blob: e2401d4fe8695b26b6fe6ee7ad95006ef872f144 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Chandler Carruth705b1852015-01-31 03:43:40 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Wei Mi062c7442015-05-06 17:12:25 +000098unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
99 // If the loop will not be vectorized, don't interleave the loop.
100 // Let regular unroll to unroll the loop, which saves the overflow
101 // check and memory check cost.
102 if (VF == 1)
103 return 1;
104
Nadav Rotemb696c362013-01-09 01:15:42 +0000105 if (ST->isAtom())
106 return 1;
107
108 // Sandybridge and Haswell have multiple execution ports and pipelined
109 // vector units.
110 if (ST->hasAVX())
111 return 4;
112
113 return 2;
114}
115
Chandler Carruth93205eb2015-08-05 18:08:10 +0000116int X86TTIImpl::getArithmeticInstrCost(
Chandler Carruth705b1852015-01-31 03:43:40 +0000117 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
118 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
119 TTI::OperandValueProperties Opd2PropInfo) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000120 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000121 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000122
123 int ISD = TLI->InstructionOpcodeToISD(Opcode);
124 assert(ISD && "Invalid opcode");
125
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000126 if (ISD == ISD::SDIV &&
127 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
128 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
129 // On X86, vector signed division by constants power-of-two are
130 // normally expanded to the sequence SRA + SRL + ADD + SRA.
131 // The OperandValue properties many not be same as that of previous
132 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000133 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
134 Op2Info, TargetTransformInfo::OP_None,
135 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000136 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
137 TargetTransformInfo::OP_None,
138 TargetTransformInfo::OP_None);
139 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
140 TargetTransformInfo::OP_None,
141 TargetTransformInfo::OP_None);
142
143 return Cost;
144 }
145
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000146 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
147 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
148 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
149 };
150
151 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
152 ST->hasBWI()) {
153 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
154 LT.second))
155 return LT.first * Entry->Cost;
156 }
157
158 static const CostTblEntry AVX512UniformConstCostTable[] = {
159 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
160 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
161 };
162
163 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
164 ST->hasAVX512()) {
165 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
166 LT.second))
167 return LT.first * Entry->Cost;
168 }
169
Craig Topper4b275762015-10-28 04:02:12 +0000170 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000171 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
172
Benjamin Kramer7c372272014-04-26 14:53:05 +0000173 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
174 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
175 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
176 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
177 };
178
179 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
180 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000181 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
182 LT.second))
183 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000184 }
185
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000186 static const CostTblEntry SSE2UniformConstCostTable[] = {
187 { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
188 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
189 { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
190 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
191 { ISD::SDIV, MVT::v8i32, 38 }, // pmuludq sequence
192 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
193 { ISD::UDIV, MVT::v8i32, 30 }, // pmuludq sequence
194 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
195 };
196
197 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
198 ST->hasSSE2()) {
199 // pmuldq sequence.
200 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
201 return LT.first * 30;
202 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
203 return LT.first * 15;
204
205 if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
206 LT.second))
207 return LT.first * Entry->Cost;
208 }
209
Simon Pilgrim820e1322016-10-27 15:27:00 +0000210 static const CostTblEntry AVX512DQCostTable[] = {
211 { ISD::MUL, MVT::v2i64, 1 },
212 { ISD::MUL, MVT::v4i64, 1 },
213 { ISD::MUL, MVT::v8i64, 1 }
214 };
215
216 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000217 if (ST->hasDQI())
218 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000219 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000220
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000221 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrima4109d62017-01-07 17:54:10 +0000222 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
223 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
224 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
225
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000226 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
227 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
228 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
229
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000230 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
231 { ISD::SDIV, MVT::v64i8, 64*20 },
232 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000233 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000234 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000235 };
236
237 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000238 if (ST->hasBWI())
239 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000240 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000241
Craig Topper4b275762015-10-28 04:02:12 +0000242 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000243 { ISD::SHL, MVT::v16i32, 1 },
244 { ISD::SRL, MVT::v16i32, 1 },
245 { ISD::SRA, MVT::v16i32, 1 },
246 { ISD::SHL, MVT::v8i64, 1 },
247 { ISD::SRL, MVT::v8i64, 1 },
248 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000249
Simon Pilgrimd8333372017-01-06 11:12:53 +0000250 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
251 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
252 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
253 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
254
255 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
256 { ISD::SDIV, MVT::v16i32, 16*20 },
257 { ISD::SDIV, MVT::v8i64, 8*20 },
258 { ISD::UDIV, MVT::v16i32, 16*20 },
259 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000260 };
261
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000262 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000263 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
264 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000265
Craig Topper4b275762015-10-28 04:02:12 +0000266 static const CostTblEntry AVX2CostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000267 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
268 // customize them to detect the cases where shift amount is a scalar one.
269 { ISD::SHL, MVT::v4i32, 1 },
270 { ISD::SRL, MVT::v4i32, 1 },
271 { ISD::SRA, MVT::v4i32, 1 },
272 { ISD::SHL, MVT::v8i32, 1 },
273 { ISD::SRL, MVT::v8i32, 1 },
274 { ISD::SRA, MVT::v8i32, 1 },
275 { ISD::SHL, MVT::v2i64, 1 },
276 { ISD::SRL, MVT::v2i64, 1 },
277 { ISD::SHL, MVT::v4i64, 1 },
278 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000279 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000280
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000281 // Look for AVX2 lowering tricks.
282 if (ST->hasAVX2()) {
283 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
284 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
285 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
286 // On AVX2, a packed v16i16 shift left by a constant build_vector
287 // is lowered into a vector multiply (vpmullw).
288 return LT.first;
289
Craig Topperee0c8592015-10-27 04:14:24 +0000290 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
291 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000292 }
293
Craig Topper4b275762015-10-28 04:02:12 +0000294 static const CostTblEntry XOPCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000295 // 128bit shifts take 1cy, but right shifts require negation beforehand.
296 { ISD::SHL, MVT::v16i8, 1 },
297 { ISD::SRL, MVT::v16i8, 2 },
298 { ISD::SRA, MVT::v16i8, 2 },
299 { ISD::SHL, MVT::v8i16, 1 },
300 { ISD::SRL, MVT::v8i16, 2 },
301 { ISD::SRA, MVT::v8i16, 2 },
302 { ISD::SHL, MVT::v4i32, 1 },
303 { ISD::SRL, MVT::v4i32, 2 },
304 { ISD::SRA, MVT::v4i32, 2 },
305 { ISD::SHL, MVT::v2i64, 1 },
306 { ISD::SRL, MVT::v2i64, 2 },
307 { ISD::SRA, MVT::v2i64, 2 },
308 // 256bit shifts require splitting if AVX2 didn't catch them above.
