blob: 65c19aa2bc0cbfa4f7c0c9f88a91c2b2779a7368 [file] [log] [blame]
Nadav Rotemc4efbb82012-12-19 07:22:24 +00001==========================
2Auto-Vectorization in LLVM
3==========================
4
Sean Silva99e12f92012-12-20 22:42:20 +00005.. contents::
6 :local:
7
Nadav Rotem136d50a2013-04-15 22:21:25 +00008LLVM has two vectorizers: The :ref:`Loop Vectorizer <loop-vectorizer>`,
Nadav Rotemc875cc12013-04-15 22:11:07 +00009which operates on Loops, and the :ref:`SLP Vectorizer
Nadav Rotem87856b52013-06-26 17:59:35 +000010<slp-vectorizer>`. These vectorizers
Sean Silva99e12f92012-12-20 22:42:20 +000011focus on different optimization opportunities and use different techniques.
Nadav Rotem136d50a2013-04-15 22:21:25 +000012The SLP vectorizer merges multiple scalars that are found in the code into
Nadav Rotem87856b52013-06-26 17:59:35 +000013vectors while the Loop Vectorizer widens instructions in loops
14to operate on multiple consecutive iterations.
Sean Silva99e12f92012-12-20 22:42:20 +000015
Nadav Rotem2da8b3e2013-08-05 04:27:34 +000016Both the Loop Vectorizer and the SLP Vectorizer are enabled by default.
17
Sean Silva99e12f92012-12-20 22:42:20 +000018.. _loop-vectorizer:
Nadav Rotemc4efbb82012-12-19 07:22:24 +000019
20The Loop Vectorizer
21===================
22
Nadav Rotem0328f5e2012-12-19 18:04:44 +000023Usage
Sean Silva08fd0882012-12-20 02:40:45 +000024-----
Nadav Rotem0328f5e2012-12-19 18:04:44 +000025
Nadav Rotem2da8b3e2013-08-05 04:27:34 +000026The Loop Vectorizer is enabled by default, but it can be disabled
27through clang using the command line flag:
Nadav Rotemc4efbb82012-12-19 07:22:24 +000028
29.. code-block:: console
30
Nadav Rotemfe47d582013-04-08 21:34:49 +000031 $ clang ... -fno-vectorize file.c
Nadav Rotem8f4a6cc2012-12-19 18:02:36 +000032
Nadav Rotem7daadf22013-01-04 17:49:45 +000033Command line flags
34^^^^^^^^^^^^^^^^^^
35
36The loop vectorizer uses a cost model to decide on the optimal vectorization factor
37and unroll factor. However, users of the vectorizer can force the vectorizer to use
38specific values. Both 'clang' and 'opt' support the flags below.
39
40Users can control the vectorization SIMD width using the command line flag "-force-vector-width".
41
42.. code-block:: console
43
44 $ clang -mllvm -force-vector-width=8 ...
45 $ opt -loop-vectorize -force-vector-width=8 ...
46
47Users can control the unroll factor using the command line flag "-force-vector-unroll"
48
49.. code-block:: console
50
51 $ clang -mllvm -force-vector-unroll=2 ...
52 $ opt -loop-vectorize -force-vector-unroll=2 ...
53
Tyler Nowickidcb86322014-06-27 18:30:08 +000054Pragma loop hint directives
55^^^^^^^^^^^^^^^^^^^^^^^^^^^
56
57The ``#pragma clang loop`` directive allows loop vectorization hints to be
58specified for the subsequent for, while, do-while, or c++11 range-based for
59loop. The directive allows vectorization and interleaving to be enabled or
60disabled. Vector width as well as interleave count can also be manually
61specified. The following example explicitly enables vectorization and
62interleaving:
63
64.. code-block:: c++
65
66 #pragma clang loop vectorize(enable) interleave(enable)
67 while(...) {
68 ...
