blob: 5efa7c74faba02049cc359afa9b274bee086287f [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000020 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000021}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000025 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000026}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000047 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000048 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000049 Requires<[NotLP64]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[NotLP64]>;
54}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000055def : Pat<(X86callseq_start timm:$amt1),
56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000058
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000065def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000067 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 Requires<[IsLP64]>;
69def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70 "#ADJCALLSTACKUP",
71 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72 Requires<[IsLP64]>;
73}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000074def : Pat<(X86callseq_start timm:$amt1),
75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000076
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81 (outs),
82 (ins GR8:$al,
83 i64imm:$regsavefi, i64imm:$offset,
84 variable_ops),
85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86 [(X86vastart_save_xmm_regs GR8:$al,
87 imm:$regsavefi,
88 imm:$offset),
89 (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95 (outs GR64:$dst),
96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98 [(set GR64:$dst,
99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100 (implicit EFLAGS)]>;
101
Hans Wennborg759af302016-05-17 20:38:56 +0000102// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
103// targets. These calls are needed to probe the stack when allocating more than
104// 4k bytes in one go. Touching the stack at 4K increments is necessary to
105// ensure that the guard pages used by the OS virtual memory manager are
106// allocated in correct sequence.
107// The main point of having separate instruction are extra unmodelled effects
108// (compared to ordinary calls) like stack pointer change.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
112 "# dynamic stack allocation",
113 [(X86WinAlloca)]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000114
115// When using segmented stacks these are lowered into instructions which first
116// check if the current stacklet has enough free memory. If it does, memory is
117// allocated by bumping the stack pointer. Otherwise memory is allocated from
118// the heap.
119
120let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
121def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
122 "# variable sized alloca for segmented stacks",
123 [(set GR32:$dst,
124 (X86SegAlloca GR32:$size))]>,
125 Requires<[NotLP64]>;
126
127let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
128def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
129 "# variable sized alloca for segmented stacks",
130 [(set GR64:$dst,
131 (X86SegAlloca GR64:$size))]>,
132 Requires<[In64BitMode]>;
133}
134
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000135//===----------------------------------------------------------------------===//
136// EH Pseudo Instructions
137//
138let SchedRW = [WriteSystem] in {
139let isTerminator = 1, isReturn = 1, isBarrier = 1,
140 hasCtrlDep = 1, isCodeGenOnly = 1 in {
141def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
142 "ret\t#eh_return, addr: $addr",
143 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
144
145}
146
147let isTerminator = 1, isReturn = 1, isBarrier = 1,
148 hasCtrlDep = 1, isCodeGenOnly = 1 in {
149def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
150 "ret\t#eh_return, addr: $addr",
151 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
152
153}
154
Reid Kleckner51460c12015-11-06 01:49:05 +0000155let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
156 isCodeGenOnly = 1, isReturn = 1 in {
157 def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
158
David Majnemer2652b752015-11-09 23:07:48 +0000159 // CATCHRET needs a custom inserter for SEH.
Reid Kleckner51460c12015-11-06 01:49:05 +0000160 let usesCustomInserter = 1 in
161 def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
162 "# CATCHRET",
163 [(catchret bb:$dst, bb:$from)]>;
Reid Kleckner0e288232015-08-27 23:27:47 +0000164}
165
Reid Kleckner420f0542015-11-09 23:34:42 +0000166let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
David Majnemer2652b752015-11-09 23:07:48 +0000167 usesCustomInserter = 1 in
168def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
169
Reid Kleckner51460c12015-11-06 01:49:05 +0000170// This instruction is responsible for re-establishing stack pointers after an
171// exception has been caught and we are rejoining normal control flow in the
172// parent function or funclet. It generally sets ESP and EBP, and optionally
173// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
174// elsewhere.
Reid Kleckner420f0542015-11-09 23:34:42 +0000175let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
Reid Kleckner51460c12015-11-06 01:49:05 +0000176def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
177
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000178let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
179 usesCustomInserter = 1 in {
180 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
181 "#EH_SJLJ_SETJMP32",
182 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
183 Requires<[Not64BitMode]>;
184 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
185 "#EH_SJLJ_SETJMP64",
186 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
187 Requires<[In64BitMode]>;
188 let isTerminator = 1 in {
189 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
190 "#EH_SJLJ_LONGJMP32",
191 [(X86eh_sjlj_longjmp addr:$buf)]>,
192 Requires<[Not64BitMode]>;
193 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
194 "#EH_SJLJ_LONGJMP64",
195 [(X86eh_sjlj_longjmp addr:$buf)]>,
196 Requires<[In64BitMode]>;
197 }
198}
199} // SchedRW
200
201let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
202 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
203 "#EH_SjLj_Setup\t$dst", []>;
204}
205
206//===----------------------------------------------------------------------===//
207// Pseudo instructions used by unwind info.
208//
209let isPseudo = 1 in {
210 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
211 "#SEH_PushReg $reg", []>;
212 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
213 "#SEH_SaveReg $reg, $dst", []>;
214 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
215 "#SEH_SaveXMM $reg, $dst", []>;
216 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
217 "#SEH_StackAlloc $size", []>;
218 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
219 "#SEH_SetFrame $reg, $offset", []>;
220 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
221 "#SEH_PushFrame $mode", []>;
222 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
223 "#SEH_EndPrologue", []>;
224 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
225 "#SEH_Epilogue", []>;
226}
227
228//===----------------------------------------------------------------------===//
229// Pseudo instructions used by segmented stacks.
230//
231
232// This is lowered into a RET instruction by MCInstLower. We need
233// this so that we don't have to have a MachineBasicBlock which ends
234// with a RET and also has successors.
235let isPseudo = 1 in {
236def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
237 "", []>;
238
239// This instruction is lowered to a RET followed by a MOV. The two
240// instructions are not generated on a higher level since then the
241// verifier sees a MachineBasicBlock ending with a non-terminator.
242def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
243 "", []>;
244}
245
246//===----------------------------------------------------------------------===//
247// Alias Instructions
248//===----------------------------------------------------------------------===//
249
250// Alias instruction mapping movr0 to xor.
251// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
252let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
Hans Wennborg4ae51192016-03-25 01:10:56 +0000253 isPseudo = 1, AddedComplexity = 20 in
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000254def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
255 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
256
257// Other widths can also make use of the 32-bit xor, which may have a smaller
258// encoding and avoid partial register updates.
259def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
260def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
261def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
262 let AddedComplexity = 20;
263}
264
Hans Wennborg08d59052015-12-15 17:10:28 +0000265let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode],
Hans Wennborg4ae51192016-03-25 01:10:56 +0000266 AddedComplexity = 15 in {
Hans Wennborg08d59052015-12-15 17:10:28 +0000267 // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
268 // which only require 3 bytes compared to MOV32ri which requires 5.
269 let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
270 def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
271 [(set GR32:$dst, 1)]>;
272 def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
273 [(set GR32:$dst, -1)]>;
274 }
275
276 // MOV16ri is 4 bytes, so the instructions above are smaller.
277 def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
278 def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
279}
280
Hans Wennborg4ae51192016-03-25 01:10:56 +0000281let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 10 in {
282// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
283// FIXME: Add itinerary class and Schedule.
