""""""""""
7663
7664The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007665an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00007666the first element of which is the subtraction, and the second element of
7667which is a bit specifying if the unsigned subtraction resulted in an
7668overflow.
7669
7670Examples:
7671"""""""""
7672
7673.. code-block:: llvm
7674
7675 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7676 %sum = extractvalue {i32, i1} %res, 0
7677 %obit = extractvalue {i32, i1} %res, 1
7678 br i1 %obit, label %overflow, label %normal
7679
7680'``llvm.smul.with.overflow.*``' Intrinsics
7681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7682
7683Syntax:
7684"""""""
7685
7686This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7687on any integer bit width.
7688
7689::
7690
7691 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7692 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7693 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7694
7695Overview:
7696"""""""""
7697
7698The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7699a signed multiplication of the two arguments, and indicate whether an
7700overflow occurred during the signed multiplication.
7701
7702Arguments:
7703""""""""""
7704
7705The arguments (%a and %b) and the first element of the result structure
7706may be of integer types of any bit width, but they must have the same
7707bit width. The second element of the result structure must be of type
7708``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7709multiplication.
7710
7711Semantics:
7712""""""""""
7713
7714The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007715a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00007716the first element of which is the multiplication, and the second element
7717of which is a bit specifying if the signed multiplication resulted in an
7718overflow.
7719
7720Examples:
7721"""""""""
7722
7723.. code-block:: llvm
7724
7725 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7726 %sum = extractvalue {i32, i1} %res, 0
7727 %obit = extractvalue {i32, i1} %res, 1
7728 br i1 %obit, label %overflow, label %normal
7729
7730'``llvm.umul.with.overflow.*``' Intrinsics
7731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7732
7733Syntax:
7734"""""""
7735
7736This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7737on any integer bit width.
7738
7739::
7740
7741 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7742 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7743 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7744
7745Overview:
7746"""""""""
7747
7748The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7749a unsigned multiplication of the two arguments, and indicate whether an
7750overflow occurred during the unsigned multiplication.
7751
7752Arguments:
7753""""""""""
7754
7755The arguments (%a and %b) and the first element of the result structure
7756may be of integer types of any bit width, but they must have the same
7757bit width. The second element of the result structure must be of type
7758``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7759multiplication.
7760
7761Semantics:
7762""""""""""
7763
7764The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007765an unsigned multiplication of the two arguments. They return a structure ---
7766the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00007767element of which is a bit specifying if the unsigned multiplication
7768resulted in an overflow.
7769
7770Examples:
7771"""""""""
7772
7773.. code-block:: llvm
7774
7775 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7776 %sum = extractvalue {i32, i1} %res, 0
7777 %obit = extractvalue {i32, i1} %res, 1
7778 br i1 %obit, label %overflow, label %normal
7779
7780Specialised Arithmetic Intrinsics
7781---------------------------------
7782
7783'``llvm.fmuladd.*``' Intrinsic
7784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7785
7786Syntax:
7787"""""""
7788
7789::
7790
7791 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7792 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7793
7794Overview:
7795"""""""""
7796
7797The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00007798expressions that can be fused if the code generator determines that (a) the
7799target instruction set has support for a fused operation, and (b) that the
7800fused operation is more efficient than the equivalent, separate pair of mul
7801and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00007802
7803Arguments:
7804""""""""""
7805
7806The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7807multiplicands, a and b, and an addend c.
7808
7809Semantics:
7810""""""""""
7811
7812The expression:
7813
7814::
7815
7816 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7817
7818is equivalent to the expression a \* b + c, except that rounding will
7819not be performed between the multiplication and addition steps if the
7820code generator fuses the operations. Fusion is not guaranteed, even if
7821the target platform supports it. If a fused multiply-add is required the
7822corresponding llvm.fma.\* intrinsic function should be used instead.
7823
7824Examples:
7825"""""""""
7826
7827.. code-block:: llvm
7828
7829 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7830
7831Half Precision Floating Point Intrinsics
7832----------------------------------------
7833
7834For most target platforms, half precision floating point is a
7835storage-only format. This means that it is a dense encoding (in memory)
7836but does not support computation in the format.
7837
7838This means that code must first load the half-precision floating point
7839value as an i16, then convert it to float with
7840:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7841then be performed on the float value (including extending to double
7842etc). To store the value back to memory, it is first converted to float
7843if needed, then converted to i16 with
7844:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7845i16 value.
7846
7847.. _int_convert_to_fp16:
7848
7849'``llvm.convert.to.fp16``' Intrinsic
7850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7851
7852Syntax:
7853"""""""
7854
7855::
7856
7857 declare i16 @llvm.convert.to.fp16(f32 %a)
7858
7859Overview:
7860"""""""""
7861
7862The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7863from single precision floating point format to half precision floating
7864point format.