69 }
70
71The following example implicitly enables vectorization and interleaving by
72specifying a vector width and interleaving count:
73
74.. code-block:: c++
75
76 #pragma clang loop vectorize_width(2) interleave_count(2)
77 for(...) {
78 ...
79 }
80
81See the Clang
82`language extensions
83<http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations>`_
84for details.
85
86Diagnostics
87-----------
88
89Many loops cannot be vectorized including loops with complicated control flow,
90unvectorizable types, and unvectorizable calls. The loop vectorizer generates
91optimization remarks which can be queried using command line options to identify
92and diagnose loops that are skipped by the loop-vectorizer.
93
94Optimization remarks are enabled using:
95
96``-Rpass=loop-vectorize`` identifies loops that were successfully vectorized.
97
98``-Rpass-missed=loop-vectorize`` identifies loops that failed vectorization and
99indicates if vectorization was specified.
100
101``-Rpass-analysis=loop-vectorize`` identifies the statements that caused
102vectorization to fail.
103
104Consider the following loop:
105
106.. code-block:: c++
107
108 #pragma clang loop vectorize(enable)
109 for (int i = 0; i < Length; i++) {
110 switch(A[i]) {
111 case 0: A[i] = i*2; break;
112 case 1: A[i] = i; break;
113 default: A[i] = 0;
114 }
115 }
116
117The command line ``-Rpass-missed=loop-vectorized`` prints the remark:
118
119.. code-block:: console
120
121 no_switch.cpp:4:5: remark: loop not vectorized: vectorization is explicitly enabled [-Rpass-missed=loop-vectorize]
122
123And the command line ``-Rpass-analysis=loop-vectorize`` indicates that the
124switch statement cannot be vectorized.
125
126.. code-block:: console
127
128 no_switch.cpp:4:5: remark: loop not vectorized: loop contains a switch statement [-Rpass-analysis=loop-vectorize]
129 switch(A[i]) {
130 ^
131
132To ensure line and column numbers are produced include the command line options
133``-gline-tables-only`` and ``-gcolumn-info``. See the Clang `user manual
134<http://clang.llvm.org/docs/UsersManual.html#options-to-emit-optimization-reports>`_
135for details
136
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000137Features
Sean Silva08fd0882012-12-20 02:40:45 +0000138--------
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000139
140The LLVM Loop Vectorizer has a number of features that allow it to vectorize
141complex loops.
142
143Loops with unknown trip count
Sean Silva08fd0882012-12-20 02:40:45 +0000144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000145
146The Loop Vectorizer supports loops with an unknown trip count.
147In the loop below, the iteration ``start`` and ``finish`` points are unknown,
148and the Loop Vectorizer has a mechanism to vectorize loops that do not start
Sean Silva13ed79c2012-12-20 02:23:25 +0000149at zero. In this example, 'n' may not be a multiple of the vector width, and
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000150the vectorizer has to execute the last few iterations as scalar code. Keeping
151a scalar copy of the loop increases the code size.
152
153.. code-block:: c++
154
155 void bar(float *A, float* B, float K, int start, int end) {
Sean Silva8c44a472012-12-20 22:47:41 +0000156 for (int i = start; i < end; ++i)
157 A[i] *= B[i] + K;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000158 }
159
160Runtime Checks of Pointers
Sean Silva08fd0882012-12-20 02:40:45 +0000161^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000162
163In the example below, if the pointers A and B point to consecutive addresses,
164then it is illegal to vectorize the code because some elements of A will be
165written before they are read from array B.
166
167Some programmers use the 'restrict' keyword to notify the compiler that the
168pointers are disjointed, but in our example, the Loop Vectorizer has no way of
169knowing that the pointers A and B are unique. The Loop Vectorizer handles this
170loop by placing code that checks, at runtime, if the arrays A and B point to
171disjointed memory locations. If arrays A and B overlap, then the scalar version
Sean Silva287e7d22012-12-20 22:59:36 +0000172of the loop is executed.