284def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
285 [(set GR32:$dst, i32immSExt8:$src)]>,
286 Requires<[OptForMinSize, NotWin64WithoutFP]>;
287def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
288 [(set GR64:$dst, i64immSExt8:$src)]>,
289 Requires<[OptForMinSize, NotWin64WithoutFP]>;
290}
291
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000292// Materialize i64 constant where top 32-bits are zero. This could theoretically
293// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
294// that would make it more difficult to rematerialize.
Craig Toppere00bffb2016-01-05 07:44:14 +0000295let isReMaterializable = 1, isAsCheapAsAMove = 1,
296 isPseudo = 1, hasSideEffects = 0 in
297def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000298
299// This 64-bit pseudo-move can be used for both a 64-bit constant that is
Sanjay Patel85030aa2015-10-13 16:23:00 +0000300// actually the zero-extension of a 32-bit constant and for labels in the
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000301// x86-64 small code model.
Sanjay Patel85030aa2015-10-13 16:23:00 +0000302def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000303
304let AddedComplexity = 1 in
305def : Pat<(i64 mov64imm32:$src),
306 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
307
308// Use sbb to materialize carry bit.
309let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
310// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
311// However, Pat<> can't replicate the destination reg into the inputs of the
312// result.
313def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
314 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
315def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
316 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
317def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
318 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
319def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
320 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
321} // isCodeGenOnly
322
323
324def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
325 (SETB_C16r)>;
326def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
327 (SETB_C32r)>;
328def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
329 (SETB_C64r)>;
330
331def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
332 (SETB_C16r)>;
333def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
334 (SETB_C32r)>;
335def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
336 (SETB_C64r)>;
337
338// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
339// will be eliminated and that the sbb can be extended up to a wider type. When
340// this happens, it is great. However, if we are left with an 8-bit sbb and an
341// and, we might as well just match it as a setb.
342def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
343 (SETBr)>;
344
345// (add OP, SETB) -> (adc OP, 0)
346def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
347 (ADC8ri GR8:$op, 0)>;
348def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
349 (ADC32ri8 GR32:$op, 0)>;
350def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
351 (ADC64ri8 GR64:$op, 0)>;
352
353// (sub OP, SETB) -> (sbb OP, 0)
354def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
355 (SBB8ri GR8:$op, 0)>;
356def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
357 (SBB32ri8 GR32:$op, 0)>;
358def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
359 (SBB64ri8 GR64:$op, 0)>;
360
361// (sub OP, SETCC_CARRY) -> (adc OP, 0)
362def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
363 (ADC8ri GR8:$op, 0)>;
364def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
365 (ADC32ri8 GR32:$op, 0)>;
366def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
367 (ADC64ri8 GR64:$op, 0)>;
368
369//===----------------------------------------------------------------------===//
370// String Pseudo Instructions
371//
372let SchedRW = [WriteMicrocoded] in {
373let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
374def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
375 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
376 Requires<[Not64BitMode]>;
377def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
378 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
379 Requires<[Not64BitMode]>;
380def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
381 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
382 Requires<[Not64BitMode]>;
383}
384
385let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
386def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
387 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
388 Requires<[In64BitMode]>;
389def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
390 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
391 Requires<[In64BitMode]>;
392def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
393 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
394 Requires<[In64BitMode]>;
395def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
396 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
397 Requires<[In64BitMode]>;
398}
399
400// FIXME: Should use "(X86rep_stos AL)" as the pattern.
401let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
402 let Uses = [AL,ECX,EDI] in
403 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
404 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
405 Requires<[Not64BitMode]>;
406 let Uses = [AX,ECX,EDI] in
407 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
408 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
409 Requires<[Not64BitMode]>;
410 let Uses = [EAX,ECX,EDI] in
411 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
412 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
413 Requires<[Not64BitMode]>;
414}
415
416let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
417 let Uses = [AL,RCX,RDI] in
418 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
419 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
420 Requires<[In64BitMode]>;
421 let Uses = [AX,RCX,RDI] in
422 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
423 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
424 Requires<[In64BitMode]>;
425 let Uses = [RAX,RCX,RDI] in
426 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
427 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
428 Requires<[In64BitMode]>;
429
430 let Uses = [RAX,RCX,RDI] in
431 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
432 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
433 Requires<[In64BitMode]>;
434}
435} // SchedRW
436
437//===----------------------------------------------------------------------===//
438// Thread Local Storage Instructions
439//
440
441// ELF TLS Support
442// All calls clobber the non-callee saved registers. ESP is marked as
443// a use to prevent stack-pointer assignments that appear immediately
444// before calls from potentially appearing dead.
445let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
446 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
447 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
448 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
449 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Davide Italiano228978c2016-02-20 00:44:47 +0000450 usesCustomInserter = 1, Uses = [ESP] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000451def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
452 "# TLS_addr32",
453 [(X86tlsaddr tls32addr:$sym)]>,
454 Requires<[Not64BitMode]>;
455def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
456 "# TLS_base_addr32",
457 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
458 Requires<[Not64BitMode]>;
459}
460
461// All calls clobber the non-callee saved registers. RSP is marked as
462// a use to prevent stack-pointer assignments that appear immediately
463// before calls from potentially appearing dead.
464let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
465 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
466 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
467 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
468 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
469 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Davide Italiano228978c2016-02-20 00:44:47 +0000470 usesCustomInserter = 1, Uses = [RSP] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000471def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
472 "# TLS_addr64",
473 [(X86tlsaddr tls64addr:$sym)]>,
474 Requires<[In64BitMode]>;
475def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
476 "# TLS_base_addr64",
477 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
478 Requires<[In64BitMode]>;
479}
480
481// Darwin TLS Support
482// For i386, the address of the thunk is passed on the stack, on return the
483// address of the variable is in %eax. %ecx is trashed during the function
484// call. All other registers are preserved.
485let Defs = [EAX, ECX, EFLAGS],
486 Uses = [ESP],
487 usesCustomInserter = 1 in
488def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
489 "# TLSCall_32",
490 [(X86TLSCall addr:$sym)]>,
491 Requires<[Not64BitMode]>;
492
Quentin Colombetd6dbec42016-04-27 21:37:37 +0000493// For x86_64, the address of the thunk is passed in %rdi, but the
494// pseudo directly use the symbol, so do not add an implicit use of
495// %rdi. The lowering will do the right thing with RDI.
496// On return the address of the variable is in %rax. All other
497// registers are preserved.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000498let Defs = [RAX, EFLAGS],
Quentin Colombetd6dbec42016-04-27 21:37:37 +0000499 Uses = [RSP],
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000500 usesCustomInserter = 1 in
501def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
502 "# TLSCall_64",
503 [(X86TLSCall addr:$sym)]>,
504 Requires<[In64BitMode]>;
505
506
507//===----------------------------------------------------------------------===//
508// Conditional Move Pseudo Instructions
509
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000510// CMOV* - Used to implement the SELECT DAG operation. Expanded after
511// instruction selection into a branch sequence.
512multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
513 def CMOV#NAME : I<0, Pseudo,
514 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
515 "#CMOV_"#NAME#" PSEUDO!",
516 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
517 EFLAGS)))]>;
518}
519
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000520let usesCustomInserter = 1, Uses = [EFLAGS] in {
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000521 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
522 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
523 // however that requires promoting the operands, and can induce additional
524 // i8 register pressure.
525 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000526
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000527 let Predicates = [NoCMov] in {
528 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
529 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
530 } // Predicates = [NoCMov]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000531
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000532 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
533 // SSE1/SSE2.