7865
7866Arguments:
7867""""""""""
7868
7869The intrinsic function contains single argument - the value to be
7870converted.
7871
7872Semantics:
7873""""""""""
7874
7875The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7876from single precision floating point format to half precision floating
7877point format. The return value is an ``i16`` which contains the
7878converted number.
7879
7880Examples:
7881"""""""""
7882
7883.. code-block:: llvm
7884
7885 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7886 store i16 %res, i16* @x, align 2
7887
7888.. _int_convert_from_fp16:
7889
7890'``llvm.convert.from.fp16``' Intrinsic
7891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7892
7893Syntax:
7894"""""""
7895
7896::
7897
7898 declare f32 @llvm.convert.from.fp16(i16 %a)
7899
7900Overview:
7901"""""""""
7902
7903The '``llvm.convert.from.fp16``' intrinsic function performs a
7904conversion from half precision floating point format to single precision
7905floating point format.
7906
7907Arguments:
7908""""""""""
7909
7910The intrinsic function contains single argument - the value to be
7911converted.
7912
7913Semantics:
7914""""""""""
7915
7916The '``llvm.convert.from.fp16``' intrinsic function performs a
7917conversion from half single precision floating point format to single
7918precision floating point format. The input half-float value is
7919represented by an ``i16`` value.
7920
7921Examples:
7922"""""""""
7923
7924.. code-block:: llvm
7925
7926 %a = load i16* @x, align 2
7927 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7928
7929Debugger Intrinsics
7930-------------------
7931
7932The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7933prefix), are described in the `LLVM Source Level
7934Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7935document.
7936
7937Exception Handling Intrinsics
7938-----------------------------
7939
7940The LLVM exception handling intrinsics (which all start with
7941``llvm.eh.`` prefix), are described in the `LLVM Exception
7942Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7943
7944.. _int_trampoline:
7945
7946Trampoline Intrinsics
7947---------------------
7948
7949These intrinsics make it possible to excise one parameter, marked with
7950the :ref:`nest <nest>` attribute, from a function. The result is a
7951callable function pointer lacking the nest parameter - the caller does
7952not need to provide a value for it. Instead, the value to use is stored
7953in advance in a "trampoline", a block of memory usually allocated on the
7954stack, which also contains code to splice the nest value into the
7955argument list. This is used to implement the GCC nested function address
7956extension.
7957
7958For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7959then the resulting function pointer has signature ``i32 (i32, i32)*``.
7960It can be created as follows:
7961
7962.. code-block:: llvm
7963
7964 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7965 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7966 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7967 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7968 %fp = bitcast i8* %p to i32 (i32, i32)*
7969
7970The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7971``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7972
7973.. _int_it:
7974
7975'``llvm.init.trampoline``' Intrinsic
7976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7977
7978Syntax:
7979"""""""
7980
7981::
7982
7983 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7984
7985Overview:
7986"""""""""
7987
7988This fills the memory pointed to by ``tramp`` with executable code,
7989turning it into a trampoline.
7990
7991Arguments:
7992""""""""""
7993
7994The ``llvm.init.trampoline`` intrinsic takes three arguments, all
7995pointers. The ``tramp`` argument must point to a sufficiently large and
7996sufficiently aligned block of memory; this memory is written to by the
7997intrinsic. Note that the size and the alignment are target-specific -
7998LLVM currently provides no portable way of determining them, so a
7999front-end that generates this intrinsic needs to have some
8000target-specific knowledge. The ``func`` argument must hold a function
8001bitcast to an ``i8*``.
8002
8003Semantics:
8004""""""""""
8005
8006The block of memory pointed to by ``tramp`` is filled with target
8007dependent code, turning it into a function. Then ``tramp`` needs to be
8008passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8009be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8010function's signature is the same as that of ``func`` with any arguments
8011marked with the ``nest`` attribute removed. At most one such ``nest``
8012argument is allowed, and it must be of pointer type. Calling the new
8013function is equivalent to calling ``func`` with the same argument list,
8014but with ``nval`` used for the missing ``nest`` argument. If, after
8015calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8016modified, then the effect of any later call to the returned function
8017pointer is undefined.
8018
8019.. _int_at:
8020
8021'``llvm.adjust.trampoline``' Intrinsic
8022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8023
8024Syntax:
8025"""""""
8026
8027::
8028
8029 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8030
8031Overview:
8032"""""""""
8033
8034This performs any required machine-specific adjustment to the address of
8035a trampoline (passed as ``tramp``).