309 { ISD::SHL, MVT::v32i8, 2 },
310 { ISD::SRL, MVT::v32i8, 4 },
311 { ISD::SRA, MVT::v32i8, 4 },
312 { ISD::SHL, MVT::v16i16, 2 },
313 { ISD::SRL, MVT::v16i16, 4 },
314 { ISD::SRA, MVT::v16i16, 4 },
315 { ISD::SHL, MVT::v8i32, 2 },
316 { ISD::SRL, MVT::v8i32, 4 },
317 { ISD::SRA, MVT::v8i32, 4 },
318 { ISD::SHL, MVT::v4i64, 2 },
319 { ISD::SRL, MVT::v4i64, 4 },
320 { ISD::SRA, MVT::v4i64, 4 },
321 };
322
323 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000324 if (ST->hasXOP())
Craig Topperee0c8592015-10-27 04:14:24 +0000325 if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second))
326 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000327
Craig Topper4b275762015-10-28 04:02:12 +0000328 static const CostTblEntry AVX2CustomCostTable[] = {
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000329 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
330 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000331
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000332 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
333 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000334
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000335 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
336 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
337 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
338 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000339
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000340 { ISD::SUB, MVT::v32i8, 1 }, // psubb
341 { ISD::ADD, MVT::v32i8, 1 }, // paddb
342 { ISD::SUB, MVT::v16i16, 1 }, // psubw
343 { ISD::ADD, MVT::v16i16, 1 }, // paddw
344 { ISD::SUB, MVT::v8i32, 1 }, // psubd
345 { ISD::ADD, MVT::v8i32, 1 }, // paddd
346 { ISD::SUB, MVT::v4i64, 1 }, // psubq
347 { ISD::ADD, MVT::v4i64, 1 }, // paddq
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000348
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000349 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
350 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
351 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
352 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
353 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
354
355 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
356 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
357 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
358 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
359 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
360 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000361 };
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000362
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000363 // Look for AVX2 lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000364 if (ST->hasAVX2())
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000365 if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD,
366 LT.second))
367 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000368
Craig Topper4b275762015-10-28 04:02:12 +0000369 static const CostTblEntry
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000370 SSE2UniformCostTable[] = {
371 // Uniform splats are cheaper for the following instructions.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000372 { ISD::SHL, MVT::v16i8, 1 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000373 { ISD::SHL, MVT::v32i8, 2 }, // psllw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000374 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000375 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000376 { ISD::SHL, MVT::v4i32, 1 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000377 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000378 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000379 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000380
381 { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000382 { ISD::SRL, MVT::v32i8, 2 }, // psrlw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000383 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000384 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000385 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000386 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000387 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000388 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000389
390 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000391 { ISD::SRA, MVT::v32i8, 8 }, // psrlw, pand, pxor, psubb.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000392 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000393 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000394 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000395 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000396 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000397 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000398 };
399
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000400 if (ST->hasSSE2() &&
401 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
402 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000403 if (const auto *Entry =
404 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000405 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000406 }
407
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000408 if (ISD == ISD::SHL &&
409 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000410 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000411 // Vector shift left by non uniform constant can be lowered
412 // into vector multiply (pmullw/pmulld).
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000413 if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
414 (VT == MVT::v4i32 && ST->hasSSE41()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000415 return LT.first;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000416
417 // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
418 // sequence of extract + two vector multiply + insert.
419 if ((VT == MVT::v8i32 || VT == MVT::v16i16) &&
420 (ST->hasAVX() && !ST->hasAVX2()))
421 ISD = ISD::MUL;
422
423 // A vector shift left by non uniform constant is converted
424 // into a vector multiply; the new multiply is eventually
425 // lowered into a sequence of shuffles and 2 x pmuludq.
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000426 if (VT == MVT::v4i32 && ST->hasSSE2())
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000427 ISD = ISD::MUL;
428 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000429
Simon Pilgrim100eae12017-01-07 17:03:51 +0000430 static const CostTblEntry AVX1CostTable[] = {
431 // We don't have to scalarize unsupported ops. We can issue two half-sized
432 // operations and we only need to extract the upper YMM half.
433 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000434 { ISD::MUL, MVT::v16i16, 4 },
435 { ISD::MUL, MVT::v8i32, 4 },
436 { ISD::SUB, MVT::v32i8, 4 },
437 { ISD::ADD, MVT::v32i8, 4 },
438 { ISD::SUB, MVT::v16i16, 4 },
439 { ISD::ADD, MVT::v16i16, 4 },
440 { ISD::SUB, MVT::v8i32, 4 },
441 { ISD::ADD, MVT::v8i32, 4 },
442 { ISD::SUB, MVT::v4i64, 4 },
443 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000444
445 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
446 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
447 // Because we believe v4i64 to be a legal type, we must also include the
448 // extract+insert in the cost table. Therefore, the cost here is 18
449 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000450 { ISD::MUL, MVT::v4i64, 18 },
451
452 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
453
454 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
455 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
456 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
457 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
458 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
459 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
460
461 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
462 { ISD::SDIV, MVT::v32i8, 32*20 },
463 { ISD::SDIV, MVT::v16i16, 16*20 },
464 { ISD::SDIV, MVT::v8i32, 8*20 },
465 { ISD::SDIV, MVT::v4i64, 4*20 },
466 { ISD::UDIV, MVT::v32i8, 32*20 },
467 { ISD::UDIV, MVT::v16i16, 16*20 },
468 { ISD::UDIV, MVT::v8i32, 8*20 },
469 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000470 };
471
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000472 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000473 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
474 return LT.first * Entry->Cost;
475
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000476 static const CostTblEntry SSE42CostTable[] = {
477 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
478 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
479 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
480 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
481 };
482
483 if (ST->hasSSE42())
484 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
485 return LT.first * Entry->Cost;
486
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000487 static const CostTblEntry SSE41CostTable[] = {
488 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
489 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
490 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
491 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
492
493 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
494 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
495 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
496 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
497 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
498 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
499
500 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
501 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
502 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
503 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
504 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
505 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000506
507 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000508 };
509
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000510 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000511 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
512 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000513
Craig Topper4b275762015-10-28 04:02:12 +0000514 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000515 // We don't correctly identify costs of casts because they are marked as
516 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000517 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
518 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
519 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000520 { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000521 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000522 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000523
524 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
525 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
526 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000527 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000528 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000529
530 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
531 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
532 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000533 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000534 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000535
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000536 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000537 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
Simon Pilgrima8bf9752017-01-05 19:01:50 +0000538 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000539
Alexey Bataevd07c7312016-10-31 12:10:53 +0000540 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
541 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
542 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
543 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
544
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000545 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000546 // in the process we will often end up having to spilling regular
547 // registers. The overhead of division is going to dominate most kernels
548 // anyways so try hard to prevent vectorization of division - it is
549 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
550 // to hide "20 cycles" for each lane.
551 { ISD::SDIV, MVT::v16i8, 16*20 },
552 { ISD::SDIV, MVT::v8i16, 8*20 },
553 { ISD::SDIV, MVT::v4i32, 4*20 },
554 { ISD::SDIV, MVT::v2i64, 2*20 },
555 { ISD::UDIV, MVT::v16i8, 16*20 },
556 { ISD::UDIV, MVT::v8i16, 8*20 },
557 { ISD::UDIV, MVT::v4i32, 4*20 },
558 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000559 };
560
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000561 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000562 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
563 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000564
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000565 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000566 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
567 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
568 };
569
570 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000571 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000572 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000573
Chandler Carruth664e3542013-01-07 01:37:14 +0000574 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000575 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000576}
577
Chandler Carruth93205eb2015-08-05 18:08:10 +0000578int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
579 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000580 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
581 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
582 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000583
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000584 // For Broadcasts we are splatting the first element from the first input
585 // register, so only need to reference that input and all the output
586 // registers are the same.