534 let Predicates = [FPStackf32] in
535 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000536
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000537 let Predicates = [FPStackf64] in
538 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
539
540 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
541
542 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
543 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
Chih-Hung Hsieh7993e182015-12-14 22:08:36 +0000544 defm _FR128 : CMOVrr_PSEUDO<FR128, f128>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000545 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
546 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
547 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
548 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
549 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
550 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
551 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
552 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
553 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
Elena Demikhovskyc1ac5d72015-05-12 09:36:52 +0000554 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
555 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
556 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
557 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000558} // usesCustomInserter = 1, Uses = [EFLAGS]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000559
560//===----------------------------------------------------------------------===//
561// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
562//===----------------------------------------------------------------------===//
563
564// FIXME: Use normal instructions and add lock prefix dynamically.
565
566// Memory barriers
567
568// TODO: Get this to fold the constant into the instruction.
569let isCodeGenOnly = 1, Defs = [EFLAGS] in
570def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
Craig Topper9583f512016-01-05 07:44:11 +0000571 "or{l}\t{$zero, $dst|$dst, $zero}", [],
572 IIC_ALU_MEM>, Requires<[Not64BitMode]>, OpSize32, LOCK,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000573 Sched<[WriteALULd, WriteRMW]>;
574
575let hasSideEffects = 1 in
576def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
577 "#MEMBARRIER",
578 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
579
580// RegOpc corresponds to the mr version of the instruction
581// ImmOpc corresponds to the mi version of the instruction
582// ImmOpc8 corresponds to the mi8 version of the instruction
583// ImmMod corresponds to the instruction format of the mi and mi8 versions
584multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000585 Format ImmMod, SDPatternOperator Op, string mnemonic> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000586let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
587 SchedRW = [WriteALULd, WriteRMW] in {
588
589def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
590 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
591 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
592 !strconcat(mnemonic, "{b}\t",
593 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000594 [(set EFLAGS, (Op addr:$dst, GR8:$src2))],
595 IIC_ALU_NONMEM>, LOCK;
596
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000597def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
598 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
599 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
600 !strconcat(mnemonic, "{w}\t",
601 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000602 [(set EFLAGS, (Op addr:$dst, GR16:$src2))],
603 IIC_ALU_NONMEM>, OpSize16, LOCK;
604
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000605def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
606 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
607 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
608 !strconcat(mnemonic, "{l}\t",
609 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000610 [(set EFLAGS, (Op addr:$dst, GR32:$src2))],
611 IIC_ALU_NONMEM>, OpSize32, LOCK;
612
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000613def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
614 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
615 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
616 !strconcat(mnemonic, "{q}\t",
617 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000618 [(set EFLAGS, (Op addr:$dst, GR64:$src2))],
619 IIC_ALU_NONMEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000620
621def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
622 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
623 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
624 !strconcat(mnemonic, "{b}\t",
625 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000626 [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))],
627 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000628
629def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
630 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
631 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
632 !strconcat(mnemonic, "{w}\t",
633 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000634 [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))],
635 IIC_ALU_MEM>, OpSize16, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000636
637def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
638 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
639 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
640 !strconcat(mnemonic, "{l}\t",
641 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000642 [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))],
643 IIC_ALU_MEM>, OpSize32, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000644
645def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
646 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
647 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
648 !strconcat(mnemonic, "{q}\t",
649 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000650 [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))],
651 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000652
653def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
654 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
655 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
656 !strconcat(mnemonic, "{w}\t",
657 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000658 [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))],
659 IIC_ALU_MEM>, OpSize16, LOCK;
660
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000661def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
662 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
663 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
664 !strconcat(mnemonic, "{l}\t",
665 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000666 [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))],
667 IIC_ALU_MEM>, OpSize32, LOCK;
668
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000669def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
670 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
671 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
672 !strconcat(mnemonic, "{q}\t",
673 "{$src2, $dst|$dst, $src2}"),
Craig Topper7b5925a2016-05-02 05:44:21 +0000674 [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))],
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000675 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000676
677}
678
679}
680
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000681defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
682defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
683defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
684defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
685defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000686
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000687multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000688 int Increment, string mnemonic> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000689let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000690 SchedRW = [WriteALULd, WriteRMW], Predicates = [NotSlowIncDec] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000691def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
692 !strconcat(mnemonic, "{b}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000693 [(set EFLAGS, (X86lock_add addr:$dst, (i8 Increment)))],
694 IIC_UNARY_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000695def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
696 !strconcat(mnemonic, "{w}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000697 [(set EFLAGS, (X86lock_add addr:$dst, (i16 Increment)))],
698 IIC_UNARY_MEM>, OpSize16, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000699def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
700 !strconcat(mnemonic, "{l}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000701 [(set EFLAGS, (X86lock_add addr:$dst, (i32 Increment)))],
702 IIC_UNARY_MEM>, OpSize32, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000703def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
704 !strconcat(mnemonic, "{q}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000705 [(set EFLAGS, (X86lock_add addr:$dst, (i64 Increment)))],
706 IIC_UNARY_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000707}
708}
709
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000710defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, 1, "inc">;
711defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, -1, "dec">;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000712
713// Atomic compare and swap.
714multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
715 SDPatternOperator frag, X86MemOperand x86memop,
716 InstrItinClass itin> {
717let isCodeGenOnly = 1 in {
718 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
719 !strconcat(mnemonic, "\t$ptr"),
720 [(frag addr:$ptr)], itin>, TB, LOCK;
721}
722}
723
724multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
725 string mnemonic, SDPatternOperator frag,
726 InstrItinClass itin8, InstrItinClass itin> {
727let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
728 let Defs = [AL, EFLAGS], Uses = [AL] in
729 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
730 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
731 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
732 let Defs = [AX, EFLAGS], Uses = [AX] in
733 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
734 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
735 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
736 let Defs = [EAX, EFLAGS], Uses = [EAX] in
737 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
738 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
739 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
740 let Defs = [RAX, EFLAGS], Uses = [RAX] in
741 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
742 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
743 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
744}
745}
746
747let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
748 SchedRW = [WriteALULd, WriteRMW] in {
749defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
750 X86cas8, i64mem,
751 IIC_CMPX_LOCK_8B>;
752}
753
Quentin Colombetcf9732b2016-03-12 02:25:27 +0000754// This pseudo must be used when the frame uses RBX as
755// the base pointer. Indeed, in such situation RBX is a reserved
756// register and the register allocator will ignore any use/def of
757// it. In other words, the register will not fix the clobbering of
758// RBX that will happen when setting the arguments for the instrucion.
759//
760// Unlike the actual related instuction, we mark that this one
761// defines EBX (instead of using EBX).
762// The rationale is that we will define RBX during the expansion of
763// the pseudo. The argument feeding EBX is ebx_input.
764//
765// The additional argument, $ebx_save, is a temporary register used to
766// save the value of RBX accross the actual instruction.
767//
768// To make sure the register assigned to $ebx_save does not interfere with
769// the definition of the actual instruction, we use a definition $dst which
770// is tied to $rbx_save. That way, the live-range of $rbx_save spans accross
771// the instruction and we are sure we will have a valid register to restore
772// the value of RBX.