8036
8037Arguments:
8038""""""""""
8039
8040``tramp`` must point to a block of memory which already has trampoline
8041code filled in by a previous call to
8042:ref:`llvm.init.trampoline <int_it>`.
8043
8044Semantics:
8045""""""""""
8046
8047On some architectures the address of the code to be executed needs to be
8048different to the address where the trampoline is actually stored. This
8049intrinsic returns the executable address corresponding to ``tramp``
8050after performing the required machine specific adjustments. The pointer
8051returned can then be :ref:`bitcast and executed <int_trampoline>`.
8052
8053Memory Use Markers
8054------------------
8055
8056This class of intrinsics exists to information about the lifetime of
8057memory objects and ranges where variables are immutable.
8058
8059'``llvm.lifetime.start``' Intrinsic
8060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8061
8062Syntax:
8063"""""""
8064
8065::
8066
8067 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8068
8069Overview:
8070"""""""""
8071
8072The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8073object's lifetime.
8074
8075Arguments:
8076""""""""""
8077
8078The first argument is a constant integer representing the size of the
8079object, or -1 if it is variable sized. The second argument is a pointer
8080to the object.
8081
8082Semantics:
8083""""""""""
8084
8085This intrinsic indicates that before this point in the code, the value
8086of the memory pointed to by ``ptr`` is dead. This means that it is known
8087to never be used and has an undefined value. A load from the pointer
8088that precedes this intrinsic can be replaced with ``'undef'``.
8089
8090'``llvm.lifetime.end``' Intrinsic
8091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8092
8093Syntax:
8094"""""""
8095
8096::
8097
8098 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8099
8100Overview:
8101"""""""""
8102
8103The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8104object's lifetime.
8105
8106Arguments:
8107""""""""""
8108
8109The first argument is a constant integer representing the size of the
8110object, or -1 if it is variable sized. The second argument is a pointer
8111to the object.
8112
8113Semantics:
8114""""""""""
8115
8116This intrinsic indicates that after this point in the code, the value of
8117the memory pointed to by ``ptr`` is dead. This means that it is known to
8118never be used and has an undefined value. Any stores into the memory
8119object following this intrinsic may be removed as dead.
8120
8121'``llvm.invariant.start``' Intrinsic
8122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8123
8124Syntax:
8125"""""""
8126
8127::
8128
8129 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8130
8131Overview:
8132"""""""""
8133
8134The '``llvm.invariant.start``' intrinsic specifies that the contents of
8135a memory object will not change.
8136
8137Arguments:
8138""""""""""
8139
8140The first argument is a constant integer representing the size of the
8141object, or -1 if it is variable sized. The second argument is a pointer
8142to the object.
8143
8144Semantics:
8145""""""""""
8146
8147This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8148the return value, the referenced memory location is constant and
8149unchanging.
8150
8151'``llvm.invariant.end``' Intrinsic
8152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8153
8154Syntax:
8155"""""""
8156
8157::
8158
8159 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8160
8161Overview:
8162"""""""""
8163
8164The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8165memory object are mutable.
8166
8167Arguments:
8168""""""""""
8169
8170The first argument is the matching ``llvm.invariant.start`` intrinsic.
8171The second argument is a constant integer representing the size of the
8172object, or -1 if it is variable sized and the third argument is a
8173pointer to the object.
8174
8175Semantics:
8176""""""""""
8177
8178This intrinsic indicates that the memory is mutable again.
8179
8180General Intrinsics
8181------------------
8182
8183This class of intrinsics is designed to be generic and has no specific
8184purpose.
8185
8186'``llvm.var.annotation``' Intrinsic
8187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8188
8189Syntax:
8190"""""""
8191
8192::
8193
8194 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8195
8196Overview:
8197"""""""""
8198
8199The '``llvm.var.annotation``' intrinsic.
8200
8201Arguments:
8202""""""""""
8203
8204The first argument is a pointer to a value, the second is a pointer to a
8205global string, the third is a pointer to a global string which is the
8206source file name, and the last argument is the line number.
8207
8208Semantics:
8209""""""""""
8210
8211This intrinsic allows annotation of local variables with arbitrary
8212strings. This can be useful for special purpose optimizations that want
8213to look for these annotations. These have no other defined use; they are
8214ignored by code generation and optimization.
8215
8216'``llvm.annotation.*``' Intrinsic
8217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8218
8219Syntax:
8220"""""""
8221
8222This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8223any integer bit width.
8224
8225::
8226
8227 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8228 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8229 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8230 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8231 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8232
8233Overview:
8234"""""""""
8235
8236The '``llvm.annotation``' intrinsic.
8237
8238Arguments:
8239""""""""""
8240
8241The first argument is an integer value (result of some expression), the
8242second is a pointer to a global string, the third is a pointer to a
8243global string which is the source file name, and the last argument is
8244the line number. It returns the value of the first argument.
