blob: 023a050cd37220e0eccff9040a655ef614c785f4 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000153
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000156
157 ; Definition of main function
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000164 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
Michael Gottesman006039c2013-01-31 05:48:48 +0000468A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000472initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000504By default, LLVM optimizes global initializers by assuming that global
505variables defined within the module are not modified from their
506initial values before the start of the global initializer. This is
507true even for variables potentially accessible from outside the
508module, including those with external linkage or appearing in
Michael Gottesman8901bb62013-02-03 09:57:18 +0000509``@llvm.used``. This assumption may be suppressed by marking the
510variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000511
Sean Silvab084af42012-12-07 10:36:55 +0000512An explicit alignment may be specified for a global, which must be a
513power of 2. If not present, or if the alignment is set to zero, the
514alignment of the global is set by the target to whatever it feels
515convenient. If an explicit alignment is specified, the global is forced
516to have exactly that alignment. Targets and optimizers are not allowed
517to over-align the global if the global has an assigned section. In this
518case, the extra alignment could be observable: for example, code could
519assume that the globals are densely packed in their section and try to
520iterate over them as an array, alignment padding would break this
521iteration.
522
523For example, the following defines a global in a numbered address space
524with an initializer, section, and alignment:
525
526.. code-block:: llvm
527
528 @G = addrspace(5) constant float 1.0, section "foo", align 4
529
530The following example defines a thread-local global with the
531``initialexec`` TLS model:
532
533.. code-block:: llvm
534
535 @G = thread_local(initialexec) global i32 0, align 4
536
537.. _functionstructure:
538
539Functions
540---------
541
542LLVM function definitions consist of the "``define``" keyword, an
543optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
544style <visibility>`, an optional :ref:`calling convention <callingconv>`,
545an optional ``unnamed_addr`` attribute, a return type, an optional
546:ref:`parameter attribute <paramattrs>` for the return type, a function
547name, a (possibly empty) argument list (each with optional :ref:`parameter
548attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
549an optional section, an optional alignment, an optional :ref:`garbage
550collector name <gc>`, an opening curly brace, a list of basic blocks,
551and a closing curly brace.
552
553LLVM function declarations consist of the "``declare``" keyword, an
554optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
555style <visibility>`, an optional :ref:`calling convention <callingconv>`,
556an optional ``unnamed_addr`` attribute, a return type, an optional
557:ref:`parameter attribute <paramattrs>` for the return type, a function
558name, a possibly empty list of arguments, an optional alignment, and an
559optional :ref:`garbage collector name <gc>`.
560
561A function definition contains a list of basic blocks, forming the CFG
562(Control Flow Graph) for the function. Each basic block may optionally
563start with a label (giving the basic block a symbol table entry),
564contains a list of instructions, and ends with a
565:ref:`terminator <terminators>` instruction (such as a branch or function
566return).
567
568The first basic block in a function is special in two ways: it is
569immediately executed on entrance to the function, and it is not allowed
570to have predecessor basic blocks (i.e. there can not be any branches to
571the entry block of a function). Because the block can have no
572predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
573
574LLVM allows an explicit section to be specified for functions. If the
575target supports it, it will emit functions to the section specified.
576
577An explicit alignment may be specified for a function. If not present,
578or if the alignment is set to zero, the alignment of the function is set
579by the target to whatever it feels convenient. If an explicit alignment
580is specified, the function is forced to have at least that much
581alignment. All alignments must be a power of 2.
582
583If the ``unnamed_addr`` attribute is given, the address is know to not
584be significant and two identical functions can be merged.
585
586Syntax::
587
588 define [linkage] [visibility]
589 [cconv] [ret attrs]
590 <ResultType> @<FunctionName> ([argument list])
591 [fn Attrs] [section "name"] [align N]
592 [gc] { ... }
593
594Aliases
595-------
596
597Aliases act as "second name" for the aliasee value (which can be either
598function, global variable, another alias or bitcast of global value).
599Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
600:ref:`visibility style <visibility>`.
601
602Syntax::
603
604 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
605
606.. _namedmetadatastructure:
607
608Named Metadata
609--------------
610
611Named metadata is a collection of metadata. :ref:`Metadata
612nodes <metadata>` (but not metadata strings) are the only valid
613operands for a named metadata.
614
615Syntax::
616
617 ; Some unnamed metadata nodes, which are referenced by the named metadata.
618 !0 = metadata !{metadata !"zero"}
619 !1 = metadata !{metadata !"one"}
620 !2 = metadata !{metadata !"two"}
621 ; A named metadata.
622 !name = !{!0, !1, !2}
623
624.. _paramattrs:
625
626Parameter Attributes
627--------------------
628
629The return type and each parameter of a function type may have a set of
630*parameter attributes* associated with them. Parameter attributes are
631used to communicate additional information about the result or
632parameters of a function. Parameter attributes are considered to be part
633of the function, not of the function type, so functions with different
634parameter attributes can have the same function type.
635
636Parameter attributes are simple keywords that follow the type specified.
637If multiple parameter attributes are needed, they are space separated.
638For example:
639
640.. code-block:: llvm
641
642 declare i32 @printf(i8* noalias nocapture, ...)
643 declare i32 @atoi(i8 zeroext)
644 declare signext i8 @returns_signed_char()
645
646Note that any attributes for the function result (``nounwind``,
647``readonly``) come immediately after the argument list.
648
649Currently, only the following parameter attributes are defined:
650
651``zeroext``
652 This indicates to the code generator that the parameter or return
653 value should be zero-extended to the extent required by the target's
654 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
655 the caller (for a parameter) or the callee (for a return value).
656``signext``
657 This indicates to the code generator that the parameter or return
658 value should be sign-extended to the extent required by the target's
659 ABI (which is usually 32-bits) by the caller (for a parameter) or
660 the callee (for a return value).
661``inreg``
662 This indicates that this parameter or return value should be treated
663 in a special target-dependent fashion during while emitting code for
664 a function call or return (usually, by putting it in a register as
665 opposed to memory, though some targets use it to distinguish between
666 two different kinds of registers). Use of this attribute is
667 target-specific.
668``byval``
669 This indicates that the pointer parameter should really be passed by
670 value to the function. The attribute implies that a hidden copy of
671 the pointee is made between the caller and the callee, so the callee
672 is unable to modify the value in the caller. This attribute is only
673 valid on LLVM pointer arguments. It is generally used to pass
674 structs and arrays by value, but is also valid on pointers to
675 scalars. The copy is considered to belong to the caller not the
676 callee (for example, ``readonly`` functions should not write to
677 ``byval`` parameters). This is not a valid attribute for return
678 values.
679
680 The byval attribute also supports specifying an alignment with the
681 align attribute. It indicates the alignment of the stack slot to
682 form and the known alignment of the pointer specified to the call
683 site. If the alignment is not specified, then the code generator
684 makes a target-specific assumption.
685
686``sret``
687 This indicates that the pointer parameter specifies the address of a
688 structure that is the return value of the function in the source
689 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000690 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000691 not to trap and to be properly aligned. This may only be applied to
692 the first parameter. This is not a valid attribute for return
693 values.
694``noalias``
695 This indicates that pointer values `*based* <pointeraliasing>` on
696 the argument or return value do not alias pointer values which are
697 not *based* on it, ignoring certain "irrelevant" dependencies. For a
698 call to the parent function, dependencies between memory references
699 from before or after the call and from those during the call are
700 "irrelevant" to the ``noalias`` keyword for the arguments and return
701 value used in that call. The caller shares the responsibility with
702 the callee for ensuring that these requirements are met. For further
703 details, please see the discussion of the NoAlias response in `alias
704 analysis <AliasAnalysis.html#MustMayNo>`_.
705
706 Note that this definition of ``noalias`` is intentionally similar
707 to the definition of ``restrict`` in C99 for function arguments,
708 though it is slightly weaker.
709
710 For function return values, C99's ``restrict`` is not meaningful,
711 while LLVM's ``noalias`` is.
712``nocapture``
713 This indicates that the callee does not make any copies of the
714 pointer that outlive the callee itself. This is not a valid
715 attribute for return values.
716
717.. _nest:
718
719``nest``
720 This indicates that the pointer parameter can be excised using the
721 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
722 attribute for return values.
723
724.. _gc:
725
726Garbage Collector Names
727-----------------------
728
729Each function may specify a garbage collector name, which is simply a
730string:
731
732.. code-block:: llvm
733
734 define void @f() gc "name" { ... }
735
736The compiler declares the supported values of *name*. Specifying a
737collector which will cause the compiler to alter its output in order to
738support the named garbage collection algorithm.
739
740.. _fnattrs:
741
742Function Attributes
743-------------------
744
745Function attributes are set to communicate additional information about
746a function. Function attributes are considered to be part of the
747function, not of the function type, so functions with different function
748attributes can have the same function type.
749
750Function attributes are simple keywords that follow the type specified.
751If multiple attributes are needed, they are space separated. For
752example:
753
754.. code-block:: llvm
755
756 define void @f() noinline { ... }
757 define void @f() alwaysinline { ... }
758 define void @f() alwaysinline optsize { ... }
759 define void @f() optsize { ... }
760
761``address_safety``
762 This attribute indicates that the address safety analysis is enabled
763 for this function.
764``alignstack(<n>)``
765 This attribute indicates that, when emitting the prologue and
766 epilogue, the backend should forcibly align the stack pointer.
767 Specify the desired alignment, which must be a power of two, in
768 parentheses.
769``alwaysinline``
770 This attribute indicates that the inliner should attempt to inline
771 this function into callers whenever possible, ignoring any active
772 inlining size threshold for this caller.
773``nonlazybind``
774 This attribute suppresses lazy symbol binding for the function. This
775 may make calls to the function faster, at the cost of extra program
776 startup time if the function is not called during program startup.
777``inlinehint``
778 This attribute indicates that the source code contained a hint that
779 inlining this function is desirable (such as the "inline" keyword in
780 C/C++). It is just a hint; it imposes no requirements on the
781 inliner.
782``naked``
783 This attribute disables prologue / epilogue emission for the
784 function. This can have very system-specific consequences.
785``noimplicitfloat``
786 This attributes disables implicit floating point instructions.
787``noinline``
788 This attribute indicates that the inliner should never inline this
789 function in any situation. This attribute may not be used together
790 with the ``alwaysinline`` attribute.
791``noredzone``
792 This attribute indicates that the code generator should not use a
793 red zone, even if the target-specific ABI normally permits it.
794``noreturn``
795 This function attribute indicates that the function never returns
796 normally. This produces undefined behavior at runtime if the
797 function ever does dynamically return.
798``nounwind``
799 This function attribute indicates that the function never returns
800 with an unwind or exceptional control flow. If the function does
801 unwind, its runtime behavior is undefined.
802``optsize``
803 This attribute suggests that optimization passes and code generator
804 passes make choices that keep the code size of this function low,
805 and otherwise do optimizations specifically to reduce code size.
806``readnone``
807 This attribute indicates that the function computes its result (or
808 decides to unwind an exception) based strictly on its arguments,
809 without dereferencing any pointer arguments or otherwise accessing
810 any mutable state (e.g. memory, control registers, etc) visible to
811 caller functions. It does not write through any pointer arguments
812 (including ``byval`` arguments) and never changes any state visible
813 to callers. This means that it cannot unwind exceptions by calling
814 the ``C++`` exception throwing methods.
815``readonly``
816 This attribute indicates that the function does not write through
817 any pointer arguments (including ``byval`` arguments) or otherwise
818 modify any state (e.g. memory, control registers, etc) visible to
819 caller functions. It may dereference pointer arguments and read
820 state that may be set in the caller. A readonly function always
821 returns the same value (or unwinds an exception identically) when
822 called with the same set of arguments and global state. It cannot
823 unwind an exception by calling the ``C++`` exception throwing
824 methods.
825``returns_twice``
826 This attribute indicates that this function can return twice. The C
827 ``setjmp`` is an example of such a function. The compiler disables
828 some optimizations (like tail calls) in the caller of these
829 functions.
830``ssp``
831 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000832 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +0000833 placed on the stack before the local variables that's checked upon
834 return from the function to see if it has been overwritten. A
835 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000836 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000837
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000838 - Character arrays larger than ``ssp-buffer-size`` (default 8).
839 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
840 - Calls to alloca() with variable sizes or constant sizes greater than
841 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +0000842
843 If a function that has an ``ssp`` attribute is inlined into a
844 function that doesn't have an ``ssp`` attribute, then the resulting
845 function will have an ``ssp`` attribute.
846``sspreq``
847 This attribute indicates that the function should *always* emit a
848 stack smashing protector. This overrides the ``ssp`` function
849 attribute.
850
851 If a function that has an ``sspreq`` attribute is inlined into a
852 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +0000853 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
854 an ``sspreq`` attribute.
855``sspstrong``
856 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000857 protector. This attribute causes a strong heuristic to be used when
858 determining if a function needs stack protectors. The strong heuristic
859 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000860
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000861 - Arrays of any size and type
862 - Aggregates containing an array of any size and type.
863 - Calls to alloca().
864 - Local variables that have had their address taken.
865
866 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +0000867
868 If a function that has an ``sspstrong`` attribute is inlined into a
869 function that doesn't have an ``sspstrong`` attribute, then the
870 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +0000871``uwtable``
872 This attribute indicates that the ABI being targeted requires that
873 an unwind table entry be produce for this function even if we can
874 show that no exceptions passes by it. This is normally the case for
875 the ELF x86-64 abi, but it can be disabled for some compilation
876 units.
James Molloy4f6fb952012-12-20 16:04:27 +0000877``noduplicate``
878 This attribute indicates that calls to the function cannot be
879 duplicated. A call to a ``noduplicate`` function may be moved
880 within its parent function, but may not be duplicated within
881 its parent function.
882
883 A function containing a ``noduplicate`` call may still
884 be an inlining candidate, provided that the call is not
885 duplicated by inlining. That implies that the function has
886 internal linkage and only has one call site, so the original
887 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000888
889.. _moduleasm:
890
891Module-Level Inline Assembly
892----------------------------
893
894Modules may contain "module-level inline asm" blocks, which corresponds
895to the GCC "file scope inline asm" blocks. These blocks are internally
896concatenated by LLVM and treated as a single unit, but may be separated
897in the ``.ll`` file if desired. The syntax is very simple:
898
899.. code-block:: llvm
900
901 module asm "inline asm code goes here"
902 module asm "more can go here"
903
904The strings can contain any character by escaping non-printable
905characters. The escape sequence used is simply "\\xx" where "xx" is the
906two digit hex code for the number.
907
908The inline asm code is simply printed to the machine code .s file when
909assembly code is generated.
910
911Data Layout
912-----------
913
914A module may specify a target specific data layout string that specifies
915how data is to be laid out in memory. The syntax for the data layout is
916simply:
917
918.. code-block:: llvm
919
920 target datalayout = "layout specification"
921
922The *layout specification* consists of a list of specifications
923separated by the minus sign character ('-'). Each specification starts
924with a letter and may include other information after the letter to
925define some aspect of the data layout. The specifications accepted are
926as follows:
927
928``E``
929 Specifies that the target lays out data in big-endian form. That is,
930 the bits with the most significance have the lowest address
931 location.
932``e``
933 Specifies that the target lays out data in little-endian form. That
934 is, the bits with the least significance have the lowest address
935 location.
936``S<size>``
937 Specifies the natural alignment of the stack in bits. Alignment
938 promotion of stack variables is limited to the natural stack
939 alignment to avoid dynamic stack realignment. The stack alignment
940 must be a multiple of 8-bits. If omitted, the natural stack
941 alignment defaults to "unspecified", which does not prevent any
942 alignment promotions.
943``p[n]:<size>:<abi>:<pref>``
944 This specifies the *size* of a pointer and its ``<abi>`` and
945 ``<pref>``\erred alignments for address space ``n``. All sizes are in
946 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
947 preceding ``:`` should be omitted too. The address space, ``n`` is
948 optional, and if not specified, denotes the default address space 0.
949 The value of ``n`` must be in the range [1,2^23).
950``i<size>:<abi>:<pref>``
951 This specifies the alignment for an integer type of a given bit
952 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
953``v<size>:<abi>:<pref>``
954 This specifies the alignment for a vector type of a given bit
955 ``<size>``.
956``f<size>:<abi>:<pref>``
957 This specifies the alignment for a floating point type of a given bit
958 ``<size>``. Only values of ``<size>`` that are supported by the target
959 will work. 32 (float) and 64 (double) are supported on all targets; 80
960 or 128 (different flavors of long double) are also supported on some
961 targets.
962``a<size>:<abi>:<pref>``
963 This specifies the alignment for an aggregate type of a given bit
964 ``<size>``.
965``s<size>:<abi>:<pref>``
966 This specifies the alignment for a stack object of a given bit
967 ``<size>``.
968``n<size1>:<size2>:<size3>...``
969 This specifies a set of native integer widths for the target CPU in
970 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
971 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
972 this set are considered to support most general arithmetic operations
973 efficiently.
974
975When constructing the data layout for a given target, LLVM starts with a
976default set of specifications which are then (possibly) overridden by
977the specifications in the ``datalayout`` keyword. The default
978specifications are given in this list:
979
980- ``E`` - big endian
981- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglunda832ab12013-01-30 09:02:06 +0000982- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +0000983- ``i1:8:8`` - i1 is 8-bit (byte) aligned
984- ``i8:8:8`` - i8 is 8-bit (byte) aligned
985- ``i16:16:16`` - i16 is 16-bit aligned
986- ``i32:32:32`` - i32 is 32-bit aligned
987- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
988 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +0000989- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +0000990- ``f32:32:32`` - float is 32-bit aligned
991- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +0000992- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +0000993- ``v64:64:64`` - 64-bit vector is 64-bit aligned
994- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +0000995- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +0000996
997When LLVM is determining the alignment for a given type, it uses the
998following rules:
999
1000#. If the type sought is an exact match for one of the specifications,
1001 that specification is used.
1002#. If no match is found, and the type sought is an integer type, then
1003 the smallest integer type that is larger than the bitwidth of the
1004 sought type is used. If none of the specifications are larger than
1005 the bitwidth then the largest integer type is used. For example,
1006 given the default specifications above, the i7 type will use the
1007 alignment of i8 (next largest) while both i65 and i256 will use the
1008 alignment of i64 (largest specified).
1009#. If no match is found, and the type sought is a vector type, then the
1010 largest vector type that is smaller than the sought vector type will
1011 be used as a fall back. This happens because <128 x double> can be
1012 implemented in terms of 64 <2 x double>, for example.
1013
1014The function of the data layout string may not be what you expect.
1015Notably, this is not a specification from the frontend of what alignment
1016the code generator should use.
1017
1018Instead, if specified, the target data layout is required to match what
1019the ultimate *code generator* expects. This string is used by the
1020mid-level optimizers to improve code, and this only works if it matches
1021what the ultimate code generator uses. If you would like to generate IR
1022that does not embed this target-specific detail into the IR, then you
1023don't have to specify the string. This will disable some optimizations
1024that require precise layout information, but this also prevents those
1025optimizations from introducing target specificity into the IR.
1026
1027.. _pointeraliasing:
1028
1029Pointer Aliasing Rules
1030----------------------
1031
1032Any memory access must be done through a pointer value associated with
1033an address range of the memory access, otherwise the behavior is
1034undefined. Pointer values are associated with address ranges according
1035to the following rules:
1036
1037- A pointer value is associated with the addresses associated with any
1038 value it is *based* on.
1039- An address of a global variable is associated with the address range
1040 of the variable's storage.
1041- The result value of an allocation instruction is associated with the
1042 address range of the allocated storage.
1043- A null pointer in the default address-space is associated with no
1044 address.
1045- An integer constant other than zero or a pointer value returned from
1046 a function not defined within LLVM may be associated with address
1047 ranges allocated through mechanisms other than those provided by
1048 LLVM. Such ranges shall not overlap with any ranges of addresses
1049 allocated by mechanisms provided by LLVM.
1050
1051A pointer value is *based* on another pointer value according to the
1052following rules:
1053
1054- A pointer value formed from a ``getelementptr`` operation is *based*
1055 on the first operand of the ``getelementptr``.
1056- The result value of a ``bitcast`` is *based* on the operand of the
1057 ``bitcast``.
1058- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1059 values that contribute (directly or indirectly) to the computation of
1060 the pointer's value.
1061- The "*based* on" relationship is transitive.
1062
1063Note that this definition of *"based"* is intentionally similar to the
1064definition of *"based"* in C99, though it is slightly weaker.
1065
1066LLVM IR does not associate types with memory. The result type of a
1067``load`` merely indicates the size and alignment of the memory from
1068which to load, as well as the interpretation of the value. The first
1069operand type of a ``store`` similarly only indicates the size and
1070alignment of the store.
1071
1072Consequently, type-based alias analysis, aka TBAA, aka
1073``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1074:ref:`Metadata <metadata>` may be used to encode additional information
1075which specialized optimization passes may use to implement type-based
1076alias analysis.
1077
1078.. _volatile:
1079
1080Volatile Memory Accesses
1081------------------------
1082
1083Certain memory accesses, such as :ref:`load <i_load>`'s,
1084:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1085marked ``volatile``. The optimizers must not change the number of
1086volatile operations or change their order of execution relative to other
1087volatile operations. The optimizers *may* change the order of volatile
1088operations relative to non-volatile operations. This is not Java's
1089"volatile" and has no cross-thread synchronization behavior.
1090
Andrew Trick89fc5a62013-01-30 21:19:35 +00001091IR-level volatile loads and stores cannot safely be optimized into
1092llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1093flagged volatile. Likewise, the backend should never split or merge
1094target-legal volatile load/store instructions.
1095
Andrew Trick7e6f9282013-01-31 00:49:39 +00001096.. admonition:: Rationale
1097
1098 Platforms may rely on volatile loads and stores of natively supported
1099 data width to be executed as single instruction. For example, in C
1100 this holds for an l-value of volatile primitive type with native
1101 hardware support, but not necessarily for aggregate types. The
1102 frontend upholds these expectations, which are intentionally
1103 unspecified in the IR. The rules above ensure that IR transformation
1104 do not violate the frontend's contract with the language.
1105
Sean Silvab084af42012-12-07 10:36:55 +00001106.. _memmodel:
1107
1108Memory Model for Concurrent Operations
1109--------------------------------------
1110
1111The LLVM IR does not define any way to start parallel threads of
1112execution or to register signal handlers. Nonetheless, there are
1113platform-specific ways to create them, and we define LLVM IR's behavior
1114in their presence. This model is inspired by the C++0x memory model.
1115
1116For a more informal introduction to this model, see the :doc:`Atomics`.
1117
1118We define a *happens-before* partial order as the least partial order
1119that
1120
1121- Is a superset of single-thread program order, and
1122- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1123 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1124 techniques, like pthread locks, thread creation, thread joining,
1125 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1126 Constraints <ordering>`).
1127
1128Note that program order does not introduce *happens-before* edges
1129between a thread and signals executing inside that thread.
1130
1131Every (defined) read operation (load instructions, memcpy, atomic
1132loads/read-modify-writes, etc.) R reads a series of bytes written by
1133(defined) write operations (store instructions, atomic
1134stores/read-modify-writes, memcpy, etc.). For the purposes of this
1135section, initialized globals are considered to have a write of the
1136initializer which is atomic and happens before any other read or write
1137of the memory in question. For each byte of a read R, R\ :sub:`byte`
1138may see any write to the same byte, except:
1139
1140- If write\ :sub:`1` happens before write\ :sub:`2`, and
1141 write\ :sub:`2` happens before R\ :sub:`byte`, then
1142 R\ :sub:`byte` does not see write\ :sub:`1`.
1143- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1144 R\ :sub:`byte` does not see write\ :sub:`3`.
1145
1146Given that definition, R\ :sub:`byte` is defined as follows:
1147
1148- If R is volatile, the result is target-dependent. (Volatile is
1149 supposed to give guarantees which can support ``sig_atomic_t`` in
1150 C/C++, and may be used for accesses to addresses which do not behave
1151 like normal memory. It does not generally provide cross-thread
1152 synchronization.)
1153- Otherwise, if there is no write to the same byte that happens before
1154 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1155- Otherwise, if R\ :sub:`byte` may see exactly one write,
1156 R\ :sub:`byte` returns the value written by that write.
1157- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1158 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1159 Memory Ordering Constraints <ordering>` section for additional
1160 constraints on how the choice is made.
1161- Otherwise R\ :sub:`byte` returns ``undef``.
1162
1163R returns the value composed of the series of bytes it read. This
1164implies that some bytes within the value may be ``undef`` **without**
1165the entire value being ``undef``. Note that this only defines the
1166semantics of the operation; it doesn't mean that targets will emit more
1167than one instruction to read the series of bytes.
1168
1169Note that in cases where none of the atomic intrinsics are used, this
1170model places only one restriction on IR transformations on top of what
1171is required for single-threaded execution: introducing a store to a byte
1172which might not otherwise be stored is not allowed in general.
1173(Specifically, in the case where another thread might write to and read
1174from an address, introducing a store can change a load that may see
1175exactly one write into a load that may see multiple writes.)
1176
1177.. _ordering:
1178
1179Atomic Memory Ordering Constraints
1180----------------------------------
1181
1182Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1183:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1184:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1185an ordering parameter that determines which other atomic instructions on
1186the same address they *synchronize with*. These semantics are borrowed
1187from Java and C++0x, but are somewhat more colloquial. If these
1188descriptions aren't precise enough, check those specs (see spec
1189references in the :doc:`atomics guide <Atomics>`).
1190:ref:`fence <i_fence>` instructions treat these orderings somewhat
1191differently since they don't take an address. See that instruction's
1192documentation for details.
1193
1194For a simpler introduction to the ordering constraints, see the
1195:doc:`Atomics`.
1196
1197``unordered``
1198 The set of values that can be read is governed by the happens-before
1199 partial order. A value cannot be read unless some operation wrote
1200 it. This is intended to provide a guarantee strong enough to model
1201 Java's non-volatile shared variables. This ordering cannot be
1202 specified for read-modify-write operations; it is not strong enough
1203 to make them atomic in any interesting way.
1204``monotonic``
1205 In addition to the guarantees of ``unordered``, there is a single
1206 total order for modifications by ``monotonic`` operations on each
1207 address. All modification orders must be compatible with the
1208 happens-before order. There is no guarantee that the modification
1209 orders can be combined to a global total order for the whole program
1210 (and this often will not be possible). The read in an atomic
1211 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1212 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1213 order immediately before the value it writes. If one atomic read
1214 happens before another atomic read of the same address, the later
1215 read must see the same value or a later value in the address's
1216 modification order. This disallows reordering of ``monotonic`` (or
1217 stronger) operations on the same address. If an address is written
1218 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1219 read that address repeatedly, the other threads must eventually see
1220 the write. This corresponds to the C++0x/C1x
1221 ``memory_order_relaxed``.
1222``acquire``
1223 In addition to the guarantees of ``monotonic``, a
1224 *synchronizes-with* edge may be formed with a ``release`` operation.
1225 This is intended to model C++'s ``memory_order_acquire``.
1226``release``
1227 In addition to the guarantees of ``monotonic``, if this operation
1228 writes a value which is subsequently read by an ``acquire``
1229 operation, it *synchronizes-with* that operation. (This isn't a
1230 complete description; see the C++0x definition of a release
1231 sequence.) This corresponds to the C++0x/C1x
1232 ``memory_order_release``.
1233``acq_rel`` (acquire+release)
1234 Acts as both an ``acquire`` and ``release`` operation on its
1235 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1236``seq_cst`` (sequentially consistent)
1237 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1238 operation which only reads, ``release`` for an operation which only
1239 writes), there is a global total order on all
1240 sequentially-consistent operations on all addresses, which is
1241 consistent with the *happens-before* partial order and with the
1242 modification orders of all the affected addresses. Each
1243 sequentially-consistent read sees the last preceding write to the
1244 same address in this global order. This corresponds to the C++0x/C1x
1245 ``memory_order_seq_cst`` and Java volatile.