773let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
774 SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1,
775 Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in {
776def LCMPXCHG8B_SAVE_EBX :
777 I<0, Pseudo, (outs GR32:$dst),
778 (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
779 !strconcat("cmpxchg8b", "\t$ptr"),
780 [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
781 GR32:$ebx_save))],
782 IIC_CMPX_LOCK_8B>;
783}
784
785
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000786let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
787 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
788defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
789 X86cas16, i128mem,
790 IIC_CMPX_LOCK_16B>, REX_W;
791}
792
Quentin Colombetcf9732b2016-03-12 02:25:27 +0000793// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
794let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
795 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW],
796 isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
797 usesCustomInserter = 1 in {
798def LCMPXCHG16B_SAVE_RBX :
799 I<0, Pseudo, (outs GR64:$dst),
800 (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
801 !strconcat("cmpxchg16b", "\t$ptr"),
802 [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
803 GR64:$rbx_save))],
804 IIC_CMPX_LOCK_16B>;
805}
806
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000807defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
808 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
809
810// Atomic exchange and add
811multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
812 string frag,
813 InstrItinClass itin8, InstrItinClass itin> {
814 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
815 SchedRW = [WriteALULd, WriteRMW] in {
816 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
817 (ins GR8:$val, i8mem:$ptr),
818 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
819 [(set GR8:$dst,
820 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
821 itin8>;
822 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
823 (ins GR16:$val, i16mem:$ptr),
824 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
825 [(set
826 GR16:$dst,
827 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
828 itin>, OpSize16;
829 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
830 (ins GR32:$val, i32mem:$ptr),
831 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
832 [(set
833 GR32:$dst,
834 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
835 itin>, OpSize32;
836 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
837 (ins GR64:$val, i64mem:$ptr),
838 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
839 [(set
840 GR64:$dst,
841 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
842 itin>;
843 }
844}
845
846defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
847 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
848 TB, LOCK;
849
850/* The following multiclass tries to make sure that in code like
851 * x.store (immediate op x.load(acquire), release)
JF Bastien86620832015-08-05 21:04:59 +0000852 * and
853 * x.store (register op x.load(acquire), release)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000854 * an operation directly on memory is generated instead of wasting a register.
855 * It is not automatic as atomic_store/load are only lowered to MOV instructions
856 * extremely late to prevent them from being accidentally reordered in the backend
857 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
858 */
JF Bastien0f8a99b2015-08-05 23:15:37 +0000859multiclass RELEASE_BINOP_MI<SDNode op> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000860 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000861 "#BINOP "#NAME#"8mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000862 [(atomic_store_8 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000863 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000864 def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
865 "#BINOP "#NAME#"8mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000866 [(atomic_store_8 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000867 (atomic_load_8 addr:$dst), GR8:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000868 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
869 // costly and avoided as far as possible by this backend anyway
870 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000871 "#BINOP "#NAME#"32mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000872 [(atomic_store_32 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000873 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000874 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
875 "#BINOP "#NAME#"32mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000876 [(atomic_store_32 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000877 (atomic_load_32 addr:$dst), GR32:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000878 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000879 "#BINOP "#NAME#"64mi32 PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000880 [(atomic_store_64 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000881 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000882 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
883 "#BINOP "#NAME#"64mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000884 [(atomic_store_64 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000885 (atomic_load_64 addr:$dst), GR64:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000886}
JF Bastien986ed682015-10-13 00:28:47 +0000887let Defs = [EFLAGS] in {
888 defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
889 defm RELEASE_AND : RELEASE_BINOP_MI<and>;
890 defm RELEASE_OR : RELEASE_BINOP_MI<or>;
891 defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
892 // Note: we don't deal with sub, because substractions of constants are
893 // optimized into additions before this code can run.
894}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000895
JF Bastien86620832015-08-05 21:04:59 +0000896// Same as above, but for floating-point.
897// FIXME: imm version.
898// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
899// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
900let usesCustomInserter = 1 in {
JF Bastien0f8a99b2015-08-05 23:15:37 +0000901multiclass RELEASE_FP_BINOP_MI<SDNode op> {
JF Bastien86620832015-08-05 21:04:59 +0000902 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
903 "#BINOP "#NAME#"32mr PSEUDO!",
904 [(atomic_store_32 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000905 (i32 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000906 (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
907 FR32:$src))))]>, Requires<[HasSSE1]>;
908 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
909 "#BINOP "#NAME#"64mr PSEUDO!",
910 [(atomic_store_64 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000911 (i64 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000912 (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
913 FR64:$src))))]>, Requires<[HasSSE2]>;
914}
JF Bastien0f8a99b2015-08-05 23:15:37 +0000915defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
JF Bastien86620832015-08-05 21:04:59 +0000916// FIXME: Add fsub, fmul, fdiv, ...
917}
918
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000919multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
920 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000921 "#UNOP "#NAME#"8m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000922 [(atomic_store_8 addr:$dst, dag8)]>;
923 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000924 "#UNOP "#NAME#"16m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000925 [(atomic_store_16 addr:$dst, dag16)]>;
926 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000927 "#UNOP "#NAME#"32m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000928 [(atomic_store_32 addr:$dst, dag32)]>;
929 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000930 "#UNOP "#NAME#"64m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000931 [(atomic_store_64 addr:$dst, dag64)]>;
932}
933
JF Bastien2cdd5e42015-10-15 18:24:52 +0000934let Defs = [EFLAGS] in {
935 defm RELEASE_INC : RELEASE_UNOP<
936 (add (atomic_load_8 addr:$dst), (i8 1)),
937 (add (atomic_load_16 addr:$dst), (i16 1)),
938 (add (atomic_load_32 addr:$dst), (i32 1)),
939 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
940 defm RELEASE_DEC : RELEASE_UNOP<
941 (add (atomic_load_8 addr:$dst), (i8 -1)),
942 (add (atomic_load_16 addr:$dst), (i16 -1)),
943 (add (atomic_load_32 addr:$dst), (i32 -1)),
944 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
945}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000946/*
947TODO: These don't work because the type inference of TableGen fails.
948TODO: find a way to fix it.
JF Bastien2cdd5e42015-10-15 18:24:52 +0000949let Defs = [EFLAGS] in {
950 defm RELEASE_NEG : RELEASE_UNOP<
951 (ineg (atomic_load_8 addr:$dst)),
952 (ineg (atomic_load_16 addr:$dst)),
953 (ineg (atomic_load_32 addr:$dst)),
954 (ineg (atomic_load_64 addr:$dst))>;
955}
956// NOT doesn't set flags.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000957defm RELEASE_NOT : RELEASE_UNOP<
958 (not (atomic_load_8 addr:$dst)),
959 (not (atomic_load_16 addr:$dst)),
960 (not (atomic_load_32 addr:$dst)),
961 (not (atomic_load_64 addr:$dst))>;
962*/
963
964def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000965 "#RELEASE_MOV8mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000966 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
967def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000968 "#RELEASE_MOV16mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000969 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
970def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000971 "#RELEASE_MOV32mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000972 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
973def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000974 "#RELEASE_MOV64mi32 PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000975 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
976
977def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
JF Bastien86620832015-08-05 21:04:59 +0000978 "#RELEASE_MOV8mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000979 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
980def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
JF Bastien86620832015-08-05 21:04:59 +0000981 "#RELEASE_MOV16mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000982 [(atomic_store_16 addr:$dst, GR16:$src)]>;
983def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
JF Bastien86620832015-08-05 21:04:59 +0000984 "#RELEASE_MOV32mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000985 [(atomic_store_32 addr:$dst, GR32:$src)]>;
986def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
JF Bastien86620832015-08-05 21:04:59 +0000987 "#RELEASE_MOV64mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000988 [(atomic_store_64 addr:$dst, GR64:$src)]>;
989
990def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
JF Bastien86620832015-08-05 21:04:59 +0000991 "#ACQUIRE_MOV8rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000992 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
993def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000994 "#ACQUIRE_MOV16rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000995 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
996def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000997 "#ACQUIRE_MOV32rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000998 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
999def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
JF Bastien86620832015-08-05 21:04:59 +00001000 "#ACQUIRE_MOV64rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001001 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001002
1003//===----------------------------------------------------------------------===//
1004// DAG Pattern Matching Rules
1005//===----------------------------------------------------------------------===//
1006
Hans Wennborg5f916d32016-03-25 18:11:31 +00001007// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
1008// binary size compared to a regular MOV, but it introduces an unnecessary
1009// load, so is not suitable for regular or optsize functions.