587 if (Kind == TTI::SK_Broadcast)
588 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000589
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000590 // We are going to permute multiple sources and the result will be in multiple
591 // destinations. Providing an accurate cost only for splits where the element
592 // type remains the same.
593 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
594 MVT LegalVT = LT.second;
595 if (LegalVT.getVectorElementType().getSizeInBits() ==
596 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
597 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000598
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000599 unsigned VecTySize = DL.getTypeStoreSize(Tp);
600 unsigned LegalVTSize = LegalVT.getStoreSize();
601 // Number of source vectors after legalization:
602 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
603 // Number of destination vectors after legalization:
604 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000605
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000606 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
607 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000608
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000609 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
610 return NumOfShuffles *
611 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
612 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000613
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000614 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
615 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000616
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000617 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
618 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000619 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000620 int NumOfDests = LT.first;
621 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000622 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000623 }
624
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000625 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
626 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
627 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
628
629 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
630 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
631
632 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
633 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
634 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
635 };
636
637 if (ST->hasVBMI())
638 if (const auto *Entry =
639 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
640 return LT.first * Entry->Cost;
641
642 static const CostTblEntry AVX512BWShuffleTbl[] = {
643 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
644 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
645
646 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
647 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000648 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000649
650 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
651 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
652 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
653 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
654 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
655
656 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
657 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
658 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
659 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
660 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
661 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
662 };
663
664 if (ST->hasBWI())
665 if (const auto *Entry =
666 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
667 return LT.first * Entry->Cost;
668
669 static const CostTblEntry AVX512ShuffleTbl[] = {
670 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
671 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
672 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
673 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
674
675 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
676 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
677 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
678 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
679
680 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
681 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
682 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
683 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
684 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
685 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
686 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
687 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
688 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
689 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
690 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
691 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
692 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
693
694 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
695 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
696 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
697 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
698 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
699 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
700 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
701 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
702 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
703 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
704 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
705 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
706 };
707
708 if (ST->hasAVX512())
709 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
710 return LT.first * Entry->Cost;
711
712 static const CostTblEntry AVX2ShuffleTbl[] = {
713 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
714 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
715 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
716 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
717 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
718 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
719
720 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
721 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
722 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
723 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
724 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
725 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
726
727 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
728 { TTI::SK_Alternate, MVT::v32i8, 1 } // vpblendvb
729 };
730
731 if (ST->hasAVX2())
732 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
733 return LT.first * Entry->Cost;
734
735 static const CostTblEntry AVX1ShuffleTbl[] = {
736 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
737 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
738 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
739 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
740 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
741 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
742
743 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
744 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
745 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
746 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
747 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
748 // + vinsertf128
749 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
750 // + vinsertf128
751
752 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
753 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
754 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
755 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
756 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
757 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
758 };
759
760 if (ST->hasAVX())
761 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
762 return LT.first * Entry->Cost;
763
764 static const CostTblEntry SSE41ShuffleTbl[] = {
765 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
766 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
767 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
768 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
769 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
770 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
771 };
772
773 if (ST->hasSSE41())
774 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
775 return LT.first * Entry->Cost;
776
777 static const CostTblEntry SSSE3ShuffleTbl[] = {
778 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
779 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
780
781 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
782 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
783
784 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
785 { TTI::SK_Alternate, MVT::v16i8, 3 } // pshufb + pshufb + por
786 };
787
788 if (ST->hasSSSE3())
789 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
790 return LT.first * Entry->Cost;
791
792 static const CostTblEntry SSE2ShuffleTbl[] = {
793 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
794 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
795 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
796 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
797 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
798
799 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
800 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
801 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
802 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
803 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
804 // + 2*pshufd + 2*unpck + packus
805
806 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
807 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
808 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
809 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
810 { TTI::SK_Alternate, MVT::v16i8, 3 } // pand + pandn + por
811 };
812
813 if (ST->hasSSE2())
814 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
815 return LT.first * Entry->Cost;
816
817 static const CostTblEntry SSE1ShuffleTbl[] = {
818 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
819 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
820 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
821 };
822
823 if (ST->hasSSE1())
824 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
825 return LT.first * Entry->Cost;
826
Chandler Carruth705b1852015-01-31 03:43:40 +0000827 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000828}
829
Chandler Carruth93205eb2015-08-05 18:08:10 +0000830int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000831 int ISD = TLI->InstructionOpcodeToISD(Opcode);
832 assert(ISD && "Invalid opcode");
833
Cong Hou59898d82015-12-11 00:31:39 +0000834 // FIXME: Need a better design of the cost table to handle non-simple types of
835 // potential massive combinations (elem_num x src_type x dst_type).
836
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000837 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000838 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
839 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000840 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
841 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000842 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
843 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
844
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000845 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000846 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000847 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000848 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000849 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000850 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000851
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000852 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000853 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000854 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000855 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000856 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000857 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
858
859 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
860 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
861 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
862 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
863 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
864 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000865 };
866
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000867 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
868 // 256-bit wide vectors.
869
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000870 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000871 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
872 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
873 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000874
875 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
876 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
877 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
878 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000879
880 // v16i1 -> v16i32 - load + broadcast
881 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
882 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000883 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
884 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
885 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
886 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000887 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
888 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000889 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
890 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000891
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000892 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000893 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000894 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000895 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000896 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000897 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
898 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000899 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000900 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
901 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000902
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000903 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000904 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000905 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000906 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
907 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
908 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
909 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000910 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000911 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
912 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
913 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
914 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000915 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000916 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000917 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
918 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
919 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
920 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
921 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000922 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000923 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
924 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
925 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
926
927 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
928 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
929 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
930 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000931 };
932
Craig Topper4b275762015-10-28 04:02:12 +0000933 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000934 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
935 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000936 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
937 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000938 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
939 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000940 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
941 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
942 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
943 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000944 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
945 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000946 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
947 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000948 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
949 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
950
951 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
952 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
953 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
954 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
955 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
956 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000957
958 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
959 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +0000960
961 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000962 };
963
Craig Topper4b275762015-10-28 04:02:12 +0000964 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000965 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
966 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000967 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
968 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000969 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
970 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000971 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
972 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
973 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
974 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000975 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
976 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000977 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
978 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000979 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
980 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
981
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000982 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
983 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
984 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000985 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
986 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
987 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000988 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000989
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000990 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000991 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000992 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
993 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000994 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000995 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
996 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000997 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000998 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
999 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001000 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001001 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001002
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001003 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001004 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001005 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1006 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001007 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001008 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1009 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001010 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001011 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001012 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001013 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001014 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001015 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001016 // The generic code to compute the scalar overhead is currently broken.
1017 // Workaround this limitation by estimating the scalarization overhead
1018 // here. We have roughly 10 instructions per scalar element.
1019 // Multiply that by the vector width.