1246
1247.. _singlethread:
1248
1249If an atomic operation is marked ``singlethread``, it only *synchronizes
1250with* or participates in modification and seq\_cst total orderings with
1251other operations running in the same thread (for example, in signal
1252handlers).
1253
1254.. _fastmath:
1255
1256Fast-Math Flags
1257---------------
1258
1259LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1260:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1261:ref:`frem <i_frem>`) have the following flags that can set to enable
1262otherwise unsafe floating point operations
1263
1264``nnan``
1265 No NaNs - Allow optimizations to assume the arguments and result are not
1266 NaN. Such optimizations are required to retain defined behavior over
1267 NaNs, but the value of the result is undefined.
1268
1269``ninf``
1270 No Infs - Allow optimizations to assume the arguments and result are not
1271 +/-Inf. Such optimizations are required to retain defined behavior over
1272 +/-Inf, but the value of the result is undefined.
1273
1274``nsz``
1275 No Signed Zeros - Allow optimizations to treat the sign of a zero
1276 argument or result as insignificant.
1277
1278``arcp``
1279 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1280 argument rather than perform division.
1281
1282``fast``
1283 Fast - Allow algebraically equivalent transformations that may
1284 dramatically change results in floating point (e.g. reassociate). This
1285 flag implies all the others.
1286
1287.. _typesystem:
1288
1289Type System
1290===========
1291
1292The LLVM type system is one of the most important features of the
1293intermediate representation. Being typed enables a number of
1294optimizations to be performed on the intermediate representation
1295directly, without having to do extra analyses on the side before the
1296transformation. A strong type system makes it easier to read the
1297generated code and enables novel analyses and transformations that are
1298not feasible to perform on normal three address code representations.
1299
1300Type Classifications
1301--------------------
1302
1303The types fall into a few useful classifications:
1304
1305
1306.. list-table::
1307 :header-rows: 1
1308
1309 * - Classification
1310 - Types
1311
1312 * - :ref:`integer <t_integer>`
1313 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1314 ``i64``, ...
1315
1316 * - :ref:`floating point <t_floating>`
1317 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1318 ``ppc_fp128``
1319
1320
1321 * - first class
1322
1323 .. _t_firstclass:
1324
1325 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1326 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1327 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1328 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1329
1330 * - :ref:`primitive <t_primitive>`
1331 - :ref:`label <t_label>`,
1332 :ref:`void <t_void>`,
1333 :ref:`integer <t_integer>`,
1334 :ref:`floating point <t_floating>`,
1335 :ref:`x86mmx <t_x86mmx>`,
1336 :ref:`metadata <t_metadata>`.
1337
1338 * - :ref:`derived <t_derived>`
1339 - :ref:`array <t_array>`,
1340 :ref:`function <t_function>`,
1341 :ref:`pointer <t_pointer>`,
1342 :ref:`structure <t_struct>`,
1343 :ref:`vector <t_vector>`,
1344 :ref:`opaque <t_opaque>`.
1345
1346The :ref:`first class <t_firstclass>` types are perhaps the most important.
1347Values of these types are the only ones which can be produced by
1348instructions.
1349
1350.. _t_primitive:
1351
1352Primitive Types
1353---------------
1354
1355The primitive types are the fundamental building blocks of the LLVM
1356system.
1357
1358.. _t_integer:
1359
1360Integer Type
1361^^^^^^^^^^^^
1362
1363Overview:
1364"""""""""
1365
1366The integer type is a very simple type that simply specifies an
1367arbitrary bit width for the integer type desired. Any bit width from 1
1368bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1369
1370Syntax:
1371"""""""
1372
1373::
1374
1375 iN
1376
1377The number of bits the integer will occupy is specified by the ``N``
1378value.
1379
1380Examples:
1381"""""""""
1382
1383+----------------+------------------------------------------------+
1384| ``i1`` | a single-bit integer. |
1385+----------------+------------------------------------------------+
1386| ``i32`` | a 32-bit integer. |
1387+----------------+------------------------------------------------+
1388| ``i1942652`` | a really big integer of over 1 million bits. |
1389+----------------+------------------------------------------------+
1390
1391.. _t_floating:
1392
1393Floating Point Types
1394^^^^^^^^^^^^^^^^^^^^
1395
1396.. list-table::
1397 :header-rows: 1
1398
1399 * - Type
1400 - Description
1401
1402 * - ``half``
1403 - 16-bit floating point value
1404
1405 * - ``float``
1406 - 32-bit floating point value
1407
1408 * - ``double``
1409 - 64-bit floating point value
1410
1411 * - ``fp128``
1412 - 128-bit floating point value (112-bit mantissa)
1413
1414 * - ``x86_fp80``
1415 - 80-bit floating point value (X87)
1416
1417 * - ``ppc_fp128``
1418 - 128-bit floating point value (two 64-bits)
1419
1420.. _t_x86mmx:
1421
1422X86mmx Type
1423^^^^^^^^^^^
1424
1425Overview:
1426"""""""""
1427
1428The x86mmx type represents a value held in an MMX register on an x86
1429machine. The operations allowed on it are quite limited: parameters and
1430return values, load and store, and bitcast. User-specified MMX
1431instructions are represented as intrinsic or asm calls with arguments
1432and/or results of this type. There are no arrays, vectors or constants
1433of this type.
1434
1435Syntax:
1436"""""""
1437
1438::
1439
1440 x86mmx
1441
1442.. _t_void:
1443
1444Void Type
1445^^^^^^^^^
1446
1447Overview:
1448"""""""""
1449
1450The void type does not represent any value and has no size.
1451
1452Syntax:
1453"""""""
1454
1455::
1456
1457 void
1458
1459.. _t_label:
1460
1461Label Type
1462^^^^^^^^^^
1463
1464Overview:
1465"""""""""
1466
1467The label type represents code labels.
1468
1469Syntax:
1470"""""""
1471
1472::
1473
1474 label
1475
1476.. _t_metadata:
1477
1478Metadata Type
1479^^^^^^^^^^^^^
1480
1481Overview:
1482"""""""""
1483
1484The metadata type represents embedded metadata. No derived types may be
1485created from metadata except for :ref:`function <t_function>` arguments.
1486
1487Syntax:
1488"""""""
1489
1490::
1491
1492 metadata
1493
1494.. _t_derived:
1495
1496Derived Types
1497-------------
1498
1499The real power in LLVM comes from the derived types in the system. This
1500is what allows a programmer to represent arrays, functions, pointers,
1501and other useful types. Each of these types contain one or more element
1502types which may be a primitive type, or another derived type. For
1503example, it is possible to have a two dimensional array, using an array
1504as the element type of another array.
1505
1506.. _t_aggregate:
1507
1508Aggregate Types
1509^^^^^^^^^^^^^^^
1510
1511Aggregate Types are a subset of derived types that can contain multiple
1512member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1513aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1514aggregate types.
1515
1516.. _t_array:
1517
1518Array Type
1519^^^^^^^^^^
1520
1521Overview:
1522"""""""""
1523
1524The array type is a very simple derived type that arranges elements
1525sequentially in memory. The array type requires a size (number of
1526elements) and an underlying data type.
1527
1528Syntax:
1529"""""""
1530
1531::
1532
1533 [<# elements> x <elementtype>]
1534
1535The number of elements is a constant integer value; ``elementtype`` may
1536be any type with a size.
1537
1538Examples:
1539"""""""""
1540
1541+------------------+--------------------------------------+
1542| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1543+------------------+--------------------------------------+
1544| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1545+------------------+--------------------------------------+
1546| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1547+------------------+--------------------------------------+
1548
1549Here are some examples of multidimensional arrays:
1550
1551+-----------------------------+----------------------------------------------------------+
1552| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1553+-----------------------------+----------------------------------------------------------+
1554| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1555+-----------------------------+----------------------------------------------------------+
1556| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1557+-----------------------------+----------------------------------------------------------+
1558
1559There is no restriction on indexing beyond the end of the array implied
1560by a static type (though there are restrictions on indexing beyond the
1561bounds of an allocated object in some cases). This means that
1562single-dimension 'variable sized array' addressing can be implemented in
1563LLVM with a zero length array type. An implementation of 'pascal style
1564arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1565example.
1566
1567.. _t_function:
1568
1569Function Type
1570^^^^^^^^^^^^^
1571
1572Overview:
1573"""""""""
1574
1575The function type can be thought of as a function signature. It consists
1576of a return type and a list of formal parameter types. The return type
1577of a function type is a first class type or a void type.
1578
1579Syntax:
1580"""""""
1581
1582::
1583
1584 <returntype> (<parameter list>)
1585
1586...where '``<parameter list>``' is a comma-separated list of type
1587specifiers. Optionally, the parameter list may include a type ``...``,
1588which indicates that the function takes a variable number of arguments.
1589Variable argument functions can access their arguments with the
1590:ref:`variable argument handling intrinsic <int_varargs>` functions.
1591'``<returntype>``' is any type except :ref:`label <t_label>`.
1592
1593Examples:
1594"""""""""
1595
1596+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1597| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1598+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001599| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvab084af42012-12-07 10:36:55 +00001600+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1601| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1602+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1603| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1604+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1605
1606.. _t_struct:
1607
1608Structure Type
1609^^^^^^^^^^^^^^
1610
1611Overview:
1612"""""""""
1613
1614The structure type is used to represent a collection of data members
1615together in memory. The elements of a structure may be any type that has
1616a size.
1617
1618Structures in memory are accessed using '``load``' and '``store``' by
1619getting a pointer to a field with the '``getelementptr``' instruction.
1620Structures in registers are accessed using the '``extractvalue``' and
1621'``insertvalue``' instructions.
1622
1623Structures may optionally be "packed" structures, which indicate that
1624the alignment of the struct is one byte, and that there is no padding
1625between the elements. In non-packed structs, padding between field types
1626is inserted as defined by the DataLayout string in the module, which is
1627required to match what the underlying code generator expects.
1628
1629Structures can either be "literal" or "identified". A literal structure
1630is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1631identified types are always defined at the top level with a name.
1632Literal types are uniqued by their contents and can never be recursive
1633or opaque since there is no way to write one. Identified types can be
1634recursive, can be opaqued, and are never uniqued.
1635
1636Syntax:
1637"""""""
1638
1639::
1640
1641 %T1 = type { <type list> } ; Identified normal struct type
1642 %T2 = type <{ <type list> }> ; Identified packed struct type
1643
1644Examples:
1645"""""""""
1646
1647+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1648| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1649+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001650| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001651+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1652| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1653+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1654
1655.. _t_opaque:
1656
1657Opaque Structure Types
1658^^^^^^^^^^^^^^^^^^^^^^
1659
1660Overview:
1661"""""""""
1662
1663Opaque structure types are used to represent named structure types that
1664do not have a body specified. This corresponds (for example) to the C
1665notion of a forward declared structure.
1666
1667Syntax:
1668"""""""
1669
1670::
1671
1672 %X = type opaque
1673 %52 = type opaque
1674
1675Examples:
1676"""""""""
1677
1678+--------------+-------------------+
1679| ``opaque`` | An opaque type. |
1680+--------------+-------------------+
1681
1682.. _t_pointer:
1683
1684Pointer Type
1685^^^^^^^^^^^^
1686
1687Overview:
1688"""""""""
1689
1690The pointer type is used to specify memory locations. Pointers are
1691commonly used to reference objects in memory.
1692
1693Pointer types may have an optional address space attribute defining the
1694numbered address space where the pointed-to object resides. The default
1695address space is number zero. The semantics of non-zero address spaces
1696are target-specific.
1697
1698Note that LLVM does not permit pointers to void (``void*``) nor does it
1699permit pointers to labels (``label*``). Use ``i8*`` instead.
1700
1701Syntax:
1702"""""""
1703
1704::
1705
1706 <type> *
1707
1708Examples:
1709"""""""""
1710
1711+-------------------------+--------------------------------------------------------------------------------------------------------------+
1712| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1713+-------------------------+--------------------------------------------------------------------------------------------------------------+
1714| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1715+-------------------------+--------------------------------------------------------------------------------------------------------------+
1716| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1717+-------------------------+--------------------------------------------------------------------------------------------------------------+
1718
1719.. _t_vector:
1720
1721Vector Type
1722^^^^^^^^^^^
1723
1724Overview:
1725"""""""""
1726
1727A vector type is a simple derived type that represents a vector of
1728elements. Vector types are used when multiple primitive data are
1729operated in parallel using a single instruction (SIMD). A vector type
1730requires a size (number of elements) and an underlying primitive data
1731type. Vector types are considered :ref:`first class <t_firstclass>`.
1732
1733Syntax:
1734"""""""
1735
1736::
1737
1738 < <# elements> x <elementtype> >
1739
1740The number of elements is a constant integer value larger than 0;
1741elementtype may be any integer or floating point type, or a pointer to
1742these types. Vectors of size zero are not allowed.
1743
1744Examples:
1745"""""""""
1746
1747+-------------------+--------------------------------------------------+
1748| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1749+-------------------+--------------------------------------------------+
1750| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1751+-------------------+--------------------------------------------------+
1752| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1753+-------------------+--------------------------------------------------+
1754| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1755+-------------------+--------------------------------------------------+
1756
1757Constants
1758=========
1759
1760LLVM has several different basic types of constants. This section
1761describes them all and their syntax.
1762
1763Simple Constants
1764----------------
1765
1766**Boolean constants**
1767 The two strings '``true``' and '``false``' are both valid constants
1768 of the ``i1`` type.
1769**Integer constants**
1770 Standard integers (such as '4') are constants of the
1771 :ref:`integer <t_integer>` type. Negative numbers may be used with
1772 integer types.
1773**Floating point constants**
1774 Floating point constants use standard decimal notation (e.g.
1775 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1776 hexadecimal notation (see below). The assembler requires the exact
1777 decimal value of a floating-point constant. For example, the
1778 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1779 decimal in binary. Floating point constants must have a :ref:`floating
1780 point <t_floating>` type.
1781**Null pointer constants**
1782 The identifier '``null``' is recognized as a null pointer constant
1783 and must be of :ref:`pointer type <t_pointer>`.
1784
1785The one non-intuitive notation for constants is the hexadecimal form of
1786floating point constants. For example, the form
1787'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1788than) '``double 4.5e+15``'. The only time hexadecimal floating point
1789constants are required (and the only time that they are generated by the
1790disassembler) is when a floating point constant must be emitted but it
1791cannot be represented as a decimal floating point number in a reasonable
1792number of digits. For example, NaN's, infinities, and other special
1793values are represented in their IEEE hexadecimal format so that assembly
1794and disassembly do not cause any bits to change in the constants.
1795
1796When using the hexadecimal form, constants of types half, float, and
1797double are represented using the 16-digit form shown above (which
1798matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001799must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001800precision, respectively. Hexadecimal format is always used for long
1801double, and there are three forms of long double. The 80-bit format used
1802by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1803128-bit format used by PowerPC (two adjacent doubles) is represented by
1804``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1805represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1806supported target uses this format. Long doubles will only work if they
1807match the long double format on your target. The IEEE 16-bit format
1808(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1809digits. All hexadecimal formats are big-endian (sign bit at the left).
1810
1811There are no constants of type x86mmx.
1812
1813Complex Constants
1814-----------------
1815
1816Complex constants are a (potentially recursive) combination of simple
1817constants and smaller complex constants.
1818
1819**Structure constants**
1820 Structure constants are represented with notation similar to
1821 structure type definitions (a comma separated list of elements,
1822 surrounded by braces (``{}``)). For example:
1823 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1824 "``@G = external global i32``". Structure constants must have
1825 :ref:`structure type <t_struct>`, and the number and types of elements
1826 must match those specified by the type.
1827**Array constants**
1828 Array constants are represented with notation similar to array type
1829 definitions (a comma separated list of elements, surrounded by
1830 square brackets (``[]``)). For example:
1831 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1832 :ref:`array type <t_array>`, and the number and types of elements must
1833 match those specified by the type.
1834**Vector constants**
1835 Vector constants are represented with notation similar to vector
1836 type definitions (a comma separated list of elements, surrounded by
1837 less-than/greater-than's (``<>``)). For example:
1838 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1839 must have :ref:`vector type <t_vector>`, and the number and types of
1840 elements must match those specified by the type.
1841**Zero initialization**
1842 The string '``zeroinitializer``' can be used to zero initialize a
1843 value to zero of *any* type, including scalar and
1844 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1845 having to print large zero initializers (e.g. for large arrays) and
1846 is always exactly equivalent to using explicit zero initializers.
1847**Metadata node**
1848 A metadata node is a structure-like constant with :ref:`metadata
1849 type <t_metadata>`. For example:
1850 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1851 constants that are meant to be interpreted as part of the
1852 instruction stream, metadata is a place to attach additional
1853 information such as debug info.
1854
1855Global Variable and Function Addresses
1856--------------------------------------
1857
1858The addresses of :ref:`global variables <globalvars>` and
1859:ref:`functions <functionstructure>` are always implicitly valid
1860(link-time) constants. These constants are explicitly referenced when
1861the :ref:`identifier for the global <identifiers>` is used and always have
1862:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1863file:
1864
1865.. code-block:: llvm
1866
1867 @X = global i32 17
1868 @Y = global i32 42
1869 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1870
1871.. _undefvalues:
1872
1873Undefined Values
1874----------------
1875
1876The string '``undef``' can be used anywhere a constant is expected, and
1877indicates that the user of the value may receive an unspecified
1878bit-pattern. Undefined values may be of any type (other than '``label``'
1879or '``void``') and be used anywhere a constant is permitted.
1880
1881Undefined values are useful because they indicate to the compiler that
1882the program is well defined no matter what value is used. This gives the
1883compiler more freedom to optimize. Here are some examples of
1884(potentially surprising) transformations that are valid (in pseudo IR):
1885
1886.. code-block:: llvm
1887
1888 %A = add %X, undef
1889 %B = sub %X, undef
1890 %C = xor %X, undef
1891 Safe:
1892 %A = undef
1893 %B = undef
1894 %C = undef
1895
1896This is safe because all of the output bits are affected by the undef
1897bits. Any output bit can have a zero or one depending on the input bits.
1898
1899.. code-block:: llvm
1900
1901 %A = or %X, undef
1902 %B = and %X, undef
1903 Safe:
1904 %A = -1
1905 %B = 0
1906 Unsafe:
1907 %A = undef
1908 %B = undef
1909
1910These logical operations have bits that are not always affected by the
1911input. For example, if ``%X`` has a zero bit, then the output of the
1912'``and``' operation will always be a zero for that bit, no matter what
1913the corresponding bit from the '``undef``' is. As such, it is unsafe to
1914optimize or assume that the result of the '``and``' is '``undef``'.
1915However, it is safe to assume that all bits of the '``undef``' could be
19160, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1917all the bits of the '``undef``' operand to the '``or``' could be set,
1918allowing the '``or``' to be folded to -1.
1919
1920.. code-block:: llvm
1921
1922 %A = select undef, %X, %Y
1923 %B = select undef, 42, %Y
1924 %C = select %X, %Y, undef
1925 Safe:
1926 %A = %X (or %Y)
1927 %B = 42 (or %Y)
1928 %C = %Y
1929 Unsafe:
1930 %A = undef
1931 %B = undef
1932 %C = undef
1933
1934This set of examples shows that undefined '``select``' (and conditional
1935branch) conditions can go *either way*, but they have to come from one
1936of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1937both known to have a clear low bit, then ``%A`` would have to have a
1938cleared low bit. However, in the ``%C`` example, the optimizer is
1939allowed to assume that the '``undef``' operand could be the same as
1940``%Y``, allowing the whole '``select``' to be eliminated.
1941
1942.. code-block:: llvm
1943
1944 %A = xor undef, undef
1945
1946 %B = undef
1947 %C = xor %B, %B
1948
1949 %D = undef
1950 %E = icmp lt %D, 4
1951 %F = icmp gte %D, 4
1952
1953 Safe:
1954 %A = undef
1955 %B = undef
1956 %C = undef
1957 %D = undef
1958 %E = undef
1959 %F = undef
1960
1961This example points out that two '``undef``' operands are not
1962necessarily the same. This can be surprising to people (and also matches
1963C semantics) where they assume that "``X^X``" is always zero, even if
1964``X`` is undefined. This isn't true for a number of reasons, but the
1965short answer is that an '``undef``' "variable" can arbitrarily change
1966its value over its "live range". This is true because the variable
1967doesn't actually *have a live range*. Instead, the value is logically
1968read from arbitrary registers that happen to be around when needed, so
1969the value is not necessarily consistent over time. In fact, ``%A`` and
1970``%C`` need to have the same semantics or the core LLVM "replace all
1971uses with" concept would not hold.
1972
1973.. code-block:: llvm
1974
1975 %A = fdiv undef, %X
1976 %B = fdiv %X, undef
1977 Safe:
1978 %A = undef
1979 b: unreachable
1980
1981These examples show the crucial difference between an *undefined value*
1982and *undefined behavior*. An undefined value (like '``undef``') is
1983allowed to have an arbitrary bit-pattern. This means that the ``%A``
1984operation can be constant folded to '``undef``', because the '``undef``'
1985could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
1986However, in the second example, we can make a more aggressive
1987assumption: because the ``undef`` is allowed to be an arbitrary value,
1988we are allowed to assume that it could be zero. Since a divide by zero
1989has *undefined behavior*, we are allowed to assume that the operation
1990does not execute at all. This allows us to delete the divide and all
1991code after it. Because the undefined operation "can't happen", the
1992optimizer can assume that it occurs in dead code.
1993
1994.. code-block:: llvm
1995
1996 a: store undef -> %X
1997 b: store %X -> undef
1998 Safe:
1999 a: <deleted>
2000 b: unreachable
2001
2002These examples reiterate the ``fdiv`` example: a store *of* an undefined
2003value can be assumed to not have any effect; we can assume that the
2004value is overwritten with bits that happen to match what was already
2005there. However, a store *to* an undefined location could clobber
2006arbitrary memory, therefore, it has undefined behavior.
2007
2008.. _poisonvalues:
2009
2010Poison Values
2011-------------
2012
2013Poison values are similar to :ref:`undef values <undefvalues>`, however
2014they also represent the fact that an instruction or constant expression
2015which cannot evoke side effects has nevertheless detected a condition
2016which results in undefined behavior.
2017
2018There is currently no way of representing a poison value in the IR; they
2019only exist when produced by operations such as :ref:`add <i_add>` with
2020the ``nsw`` flag.
2021
2022Poison value behavior is defined in terms of value *dependence*:
2023
2024- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2025- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2026 their dynamic predecessor basic block.
2027- Function arguments depend on the corresponding actual argument values
2028 in the dynamic callers of their functions.
2029- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2030 instructions that dynamically transfer control back to them.
2031- :ref:`Invoke <i_invoke>` instructions depend on the
2032 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2033 call instructions that dynamically transfer control back to them.
2034- Non-volatile loads and stores depend on the most recent stores to all
2035 of the referenced memory addresses, following the order in the IR
2036 (including loads and stores implied by intrinsics such as
2037 :ref:`@llvm.memcpy <int_memcpy>`.)
2038- An instruction with externally visible side effects depends on the
2039 most recent preceding instruction with externally visible side
2040 effects, following the order in the IR. (This includes :ref:`volatile
2041 operations <volatile>`.)
2042- An instruction *control-depends* on a :ref:`terminator
2043 instruction <terminators>` if the terminator instruction has
2044 multiple successors and the instruction is always executed when
2045 control transfers to one of the successors, and may not be executed
2046 when control is transferred to another.
2047- Additionally, an instruction also *control-depends* on a terminator
2048 instruction if the set of instructions it otherwise depends on would
2049 be different if the terminator had transferred control to a different
2050 successor.
2051- Dependence is transitive.
2052
2053Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2054with the additional affect that any instruction which has a *dependence*
2055on a poison value has undefined behavior.
2056
2057Here are some examples:
2058
2059.. code-block:: llvm
2060
2061 entry:
2062 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2063 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2064 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2065 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2066
2067 store i32 %poison, i32* @g ; Poison value stored to memory.
2068 %poison2 = load i32* @g ; Poison value loaded back from memory.
2069
2070 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2071
2072 %narrowaddr = bitcast i32* @g to i16*
2073 %wideaddr = bitcast i32* @g to i64*
2074 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2075 %poison4 = load i64* %wideaddr ; Returns a poison value.
2076
2077 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2078 br i1 %cmp, label %true, label %end ; Branch to either destination.
2079
2080 true:
2081 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2082 ; it has undefined behavior.
2083 br label %end
2084
2085 end:
2086 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2087 ; Both edges into this PHI are
2088 ; control-dependent on %cmp, so this
2089 ; always results in a poison value.
2090
2091 store volatile i32 0, i32* @g ; This would depend on the store in %true
2092 ; if %cmp is true, or the store in %entry
2093 ; otherwise, so this is undefined behavior.
2094
2095 br i1 %cmp, label %second_true, label %second_end
2096 ; The same branch again, but this time the
2097 ; true block doesn't have side effects.
2098
2099 second_true:
2100 ; No side effects!
2101 ret void
2102
2103 second_end:
2104 store volatile i32 0, i32* @g ; This time, the instruction always depends
2105 ; on the store in %end. Also, it is
2106 ; control-equivalent to %end, so this is
2107 ; well-defined (ignoring earlier undefined
2108 ; behavior in this example).
2109
2110.. _blockaddress:
2111
2112Addresses of Basic Blocks
2113-------------------------
2114
2115``blockaddress(@function, %block)``
2116
2117The '``blockaddress``' constant computes the address of the specified
2118basic block in the specified function, and always has an ``i8*`` type.
2119Taking the address of the entry block is illegal.
2120
2121This value only has defined behavior when used as an operand to the
2122':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2123against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002124undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002125no label is equal to the null pointer. This may be passed around as an
2126opaque pointer sized value as long as the bits are not inspected. This
2127allows ``ptrtoint`` and arithmetic to be performed on these values so
2128long as the original value is reconstituted before the ``indirectbr``
2129instruction.
2130
2131Finally, some targets may provide defined semantics when using the value
2132as the operand to an inline assembly, but that is target specific.
2133
2134Constant Expressions
2135--------------------
2136
2137Constant expressions are used to allow expressions involving other
2138constants to be used as constants. Constant expressions may be of any
2139:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2140that does not have side effects (e.g. load and call are not supported).
2141The following is the syntax for constant expressions:
2142
2143``trunc (CST to TYPE)``
2144 Truncate a constant to another type. The bit size of CST must be
2145 larger than the bit size of TYPE. Both types must be integers.
2146``zext (CST to TYPE)``
2147 Zero extend a constant to another type. The bit size of CST must be
2148 smaller than the bit size of TYPE. Both types must be integers.
2149``sext (CST to TYPE)``
2150 Sign extend a constant to another type. The bit size of CST must be
2151 smaller than the bit size of TYPE. Both types must be integers.
2152``fptrunc (CST to TYPE)``
2153 Truncate a floating point constant to another floating point type.
2154 The size of CST must be larger than the size of TYPE. Both types
2155 must be floating point.
2156``fpext (CST to TYPE)``
2157 Floating point extend a constant to another type. The size of CST
2158 must be smaller or equal to the size of TYPE. Both types must be
2159 floating point.
2160``fptoui (CST to TYPE)``
2161 Convert a floating point constant to the corresponding unsigned
2162 integer constant. TYPE must be a scalar or vector integer type. CST
2163 must be of scalar or vector floating point type. Both CST and TYPE
2164 must be scalars, or vectors of the same number of elements. If the
2165 value won't fit in the integer type, the results are undefined.