1010let Predicates = [OptForMinSize] in {
1011def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
1012def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
1013def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
1014def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
1015def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
1016def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
1017}
1018
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001019// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
1020def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
1021def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
1022def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
1023def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
1024def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001025def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001026def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
1027
1028def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
1029 (ADD32ri GR32:$src1, tconstpool:$src2)>;
1030def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
1031 (ADD32ri GR32:$src1, tjumptable:$src2)>;
1032def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
1033 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
1034def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
1035 (ADD32ri GR32:$src1, texternalsym:$src2)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001036def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
1037 (ADD32ri GR32:$src1, mcsym:$src2)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001038def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
1039 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
1040
1041def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1042 (MOV32mi addr:$dst, tglobaladdr:$src)>;
1043def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
1044 (MOV32mi addr:$dst, texternalsym:$src)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001045def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
1046 (MOV32mi addr:$dst, mcsym:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001047def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
1048 (MOV32mi addr:$dst, tblockaddress:$src)>;
1049
1050// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
1051// code model mode, should use 'movabs'. FIXME: This is really a hack, the
1052// 'movabs' predicate should handle this sort of thing.
1053def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
1054 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
1055def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
1056 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
1057def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1058 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
1059def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1060 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001061def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1062 (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001063def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1064 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
1065
1066// In kernel code model, we can get the address of a label
1067// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
1068// the MOV64ri32 should accept these.
1069def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
1070 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
1071def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
1072 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
1073def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1074 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1075def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1076 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001077def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1078 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001079def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1080 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1081
1082// If we have small model and -static mode, it is safe to store global addresses
1083// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
1084// for MOV64mi32 should handle this sort of thing.
1085def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1086 (MOV64mi32 addr:$dst, tconstpool:$src)>,
1087 Requires<[NearData, IsStatic]>;
1088def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1089 (MOV64mi32 addr:$dst, tjumptable:$src)>,
1090 Requires<[NearData, IsStatic]>;
1091def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1092 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1093 Requires<[NearData, IsStatic]>;
1094def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1095 (MOV64mi32 addr:$dst, texternalsym:$src)>,
1096 Requires<[NearData, IsStatic]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001097def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1098 (MOV64mi32 addr:$dst, mcsym:$src)>,
1099 Requires<[NearData, IsStatic]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001100def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1101 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1102 Requires<[NearData, IsStatic]>;
1103
Rafael Espindola36b718f2015-06-22 17:46:53 +00001104def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1105def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001106
1107// Calls
1108
1109// tls has some funny stuff here...
1110// This corresponds to movabs $foo@tpoff, %rax
1111def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1112 (MOV64ri32 tglobaltlsaddr :$dst)>;
1113// This corresponds to add $foo@tpoff, %rax
1114def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1115 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1116
1117
1118// Direct PC relative function call for small code model. 32-bit displacement
1119// sign extended to 64-bit.
1120def : Pat<(X86call (i64 tglobaladdr:$dst)),
1121 (CALL64pcrel32 tglobaladdr:$dst)>;
1122def : Pat<(X86call (i64 texternalsym:$dst)),
1123 (CALL64pcrel32 texternalsym:$dst)>;
1124
1125// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1126// can never use callee-saved registers. That is the purpose of the GR64_TC
1127// register classes.
1128//
1129// The only volatile register that is never used by the calling convention is
1130// %r11. This happens when calling a vararg function with 6 arguments.
1131//
1132// Match an X86tcret that uses less than 7 volatile registers.
1133def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1134 (X86tcret node:$ptr, node:$off), [{
1135 // X86tcret args: (*chain, ptr, imm, regs..., glue)
1136 unsigned NumRegs = 0;
1137 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1138 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1139 return false;
1140 return true;
1141}]>;
1142
1143def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1144 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1145 Requires<[Not64BitMode]>;
1146
1147// FIXME: This is disabled for 32-bit PIC mode because the global base
1148// register which is part of the address mode may be assigned a
1149// callee-saved register.
1150def : Pat<(X86tcret (load addr:$dst), imm:$off),
1151 (TCRETURNmi addr:$dst, imm:$off)>,
1152 Requires<[Not64BitMode, IsNotPIC]>;
1153
1154def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1155 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1156 Requires<[NotLP64]>;
1157
1158def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1159 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1160 Requires<[NotLP64]>;
1161
1162def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1163 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1164 Requires<[In64BitMode]>;
1165
1166// Don't fold loads into X86tcret requiring more than 6 regs.
1167// There wouldn't be enough scratch registers for base+index.
1168def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1169 (TCRETURNmi64 addr:$dst, imm:$off)>,
1170 Requires<[In64BitMode]>;
1171
1172def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1173 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1174 Requires<[IsLP64]>;
1175
1176def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1177 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1178 Requires<[IsLP64]>;
1179
1180// Normal calls, with various flavors of addresses.
1181def : Pat<(X86call (i32 tglobaladdr:$dst)),
1182 (CALLpcrel32 tglobaladdr:$dst)>;
1183def : Pat<(X86call (i32 texternalsym:$dst)),
1184 (CALLpcrel32 texternalsym:$dst)>;
1185def : Pat<(X86call (i32 imm:$dst)),
1186 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1187
1188// Comparisons.
1189
1190// TEST R,R is smaller than CMP R,0
1191def : Pat<(X86cmp GR8:$src1, 0),
1192 (TEST8rr GR8:$src1, GR8:$src1)>;
1193def : Pat<(X86cmp GR16:$src1, 0),
1194 (TEST16rr GR16:$src1, GR16:$src1)>;
1195def : Pat<(X86cmp GR32:$src1, 0),
1196 (TEST32rr GR32:$src1, GR32:$src1)>;
1197def : Pat<(X86cmp GR64:$src1, 0),
1198 (TEST64rr GR64:$src1, GR64:$src1)>;
1199
1200// Conditional moves with folded loads with operands swapped and conditions
1201// inverted.
1202multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1203 Instruction Inst64> {
1204 let Predicates = [HasCMov] in {
1205 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1206 (Inst16 GR16:$src2, addr:$src1)>;
1207 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1208 (Inst32 GR32:$src2, addr:$src1)>;
1209 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1210 (Inst64 GR64:$src2, addr:$src1)>;
1211 }
1212}
1213
1214defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1215defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1216defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1217defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1218defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1219defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1220defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1221defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1222defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1223defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1224defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1225defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1226defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1227defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1228defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1229defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1230
1231// zextload bool -> zextload byte
Elena Demikhovskye5bbca62016-02-25 07:05:12 +00001232// i1 stored in one byte in zero-extended form.