1020 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001021 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1022 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1023 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1024 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001025
Renato Goline1fb0592013-01-20 20:57:20 +00001026 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001027 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001028 // This node is expanded into scalarized operations but BasicTTI is overly
1029 // optimistic estimating its cost. It computes 3 per element (one
1030 // vector-extract, one scalar conversion and one vector-insert). The
1031 // problem is that the inserts form a read-modify-write chain so latency
1032 // should be factored in too. Inflating the cost per element by 1.
1033 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001034 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001035
1036 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1037 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001038 };
1039
Cong Hou59898d82015-12-11 00:31:39 +00001040 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001041 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1042 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001043 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1044 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1045 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1046 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001047
Cong Hou59898d82015-12-11 00:31:39 +00001048 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1049 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001050 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1051 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1052 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1053 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1054 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1055 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1056 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1057 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1058 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1059 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1060 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1061 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1062 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1063 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1064 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1065 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001066
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001067 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1068 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1069 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001070 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001071 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001072 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001073 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1074
Cong Hou59898d82015-12-11 00:31:39 +00001075 };
1076
1077 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001078 // These are somewhat magic numbers justified by looking at the output of
1079 // Intel's IACA, running some kernels and making sure when we take
1080 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001081 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001082 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1083 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1084 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001085 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001086 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1087 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1088 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001089
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001090 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1091 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1092 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1093 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1094 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1095 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1096 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1097 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001098
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001099 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1100
Cong Hou59898d82015-12-11 00:31:39 +00001101 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1102 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001103 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1104 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1105 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1106 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1107 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1108 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1109 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1110 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1111 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1112 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1113 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1114 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1115 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1116 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1117 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1118 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1119 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1120 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1121 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001122 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001123 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1124 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001125
Cong Hou59898d82015-12-11 00:31:39 +00001126 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001127 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1128 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1129 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1130 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1131 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1132 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1133 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1134 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001135 };
1136
Chandler Carruth93205eb2015-08-05 18:08:10 +00001137 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1138 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001139
1140 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001141 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001142 LTDest.second, LTSrc.second))
1143 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001144 }
1145
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001146 EVT SrcTy = TLI->getValueType(DL, Src);
1147 EVT DstTy = TLI->getValueType(DL, Dst);
1148
1149 // The function getSimpleVT only handles simple value types.
1150 if (!SrcTy.isSimple() || !DstTy.isSimple())
1151 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1152
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001153 if (ST->hasDQI())
1154 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1155 DstTy.getSimpleVT(),
1156 SrcTy.getSimpleVT()))
1157 return Entry->Cost;
1158
1159 if (ST->hasAVX512())
1160 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1161 DstTy.getSimpleVT(),
1162 SrcTy.getSimpleVT()))
1163 return Entry->Cost;
1164
Tim Northoverf0e21612014-02-06 18:18:36 +00001165 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001166 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1167 DstTy.getSimpleVT(),
1168 SrcTy.getSimpleVT()))
1169 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001170 }
1171
Chandler Carruth664e3542013-01-07 01:37:14 +00001172 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001173 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1174 DstTy.getSimpleVT(),
1175 SrcTy.getSimpleVT()))
1176 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001177 }
1178
Cong Hou59898d82015-12-11 00:31:39 +00001179 if (ST->hasSSE41()) {
1180 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1181 DstTy.getSimpleVT(),
1182 SrcTy.getSimpleVT()))
1183 return Entry->Cost;
1184 }
1185
1186 if (ST->hasSSE2()) {
1187 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1188 DstTy.getSimpleVT(),
1189 SrcTy.getSimpleVT()))
1190 return Entry->Cost;
1191 }
1192
Chandler Carruth705b1852015-01-31 03:43:40 +00001193 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001194}
1195
Chandler Carruth93205eb2015-08-05 18:08:10 +00001196int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001197 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001198 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001199
1200 MVT MTy = LT.second;
1201
1202 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1203 assert(ISD && "Invalid opcode");
1204
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001205 static const CostTblEntry SSE2CostTbl[] = {
1206 { ISD::SETCC, MVT::v2i64, 8 },
1207 { ISD::SETCC, MVT::v4i32, 1 },
1208 { ISD::SETCC, MVT::v8i16, 1 },
1209 { ISD::SETCC, MVT::v16i8, 1 },
1210 };
1211
Craig Topper4b275762015-10-28 04:02:12 +00001212 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001213 { ISD::SETCC, MVT::v2f64, 1 },
1214 { ISD::SETCC, MVT::v4f32, 1 },
1215 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001216 };
1217
Craig Topper4b275762015-10-28 04:02:12 +00001218 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001219 { ISD::SETCC, MVT::v4f64, 1 },
1220 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001221 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001222 { ISD::SETCC, MVT::v4i64, 4 },
1223 { ISD::SETCC, MVT::v8i32, 4 },
1224 { ISD::SETCC, MVT::v16i16, 4 },
1225 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001226 };
1227
Craig Topper4b275762015-10-28 04:02:12 +00001228 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001229 { ISD::SETCC, MVT::v4i64, 1 },