2166``fptosi (CST to TYPE)``
2167 Convert a floating point constant to the corresponding signed
2168 integer constant. TYPE must be a scalar or vector integer type. CST
2169 must be of scalar or vector floating point type. Both CST and TYPE
2170 must be scalars, or vectors of the same number of elements. If the
2171 value won't fit in the integer type, the results are undefined.
2172``uitofp (CST to TYPE)``
2173 Convert an unsigned integer constant to the corresponding floating
2174 point constant. TYPE must be a scalar or vector floating point type.
2175 CST must be of scalar or vector integer type. Both CST and TYPE must
2176 be scalars, or vectors of the same number of elements. If the value
2177 won't fit in the floating point type, the results are undefined.
2178``sitofp (CST to TYPE)``
2179 Convert a signed integer constant to the corresponding floating
2180 point constant. TYPE must be a scalar or vector floating point type.
2181 CST must be of scalar or vector integer type. Both CST and TYPE must
2182 be scalars, or vectors of the same number of elements. If the value
2183 won't fit in the floating point type, the results are undefined.
2184``ptrtoint (CST to TYPE)``
2185 Convert a pointer typed constant to the corresponding integer
2186 constant ``TYPE`` must be an integer type. ``CST`` must be of
2187 pointer type. The ``CST`` value is zero extended, truncated, or
2188 unchanged to make it fit in ``TYPE``.
2189``inttoptr (CST to TYPE)``
2190 Convert an integer constant to a pointer constant. TYPE must be a
2191 pointer type. CST must be of integer type. The CST value is zero
2192 extended, truncated, or unchanged to make it fit in a pointer size.
2193 This one is *really* dangerous!
2194``bitcast (CST to TYPE)``
2195 Convert a constant, CST, to another TYPE. The constraints of the
2196 operands are the same as those for the :ref:`bitcast
2197 instruction <i_bitcast>`.
2198``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2199 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2200 constants. As with the :ref:`getelementptr <i_getelementptr>`
2201 instruction, the index list may have zero or more indexes, which are
2202 required to make sense for the type of "CSTPTR".
2203``select (COND, VAL1, VAL2)``
2204 Perform the :ref:`select operation <i_select>` on constants.
2205``icmp COND (VAL1, VAL2)``
2206 Performs the :ref:`icmp operation <i_icmp>` on constants.
2207``fcmp COND (VAL1, VAL2)``
2208 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2209``extractelement (VAL, IDX)``
2210 Perform the :ref:`extractelement operation <i_extractelement>` on
2211 constants.
2212``insertelement (VAL, ELT, IDX)``
2213 Perform the :ref:`insertelement operation <i_insertelement>` on
2214 constants.
2215``shufflevector (VEC1, VEC2, IDXMASK)``
2216 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2217 constants.
2218``extractvalue (VAL, IDX0, IDX1, ...)``
2219 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2220 constants. The index list is interpreted in a similar manner as
2221 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2222 least one index value must be specified.
2223``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2224 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2225 The index list is interpreted in a similar manner as indices in a
2226 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2227 value must be specified.
2228``OPCODE (LHS, RHS)``
2229 Perform the specified operation of the LHS and RHS constants. OPCODE
2230 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2231 binary <bitwiseops>` operations. The constraints on operands are
2232 the same as those for the corresponding instruction (e.g. no bitwise
2233 operations on floating point values are allowed).
2234
2235Other Values
2236============
2237
2238Inline Assembler Expressions
2239----------------------------
2240
2241LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2242Inline Assembly <moduleasm>`) through the use of a special value. This
2243value represents the inline assembler as a string (containing the
2244instructions to emit), a list of operand constraints (stored as a
2245string), a flag that indicates whether or not the inline asm expression
2246has side effects, and a flag indicating whether the function containing
2247the asm needs to align its stack conservatively. An example inline
2248assembler expression is:
2249
2250.. code-block:: llvm
2251
2252 i32 (i32) asm "bswap $0", "=r,r"
2253
2254Inline assembler expressions may **only** be used as the callee operand
2255of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2256Thus, typically we have:
2257
2258.. code-block:: llvm
2259
2260 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2261
2262Inline asms with side effects not visible in the constraint list must be
2263marked as having side effects. This is done through the use of the
2264'``sideeffect``' keyword, like so:
2265
2266.. code-block:: llvm
2267
2268 call void asm sideeffect "eieio", ""()
2269
2270In some cases inline asms will contain code that will not work unless
2271the stack is aligned in some way, such as calls or SSE instructions on
2272x86, yet will not contain code that does that alignment within the asm.
2273The compiler should make conservative assumptions about what the asm
2274might contain and should generate its usual stack alignment code in the
2275prologue if the '``alignstack``' keyword is present:
2276
2277.. code-block:: llvm
2278
2279 call void asm alignstack "eieio", ""()
2280
2281Inline asms also support using non-standard assembly dialects. The
2282assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2283the inline asm is using the Intel dialect. Currently, ATT and Intel are
2284the only supported dialects. An example is:
2285
2286.. code-block:: llvm
2287
2288 call void asm inteldialect "eieio", ""()
2289
2290If multiple keywords appear the '``sideeffect``' keyword must come
2291first, the '``alignstack``' keyword second and the '``inteldialect``'
2292keyword last.
2293
2294Inline Asm Metadata
2295^^^^^^^^^^^^^^^^^^^
2296
2297The call instructions that wrap inline asm nodes may have a
2298"``!srcloc``" MDNode attached to it that contains a list of constant
2299integers. If present, the code generator will use the integer as the
2300location cookie value when report errors through the ``LLVMContext``
2301error reporting mechanisms. This allows a front-end to correlate backend
2302errors that occur with inline asm back to the source code that produced
2303it. For example:
2304
2305.. code-block:: llvm
2306
2307 call void asm sideeffect "something bad", ""(), !srcloc !42
2308 ...
2309 !42 = !{ i32 1234567 }
2310
2311It is up to the front-end to make sense of the magic numbers it places
2312in the IR. If the MDNode contains multiple constants, the code generator
2313will use the one that corresponds to the line of the asm that the error
2314occurs on.
2315
2316.. _metadata:
2317
2318Metadata Nodes and Metadata Strings
2319-----------------------------------
2320
2321LLVM IR allows metadata to be attached to instructions in the program
2322that can convey extra information about the code to the optimizers and
2323code generator. One example application of metadata is source-level
2324debug information. There are two metadata primitives: strings and nodes.
2325All metadata has the ``metadata`` type and is identified in syntax by a
2326preceding exclamation point ('``!``').
2327
2328A metadata string is a string surrounded by double quotes. It can
2329contain any character by escaping non-printable characters with
2330"``\xx``" where "``xx``" is the two digit hex code. For example:
2331"``!"test\00"``".
2332
2333Metadata nodes are represented with notation similar to structure
2334constants (a comma separated list of elements, surrounded by braces and
2335preceded by an exclamation point). Metadata nodes can have any values as
2336their operand. For example:
2337
2338.. code-block:: llvm
2339
2340 !{ metadata !"test\00", i32 10}
2341
2342A :ref:`named metadata <namedmetadatastructure>` is a collection of
2343metadata nodes, which can be looked up in the module symbol table. For
2344example:
2345
2346.. code-block:: llvm
2347
2348 !foo = metadata !{!4, !3}
2349
2350Metadata can be used as function arguments. Here ``llvm.dbg.value``
2351function is using two metadata arguments:
2352
2353.. code-block:: llvm
2354
2355 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2356
2357Metadata can be attached with an instruction. Here metadata ``!21`` is
2358attached to the ``add`` instruction using the ``!dbg`` identifier:
2359
2360.. code-block:: llvm
2361
2362 %indvar.next = add i64 %indvar, 1, !dbg !21
2363
2364More information about specific metadata nodes recognized by the
2365optimizers and code generator is found below.
2366
2367'``tbaa``' Metadata
2368^^^^^^^^^^^^^^^^^^^
2369
2370In LLVM IR, memory does not have types, so LLVM's own type system is not
2371suitable for doing TBAA. Instead, metadata is added to the IR to
2372describe a type system of a higher level language. This can be used to
2373implement typical C/C++ TBAA, but it can also be used to implement
2374custom alias analysis behavior for other languages.
2375
2376The current metadata format is very simple. TBAA metadata nodes have up
2377to three fields, e.g.:
2378
2379.. code-block:: llvm
2380
2381 !0 = metadata !{ metadata !"an example type tree" }
2382 !1 = metadata !{ metadata !"int", metadata !0 }
2383 !2 = metadata !{ metadata !"float", metadata !0 }
2384 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2385
2386The first field is an identity field. It can be any value, usually a
2387metadata string, which uniquely identifies the type. The most important
2388name in the tree is the name of the root node. Two trees with different
2389root node names are entirely disjoint, even if they have leaves with
2390common names.
2391
2392The second field identifies the type's parent node in the tree, or is
2393null or omitted for a root node. A type is considered to alias all of
2394its descendants and all of its ancestors in the tree. Also, a type is
2395considered to alias all types in other trees, so that bitcode produced
2396from multiple front-ends is handled conservatively.
2397
2398If the third field is present, it's an integer which if equal to 1
2399indicates that the type is "constant" (meaning
2400``pointsToConstantMemory`` should return true; see `other useful
2401AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2402
2403'``tbaa.struct``' Metadata
2404^^^^^^^^^^^^^^^^^^^^^^^^^^
2405
2406The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2407aggregate assignment operations in C and similar languages, however it
2408is defined to copy a contiguous region of memory, which is more than
2409strictly necessary for aggregate types which contain holes due to
2410padding. Also, it doesn't contain any TBAA information about the fields
2411of the aggregate.
2412
2413``!tbaa.struct`` metadata can describe which memory subregions in a
2414memcpy are padding and what the TBAA tags of the struct are.
2415
2416The current metadata format is very simple. ``!tbaa.struct`` metadata
2417nodes are a list of operands which are in conceptual groups of three.
2418For each group of three, the first operand gives the byte offset of a
2419field in bytes, the second gives its size in bytes, and the third gives
2420its tbaa tag. e.g.:
2421
2422.. code-block:: llvm
2423
2424 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2425
2426This describes a struct with two fields. The first is at offset 0 bytes
2427with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2428and has size 4 bytes and has tbaa tag !2.
2429
2430Note that the fields need not be contiguous. In this example, there is a
24314 byte gap between the two fields. This gap represents padding which
2432does not carry useful data and need not be preserved.
2433
2434'``fpmath``' Metadata
2435^^^^^^^^^^^^^^^^^^^^^
2436
2437``fpmath`` metadata may be attached to any instruction of floating point
2438type. It can be used to express the maximum acceptable error in the
2439result of that instruction, in ULPs, thus potentially allowing the
2440compiler to use a more efficient but less accurate method of computing
2441it. ULP is defined as follows:
2442
2443 If ``x`` is a real number that lies between two finite consecutive
2444 floating-point numbers ``a`` and ``b``, without being equal to one
2445 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2446 distance between the two non-equal finite floating-point numbers
2447 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2448
2449The metadata node shall consist of a single positive floating point
2450number representing the maximum relative error, for example:
2451
2452.. code-block:: llvm
2453
2454 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2455
2456'``range``' Metadata
2457^^^^^^^^^^^^^^^^^^^^
2458
2459``range`` metadata may be attached only to loads of integer types. It
2460expresses the possible ranges the loaded value is in. The ranges are
2461represented with a flattened list of integers. The loaded value is known
2462to be in the union of the ranges defined by each consecutive pair. Each
2463pair has the following properties:
2464
2465- The type must match the type loaded by the instruction.
2466- The pair ``a,b`` represents the range ``[a,b)``.
2467- Both ``a`` and ``b`` are constants.
2468- The range is allowed to wrap.
2469- The range should not represent the full or empty set. That is,
2470 ``a!=b``.
2471
2472In addition, the pairs must be in signed order of the lower bound and
2473they must be non-contiguous.
2474
2475Examples:
2476
2477.. code-block:: llvm
2478
2479 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2480 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2481 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2482 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2483 ...
2484 !0 = metadata !{ i8 0, i8 2 }
2485 !1 = metadata !{ i8 255, i8 2 }
2486 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2487 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2488
2489Module Flags Metadata
2490=====================
2491
2492Information about the module as a whole is difficult to convey to LLVM's
2493subsystems. The LLVM IR isn't sufficient to transmit this information.
2494The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002495this. These flags are in the form of key / value pairs --- much like a
2496dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002497look it up.
2498
2499The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2500Each triplet has the following form:
2501
2502- The first element is a *behavior* flag, which specifies the behavior
2503 when two (or more) modules are merged together, and it encounters two
2504 (or more) metadata with the same ID. The supported behaviors are
2505 described below.
2506- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002507 metadata. Each module may only have one flag entry for each unique ID (not
2508 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002509- The third element is the value of the flag.
2510
2511When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002512``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2513each unique metadata ID string, there will be exactly one entry in the merged
2514modules ``llvm.module.flags`` metadata table, and the value for that entry will
2515be determined by the merge behavior flag, as described below. The only exception
2516is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002517
2518The following behaviors are supported:
2519
2520.. list-table::
2521 :header-rows: 1
2522 :widths: 10 90
2523
2524 * - Value
2525 - Behavior
2526
2527 * - 1
2528 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002529 Emits an error if two values disagree, otherwise the resulting value
2530 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002531
2532 * - 2
2533 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002534 Emits a warning if two values disagree. The result value will be the
2535 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002536
2537 * - 3
2538 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002539 Adds a requirement that another module flag be present and have a
2540 specified value after linking is performed. The value must be a
2541 metadata pair, where the first element of the pair is the ID of the
2542 module flag to be restricted, and the second element of the pair is
2543 the value the module flag should be restricted to. This behavior can
2544 be used to restrict the allowable results (via triggering of an
2545 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002546
2547 * - 4
2548 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002549 Uses the specified value, regardless of the behavior or value of the
2550 other module. If both modules specify **Override**, but the values
2551 differ, an error will be emitted.
2552
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002553 * - 5
2554 - **Append**
2555 Appends the two values, which are required to be metadata nodes.
2556
2557 * - 6
2558 - **AppendUnique**
2559 Appends the two values, which are required to be metadata
2560 nodes. However, duplicate entries in the second list are dropped
2561 during the append operation.
2562
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002563It is an error for a particular unique flag ID to have multiple behaviors,
2564except in the case of **Require** (which adds restrictions on another metadata
2565value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002566
2567An example of module flags:
2568
2569.. code-block:: llvm
2570
2571 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2572 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2573 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2574 !3 = metadata !{ i32 3, metadata !"qux",
2575 metadata !{
2576 metadata !"foo", i32 1
2577 }
2578 }
2579 !llvm.module.flags = !{ !0, !1, !2, !3 }
2580
2581- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2582 if two or more ``!"foo"`` flags are seen is to emit an error if their
2583 values are not equal.
2584
2585- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2586 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002587 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002588
2589- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2590 behavior if two or more ``!"qux"`` flags are seen is to emit a
2591 warning if their values are not equal.
2592
2593- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2594
2595 ::
2596
2597 metadata !{ metadata !"foo", i32 1 }
2598
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002599 The behavior is to emit an error if the ``llvm.module.flags`` does not
2600 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2601 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002602
2603Objective-C Garbage Collection Module Flags Metadata
2604----------------------------------------------------
2605
2606On the Mach-O platform, Objective-C stores metadata about garbage
2607collection in a special section called "image info". The metadata
2608consists of a version number and a bitmask specifying what types of
2609garbage collection are supported (if any) by the file. If two or more
2610modules are linked together their garbage collection metadata needs to
2611be merged rather than appended together.
2612
2613The Objective-C garbage collection module flags metadata consists of the
2614following key-value pairs:
2615
2616.. list-table::
2617 :header-rows: 1
2618 :widths: 30 70
2619
2620 * - Key
2621 - Value
2622
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002623 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002624 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002625
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002626 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002627 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002628 always 0.
2629
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002630 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002631 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002632 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2633 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2634 Objective-C ABI version 2.
2635
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002636 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002637 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002638 not. Valid values are 0, for no garbage collection, and 2, for garbage
2639 collection supported.
2640
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002641 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002642 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002643 If present, its value must be 6. This flag requires that the
2644 ``Objective-C Garbage Collection`` flag have the value 2.
2645
2646Some important flag interactions:
2647
2648- If a module with ``Objective-C Garbage Collection`` set to 0 is
2649 merged with a module with ``Objective-C Garbage Collection`` set to
2650 2, then the resulting module has the
2651 ``Objective-C Garbage Collection`` flag set to 0.
2652- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2653 merged with a module with ``Objective-C GC Only`` set to 6.
2654
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002655Automatic Linker Flags Module Flags Metadata
2656--------------------------------------------
2657
2658Some targets support embedding flags to the linker inside individual object
2659files. Typically this is used in conjunction with language extensions which
2660allow source files to explicitly declare the libraries they depend on, and have
2661these automatically be transmitted to the linker via object files.
2662
2663These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002664using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002665to be ``AppendUnique``, and the value for the key is expected to be a metadata
2666node which should be a list of other metadata nodes, each of which should be a
2667list of metadata strings defining linker options.
2668
2669For example, the following metadata section specifies two separate sets of
2670linker options, presumably to link against ``libz`` and the ``Cocoa``
2671framework::
2672
Daniel Dunbar95856122013-01-18 19:37:00 +00002673 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002674 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00002675 metadata !{ metadata !"-lz" },
2676 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002677 !llvm.module.flags = !{ !0 }
2678
2679The metadata encoding as lists of lists of options, as opposed to a collapsed
2680list of options, is chosen so that the IR encoding can use multiple option
2681strings to specify e.g., a single library, while still having that specifier be
2682preserved as an atomic element that can be recognized by a target specific
2683assembly writer or object file emitter.
2684
2685Each individual option is required to be either a valid option for the target's
2686linker, or an option that is reserved by the target specific assembly writer or
2687object file emitter. No other aspect of these options is defined by the IR.
2688
Sean Silvab084af42012-12-07 10:36:55 +00002689Intrinsic Global Variables
2690==========================
2691
2692LLVM has a number of "magic" global variables that contain data that
2693affect code generation or other IR semantics. These are documented here.
2694All globals of this sort should have a section specified as
2695"``llvm.metadata``". This section and all globals that start with
2696"``llvm.``" are reserved for use by LLVM.
2697
2698The '``llvm.used``' Global Variable
2699-----------------------------------
2700
2701The ``@llvm.used`` global is an array with i8\* element type which has
2702:ref:`appending linkage <linkage_appending>`. This array contains a list of
2703pointers to global variables and functions which may optionally have a
2704pointer cast formed of bitcast or getelementptr. For example, a legal
2705use of it is:
2706
2707.. code-block:: llvm
2708
2709 @X = global i8 4
2710 @Y = global i32 123
2711
2712 @llvm.used = appending global [2 x i8*] [
2713 i8* @X,
2714 i8* bitcast (i32* @Y to i8*)
2715 ], section "llvm.metadata"
2716
2717If a global variable appears in the ``@llvm.used`` list, then the
2718compiler, assembler, and linker are required to treat the symbol as if
2719there is a reference to the global that it cannot see. For example, if a
2720variable has internal linkage and no references other than that from the
2721``@llvm.used`` list, it cannot be deleted. This is commonly used to
2722represent references from inline asms and other things the compiler
2723cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2724
2725On some targets, the code generator must emit a directive to the
2726assembler or object file to prevent the assembler and linker from
2727molesting the symbol.
2728
2729The '``llvm.compiler.used``' Global Variable
2730--------------------------------------------
2731
2732The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2733directive, except that it only prevents the compiler from touching the
2734symbol. On targets that support it, this allows an intelligent linker to
2735optimize references to the symbol without being impeded as it would be
2736by ``@llvm.used``.
2737
2738This is a rare construct that should only be used in rare circumstances,
2739and should not be exposed to source languages.
2740
2741The '``llvm.global_ctors``' Global Variable
2742-------------------------------------------
2743
2744.. code-block:: llvm
2745
2746 %0 = type { i32, void ()* }
2747 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2748
2749The ``@llvm.global_ctors`` array contains a list of constructor
2750functions and associated priorities. The functions referenced by this
2751array will be called in ascending order of priority (i.e. lowest first)
2752when the module is loaded. The order of functions with the same priority
2753is not defined.
2754
2755The '``llvm.global_dtors``' Global Variable
2756-------------------------------------------
2757
2758.. code-block:: llvm
2759
2760 %0 = type { i32, void ()* }
2761 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2762
2763The ``@llvm.global_dtors`` array contains a list of destructor functions
2764and associated priorities. The functions referenced by this array will
2765be called in descending order of priority (i.e. highest first) when the
2766module is loaded. The order of functions with the same priority is not
2767defined.
2768
2769Instruction Reference
2770=====================
2771
2772The LLVM instruction set consists of several different classifications
2773of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2774instructions <binaryops>`, :ref:`bitwise binary
2775instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2776:ref:`other instructions <otherops>`.
2777
2778.. _terminators:
2779
2780Terminator Instructions
2781-----------------------
2782
2783As mentioned :ref:`previously <functionstructure>`, every basic block in a
2784program ends with a "Terminator" instruction, which indicates which
2785block should be executed after the current block is finished. These
2786terminator instructions typically yield a '``void``' value: they produce
2787control flow, not values (the one exception being the
2788':ref:`invoke <i_invoke>`' instruction).
2789
2790The terminator instructions are: ':ref:`ret <i_ret>`',
2791':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2792':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2793':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2794
2795.. _i_ret:
2796
2797'``ret``' Instruction
2798^^^^^^^^^^^^^^^^^^^^^
2799
2800Syntax:
2801"""""""
2802
2803::
2804
2805 ret <type> <value> ; Return a value from a non-void function
2806 ret void ; Return from void function
2807
2808Overview:
2809"""""""""
2810
2811The '``ret``' instruction is used to return control flow (and optionally
2812a value) from a function back to the caller.
2813
2814There are two forms of the '``ret``' instruction: one that returns a
2815value and then causes control flow, and one that just causes control
2816flow to occur.
2817
2818Arguments:
2819""""""""""
2820
2821The '``ret``' instruction optionally accepts a single argument, the
2822return value. The type of the return value must be a ':ref:`first
2823class <t_firstclass>`' type.
2824
2825A function is not :ref:`well formed <wellformed>` if it it has a non-void
2826return type and contains a '``ret``' instruction with no return value or
2827a return value with a type that does not match its type, or if it has a
2828void return type and contains a '``ret``' instruction with a return
2829value.
2830
2831Semantics:
2832""""""""""
2833
2834When the '``ret``' instruction is executed, control flow returns back to
2835the calling function's context. If the caller is a
2836":ref:`call <i_call>`" instruction, execution continues at the
2837instruction after the call. If the caller was an
2838":ref:`invoke <i_invoke>`" instruction, execution continues at the
2839beginning of the "normal" destination block. If the instruction returns
2840a value, that value shall set the call or invoke instruction's return
2841value.
2842
2843Example:
2844""""""""
2845
2846.. code-block:: llvm
2847
2848 ret i32 5 ; Return an integer value of 5
2849 ret void ; Return from a void function
2850 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2851
2852.. _i_br:
2853
2854'``br``' Instruction
2855^^^^^^^^^^^^^^^^^^^^
2856
2857Syntax:
2858"""""""
2859
2860::
2861
2862 br i1 <cond>, label <iftrue>, label <iffalse>
2863 br label <dest> ; Unconditional branch
2864
2865Overview:
2866"""""""""
2867
2868The '``br``' instruction is used to cause control flow to transfer to a
2869different basic block in the current function. There are two forms of
2870this instruction, corresponding to a conditional branch and an
2871unconditional branch.
2872
2873Arguments:
2874""""""""""
2875
2876The conditional branch form of the '``br``' instruction takes a single
2877'``i1``' value and two '``label``' values. The unconditional form of the
2878'``br``' instruction takes a single '``label``' value as a target.
2879
2880Semantics:
2881""""""""""
2882
2883Upon execution of a conditional '``br``' instruction, the '``i1``'
2884argument is evaluated. If the value is ``true``, control flows to the
2885'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2886to the '``iffalse``' ``label`` argument.
2887
2888Example:
2889""""""""
2890
2891.. code-block:: llvm
2892
2893 Test:
2894 %cond = icmp eq i32 %a, %b
2895 br i1 %cond, label %IfEqual, label %IfUnequal
2896 IfEqual:
2897 ret i32 1
2898 IfUnequal:
2899 ret i32 0
2900
2901.. _i_switch:
2902
2903'``switch``' Instruction
2904^^^^^^^^^^^^^^^^^^^^^^^^
2905
2906Syntax:
2907"""""""
2908
2909::
2910
2911 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2912
2913Overview:
2914"""""""""
2915
2916The '``switch``' instruction is used to transfer control flow to one of
2917several different places. It is a generalization of the '``br``'
2918instruction, allowing a branch to occur to one of many possible
2919destinations.
2920
2921Arguments:
2922""""""""""
2923
2924The '``switch``' instruction uses three parameters: an integer
2925comparison value '``value``', a default '``label``' destination, and an
2926array of pairs of comparison value constants and '``label``'s. The table
2927is not allowed to contain duplicate constant entries.
2928
2929Semantics:
2930""""""""""
2931
2932The ``switch`` instruction specifies a table of values and destinations.
2933When the '``switch``' instruction is executed, this table is searched
2934for the given value. If the value is found, control flow is transferred
2935to the corresponding destination; otherwise, control flow is transferred
2936to the default destination.
2937
2938Implementation:
2939"""""""""""""""
2940
2941Depending on properties of the target machine and the particular
2942``switch`` instruction, this instruction may be code generated in
2943different ways. For example, it could be generated as a series of
2944chained conditional branches or with a lookup table.
2945
2946Example:
2947""""""""
2948
2949.. code-block:: llvm
2950
2951 ; Emulate a conditional br instruction
2952 %Val = zext i1 %value to i32
2953 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2954
2955 ; Emulate an unconditional br instruction
2956 switch i32 0, label %dest [ ]
2957
2958 ; Implement a jump table:
2959 switch i32 %val, label %otherwise [ i32 0, label %onzero
2960 i32 1, label %onone
2961 i32 2, label %ontwo ]
2962
2963.. _i_indirectbr:
2964
2965'``indirectbr``' Instruction
2966^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2967
2968Syntax:
2969"""""""
2970
2971::
2972
2973 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
2974
2975Overview:
2976"""""""""
2977
2978The '``indirectbr``' instruction implements an indirect branch to a
2979label within the current function, whose address is specified by
2980"``address``". Address must be derived from a
2981:ref:`blockaddress <blockaddress>` constant.
2982
2983Arguments:
2984""""""""""
2985
2986The '``address``' argument is the address of the label to jump to. The
2987rest of the arguments indicate the full set of possible destinations
2988that the address may point to. Blocks are allowed to occur multiple
2989times in the destination list, though this isn't particularly useful.
2990
2991This destination list is required so that dataflow analysis has an
2992accurate understanding of the CFG.
2993
2994Semantics:
2995""""""""""
2996
2997Control transfers to the block specified in the address argument. All
2998possible destination blocks must be listed in the label list, otherwise
2999this instruction has undefined behavior. This implies that jumps to
3000labels defined in other functions have undefined behavior as well.
3001
3002Implementation:
3003"""""""""""""""
3004
3005This is typically implemented with a jump through a register.
3006
3007Example:
3008""""""""
3009
3010.. code-block:: llvm
3011
3012 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3013
3014.. _i_invoke:
3015
3016'``invoke``' Instruction
3017^^^^^^^^^^^^^^^^^^^^^^^^
3018
3019Syntax:
3020"""""""
3021
3022::
3023
3024 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3025 to label <normal label> unwind label <exception label>
3026
3027Overview:
3028"""""""""
3029
3030The '``invoke``' instruction causes control to transfer to a specified
3031function, with the possibility of control flow transfer to either the
3032'``normal``' label or the '``exception``' label. If the callee function
3033returns with the "``ret``" instruction, control flow will return to the
3034"normal" label. If the callee (or any indirect callees) returns via the
3035":ref:`resume <i_resume>`" instruction or other exception handling
3036mechanism, control is interrupted and continued at the dynamically
3037nearest "exception" label.