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000173
174.. code-block:: c++
175
176 void bar(float *A, float* B, float K, int n) {
Sean Silva8c44a472012-12-20 22:47:41 +0000177 for (int i = 0; i < n; ++i)
178 A[i] *= B[i] + K;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000179 }
180
181
182Reductions
Sean Silva08fd0882012-12-20 02:40:45 +0000183^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000184
Sean Silva287e7d22012-12-20 22:59:36 +0000185In this example the ``sum`` variable is used by consecutive iterations of
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000186the loop. Normally, this would prevent vectorization, but the vectorizer can
Sean Silva13ed79c2012-12-20 02:23:25 +0000187detect that 'sum' is a reduction variable. The variable 'sum' becomes a vector
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000188of integers, and at the end of the loop the elements of the array are added
Sean Silva287e7d22012-12-20 22:59:36 +0000189together to create the correct result. We support a number of different
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000190reduction operations, such as addition, multiplication, XOR, AND and OR.
191
192.. code-block:: c++
193
194 int foo(int *A, int *B, int n) {
195 unsigned sum = 0;
196 for (int i = 0; i < n; ++i)
Sean Silva287e7d22012-12-20 22:59:36 +0000197 sum += A[i] + 5;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000198 return sum;
199 }
200
Nadav Rotem9f207812013-01-08 17:46:30 +0000201We support floating point reduction operations when `-ffast-math` is used.
202
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000203Inductions
Sean Silva08fd0882012-12-20 02:40:45 +0000204^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000205
206In this example the value of the induction variable ``i`` is saved into an
207array. The Loop Vectorizer knows to vectorize induction variables.
208
209.. code-block:: c++
210
211 void bar(float *A, float* B, float K, int n) {
Sean Silva8c44a472012-12-20 22:47:41 +0000212 for (int i = 0; i < n; ++i)
213 A[i] = i;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000214 }
215
216If Conversion
Sean Silva08fd0882012-12-20 02:40:45 +0000217^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000218
219The Loop Vectorizer is able to "flatten" the IF statement in the code and
220generate a single stream of instructions. The Loop Vectorizer supports any
221control flow in the innermost loop. The innermost loop may contain complex
222nesting of IFs, ELSEs and even GOTOs.
223
224.. code-block:: c++
225
226 int foo(int *A, int *B, int n) {
227 unsigned sum = 0;
228 for (int i = 0; i < n; ++i)
229 if (A[i] > B[i])
230 sum += A[i] + 5;
231 return sum;
232 }
233
234Pointer Induction Variables
Sean Silva08fd0882012-12-20 02:40:45 +0000235^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000236
237This example uses the "accumulate" function of the standard c++ library. This
238loop uses C++ iterators, which are pointers, and not integer indices.
239The Loop Vectorizer detects pointer induction variables and can vectorize
240this loop. This feature is important because many C++ programs use iterators.
241
242.. code-block:: c++
243
244 int baz(int *A, int n) {
245 return std::accumulate(A, A + n, 0);
246 }
247
248Reverse Iterators
Sean Silva08fd0882012-12-20 02:40:45 +0000249^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000250
251The Loop Vectorizer can vectorize loops that count backwards.
252
253.. code-block:: c++
254
255 int foo(int *A, int *B, int n) {
256 for (int i = n; i > 0; --i)
257 A[i] +=1;
258 }
259
260Scatter / Gather
Sean Silva08fd0882012-12-20 02:40:45 +0000261^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000262
Nadav Rotema616d682013-01-03 01:47:02 +0000263The Loop Vectorizer can vectorize code that becomes a sequence of scalar instructions
264that scatter/gathers memory.