1233// Upper bits cleanup should be executed before Store.
1234def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1235def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1236def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001237def : Pat<(zextloadi64i1 addr:$src),
Elena Demikhovskye5bbca62016-02-25 07:05:12 +00001238 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001239
1240// extload bool -> extload byte
1241// When extloading from 16-bit and smaller memory locations into 64-bit
1242// registers, use zero-extending loads so that the entire 64-bit register is
1243// defined, avoiding partial-register updates.
1244
1245def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1246def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1247def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1248def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1249def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1250def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1251
1252// For other extloads, use subregs, since the high contents of the register are
1253// defined after an extload.
1254def : Pat<(extloadi64i1 addr:$src),
1255 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1256def : Pat<(extloadi64i8 addr:$src),
1257 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1258def : Pat<(extloadi64i16 addr:$src),
1259 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1260def : Pat<(extloadi64i32 addr:$src),
1261 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1262
1263// anyext. Define these to do an explicit zero-extend to
1264// avoid partial-register updates.
1265def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1266 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1267def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1268
1269// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1270def : Pat<(i32 (anyext GR16:$src)),
1271 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1272
1273def : Pat<(i64 (anyext GR8 :$src)),
1274 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1275def : Pat<(i64 (anyext GR16:$src)),
1276 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1277def : Pat<(i64 (anyext GR32:$src)),
1278 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1279
1280
1281// Any instruction that defines a 32-bit result leaves the high half of the
1282// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1283// be copying from a truncate. And x86's cmov doesn't do anything if the
1284// condition is false. But any other 32-bit operation will zero-extend
1285// up to 64 bits.
1286def def32 : PatLeaf<(i32 GR32:$src), [{
1287 return N->getOpcode() != ISD::TRUNCATE &&
1288 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1289 N->getOpcode() != ISD::CopyFromReg &&
1290 N->getOpcode() != ISD::AssertSext &&
1291 N->getOpcode() != X86ISD::CMOV;
1292}]>;
1293
1294// In the case of a 32-bit def that is known to implicitly zero-extend,
1295// we can use a SUBREG_TO_REG.
1296def : Pat<(i64 (zext def32:$src)),
1297 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1298
1299//===----------------------------------------------------------------------===//
1300// Pattern match OR as ADD
1301//===----------------------------------------------------------------------===//
1302
1303// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1304// 3-addressified into an LEA instruction to avoid copies. However, we also
1305// want to finally emit these instructions as an or at the end of the code
1306// generator to make the generated code easier to read. To do this, we select
1307// into "disjoint bits" pseudo ops.
1308
1309// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1310def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1311 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1312 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1313
1314 APInt KnownZero0, KnownOne0;
1315 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1316 APInt KnownZero1, KnownOne1;
1317 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1318 return (~KnownZero0 & ~KnownZero1) == 0;
1319}]>;
1320
1321
1322// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1323// Try this before the selecting to OR.
1324let AddedComplexity = 5, SchedRW = [WriteALU] in {
1325
1326let isConvertibleToThreeAddress = 1,
1327 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1328let isCommutable = 1 in {
1329def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1330 "", // orw/addw REG, REG
1331 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1332def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1333 "", // orl/addl REG, REG
1334 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1335def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1336 "", // orq/addq REG, REG
1337 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1338} // isCommutable
1339
1340// NOTE: These are order specific, we want the ri8 forms to be listed
1341// first so that they are slightly preferred to the ri forms.
1342
1343def ADD16ri8_DB : I<0, Pseudo,
1344 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1345 "", // orw/addw REG, imm8
1346 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1347def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1348 "", // orw/addw REG, imm
1349 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1350
1351def ADD32ri8_DB : I<0, Pseudo,
1352 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1353 "", // orl/addl REG, imm8
1354 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1355def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1356 "", // orl/addl REG, imm
1357 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1358
1359
1360def ADD64ri8_DB : I<0, Pseudo,
1361 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1362 "", // orq/addq REG, imm8
1363 [(set GR64:$dst, (or_is_add GR64:$src1,
1364 i64immSExt8:$src2))]>;
1365def ADD64ri32_DB : I<0, Pseudo,
1366 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1367 "", // orq/addq REG, imm
1368 [(set GR64:$dst, (or_is_add GR64:$src1,
1369 i64immSExt32:$src2))]>;
1370}
1371} // AddedComplexity, SchedRW
1372
1373
1374//===----------------------------------------------------------------------===//
1375// Some peepholes
1376//===----------------------------------------------------------------------===//
1377
1378// Odd encoding trick: -128 fits into an 8-bit immediate field while
1379// +128 doesn't, so in this special case use a sub instead of an add.
1380def : Pat<(add GR16:$src1, 128),
1381 (SUB16ri8 GR16:$src1, -128)>;
1382def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1383 (SUB16mi8 addr:$dst, -128)>;
1384
1385def : Pat<(add GR32:$src1, 128),
1386 (SUB32ri8 GR32:$src1, -128)>;
1387def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1388 (SUB32mi8 addr:$dst, -128)>;
1389
1390def : Pat<(add GR64:$src1, 128),
1391 (SUB64ri8 GR64:$src1, -128)>;
1392def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1393 (SUB64mi8 addr:$dst, -128)>;
1394
1395// The same trick applies for 32-bit immediate fields in 64-bit
1396// instructions.
1397def : Pat<(add GR64:$src1, 0x0000000080000000),
1398 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1399def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1400 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1401
1402// To avoid needing to materialize an immediate in a register, use a 32-bit and
1403// with implicit zero-extension instead of a 64-bit and if the immediate has at
1404// least 32 bits of leading zeros. If in addition the last 32 bits can be
1405// represented with a sign extension of a 8 bit constant, use that.
Craig Topper3d441782015-04-04 02:31:43 +00001406// This can also reduce instruction size by eliminating the need for the REX
1407// prefix.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001408
Craig Topper7ea899a2015-04-04 04:22:12 +00001409// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1410let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001411def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1412 (SUBREG_TO_REG
1413 (i64 0),
1414 (AND32ri8
1415 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1416 (i32 (GetLo8XForm imm:$imm))),
1417 sub_32bit)>;
1418
1419def : Pat<(and GR64:$src, i64immZExt32:$imm),
1420 (SUBREG_TO_REG
1421 (i64 0),
1422 (AND32ri
1423 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1424 (i32 (GetLo32XForm imm:$imm))),
1425 sub_32bit)>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001426} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001427
1428
Craig Topper7ea899a2015-04-04 04:22:12 +00001429// AddedComplexity is needed due to the increased complexity on the
1430// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1431// the MOVZX patterns keeps thems together in DAGIsel tables.