3038
3039The '``exception``' label is a `landing
3040pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3041'``exception``' label is required to have the
3042":ref:`landingpad <i_landingpad>`" instruction, which contains the
3043information about the behavior of the program after unwinding happens,
3044as its first non-PHI instruction. The restrictions on the
3045"``landingpad``" instruction's tightly couples it to the "``invoke``"
3046instruction, so that the important information contained within the
3047"``landingpad``" instruction can't be lost through normal code motion.
3048
3049Arguments:
3050""""""""""
3051
3052This instruction requires several arguments:
3053
3054#. The optional "cconv" marker indicates which :ref:`calling
3055 convention <callingconv>` the call should use. If none is
3056 specified, the call defaults to using C calling conventions.
3057#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3058 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3059 are valid here.
3060#. '``ptr to function ty``': shall be the signature of the pointer to
3061 function value being invoked. In most cases, this is a direct
3062 function invocation, but indirect ``invoke``'s are just as possible,
3063 branching off an arbitrary pointer to function value.
3064#. '``function ptr val``': An LLVM value containing a pointer to a
3065 function to be invoked.
3066#. '``function args``': argument list whose types match the function
3067 signature argument types and parameter attributes. All arguments must
3068 be of :ref:`first class <t_firstclass>` type. If the function signature
3069 indicates the function accepts a variable number of arguments, the
3070 extra arguments can be specified.
3071#. '``normal label``': the label reached when the called function
3072 executes a '``ret``' instruction.
3073#. '``exception label``': the label reached when a callee returns via
3074 the :ref:`resume <i_resume>` instruction or other exception handling
3075 mechanism.
3076#. The optional :ref:`function attributes <fnattrs>` list. Only
3077 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3078 attributes are valid here.
3079
3080Semantics:
3081""""""""""
3082
3083This instruction is designed to operate as a standard '``call``'
3084instruction in most regards. The primary difference is that it
3085establishes an association with a label, which is used by the runtime
3086library to unwind the stack.
3087
3088This instruction is used in languages with destructors to ensure that
3089proper cleanup is performed in the case of either a ``longjmp`` or a
3090thrown exception. Additionally, this is important for implementation of
3091'``catch``' clauses in high-level languages that support them.
3092
3093For the purposes of the SSA form, the definition of the value returned
3094by the '``invoke``' instruction is deemed to occur on the edge from the
3095current block to the "normal" label. If the callee unwinds then no
3096return value is available.
3097
3098Example:
3099""""""""
3100
3101.. code-block:: llvm
3102
3103 %retval = invoke i32 @Test(i32 15) to label %Continue
3104 unwind label %TestCleanup ; {i32}:retval set
3105 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3106 unwind label %TestCleanup ; {i32}:retval set
3107
3108.. _i_resume:
3109
3110'``resume``' Instruction
3111^^^^^^^^^^^^^^^^^^^^^^^^
3112
3113Syntax:
3114"""""""
3115
3116::
3117
3118 resume <type> <value>
3119
3120Overview:
3121"""""""""
3122
3123The '``resume``' instruction is a terminator instruction that has no
3124successors.
3125
3126Arguments:
3127""""""""""
3128
3129The '``resume``' instruction requires one argument, which must have the
3130same type as the result of any '``landingpad``' instruction in the same
3131function.
3132
3133Semantics:
3134""""""""""
3135
3136The '``resume``' instruction resumes propagation of an existing
3137(in-flight) exception whose unwinding was interrupted with a
3138:ref:`landingpad <i_landingpad>` instruction.
3139
3140Example:
3141""""""""
3142
3143.. code-block:: llvm
3144
3145 resume { i8*, i32 } %exn
3146
3147.. _i_unreachable:
3148
3149'``unreachable``' Instruction
3150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3151
3152Syntax:
3153"""""""
3154
3155::
3156
3157 unreachable
3158
3159Overview:
3160"""""""""
3161
3162The '``unreachable``' instruction has no defined semantics. This
3163instruction is used to inform the optimizer that a particular portion of
3164the code is not reachable. This can be used to indicate that the code
3165after a no-return function cannot be reached, and other facts.
3166
3167Semantics:
3168""""""""""
3169
3170The '``unreachable``' instruction has no defined semantics.
3171
3172.. _binaryops:
3173
3174Binary Operations
3175-----------------
3176
3177Binary operators are used to do most of the computation in a program.
3178They require two operands of the same type, execute an operation on
3179them, and produce a single value. The operands might represent multiple
3180data, as is the case with the :ref:`vector <t_vector>` data type. The
3181result value has the same type as its operands.
3182
3183There are several different binary operators:
3184
3185.. _i_add:
3186
3187'``add``' Instruction
3188^^^^^^^^^^^^^^^^^^^^^
3189
3190Syntax:
3191"""""""
3192
3193::
3194
3195 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3196 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3197 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3198 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3199
3200Overview:
3201"""""""""
3202
3203The '``add``' instruction returns the sum of its two operands.
3204
3205Arguments:
3206""""""""""
3207
3208The two arguments to the '``add``' instruction must be
3209:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3210arguments must have identical types.
3211
3212Semantics:
3213""""""""""
3214
3215The value produced is the integer sum of the two operands.
3216
3217If the sum has unsigned overflow, the result returned is the
3218mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3219the result.
3220
3221Because LLVM integers use a two's complement representation, this
3222instruction is appropriate for both signed and unsigned integers.
3223
3224``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3225respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3226result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3227unsigned and/or signed overflow, respectively, occurs.
3228
3229Example:
3230""""""""
3231
3232.. code-block:: llvm
3233
3234 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3235
3236.. _i_fadd:
3237
3238'``fadd``' Instruction
3239^^^^^^^^^^^^^^^^^^^^^^
3240
3241Syntax:
3242"""""""
3243
3244::
3245
3246 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3247
3248Overview:
3249"""""""""
3250
3251The '``fadd``' instruction returns the sum of its two operands.
3252
3253Arguments:
3254""""""""""
3255
3256The two arguments to the '``fadd``' instruction must be :ref:`floating
3257point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3258Both arguments must have identical types.
3259
3260Semantics:
3261""""""""""
3262
3263The value produced is the floating point sum of the two operands. This
3264instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3265which are optimization hints to enable otherwise unsafe floating point
3266optimizations:
3267
3268Example:
3269""""""""
3270
3271.. code-block:: llvm
3272
3273 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3274
3275'``sub``' Instruction
3276^^^^^^^^^^^^^^^^^^^^^
3277
3278Syntax:
3279"""""""
3280
3281::
3282
3283 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3284 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3285 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3286 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3287
3288Overview:
3289"""""""""
3290
3291The '``sub``' instruction returns the difference of its two operands.
3292
3293Note that the '``sub``' instruction is used to represent the '``neg``'
3294instruction present in most other intermediate representations.
3295
3296Arguments:
3297""""""""""
3298
3299The two arguments to the '``sub``' instruction must be
3300:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3301arguments must have identical types.
3302
3303Semantics:
3304""""""""""
3305
3306The value produced is the integer difference of the two operands.
3307
3308If the difference has unsigned overflow, the result returned is the
3309mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3310the result.
3311
3312Because LLVM integers use a two's complement representation, this
3313instruction is appropriate for both signed and unsigned integers.
3314
3315``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3316respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3317result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3318unsigned and/or signed overflow, respectively, occurs.
3319
3320Example:
3321""""""""
3322
3323.. code-block:: llvm
3324
3325 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3326 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3327
3328.. _i_fsub:
3329
3330'``fsub``' Instruction
3331^^^^^^^^^^^^^^^^^^^^^^
3332
3333Syntax:
3334"""""""
3335
3336::
3337
3338 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3339
3340Overview:
3341"""""""""
3342
3343The '``fsub``' instruction returns the difference of its two operands.
3344
3345Note that the '``fsub``' instruction is used to represent the '``fneg``'
3346instruction present in most other intermediate representations.
3347
3348Arguments:
3349""""""""""
3350
3351The two arguments to the '``fsub``' instruction must be :ref:`floating
3352point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3353Both arguments must have identical types.
3354
3355Semantics:
3356""""""""""
3357
3358The value produced is the floating point difference of the two operands.
3359This instruction can also take any number of :ref:`fast-math
3360flags <fastmath>`, which are optimization hints to enable otherwise
3361unsafe floating point optimizations:
3362
3363Example:
3364""""""""
3365
3366.. code-block:: llvm
3367
3368 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3369 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3370
3371'``mul``' Instruction
3372^^^^^^^^^^^^^^^^^^^^^
3373
3374Syntax:
3375"""""""
3376
3377::
3378
3379 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3380 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3381 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3382 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3383
3384Overview:
3385"""""""""
3386
3387The '``mul``' instruction returns the product of its two operands.
3388
3389Arguments:
3390""""""""""
3391
3392The two arguments to the '``mul``' instruction must be
3393:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3394arguments must have identical types.
3395
3396Semantics:
3397""""""""""
3398
3399The value produced is the integer product of the two operands.
3400
3401If the result of the multiplication has unsigned overflow, the result
3402returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3403bit width of the result.
3404
3405Because LLVM integers use a two's complement representation, and the
3406result is the same width as the operands, this instruction returns the
3407correct result for both signed and unsigned integers. If a full product
3408(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3409sign-extended or zero-extended as appropriate to the width of the full
3410product.
3411
3412``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3413respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3414result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3415unsigned and/or signed overflow, respectively, occurs.
3416
3417Example:
3418""""""""
3419
3420.. code-block:: llvm
3421
3422 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3423
3424.. _i_fmul:
3425
3426'``fmul``' Instruction
3427^^^^^^^^^^^^^^^^^^^^^^
3428
3429Syntax:
3430"""""""
3431
3432::
3433
3434 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3435
3436Overview:
3437"""""""""
3438
3439The '``fmul``' instruction returns the product of its two operands.
3440
3441Arguments:
3442""""""""""
3443
3444The two arguments to the '``fmul``' instruction must be :ref:`floating
3445point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3446Both arguments must have identical types.
3447
3448Semantics:
3449""""""""""
3450
3451The value produced is the floating point product of the two operands.
3452This instruction can also take any number of :ref:`fast-math
3453flags <fastmath>`, which are optimization hints to enable otherwise
3454unsafe floating point optimizations:
3455
3456Example:
3457""""""""
3458
3459.. code-block:: llvm
3460
3461 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3462
3463'``udiv``' Instruction
3464^^^^^^^^^^^^^^^^^^^^^^
3465
3466Syntax:
3467"""""""
3468
3469::
3470
3471 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3472 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3473
3474Overview:
3475"""""""""
3476
3477The '``udiv``' instruction returns the quotient of its two operands.
3478
3479Arguments:
3480""""""""""
3481
3482The two arguments to the '``udiv``' instruction must be
3483:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3484arguments must have identical types.
3485
3486Semantics:
3487""""""""""
3488
3489The value produced is the unsigned integer quotient of the two operands.
3490
3491Note that unsigned integer division and signed integer division are
3492distinct operations; for signed integer division, use '``sdiv``'.
3493
3494Division by zero leads to undefined behavior.
3495
3496If the ``exact`` keyword is present, the result value of the ``udiv`` is
3497a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3498such, "((a udiv exact b) mul b) == a").
3499
3500Example:
3501""""""""
3502
3503.. code-block:: llvm
3504
3505 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3506
3507'``sdiv``' Instruction
3508^^^^^^^^^^^^^^^^^^^^^^
3509
3510Syntax:
3511"""""""
3512
3513::
3514
3515 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3516 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3517
3518Overview:
3519"""""""""
3520
3521The '``sdiv``' instruction returns the quotient of its two operands.
3522
3523Arguments:
3524""""""""""
3525
3526The two arguments to the '``sdiv``' instruction must be
3527:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3528arguments must have identical types.
3529
3530Semantics:
3531""""""""""
3532
3533The value produced is the signed integer quotient of the two operands
3534rounded towards zero.
3535
3536Note that signed integer division and unsigned integer division are
3537distinct operations; for unsigned integer division, use '``udiv``'.
3538
3539Division by zero leads to undefined behavior. Overflow also leads to
3540undefined behavior; this is a rare case, but can occur, for example, by
3541doing a 32-bit division of -2147483648 by -1.
3542
3543If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3544a :ref:`poison value <poisonvalues>` if the result would be rounded.
3545
3546Example:
3547""""""""
3548
3549.. code-block:: llvm
3550
3551 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3552
3553.. _i_fdiv:
3554
3555'``fdiv``' Instruction
3556^^^^^^^^^^^^^^^^^^^^^^
3557
3558Syntax:
3559"""""""
3560
3561::
3562
3563 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3564
3565Overview:
3566"""""""""
3567
3568The '``fdiv``' instruction returns the quotient of its two operands.
3569
3570Arguments:
3571""""""""""
3572
3573The two arguments to the '``fdiv``' instruction must be :ref:`floating
3574point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3575Both arguments must have identical types.
3576
3577Semantics:
3578""""""""""
3579
3580The value produced is the floating point quotient of the two operands.
3581This instruction can also take any number of :ref:`fast-math
3582flags <fastmath>`, which are optimization hints to enable otherwise
3583unsafe floating point optimizations:
3584
3585Example:
3586""""""""
3587
3588.. code-block:: llvm
3589
3590 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3591
3592'``urem``' Instruction
3593^^^^^^^^^^^^^^^^^^^^^^
3594
3595Syntax:
3596"""""""
3597
3598::
3599
3600 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3601
3602Overview:
3603"""""""""
3604
3605The '``urem``' instruction returns the remainder from the unsigned
3606division of its two arguments.
3607
3608Arguments:
3609""""""""""
3610
3611The two arguments to the '``urem``' instruction must be
3612:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3613arguments must have identical types.
3614
3615Semantics:
3616""""""""""
3617
3618This instruction returns the unsigned integer *remainder* of a division.
3619This instruction always performs an unsigned division to get the
3620remainder.
3621
3622Note that unsigned integer remainder and signed integer remainder are
3623distinct operations; for signed integer remainder, use '``srem``'.
3624
3625Taking the remainder of a division by zero leads to undefined behavior.
3626
3627Example:
3628""""""""
3629
3630.. code-block:: llvm
3631
3632 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3633
3634'``srem``' Instruction
3635^^^^^^^^^^^^^^^^^^^^^^
3636
3637Syntax:
3638"""""""
3639
3640::
3641
3642 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3643
3644Overview:
3645"""""""""
3646
3647The '``srem``' instruction returns the remainder from the signed
3648division of its two operands. This instruction can also take
3649:ref:`vector <t_vector>` versions of the values in which case the elements
3650must be integers.
3651
3652Arguments:
3653""""""""""
3654
3655The two arguments to the '``srem``' instruction must be
3656:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3657arguments must have identical types.
3658
3659Semantics:
3660""""""""""
3661
3662This instruction returns the *remainder* of a division (where the result
3663is either zero or has the same sign as the dividend, ``op1``), not the
3664*modulo* operator (where the result is either zero or has the same sign
3665as the divisor, ``op2``) of a value. For more information about the
3666difference, see `The Math
3667Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3668table of how this is implemented in various languages, please see
3669`Wikipedia: modulo
3670operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3671
3672Note that signed integer remainder and unsigned integer remainder are
3673distinct operations; for unsigned integer remainder, use '``urem``'.
3674
3675Taking the remainder of a division by zero leads to undefined behavior.
3676Overflow also leads to undefined behavior; this is a rare case, but can
3677occur, for example, by taking the remainder of a 32-bit division of
3678-2147483648 by -1. (The remainder doesn't actually overflow, but this
3679rule lets srem be implemented using instructions that return both the
3680result of the division and the remainder.)
3681
3682Example:
3683""""""""
3684
3685.. code-block:: llvm
3686
3687 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3688
3689.. _i_frem:
3690
3691'``frem``' Instruction
3692^^^^^^^^^^^^^^^^^^^^^^
3693
3694Syntax:
3695"""""""
3696
3697::
3698
3699 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3700
3701Overview:
3702"""""""""
3703
3704The '``frem``' instruction returns the remainder from the division of
3705its two operands.
3706
3707Arguments:
3708""""""""""
3709
3710The two arguments to the '``frem``' instruction must be :ref:`floating
3711point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3712Both arguments must have identical types.
3713
3714Semantics:
3715""""""""""
3716
3717This instruction returns the *remainder* of a division. The remainder
3718has the same sign as the dividend. This instruction can also take any
3719number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3720to enable otherwise unsafe floating point optimizations:
3721
3722Example:
3723""""""""
3724
3725.. code-block:: llvm
3726
3727 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3728
3729.. _bitwiseops:
3730
3731Bitwise Binary Operations
3732-------------------------
3733
3734Bitwise binary operators are used to do various forms of bit-twiddling
3735in a program. They are generally very efficient instructions and can
3736commonly be strength reduced from other instructions. They require two
3737operands of the same type, execute an operation on them, and produce a
3738single value. The resulting value is the same type as its operands.
3739
3740'``shl``' Instruction
3741^^^^^^^^^^^^^^^^^^^^^
3742
3743Syntax:
3744"""""""
3745
3746::
3747
3748 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3749 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3750 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3751 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3752
3753Overview:
3754"""""""""
3755
3756The '``shl``' instruction returns the first operand shifted to the left
3757a specified number of bits.
3758
3759Arguments:
3760""""""""""
3761
3762Both arguments to the '``shl``' instruction must be the same
3763:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3764'``op2``' is treated as an unsigned value.
3765
3766Semantics:
3767""""""""""
3768
3769The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3770where ``n`` is the width of the result. If ``op2`` is (statically or
3771dynamically) negative or equal to or larger than the number of bits in
3772``op1``, the result is undefined. If the arguments are vectors, each
3773vector element of ``op1`` is shifted by the corresponding shift amount
3774in ``op2``.
3775
3776If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3777value <poisonvalues>` if it shifts out any non-zero bits. If the
3778``nsw`` keyword is present, then the shift produces a :ref:`poison
3779value <poisonvalues>` if it shifts out any bits that disagree with the
3780resultant sign bit. As such, NUW/NSW have the same semantics as they
3781would if the shift were expressed as a mul instruction with the same
3782nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3783
3784Example:
3785""""""""
3786
3787.. code-block:: llvm
3788
3789 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3790 <result> = shl i32 4, 2 ; yields {i32}: 16
3791 <result> = shl i32 1, 10 ; yields {i32}: 1024
3792 <result> = shl i32 1, 32 ; undefined
3793 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3794
3795'``lshr``' Instruction
3796^^^^^^^^^^^^^^^^^^^^^^
3797
3798Syntax:
3799"""""""
3800
3801::
3802
3803 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3804 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3805
3806Overview:
3807"""""""""
3808
3809The '``lshr``' instruction (logical shift right) returns the first
3810operand shifted to the right a specified number of bits with zero fill.
3811
3812Arguments:
3813""""""""""
3814
3815Both arguments to the '``lshr``' instruction must be the same
3816:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3817'``op2``' is treated as an unsigned value.
3818
3819Semantics:
3820""""""""""
3821
3822This instruction always performs a logical shift right operation. The
3823most significant bits of the result will be filled with zero bits after
3824the shift. If ``op2`` is (statically or dynamically) equal to or larger
3825than the number of bits in ``op1``, the result is undefined. If the
3826arguments are vectors, each vector element of ``op1`` is shifted by the
3827corresponding shift amount in ``op2``.
3828
3829If the ``exact`` keyword is present, the result value of the ``lshr`` is
3830a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3831non-zero.
3832
3833Example:
3834""""""""
3835
3836.. code-block:: llvm
3837
3838 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3839 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3840 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3841 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3842 <result> = lshr i32 1, 32 ; undefined
3843 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3844
3845'``ashr``' Instruction
3846^^^^^^^^^^^^^^^^^^^^^^
3847
3848Syntax:
3849"""""""
3850
3851::
3852
3853 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3854 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3855
3856Overview:
3857"""""""""
3858
3859The '``ashr``' instruction (arithmetic shift right) returns the first
3860operand shifted to the right a specified number of bits with sign
3861extension.
3862
3863Arguments:
3864""""""""""
3865
3866Both arguments to the '``ashr``' instruction must be the same
3867:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3868'``op2``' is treated as an unsigned value.
3869
3870Semantics:
3871""""""""""
3872
3873This instruction always performs an arithmetic shift right operation,
3874The most significant bits of the result will be filled with the sign bit
3875of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3876than the number of bits in ``op1``, the result is undefined. If the
3877arguments are vectors, each vector element of ``op1`` is shifted by the
3878corresponding shift amount in ``op2``.
3879
3880If the ``exact`` keyword is present, the result value of the ``ashr`` is
3881a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3882non-zero.
3883
3884Example:
3885""""""""
3886
3887.. code-block:: llvm
3888
3889 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3890 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3891 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3892 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3893 <result> = ashr i32 1, 32 ; undefined
3894 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3895
3896'``and``' Instruction
3897^^^^^^^^^^^^^^^^^^^^^
3898
3899Syntax:
3900"""""""
3901
3902::
3903
3904 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3905
3906Overview:
3907"""""""""
3908
3909The '``and``' instruction returns the bitwise logical and of its two
3910operands.
3911
3912Arguments:
3913""""""""""
3914
3915The two arguments to the '``and``' instruction must be
3916:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3917arguments must have identical types.
3918
3919Semantics:
3920""""""""""
3921
3922The truth table used for the '``and``' instruction is:
3923
3924+-----+-----+-----+
3925| In0 | In1 | Out |
3926+-----+-----+-----+
3927| 0 | 0 | 0 |
3928+-----+-----+-----+
3929| 0 | 1 | 0 |
3930+-----+-----+-----+
3931| 1 | 0 | 0 |
3932+-----+-----+-----+
3933| 1 | 1 | 1 |
3934+-----+-----+-----+
3935
3936Example:
3937""""""""
3938
3939.. code-block:: llvm
3940
3941 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3942 <result> = and i32 15, 40 ; yields {i32}:result = 8
3943 <result> = and i32 4, 8 ; yields {i32}:result = 0
3944
3945'``or``' Instruction
3946^^^^^^^^^^^^^^^^^^^^
3947
3948Syntax:
3949"""""""
3950
3951::
3952
3953 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3954
3955Overview:
3956"""""""""
3957
3958The '``or``' instruction returns the bitwise logical inclusive or of its
3959two operands.
3960
3961Arguments:
3962""""""""""
3963
3964The two arguments to the '``or``' instruction must be
3965:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3966arguments must have identical types.
3967
3968Semantics:
3969""""""""""
3970
3971The truth table used for the '``or``' instruction is:
3972
3973+-----+-----+-----+
3974| In0 | In1 | Out |
3975+-----+-----+-----+
3976| 0 | 0 | 0 |
3977+-----+-----+-----+
3978| 0 | 1 | 1 |
3979+-----+-----+-----+
3980| 1 | 0 | 1 |
3981+-----+-----+-----+
3982| 1 | 1 | 1 |
3983+-----+-----+-----+
3984
3985Example:
3986""""""""
3987
3988::
3989
3990 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
3991 <result> = or i32 15, 40 ; yields {i32}:result = 47
3992 <result> = or i32 4, 8 ; yields {i32}:result = 12
3993
3994'``xor``' Instruction
3995^^^^^^^^^^^^^^^^^^^^^
3996
3997Syntax:
3998"""""""
3999
4000::
4001
4002 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4003
4004Overview:
4005"""""""""
4006
4007The '``xor``' instruction returns the bitwise logical exclusive or of
4008its two operands. The ``xor`` is used to implement the "one's
4009complement" operation, which is the "~" operator in C.
4010
4011Arguments:
4012""""""""""
4013
4014The two arguments to the '``xor``' instruction must be
4015:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4016arguments must have identical types.
4017
4018Semantics:
4019""""""""""
4020
4021The truth table used for the '``xor``' instruction is:
4022
4023+-----+-----+-----+
4024| In0 | In1 | Out |
4025+-----+-----+-----+
4026| 0 | 0 | 0 |
4027+-----+-----+-----+
4028| 0 | 1 | 1 |
4029+-----+-----+-----+
4030| 1 | 0 | 1 |
4031+-----+-----+-----+
4032| 1 | 1 | 0 |
4033+-----+-----+-----+
4034
4035Example:
4036""""""""
4037
4038.. code-block:: llvm
4039
4040 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4041 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4042 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4043 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4044
4045Vector Operations
4046-----------------
4047
4048LLVM supports several instructions to represent vector operations in a
4049target-independent manner. These instructions cover the element-access
4050and vector-specific operations needed to process vectors effectively.
4051While LLVM does directly support these vector operations, many
4052sophisticated algorithms will want to use target-specific intrinsics to
4053take full advantage of a specific target.
4054
4055.. _i_extractelement:
4056
4057'``extractelement``' Instruction
4058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4059
4060Syntax:
4061"""""""
4062
4063::
4064
4065 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4066
4067Overview:
4068"""""""""
4069
4070The '``extractelement``' instruction extracts a single scalar element
4071from a vector at a specified index.
4072
4073Arguments:
4074""""""""""
4075
4076The first operand of an '``extractelement``' instruction is a value of
4077:ref:`vector <t_vector>` type. The second operand is an index indicating
4078the position from which to extract the element. The index may be a
4079variable.
4080
4081Semantics:
4082""""""""""
4083
4084The result is a scalar of the same type as the element type of ``val``.
4085Its value is the value at position ``idx`` of ``val``. If ``idx``
4086exceeds the length of ``val``, the results are undefined.
4087
4088Example:
4089""""""""
4090
4091.. code-block:: llvm
4092
4093 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4094
4095.. _i_insertelement:
4096
4097'``insertelement``' Instruction
4098^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4099
4100Syntax:
4101"""""""
4102
4103::
4104
4105 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4106
4107Overview:
4108"""""""""
4109
4110The '``insertelement``' instruction inserts a scalar element into a
4111vector at a specified index.
4112
4113Arguments:
4114""""""""""
4115
4116The first operand of an '``insertelement``' instruction is a value of
4117:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4118type must equal the element type of the first operand. The third operand
4119is an index indicating the position at which to insert the value. The
4120index may be a variable.
4121
4122Semantics:
4123""""""""""
4124
4125The result is a vector of the same type as ``val``. Its element values
4126are those of ``val`` except at position ``idx``, where it gets the value
4127``elt``. If ``idx`` exceeds the length of ``val``, the results are
4128undefined.
4129
4130Example:
4131""""""""
4132
4133.. code-block:: llvm
4134
4135 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4136
4137.. _i_shufflevector:
4138
4139'``shufflevector``' Instruction
4140^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4141
4142Syntax:
4143"""""""
4144
4145::
4146
4147 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4148
4149Overview:
4150"""""""""
4151
4152The '``shufflevector``' instruction constructs a permutation of elements
4153from two input vectors, returning a vector with the same element type as
4154the input and length that is the same as the shuffle mask.
4155
4156Arguments:
4157""""""""""
4158
4159The first two operands of a '``shufflevector``' instruction are vectors
4160with the same type. The third argument is a shuffle mask whose element
4161type is always 'i32'. The result of the instruction is a vector whose
4162length is the same as the shuffle mask and whose element type is the
4163same as the element type of the first two operands.
4164
4165The shuffle mask operand is required to be a constant vector with either
4166constant integer or undef values.
4167
4168Semantics:
4169""""""""""
4170
4171The elements of the two input vectors are numbered from left to right
4172across both of the vectors. The shuffle mask operand specifies, for each
4173element of the result vector, which element of the two input vectors the
4174result element gets. The element selector may be undef (meaning "don't
4175care") and the second operand may be undef if performing a shuffle from
4176only one vector.