8245
8246Semantics:
8247""""""""""
8248
8249This intrinsic allows annotations to be put on arbitrary expressions
8250with arbitrary strings. This can be useful for special purpose
8251optimizations that want to look for these annotations. These have no
8252other defined use; they are ignored by code generation and optimization.
8253
8254'``llvm.trap``' Intrinsic
8255^^^^^^^^^^^^^^^^^^^^^^^^^
8256
8257Syntax:
8258"""""""
8259
8260::
8261
8262 declare void @llvm.trap() noreturn nounwind
8263
8264Overview:
8265"""""""""
8266
8267The '``llvm.trap``' intrinsic.
8268
8269Arguments:
8270""""""""""
8271
8272None.
8273
8274Semantics:
8275""""""""""
8276
8277This intrinsic is lowered to the target dependent trap instruction. If
8278the target does not have a trap instruction, this intrinsic will be
8279lowered to a call of the ``abort()`` function.
8280
8281'``llvm.debugtrap``' Intrinsic
8282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8283
8284Syntax:
8285"""""""
8286
8287::
8288
8289 declare void @llvm.debugtrap() nounwind
8290
8291Overview:
8292"""""""""
8293
8294The '``llvm.debugtrap``' intrinsic.
8295
8296Arguments:
8297""""""""""
8298
8299None.
8300
8301Semantics:
8302""""""""""
8303
8304This intrinsic is lowered to code which is intended to cause an
8305execution trap with the intention of requesting the attention of a
8306debugger.
8307
8308'``llvm.stackprotector``' Intrinsic
8309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8310
8311Syntax:
8312"""""""
8313
8314::
8315
8316 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8317
8318Overview:
8319"""""""""
8320
8321The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8322onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8323is placed on the stack before local variables.
8324
8325Arguments:
8326""""""""""
8327
8328The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8329The first argument is the value loaded from the stack guard
8330``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8331enough space to hold the value of the guard.
8332
8333Semantics:
8334""""""""""
8335
8336This intrinsic causes the prologue/epilogue inserter to force the
8337position of the ``AllocaInst`` stack slot to be before local variables
8338on the stack. This is to ensure that if a local variable on the stack is
8339overwritten, it will destroy the value of the guard. When the function
8340exits, the guard on the stack is checked against the original guard. If
8341they are different, then the program aborts by calling the
8342``__stack_chk_fail()`` function.
8343
8344'``llvm.objectsize``' Intrinsic
8345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8346
8347Syntax:
8348"""""""
8349
8350::
8351
8352 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8353 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8354
8355Overview:
8356"""""""""
8357
8358The ``llvm.objectsize`` intrinsic is designed to provide information to
8359the optimizers to determine at compile time whether a) an operation
8360(like memcpy) will overflow a buffer that corresponds to an object, or
8361b) that a runtime check for overflow isn't necessary. An object in this
8362context means an allocation of a specific class, structure, array, or
8363other object.
8364
8365Arguments:
8366""""""""""
8367
8368The ``llvm.objectsize`` intrinsic takes two arguments. The first
8369argument is a pointer to or into the ``object``. The second argument is
8370a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8371or -1 (if false) when the object size is unknown. The second argument
8372only accepts constants.
8373
8374Semantics:
8375""""""""""
8376
8377The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8378the size of the object concerned. If the size cannot be determined at
8379compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8380on the ``min`` argument).
8381
8382'``llvm.expect``' Intrinsic
8383^^^^^^^^^^^^^^^^^^^^^^^^^^^
8384
8385Syntax:
8386"""""""
8387
8388::
8389
8390 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8391 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8392
8393Overview:
8394"""""""""
8395
8396The ``llvm.expect`` intrinsic provides information about expected (the
8397most probable) value of ``val``, which can be used by optimizers.
8398
8399Arguments:
8400""""""""""
8401
8402The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8403a value. The second argument is an expected value, this needs to be a
8404constant value, variables are not allowed.
8405
8406Semantics:
8407""""""""""
8408
8409This intrinsic is lowered to the ``val``.
8410
8411'``llvm.donothing``' Intrinsic
8412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8413
8414Syntax:
8415"""""""
8416
8417::
8418
8419 declare void @llvm.donothing() nounwind readnone
8420
8421Overview:
8422"""""""""
8423
8424The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8425only intrinsic that can be called with an invoke instruction.
8426
8427Arguments:
8428""""""""""
8429
8430None.
8431
8432Semantics:
8433""""""""""
8434
8435This intrinsic does nothing, and it's removed by optimizers and ignored
8436by codegen.