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000265
266.. code-block:: c++
267
Arnold Schwaighofer34ac9be2014-03-12 23:23:44 +0000268 int foo(int * A, int * B, int n) {
269 for (intptr_t i = 0; i < n; ++i)
Arnold Schwaighofer9ab93ac2014-03-12 23:58:07 +0000270 A[i] += B[i * 4];
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000271 }
272
Arnold Schwaighofer34ac9be2014-03-12 23:23:44 +0000273In many situations the cost model will inform LLVM that this is not beneficial
274and LLVM will only vectorize such code if forced with "-mllvm -force-vector-width=#".
275
Nadav Rotemaf14a3f2012-12-19 07:36:35 +0000276Vectorization of Mixed Types
Sean Silva08fd0882012-12-20 02:40:45 +0000277^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000278
279The Loop Vectorizer can vectorize programs with mixed types. The Vectorizer
280cost model can estimate the cost of the type conversion and decide if
281vectorization is profitable.
282
283.. code-block:: c++
284
285 int foo(int *A, char *B, int n, int k) {
Sean Silva8c44a472012-12-20 22:47:41 +0000286 for (int i = 0; i < n; ++i)
Sean Silvae140b2e2012-12-20 22:49:13 +0000287 A[i] += 4 * B[i];
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000288 }
289
Renato Golinf2ea19e2013-02-23 13:25:41 +0000290Global Structures Alias Analysis
291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
292
293Access to global structures can also be vectorized, with alias analysis being
294used to make sure accesses don't alias. Run-time checks can also be added on
295pointer access to structure members.
296
297Many variations are supported, but some that rely on undefined behaviour being
298ignored (as other compilers do) are still being left un-vectorized.
299
300.. code-block:: c++
301
302 struct { int A[100], K, B[100]; } Foo;
303
304 int foo() {
305 for (int i = 0; i < 100; ++i)
306 Foo.A[i] = Foo.B[i] + 100;
307 }
308
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000309Vectorization of function calls
Sean Silva08fd0882012-12-20 02:40:45 +0000310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000311
312The Loop Vectorize can vectorize intrinsic math functions.
313See the table below for a list of these functions.
314
315+-----+-----+---------+
316| pow | exp | exp2 |
317+-----+-----+---------+
318| sin | cos | sqrt |
319+-----+-----+---------+
320| log |log2 | log10 |
321+-----+-----+---------+
322|fabs |floor| ceil |
323+-----+-----+---------+
324|fma |trunc|nearbyint|
325+-----+-----+---------+
Nadav Rotem7375d352012-12-26 06:03:35 +0000326| | | fmuladd |
327+-----+-----+---------+
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000328
Benjamin Kramera87d5122013-02-28 19:33:46 +0000329The loop vectorizer knows about special instructions on the target and will
330vectorize a loop containing a function call that maps to the instructions. For
331example, the loop below will be vectorized on Intel x86 if the SSE4.1 roundps
332instruction is available.
333
334.. code-block:: c++
335
336 void foo(float *f) {
337 for (int i = 0; i != 1024; ++i)
338 f[i] = floorf(f[i]);
339 }
Nadav Rotema616d682013-01-03 01:47:02 +0000340
341Partial unrolling during vectorization
342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
343
344Modern processors feature multiple execution units, and only programs that contain a
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000345high degree of parallelism can fully utilize the entire width of the machine.
Nadav Rotema616d682013-01-03 01:47:02 +0000346The Loop Vectorizer increases the instruction level parallelism (ILP) by
347performing partial-unrolling of loops.
348
349In the example below the entire array is accumulated into the variable 'sum'.
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000350This is inefficient because only a single execution port can be used by the processor.
Nadav Rotema616d682013-01-03 01:47:02 +0000351By unrolling the code the Loop Vectorizer allows two or more execution ports
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000352to be used simultaneously.
Nadav Rotema616d682013-01-03 01:47:02 +0000353
354.. code-block:: c++
355
356 int foo(int *A, int *B, int n) {
357 unsigned sum = 0;
358 for (int i = 0; i < n; ++i)
359 sum += A[i];
360 return sum;
361 }
362
Nadav Rotem7daadf22013-01-04 17:49:45 +0000363The Loop Vectorizer uses a cost model to decide when it is profitable to unroll loops.