4177
4178Example:
4179""""""""
4180
4181.. code-block:: llvm
4182
4183 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4184 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4185 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4186 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4187 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4188 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4189 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4190 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4191
4192Aggregate Operations
4193--------------------
4194
4195LLVM supports several instructions for working with
4196:ref:`aggregate <t_aggregate>` values.
4197
4198.. _i_extractvalue:
4199
4200'``extractvalue``' Instruction
4201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4202
4203Syntax:
4204"""""""
4205
4206::
4207
4208 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4209
4210Overview:
4211"""""""""
4212
4213The '``extractvalue``' instruction extracts the value of a member field
4214from an :ref:`aggregate <t_aggregate>` value.
4215
4216Arguments:
4217""""""""""
4218
4219The first operand of an '``extractvalue``' instruction is a value of
4220:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4221constant indices to specify which value to extract in a similar manner
4222as indices in a '``getelementptr``' instruction.
4223
4224The major differences to ``getelementptr`` indexing are:
4225
4226- Since the value being indexed is not a pointer, the first index is
4227 omitted and assumed to be zero.
4228- At least one index must be specified.
4229- Not only struct indices but also array indices must be in bounds.
4230
4231Semantics:
4232""""""""""
4233
4234The result is the value at the position in the aggregate specified by
4235the index operands.
4236
4237Example:
4238""""""""
4239
4240.. code-block:: llvm
4241
4242 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4243
4244.. _i_insertvalue:
4245
4246'``insertvalue``' Instruction
4247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4248
4249Syntax:
4250"""""""
4251
4252::
4253
4254 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4255
4256Overview:
4257"""""""""
4258
4259The '``insertvalue``' instruction inserts a value into a member field in
4260an :ref:`aggregate <t_aggregate>` value.
4261
4262Arguments:
4263""""""""""
4264
4265The first operand of an '``insertvalue``' instruction is a value of
4266:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4267a first-class value to insert. The following operands are constant
4268indices indicating the position at which to insert the value in a
4269similar manner as indices in a '``extractvalue``' instruction. The value
4270to insert must have the same type as the value identified by the
4271indices.
4272
4273Semantics:
4274""""""""""
4275
4276The result is an aggregate of the same type as ``val``. Its value is
4277that of ``val`` except that the value at the position specified by the
4278indices is that of ``elt``.
4279
4280Example:
4281""""""""
4282
4283.. code-block:: llvm
4284
4285 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4286 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4287 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4288
4289.. _memoryops:
4290
4291Memory Access and Addressing Operations
4292---------------------------------------
4293
4294A key design point of an SSA-based representation is how it represents
4295memory. In LLVM, no memory locations are in SSA form, which makes things
4296very simple. This section describes how to read, write, and allocate
4297memory in LLVM.
4298
4299.. _i_alloca:
4300
4301'``alloca``' Instruction
4302^^^^^^^^^^^^^^^^^^^^^^^^
4303
4304Syntax:
4305"""""""
4306
4307::
4308
4309 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4310
4311Overview:
4312"""""""""
4313
4314The '``alloca``' instruction allocates memory on the stack frame of the
4315currently executing function, to be automatically released when this
4316function returns to its caller. The object is always allocated in the
4317generic address space (address space zero).
4318
4319Arguments:
4320""""""""""
4321
4322The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4323bytes of memory on the runtime stack, returning a pointer of the
4324appropriate type to the program. If "NumElements" is specified, it is
4325the number of elements allocated, otherwise "NumElements" is defaulted
4326to be one. If a constant alignment is specified, the value result of the
4327allocation is guaranteed to be aligned to at least that boundary. If not
4328specified, or if zero, the target can choose to align the allocation on
4329any convenient boundary compatible with the type.
4330
4331'``type``' may be any sized type.
4332
4333Semantics:
4334""""""""""
4335
4336Memory is allocated; a pointer is returned. The operation is undefined
4337if there is insufficient stack space for the allocation. '``alloca``'d
4338memory is automatically released when the function returns. The
4339'``alloca``' instruction is commonly used to represent automatic
4340variables that must have an address available. When the function returns
4341(either with the ``ret`` or ``resume`` instructions), the memory is
4342reclaimed. Allocating zero bytes is legal, but the result is undefined.
4343The order in which memory is allocated (ie., which way the stack grows)
4344is not specified.
4345
4346Example:
4347""""""""
4348
4349.. code-block:: llvm
4350
4351 %ptr = alloca i32 ; yields {i32*}:ptr
4352 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4353 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4354 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4355
4356.. _i_load:
4357
4358'``load``' Instruction
4359^^^^^^^^^^^^^^^^^^^^^^
4360
4361Syntax:
4362"""""""
4363
4364::
4365
4366 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4367 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4368 !<index> = !{ i32 1 }
4369
4370Overview:
4371"""""""""
4372
4373The '``load``' instruction is used to read from memory.
4374
4375Arguments:
4376""""""""""
4377
4378The argument to the '``load``' instruction specifies the memory address
4379from which to load. The pointer must point to a :ref:`first
4380class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4381then the optimizer is not allowed to modify the number or order of
4382execution of this ``load`` with other :ref:`volatile
4383operations <volatile>`.
4384
4385If the ``load`` is marked as ``atomic``, it takes an extra
4386:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4387``release`` and ``acq_rel`` orderings are not valid on ``load``
4388instructions. Atomic loads produce :ref:`defined <memmodel>` results
4389when they may see multiple atomic stores. The type of the pointee must
4390be an integer type whose bit width is a power of two greater than or
4391equal to eight and less than or equal to a target-specific size limit.
4392``align`` must be explicitly specified on atomic loads, and the load has
4393undefined behavior if the alignment is not set to a value which is at
4394least the size in bytes of the pointee. ``!nontemporal`` does not have
4395any defined semantics for atomic loads.
4396
4397The optional constant ``align`` argument specifies the alignment of the
4398operation (that is, the alignment of the memory address). A value of 0
4399or an omitted ``align`` argument means that the operation has the abi
4400alignment for the target. It is the responsibility of the code emitter
4401to ensure that the alignment information is correct. Overestimating the
4402alignment results in undefined behavior. Underestimating the alignment
4403may produce less efficient code. An alignment of 1 is always safe.
4404
4405The optional ``!nontemporal`` metadata must reference a single
4406metatadata name <index> corresponding to a metadata node with one
4407``i32`` entry of value 1. The existence of the ``!nontemporal``
4408metatadata on the instruction tells the optimizer and code generator
4409that this load is not expected to be reused in the cache. The code
4410generator may select special instructions to save cache bandwidth, such
4411as the ``MOVNT`` instruction on x86.
4412
4413The optional ``!invariant.load`` metadata must reference a single
4414metatadata name <index> corresponding to a metadata node with no
4415entries. The existence of the ``!invariant.load`` metatadata on the
4416instruction tells the optimizer and code generator that this load
4417address points to memory which does not change value during program
4418execution. The optimizer may then move this load around, for example, by
4419hoisting it out of loops using loop invariant code motion.
4420
4421Semantics:
4422""""""""""
4423
4424The location of memory pointed to is loaded. If the value being loaded
4425is of scalar type then the number of bytes read does not exceed the
4426minimum number of bytes needed to hold all bits of the type. For
4427example, loading an ``i24`` reads at most three bytes. When loading a
4428value of a type like ``i20`` with a size that is not an integral number
4429of bytes, the result is undefined if the value was not originally
4430written using a store of the same type.
4431
4432Examples:
4433"""""""""
4434
4435.. code-block:: llvm
4436
4437 %ptr = alloca i32 ; yields {i32*}:ptr
4438 store i32 3, i32* %ptr ; yields {void}
4439 %val = load i32* %ptr ; yields {i32}:val = i32 3
4440
4441.. _i_store:
4442
4443'``store``' Instruction
4444^^^^^^^^^^^^^^^^^^^^^^^
4445
4446Syntax:
4447"""""""
4448
4449::
4450
4451 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4452 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4453
4454Overview:
4455"""""""""
4456
4457The '``store``' instruction is used to write to memory.
4458
4459Arguments:
4460""""""""""
4461
4462There are two arguments to the '``store``' instruction: a value to store
4463and an address at which to store it. The type of the '``<pointer>``'
4464operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4465the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4466then the optimizer is not allowed to modify the number or order of
4467execution of this ``store`` with other :ref:`volatile
4468operations <volatile>`.
4469
4470If the ``store`` is marked as ``atomic``, it takes an extra
4471:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4472``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4473instructions. Atomic loads produce :ref:`defined <memmodel>` results
4474when they may see multiple atomic stores. The type of the pointee must
4475be an integer type whose bit width is a power of two greater than or
4476equal to eight and less than or equal to a target-specific size limit.
4477``align`` must be explicitly specified on atomic stores, and the store
4478has undefined behavior if the alignment is not set to a value which is
4479at least the size in bytes of the pointee. ``!nontemporal`` does not
4480have any defined semantics for atomic stores.
4481
4482The optional constant "align" argument specifies the alignment of the
4483operation (that is, the alignment of the memory address). A value of 0
4484or an omitted "align" argument means that the operation has the abi
4485alignment for the target. It is the responsibility of the code emitter
4486to ensure that the alignment information is correct. Overestimating the
4487alignment results in an undefined behavior. Underestimating the
4488alignment may produce less efficient code. An alignment of 1 is always
4489safe.
4490
4491The optional !nontemporal metadata must reference a single metatadata
4492name <index> corresponding to a metadata node with one i32 entry of
4493value 1. The existence of the !nontemporal metatadata on the instruction
4494tells the optimizer and code generator that this load is not expected to
4495be reused in the cache. The code generator may select special
4496instructions to save cache bandwidth, such as the MOVNT instruction on
4497x86.
4498
4499Semantics:
4500""""""""""
4501
4502The contents of memory are updated to contain '``<value>``' at the
4503location specified by the '``<pointer>``' operand. If '``<value>``' is
4504of scalar type then the number of bytes written does not exceed the
4505minimum number of bytes needed to hold all bits of the type. For
4506example, storing an ``i24`` writes at most three bytes. When writing a
4507value of a type like ``i20`` with a size that is not an integral number
4508of bytes, it is unspecified what happens to the extra bits that do not
4509belong to the type, but they will typically be overwritten.
4510
4511Example:
4512""""""""
4513
4514.. code-block:: llvm
4515
4516 %ptr = alloca i32 ; yields {i32*}:ptr
4517 store i32 3, i32* %ptr ; yields {void}
4518 %val = load i32* %ptr ; yields {i32}:val = i32 3
4519
4520.. _i_fence:
4521
4522'``fence``' Instruction
4523^^^^^^^^^^^^^^^^^^^^^^^
4524
4525Syntax:
4526"""""""
4527
4528::
4529
4530 fence [singlethread] <ordering> ; yields {void}
4531
4532Overview:
4533"""""""""
4534
4535The '``fence``' instruction is used to introduce happens-before edges
4536between operations.
4537
4538Arguments:
4539""""""""""
4540
4541'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4542defines what *synchronizes-with* edges they add. They can only be given
4543``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4544
4545Semantics:
4546""""""""""
4547
4548A fence A which has (at least) ``release`` ordering semantics
4549*synchronizes with* a fence B with (at least) ``acquire`` ordering
4550semantics if and only if there exist atomic operations X and Y, both
4551operating on some atomic object M, such that A is sequenced before X, X
4552modifies M (either directly or through some side effect of a sequence
4553headed by X), Y is sequenced before B, and Y observes M. This provides a
4554*happens-before* dependency between A and B. Rather than an explicit
4555``fence``, one (but not both) of the atomic operations X or Y might
4556provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4557still *synchronize-with* the explicit ``fence`` and establish the
4558*happens-before* edge.
4559
4560A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4561``acquire`` and ``release`` semantics specified above, participates in
4562the global program order of other ``seq_cst`` operations and/or fences.
4563
4564The optional ":ref:`singlethread <singlethread>`" argument specifies
4565that the fence only synchronizes with other fences in the same thread.
4566(This is useful for interacting with signal handlers.)
4567
4568Example:
4569""""""""
4570
4571.. code-block:: llvm
4572
4573 fence acquire ; yields {void}
4574 fence singlethread seq_cst ; yields {void}
4575
4576.. _i_cmpxchg:
4577
4578'``cmpxchg``' Instruction
4579^^^^^^^^^^^^^^^^^^^^^^^^^
4580
4581Syntax:
4582"""""""
4583
4584::
4585
4586 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4587
4588Overview:
4589"""""""""
4590
4591The '``cmpxchg``' instruction is used to atomically modify memory. It
4592loads a value in memory and compares it to a given value. If they are
4593equal, it stores a new value into the memory.
4594
4595Arguments:
4596""""""""""
4597
4598There are three arguments to the '``cmpxchg``' instruction: an address
4599to operate on, a value to compare to the value currently be at that
4600address, and a new value to place at that address if the compared values
4601are equal. The type of '<cmp>' must be an integer type whose bit width
4602is a power of two greater than or equal to eight and less than or equal
4603to a target-specific size limit. '<cmp>' and '<new>' must have the same
4604type, and the type of '<pointer>' must be a pointer to that type. If the
4605``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4606to modify the number or order of execution of this ``cmpxchg`` with
4607other :ref:`volatile operations <volatile>`.
4608
4609The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4610synchronizes with other atomic operations.
4611
4612The optional "``singlethread``" argument declares that the ``cmpxchg``
4613is only atomic with respect to code (usually signal handlers) running in
4614the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4615respect to all other code in the system.
4616
4617The pointer passed into cmpxchg must have alignment greater than or
4618equal to the size in memory of the operand.
4619
4620Semantics:
4621""""""""""
4622
4623The contents of memory at the location specified by the '``<pointer>``'
4624operand is read and compared to '``<cmp>``'; if the read value is the
4625equal, '``<new>``' is written. The original value at the location is
4626returned.
4627
4628A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4629of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4630atomic load with an ordering parameter determined by dropping any
4631``release`` part of the ``cmpxchg``'s ordering.
4632
4633Example:
4634""""""""
4635
4636.. code-block:: llvm
4637
4638 entry:
4639 %orig = atomic load i32* %ptr unordered ; yields {i32}
4640 br label %loop
4641
4642 loop:
4643 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4644 %squared = mul i32 %cmp, %cmp
4645 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4646 %success = icmp eq i32 %cmp, %old
4647 br i1 %success, label %done, label %loop
4648
4649 done:
4650 ...
4651
4652.. _i_atomicrmw:
4653
4654'``atomicrmw``' Instruction
4655^^^^^^^^^^^^^^^^^^^^^^^^^^^
4656
4657Syntax:
4658"""""""
4659
4660::
4661
4662 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4663
4664Overview:
4665"""""""""
4666
4667The '``atomicrmw``' instruction is used to atomically modify memory.
4668
4669Arguments:
4670""""""""""
4671
4672There are three arguments to the '``atomicrmw``' instruction: an
4673operation to apply, an address whose value to modify, an argument to the
4674operation. The operation must be one of the following keywords:
4675
4676- xchg
4677- add
4678- sub
4679- and
4680- nand
4681- or
4682- xor
4683- max
4684- min
4685- umax
4686- umin
4687
4688The type of '<value>' must be an integer type whose bit width is a power
4689of two greater than or equal to eight and less than or equal to a
4690target-specific size limit. The type of the '``<pointer>``' operand must
4691be a pointer to that type. If the ``atomicrmw`` is marked as
4692``volatile``, then the optimizer is not allowed to modify the number or
4693order of execution of this ``atomicrmw`` with other :ref:`volatile
4694operations <volatile>`.
4695
4696Semantics:
4697""""""""""
4698
4699The contents of memory at the location specified by the '``<pointer>``'
4700operand are atomically read, modified, and written back. The original
4701value at the location is returned. The modification is specified by the
4702operation argument:
4703
4704- xchg: ``*ptr = val``
4705- add: ``*ptr = *ptr + val``
4706- sub: ``*ptr = *ptr - val``
4707- and: ``*ptr = *ptr & val``
4708- nand: ``*ptr = ~(*ptr & val)``
4709- or: ``*ptr = *ptr | val``
4710- xor: ``*ptr = *ptr ^ val``
4711- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4712- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4713- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4714 comparison)
4715- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4716 comparison)
4717
4718Example:
4719""""""""
4720
4721.. code-block:: llvm
4722
4723 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4724
4725.. _i_getelementptr:
4726
4727'``getelementptr``' Instruction
4728^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4729
4730Syntax:
4731"""""""
4732
4733::
4734
4735 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4736 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4737 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4738
4739Overview:
4740"""""""""
4741
4742The '``getelementptr``' instruction is used to get the address of a
4743subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4744address calculation only and does not access memory.
4745
4746Arguments:
4747""""""""""
4748
4749The first argument is always a pointer or a vector of pointers, and
4750forms the basis of the calculation. The remaining arguments are indices
4751that indicate which of the elements of the aggregate object are indexed.
4752The interpretation of each index is dependent on the type being indexed
4753into. The first index always indexes the pointer value given as the
4754first argument, the second index indexes a value of the type pointed to
4755(not necessarily the value directly pointed to, since the first index
4756can be non-zero), etc. The first type indexed into must be a pointer
4757value, subsequent types can be arrays, vectors, and structs. Note that
4758subsequent types being indexed into can never be pointers, since that
4759would require loading the pointer before continuing calculation.
4760
4761The type of each index argument depends on the type it is indexing into.
4762When indexing into a (optionally packed) structure, only ``i32`` integer
4763**constants** are allowed (when using a vector of indices they must all
4764be the **same** ``i32`` integer constant). When indexing into an array,
4765pointer or vector, integers of any width are allowed, and they are not
4766required to be constant. These integers are treated as signed values
4767where relevant.
4768
4769For example, let's consider a C code fragment and how it gets compiled
4770to LLVM:
4771
4772.. code-block:: c
4773
4774 struct RT {
4775 char A;
4776 int B[10][20];
4777 char C;
4778 };
4779 struct ST {
4780 int X;
4781 double Y;
4782 struct RT Z;
4783 };
4784
4785 int *foo(struct ST *s) {
4786 return &s[1].Z.B[5][13];
4787 }
4788
4789The LLVM code generated by Clang is:
4790
4791.. code-block:: llvm
4792
4793 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4794 %struct.ST = type { i32, double, %struct.RT }
4795
4796 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4797 entry:
4798 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4799 ret i32* %arrayidx
4800 }
4801
4802Semantics:
4803""""""""""
4804
4805In the example above, the first index is indexing into the
4806'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4807= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4808indexes into the third element of the structure, yielding a
4809'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4810structure. The third index indexes into the second element of the
4811structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4812dimensions of the array are subscripted into, yielding an '``i32``'
4813type. The '``getelementptr``' instruction returns a pointer to this
4814element, thus computing a value of '``i32*``' type.
4815
4816Note that it is perfectly legal to index partially through a structure,
4817returning a pointer to an inner element. Because of this, the LLVM code
4818for the given testcase is equivalent to:
4819
4820.. code-block:: llvm
4821
4822 define i32* @foo(%struct.ST* %s) {
4823 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4824 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4825 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4826 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4827 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4828 ret i32* %t5
4829 }
4830
4831If the ``inbounds`` keyword is present, the result value of the
4832``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4833pointer is not an *in bounds* address of an allocated object, or if any
4834of the addresses that would be formed by successive addition of the
4835offsets implied by the indices to the base address with infinitely
4836precise signed arithmetic are not an *in bounds* address of that
4837allocated object. The *in bounds* addresses for an allocated object are
4838all the addresses that point into the object, plus the address one byte
4839past the end. In cases where the base is a vector of pointers the
4840``inbounds`` keyword applies to each of the computations element-wise.
4841
4842If the ``inbounds`` keyword is not present, the offsets are added to the
4843base address with silently-wrapping two's complement arithmetic. If the
4844offsets have a different width from the pointer, they are sign-extended
4845or truncated to the width of the pointer. The result value of the
4846``getelementptr`` may be outside the object pointed to by the base
4847pointer. The result value may not necessarily be used to access memory
4848though, even if it happens to point into allocated storage. See the
4849:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4850information.
4851
4852The getelementptr instruction is often confusing. For some more insight
4853into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4854
4855Example:
4856""""""""
4857
4858.. code-block:: llvm
4859
4860 ; yields [12 x i8]*:aptr
4861 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4862 ; yields i8*:vptr
4863 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4864 ; yields i8*:eptr
4865 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4866 ; yields i32*:iptr
4867 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4868
4869In cases where the pointer argument is a vector of pointers, each index
4870must be a vector with the same number of elements. For example:
4871
4872.. code-block:: llvm
4873
4874 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4875
4876Conversion Operations
4877---------------------
4878
4879The instructions in this category are the conversion instructions
4880(casting) which all take a single operand and a type. They perform
4881various bit conversions on the operand.
4882
4883'``trunc .. to``' Instruction
4884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4885
4886Syntax:
4887"""""""
4888
4889::
4890
4891 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4892
4893Overview:
4894"""""""""
4895
4896The '``trunc``' instruction truncates its operand to the type ``ty2``.
4897
4898Arguments:
4899""""""""""
4900
4901The '``trunc``' instruction takes a value to trunc, and a type to trunc
4902it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4903of the same number of integers. The bit size of the ``value`` must be
4904larger than the bit size of the destination type, ``ty2``. Equal sized
4905types are not allowed.
4906
4907Semantics:
4908""""""""""
4909
4910The '``trunc``' instruction truncates the high order bits in ``value``
4911and converts the remaining bits to ``ty2``. Since the source size must
4912be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4913It will always truncate bits.
4914
4915Example:
4916""""""""
4917
4918.. code-block:: llvm
4919
4920 %X = trunc i32 257 to i8 ; yields i8:1
4921 %Y = trunc i32 123 to i1 ; yields i1:true
4922 %Z = trunc i32 122 to i1 ; yields i1:false
4923 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4924
4925'``zext .. to``' Instruction
4926^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4927
4928Syntax:
4929"""""""
4930
4931::
4932
4933 <result> = zext <ty> <value> to <ty2> ; yields ty2
4934
4935Overview:
4936"""""""""
4937
4938The '``zext``' instruction zero extends its operand to type ``ty2``.
4939
4940Arguments:
4941""""""""""
4942
4943The '``zext``' instruction takes a value to cast, and a type to cast it
4944to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4945the same number of integers. The bit size of the ``value`` must be
4946smaller than the bit size of the destination type, ``ty2``.
4947
4948Semantics:
4949""""""""""
4950
4951The ``zext`` fills the high order bits of the ``value`` with zero bits
4952until it reaches the size of the destination type, ``ty2``.
4953
4954When zero extending from i1, the result will always be either 0 or 1.
4955
4956Example:
4957""""""""
4958
4959.. code-block:: llvm
4960
4961 %X = zext i32 257 to i64 ; yields i64:257
4962 %Y = zext i1 true to i32 ; yields i32:1
4963 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4964
4965'``sext .. to``' Instruction
4966^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4967
4968Syntax:
4969"""""""
4970
4971::
4972
4973 <result> = sext <ty> <value> to <ty2> ; yields ty2
4974
4975Overview:
4976"""""""""
4977
4978The '``sext``' sign extends ``value`` to the type ``ty2``.
4979
4980Arguments:
4981""""""""""
4982
4983The '``sext``' instruction takes a value to cast, and a type to cast it
4984to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4985the same number of integers. The bit size of the ``value`` must be
4986smaller than the bit size of the destination type, ``ty2``.
4987
4988Semantics:
4989""""""""""
4990
4991The '``sext``' instruction performs a sign extension by copying the sign
4992bit (highest order bit) of the ``value`` until it reaches the bit size
4993of the type ``ty2``.
4994
4995When sign extending from i1, the extension always results in -1 or 0.
4996
4997Example:
4998""""""""
4999
5000.. code-block:: llvm
5001
5002 %X = sext i8 -1 to i16 ; yields i16 :65535
5003 %Y = sext i1 true to i32 ; yields i32:-1
5004 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5005
5006'``fptrunc .. to``' Instruction
5007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5008
5009Syntax:
5010"""""""
5011
5012::
5013
5014 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5015
5016Overview:
5017"""""""""
5018
5019The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5020
5021Arguments:
5022""""""""""
5023
5024The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5025value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5026The size of ``value`` must be larger than the size of ``ty2``. This
5027implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5028
5029Semantics:
5030""""""""""
5031
5032The '``fptrunc``' instruction truncates a ``value`` from a larger
5033:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5034point <t_floating>` type. If the value cannot fit within the
5035destination type, ``ty2``, then the results are undefined.
5036
5037Example:
5038""""""""
5039
5040.. code-block:: llvm
5041
5042 %X = fptrunc double 123.0 to float ; yields float:123.0
5043 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5044
5045'``fpext .. to``' Instruction
5046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5047
5048Syntax:
5049"""""""
5050
5051::
5052
5053 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5054
5055Overview:
5056"""""""""
5057
5058The '``fpext``' extends a floating point ``value`` to a larger floating
5059point value.
5060
5061Arguments:
5062""""""""""
5063
5064The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5065``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5066to. The source type must be smaller than the destination type.
5067
5068Semantics:
5069""""""""""
5070
5071The '``fpext``' instruction extends the ``value`` from a smaller
5072:ref:`floating point <t_floating>` type to a larger :ref:`floating
5073point <t_floating>` type. The ``fpext`` cannot be used to make a
5074*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5075*no-op cast* for a floating point cast.
5076
5077Example:
5078""""""""
5079
5080.. code-block:: llvm
5081
5082 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5083 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5084
5085'``fptoui .. to``' Instruction
5086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5087
5088Syntax:
5089"""""""
5090
5091::
5092
5093 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5094
5095Overview:
5096"""""""""
5097
5098The '``fptoui``' converts a floating point ``value`` to its unsigned
5099integer equivalent of type ``ty2``.
5100
5101Arguments:
5102""""""""""
5103
5104The '``fptoui``' instruction takes a value to cast, which must be a
5105scalar or vector :ref:`floating point <t_floating>` value, and a type to
5106cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5107``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5108type with the same number of elements as ``ty``
5109
5110Semantics:
5111""""""""""
5112
5113The '``fptoui``' instruction converts its :ref:`floating
5114point <t_floating>` operand into the nearest (rounding towards zero)
5115unsigned integer value. If the value cannot fit in ``ty2``, the results
5116are undefined.
5117
5118Example:
5119""""""""
5120
5121.. code-block:: llvm
5122
5123 %X = fptoui double 123.0 to i32 ; yields i32:123
5124 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5125 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5126
5127'``fptosi .. to``' Instruction
5128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5129
5130Syntax:
5131"""""""
5132
5133::
5134
5135 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5136
5137Overview:
5138"""""""""
5139
5140The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5141``value`` to type ``ty2``.
5142
5143Arguments:
5144""""""""""
5145
5146The '``fptosi``' instruction takes a value to cast, which must be a
5147scalar or vector :ref:`floating point <t_floating>` value, and a type to
5148cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5149``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5150type with the same number of elements as ``ty``
5151
5152Semantics:
5153""""""""""
5154
5155The '``fptosi``' instruction converts its :ref:`floating
5156point <t_floating>` operand into the nearest (rounding towards zero)
5157signed integer value. If the value cannot fit in ``ty2``, the results
5158are undefined.
5159
5160Example:
5161""""""""
5162
5163.. code-block:: llvm
5164
5165 %X = fptosi double -123.0 to i32 ; yields i32:-123
5166 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5167 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5168
5169'``uitofp .. to``' Instruction
5170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5171
5172Syntax:
5173"""""""
5174
5175::
5176
5177 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5178
5179Overview:
5180"""""""""
5181
5182The '``uitofp``' instruction regards ``value`` as an unsigned integer
5183and converts that value to the ``ty2`` type.