1432let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001433// r & (2^16-1) ==> movz
1434def : Pat<(and GR32:$src1, 0xffff),
1435 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1436// r & (2^8-1) ==> movz
1437def : Pat<(and GR32:$src1, 0xff),
1438 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1439 GR32_ABCD)),
1440 sub_8bit))>,
1441 Requires<[Not64BitMode]>;
1442// r & (2^8-1) ==> movz
1443def : Pat<(and GR16:$src1, 0xff),
1444 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1445 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1446 sub_16bit)>,
1447 Requires<[Not64BitMode]>;
1448
1449// r & (2^32-1) ==> movz
1450def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1451 (SUBREG_TO_REG (i64 0),
1452 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1453 sub_32bit)>;
1454// r & (2^16-1) ==> movz
1455def : Pat<(and GR64:$src, 0xffff),
1456 (SUBREG_TO_REG (i64 0),
1457 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1458 sub_32bit)>;
1459// r & (2^8-1) ==> movz
1460def : Pat<(and GR64:$src, 0xff),
1461 (SUBREG_TO_REG (i64 0),
1462 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1463 sub_32bit)>;
1464// r & (2^8-1) ==> movz
1465def : Pat<(and GR32:$src1, 0xff),
1466 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1467 Requires<[In64BitMode]>;
1468// r & (2^8-1) ==> movz
1469def : Pat<(and GR16:$src1, 0xff),
1470 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1471 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1472 Requires<[In64BitMode]>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001473} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001474
1475
1476// sext_inreg patterns
1477def : Pat<(sext_inreg GR32:$src, i16),
1478 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1479def : Pat<(sext_inreg GR32:$src, i8),
1480 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1481 GR32_ABCD)),
1482 sub_8bit))>,
1483 Requires<[Not64BitMode]>;
1484
1485def : Pat<(sext_inreg GR16:$src, i8),
1486 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1487 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1488 sub_16bit)>,
1489 Requires<[Not64BitMode]>;
1490
1491def : Pat<(sext_inreg GR64:$src, i32),
1492 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1493def : Pat<(sext_inreg GR64:$src, i16),
1494 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1495def : Pat<(sext_inreg GR64:$src, i8),
1496 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1497def : Pat<(sext_inreg GR32:$src, i8),
1498 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1499 Requires<[In64BitMode]>;
1500def : Pat<(sext_inreg GR16:$src, i8),
1501 (EXTRACT_SUBREG (MOVSX32rr8
1502 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1503 Requires<[In64BitMode]>;
1504
1505// sext, sext_load, zext, zext_load
1506def: Pat<(i16 (sext GR8:$src)),
1507 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1508def: Pat<(sextloadi16i8 addr:$src),
1509 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1510def: Pat<(i16 (zext GR8:$src)),
1511 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1512def: Pat<(zextloadi16i8 addr:$src),
1513 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1514
1515// trunc patterns
1516def : Pat<(i16 (trunc GR32:$src)),
1517 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1518def : Pat<(i8 (trunc GR32:$src)),
1519 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1520 sub_8bit)>,
1521 Requires<[Not64BitMode]>;
1522def : Pat<(i8 (trunc GR16:$src)),
1523 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1524 sub_8bit)>,
1525 Requires<[Not64BitMode]>;
1526def : Pat<(i32 (trunc GR64:$src)),
1527 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1528def : Pat<(i16 (trunc GR64:$src)),
1529 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1530def : Pat<(i8 (trunc GR64:$src)),
1531 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1532def : Pat<(i8 (trunc GR32:$src)),
1533 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1534 Requires<[In64BitMode]>;
1535def : Pat<(i8 (trunc GR16:$src)),
1536 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1537 Requires<[In64BitMode]>;
1538
1539// h-register tricks
1540def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1541 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1542 sub_8bit_hi)>,
1543 Requires<[Not64BitMode]>;
1544def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1545 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1546 sub_8bit_hi)>,
1547 Requires<[Not64BitMode]>;
1548def : Pat<(srl GR16:$src, (i8 8)),
1549 (EXTRACT_SUBREG
1550 (MOVZX32rr8
1551 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1552 sub_8bit_hi)),
1553 sub_16bit)>,
1554 Requires<[Not64BitMode]>;
1555def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1556 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1557 GR16_ABCD)),
1558 sub_8bit_hi))>,
1559 Requires<[Not64BitMode]>;
1560def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1561 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1562 GR16_ABCD)),
1563 sub_8bit_hi))>,
1564 Requires<[Not64BitMode]>;
1565def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1566 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1567 GR32_ABCD)),
1568 sub_8bit_hi))>,
1569 Requires<[Not64BitMode]>;
1570def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1571 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1572 GR32_ABCD)),
1573 sub_8bit_hi))>,
1574 Requires<[Not64BitMode]>;
1575
1576// h-register tricks.
1577// For now, be conservative on x86-64 and use an h-register extract only if the
1578// value is immediately zero-extended or stored, which are somewhat common
1579// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1580// from being allocated in the same instruction as the h register, as there's
1581// currently no way to describe this requirement to the register allocator.
1582
1583// h-register extract and zero-extend.
1584def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1585 (SUBREG_TO_REG
1586 (i64 0),
1587 (MOVZX32_NOREXrr8
1588 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1589 sub_8bit_hi)),
1590 sub_32bit)>;
1591def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1592 (MOVZX32_NOREXrr8
1593 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1594 sub_8bit_hi))>,
1595 Requires<[In64BitMode]>;
1596def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1597 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1598 GR32_ABCD)),
1599 sub_8bit_hi))>,
1600 Requires<[In64BitMode]>;
1601def : Pat<(srl GR16:$src, (i8 8)),
1602 (EXTRACT_SUBREG
1603 (MOVZX32_NOREXrr8
1604 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1605 sub_8bit_hi)),
1606 sub_16bit)>,
1607 Requires<[In64BitMode]>;
1608def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1609 (MOVZX32_NOREXrr8
1610 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1611 sub_8bit_hi))>,
1612 Requires<[In64BitMode]>;
1613def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1614 (MOVZX32_NOREXrr8
1615 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1616 sub_8bit_hi))>,
1617 Requires<[In64BitMode]>;
1618def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1619 (SUBREG_TO_REG
1620 (i64 0),
1621 (MOVZX32_NOREXrr8
1622 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1623 sub_8bit_hi)),
1624 sub_32bit)>;
1625def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1626 (SUBREG_TO_REG
1627 (i64 0),
1628 (MOVZX32_NOREXrr8
1629 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1630 sub_8bit_hi)),
1631 sub_32bit)>;
1632
1633// h-register extract and store.
1634def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1635 (MOV8mr_NOREX
1636 addr:$dst,
1637 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1638 sub_8bit_hi))>;
1639def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1640 (MOV8mr_NOREX
1641 addr:$dst,
1642 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1643 sub_8bit_hi))>,
1644 Requires<[In64BitMode]>;
1645def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1646 (MOV8mr_NOREX
1647 addr:$dst,
1648 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1649 sub_8bit_hi))>,
1650 Requires<[In64BitMode]>;
1651
1652
1653// (shl x, 1) ==> (add x, x)
1654// Note that if x is undef (immediate or otherwise), we could theoretically
1655// end up with the two uses of x getting different values, producing a result
1656// where the least significant bit is not 0. However, the probability of this
1657// happening is considered low enough that this is officially not a
1658// "real problem".
1659def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1660def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1661def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1662def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1663
1664// Helper imms that check if a mask doesn't change significant shift bits.
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00001665def immShift32 : ImmLeaf<i8, [{
1666 return countTrailingOnes<uint64_t>(Imm) >= 5;
1667}]>;
1668def immShift64 : ImmLeaf<i8, [{
1669 return countTrailingOnes<uint64_t>(Imm) >= 6;
1670}]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001671
1672// Shift amount is implicitly masked.