1230 { ISD::SETCC, MVT::v8i32, 1 },
1231 { ISD::SETCC, MVT::v16i16, 1 },
1232 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001233 };
1234
Craig Topper4b275762015-10-28 04:02:12 +00001235 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001236 { ISD::SETCC, MVT::v8i64, 1 },
1237 { ISD::SETCC, MVT::v16i32, 1 },
1238 { ISD::SETCC, MVT::v8f64, 1 },
1239 { ISD::SETCC, MVT::v16f32, 1 },
1240 };
1241
Craig Topperee0c8592015-10-27 04:14:24 +00001242 if (ST->hasAVX512())
1243 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1244 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001245
Craig Topperee0c8592015-10-27 04:14:24 +00001246 if (ST->hasAVX2())
1247 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1248 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001249
Craig Topperee0c8592015-10-27 04:14:24 +00001250 if (ST->hasAVX())
1251 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1252 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001253
Craig Topperee0c8592015-10-27 04:14:24 +00001254 if (ST->hasSSE42())
1255 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1256 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001257
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001258 if (ST->hasSSE2())
1259 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1260 return LT.first * Entry->Cost;
1261
Chandler Carruth705b1852015-01-31 03:43:40 +00001262 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001263}
1264
Simon Pilgrim14000b32016-05-24 08:17:50 +00001265int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1266 ArrayRef<Type *> Tys, FastMathFlags FMF) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001267 // Costs should match the codegen from:
1268 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1269 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001270 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001271 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001272 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001273 static const CostTblEntry XOPCostTbl[] = {
1274 { ISD::BITREVERSE, MVT::v4i64, 4 },
1275 { ISD::BITREVERSE, MVT::v8i32, 4 },
1276 { ISD::BITREVERSE, MVT::v16i16, 4 },
1277 { ISD::BITREVERSE, MVT::v32i8, 4 },
1278 { ISD::BITREVERSE, MVT::v2i64, 1 },
1279 { ISD::BITREVERSE, MVT::v4i32, 1 },
1280 { ISD::BITREVERSE, MVT::v8i16, 1 },
1281 { ISD::BITREVERSE, MVT::v16i8, 1 },
1282 { ISD::BITREVERSE, MVT::i64, 3 },
1283 { ISD::BITREVERSE, MVT::i32, 3 },
1284 { ISD::BITREVERSE, MVT::i16, 3 },
1285 { ISD::BITREVERSE, MVT::i8, 3 }
1286 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001287 static const CostTblEntry AVX2CostTbl[] = {
1288 { ISD::BITREVERSE, MVT::v4i64, 5 },
1289 { ISD::BITREVERSE, MVT::v8i32, 5 },
1290 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001291 { ISD::BITREVERSE, MVT::v32i8, 5 },
1292 { ISD::BSWAP, MVT::v4i64, 1 },
1293 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001294 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001295 { ISD::CTLZ, MVT::v4i64, 23 },
1296 { ISD::CTLZ, MVT::v8i32, 18 },
1297 { ISD::CTLZ, MVT::v16i16, 14 },
1298 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001299 { ISD::CTPOP, MVT::v4i64, 7 },
1300 { ISD::CTPOP, MVT::v8i32, 11 },
1301 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001302 { ISD::CTPOP, MVT::v32i8, 6 },
1303 { ISD::CTTZ, MVT::v4i64, 10 },
1304 { ISD::CTTZ, MVT::v8i32, 14 },
1305 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001306 { ISD::CTTZ, MVT::v32i8, 9 },
1307 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1308 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1309 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1310 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1311 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1312 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001313 };
1314 static const CostTblEntry AVX1CostTbl[] = {
1315 { ISD::BITREVERSE, MVT::v4i64, 10 },
1316 { ISD::BITREVERSE, MVT::v8i32, 10 },
1317 { ISD::BITREVERSE, MVT::v16i16, 10 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001318 { ISD::BITREVERSE, MVT::v32i8, 10 },
1319 { ISD::BSWAP, MVT::v4i64, 4 },
1320 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001321 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001322 { ISD::CTLZ, MVT::v4i64, 46 },
1323 { ISD::CTLZ, MVT::v8i32, 36 },
1324 { ISD::CTLZ, MVT::v16i16, 28 },
1325 { ISD::CTLZ, MVT::v32i8, 18 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001326 { ISD::CTPOP, MVT::v4i64, 14 },
1327 { ISD::CTPOP, MVT::v8i32, 22 },
1328 { ISD::CTPOP, MVT::v16i16, 18 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001329 { ISD::CTPOP, MVT::v32i8, 12 },
1330 { ISD::CTTZ, MVT::v4i64, 20 },
1331 { ISD::CTTZ, MVT::v8i32, 28 },
1332 { ISD::CTTZ, MVT::v16i16, 24 },
1333 { ISD::CTTZ, MVT::v32i8, 18 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001334 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1335 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1336 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1337 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1338 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1339 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1340 };
1341 static const CostTblEntry SSE42CostTbl[] = {
1342 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1343 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001344 };
1345 static const CostTblEntry SSSE3CostTbl[] = {
1346 { ISD::BITREVERSE, MVT::v2i64, 5 },
1347 { ISD::BITREVERSE, MVT::v4i32, 5 },
1348 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001349 { ISD::BITREVERSE, MVT::v16i8, 5 },
1350 { ISD::BSWAP, MVT::v2i64, 1 },
1351 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001352 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001353 { ISD::CTLZ, MVT::v2i64, 23 },
1354 { ISD::CTLZ, MVT::v4i32, 18 },
1355 { ISD::CTLZ, MVT::v8i16, 14 },
1356 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001357 { ISD::CTPOP, MVT::v2i64, 7 },
1358 { ISD::CTPOP, MVT::v4i32, 11 },
1359 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001360 { ISD::CTPOP, MVT::v16i8, 6 },
1361 { ISD::CTTZ, MVT::v2i64, 10 },
1362 { ISD::CTTZ, MVT::v4i32, 14 },
1363 { ISD::CTTZ, MVT::v8i16, 12 },
1364 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001365 };
1366 static const CostTblEntry SSE2CostTbl[] = {
1367 { ISD::BSWAP, MVT::v2i64, 7 },
1368 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001369 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001370 { ISD::CTLZ, MVT::v2i64, 25 },
1371 { ISD::CTLZ, MVT::v4i32, 26 },
1372 { ISD::CTLZ, MVT::v8i16, 20 },
1373 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001374 { ISD::CTPOP, MVT::v2i64, 12 },
1375 { ISD::CTPOP, MVT::v4i32, 15 },
1376 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001377 { ISD::CTPOP, MVT::v16i8, 10 },
1378 { ISD::CTTZ, MVT::v2i64, 14 },
1379 { ISD::CTTZ, MVT::v4i32, 18 },
1380 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001381 { ISD::CTTZ, MVT::v16i8, 13 },
1382 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1383 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1384 };
1385 static const CostTblEntry SSE1CostTbl[] = {
1386 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1387 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001388 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001389
1390 unsigned ISD = ISD::DELETED_NODE;
1391 switch (IID) {
1392 default:
1393 break;
1394 case Intrinsic::bitreverse:
1395 ISD = ISD::BITREVERSE;
1396 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001397 case Intrinsic::bswap:
1398 ISD = ISD::BSWAP;
1399 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001400 case Intrinsic::ctlz:
1401 ISD = ISD::CTLZ;
1402 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001403 case Intrinsic::ctpop:
1404 ISD = ISD::CTPOP;
1405 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001406 case Intrinsic::cttz:
1407 ISD = ISD::CTTZ;
1408 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001409 case Intrinsic::sqrt:
1410 ISD = ISD::FSQRT;
1411 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001412 }
1413
1414 // Legalize the type.
1415 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1416 MVT MTy = LT.second;
1417
1418 // Attempt to lookup cost.
1419 if (ST->hasXOP())
1420 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1421 return LT.first * Entry->Cost;
1422
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001423 if (ST->hasAVX2())
1424 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1425 return LT.first * Entry->Cost;
1426
1427 if (ST->hasAVX())
1428 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1429 return LT.first * Entry->Cost;
1430
Alexey Bataevd07c7312016-10-31 12:10:53 +00001431 if (ST->hasSSE42())
1432 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1433 return LT.first * Entry->Cost;
1434
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001435 if (ST->hasSSSE3())
1436 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1437 return LT.first * Entry->Cost;
1438
Simon Pilgrim356e8232016-06-20 23:08:21 +00001439 if (ST->hasSSE2())
1440 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1441 return LT.first * Entry->Cost;
1442
Alexey Bataevd07c7312016-10-31 12:10:53 +00001443 if (ST->hasSSE1())
1444 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1445 return LT.first * Entry->Cost;
1446
Simon Pilgrim14000b32016-05-24 08:17:50 +00001447 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
1448}
1449
1450int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1451 ArrayRef<Value *> Args, FastMathFlags FMF) {
1452 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
1453}
1454
Chandler Carruth93205eb2015-08-05 18:08:10 +00001455int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001456 assert(Val->isVectorTy() && "This must be a vector type");
1457
Sanjay Patelaedc3472016-05-25 17:27:54 +00001458 Type *ScalarType = Val->getScalarType();
1459
Chandler Carruth664e3542013-01-07 01:37:14 +00001460 if (Index != -1U) {
1461 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001462 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001463
1464 // This type is legalized to a scalar type.