5184
5185Arguments:
5186""""""""""
5187
5188The '``uitofp``' instruction takes a value to cast, which must be a
5189scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5190``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5191``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5192type with the same number of elements as ``ty``
5193
5194Semantics:
5195""""""""""
5196
5197The '``uitofp``' instruction interprets its operand as an unsigned
5198integer quantity and converts it to the corresponding floating point
5199value. If the value cannot fit in the floating point value, the results
5200are undefined.
5201
5202Example:
5203""""""""
5204
5205.. code-block:: llvm
5206
5207 %X = uitofp i32 257 to float ; yields float:257.0
5208 %Y = uitofp i8 -1 to double ; yields double:255.0
5209
5210'``sitofp .. to``' Instruction
5211^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5212
5213Syntax:
5214"""""""
5215
5216::
5217
5218 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5219
5220Overview:
5221"""""""""
5222
5223The '``sitofp``' instruction regards ``value`` as a signed integer and
5224converts that value to the ``ty2`` type.
5225
5226Arguments:
5227""""""""""
5228
5229The '``sitofp``' instruction takes a value to cast, which must be a
5230scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5231``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5232``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5233type with the same number of elements as ``ty``
5234
5235Semantics:
5236""""""""""
5237
5238The '``sitofp``' instruction interprets its operand as a signed integer
5239quantity and converts it to the corresponding floating point value. If
5240the value cannot fit in the floating point value, the results are
5241undefined.
5242
5243Example:
5244""""""""
5245
5246.. code-block:: llvm
5247
5248 %X = sitofp i32 257 to float ; yields float:257.0
5249 %Y = sitofp i8 -1 to double ; yields double:-1.0
5250
5251.. _i_ptrtoint:
5252
5253'``ptrtoint .. to``' Instruction
5254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5255
5256Syntax:
5257"""""""
5258
5259::
5260
5261 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5262
5263Overview:
5264"""""""""
5265
5266The '``ptrtoint``' instruction converts the pointer or a vector of
5267pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5268
5269Arguments:
5270""""""""""
5271
5272The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5273a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5274type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5275a vector of integers type.
5276
5277Semantics:
5278""""""""""
5279
5280The '``ptrtoint``' instruction converts ``value`` to integer type
5281``ty2`` by interpreting the pointer value as an integer and either
5282truncating or zero extending that value to the size of the integer type.
5283If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5284``value`` is larger than ``ty2`` then a truncation is done. If they are
5285the same size, then nothing is done (*no-op cast*) other than a type
5286change.
5287
5288Example:
5289""""""""
5290
5291.. code-block:: llvm
5292
5293 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5294 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5295 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5296
5297.. _i_inttoptr:
5298
5299'``inttoptr .. to``' Instruction
5300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5301
5302Syntax:
5303"""""""
5304
5305::
5306
5307 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5308
5309Overview:
5310"""""""""
5311
5312The '``inttoptr``' instruction converts an integer ``value`` to a
5313pointer type, ``ty2``.
5314
5315Arguments:
5316""""""""""
5317
5318The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5319cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5320type.
5321
5322Semantics:
5323""""""""""
5324
5325The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5326applying either a zero extension or a truncation depending on the size
5327of the integer ``value``. If ``value`` is larger than the size of a
5328pointer then a truncation is done. If ``value`` is smaller than the size
5329of a pointer then a zero extension is done. If they are the same size,
5330nothing is done (*no-op cast*).
5331
5332Example:
5333""""""""
5334
5335.. code-block:: llvm
5336
5337 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5338 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5339 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5340 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5341
5342.. _i_bitcast:
5343
5344'``bitcast .. to``' Instruction
5345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5346
5347Syntax:
5348"""""""
5349
5350::
5351
5352 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5353
5354Overview:
5355"""""""""
5356
5357The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5358changing any bits.
5359
5360Arguments:
5361""""""""""
5362
5363The '``bitcast``' instruction takes a value to cast, which must be a
5364non-aggregate first class value, and a type to cast it to, which must
5365also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5366sizes of ``value`` and the destination type, ``ty2``, must be identical.
5367If the source type is a pointer, the destination type must also be a
5368pointer. This instruction supports bitwise conversion of vectors to
5369integers and to vectors of other types (as long as they have the same
5370size).
5371
5372Semantics:
5373""""""""""
5374
5375The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5376always a *no-op cast* because no bits change with this conversion. The
5377conversion is done as if the ``value`` had been stored to memory and
5378read back as type ``ty2``. Pointer (or vector of pointers) types may
5379only be converted to other pointer (or vector of pointers) types with
5380this instruction. To convert pointers to other types, use the
5381:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5382first.
5383
5384Example:
5385""""""""
5386
5387.. code-block:: llvm
5388
5389 %X = bitcast i8 255 to i8 ; yields i8 :-1
5390 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5391 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5392 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5393
5394.. _otherops:
5395
5396Other Operations
5397----------------
5398
5399The instructions in this category are the "miscellaneous" instructions,
5400which defy better classification.
5401
5402.. _i_icmp:
5403
5404'``icmp``' Instruction
5405^^^^^^^^^^^^^^^^^^^^^^
5406
5407Syntax:
5408"""""""
5409
5410::
5411
5412 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5413
5414Overview:
5415"""""""""
5416
5417The '``icmp``' instruction returns a boolean value or a vector of
5418boolean values based on comparison of its two integer, integer vector,
5419pointer, or pointer vector operands.
5420
5421Arguments:
5422""""""""""
5423
5424The '``icmp``' instruction takes three operands. The first operand is
5425the condition code indicating the kind of comparison to perform. It is
5426not a value, just a keyword. The possible condition code are:
5427
5428#. ``eq``: equal
5429#. ``ne``: not equal
5430#. ``ugt``: unsigned greater than
5431#. ``uge``: unsigned greater or equal
5432#. ``ult``: unsigned less than
5433#. ``ule``: unsigned less or equal
5434#. ``sgt``: signed greater than
5435#. ``sge``: signed greater or equal
5436#. ``slt``: signed less than
5437#. ``sle``: signed less or equal
5438
5439The remaining two arguments must be :ref:`integer <t_integer>` or
5440:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5441must also be identical types.
5442
5443Semantics:
5444""""""""""
5445
5446The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5447code given as ``cond``. The comparison performed always yields either an
5448:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5449
5450#. ``eq``: yields ``true`` if the operands are equal, ``false``
5451 otherwise. No sign interpretation is necessary or performed.
5452#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5453 otherwise. No sign interpretation is necessary or performed.
5454#. ``ugt``: interprets the operands as unsigned values and yields
5455 ``true`` if ``op1`` is greater than ``op2``.
5456#. ``uge``: interprets the operands as unsigned values and yields
5457 ``true`` if ``op1`` is greater than or equal to ``op2``.
5458#. ``ult``: interprets the operands as unsigned values and yields
5459 ``true`` if ``op1`` is less than ``op2``.
5460#. ``ule``: interprets the operands as unsigned values and yields
5461 ``true`` if ``op1`` is less than or equal to ``op2``.
5462#. ``sgt``: interprets the operands as signed values and yields ``true``
5463 if ``op1`` is greater than ``op2``.
5464#. ``sge``: interprets the operands as signed values and yields ``true``
5465 if ``op1`` is greater than or equal to ``op2``.
5466#. ``slt``: interprets the operands as signed values and yields ``true``
5467 if ``op1`` is less than ``op2``.
5468#. ``sle``: interprets the operands as signed values and yields ``true``
5469 if ``op1`` is less than or equal to ``op2``.
5470
5471If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5472are compared as if they were integers.
5473
5474If the operands are integer vectors, then they are compared element by
5475element. The result is an ``i1`` vector with the same number of elements
5476as the values being compared. Otherwise, the result is an ``i1``.
5477
5478Example:
5479""""""""
5480
5481.. code-block:: llvm
5482
5483 <result> = icmp eq i32 4, 5 ; yields: result=false
5484 <result> = icmp ne float* %X, %X ; yields: result=false
5485 <result> = icmp ult i16 4, 5 ; yields: result=true
5486 <result> = icmp sgt i16 4, 5 ; yields: result=false
5487 <result> = icmp ule i16 -4, 5 ; yields: result=false
5488 <result> = icmp sge i16 4, 5 ; yields: result=false
5489
5490Note that the code generator does not yet support vector types with the
5491``icmp`` instruction.
5492
5493.. _i_fcmp:
5494
5495'``fcmp``' Instruction
5496^^^^^^^^^^^^^^^^^^^^^^
5497
5498Syntax:
5499"""""""
5500
5501::
5502
5503 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5504
5505Overview:
5506"""""""""
5507
5508The '``fcmp``' instruction returns a boolean value or vector of boolean
5509values based on comparison of its operands.
5510
5511If the operands are floating point scalars, then the result type is a
5512boolean (:ref:`i1 <t_integer>`).
5513
5514If the operands are floating point vectors, then the result type is a
5515vector of boolean with the same number of elements as the operands being
5516compared.
5517
5518Arguments:
5519""""""""""
5520
5521The '``fcmp``' instruction takes three operands. The first operand is
5522the condition code indicating the kind of comparison to perform. It is
5523not a value, just a keyword. The possible condition code are:
5524
5525#. ``false``: no comparison, always returns false
5526#. ``oeq``: ordered and equal
5527#. ``ogt``: ordered and greater than
5528#. ``oge``: ordered and greater than or equal
5529#. ``olt``: ordered and less than
5530#. ``ole``: ordered and less than or equal
5531#. ``one``: ordered and not equal
5532#. ``ord``: ordered (no nans)
5533#. ``ueq``: unordered or equal
5534#. ``ugt``: unordered or greater than
5535#. ``uge``: unordered or greater than or equal
5536#. ``ult``: unordered or less than
5537#. ``ule``: unordered or less than or equal
5538#. ``une``: unordered or not equal
5539#. ``uno``: unordered (either nans)
5540#. ``true``: no comparison, always returns true
5541
5542*Ordered* means that neither operand is a QNAN while *unordered* means
5543that either operand may be a QNAN.
5544
5545Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5546point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5547type. They must have identical types.
5548
5549Semantics:
5550""""""""""
5551
5552The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5553condition code given as ``cond``. If the operands are vectors, then the
5554vectors are compared element by element. Each comparison performed
5555always yields an :ref:`i1 <t_integer>` result, as follows:
5556
5557#. ``false``: always yields ``false``, regardless of operands.
5558#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5559 is equal to ``op2``.
5560#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5561 is greater than ``op2``.
5562#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5563 is greater than or equal to ``op2``.
5564#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5565 is less than ``op2``.
5566#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5567 is less than or equal to ``op2``.
5568#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5569 is not equal to ``op2``.
5570#. ``ord``: yields ``true`` if both operands are not a QNAN.
5571#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5572 equal to ``op2``.
5573#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5574 greater than ``op2``.
5575#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5576 greater than or equal to ``op2``.
5577#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5578 less than ``op2``.
5579#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5580 less than or equal to ``op2``.
5581#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5582 not equal to ``op2``.
5583#. ``uno``: yields ``true`` if either operand is a QNAN.
5584#. ``true``: always yields ``true``, regardless of operands.
5585
5586Example:
5587""""""""
5588
5589.. code-block:: llvm
5590
5591 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5592 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5593 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5594 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5595
5596Note that the code generator does not yet support vector types with the
5597``fcmp`` instruction.
5598
5599.. _i_phi:
5600
5601'``phi``' Instruction
5602^^^^^^^^^^^^^^^^^^^^^
5603
5604Syntax:
5605"""""""
5606
5607::
5608
5609 <result> = phi <ty> [ <val0>, <label0>], ...
5610
5611Overview:
5612"""""""""
5613
5614The '``phi``' instruction is used to implement the φ node in the SSA
5615graph representing the function.
5616
5617Arguments:
5618""""""""""
5619
5620The type of the incoming values is specified with the first type field.
5621After this, the '``phi``' instruction takes a list of pairs as
5622arguments, with one pair for each predecessor basic block of the current
5623block. Only values of :ref:`first class <t_firstclass>` type may be used as
5624the value arguments to the PHI node. Only labels may be used as the
5625label arguments.
5626
5627There must be no non-phi instructions between the start of a basic block
5628and the PHI instructions: i.e. PHI instructions must be first in a basic
5629block.
5630
5631For the purposes of the SSA form, the use of each incoming value is
5632deemed to occur on the edge from the corresponding predecessor block to
5633the current block (but after any definition of an '``invoke``'
5634instruction's return value on the same edge).
5635
5636Semantics:
5637""""""""""
5638
5639At runtime, the '``phi``' instruction logically takes on the value
5640specified by the pair corresponding to the predecessor basic block that
5641executed just prior to the current block.
5642
5643Example:
5644""""""""
5645
5646.. code-block:: llvm
5647
5648 Loop: ; Infinite loop that counts from 0 on up...
5649 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5650 %nextindvar = add i32 %indvar, 1
5651 br label %Loop
5652
5653.. _i_select:
5654
5655'``select``' Instruction
5656^^^^^^^^^^^^^^^^^^^^^^^^
5657
5658Syntax:
5659"""""""
5660
5661::
5662
5663 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5664
5665 selty is either i1 or {<N x i1>}
5666
5667Overview:
5668"""""""""
5669
5670The '``select``' instruction is used to choose one value based on a
5671condition, without branching.
5672
5673Arguments:
5674""""""""""
5675
5676The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5677values indicating the condition, and two values of the same :ref:`first
5678class <t_firstclass>` type. If the val1/val2 are vectors and the
5679condition is a scalar, then entire vectors are selected, not individual
5680elements.
5681
5682Semantics:
5683""""""""""
5684
5685If the condition is an i1 and it evaluates to 1, the instruction returns
5686the first value argument; otherwise, it returns the second value
5687argument.
5688
5689If the condition is a vector of i1, then the value arguments must be
5690vectors of the same size, and the selection is done element by element.
5691
5692Example:
5693""""""""
5694
5695.. code-block:: llvm
5696
5697 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5698
5699.. _i_call:
5700
5701'``call``' Instruction
5702^^^^^^^^^^^^^^^^^^^^^^
5703
5704Syntax:
5705"""""""
5706
5707::
5708
5709 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5710
5711Overview:
5712"""""""""
5713
5714The '``call``' instruction represents a simple function call.
5715
5716Arguments:
5717""""""""""
5718
5719This instruction requires several arguments:
5720
5721#. The optional "tail" marker indicates that the callee function does
5722 not access any allocas or varargs in the caller. Note that calls may
5723 be marked "tail" even if they do not occur before a
5724 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5725 function call is eligible for tail call optimization, but `might not
5726 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5727 The code generator may optimize calls marked "tail" with either 1)
5728 automatic `sibling call
5729 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5730 callee have matching signatures, or 2) forced tail call optimization
5731 when the following extra requirements are met:
5732
5733 - Caller and callee both have the calling convention ``fastcc``.
5734 - The call is in tail position (ret immediately follows call and ret
5735 uses value of call or is void).
5736 - Option ``-tailcallopt`` is enabled, or
5737 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5738 - `Platform specific constraints are
5739 met. <CodeGenerator.html#tailcallopt>`_
5740
5741#. The optional "cconv" marker indicates which :ref:`calling
5742 convention <callingconv>` the call should use. If none is
5743 specified, the call defaults to using C calling conventions. The
5744 calling convention of the call must match the calling convention of
5745 the target function, or else the behavior is undefined.
5746#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5747 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5748 are valid here.
5749#. '``ty``': the type of the call instruction itself which is also the
5750 type of the return value. Functions that return no value are marked
5751 ``void``.
5752#. '``fnty``': shall be the signature of the pointer to function value
5753 being invoked. The argument types must match the types implied by
5754 this signature. This type can be omitted if the function is not
5755 varargs and if the function type does not return a pointer to a
5756 function.
5757#. '``fnptrval``': An LLVM value containing a pointer to a function to
5758 be invoked. In most cases, this is a direct function invocation, but
5759 indirect ``call``'s are just as possible, calling an arbitrary pointer
5760 to function value.
5761#. '``function args``': argument list whose types match the function
5762 signature argument types and parameter attributes. All arguments must
5763 be of :ref:`first class <t_firstclass>` type. If the function signature
5764 indicates the function accepts a variable number of arguments, the
5765 extra arguments can be specified.
5766#. The optional :ref:`function attributes <fnattrs>` list. Only
5767 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5768 attributes are valid here.
5769
5770Semantics:
5771""""""""""
5772
5773The '``call``' instruction is used to cause control flow to transfer to
5774a specified function, with its incoming arguments bound to the specified
5775values. Upon a '``ret``' instruction in the called function, control
5776flow continues with the instruction after the function call, and the
5777return value of the function is bound to the result argument.
5778
5779Example:
5780""""""""
5781
5782.. code-block:: llvm
5783
5784 %retval = call i32 @test(i32 %argc)
5785 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5786 %X = tail call i32 @foo() ; yields i32
5787 %Y = tail call fastcc i32 @foo() ; yields i32
5788 call void %foo(i8 97 signext)
5789
5790 %struct.A = type { i32, i8 }
5791 %r = call %struct.A @foo() ; yields { 32, i8 }
5792 %gr = extractvalue %struct.A %r, 0 ; yields i32
5793 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5794 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5795 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5796
5797llvm treats calls to some functions with names and arguments that match
5798the standard C99 library as being the C99 library functions, and may
5799perform optimizations or generate code for them under that assumption.
5800This is something we'd like to change in the future to provide better
5801support for freestanding environments and non-C-based languages.
5802
5803.. _i_va_arg:
5804
5805'``va_arg``' Instruction
5806^^^^^^^^^^^^^^^^^^^^^^^^
5807
5808Syntax:
5809"""""""
5810
5811::
5812
5813 <resultval> = va_arg <va_list*> <arglist>, <argty>
5814
5815Overview:
5816"""""""""
5817
5818The '``va_arg``' instruction is used to access arguments passed through
5819the "variable argument" area of a function call. It is used to implement
5820the ``va_arg`` macro in C.
5821
5822Arguments:
5823""""""""""
5824
5825This instruction takes a ``va_list*`` value and the type of the
5826argument. It returns a value of the specified argument type and
5827increments the ``va_list`` to point to the next argument. The actual
5828type of ``va_list`` is target specific.
5829
5830Semantics:
5831""""""""""
5832
5833The '``va_arg``' instruction loads an argument of the specified type
5834from the specified ``va_list`` and causes the ``va_list`` to point to
5835the next argument. For more information, see the variable argument
5836handling :ref:`Intrinsic Functions <int_varargs>`.
5837
5838It is legal for this instruction to be called in a function which does
5839not take a variable number of arguments, for example, the ``vfprintf``
5840function.
5841
5842``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5843function <intrinsics>` because it takes a type as an argument.
5844
5845Example:
5846""""""""
5847
5848See the :ref:`variable argument processing <int_varargs>` section.
5849
5850Note that the code generator does not yet fully support va\_arg on many
5851targets. Also, it does not currently support va\_arg with aggregate
5852types on any target.
5853
5854.. _i_landingpad:
5855
5856'``landingpad``' Instruction
5857^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5858
5859Syntax:
5860"""""""
5861
5862::
5863
5864 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5865 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5866
5867 <clause> := catch <type> <value>
5868 <clause> := filter <array constant type> <array constant>
5869
5870Overview:
5871"""""""""
5872
5873The '``landingpad``' instruction is used by `LLVM's exception handling
5874system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005875is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00005876code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5877defines values supplied by the personality function (``pers_fn``) upon
5878re-entry to the function. The ``resultval`` has the type ``resultty``.
5879
5880Arguments:
5881""""""""""
5882
5883This instruction takes a ``pers_fn`` value. This is the personality
5884function associated with the unwinding mechanism. The optional
5885``cleanup`` flag indicates that the landing pad block is a cleanup.
5886
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005887A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00005888contains the global variable representing the "type" that may be caught
5889or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5890clause takes an array constant as its argument. Use
5891"``[0 x i8**] undef``" for a filter which cannot throw. The
5892'``landingpad``' instruction must contain *at least* one ``clause`` or
5893the ``cleanup`` flag.
5894
5895Semantics:
5896""""""""""
5897
5898The '``landingpad``' instruction defines the values which are set by the
5899personality function (``pers_fn``) upon re-entry to the function, and
5900therefore the "result type" of the ``landingpad`` instruction. As with
5901calling conventions, how the personality function results are
5902represented in LLVM IR is target specific.
5903
5904The clauses are applied in order from top to bottom. If two
5905``landingpad`` instructions are merged together through inlining, the
5906clauses from the calling function are appended to the list of clauses.
5907When the call stack is being unwound due to an exception being thrown,
5908the exception is compared against each ``clause`` in turn. If it doesn't
5909match any of the clauses, and the ``cleanup`` flag is not set, then
5910unwinding continues further up the call stack.
5911
5912The ``landingpad`` instruction has several restrictions:
5913
5914- A landing pad block is a basic block which is the unwind destination
5915 of an '``invoke``' instruction.
5916- A landing pad block must have a '``landingpad``' instruction as its
5917 first non-PHI instruction.
5918- There can be only one '``landingpad``' instruction within the landing
5919 pad block.
5920- A basic block that is not a landing pad block may not include a
5921 '``landingpad``' instruction.
5922- All '``landingpad``' instructions in a function must have the same
5923 personality function.
5924
5925Example:
5926""""""""
5927
5928.. code-block:: llvm
5929
5930 ;; A landing pad which can catch an integer.
5931 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5932 catch i8** @_ZTIi
5933 ;; A landing pad that is a cleanup.
5934 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5935 cleanup
5936 ;; A landing pad which can catch an integer and can only throw a double.
5937 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5938 catch i8** @_ZTIi
5939 filter [1 x i8**] [@_ZTId]
5940
5941.. _intrinsics:
5942
5943Intrinsic Functions
5944===================
5945
5946LLVM supports the notion of an "intrinsic function". These functions
5947have well known names and semantics and are required to follow certain
5948restrictions. Overall, these intrinsics represent an extension mechanism
5949for the LLVM language that does not require changing all of the
5950transformations in LLVM when adding to the language (or the bitcode
5951reader/writer, the parser, etc...).
5952
5953Intrinsic function names must all start with an "``llvm.``" prefix. This
5954prefix is reserved in LLVM for intrinsic names; thus, function names may
5955not begin with this prefix. Intrinsic functions must always be external
5956functions: you cannot define the body of intrinsic functions. Intrinsic
5957functions may only be used in call or invoke instructions: it is illegal
5958to take the address of an intrinsic function. Additionally, because
5959intrinsic functions are part of the LLVM language, it is required if any
5960are added that they be documented here.
5961
5962Some intrinsic functions can be overloaded, i.e., the intrinsic
5963represents a family of functions that perform the same operation but on
5964different data types. Because LLVM can represent over 8 million
5965different integer types, overloading is used commonly to allow an
5966intrinsic function to operate on any integer type. One or more of the
5967argument types or the result type can be overloaded to accept any
5968integer type. Argument types may also be defined as exactly matching a
5969previous argument's type or the result type. This allows an intrinsic
5970function which accepts multiple arguments, but needs all of them to be
5971of the same type, to only be overloaded with respect to a single
5972argument or the result.
5973
5974Overloaded intrinsics will have the names of its overloaded argument
5975types encoded into its function name, each preceded by a period. Only
5976those types which are overloaded result in a name suffix. Arguments
5977whose type is matched against another type do not. For example, the
5978``llvm.ctpop`` function can take an integer of any width and returns an
5979integer of exactly the same integer width. This leads to a family of
5980functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
5981``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
5982overloaded, and only one type suffix is required. Because the argument's
5983type is matched against the return type, it does not require its own
5984name suffix.
5985
5986To learn how to add an intrinsic function, please see the `Extending
5987LLVM Guide <ExtendingLLVM.html>`_.
5988
5989.. _int_varargs:
5990
5991Variable Argument Handling Intrinsics
5992-------------------------------------
5993
5994Variable argument support is defined in LLVM with the
5995:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
5996functions. These functions are related to the similarly named macros
5997defined in the ``<stdarg.h>`` header file.
5998
5999All of these functions operate on arguments that use a target-specific
6000value type "``va_list``". The LLVM assembly language reference manual
6001does not define what this type is, so all transformations should be
6002prepared to handle these functions regardless of the type used.
6003
6004This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6005variable argument handling intrinsic functions are used.
6006
6007.. code-block:: llvm
6008
6009 define i32 @test(i32 %X, ...) {
6010 ; Initialize variable argument processing
6011 %ap = alloca i8*
6012 %ap2 = bitcast i8** %ap to i8*
6013 call void @llvm.va_start(i8* %ap2)
6014
6015 ; Read a single integer argument
6016 %tmp = va_arg i8** %ap, i32
6017
6018 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6019 %aq = alloca i8*
6020 %aq2 = bitcast i8** %aq to i8*
6021 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6022 call void @llvm.va_end(i8* %aq2)
6023
6024 ; Stop processing of arguments.
6025 call void @llvm.va_end(i8* %ap2)
6026 ret i32 %tmp
6027 }
6028
6029 declare void @llvm.va_start(i8*)
6030 declare void @llvm.va_copy(i8*, i8*)
6031 declare void @llvm.va_end(i8*)
6032
6033.. _int_va_start:
6034
6035'``llvm.va_start``' Intrinsic
6036^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6037
6038Syntax:
6039"""""""
6040
6041::
6042
6043 declare void %llvm.va_start(i8* <arglist>)
6044
6045Overview:
6046"""""""""
6047
6048The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6049subsequent use by ``va_arg``.
6050
6051Arguments:
6052""""""""""
6053
6054The argument is a pointer to a ``va_list`` element to initialize.
6055
6056Semantics:
6057""""""""""
6058
6059The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6060available in C. In a target-dependent way, it initializes the
6061``va_list`` element to which the argument points, so that the next call
6062to ``va_arg`` will produce the first variable argument passed to the
6063function. Unlike the C ``va_start`` macro, this intrinsic does not need
6064to know the last argument of the function as the compiler can figure
6065that out.
6066
6067'``llvm.va_end``' Intrinsic
6068^^^^^^^^^^^^^^^^^^^^^^^^^^^
6069
6070Syntax:
6071"""""""
6072
6073::
6074
6075 declare void @llvm.va_end(i8* <arglist>)
6076
6077Overview:
6078"""""""""
6079
6080The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6081initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6082
6083Arguments:
6084""""""""""
6085
6086The argument is a pointer to a ``va_list`` to destroy.
6087
6088Semantics:
6089""""""""""
6090
6091The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6092available in C. In a target-dependent way, it destroys the ``va_list``
6093element to which the argument points. Calls to
6094:ref:`llvm.va_start <int_va_start>` and
6095:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6096``llvm.va_end``.
6097
6098.. _int_va_copy:
6099
6100'``llvm.va_copy``' Intrinsic
6101^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6102
6103Syntax:
6104"""""""
6105
6106::
6107
6108 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6109
6110Overview:
6111"""""""""
6112
6113The '``llvm.va_copy``' intrinsic copies the current argument position
6114from the source argument list to the destination argument list.
6115
6116Arguments:
6117""""""""""
6118
6119The first argument is a pointer to a ``va_list`` element to initialize.
6120The second argument is a pointer to a ``va_list`` element to copy from.
6121
6122Semantics:
6123""""""""""
6124
6125The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6126available in C. In a target-dependent way, it copies the source
6127``va_list`` element into the destination ``va_list`` element. This
6128intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6129arbitrarily complex and require, for example, memory allocation.
6130
6131Accurate Garbage Collection Intrinsics
6132--------------------------------------
6133
6134LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6135(GC) requires the implementation and generation of these intrinsics.
6136These intrinsics allow identification of :ref:`GC roots on the
6137stack <int_gcroot>`, as well as garbage collector implementations that
6138require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6139Front-ends for type-safe garbage collected languages should generate
6140these intrinsics to make use of the LLVM garbage collectors. For more
6141details, see `Accurate Garbage Collection with
6142LLVM <GarbageCollection.html>`_.
6143
6144The garbage collection intrinsics only operate on objects in the generic
6145address space (address space zero).