1673multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1674 // (shift x (and y, 31)) ==> (shift x, y)
1675 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1676 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1677 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1678 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1679 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1680 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1681 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1682 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1683 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1684 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1685 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1686 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1687
1688 // (shift x (and y, 63)) ==> (shift x, y)
1689 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1690 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1691 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1692 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1693}
1694
1695defm : MaskedShiftAmountPats<shl, "SHL">;
1696defm : MaskedShiftAmountPats<srl, "SHR">;
1697defm : MaskedShiftAmountPats<sra, "SAR">;
1698defm : MaskedShiftAmountPats<rotl, "ROL">;
1699defm : MaskedShiftAmountPats<rotr, "ROR">;
1700
1701// (anyext (setcc_carry)) -> (setcc_carry)
1702def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1703 (SETB_C16r)>;
1704def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1705 (SETB_C32r)>;
1706def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1707 (SETB_C32r)>;
1708
1709
1710
1711
1712//===----------------------------------------------------------------------===//
1713// EFLAGS-defining Patterns
1714//===----------------------------------------------------------------------===//
1715
1716// add reg, reg
1717def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1718def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1719def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1720
1721// add reg, mem
1722def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1723 (ADD8rm GR8:$src1, addr:$src2)>;
1724def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1725 (ADD16rm GR16:$src1, addr:$src2)>;
1726def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1727 (ADD32rm GR32:$src1, addr:$src2)>;
1728
1729// add reg, imm
1730def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1731def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1732def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1733def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1734 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1735def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1736 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1737
1738// sub reg, reg
1739def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1740def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1741def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1742
1743// sub reg, mem
1744def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1745 (SUB8rm GR8:$src1, addr:$src2)>;
1746def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1747 (SUB16rm GR16:$src1, addr:$src2)>;
1748def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1749 (SUB32rm GR32:$src1, addr:$src2)>;
1750
1751// sub reg, imm
1752def : Pat<(sub GR8:$src1, imm:$src2),
1753 (SUB8ri GR8:$src1, imm:$src2)>;
1754def : Pat<(sub GR16:$src1, imm:$src2),
1755 (SUB16ri GR16:$src1, imm:$src2)>;
1756def : Pat<(sub GR32:$src1, imm:$src2),
1757 (SUB32ri GR32:$src1, imm:$src2)>;
1758def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1759 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1760def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1761 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1762
1763// sub 0, reg
1764def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1765def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1766def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1767def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1768
1769// mul reg, reg
1770def : Pat<(mul GR16:$src1, GR16:$src2),
1771 (IMUL16rr GR16:$src1, GR16:$src2)>;
1772def : Pat<(mul GR32:$src1, GR32:$src2),
1773 (IMUL32rr GR32:$src1, GR32:$src2)>;
1774
1775// mul reg, mem
1776def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1777 (IMUL16rm GR16:$src1, addr:$src2)>;
1778def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1779 (IMUL32rm GR32:$src1, addr:$src2)>;
1780
1781// mul reg, imm
1782def : Pat<(mul GR16:$src1, imm:$src2),
1783 (IMUL16rri GR16:$src1, imm:$src2)>;
1784def : Pat<(mul GR32:$src1, imm:$src2),
1785 (IMUL32rri GR32:$src1, imm:$src2)>;
1786def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1787 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1788def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1789 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1790
1791// reg = mul mem, imm
1792def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1793 (IMUL16rmi addr:$src1, imm:$src2)>;
1794def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1795 (IMUL32rmi addr:$src1, imm:$src2)>;
1796def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1797 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1798def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1799 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1800
1801// Patterns for nodes that do not produce flags, for instructions that do.
1802
1803// addition
1804def : Pat<(add GR64:$src1, GR64:$src2),
1805 (ADD64rr GR64:$src1, GR64:$src2)>;
1806def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1807 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1808def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1809 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1810def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1811 (ADD64rm GR64:$src1, addr:$src2)>;
1812
1813// subtraction
1814def : Pat<(sub GR64:$src1, GR64:$src2),
1815 (SUB64rr GR64:$src1, GR64:$src2)>;
1816def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1817 (SUB64rm GR64:$src1, addr:$src2)>;
1818def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1819 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1820def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1821 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1822
1823// Multiply
1824def : Pat<(mul GR64:$src1, GR64:$src2),
1825 (IMUL64rr GR64:$src1, GR64:$src2)>;
1826def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1827 (IMUL64rm GR64:$src1, addr:$src2)>;
1828def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1829 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1830def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1831 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1832def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1833 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1834def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1835 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1836
1837// Increment/Decrement reg.
1838// Do not make INC/DEC if it is slow
1839let Predicates = [NotSlowIncDec] in {
1840 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1841 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1842 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1843 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1844 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1845 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1846 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1847 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1848}
1849
1850// or reg/reg.
1851def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1852def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1853def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1854def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1855
1856// or reg/mem
1857def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1858 (OR8rm GR8:$src1, addr:$src2)>;
1859def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1860 (OR16rm GR16:$src1, addr:$src2)>;
1861def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1862 (OR32rm GR32:$src1, addr:$src2)>;
1863def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1864 (OR64rm GR64:$src1, addr:$src2)>;
1865
1866// or reg/imm
1867def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1868def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1869def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1870def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1871 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1872def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1873 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1874def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1875 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1876def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1877 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1878
1879// xor reg/reg
1880def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1881def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1882def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1883def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1884
1885// xor reg/mem
1886def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1887 (XOR8rm GR8:$src1, addr:$src2)>;
1888def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1889 (XOR16rm GR16:$src1, addr:$src2)>;
1890def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1891 (XOR32rm GR32:$src1, addr:$src2)>;
1892def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1893 (XOR64rm GR64:$src1, addr:$src2)>;
1894
1895// xor reg/imm
1896def : Pat<(xor GR8:$src1, imm:$src2),
1897 (XOR8ri GR8:$src1, imm:$src2)>;
1898def : Pat<(xor GR16:$src1, imm:$src2),
1899 (XOR16ri GR16:$src1, imm:$src2)>;
1900def : Pat<(xor GR32:$src1, imm:$src2),
1901 (XOR32ri GR32:$src1, imm:$src2)>;
1902def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1903 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1904def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1905 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1906def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1907 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1908def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1909 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1910
1911// and reg/reg
1912def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1913def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1914def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1915def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1916
1917// and reg/mem
1918def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1919 (AND8rm GR8:$src1, addr:$src2)>;
1920def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1921 (AND16rm GR16:$src1, addr:$src2)>;
1922def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1923 (AND32rm GR32:$src1, addr:$src2)>;
1924def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1925 (AND64rm GR64:$src1, addr:$src2)>;
1926
1927// and reg/imm
1928def : Pat<(and GR8:$src1, imm:$src2),
1929 (AND8ri GR8:$src1, imm:$src2)>;
1930def : Pat<(and GR16:$src1, imm:$src2),
1931 (AND16ri GR16:$src1, imm:$src2)>;
1932def : Pat<(and GR32:$src1, imm:$src2),
1933 (AND32ri GR32:$src1, imm:$src2)>;
1934def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1935 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1936def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1937 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1938def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1939 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1940def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1941 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1942
1943// Bit scan instruction patterns to match explicit zero-undef behavior.
1944def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1945def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1946def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1947def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1948def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1949def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1950
1951// When HasMOVBE is enabled it is possible to get a non-legalized
1952// register-register 16 bit bswap. This maps it to a ROL instruction.
1953let Predicates = [HasMOVBE] in {
1954 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1955}