1465 if (!LT.second.isVector())
1466 return 0;
1467
1468 // The type may be split. Normalize the index to the new type.
1469 unsigned Width = LT.second.getVectorNumElements();
1470 Index = Index % Width;
1471
1472 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001473 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001474 return 0;
1475 }
1476
Sanjay Patelaedc3472016-05-25 17:27:54 +00001477 // Add to the base cost if we know that the extracted element of a vector is
1478 // destined to be moved to and used in the integer register file.
1479 int RegisterFileMoveCost = 0;
1480 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1481 RegisterFileMoveCost = 1;
1482
1483 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001484}
1485
Chandler Carruth93205eb2015-08-05 18:08:10 +00001486int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001487 assert (Ty->isVectorTy() && "Can only scalarize vectors");
Chandler Carruth93205eb2015-08-05 18:08:10 +00001488 int Cost = 0;
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001489
1490 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
1491 if (Insert)
Chandler Carruth705b1852015-01-31 03:43:40 +00001492 Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001493 if (Extract)
Chandler Carruth705b1852015-01-31 03:43:40 +00001494 Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001495 }
1496
1497 return Cost;
1498}
1499
Chandler Carruth93205eb2015-08-05 18:08:10 +00001500int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1501 unsigned AddressSpace) {
Alp Tokerf907b892013-12-05 05:44:44 +00001502 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001503 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1504 unsigned NumElem = VTy->getVectorNumElements();
1505
1506 // Handle a few common cases:
1507 // <3 x float>
1508 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1509 // Cost = 64 bit store + extract + 32 bit store.
1510 return 3;
1511
1512 // <3 x double>
1513 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1514 // Cost = 128 bit store + unpack + 64 bit store.
1515 return 3;
1516
Alp Tokerf907b892013-12-05 05:44:44 +00001517 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001518 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001519 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1520 AddressSpace);
1521 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1522 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001523 return NumElem * Cost + SplitCost;
1524 }
1525 }
1526
Chandler Carruth664e3542013-01-07 01:37:14 +00001527 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001528 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001529 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1530 "Invalid Opcode");
1531
1532 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001533 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001534
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001535 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1536 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1537 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1538 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001539
1540 return Cost;
1541}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001542
Chandler Carruth93205eb2015-08-05 18:08:10 +00001543int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1544 unsigned Alignment,
1545 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001546 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1547 if (!SrcVTy)
1548 // To calculate scalar take the regular cost, without mask
1549 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1550
1551 unsigned NumElem = SrcVTy->getVectorNumElements();
1552 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001553 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001554 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1555 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001556 !isPowerOf2_32(NumElem)) {
1557 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001558 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1559 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001560 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001561 int BranchCost = getCFInstrCost(Instruction::Br);
1562 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001563
Chandler Carruth93205eb2015-08-05 18:08:10 +00001564 int ValueSplitCost = getScalarizationOverhead(
1565 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1566 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001567 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1568 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001569 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1570 }
1571
1572 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001573 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001574 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001575 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001576 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001577 LT.second.getVectorNumElements() == NumElem)
1578 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001579 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1580 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001581
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001582 else if (LT.second.getVectorNumElements() > NumElem) {
1583 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1584 LT.second.getVectorNumElements());
1585 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001586 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001587 }
1588 if (!ST->hasAVX512())
1589 return Cost + LT.first*4; // Each maskmov costs 4
1590
1591 // AVX-512 masked load/store is cheapper
1592 return Cost+LT.first;
1593}
1594
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001595int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1596 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001597 // Address computations in vectorized code with non-consecutive addresses will
1598 // likely result in more instructions compared to scalar code where the
1599 // computation can more often be merged into the index mode. The resulting
1600 // extra micro-ops can significantly decrease throughput.
1601 unsigned NumVectorInstToHideOverhead = 10;
1602
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001603 // Cost modeling of Strided Access Computation is hidden by the indexing
1604 // modes of X86 regardless of the stride value. We dont believe that there
1605 // is a difference between constant strided access in gerenal and constant
1606 // strided value which is less than or equal to 64.
1607 // Even in the case of (loop invariant) stride whose value is not known at
1608 // compile time, the address computation will not incur more than one extra
1609 // ADD instruction.
1610 if (Ty->isVectorTy() && SE) {
1611 if (!BaseT::isStridedAccess(Ptr))
1612 return NumVectorInstToHideOverhead;
1613 if (!BaseT::getConstantStrideStep(SE, Ptr))
1614 return 1;
1615 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001616
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001617 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001618}
Yi Jiang5c343de2013-09-19 17:48:48 +00001619
Chandler Carruth93205eb2015-08-05 18:08:10 +00001620int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1621 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001622
Chandler Carruth93205eb2015-08-05 18:08:10 +00001623 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001624
Yi Jiang5c343de2013-09-19 17:48:48 +00001625 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001626
Yi Jiang5c343de2013-09-19 17:48:48 +00001627 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1628 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001629
1630 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1631 // and make it as the cost.
1632
Craig Topper4b275762015-10-28 04:02:12 +00001633 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001634 { ISD::FADD, MVT::v2f64, 2 },
1635 { ISD::FADD, MVT::v4f32, 4 },
1636 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1637 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1638 { ISD::ADD, MVT::v8i16, 5 },
1639 };
Michael Liao5bf95782014-12-04 05:20:33 +00001640
Craig Topper4b275762015-10-28 04:02:12 +00001641 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001642 { ISD::FADD, MVT::v4f32, 4 },
1643 { ISD::FADD, MVT::v4f64, 5 },
1644 { ISD::FADD, MVT::v8f32, 7 },
1645 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1646 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1647 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1648 { ISD::ADD, MVT::v8i16, 5 },
1649 { ISD::ADD, MVT::v8i32, 5 },
1650 };
1651
Craig Topper4b275762015-10-28 04:02:12 +00001652 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001653 { ISD::FADD, MVT::v2f64, 2 },
1654 { ISD::FADD, MVT::v4f32, 4 },
1655 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1656 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1657 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1658 };
Michael Liao5bf95782014-12-04 05:20:33 +00001659
Craig Topper4b275762015-10-28 04:02:12 +00001660 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001661 { ISD::FADD, MVT::v4f32, 3 },
1662 { ISD::FADD, MVT::v4f64, 3 },
1663 { ISD::FADD, MVT::v8f32, 4 },
1664 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1665 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1666 { ISD::ADD, MVT::v4i64, 3 },
1667 { ISD::ADD, MVT::v8i16, 4 },
1668 { ISD::ADD, MVT::v8i32, 5 },
1669 };
Michael Liao5bf95782014-12-04 05:20:33 +00001670
Yi Jiang5c343de2013-09-19 17:48:48 +00001671 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001672 if (ST->hasAVX())
1673 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1674 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001675
Craig Topperee0c8592015-10-27 04:14:24 +00001676 if (ST->hasSSE42())
1677 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1678 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001679 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001680 if (ST->hasAVX())
1681 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1682 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001683
Craig Topperee0c8592015-10-27 04:14:24 +00001684 if (ST->hasSSE42())
1685 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1686 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001687 }
1688
Chandler Carruth705b1852015-01-31 03:43:40 +00001689 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001690}
1691
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001692/// \brief Calculate the cost of materializing a 64-bit value. This helper
1693/// method might only calculate a fraction of a larger immediate. Therefore it
1694/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001695int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001696 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001697 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001698
1699 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001700 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001701
Chandler Carruth705b1852015-01-31 03:43:40 +00001702 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001703}
1704
Chandler Carruth93205eb2015-08-05 18:08:10 +00001705int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001706 assert(Ty->isIntegerTy());
1707
1708 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1709 if (BitSize == 0)
1710 return ~0U;
1711
Juergen Ributzka43176172014-05-19 21:00:53 +00001712 // Never hoist constants larger than 128bit, because this might lead to
1713 // incorrect code generation or assertions in codegen.