6146
6147.. _int_gcroot:
6148
6149'``llvm.gcroot``' Intrinsic
6150^^^^^^^^^^^^^^^^^^^^^^^^^^^
6151
6152Syntax:
6153"""""""
6154
6155::
6156
6157 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6158
6159Overview:
6160"""""""""
6161
6162The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6163the code generator, and allows some metadata to be associated with it.
6164
6165Arguments:
6166""""""""""
6167
6168The first argument specifies the address of a stack object that contains
6169the root pointer. The second pointer (which must be either a constant or
6170a global value address) contains the meta-data to be associated with the
6171root.
6172
6173Semantics:
6174""""""""""
6175
6176At runtime, a call to this intrinsic stores a null pointer into the
6177"ptrloc" location. At compile-time, the code generator generates
6178information to allow the runtime to find the pointer at GC safe points.
6179The '``llvm.gcroot``' intrinsic may only be used in a function which
6180:ref:`specifies a GC algorithm <gc>`.
6181
6182.. _int_gcread:
6183
6184'``llvm.gcread``' Intrinsic
6185^^^^^^^^^^^^^^^^^^^^^^^^^^^
6186
6187Syntax:
6188"""""""
6189
6190::
6191
6192 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6193
6194Overview:
6195"""""""""
6196
6197The '``llvm.gcread``' intrinsic identifies reads of references from heap
6198locations, allowing garbage collector implementations that require read
6199barriers.
6200
6201Arguments:
6202""""""""""
6203
6204The second argument is the address to read from, which should be an
6205address allocated from the garbage collector. The first object is a
6206pointer to the start of the referenced object, if needed by the language
6207runtime (otherwise null).
6208
6209Semantics:
6210""""""""""
6211
6212The '``llvm.gcread``' intrinsic has the same semantics as a load
6213instruction, but may be replaced with substantially more complex code by
6214the garbage collector runtime, as needed. The '``llvm.gcread``'
6215intrinsic may only be used in a function which :ref:`specifies a GC
6216algorithm <gc>`.
6217
6218.. _int_gcwrite:
6219
6220'``llvm.gcwrite``' Intrinsic
6221^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6222
6223Syntax:
6224"""""""
6225
6226::
6227
6228 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6229
6230Overview:
6231"""""""""
6232
6233The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6234locations, allowing garbage collector implementations that require write
6235barriers (such as generational or reference counting collectors).
6236
6237Arguments:
6238""""""""""
6239
6240The first argument is the reference to store, the second is the start of
6241the object to store it to, and the third is the address of the field of
6242Obj to store to. If the runtime does not require a pointer to the
6243object, Obj may be null.
6244
6245Semantics:
6246""""""""""
6247
6248The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6249instruction, but may be replaced with substantially more complex code by
6250the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6251intrinsic may only be used in a function which :ref:`specifies a GC
6252algorithm <gc>`.
6253
6254Code Generator Intrinsics
6255-------------------------
6256
6257These intrinsics are provided by LLVM to expose special features that
6258may only be implemented with code generator support.
6259
6260'``llvm.returnaddress``' Intrinsic
6261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6262
6263Syntax:
6264"""""""
6265
6266::
6267
6268 declare i8 *@llvm.returnaddress(i32 <level>)
6269
6270Overview:
6271"""""""""
6272
6273The '``llvm.returnaddress``' intrinsic attempts to compute a
6274target-specific value indicating the return address of the current
6275function or one of its callers.
6276
6277Arguments:
6278""""""""""
6279
6280The argument to this intrinsic indicates which function to return the
6281address for. Zero indicates the calling function, one indicates its
6282caller, etc. The argument is **required** to be a constant integer
6283value.
6284
6285Semantics:
6286""""""""""
6287
6288The '``llvm.returnaddress``' intrinsic either returns a pointer
6289indicating the return address of the specified call frame, or zero if it
6290cannot be identified. The value returned by this intrinsic is likely to
6291be incorrect or 0 for arguments other than zero, so it should only be
6292used for debugging purposes.
6293
6294Note that calling this intrinsic does not prevent function inlining or
6295other aggressive transformations, so the value returned may not be that
6296of the obvious source-language caller.
6297
6298'``llvm.frameaddress``' Intrinsic
6299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6300
6301Syntax:
6302"""""""
6303
6304::
6305
6306 declare i8* @llvm.frameaddress(i32 <level>)
6307
6308Overview:
6309"""""""""
6310
6311The '``llvm.frameaddress``' intrinsic attempts to return the
6312target-specific frame pointer value for the specified stack frame.
6313
6314Arguments:
6315""""""""""
6316
6317The argument to this intrinsic indicates which function to return the
6318frame pointer for. Zero indicates the calling function, one indicates
6319its caller, etc. The argument is **required** to be a constant integer
6320value.
6321
6322Semantics:
6323""""""""""
6324
6325The '``llvm.frameaddress``' intrinsic either returns a pointer
6326indicating the frame address of the specified call frame, or zero if it
6327cannot be identified. The value returned by this intrinsic is likely to
6328be incorrect or 0 for arguments other than zero, so it should only be
6329used for debugging purposes.
6330
6331Note that calling this intrinsic does not prevent function inlining or
6332other aggressive transformations, so the value returned may not be that
6333of the obvious source-language caller.
6334
6335.. _int_stacksave:
6336
6337'``llvm.stacksave``' Intrinsic
6338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6339
6340Syntax:
6341"""""""
6342
6343::
6344
6345 declare i8* @llvm.stacksave()
6346
6347Overview:
6348"""""""""
6349
6350The '``llvm.stacksave``' intrinsic is used to remember the current state
6351of the function stack, for use with
6352:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6353implementing language features like scoped automatic variable sized
6354arrays in C99.
6355
6356Semantics:
6357""""""""""
6358
6359This intrinsic returns a opaque pointer value that can be passed to
6360:ref:`llvm.stackrestore <int_stackrestore>`. When an
6361``llvm.stackrestore`` intrinsic is executed with a value saved from
6362``llvm.stacksave``, it effectively restores the state of the stack to
6363the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6364practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6365were allocated after the ``llvm.stacksave`` was executed.
6366
6367.. _int_stackrestore:
6368
6369'``llvm.stackrestore``' Intrinsic
6370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6371
6372Syntax:
6373"""""""
6374
6375::
6376
6377 declare void @llvm.stackrestore(i8* %ptr)
6378
6379Overview:
6380"""""""""
6381
6382The '``llvm.stackrestore``' intrinsic is used to restore the state of
6383the function stack to the state it was in when the corresponding
6384:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6385useful for implementing language features like scoped automatic variable
6386sized arrays in C99.
6387
6388Semantics:
6389""""""""""
6390
6391See the description for :ref:`llvm.stacksave <int_stacksave>`.
6392
6393'``llvm.prefetch``' Intrinsic
6394^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6395
6396Syntax:
6397"""""""
6398
6399::
6400
6401 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6402
6403Overview:
6404"""""""""
6405
6406The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6407insert a prefetch instruction if supported; otherwise, it is a noop.
6408Prefetches have no effect on the behavior of the program but can change
6409its performance characteristics.
6410
6411Arguments:
6412""""""""""
6413
6414``address`` is the address to be prefetched, ``rw`` is the specifier
6415determining if the fetch should be for a read (0) or write (1), and
6416``locality`` is a temporal locality specifier ranging from (0) - no
6417locality, to (3) - extremely local keep in cache. The ``cache type``
6418specifies whether the prefetch is performed on the data (1) or
6419instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6420arguments must be constant integers.
6421
6422Semantics:
6423""""""""""
6424
6425This intrinsic does not modify the behavior of the program. In
6426particular, prefetches cannot trap and do not produce a value. On
6427targets that support this intrinsic, the prefetch can provide hints to
6428the processor cache for better performance.
6429
6430'``llvm.pcmarker``' Intrinsic
6431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6432
6433Syntax:
6434"""""""
6435
6436::
6437
6438 declare void @llvm.pcmarker(i32 <id>)
6439
6440Overview:
6441"""""""""
6442
6443The '``llvm.pcmarker``' intrinsic is a method to export a Program
6444Counter (PC) in a region of code to simulators and other tools. The
6445method is target specific, but it is expected that the marker will use
6446exported symbols to transmit the PC of the marker. The marker makes no
6447guarantees that it will remain with any specific instruction after
6448optimizations. It is possible that the presence of a marker will inhibit
6449optimizations. The intended use is to be inserted after optimizations to
6450allow correlations of simulation runs.
6451
6452Arguments:
6453""""""""""
6454
6455``id`` is a numerical id identifying the marker.
6456
6457Semantics:
6458""""""""""
6459
6460This intrinsic does not modify the behavior of the program. Backends
6461that do not support this intrinsic may ignore it.
6462
6463'``llvm.readcyclecounter``' Intrinsic
6464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6465
6466Syntax:
6467"""""""
6468
6469::
6470
6471 declare i64 @llvm.readcyclecounter()
6472
6473Overview:
6474"""""""""
6475
6476The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6477counter register (or similar low latency, high accuracy clocks) on those
6478targets that support it. On X86, it should map to RDTSC. On Alpha, it
6479should map to RPCC. As the backing counters overflow quickly (on the
6480order of 9 seconds on alpha), this should only be used for small
6481timings.
6482
6483Semantics:
6484""""""""""
6485
6486When directly supported, reading the cycle counter should not modify any
6487memory. Implementations are allowed to either return a application
6488specific value or a system wide value. On backends without support, this
6489is lowered to a constant 0.
6490
6491Standard C Library Intrinsics
6492-----------------------------
6493
6494LLVM provides intrinsics for a few important standard C library
6495functions. These intrinsics allow source-language front-ends to pass
6496information about the alignment of the pointer arguments to the code
6497generator, providing opportunity for more efficient code generation.
6498
6499.. _int_memcpy:
6500
6501'``llvm.memcpy``' Intrinsic
6502^^^^^^^^^^^^^^^^^^^^^^^^^^^
6503
6504Syntax:
6505"""""""
6506
6507This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6508integer bit width and for different address spaces. Not all targets
6509support all bit widths however.
6510
6511::
6512
6513 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6514 i32 <len>, i32 <align>, i1 <isvolatile>)
6515 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6516 i64 <len>, i32 <align>, i1 <isvolatile>)
6517
6518Overview:
6519"""""""""
6520
6521The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6522source location to the destination location.
6523
6524Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6525intrinsics do not return a value, takes extra alignment/isvolatile
6526arguments and the pointers can be in specified address spaces.
6527
6528Arguments:
6529""""""""""
6530
6531The first argument is a pointer to the destination, the second is a
6532pointer to the source. The third argument is an integer argument
6533specifying the number of bytes to copy, the fourth argument is the
6534alignment of the source and destination locations, and the fifth is a
6535boolean indicating a volatile access.
6536
6537If the call to this intrinsic has an alignment value that is not 0 or 1,
6538then the caller guarantees that both the source and destination pointers
6539are aligned to that boundary.
6540
6541If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6542a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6543very cleanly specified and it is unwise to depend on it.
6544
6545Semantics:
6546""""""""""
6547
6548The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6549source location to the destination location, which are not allowed to
6550overlap. It copies "len" bytes of memory over. If the argument is known
6551to be aligned to some boundary, this can be specified as the fourth
6552argument, otherwise it should be set to 0 or 1.
6553
6554'``llvm.memmove``' Intrinsic
6555^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6556
6557Syntax:
6558"""""""
6559
6560This is an overloaded intrinsic. You can use llvm.memmove on any integer
6561bit width and for different address space. Not all targets support all
6562bit widths however.
6563
6564::
6565
6566 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6567 i32 <len>, i32 <align>, i1 <isvolatile>)
6568 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6569 i64 <len>, i32 <align>, i1 <isvolatile>)
6570
6571Overview:
6572"""""""""
6573
6574The '``llvm.memmove.*``' intrinsics move a block of memory from the
6575source location to the destination location. It is similar to the
6576'``llvm.memcpy``' intrinsic but allows the two memory locations to
6577overlap.
6578
6579Note that, unlike the standard libc function, the ``llvm.memmove.*``
6580intrinsics do not return a value, takes extra alignment/isvolatile
6581arguments and the pointers can be in specified address spaces.
6582
6583Arguments:
6584""""""""""
6585
6586The first argument is a pointer to the destination, the second is a
6587pointer to the source. The third argument is an integer argument
6588specifying the number of bytes to copy, the fourth argument is the
6589alignment of the source and destination locations, and the fifth is a
6590boolean indicating a volatile access.
6591
6592If the call to this intrinsic has an alignment value that is not 0 or 1,
6593then the caller guarantees that the source and destination pointers are
6594aligned to that boundary.
6595
6596If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6597is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6598not very cleanly specified and it is unwise to depend on it.
6599
6600Semantics:
6601""""""""""
6602
6603The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6604source location to the destination location, which may overlap. It
6605copies "len" bytes of memory over. If the argument is known to be
6606aligned to some boundary, this can be specified as the fourth argument,
6607otherwise it should be set to 0 or 1.
6608
6609'``llvm.memset.*``' Intrinsics
6610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6611
6612Syntax:
6613"""""""
6614
6615This is an overloaded intrinsic. You can use llvm.memset on any integer
6616bit width and for different address spaces. However, not all targets
6617support all bit widths.
6618
6619::
6620
6621 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6622 i32 <len>, i32 <align>, i1 <isvolatile>)
6623 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6624 i64 <len>, i32 <align>, i1 <isvolatile>)
6625
6626Overview:
6627"""""""""
6628
6629The '``llvm.memset.*``' intrinsics fill a block of memory with a
6630particular byte value.
6631
6632Note that, unlike the standard libc function, the ``llvm.memset``
6633intrinsic does not return a value and takes extra alignment/volatile
6634arguments. Also, the destination can be in an arbitrary address space.
6635
6636Arguments:
6637""""""""""
6638
6639The first argument is a pointer to the destination to fill, the second
6640is the byte value with which to fill it, the third argument is an
6641integer argument specifying the number of bytes to fill, and the fourth
6642argument is the known alignment of the destination location.
6643
6644If the call to this intrinsic has an alignment value that is not 0 or 1,
6645then the caller guarantees that the destination pointer is aligned to
6646that boundary.
6647
6648If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6649a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6650very cleanly specified and it is unwise to depend on it.
6651
6652Semantics:
6653""""""""""
6654
6655The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6656at the destination location. If the argument is known to be aligned to
6657some boundary, this can be specified as the fourth argument, otherwise
6658it should be set to 0 or 1.
6659
6660'``llvm.sqrt.*``' Intrinsic
6661^^^^^^^^^^^^^^^^^^^^^^^^^^^
6662
6663Syntax:
6664"""""""
6665
6666This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6667floating point or vector of floating point type. Not all targets support
6668all types however.
6669
6670::
6671
6672 declare float @llvm.sqrt.f32(float %Val)
6673 declare double @llvm.sqrt.f64(double %Val)
6674 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6675 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6676 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6677
6678Overview:
6679"""""""""
6680
6681The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6682returning the same value as the libm '``sqrt``' functions would. Unlike
6683``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6684negative numbers other than -0.0 (which allows for better optimization,
6685because there is no need to worry about errno being set).
6686``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6687
6688Arguments:
6689""""""""""
6690
6691The argument and return value are floating point numbers of the same
6692type.
6693
6694Semantics:
6695""""""""""
6696
6697This function returns the sqrt of the specified operand if it is a
6698nonnegative floating point number.
6699
6700'``llvm.powi.*``' Intrinsic
6701^^^^^^^^^^^^^^^^^^^^^^^^^^^
6702
6703Syntax:
6704"""""""
6705
6706This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6707floating point or vector of floating point type. Not all targets support
6708all types however.
6709
6710::
6711
6712 declare float @llvm.powi.f32(float %Val, i32 %power)
6713 declare double @llvm.powi.f64(double %Val, i32 %power)
6714 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6715 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6716 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6717
6718Overview:
6719"""""""""
6720
6721The '``llvm.powi.*``' intrinsics return the first operand raised to the
6722specified (positive or negative) power. The order of evaluation of
6723multiplications is not defined. When a vector of floating point type is
6724used, the second argument remains a scalar integer value.
6725
6726Arguments:
6727""""""""""
6728
6729The second argument is an integer power, and the first is a value to
6730raise to that power.
6731
6732Semantics:
6733""""""""""
6734
6735This function returns the first value raised to the second power with an
6736unspecified sequence of rounding operations.
6737
6738'``llvm.sin.*``' Intrinsic
6739^^^^^^^^^^^^^^^^^^^^^^^^^^
6740
6741Syntax:
6742"""""""
6743
6744This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6745floating point or vector of floating point type. Not all targets support
6746all types however.
6747
6748::
6749
6750 declare float @llvm.sin.f32(float %Val)
6751 declare double @llvm.sin.f64(double %Val)
6752 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6753 declare fp128 @llvm.sin.f128(fp128 %Val)
6754 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6755
6756Overview:
6757"""""""""
6758
6759The '``llvm.sin.*``' intrinsics return the sine of the operand.
6760
6761Arguments:
6762""""""""""
6763
6764The argument and return value are floating point numbers of the same
6765type.
6766
6767Semantics:
6768""""""""""
6769
6770This function returns the sine of the specified operand, returning the
6771same values as the libm ``sin`` functions would, and handles error
6772conditions in the same way.
6773
6774'``llvm.cos.*``' Intrinsic
6775^^^^^^^^^^^^^^^^^^^^^^^^^^
6776
6777Syntax:
6778"""""""
6779
6780This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6781floating point or vector of floating point type. Not all targets support
6782all types however.
6783
6784::
6785
6786 declare float @llvm.cos.f32(float %Val)
6787 declare double @llvm.cos.f64(double %Val)
6788 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6789 declare fp128 @llvm.cos.f128(fp128 %Val)
6790 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6791
6792Overview:
6793"""""""""
6794
6795The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6796
6797Arguments:
6798""""""""""
6799
6800The argument and return value are floating point numbers of the same
6801type.
6802
6803Semantics:
6804""""""""""
6805
6806This function returns the cosine of the specified operand, returning the
6807same values as the libm ``cos`` functions would, and handles error
6808conditions in the same way.
6809
6810'``llvm.pow.*``' Intrinsic
6811^^^^^^^^^^^^^^^^^^^^^^^^^^
6812
6813Syntax:
6814"""""""
6815
6816This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6817floating point or vector of floating point type. Not all targets support
6818all types however.
6819
6820::
6821
6822 declare float @llvm.pow.f32(float %Val, float %Power)
6823 declare double @llvm.pow.f64(double %Val, double %Power)
6824 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6825 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6826 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6827
6828Overview:
6829"""""""""
6830
6831The '``llvm.pow.*``' intrinsics return the first operand raised to the
6832specified (positive or negative) power.
6833
6834Arguments:
6835""""""""""
6836
6837The second argument is a floating point power, and the first is a value
6838to raise to that power.
6839
6840Semantics:
6841""""""""""
6842
6843This function returns the first value raised to the second power,
6844returning the same values as the libm ``pow`` functions would, and
6845handles error conditions in the same way.
6846
6847'``llvm.exp.*``' Intrinsic
6848^^^^^^^^^^^^^^^^^^^^^^^^^^
6849
6850Syntax:
6851"""""""
6852
6853This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6854floating point or vector of floating point type. Not all targets support
6855all types however.
6856
6857::
6858
6859 declare float @llvm.exp.f32(float %Val)
6860 declare double @llvm.exp.f64(double %Val)
6861 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6862 declare fp128 @llvm.exp.f128(fp128 %Val)
6863 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6864
6865Overview:
6866"""""""""
6867
6868The '``llvm.exp.*``' intrinsics perform the exp function.
6869
6870Arguments:
6871""""""""""
6872
6873The argument and return value are floating point numbers of the same
6874type.
6875
6876Semantics:
6877""""""""""
6878
6879This function returns the same values as the libm ``exp`` functions
6880would, and handles error conditions in the same way.
6881
6882'``llvm.exp2.*``' Intrinsic
6883^^^^^^^^^^^^^^^^^^^^^^^^^^^
6884
6885Syntax:
6886"""""""
6887
6888This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6889floating point or vector of floating point type. Not all targets support
6890all types however.
6891
6892::
6893
6894 declare float @llvm.exp2.f32(float %Val)
6895 declare double @llvm.exp2.f64(double %Val)
6896 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6897 declare fp128 @llvm.exp2.f128(fp128 %Val)
6898 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6899
6900Overview:
6901"""""""""
6902
6903The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6904
6905Arguments:
6906""""""""""
6907
6908The argument and return value are floating point numbers of the same
6909type.
6910
6911Semantics:
6912""""""""""
6913
6914This function returns the same values as the libm ``exp2`` functions
6915would, and handles error conditions in the same way.
6916
6917'``llvm.log.*``' Intrinsic
6918^^^^^^^^^^^^^^^^^^^^^^^^^^
6919
6920Syntax:
6921"""""""
6922
6923This is an overloaded intrinsic. You can use ``llvm.log`` on any
6924floating point or vector of floating point type. Not all targets support
6925all types however.
6926
6927::
6928
6929 declare float @llvm.log.f32(float %Val)
6930 declare double @llvm.log.f64(double %Val)
6931 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6932 declare fp128 @llvm.log.f128(fp128 %Val)
6933 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6934
6935Overview:
6936"""""""""
6937
6938The '``llvm.log.*``' intrinsics perform the log function.
6939
6940Arguments:
6941""""""""""
6942
6943The argument and return value are floating point numbers of the same
6944type.
6945
6946Semantics:
6947""""""""""
6948
6949This function returns the same values as the libm ``log`` functions
6950would, and handles error conditions in the same way.
6951
6952'``llvm.log10.*``' Intrinsic
6953^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6954
6955Syntax:
6956"""""""
6957
6958This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6959floating point or vector of floating point type. Not all targets support
6960all types however.
6961
6962::
6963
6964 declare float @llvm.log10.f32(float %Val)
6965 declare double @llvm.log10.f64(double %Val)
6966 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
6967 declare fp128 @llvm.log10.f128(fp128 %Val)
6968 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
6969
6970Overview:
6971"""""""""
6972
6973The '``llvm.log10.*``' intrinsics perform the log10 function.
6974
6975Arguments:
6976""""""""""
6977
6978The argument and return value are floating point numbers of the same
6979type.
6980
6981Semantics:
6982""""""""""
6983
6984This function returns the same values as the libm ``log10`` functions
6985would, and handles error conditions in the same way.
6986
6987'``llvm.log2.*``' Intrinsic
6988^^^^^^^^^^^^^^^^^^^^^^^^^^^
6989
6990Syntax:
6991"""""""
6992
6993This is an overloaded intrinsic. You can use ``llvm.log2`` on any
6994floating point or vector of floating point type. Not all targets support
6995all types however.
6996
6997::
6998
6999 declare float @llvm.log2.f32(float %Val)
7000 declare double @llvm.log2.f64(double %Val)
7001 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7002 declare fp128 @llvm.log2.f128(fp128 %Val)
7003 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7004
7005Overview:
7006"""""""""
7007
7008The '``llvm.log2.*``' intrinsics perform the log2 function.
7009
7010Arguments:
7011""""""""""
7012
7013The argument and return value are floating point numbers of the same
7014type.
7015
7016Semantics:
7017""""""""""
7018
7019This function returns the same values as the libm ``log2`` functions
7020would, and handles error conditions in the same way.
7021
7022'``llvm.fma.*``' Intrinsic
7023^^^^^^^^^^^^^^^^^^^^^^^^^^
7024
7025Syntax:
7026"""""""
7027
7028This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7029floating point or vector of floating point type. Not all targets support
7030all types however.
7031
7032::
7033
7034 declare float @llvm.fma.f32(float %a, float %b, float %c)
7035 declare double @llvm.fma.f64(double %a, double %b, double %c)
7036 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7037 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7038 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7039
7040Overview:
7041"""""""""
7042
7043The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7044operation.
7045
7046Arguments:
7047""""""""""
7048
7049The argument and return value are floating point numbers of the same
7050type.
7051
7052Semantics:
7053""""""""""
7054
7055This function returns the same values as the libm ``fma`` functions
7056would.
7057
7058'``llvm.fabs.*``' Intrinsic
7059^^^^^^^^^^^^^^^^^^^^^^^^^^^
7060
7061Syntax:
7062"""""""
7063
7064This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7065floating point or vector of floating point type. Not all targets support
7066all types however.
7067
7068::
7069
7070 declare float @llvm.fabs.f32(float %Val)
7071 declare double @llvm.fabs.f64(double %Val)
7072 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7073 declare fp128 @llvm.fabs.f128(fp128 %Val)
7074 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7075
7076Overview:
7077"""""""""
7078
7079The '``llvm.fabs.*``' intrinsics return the absolute value of the
7080operand.
7081
7082Arguments:
7083""""""""""
7084
7085The argument and return value are floating point numbers of the same
7086type.
7087
7088Semantics:
7089""""""""""
7090
7091This function returns the same values as the libm ``fabs`` functions
7092would, and handles error conditions in the same way.
7093
7094'``llvm.floor.*``' Intrinsic
7095^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7096
7097Syntax:
7098"""""""
7099
7100This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7101floating point or vector of floating point type. Not all targets support
7102all types however.
7103
7104::
7105
7106 declare float @llvm.floor.f32(float %Val)
7107 declare double @llvm.floor.f64(double %Val)
7108 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7109 declare fp128 @llvm.floor.f128(fp128 %Val)
7110 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7111
7112Overview:
7113"""""""""
7114
7115The '``llvm.floor.*``' intrinsics return the floor of the operand.
7116
7117Arguments:
7118""""""""""
7119
7120The argument and return value are floating point numbers of the same
7121type.
7122
7123Semantics:
7124""""""""""
7125
7126This function returns the same values as the libm ``floor`` functions
7127would, and handles error conditions in the same way.
7128
7129'``llvm.ceil.*``' Intrinsic
7130^^^^^^^^^^^^^^^^^^^^^^^^^^^
7131
7132Syntax:
7133"""""""
7134
7135This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7136floating point or vector of floating point type. Not all targets support
7137all types however.
7138
7139::
7140
7141 declare float @llvm.ceil.f32(float %Val)
7142 declare double @llvm.ceil.f64(double %Val)
7143 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7144 declare fp128 @llvm.ceil.f128(fp128 %Val)
7145 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7146
7147Overview:
7148"""""""""
7149
7150The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7151
7152Arguments:
7153""""""""""
7154
7155The argument and return value are floating point numbers of the same
7156type.
7157
7158Semantics:
7159""""""""""
7160
7161This function returns the same values as the libm ``ceil`` functions
7162would, and handles error conditions in the same way.
7163
7164'``llvm.trunc.*``' Intrinsic
7165^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7166
7167Syntax:
7168"""""""
7169
7170This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7171floating point or vector of floating point type. Not all targets support
7172all types however.
7173
7174::
7175
7176 declare float @llvm.trunc.f32(float %Val)
7177 declare double @llvm.trunc.f64(double %Val)
7178 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7179 declare fp128 @llvm.trunc.f128(fp128 %Val)
7180 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7181
7182Overview:
7183"""""""""
7184
7185The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7186nearest integer not larger in magnitude than the operand.
7187
7188Arguments:
7189""""""""""
7190
7191The argument and return value are floating point numbers of the same
7192type.
7193
7194Semantics:
7195""""""""""
7196
7197This function returns the same values as the libm ``trunc`` functions
7198would, and handles error conditions in the same way.
7199
7200'``llvm.rint.*``' Intrinsic
7201^^^^^^^^^^^^^^^^^^^^^^^^^^^
7202
7203Syntax:
7204"""""""
7205
7206This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7207floating point or vector of floating point type. Not all targets support
7208all types however.