364The decision to unroll the loop depends on the register pressure and the generated code size.
Nadav Rotema616d682013-01-03 01:47:02 +0000365
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000366Performance
Sean Silva08fd0882012-12-20 02:40:45 +0000367-----------
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000368
Ed Maste8ed40ce2015-04-14 20:52:58 +0000369This section shows the execution time of Clang on a simple benchmark:
Nadav Rotem90c8b4b2012-12-19 08:43:05 +0000370`gcc-loops <http://llvm.org/viewvc/llvm-project/test-suite/trunk/SingleSource/UnitTests/Vectorizer/>`_.
Sean Silva287e7d22012-12-20 22:59:36 +0000371This benchmarks is a collection of loops from the GCC autovectorization
Nadav Rotem8f4a6cc2012-12-19 18:02:36 +0000372`page <http://gcc.gnu.org/projects/tree-ssa/vectorization.html>`_ by Dorit Nuzman.
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000373
Nadav Rotem12da3962012-12-20 00:03:36 +0000374The chart below compares GCC-4.7, ICC-13, and Clang-SVN with and without loop vectorization at -O3, tuned for "corei7-avx", running on a Sandybridge iMac.
Sean Silva287e7d22012-12-20 22:59:36 +0000375The Y-axis shows the time in msec. Lower is better. The last column shows the geomean of all the kernels.
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000376
377.. image:: gcc-loops.png
378
Nadav Rotem014e19c2013-01-04 19:00:42 +0000379And Linpack-pc with the same configuration. Result is Mflops, higher is better.
380
381.. image:: linpack-pc.png
382
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000383.. _slp-vectorizer:
Sean Silva99e12f92012-12-20 22:42:20 +0000384
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000385The SLP Vectorizer
386==================
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000387
Nadav Rotem0328f5e2012-12-19 18:04:44 +0000388Details
Sean Silva08fd0882012-12-20 02:40:45 +0000389-------
Nadav Rotem0328f5e2012-12-19 18:04:44 +0000390
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000391The goal of SLP vectorization (a.k.a. superword-level parallelism) is
Nadav Rotem87856b52013-06-26 17:59:35 +0000392to combine similar independent instructions
393into vector instructions. Memory accesses, arithmetic operations, comparison
394operations, PHI-nodes, can all be vectorized using this technique.
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000395
396For example, the following function performs very similar operations on its
397inputs (a1, b1) and (a2, b2). The basic-block vectorizer may combine these
398into vector operations.
399
400.. code-block:: c++
401
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000402 void foo(int a1, int a2, int b1, int b2, int *A) {
403 A[0] = a1*(a1 + b1)/b1 + 50*b1/a1;
404 A[1] = a2*(a2 + b2)/b2 + 50*b2/a2;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000405 }
406
Nadav Rotem87856b52013-06-26 17:59:35 +0000407The SLP-vectorizer processes the code bottom-up, across basic blocks, in search of scalars to combine.
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000408
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000409Usage
410------
Nadav Rotemefa56e12013-04-14 07:42:25 +0000411
Nadav Rotem2da8b3e2013-08-05 04:27:34 +0000412The SLP Vectorizer is enabled by default, but it can be disabled
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000413through clang using the command line flag:
Nadav Rotemefa56e12013-04-14 07:42:25 +0000414
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000415.. code-block:: console
416
Nadav Rotem2da8b3e2013-08-05 04:27:34 +0000417 $ clang -fno-slp-vectorize file.c
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000418
Nadav Rotem136d50a2013-04-15 22:21:25 +0000419LLVM has a second basic block vectorization phase
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000420which is more compile-time intensive (The BB vectorizer). This optimization
421can be enabled through clang using the command line flag:
422
423.. code-block:: console
424
425 $ clang -fslp-vectorize-aggressive file.c
426