1714 // Fixme: Create a cost model for types larger than i128 once the codegen
1715 // issues have been fixed.
1716 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001717 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001718
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001719 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001720 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001721
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001722 // Sign-extend all constants to a multiple of 64-bit.
1723 APInt ImmVal = Imm;
1724 if (BitSize & 0x3f)
1725 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1726
1727 // Split the constant into 64-bit chunks and calculate the cost for each
1728 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001729 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001730 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1731 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1732 int64_t Val = Tmp.getSExtValue();
1733 Cost += getIntImmCost(Val);
1734 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001735 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001736 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001737}
1738
Chandler Carruth93205eb2015-08-05 18:08:10 +00001739int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1740 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001741 assert(Ty->isIntegerTy());
1742
1743 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001744 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1745 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001746 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001747 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001748
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001749 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001750 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001751 default:
1752 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001753 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001754 // Always hoist the base address of a GetElementPtr. This prevents the
1755 // creation of new constants for every base constant that gets constant
1756 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001757 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001758 return 2 * TTI::TCC_Basic;
1759 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001760 case Instruction::Store:
1761 ImmIdx = 0;
1762 break;
Craig Topper074e8452015-12-20 18:41:54 +00001763 case Instruction::ICmp:
1764 // This is an imperfect hack to prevent constant hoisting of
1765 // compares that might be trying to check if a 64-bit value fits in
1766 // 32-bits. The backend can optimize these cases using a right shift by 32.
1767 // Ideally we would check the compare predicate here. There also other
1768 // similar immediates the backend can use shifts for.
1769 if (Idx == 1 && Imm.getBitWidth() == 64) {
1770 uint64_t ImmVal = Imm.getZExtValue();
1771 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1772 return TTI::TCC_Free;
1773 }
1774 ImmIdx = 1;
1775 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001776 case Instruction::And:
1777 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1778 // by using a 32-bit operation with implicit zero extension. Detect such
1779 // immediates here as the normal path expects bit 31 to be sign extended.
1780 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1781 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001782 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001783 case Instruction::Add:
1784 case Instruction::Sub:
1785 case Instruction::Mul:
1786 case Instruction::UDiv:
1787 case Instruction::SDiv:
1788 case Instruction::URem:
1789 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001790 case Instruction::Or:
1791 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001792 ImmIdx = 1;
1793 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001794 // Always return TCC_Free for the shift value of a shift instruction.
1795 case Instruction::Shl:
1796 case Instruction::LShr:
1797 case Instruction::AShr:
1798 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001799 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001800 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001801 case Instruction::Trunc:
1802 case Instruction::ZExt:
1803 case Instruction::SExt:
1804 case Instruction::IntToPtr:
1805 case Instruction::PtrToInt:
1806 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001807 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001808 case Instruction::Call:
1809 case Instruction::Select:
1810 case Instruction::Ret:
1811 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001812 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001813 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001814
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001815 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001816 int NumConstants = (BitSize + 63) / 64;
1817 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001818 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001819 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001820 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001821 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001822
Chandler Carruth705b1852015-01-31 03:43:40 +00001823 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001824}
1825
Chandler Carruth93205eb2015-08-05 18:08:10 +00001826int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1827 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001828 assert(Ty->isIntegerTy());
1829
1830 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001831 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1832 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001833 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001834 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001835
1836 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001837 default:
1838 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001839 case Intrinsic::sadd_with_overflow:
1840 case Intrinsic::uadd_with_overflow:
1841 case Intrinsic::ssub_with_overflow:
1842 case Intrinsic::usub_with_overflow:
1843 case Intrinsic::smul_with_overflow:
1844 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001845 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001846 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001847 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001848 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001849 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001850 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001851 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001852 case Intrinsic::experimental_patchpoint_void:
1853 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001854 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001855 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001856 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001857 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001858 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001859}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001860
Elena Demikhovsky54946982015-12-28 20:10:59 +00001861// Return an average cost of Gather / Scatter instruction, maybe improved later
1862int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1863 unsigned Alignment, unsigned AddressSpace) {
1864
1865 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1866 unsigned VF = SrcVTy->getVectorNumElements();
1867
1868 // Try to reduce index size from 64 bit (default for GEP)
1869 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1870 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1871 // to split. Also check that the base pointer is the same for all lanes,
1872 // and that there's at most one variable index.
1873 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1874 unsigned IndexSize = DL.getPointerSizeInBits();
1875 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1876 if (IndexSize < 64 || !GEP)
1877 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001878
Elena Demikhovsky54946982015-12-28 20:10:59 +00001879 unsigned NumOfVarIndices = 0;
1880 Value *Ptrs = GEP->getPointerOperand();
1881 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1882 return IndexSize;
1883 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1884 if (isa<Constant>(GEP->getOperand(i)))
1885 continue;
1886 Type *IndxTy = GEP->getOperand(i)->getType();
1887 if (IndxTy->isVectorTy())
1888 IndxTy = IndxTy->getVectorElementType();
1889 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
1890 !isa<SExtInst>(GEP->getOperand(i))) ||
1891 ++NumOfVarIndices > 1)
1892 return IndexSize; // 64
1893 }
1894 return (unsigned)32;
1895 };
1896
1897
1898 // Trying to reduce IndexSize to 32 bits for vector 16.
1899 // By default the IndexSize is equal to pointer size.
1900 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
1901 DL.getPointerSizeInBits();
1902
Mehdi Amini867e9142016-04-14 04:36:40 +00001903 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001904 IndexSize), VF);
1905 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
1906 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1907 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
1908 if (SplitFactor > 1) {
1909 // Handle splitting of vector of pointers
1910 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
1911 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
1912 AddressSpace);
1913 }
1914
1915 // The gather / scatter cost is given by Intel architects. It is a rough
1916 // number since we are looking at one instruction in a time.
1917 const int GSOverhead = 2;
1918 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1919 Alignment, AddressSpace);
1920}
1921
1922/// Return the cost of full scalarization of gather / scatter operation.
1923///
1924/// Opcode - Load or Store instruction.
1925/// SrcVTy - The type of the data vector that should be gathered or scattered.
1926/// VariableMask - The mask is non-constant at compile time.