7209
7210::
7211
7212 declare float @llvm.rint.f32(float %Val)
7213 declare double @llvm.rint.f64(double %Val)
7214 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7215 declare fp128 @llvm.rint.f128(fp128 %Val)
7216 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7217
7218Overview:
7219"""""""""
7220
7221The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7222nearest integer. It may raise an inexact floating-point exception if the
7223operand isn't an integer.
7224
7225Arguments:
7226""""""""""
7227
7228The argument and return value are floating point numbers of the same
7229type.
7230
7231Semantics:
7232""""""""""
7233
7234This function returns the same values as the libm ``rint`` functions
7235would, and handles error conditions in the same way.
7236
7237'``llvm.nearbyint.*``' Intrinsic
7238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7239
7240Syntax:
7241"""""""
7242
7243This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7244floating point or vector of floating point type. Not all targets support
7245all types however.
7246
7247::
7248
7249 declare float @llvm.nearbyint.f32(float %Val)
7250 declare double @llvm.nearbyint.f64(double %Val)
7251 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7252 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7253 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7254
7255Overview:
7256"""""""""
7257
7258The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7259nearest integer.
7260
7261Arguments:
7262""""""""""
7263
7264The argument and return value are floating point numbers of the same
7265type.
7266
7267Semantics:
7268""""""""""
7269
7270This function returns the same values as the libm ``nearbyint``
7271functions would, and handles error conditions in the same way.
7272
7273Bit Manipulation Intrinsics
7274---------------------------
7275
7276LLVM provides intrinsics for a few important bit manipulation
7277operations. These allow efficient code generation for some algorithms.
7278
7279'``llvm.bswap.*``' Intrinsics
7280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7281
7282Syntax:
7283"""""""
7284
7285This is an overloaded intrinsic function. You can use bswap on any
7286integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7287
7288::
7289
7290 declare i16 @llvm.bswap.i16(i16 <id>)
7291 declare i32 @llvm.bswap.i32(i32 <id>)
7292 declare i64 @llvm.bswap.i64(i64 <id>)
7293
7294Overview:
7295"""""""""
7296
7297The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7298values with an even number of bytes (positive multiple of 16 bits).
7299These are useful for performing operations on data that is not in the
7300target's native byte order.
7301
7302Semantics:
7303""""""""""
7304
7305The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7306and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7307intrinsic returns an i32 value that has the four bytes of the input i32
7308swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7309returned i32 will have its bytes in 3, 2, 1, 0 order. The
7310``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7311concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7312respectively).
7313
7314'``llvm.ctpop.*``' Intrinsic
7315^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7316
7317Syntax:
7318"""""""
7319
7320This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7321bit width, or on any vector with integer elements. Not all targets
7322support all bit widths or vector types, however.
7323
7324::
7325
7326 declare i8 @llvm.ctpop.i8(i8 <src>)
7327 declare i16 @llvm.ctpop.i16(i16 <src>)
7328 declare i32 @llvm.ctpop.i32(i32 <src>)
7329 declare i64 @llvm.ctpop.i64(i64 <src>)
7330 declare i256 @llvm.ctpop.i256(i256 <src>)
7331 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7332
7333Overview:
7334"""""""""
7335
7336The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7337in a value.
7338
7339Arguments:
7340""""""""""
7341
7342The only argument is the value to be counted. The argument may be of any
7343integer type, or a vector with integer elements. The return type must
7344match the argument type.
7345
7346Semantics:
7347""""""""""
7348
7349The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7350each element of a vector.
7351
7352'``llvm.ctlz.*``' Intrinsic
7353^^^^^^^^^^^^^^^^^^^^^^^^^^^
7354
7355Syntax:
7356"""""""
7357
7358This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7359integer bit width, or any vector whose elements are integers. Not all
7360targets support all bit widths or vector types, however.
7361
7362::
7363
7364 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7365 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7366 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7367 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7368 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7369 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7370
7371Overview:
7372"""""""""
7373
7374The '``llvm.ctlz``' family of intrinsic functions counts the number of
7375leading zeros in a variable.
7376
7377Arguments:
7378""""""""""
7379
7380The first argument is the value to be counted. This argument may be of
7381any integer type, or a vectory with integer element type. The return
7382type must match the first argument type.
7383
7384The second argument must be a constant and is a flag to indicate whether
7385the intrinsic should ensure that a zero as the first argument produces a
7386defined result. Historically some architectures did not provide a
7387defined result for zero values as efficiently, and many algorithms are
7388now predicated on avoiding zero-value inputs.
7389
7390Semantics:
7391""""""""""
7392
7393The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7394zeros in a variable, or within each element of the vector. If
7395``src == 0`` then the result is the size in bits of the type of ``src``
7396if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7397``llvm.ctlz(i32 2) = 30``.
7398
7399'``llvm.cttz.*``' Intrinsic
7400^^^^^^^^^^^^^^^^^^^^^^^^^^^
7401
7402Syntax:
7403"""""""
7404
7405This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7406integer bit width, or any vector of integer elements. Not all targets
7407support all bit widths or vector types, however.
7408
7409::
7410
7411 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7412 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7413 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7414 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7415 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7416 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7417
7418Overview:
7419"""""""""
7420
7421The '``llvm.cttz``' family of intrinsic functions counts the number of
7422trailing zeros.
7423
7424Arguments:
7425""""""""""
7426
7427The first argument is the value to be counted. This argument may be of
7428any integer type, or a vectory with integer element type. The return
7429type must match the first argument type.
7430
7431The second argument must be a constant and is a flag to indicate whether
7432the intrinsic should ensure that a zero as the first argument produces a
7433defined result. Historically some architectures did not provide a
7434defined result for zero values as efficiently, and many algorithms are
7435now predicated on avoiding zero-value inputs.
7436
7437Semantics:
7438""""""""""
7439
7440The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7441zeros in a variable, or within each element of a vector. If ``src == 0``
7442then the result is the size in bits of the type of ``src`` if
7443``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7444``llvm.cttz(2) = 1``.
7445
7446Arithmetic with Overflow Intrinsics
7447-----------------------------------
7448
7449LLVM provides intrinsics for some arithmetic with overflow operations.
7450
7451'``llvm.sadd.with.overflow.*``' Intrinsics
7452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7453
7454Syntax:
7455"""""""
7456
7457This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7458on any integer bit width.
7459
7460::
7461
7462 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7463 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7464 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7465
7466Overview:
7467"""""""""
7468
7469The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7470a signed addition of the two arguments, and indicate whether an overflow
7471occurred during the signed summation.
7472
7473Arguments:
7474""""""""""
7475
7476The arguments (%a and %b) and the first element of the result structure
7477may be of integer types of any bit width, but they must have the same
7478bit width. The second element of the result structure must be of type
7479``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7480addition.
7481
7482Semantics:
7483""""""""""
7484
7485The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007486a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007487first element of which is the signed summation, and the second element
7488of which is a bit specifying if the signed summation resulted in an
7489overflow.
7490
7491Examples:
7492"""""""""
7493
7494.. code-block:: llvm
7495
7496 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7497 %sum = extractvalue {i32, i1} %res, 0
7498 %obit = extractvalue {i32, i1} %res, 1
7499 br i1 %obit, label %overflow, label %normal
7500
7501'``llvm.uadd.with.overflow.*``' Intrinsics
7502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7503
7504Syntax:
7505"""""""
7506
7507This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7508on any integer bit width.
7509
7510::
7511
7512 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7513 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7514 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7515
7516Overview:
7517"""""""""
7518
7519The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7520an unsigned addition of the two arguments, and indicate whether a carry
7521occurred during the unsigned summation.
7522
7523Arguments:
7524""""""""""
7525
7526The arguments (%a and %b) and the first element of the result structure
7527may be of integer types of any bit width, but they must have the same
7528bit width. The second element of the result structure must be of type
7529``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7530addition.
7531
7532Semantics:
7533""""""""""
7534
7535The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007536an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007537first element of which is the sum, and the second element of which is a
7538bit specifying if the unsigned summation resulted in a carry.
7539
7540Examples:
7541"""""""""
7542
7543.. code-block:: llvm
7544
7545 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7546 %sum = extractvalue {i32, i1} %res, 0
7547 %obit = extractvalue {i32, i1} %res, 1
7548 br i1 %obit, label %carry, label %normal
7549
7550'``llvm.ssub.with.overflow.*``' Intrinsics
7551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7552
7553Syntax:
7554"""""""
7555
7556This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7557on any integer bit width.
7558
7559::
7560
7561 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7562 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7563 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7564
7565Overview:
7566"""""""""
7567
7568The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7569a signed subtraction of the two arguments, and indicate whether an
7570overflow occurred during the signed subtraction.
7571
7572Arguments:
7573""""""""""
7574
7575The arguments (%a and %b) and the first element of the result structure
7576may be of integer types of any bit width, but they must have the same
7577bit width. The second element of the result structure must be of type
7578``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7579subtraction.
7580
7581Semantics:
7582""""""""""
7583
7584The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007585a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007586first element of which is the subtraction, and the second element of
7587which is a bit specifying if the signed subtraction resulted in an
7588overflow.
7589
7590Examples:
7591"""""""""
7592
7593.. code-block:: llvm
7594
7595 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7596 %sum = extractvalue {i32, i1} %res, 0
7597 %obit = extractvalue {i32, i1} %res, 1
7598 br i1 %obit, label %overflow, label %normal
7599
7600'``llvm.usub.with.overflow.*``' Intrinsics
7601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7602
7603Syntax:
7604"""""""
7605
7606This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7607on any integer bit width.
7608
7609::
7610
7611 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7612 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7613 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7614
7615Overview:
7616"""""""""
7617
7618The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7619an unsigned subtraction of the two arguments, and indicate whether an
7620overflow occurred during the unsigned subtraction.
7621
7622Arguments:
7623""""""""""
7624
7625The arguments (%a and %b) and the first element of the result structure
7626may be of integer types of any bit width, but they must have the same
7627bit width. The second element of the result structure must be of type
7628``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7629subtraction.
7630
7631Semantics:
7632""""""""""
7633
7634The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007635an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00007636the first element of which is the subtraction, and the second element of
7637which is a bit specifying if the unsigned subtraction resulted in an
7638overflow.
7639
7640Examples:
7641"""""""""
7642
7643.. code-block:: llvm
7644
7645 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7646 %sum = extractvalue {i32, i1} %res, 0
7647 %obit = extractvalue {i32, i1} %res, 1
7648 br i1 %obit, label %overflow, label %normal
7649
7650'``llvm.smul.with.overflow.*``' Intrinsics
7651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7652
7653Syntax:
7654"""""""
7655
7656This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7657on any integer bit width.
7658
7659::
7660
7661 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7662 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7663 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7664
7665Overview:
7666"""""""""
7667
7668The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7669a signed multiplication of the two arguments, and indicate whether an
7670overflow occurred during the signed multiplication.
7671
7672Arguments:
7673""""""""""
7674
7675The arguments (%a and %b) and the first element of the result structure
7676may be of integer types of any bit width, but they must have the same
7677bit width. The second element of the result structure must be of type
7678``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7679multiplication.
7680
7681Semantics:
7682""""""""""
7683
7684The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007685a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00007686the first element of which is the multiplication, and the second element
7687of which is a bit specifying if the signed multiplication resulted in an
7688overflow.
7689
7690Examples:
7691"""""""""
7692
7693.. code-block:: llvm
7694
7695 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7696 %sum = extractvalue {i32, i1} %res, 0
7697 %obit = extractvalue {i32, i1} %res, 1
7698 br i1 %obit, label %overflow, label %normal
7699
7700'``llvm.umul.with.overflow.*``' Intrinsics
7701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7702
7703Syntax:
7704"""""""
7705
7706This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7707on any integer bit width.
7708
7709::
7710
7711 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7712 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7713 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7714
7715Overview:
7716"""""""""
7717
7718The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7719a unsigned multiplication of the two arguments, and indicate whether an
7720overflow occurred during the unsigned multiplication.
7721
7722Arguments:
7723""""""""""
7724
7725The arguments (%a and %b) and the first element of the result structure
7726may be of integer types of any bit width, but they must have the same
7727bit width. The second element of the result structure must be of type
7728``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7729multiplication.
7730
7731Semantics:
7732""""""""""
7733
7734The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007735an unsigned multiplication of the two arguments. They return a structure ---
7736the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00007737element of which is a bit specifying if the unsigned multiplication
7738resulted in an overflow.
7739
7740Examples:
7741"""""""""
7742
7743.. code-block:: llvm
7744
7745 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7746 %sum = extractvalue {i32, i1} %res, 0
7747 %obit = extractvalue {i32, i1} %res, 1
7748 br i1 %obit, label %overflow, label %normal
7749
7750Specialised Arithmetic Intrinsics
7751---------------------------------
7752
7753'``llvm.fmuladd.*``' Intrinsic
7754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7755
7756Syntax:
7757"""""""
7758
7759::
7760
7761 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7762 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7763
7764Overview:
7765"""""""""
7766
7767The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00007768expressions that can be fused if the code generator determines that (a) the
7769target instruction set has support for a fused operation, and (b) that the
7770fused operation is more efficient than the equivalent, separate pair of mul
7771and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00007772
7773Arguments:
7774""""""""""
7775
7776The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7777multiplicands, a and b, and an addend c.
7778
7779Semantics:
7780""""""""""
7781
7782The expression:
7783
7784::
7785
7786 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7787
7788is equivalent to the expression a \* b + c, except that rounding will
7789not be performed between the multiplication and addition steps if the
7790code generator fuses the operations. Fusion is not guaranteed, even if
7791the target platform supports it. If a fused multiply-add is required the
7792corresponding llvm.fma.\* intrinsic function should be used instead.
7793
7794Examples:
7795"""""""""
7796
7797.. code-block:: llvm
7798
7799 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7800
7801Half Precision Floating Point Intrinsics
7802----------------------------------------
7803
7804For most target platforms, half precision floating point is a
7805storage-only format. This means that it is a dense encoding (in memory)
7806but does not support computation in the format.
7807
7808This means that code must first load the half-precision floating point
7809value as an i16, then convert it to float with
7810:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7811then be performed on the float value (including extending to double
7812etc). To store the value back to memory, it is first converted to float
7813if needed, then converted to i16 with
7814:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7815i16 value.
7816
7817.. _int_convert_to_fp16:
7818
7819'``llvm.convert.to.fp16``' Intrinsic
7820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7821
7822Syntax:
7823"""""""
7824
7825::
7826
7827 declare i16 @llvm.convert.to.fp16(f32 %a)
7828
7829Overview:
7830"""""""""
7831
7832The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7833from single precision floating point format to half precision floating
7834point format.
7835
7836Arguments:
7837""""""""""
7838
7839The intrinsic function contains single argument - the value to be
7840converted.
7841
7842Semantics:
7843""""""""""
7844
7845The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7846from single precision floating point format to half precision floating
7847point format. The return value is an ``i16`` which contains the
7848converted number.
7849
7850Examples:
7851"""""""""
7852
7853.. code-block:: llvm
7854
7855 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7856 store i16 %res, i16* @x, align 2
7857
7858.. _int_convert_from_fp16:
7859
7860'``llvm.convert.from.fp16``' Intrinsic
7861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7862
7863Syntax:
7864"""""""
7865
7866::
7867
7868 declare f32 @llvm.convert.from.fp16(i16 %a)
7869
7870Overview:
7871"""""""""
7872
7873The '``llvm.convert.from.fp16``' intrinsic function performs a
7874conversion from half precision floating point format to single precision
7875floating point format.
7876
7877Arguments:
7878""""""""""
7879
7880The intrinsic function contains single argument - the value to be
7881converted.
7882
7883Semantics:
7884""""""""""
7885
7886The '``llvm.convert.from.fp16``' intrinsic function performs a
7887conversion from half single precision floating point format to single
7888precision floating point format. The input half-float value is
7889represented by an ``i16`` value.
7890
7891Examples:
7892"""""""""
7893
7894.. code-block:: llvm
7895
7896 %a = load i16* @x, align 2
7897 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7898
7899Debugger Intrinsics
7900-------------------
7901
7902The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7903prefix), are described in the `LLVM Source Level
7904Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7905document.
7906
7907Exception Handling Intrinsics
7908-----------------------------
7909
7910The LLVM exception handling intrinsics (which all start with
7911``llvm.eh.`` prefix), are described in the `LLVM Exception
7912Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7913
7914.. _int_trampoline:
7915
7916Trampoline Intrinsics
7917---------------------
7918
7919These intrinsics make it possible to excise one parameter, marked with
7920the :ref:`nest <nest>` attribute, from a function. The result is a
7921callable function pointer lacking the nest parameter - the caller does
7922not need to provide a value for it. Instead, the value to use is stored
7923in advance in a "trampoline", a block of memory usually allocated on the
7924stack, which also contains code to splice the nest value into the
7925argument list. This is used to implement the GCC nested function address
7926extension.
7927
7928For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7929then the resulting function pointer has signature ``i32 (i32, i32)*``.
7930It can be created as follows:
7931
7932.. code-block:: llvm
7933
7934 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7935 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7936 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7937 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7938 %fp = bitcast i8* %p to i32 (i32, i32)*
7939
7940The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7941``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7942
7943.. _int_it:
7944
7945'``llvm.init.trampoline``' Intrinsic
7946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7947
7948Syntax:
7949"""""""
7950
7951::
7952
7953 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7954
7955Overview:
7956"""""""""
7957
7958This fills the memory pointed to by ``tramp`` with executable code,
7959turning it into a trampoline.
7960
7961Arguments:
7962""""""""""
7963
7964The ``llvm.init.trampoline`` intrinsic takes three arguments, all
7965pointers. The ``tramp`` argument must point to a sufficiently large and
7966sufficiently aligned block of memory; this memory is written to by the
7967intrinsic. Note that the size and the alignment are target-specific -
7968LLVM currently provides no portable way of determining them, so a
7969front-end that generates this intrinsic needs to have some
7970target-specific knowledge. The ``func`` argument must hold a function
7971bitcast to an ``i8*``.
7972
7973Semantics:
7974""""""""""
7975
7976The block of memory pointed to by ``tramp`` is filled with target
7977dependent code, turning it into a function. Then ``tramp`` needs to be
7978passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
7979be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
7980function's signature is the same as that of ``func`` with any arguments
7981marked with the ``nest`` attribute removed. At most one such ``nest``
7982argument is allowed, and it must be of pointer type. Calling the new
7983function is equivalent to calling ``func`` with the same argument list,
7984but with ``nval`` used for the missing ``nest`` argument. If, after
7985calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
7986modified, then the effect of any later call to the returned function
7987pointer is undefined.
7988
7989.. _int_at:
7990
7991'``llvm.adjust.trampoline``' Intrinsic
7992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7993
7994Syntax:
7995"""""""
7996
7997::
7998
7999 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8000
8001Overview:
8002"""""""""
8003
8004This performs any required machine-specific adjustment to the address of
8005a trampoline (passed as ``tramp``).
8006
8007Arguments:
8008""""""""""
8009
8010``tramp`` must point to a block of memory which already has trampoline
8011code filled in by a previous call to
8012:ref:`llvm.init.trampoline <int_it>`.
8013
8014Semantics:
8015""""""""""
8016
8017On some architectures the address of the code to be executed needs to be
8018different to the address where the trampoline is actually stored. This
8019intrinsic returns the executable address corresponding to ``tramp``
8020after performing the required machine specific adjustments. The pointer
8021returned can then be :ref:`bitcast and executed <int_trampoline>`.
8022
8023Memory Use Markers
8024------------------
8025
8026This class of intrinsics exists to information about the lifetime of
8027memory objects and ranges where variables are immutable.
8028
8029'``llvm.lifetime.start``' Intrinsic
8030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8031
8032Syntax:
8033"""""""
8034
8035::
8036
8037 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8038
8039Overview:
8040"""""""""
8041
8042The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8043object's lifetime.
8044
8045Arguments:
8046""""""""""
8047
8048The first argument is a constant integer representing the size of the
8049object, or -1 if it is variable sized. The second argument is a pointer
8050to the object.
8051
8052Semantics:
8053""""""""""
8054
8055This intrinsic indicates that before this point in the code, the value
8056of the memory pointed to by ``ptr`` is dead. This means that it is known
8057to never be used and has an undefined value. A load from the pointer
8058that precedes this intrinsic can be replaced with ``'undef'``.
8059
8060'``llvm.lifetime.end``' Intrinsic
8061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8062
8063Syntax:
8064"""""""
8065
8066::
8067
8068 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8069
8070Overview:
8071"""""""""
8072
8073The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8074object's lifetime.
8075
8076Arguments:
8077""""""""""
8078
8079The first argument is a constant integer representing the size of the
8080object, or -1 if it is variable sized. The second argument is a pointer
8081to the object.
8082
8083Semantics:
8084""""""""""
8085
8086This intrinsic indicates that after this point in the code, the value of
8087the memory pointed to by ``ptr`` is dead. This means that it is known to
8088never be used and has an undefined value. Any stores into the memory
8089object following this intrinsic may be removed as dead.
8090
8091'``llvm.invariant.start``' Intrinsic
8092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8093
8094Syntax:
8095"""""""
8096
8097::
8098
8099 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8100
8101Overview:
8102"""""""""
8103
8104The '``llvm.invariant.start``' intrinsic specifies that the contents of
8105a memory object will not change.
8106
8107Arguments:
8108""""""""""
8109
8110The first argument is a constant integer representing the size of the
8111object, or -1 if it is variable sized. The second argument is a pointer
8112to the object.
8113
8114Semantics:
8115""""""""""
8116
8117This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8118the return value, the referenced memory location is constant and
8119unchanging.
8120
8121'``llvm.invariant.end``' Intrinsic
8122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8123
8124Syntax:
8125"""""""
8126
8127::
8128
8129 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8130
8131Overview:
8132"""""""""
8133
8134The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8135memory object are mutable.
8136
8137Arguments:
8138""""""""""
8139
8140The first argument is the matching ``llvm.invariant.start`` intrinsic.
8141The second argument is a constant integer representing the size of the
8142object, or -1 if it is variable sized and the third argument is a
8143pointer to the object.
8144
8145Semantics:
8146""""""""""
8147
8148This intrinsic indicates that the memory is mutable again.
8149
8150General Intrinsics
8151------------------
8152
8153This class of intrinsics is designed to be generic and has no specific
8154purpose.
8155
8156'``llvm.var.annotation``' Intrinsic
8157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8158
8159Syntax:
8160"""""""
8161
8162::
8163
8164 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8165
8166Overview:
8167"""""""""
8168
8169The '``llvm.var.annotation``' intrinsic.
8170
8171Arguments:
8172""""""""""
8173
8174The first argument is a pointer to a value, the second is a pointer to a
8175global string, the third is a pointer to a global string which is the
8176source file name, and the last argument is the line number.
8177
8178Semantics:
8179""""""""""
8180
8181This intrinsic allows annotation of local variables with arbitrary
8182strings. This can be useful for special purpose optimizations that want
8183to look for these annotations. These have no other defined use; they are
8184ignored by code generation and optimization.
8185
8186'``llvm.annotation.*``' Intrinsic
8187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8188
8189Syntax:
8190"""""""
8191
8192This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8193any integer bit width.
8194
8195::
8196
8197 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8198 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8199 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8200 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8201 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8202
8203Overview:
8204"""""""""
8205
8206The '``llvm.annotation``' intrinsic.
8207
8208Arguments:
8209""""""""""
8210
8211The first argument is an integer value (result of some expression), the
8212second is a pointer to a global string, the third is a pointer to a
8213global string which is the source file name, and the last argument is
8214the line number. It returns the value of the first argument.
8215
8216Semantics:
8217""""""""""
8218
8219This intrinsic allows annotations to be put on arbitrary expressions
8220with arbitrary strings. This can be useful for special purpose
8221optimizations that want to look for these annotations. These have no
8222other defined use; they are ignored by code generation and optimization.
8223
8224'``llvm.trap``' Intrinsic
8225^^^^^^^^^^^^^^^^^^^^^^^^^
8226
8227Syntax:
8228"""""""
8229
8230::
8231
8232 declare void @llvm.trap() noreturn nounwind
8233
8234Overview:
8235"""""""""
8236
8237The '``llvm.trap``' intrinsic.
8238
8239Arguments:
8240""""""""""
8241
8242None.
8243
8244Semantics:
8245""""""""""
8246
8247This intrinsic is lowered to the target dependent trap instruction. If
8248the target does not have a trap instruction, this intrinsic will be
8249lowered to a call of the ``abort()`` function.
8250
8251'``llvm.debugtrap``' Intrinsic
8252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8253
8254Syntax:
8255"""""""
8256
8257::
8258
8259 declare void @llvm.debugtrap() nounwind
8260
8261Overview:
8262"""""""""
8263
8264The '``llvm.debugtrap``' intrinsic.
8265
8266Arguments:
8267""""""""""
8268
8269None.
8270
8271Semantics:
8272""""""""""
8273
8274This intrinsic is lowered to code which is intended to cause an
8275execution trap with the intention of requesting the attention of a
8276debugger.
8277
8278'``llvm.stackprotector``' Intrinsic
8279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8280
8281Syntax:
8282"""""""
8283
8284::
8285
8286 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8287
8288Overview:
8289"""""""""
8290
8291The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8292onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8293is placed on the stack before local variables.
8294
8295Arguments:
8296""""""""""
8297
8298The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8299The first argument is the value loaded from the stack guard
8300``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8301enough space to hold the value of the guard.
8302
8303Semantics:
8304""""""""""
8305
8306This intrinsic causes the prologue/epilogue inserter to force the
8307position of the ``AllocaInst`` stack slot to be before local variables
8308on the stack. This is to ensure that if a local variable on the stack is
8309overwritten, it will destroy the value of the guard. When the function
8310exits, the guard on the stack is checked against the original guard. If
8311they are different, then the program aborts by calling the
8312``__stack_chk_fail()`` function.
8313
8314'``llvm.objectsize``' Intrinsic
8315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8316
8317Syntax:
8318"""""""
8319
8320::
8321
8322 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8323 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8324
8325Overview:
8326"""""""""
8327
8328The ``llvm.objectsize`` intrinsic is designed to provide information to
8329the optimizers to determine at compile time whether a) an operation
8330(like memcpy) will overflow a buffer that corresponds to an object, or
8331b) that a runtime check for overflow isn't necessary. An object in this
8332context means an allocation of a specific class, structure, array, or
8333other object.
8334
8335Arguments:
8336""""""""""
8337
8338The ``llvm.objectsize`` intrinsic takes two arguments. The first
8339argument is a pointer to or into the ``object``. The second argument is
8340a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8341or -1 (if false) when the object size is unknown. The second argument
8342only accepts constants.
8343
8344Semantics:
8345""""""""""
8346
8347The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8348the size of the object concerned. If the size cannot be determined at
8349compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8350on the ``min`` argument).
8351
8352'``llvm.expect``' Intrinsic
8353^^^^^^^^^^^^^^^^^^^^^^^^^^^
8354
8355Syntax:
8356"""""""
8357
8358::
8359
8360 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8361 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8362
8363Overview:
8364"""""""""
8365
8366The ``llvm.expect`` intrinsic provides information about expected (the
8367most probable) value of ``val``, which can be used by optimizers.
8368
8369Arguments:
8370""""""""""
8371
8372The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8373a value. The second argument is an expected value, this needs to be a
8374constant value, variables are not allowed.
8375
8376Semantics:
8377""""""""""
8378
8379This intrinsic is lowered to the ``val``.
8380
8381'``llvm.donothing``' Intrinsic
8382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8383
8384Syntax:
8385"""""""
8386
8387::
8388
8389 declare void @llvm.donothing() nounwind readnone
8390
8391Overview:
8392"""""""""
8393
8394The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8395only intrinsic that can be called with an invoke instruction.
8396
8397Arguments:
8398""""""""""
8399
8400None.
8401
8402Semantics:
8403""""""""""
8404
8405This intrinsic does nothing, and it's removed by optimizers and ignored
8406by codegen.