1927/// Alignment - Alignment for one element.
1928/// AddressSpace - pointer[s] address space.
1929///
1930int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
1931 bool VariableMask, unsigned Alignment,
1932 unsigned AddressSpace) {
1933 unsigned VF = SrcVTy->getVectorNumElements();
1934
1935 int MaskUnpackCost = 0;
1936 if (VariableMask) {
1937 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001938 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00001939 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
1940 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00001941 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001942 nullptr);
1943 int BranchCost = getCFInstrCost(Instruction::Br);
1944 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
1945 }
1946
1947 // The cost of the scalar loads/stores.
1948 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1949 Alignment, AddressSpace);
1950
1951 int InsertExtractCost = 0;
1952 if (Opcode == Instruction::Load)
1953 for (unsigned i = 0; i < VF; ++i)
1954 // Add the cost of inserting each scalar load into the vector
1955 InsertExtractCost +=
1956 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
1957 else
1958 for (unsigned i = 0; i < VF; ++i)
1959 // Add the cost of extracting each element out of the data vector
1960 InsertExtractCost +=
1961 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
1962
1963 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
1964}
1965
1966/// Calculate the cost of Gather / Scatter operation
1967int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
1968 Value *Ptr, bool VariableMask,
1969 unsigned Alignment) {
1970 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
1971 unsigned VF = SrcVTy->getVectorNumElements();
1972 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
1973 if (!PtrTy && Ptr->getType()->isVectorTy())
1974 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
1975 assert(PtrTy && "Unexpected type for Ptr argument");
1976 unsigned AddressSpace = PtrTy->getAddressSpace();
1977
1978 bool Scalarize = false;
1979 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
1980 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
1981 Scalarize = true;
1982 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
1983 // Vector-4 of gather/scatter instruction does not exist on KNL.
1984 // We can extend it to 8 elements, but zeroing upper bits of
1985 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00001986 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
1987 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00001988 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
1989 Scalarize = true;
1990
1991 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00001992 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
1993 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00001994
1995 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
1996}
1997
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001998bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
1999 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002000 int DataWidth = isa<PointerType>(ScalarTy) ?
2001 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002002
Igor Bregerf44b79d2016-08-02 09:15:28 +00002003 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2004 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002005}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002006
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002007bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2008 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002009}
2010
Elena Demikhovsky09285852015-10-25 15:37:55 +00002011bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2012 // This function is called now in two cases: from the Loop Vectorizer
2013 // and from the Scalarizer.
2014 // When the Loop Vectorizer asks about legality of the feature,
2015 // the vectorization factor is not calculated yet. The Loop Vectorizer
2016 // sends a scalar type and the decision is based on the width of the
2017 // scalar element.
2018 // Later on, the cost model will estimate usage this intrinsic based on
2019 // the vector type.
2020 // The Scalarizer asks again about legality. It sends a vector type.
2021 // In this case we can reject non-power-of-2 vectors.
2022 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2023 return false;
2024 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002025 int DataWidth = isa<PointerType>(ScalarTy) ?
2026 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002027
2028 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002029 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002030}
2031
2032bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2033 return isLegalMaskedGather(DataType);
2034}
2035
Eric Christopherd566fb12015-07-29 22:09:48 +00002036bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2037 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002038 const TargetMachine &TM = getTLI()->getTargetMachine();
2039
2040 // Work this as a subsetting of subtarget features.
2041 const FeatureBitset &CallerBits =
2042 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2043 const FeatureBitset &CalleeBits =
2044 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2045
2046 // FIXME: This is likely too limiting as it will include subtarget features
2047 // that we might not care about for inlining, but it is conservatively
2048 // correct.
2049 return (CallerBits & CalleeBits) == CalleeBits;
2050}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002051
2052bool X86TTIImpl::enableInterleavedAccessVectorization() {
2053 // TODO: We expect this to be beneficial regardless of arch,
2054 // but there are currently some unexplained performance artifacts on Atom.
2055 // As a temporary solution, disable on Atom.
2056 return !(ST->isAtom() || ST->isSLM());
2057}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002058
2059// Get estimation for interleaved load/store operations and strided load.
2060// \p Indices contains indices for strided load.
2061// \p Factor - the factor of interleaving.
2062// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2063int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2064 unsigned Factor,
2065 ArrayRef<unsigned> Indices,
2066 unsigned Alignment,
2067 unsigned AddressSpace) {
2068
2069 // VecTy for interleave memop is <VF*Factor x Elt>.
2070 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2071 // VecTy = <12 x i32>.
2072
2073 // Calculate the number of memory operations (NumOfMemOps), required
2074 // for load/store the VecTy.
2075 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2076 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2077 unsigned LegalVTSize = LegalVT.getStoreSize();
2078 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2079
2080 // Get the cost of one memory operation.
2081 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2082 LegalVT.getVectorNumElements());
2083 unsigned MemOpCost =
2084 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2085
2086 if (Opcode == Instruction::Load) {
2087 // Kind of shuffle depends on number of loaded values.
2088 // If we load the entire data in one register, we can use a 1-src shuffle.
2089 // Otherwise, we'll merge 2 sources in each operation.
2090 TTI::ShuffleKind ShuffleKind =
2091 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2092
2093 unsigned ShuffleCost =
2094 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2095
2096 unsigned NumOfLoadsInInterleaveGrp =
2097 Indices.size() ? Indices.size() : Factor;
2098 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2099 VecTy->getVectorNumElements() / Factor);
2100 unsigned NumOfResults =
2101 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2102 NumOfLoadsInInterleaveGrp;
2103
2104 // About a half of the loads may be folded in shuffles when we have only
2105 // one result. If we have more than one result, we do not fold loads at all.
2106 unsigned NumOfUnfoldedLoads =
2107 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2108
2109 // Get a number of shuffle operations per result.
2110 unsigned NumOfShufflesPerResult =
2111 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2112
2113 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2114 // When we have more than one destination, we need additional instructions
2115 // to keep sources.
2116 unsigned NumOfMoves = 0;
2117 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2118 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2119
2120 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2121 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2122
2123 return Cost;
2124 }
2125
2126 // Store.
2127 assert(Opcode == Instruction::Store &&
2128 "Expected Store Instruction at this point");
2129
2130 // There is no strided stores meanwhile. And store can't be folded in
2131 // shuffle.
2132 unsigned NumOfSources = Factor; // The number of values to be merged.
2133 unsigned ShuffleCost =
2134 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2135 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2136
2137 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2138 // We need additional instructions to keep sources.
2139 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2140 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2141 NumOfMoves;
2142 return Cost;
2143}
2144
2145int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2146 unsigned Factor,
2147 ArrayRef<unsigned> Indices,
2148 unsigned Alignment,
2149 unsigned AddressSpace) {
2150 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2151 RequiresBW = false;
2152 Type *EltTy = VecTy->getVectorElementType();
2153 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2154 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2155 return true;
2156 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2157 RequiresBW = true;
2158 return true;
2159 }
2160 return false;
2161 };
2162 bool RequiresBW;
2163 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2164 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2165 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2166 Alignment, AddressSpace);
2167 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2168 Alignment, AddressSpace);
2169}